
UM ESTUDO EMPÍRICO SOBRE O USO DE

TIPAGEM OPCIONAL EM SISTEMAS DE

SOFTWARE

CARLOS ALEXANDRE GARCIA DE SOUZA

UM ESTUDO EMPÍRICO SOBRE O USO DE

TIPAGEM OPCIONAL EM SISTEMAS DE

SOFTWARE

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Eduardo Magno Lages Figueiredo

Belo Horizonte

Abril de 2014

CARLOS ALEXANDRE GARCIA DE SOUZA

AN EMPIRICAL STUDY ABOUT THE USE OF

OPTIONAL TYPING IN SOFTWARE SYSTEMS

Dissertation presented to the Graduate
Program in Computer Science of the Uni-
versidade Federal de Minas Gerais - Depar-
tamento de Ciência da Computação in par-
tial fulfillment of the requirements for the
degree of Master in Computer Science.

Advisor: Eduardo Magno Lages Figueiredo

Belo Horizonte

April 2014

c© 2014, Carlos Alexandre Garcia de Souza.
Todos os direitos reservados.

Souza, Carlos Alexandre Garcia de

DS729e An Empirical Study About the Use of Optional
Typing in Software Systems / Carlos Alexandre
Garcia de Souza. — Belo Horizonte, 2014

xxvi, 80 f. : il. ; 29cm

Dissertação (mestrado) — Universidade Federal de
Minas Gerais - Departamento de Ciência da
Computação

Orientador: Eduardo Magno Lages Figueiredo

1. Computação - Teses. 2. Linguages de
programação - Teses. 3. Groovy (Linguagem de
programação de computador) - Teses. I. Título.

CDU 519.6*33(043)

Dedicuum cest laborae a quelquis personatum que ajudorat a facirelo.

ix

Acknowledgments

I would like to express my deepest apprectiation to my mentor, Prof. Eduardo
Figueiredo, whose wisdom guided me through the difficult process of becoming a Mas-
ter. He always set me in the correct path when I was lost and he believed in me until
the end, even when I did not believe myself. Furthermore, I would like to thank Prof.
Stefan Hanenberg, for the valuable contributions to the statistical analysis.

I am greateful to my family and friends, who were supportive and patient, and
never let me go. To my parents who raised me with all the love in the world and made
me the man I am today. In special, to my mother, who watched me work all night so
many times and always comforted me with sweet words and a hot cup of coffee.

Finally, I would like to thank my beautiful wife, Angelica. You were always there
for me. You are my angel.

xi

“If someone claims to have the perfect programming language, he is either a fool or a
salesman or both.”

(Bjarne Stroustrup)

xiii

Resumo

A recente popularização de linguagens dinamicamente tipadas, como Ruby e
JavaScript, tem chamado a atenção para a discussão sobre os impactos de diferentes
sistemas de tipos sobre o desenvolvimento de software. Tipagem estática permite que
o compilador encontre erros de tipos mais cedo e potencialmente melhora a legibil-
idade e manutenibilidade do código. Por outro lado, código "não tipado" pode ser
mais fácil de se alterar e requer menos trabalho dos programdores. Esta dissertação
tenta identificar qual é o ponto de vista dos programdores sobre esses compromissos.
Uma análise do código fonte de 6638 projetos escritos em Groovy, uma linguagem de
programação com tipagem opcional, mostra em que cenários programadores preferem
tipar ou não suas declarações. Nossos resultados mostram que tipos são populares na
definição da interface de módulos, mas são menos usados em scripts, classes de teste
e código frequentemente alterado. Não há correlação entre o tamanho e a idade de
projetos e como estes são tipados. Por fim, também foi possível encontrar evidências
de que a experiência de programdores com outras linguagens de programação possui
influência sobre como tipos são usados por esses programadores.

Palavras-chave: Sistemas de Tipos, Análise de Repositórios, Tipagem Opcional,
Groovy.

xv

Abstract

The recent popularization of dynamically typed languages, such as Ruby and
JavaScript, has brought more attention to the discussion about the impact of typ-
ing strategies on software development. Types allow the compiler to find type errors
sooner and potentially improve the readability and maintainability of code. On the
other hand, "untyped" code may be easier to change and requires less work from pro-
grammers. This paper tries to identify the programmers’ point of view about these
tradeoffs. An analysis of the source code of 6638 projects written in Groovy, a program-
ming language which features optional typing, shows in which scenarios programmers
prefer to type or not to type their declarations. Our results show that types are popular
in the definition of module interfaces, but are less used in scripts, test classes and fre-
quently changed code. There is no correlation between the size and age of projects and
how their constructs are typed. Finally, we also found evidence that the background
of programmers influences how they use types.

Palavras-chave: Type Systems, Repository Analysis, Optional Typing, Groovy.

xvii

List of Figures

3.1 Most popular languages among Groovy developers 17

4.1 Usage of types in all declarations of all projects 20
4.2 Usage of types in all declarations by type of declaration 21
4.3 Usage of types in all declarations by type of declaration 24
4.4 Usage of types by declaration type in test classes and main classes 26
4.5 Usage of types by declaration type in script files and class files 28
4.6 Usage of types by declaration type and programmer background 30
4.7 Usage of types by declaration visibility and programmer background 31
4.8 Usage of types in projects by declaration type and project maturity 35
4.9 Usage of types in projects by declaration visibility and project maturity . . 36
4.10 Spearman ranking for the correlation between frequency of changes of files

and the usage of types in mature projects 37

A.1 Usage of types in all declarations . 53
A.2 Usage of types in declarations of fields . 54
A.3 Usage of types in declarations of constructor parameters 54
A.4 Usage of types in declarations of parameters of methods 54
A.5 Usage of types in declarations of returns of methods 54
A.6 Usage of types in declarations of local variables 55
A.7 Usage of types in public declarations . 55
A.8 Usage of types in protected declarations 55
A.9 Usage of types in private declarations . 55
A.10 Usage of types in declarations inside test classes 56
A.11 Usage of types in declarations of fields inside test classes 56
A.12 Usage of types in declarations of constructor parameters inside test classes 56
A.13 Usage of types in declarations of parameters of methods inside test classes 57
A.14 Usage of types in declarations of returns of methods inside test classes . . 57

xix

A.15 Usage of types in declarations of local variables inside test classes 57
A.16 Usage of types in public declarations inside test classes 57
A.17 Usage of types in protected declarations inside test classes 58
A.18 Usage of types in private declarations inside test classes 58
A.19 Usage of types in declarations inside main classes 59
A.20 Usage of types in declarations of fields inside main classes 59
A.21 Usage of types in declarations of constructor parameters inside main classes 59
A.22 Usage of types in declarations of parameters of methods inside main classes 60
A.23 Usage of types in declarations of returns of methods inside main classes . . 60
A.24 Usage of types in declarations of local variables inside main classes 60
A.25 Usage of types in public declarations inside main classes 60
A.26 Usage of types in protected declarations inside main classes 61
A.27 Usage of types in private declarations inside main classes 61
A.28 Usage of types in declarations inside script files 62
A.29 Usage of types in declarations of parameters of methods inside script files . 62
A.30 Usage of types in declarations of returns of methods inside script files . . . 62
A.31 Usage of types in declarations of local variables inside script files 63
A.32 Usage of types in declarations inside class files 63
A.33 Usage of types in declarations of fields inside class files 63
A.34 Usage of types in declarations of constructor parameters inside class files . 64
A.35 Usage of types in declarations of parameters of methods inside class files . 64
A.36 Usage of types in declarations of returns of methods inside class files . . . 64
A.37 Usage of types in declarations of local variables inside class files 64
A.38 Usage of types in public declarations inside class files 65
A.39 Usage of types in protected declarations inside class files 65
A.40 Usage of types in private declarations inside class files 65
A.41 Usage of types in projects with programmers with statically typed only

background . 66
A.42 Usage of types in declarations of fields in projects with programmers with

statically typed only background . 66
A.43 Usage of types in declarations of constructor parameters in projects with

programmers with statically typed only background 66
A.44 Usage of types in declarations of parameters of methods in projects with

programmers with statically typed only background 67
A.45 Usage of types in declarations of returns of methods in projects with pro-

grammers with statically typed only background 67

xx

A.46 Usage of types in declarations of local variables in projects with program-
mers with statically typed only background 67

A.47 Usage of types in public declarations in projects with programmers with
statically typed only background . 68

A.48 Usage of types in protected declarations in projects with programmers with
statically typed only background . 68

A.49 Usage of types in private declarations in projects with programmers with
statically typed only background . 68

A.50 Usage of types in declarations in projects with programmers with dynami-
cally typed background . 69

A.51 Usage of types in declarations of fields in projects with programmers with
dynamically typed background . 69

A.52 Usage of types in declarations of constructor parameters in projects with
programmers with dynamically typed background 69

A.53 Usage of types in declarations of parameters of methods in projects with
programmers with dynamically typed background 70

A.54 Usage of types in declarations of returns of methods in projects with pro-
grammers with dynamically typed background 70

A.55 Usage of types in declarations of local variables in projects with program-
mers with dynamically typed background 70

A.56 Usage of types in public declarations in projects with programmers with
dynamically typed background . 71

A.57 Usage of types in protected declarations in projects with programmers with
dynamically typed background . 71

A.58 Usage of types in private declarations in projects with programmers with
dynamically typed background . 71

A.59 Usage of types in declarations in projects with programmers with statically
and dynamically typed background . 72

A.60 Usage of types in declarations of fields in projects with programmers with
statically and dynamically typed background 72

A.61 Usage of types in declarations of constructor parameters in projects with
programmers with statically and dynamically typed background 72

A.62 Usage of types in declarations of parameters of methods in projects with
programmers with statically and dynamically typed background 73

A.63 Usage of types in declarations of returns of methods in projects with pro-
grammers with statically and dynamically typed background 73

xxi

A.64 Usage of types in declarations of local variables in projects with program-
mers with statically and dynamically typed background 73

A.65 Usage of types in public declarations in projects with programmers with
statically and dynamically typed background 74

A.66 Usage of types in protected declarations in projects with programmers with
statically and dynamically typed background 74

A.67 Usage of types in private declarations in projects with programmers with
statically and dynamically typed background 74

A.68 Usage of types in declarations in mature projects 75
A.69 Usage of types in declarations of fields in mature projects 75
A.70 Usage of types in declarations of constructor parameters in mature projects 75
A.71 Usage of types in declarations of parameters of methods in mature projects 76
A.72 Usage of types in declarations of returns of methods in mature projects . . 76
A.73 Usage of types in declarations of local variables in mature projects 76
A.74 Usage of types in public declarations in mature projects 76
A.75 Usage of types in protected declarations in mature projects 77
A.76 Usage of types in private declarations in mature projects 77
A.77 Usage of types in declarations in non-mature projects 78
A.78 Usage of types in declarations of fields in non-mature projects 78
A.79 Usage of types in declarations of constructor parameters in non-mature

projects . 78
A.80 Usage of types in declarations of parameters of methods in non-mature

projects . 79
A.81 Usage of types in declarations of returns of methods in non-mature projects 79
A.82 Usage of types in declarations of local variables in non-mature projects . . 79
A.83 Usage of types in public declarations in non-mature projects 79
A.84 Usage of types in protected declarations in non-mature projects 80
A.85 Usage of types in private declarations in non-mature projects 80

xxii

List of Tables

3.1 Characterization of Projects . 15
3.2 Number of Declarations per Project . 16
3.3 Number of Declarations by Visibility . 16
3.4 Distribution of the Number of Developers per Project 16

4.1 Tukey Honest Significant Differences Test results for the comparison be-
tween the usage of types by kind of declaration 23

4.2 Tukey Honest Significant Differences Test results for the comparison be-
tween the usage of types by visibility of declaration 24

4.3 Tukey Honest Significant Differences Test results for the comparison be-
tween the usage of types by main and test classes 27

4.4 Tukey Honest Significant Differences Test results for the comparison be-
tween the usage of types in script files and class files 28

4.5 Tukey Honest Significant Differences Test results for the comparison be-
tween the usage of types by declaration type and programmers background 32

4.6 Tukey Honest Significant Differences Test results for the comparison be-
tween the usage of types by declaration visibility and programmers back-
ground . 32

4.7 Spearman Correlation between the usage of types and the size, age and
number of commits of projects . 33

4.8 Descriptive statistics for mature projects 34

xxiii

Contents

Acknowledgments xi

Resumo xv

Abstract xvii

List of Figures xix

List of Tables xxiii

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 3
1.3 Organization . 3

2 Background 5
2.1 Types and Related Work . 5
2.2 The Groovy Language . 8

2.2.1 Groovy Type System . 8
2.2.2 Other Groovy Features . 10

3 Study Settings 13
3.1 Research Questions . 13
3.2 Data Collection Procedure . 14
3.3 Dataset . 15
3.4 Static Code Analyzer . 17

4 Results 19
4.1 Overall Result . 19
4.2 Kind of Declaration . 21

xxv

4.3 Declaration Visibility . 23
4.4 Test Classes and Main Classes . 25
4.5 Script Files and Class Files . 27
4.6 Programmers’ Background . 29
4.7 Project Size, Age and Number of Commits 33
4.8 Frequency of changes . 37

5 Discussion 39
5.1 Research Questions . 39
5.2 Threats to Validity . 43

6 Conclusions and Future Work 45
6.1 Conclusions . 45
6.2 Future Work . 46

Bibliography 49

Attachment A Detailed Results 53
A.1 Overall Result . 53
A.2 Test and Main Classes . 56
A.3 Script and Class Files . 62
A.4 Programmers’ Background . 66
A.5 Project Maturity . 75

xxvi

Chapter 1

Introduction

Type systems are one of the most important characteristics of a programming language
and also a major topic of research in software engineering (Furr et. al. [2009]; Takikawa
et. al. [2012]; Siek et. al. [2007]). A type system is a tractable syntactic method for
proving the absence of certain program behaviors by classifying phrases according to
the kinds of values they compute (Pierce [2002]). In other words, type systems define
the interface of the different parts that compose a program. Their main purposes are
to prevent the occurrence of execution errors and to document code (Cardelli [1996]).
In dynamically typed languages, such as Ruby and JavaScript, the definition of the
type of an expression only happens at run time. On the other hand, statically typed
programming languages, such as Java and C#, require types to be defined during
compile time, either explicitly declared by the programmer or inferred by the compiler
(Milner [1978]). In such languages, the compiler can check for most errors statically.

Discussions about what is the best type system for a particular situation have
become increasingly important in recent years due to the rapid popularization of dy-
namically typed languages. According to the TIOBE Programming Community Index
(Tiobe Website [2013]), a well-known ranking that measures the popularity of program-
ming languages, 27% of the programming languages used in industry are dynamically
typed. A decade ago, this number was only 17%. Among the 10 languages on top of
the ranking, four are dynamically typed: JavaScript, Perl, Python and PHP. None of
these languages were among the top 10 rank before 1998.

Several factors may be considered when choosing a typing paradigm. Dynamically
typed languages tend to allow programmers to code faster and to adapt their programs
to frequently changing requirements more easily. Also, by removing the repetitive work
of defining types, these languages allow programmers to focus on the problem to be
solved rather than on the rules of the language (Tratt [2009]).

1

2 Chapter 1. Introduction

Statically typed languages also have their advantages. They allow compilers to
find type errors statically (Lamport et. al. [1999]). Typed declarations increase the
maintainability of systems because they implicitly document the code, telling program-
mers about the nature of expressions (Cardelli [1996]; Mayer et. al. [2012]). Systems
built with these languages tend to be more efficient since they do not need to perform
type checking during execution (Bruce [2002]; Chang et. al. [2011]). Finally, modern
development environments, such as Eclipse and IDEA, are able to assist programmers
with functionalities such as code completion based on the information provided by
statically typed declarations (Bruch et. al. [2009]).

Some languages try to combine characteristics from both static and dynamic
type systems. Groovy [2013] is one of these languages. Although Groovy is mostly a
dynamically typed language, it gives programmers the option to use type annotations
as a means to document their code. It is also possible to turn static type checking on
so the compiler can find type errors before execution. This allows developers to choose
the most appropriate paradigm for each situation. In addition to that, some statically
typed languages, such as Java or C#, allow the programmer to use casts in order to
bypass type checking of an expression.

1.1 Motivation

Although the tradeoffs between different typing paradigms have been widely researched,
specially though controlled experiments, it is still unclear how programmers actually
perceive these tradeoffs. For example, assuming that statically typed programs are
more reliable, but dynamically typed programs can be written faster, which factor
would be considered more relevant by programmers and in which contexts?

Understanding the point of view of programmers about the use of types is an
important matter. Tools can be created or improved to support programmers in the
use of types. Programming language developers can consider that information in their
design so they can develop the most appropriate features for their target audience.
For example, dynamically typed languages can introduce type annotations in order
to help programmers document their code in the scenarios where programmers judge
this feature more useful. Finally, programmers can benefit from this knowledge when
choosing programming languages or typing paradigms for a given context.

Finding the programmers’ point of view about the use of types is far from trivial.
Controlled experiments hardly reproduce real life situations, where many experienced
programmers interact through a long period of time to build large and complex software

1.2. Contributions 3

systems ’Wohlin [2012]’. Also, one cannot find the point of view of programmers about
types by simply analyzing the programming language they choose since there are many
other factors which might influence such choice.

1.2 Contributions

This dissertation presents a large scale empirical study about how programmers use
optional typing in Groovy. Through the analysis of a massive dataset with 6638 Groovy
projects, we were able to identify when programmers prefer to type or not their dec-
larations. In particular, we found that programmers do not use types in test classes,
script files and frequently changed code as often as in other scenarios. On the other
hand, types are extremely popular in interfaces of modules. Also, there is evidence
that the use of types by programmers with statically typed languages background is
more frequent.

Our results bring more visibility over the point of view of programmers about
the use of types in software systems. This analysis complements existing studies based
on controlled experiments (Hanenberg et. al. [2013]; Daly et. al. [2009]; Hanenberg
[2010]; Kleinschmager et. al. [2012]; Mayer et. al. [2012]; Gannon [1977]; Prechelt et.
al. [1998]). Finally, we hope to inspire new researches about this topic by raising new
research questions based on the obtained results.

Partial results of this study have been published as a research paper (Souza et.
al. [2013]) on the First Brazilian Workshop on Visualization, Evolution and Software
Maintenance where they received the best paper award. More recent results have been
approved to be published on the 13th International Conference on Modularity (Souza
et. al. [2014]). In addition, the artifacts built in this study form the basis of an ongoing
effort to develop a scalable framework for the static source code analysis of massive
datasets called Elastic Repository Analysis (ERA [2014]).

1.3 Organization

The remainder of this document is organized as follows. Chapter 2 presents the back-
ground of this study, introducing the main concepts of type systems and of the Groovy
language. In Chapter 3 we present the study settings which results are shown in Chap-
ter 4. Chapter 5 discusses the results of this study and threats to its validity and
Chapter 6 concludes this study and suggests future work. In addition, detailed results
are displayed in Attachment A.

Chapter 2

Background

In this chapter, we present the background of our study. We start by discussing the
tradeoffs of different typing paradigms in Section 2.1. In Section 2.2, we introduce the
main concepts of the Groovy language, including its optional type system.

2.1 Types and Related Work

In the literature, it is common to find the following arguments in favor of statically
typed languages (Cardelli [1996]; Lamport et. al. [1999]; Mayer et. al. [2012]; Bruch
et. al. [2009]):

• They allow compilers to find type errors statically, thus decreasing the occurrence
of defects on a system

• They simplify the task of verifying the correctness of a program and potentially
lead to higher productivity

• They implicitly document the source code by communicating the nature of con-
structs to programmers and hence the increasing maintainability of a program

• They generally lead to more efficient systems since no type checking need to be
performed during run time

• They allow modern development environments, such as Eclipse and IDEA, to
use the information provided by types to assist programmers with productivity
functionalities such as code completion or integrated documentation

Conversely, dynamically typed languages also have advantages (Pierce [2002];
Tratt [2009]):

5

6 Chapter 2. Background

• They tend to lead programmers to code faster by eliminating the repetitive work
of declaring types

• They allow programmers to focus on the problem to be solved rather than on the
rules of the language

• They allow programmers to perform faster changes on a program thus adapting
to changing requirements more easily

The impacts of different typing strategies have been widely studied in the litera-
ture. In an experiment conducted by Prechelt et. al. [1998], it was possible to observe
a positive impact when using type checking on procedure arguments. In this experi-
ment, 40 programmers were split into two groups and asked to perform two non trivial
tasks based on an existing API. One group used ANSI C, which check types statically.
Meanwhile, the other group used a dialect of C which did not perform type checking
(although types were still declared). The group using the C dialect with type checking
produced less defects, were able to find errors more quickly and were more productive
than the other group.

A recent series of experiments conducted by Hanenberg analyzes typing
paradigms in various contexts. Hanenberg [2010] compares the performance of two
groups of students asked to develop two small systems. Both groups used a language
developed by the author, called Purity. The only difference in the language used by the
two groups was the type system. One group used a statically typed version of Purity
while the other used a dynamically typed version of the same language. Results showed
that the group using the dynamic version was significantly more productive than the
other, which contradicts the results found by Prechelt et. al. [1998].

In a follow up study by Kleinschmager et. al. [2012], the authors obtained op-
posite conclusions. They compared the performance of two groups of developers in
maintenance tasks. The first group used Java, a statically typed language, and the
other used Groovy, but restricting developers to use only untyped declarations in order
to simulate a dynamically typed version of Java. In this case, the group using the
statically typed language, Java, was much more productive.

In a recent experiment, Hanenberg et. al. [2013] studied the impact of the use of
types on the development time of programmers while performing tasks on an undocu-
mented API. Their goal was to evaluate how the implicit documentation provided by
types can help programmers on their development tasks. The experiment divided 27
people in two groups. They developed in two languages, one statically typed, Java,
and the other dynamically typed, Groovy. It was possible to observe a positive impact

2.1. Types and Related Work 7

of the use of types when these were used to document design decisions or when a high
number of classes had to be identified by programmers. On the other hand, for easier
tasks, programmers developed faster in the dynamically typed language. This study
provides a more consistent view of the tradeoffs between different typing strategies.
They show that this is a complex topic and that results might vary depending on
several different factors.

Daly et. al. [2009] conduct an experiment in order to compare the performance
of two groups working on small development tasks. One group used Ruby, a dynami-
cally typed language, while the other used DRuby, a statically typed version of Ruby.
Results showed that the DRuby compiler rarely managed to capture any errors that
were not already evident for programmers. This result contradicts the argument that
type checking can significantly reduce the occurrence of defects. However, the authors
suggest an interesting explanation. Since most subjects involved in the study had pre-
vious experience with Ruby, they were probably used to the lack of typing. This result
also raises the question whether type checks can effectively reduce the occurrence of
run time errors only among developers who are not used to dynamic typing.

The studies discussed above present very different and often contradictory results.
The impact of the use of types on the development of software systems is a very complex
topic and depends on a wide range of factors. Although controlled experiments are
capable of analyzing this question in detail, they might suffer heavy interference from
several factors, such as the selection of the groups and the background of the subjects.
Moreover, these studies provide no visibility on how programmers perceive these results.
For example, assuming that typed programs are more reliable, but dynamically typed
programs can be written faster, which factor would be considered more relevant by
programmers and in which contexts?

A recent work published by Meyerovich et. al. [2013] reports several prominent
findings about the adoption of languages by programmers. Based on a combination
of the analysis of a large dataset of source code repositories and multiple surveys, the
authors were able to understand which factors influence the adoption of programming
languages. In particular, they report two interesting results involving type systems.
First, they found evidence that intrinsic factors, including the type system of a lan-
guage, are only of secondary importance for language adoption. Extrinsic and social
factors, such as open source libraries availability and existing team experience, are far
more important in this case. This result shows that one cannot determine the pop-
ularity of typing paradigms based solely on language popularity since in most cases
languages are chosen because of an extrinsic factor. Second, Meyerovich et. al. [2013]
shows that programmers prefer static typing as a means to increase the readability of

8 Chapter 2. Background

their code rather than to provide compile time type checking. They seem to prefer
unit tests as a means to increase the reliability of a program over static type checking.
However, it is important to say that these results might be biased in favor of dynami-
cally typed languages since they were based on a survey conducted among students of
a web development course.

2.2 The Groovy Language

Groovy is a dynamically typed programming language designed to run on the Java
Virtual Machine. Its adoption has grown remarkably over the last years. According
to the TIOBE Programming Index, Groovy is the 22nd most popular language in the
software industry Tiobe Website [2013], ahead of languages like Haskell and Scala. It
builds upon the strengths of Java, but has additional features inspired by dynamic
languages such as Python and Ruby, such as metaprogramming, closures and script
support. Like Java, Groovy code is compiled to bytecode, allowing it to seamlessly
integrate with existing Java classes and libraries. These factors have attracted a large
number of Java programmers who want to use Groovy’s dynamic functionality without
having to learn a completely different language or change the execution platform of
their systems.

2.2.1 Groovy Type System

When Groovy was first launched, in 2007, it was a purely dynamically typed language.
However, it allowed programmers to optionally type their declarations. Examples of
typed and untyped declarations combined in the same file are shown in Listing 1. This
kind of typing should not be confused with static typing since the Groovy compiler
does not use these type annotations to look for errors. For example, the snippet of
code shown in Listing 2 compiles without any errors. Nevertheless, during runtime,
the string variable refers to an instance of the Integer class and an exception is thrown
when the method toUpperCase is invoked since the Integer class does not have such
method.

Since version 2.0, Groovy allows programmers to explicitly activate static typing
by using the @TypeChecked annotation. This makes Groovy a gradually typed lan-
guage (Gray et. al. [2005]; Gray [2008, 2011]; Siek et. al. [2007]; Takikawa et. al.
[2012]). In this mode, the Groovy compiler looks for type errors and fails if it finds
any. Listing 3 shows an example of static typing with the @TypeChecked annotation in
Groovy. Trying to compile the class TypeCheckedGroovyClass produces an error since

2.2. The Groovy Language 9

Listing 1 Typed and untyped declarations mixed together

1 class DynamicTyping {
2 private String typedField
3 private untypedField
4
5 DynamicTyping(typedParam){}
6
7 def untypedMethod(untypedParam,int typedParam){
8 def untypedVariable = 1.0
9 return untypedVariable
10 }
11
12 int typedMethod(){
13 String typedVariable = ""
14 return typedVariable
15 }
16 }

Listing 2 Types are not checked by default by the Groovy compiler

1 String string = new Integer(1)
2 string.toUpperCase()

the method sum is supposed to receive two parameters of the type int, but it is actually
called with two parameters of the type String.

Listing 3 Forcing the compiler to check types

1 @TypeChecked
2 class TypeCheckedGroovyClass {
3
4 static int sum(int a, int b) {
5 a + b
6 }
7
8 public static void main(String[] args) {
9 println sum("1", "2")
10 }
11 }

The @TypeChecked annotation is reasonably recent and most Groovy program-
mers still do not use it. Typing annotations on the other hand are very popular.
Although they do not provide static type checking, they are capable of documenting

10 Chapter 2. Background

the code and aiding in the integration with development tools. In the remainder of
this text, we refer to declarations with type annotations as "typed", while the word
"untyped" is used for declarations with no type annotations.

2.2.2 Other Groovy Features

Groovy was designed to be more expressive and concise than Java. Two implemen-
tations of a simple algorithm are shown below. Given a list of numbers, return a list
containing only the even numbers of that list. Listing 4 shows the Java implementation
while Listing 5 shows the Groovy counterpart.

Listing 4 A simple algorithm written in Java

1 import java.util.ArrayList;
2 import java.util.List;
3
4 public class JavaFilter {
5 List<Integer> evenNumbers(List<Integer> list) {
6 List<Integer> result = new ArrayList<Integer>();
7 for(int item : list) {
8 if(item % 2 == 0) {
9 result.add(item);
10 }
11 }
12
13 return result;
14 }
15
16 public static void main(String[] args) {
17 List<Integer> list = new ArrayList<Integer>();
18 list.add(1);
19 list.add(2);
20 list.add(3);
21 list.add(4);
22
23 List<Integer> rslt = new JavaFilter().evenNumbers(list);
24 System.out.println(rslt);
25 }
26 }

Because of its high level of expressiveness, Groovy is able to reduce much of the
boilerplate required in Java. Listing 5 shows that Groovy offers a native syntax for
lists (lines 3, 6 and 14) and operator overloading (line 6). Semicolons are optional,

2.2. The Groovy Language 11

except when there are multiple statements in the same line. When the keyword return
is omitted (line 10), the last expression evaluated inside a method is returned. Also,
parentheses in method calls can often be omitted (line 16). In addition, Groovy implic-
itly imports frequently used classes, like those of the java.util package, and methods,
like System.out.println (line 16).

Listing 5 A simple algorithm written in Groovy

1 class GroovyFilter {
2 List<Integer> evenNumbers(List<Integer> list) {
3 List<Integer> result = []
4 for(int item : list) {
5 if(item % 2 == 0) {
6 result << item
7 }
8 }
9
10 result
11 }
12
13 public static void main(String[] args) {
14 List<Integer> list = [1, 2, 3, 4]
15 List<Integer> result = new GroovyFilter().evenNumbers(

list)
16 println result
17 }
18 }

The design of Groovy was influenced by dynamic features of programming lan-
guages such as Ruby and Python. Listing 6 shows how these features can be used to
rewrite the same algorithm presented in Listing 4 in a single line of code. First, notice
that the code shown in Listing 6 is a script, rather than a class file. It makes use of a
closure to allow a programmer to define a filter logic. This closure is passed down to
the findAll method, which applies this closure to every element of the list in order to
decide if that element should be returned or not. Closures are one of the most impor-
tant features of Groovy as compared to Java. They allow a functional programming
style, which is both expressive and powerful.

Listing 6 A class written in Groovy

1 println([1, 2, 3, 4].findAll {it % 2 == 0})

12 Chapter 2. Background

Metaprogramming is another dynamic feature present in Groovy. Listing 7 shows
how to add a method to an existing class dynamically. By adding the method even-
Numbers() to the List class, it is possible to achieve higher expressiveness. This is
specially useful when implementing Domain Specific Languages (Fowler [2010]).

Listing 7 An example of metaprogramming in Groovy

1 List.metaClass.evenNumbers = {
2 delegate.findAll {it % 2 == 0}
3 }
4 println([1, 2, 3, 4].evenNumbers())

Chapter 3

Study Settings

The study presented in this thesis consists in the static analysis of the source code
of a corpus of 6638 Groovy projects. Its goal is to find in which contexts Groovy
programmers type or do not type their declarations. We have shared all the artifacts
of this study in our project website.1 This includes the source code of the programs
used in the data collection and analysis procedures, the analyzed data and the detailed
results. We do not share the source code of the analyzed projects, but we do share
their metadata, such as author name, project name, size, contributors, etc. Our goal
is to allow this study to be easily replicated or extended.

The remainder of this chapter is organized as follows. In Section 3.1, we present
five research questions that guide our analysis. Section 3.2 shows the data collection
procedure and Section 3.3 characterizes the obtained dataset. Finally, the analysis
procedure is presented in Section 3.4.

3.1 Research Questions

We aim to answer the following research questions about the usage of types by Groovy
programmers:

• Question Q1: Do programmers use types more often in the interface of
their modules? We believe that the benefits of the use of types are more clear
in declarations that define the interface of modules, which are exposed through
public or protected visibility. In such cases, programmers are specifying how
the rest of the program should interact with a module, potentially improving
readability and maintainability. On the other hand, in declarations that are

1http://github.com/carlosgsouza/groovonomics

13

14 Chapter 3. Study Settings

hidden from external modules, we expect programmers to opt for the simplicity
and flexibility offered by untyped declarations more often.

• Question Q2: Do programmers use types less often in test classes
and scripts? Many studies analyze typing paradigms in the main classes of a
program. However, little is known about this question in scripts or test classes.
We want to understand if programmers consider different typing strategies in
these scenarios.

• Question Q3: Does the experience of programmers with other lan-
guages influence their choice for typing their code? It is expected that
programmers familiar with a dynamically typed language are more comfortable
with the lack of types and end up using types less often in Groovy.

• Question Q4: Does the size, age or level of activity of a project have any
influence on the usage of types? We hypothesize that as these metrics grow,
there is an increased concern about keeping code more maintainable. This can
lead programmers to use types more often as a means to improve code readability.

• Question Q5: In frequently changed code, do developers prefer typed
or untyped declarations? It makes sense to assume that developers try to
increase the maintainability of frequently changed code. One way to achieve
that is improving the readability of such code with the use of types. On the
other hand, the flexibility of untyped declarations is capable of increasing the
changeability of those files. We want to understand which one of these strategies
is actually preferred by Groovy developers.

3.2 Data Collection Procedure

The projects used in this study were obtained from GitHub, a popular source control
service based on Git. For each project, it was necessary to retrieve its source code,
metadata, commit history, and the metadata of all its developers. GitHub does not
offer a listing of all hosted projects, but it offers two search mechanisms, a REST API
and a Web based search page. Unfortunately, the GitHub API is too limited for our
requirements. It imposes a limit of one thousand results and does not allow filtering
projects by their programming language.

In order to retrieve an extensive dataset, it was necessary to write a bot to
simulate human interactions with the GitHub webpage and search for projects. Some

3.3. Dataset 15

special care was necessary to make this work. For instance, because the number of
results is limited to one thousand projects, we had to segment the queries. Multiple
requests were made, each of them asking for the name of all projects created on a
given month. Results were then combined into a single list. Another problem faced
was that GitHub denies excessive requests from the same client. By adding artificial
delays between requests, it was possible to overcome this limitation.

With the name of all projects in hand, it was then possible to use the GitHub
REST API to query their metadata. That metadata also contains the identifiers of the
developers and of the commits of that project. Using those identifiers we once again
used the GitHub REST API and obtained the background of all developers and the
file changes of all projects.

3.3 Dataset

Our dataset consists of 6638 projects with almost 9.8 million lines of code. Table 3.1
shows descriptive statistics for the size, age and number of commits of these projects.
There are more than 1.5 million declarations of all types and visibilities in our dataset.
Note that the value of the median of the number of lines is relatively small. Most
projects have 529 lines of code or less. This was expected. Since Groovy is a very
expressive language, with many traits of functional programming languages, program-
mers can write more concise code leading to smaller programs. In addition, by manually
inspecting our dataset, we found a significant number of projects with a small number
of Groovy files among files written in other languages. Also, we found many small
projects created with learning purposes only.

Table 3.1: Characterization of Projects

Mean Median Sd Max Total

Size (LoC) 1,471 529 4,545 149,933 9,770,783
Commits 31 5 175 6,545 203,375

Age (Days) 361 280 333 1,717 2,395,441

Table 3.2 shows the number of declarations by kind and visibility and Table
3.3 shows the use of visibilities according to kind of declaration. Note that most
fields are declared with private visibility while most methods are public. This can be
easily explained when we consider the default visibilities in Groovy. Fields with no
visibility defined by the programmer are considered private by the Groovy compiler,
while methods are considered public.

16 Chapter 3. Study Settings

Table 3.2: Number of Declarations per Project

Mean Median Sd Max Total

Field 54 19 163 5,268 366,148
Constructor Parameter 3 0 16 933 18,956
Method Parameter 30 6 110 3,554 202,617
Method Return 53 15 165 4,893 357,997
Local Variable 88 21 361 16,427 602,645

Public 74 20 239 7,942 507,296
Protected 6 0 32 1,394 42,646
Private 58 21 178 5,268 395,776

All Declarations 227 71 744 29,862 1,548,363

Table 3.3: Number of Declarations by Visibility

Private Protected Public

Field 346,462 2,996 16,690
Constructor Parameter 680 246 18,030
Method Parameter 27,174 10,897 164,546
Method Return 21,460 28,507 308,030

The projects of our dataset were developed by 4481 people. Table 3.4 shows
the distribution of the number of developers per project. While 96% of the projects
were developed by small groups of 3 people or fewer, there were projects with up to 58
developers involved. These developers have different backgrounds according to GitHub.
Figure 3.1 shows what are the most popular languages used by the Groovy developers
in other GitHub projects. Java is the most popular among them. Almost 2500 out
of of the 4481 developers of projects in our dataset also have Java projects hosted on
GitHub.

Table 3.4: Distribution of the Number of Developers per Project

Number of Developers Fraction of Projects

1 84%
2 9%
3 3%

4 or more 4%

3.4. Static Code Analyzer 17

Figure 3.1: Most popular languages among Groovy developers

3.4 Static Code Analyzer

In order to understand in which situations programmers use types, we developed a
static code analyzer based on the Groovy metaprogramming library. This analyzer is
capable of retrieving the declaration information of parameters and returns of methods,
parameters of constructors, fields and local variables. In addition, the analyzer can tell
if a declaration is part of a test class or a script and the corresponding visibility.

A relevant decision we made was not to compile projects, which would require
all dependencies to be resolved. This is not feasible given the size of our dataset.
Instead, we generated the AST for each file using the CONVERSION phase of the
Groovy compiler. At this phase, the compiler has not tried to resolve any dependencies
yet, but it is capable of generating an AST with enough information to determine
whether a declaration is typed or not. This makes it possible to analyze each Groovy
file separately without having to compile the whole project. The downside of this
approach is that we cannot analyze Groovy code in conjunction with its dependencies.
For example, it is not possible to determine whether programmers tend to type code
that interacts with other typed modules since we have not resolved any dependencies
on these modules. However, our choice was fundamental in order to execute a study
with such an extensive dataset.

Chapter 4

Results

This section presents the data obtained from our analysis. Section 4.1 shows the
overall result. The usage of types according to the kind and visibility of declarations
are presented in Sections 4.2 and 4.3. Section 4.4 shows how types are used in test and
functional classes while Section 4.5 compares the usage of types in script and class files.
We study the influence of programmers’ background in Section 4.6 and how types are
used according to age, size and number of commits of projects in Section 4.7. Finally,
we analyze the usage of types according to frequency of changes of files in Section 4.8.
In this chapter we focus on the presentation and on the statistical treatment of the
obtained results. Their interpretation is left to Chapter 5.

4.1 Overall Result

This section presents an overview of the results. Figure 4.1 shows a histogram and the
descriptive statistics for the relative usage of types in declarations of projects. This
value can vary from 0 (a project does not declare any types) to 1 (all declarations of
a project are typed). All declarations are considered without making any distinction
among them.

Note that there is a significant number of projects for which the relative usage
of types is either approximately 0 or 1. These are mostly small projects. About 95%
of them have less than 1000 lines of code and 22% of them have less than 100 lines
of code. In such projects, it is easier to be consistent on the typing strategy since
there are just a few declarations. We initially considered not including these projects
in the rest of our analysis since they could not represent well the entire population
of Groovy projects. However, doing so did not alter the results significantly and we
decided to include all projects in our analysis regardless of their size. In the rest of

19

20 Chapter 4. Results

Quartiles
n mean std. dev. 1st 2nd 3rd 4th

6638 0.45 0.28 0.25 0.42 0.64 1.00

Figure 4.1: Usage of types in all declarations of all projects

this chapter, we will present results in more detail so we can understand which factors
lead programmers to use types or not.

4.2. Kind of Declaration 21

4.2 Kind of Declaration

This section investigates whether programmers use types differently depending on the
kind of the declaration. For each project, we measured the relative usage of types in
fields, constructor parameters, method returns, method parameters and local variables.
These results are displayed in box plots in Figure 4.2 along with the corresponding
descriptive statistics. Note that the size of each sample, n, is different since not all
projects have all types of declarations. For instance, there are only 1670 out of 6638
projects that declare constructor parameters. On the other hand, 6000 projects have
declarations of fields.

Declaration Type n mean median std. dev.

Field 6000 0.43 0.39 0.33
Constructor Parameter 1670 0.80 1.00 0.35
Method Parameter 4867 0.67 0.86 0.36
Method Return 5881 0.68 0.75 0.31
Local Variable 5845 0.29 0.18 0.32

Figure 4.2: Usage of types in all declarations by type of declaration

The results presented in Figure 4.2 suggest that programmers use types differ-
ently depending on the type of a declaration. Local variables, for example, are typed
less often. Half of the projects have only 18% or less of their local variables typed. Con-
versely, methods and constructors are typed in most cases. Note that the median for
constructor parameters is equal to 1.00, which means that at least half of the projects
with constructor parameters type all declarations of this kind. Since local variables are
never part of a module interface, these results suggest a positive answer for Question
Q1, i.e, declarations that compose module interfaces are typed more often than other
declarations.

22 Chapter 4. Results

The box plot graph and the descriptive statistics are not enough to determine
whether the difference in the usage of types in any two kinds of declaration is significant.
In order to do that, a significance test should be applied. We start by defining a
hypothesis below, which can then be rejected or accepted by the test.

H0 There is no difference in how programmers type different kinds of declarations

H1 Programmers type their declarations differently depending on the kind of the dec-
laration

The appropriate significance test should be chosen carefully. It needs to compare
multiple treatments, which represent the 5 distinct kinds of declaration. We first
considered applying repeated t-tests or Mann-Whitney U-tests (Wohlin [2012]) in
order to compare every two kinds of declaration, i.e, fields vs. local variables, fields vs
method returns, etc. However, applying repeated tests over the same sample increases
the probability of getting Type-I errors (rejecting the null hypothesis when it actually
should be accepted).

A valid alternative for our scenario is to use One-Way Between Groups ANOVA,
which compares all means simultaneously and maintains the Type-I error probability
at the designated level (Wohlin [2012]). ANOVA computes a p value which indicates
whether at least two treatments are significantly different from each other. The smaller
the value of p, the "more significant" is the difference and, consequently, the stronger
the rejection of the null hypothesis.

Given the level of significance, α, we can reject the null hypothesis if p < α.
Typically, α = 0.05 or α = 0.01 are used, but in this study we decided to use a very
small value for this purpose, α = 0.001. This value might seem too small at first, which
would require the difference between two treatments to be unnecessarily high in order
to be considered significant. However, since we are analyzing such a large dataset, this
value of α seems reasonable (Labovitz [1968]). For the treatments described in Figure
4.2 the p value reported by ANOVA is 0. This allows us to strongly reject the null
hypothesis, even though we are using such an extreme value for α, and state that at
least two treatments are different from each other.

The results above show a very clear influence of the kind of variable over the usage
of types. However, it is also desirable to know which kinds of variables are different from
each other and how different they are. For this purpose, we apply the Tukey Honestly
Significant Differences (Kirk [1995]), or Tukey HSD, test in conjunction with ANOVA.
This method calculates, for every two treatments, a p value indicating whether they are
significantly different. It also reports a confidence interval for the difference between the

4.3. Declaration Visibility 23

means of these two treatments. The results of the Tukey Honest Significant Differences
are displayed in Table 4.1. Confidence intervals were calculated with a confidence of
0.999 (1− α).

Table 4.1: Tukey Honest Significant Differences Test results for the comparison between
the usage of types by kind of declaration

p Difference

Local Variable Contructor Parameter 0 (-0.55, -0.47)
Field Contructor Parameter 0 (-0.41, -0.34)

Method Parameter Contructor Parameter 0 (-0.17, -0.10)
Method Return Contructor Parameter 0 (-0.16, -0.09)
Local Variable Field 0 (-0.16, -0.11)
Method Return Field 0 (0.22, 0.26)

Method Parameter Field 0 (0.22, 0.27)
Method Parameter Local Variable 0 (0.35, 0.40)
Method Return Local Variable 0 (0.36, 0.41)
Method Return Method Parameter 0.95 (-0.02, 0.03)

The table above shows that there are only two kinds of declaration for which
there is no significant difference, parameters and returns of methods. This result is
reasonable. Since returns and parameters of methods are declared together as part
of a method signature, programmers probably use the same typing strategy in both
declarations. All other declaration types can be considered significantly different from
each other. In particular, note that these results clearly show that local variables and
constructor parameters are the least and most typed declarations respectively. Another
interesting insight provided by these results is that parameters of methods and param-
eters of constructors are typed differently. Although these are essentially the same kind
of declaration in Groovy, they seem to be perceived differently by programmers when
it comes to typing.

4.3 Declaration Visibility

This section presents an analysis about how programmers use types according to the
visibility of a declaration. We follow the same approach as in the previous section.
Figure 4.3 shows the box plots for the usage of types per declaration visibility along
with the descriptive statistics. The ANOVA test reported a p value equal to 0 for these
treatments, allowing us to strongly reject the null hypothesis. Finally, the results of

24 Chapter 4. Results

the Tukey HSD Test are reported in Table 4.2. These results show that all treatments
are different from each other since all p values are equal to 0.

Declaration Visibility n mean median std. dev.

Public 5852 0.69 0.75 0.29
Protected 2387 0.93 1.00 0.19
Private 6023 0.43 0.40 0.32

Figure 4.3: Usage of types in all declarations by type of declaration

Table 4.2: Tukey Honest Significant Differences Test results for the comparison between
the usage of types by visibility of declaration

p Difference

Protected Private 0 (0.47, 0.52)
Public Private 0 (0.24, 0.28)
Public Protected 0 (-0.27, -0.22)

Protected declarations are those typed most often. Note how skewed is the distri-
bution for these elements in Figure 4.3. Almost all 2387 projects which use protected
visibility in their declarations have all of their protected fields, methods and construc-
tors typed. The confidence intervals reported by the Tukey HSD test show very large
differences between these declarations and those with either private or public visibility.
Although public declarations are not typed as much, they are also typed very often.
At least half of the projects type 75% or more of their public declarations. Conversely,
private declarations are those with the smallest relative use of types. These results
again suggest a positive answer for Question Q1, which hypothesizes that declarations
that are part of a module interface definition are typed more frequently.

4.4. Test Classes and Main Classes 25

4.4 Test Classes and Main Classes

We now analyze the use of types in test classes in comparison to main classes. We
used a simple heuristic to determine the kind of the class. In Groovy, like in Java, it
is common to organize test classes and main classes in different source folders. The
convention adopted by build tools popular among Groovy programmers, such as Gradle
and Maven, assumes that test classes and main classes are in the src/test/groovy and
src/main/groovy directories respectively. Based on these conventions, we assume that
all classes inside a test directory, but not in a main directory, are test classes.

For every project, we measured the usage of types in test classes and main classes.
Script files are not considered in this analysis. We found test classes in 4350 of the
6638 projects in our dataset. Results are displayed in Figure 4.4 and show the relative
usage of types by declaration type. White and gray box plots correspond to test classes
and main classes respectively.

In order to compare the usage of types in test and main classes, we use a slightly
different approach. In this analysis, there are two independent variables, the kind of
declaration and the kind of class. Thus, we are required to use Factorial ANOVA
(Wohlin [2012]), which is the generalization of the One Way ANOVA for multiple
factors. Multiple values of p are calculated by this test, each one corresponding to
the comparison of treatments according to one of the factors. We report the p value
corresponding to the factor representing the kind of class. We also apply the Tukey
HSD test, for which results are displayed in Table 4.3. This time we want to show what
is the difference of the relative usage of types between the same kinds of declaration,
but in different kinds of classes. For example, the third row of Table 4.3 shows that
there is a significant difference in how programmers type local variables in main and
test classes. The overall difference between the relative usage of types in main classes
and test classes falls in the (0.05, 0.11) interval.

The ANOVA test reported once again a p value equal to 0, implying that the
usage of types is different in test and main classes. Figure 4.4 and Table 4.3 show
that this difference is significant for all kinds of declarations, except for constructor
parameters. While local variables in main classes are not typed very often, they are
typed even less in test classes. At least half of the projects type none of the declarations
of this kind in test classes. The difference in declarations of parameters of methods is
even more evident since they are often typed in main classes, but almost never typed
in test classes. The confidence interval reported by the Tukey HSD Test in this case is
(−0.36,−0.44). The large width of the box plots for fields and method parameters is

26 Chapter 4. Results

noteworthy. This indicates that many projects type either almost all or none of these
declarations.

Declaration Type Class Type n mean median std. dev.

Field
Test 1769 0.48 0.47 0.43
Main 5857 0.43 0.39 0.33

Constructor Test 124 0.77 1.00 0.41
Parameter Main 1623 0.80 1.00 0.34
Method Test 1524 0.34 0.00 0.43

Parameter Main 4593 0.71 0.91 0.35
Method Test 4334 0.85 1.00 0.31
Return Main 5299 0.54 0.60 0.39
Local Test 2842 0.23 0.00 0.35

Variable Main 5548 0.30 0.19 0.32

Figure 4.4: Usage of types by declaration type in test classes and main classes

Curiously, method returns are significantly more typed in test classes. The differ-
ence reported by the confidence interval in Table 4.3 for this case is (-0.31, -0.26). At
least half of the projects type all of their method returns in test classes. Although coun-
terintuitive, this result can be easily explained. Automated testing frameworks usually
enforce a certain method signature for test methods. JUnit, for example, which is used
in 2525 of the 4350 projects with test classes, requires test methods to be typed as

4.5. Script Files and Class Files 27

Table 4.3: Tukey Honest Significant Differences Test results for the comparison between
the usage of types by main and test classes

Declaration Type p Difference

Constructor Parameter 0.98 (-0.08, 0.16)
Field 0 (-0.08, -0.02)

Local Variable 0 (0.05, 0.11)
Method Parameter 0 (0.36, 0.44)
Method Return 0 (-0.31, -0.26)

void. Other popular test frameworks, such as TestNG, have similar requirements. This
implies that, in this case, developers type their methods not because they want to, but
because they have to.

4.5 Script Files and Class Files

In Groovy, programmers can write code in the form of scripts, not requiring the defini-
tion of classes for simple tasks. This section investigates how programmers type their
code in such scripts. Similar to what was done in the previous section, we measured
the usage of types in script and class files in all projects and compared the obtained
data. We do not consider test classes in this analysis. Determining whether a file
corresponds to a script or a class is fairly simple since, in Groovy, scripts are compiled
into a class extending groovy.lang.Script.

Figure 4.5 shows the distribution of the relative usage of types in class and script
files. Note that constructors and fields are not considered since there is no way to
declare those elements in scripts. Also, we do not present an analysis of declarations
grouped by visibility since, although allowed, defining the visibility of a declaration
inside a script does not make much sense.

The execution of the ANOVA test reported a p value equal to 0, revealing that
the declarations are typed significantly different in script files. Table 4.4 displays the
results for the Tukey HSD test, which provide detailed results by the kind of declaration.
There is no significant difference on the usage of types in local variables. On the other
hand, declarations of parameters or returns of methods are typed much less frequently
in scripts. Note however that the value for the last quartile of these declarations is
very high, superior to 0.8. This indicates that, although most projects prefer not to
use types in method returns, there are a few projects that consistently type most of
them.

28 Chapter 4. Results

Declaration Type File Type n mean median std. dev.

Method Script 504 0.40 0.23 0.42
Parameter Class 4647 0.69 0.86 0.35
Method Script 583 0.34 0.00 0.43
Return Class 5662 0.70 0.77 0.30
Local Script 1775 0.28 0.07 0.37

Variable Class 5246 0.30 0.18 0.32

Figure 4.5: Usage of types by declaration type in script files and class files

Table 4.4: Tukey Honest Significant Differences Test results for the comparison between
the usage of types in script files and class files

Declaration Type p Difference

Local Variable 0.39 (-0.01, 0.04)
Method Parameter 0 (0.24, 0.35)
Method Return 0 (0.30, 0.40)

Along with the results of the analysis of test classes, the results presented in this
section show that the answer for Question Q2 is positive. There are large differences in
how programmers type scripts and classes. Although it is not clear from our analysis
what is the reason for such phenomena, we discuss some hypotheses in Chapter 5.

4.6. Programmers’ Background 29

4.6 Programmers’ Background

In this section, we analyze how programmers use types in their declarations according
to their backgrounds. Projects are distributed in three groups based on the type system
of the languages their developers have used on GitHub. The first group comprises those
projects of programmers who developed only in statically typed languages, such as Java
or C#. The projects of those who developed only in dynamically typed languages, such
as Ruby or JavaScript, comprise the second group. Finally, the third group is formed
by the projects of those programmers with both dynamically and statically typed
languages in their portfolio. We refer to these three groups by the names Static Only,
Dynamic Only and Static and Dynamic respectively.

Figures 4.6 and 4.7 show results by declaration type and visibility respectively.
The p value reported by the ANOVA test is equal to 0, implying that there is a signifi-
cant difference in how programmers with different backgrounds type their declarations.
The results of the Tukey HSD test are reported in Tables 4.5 and 4.6. These tables are
divided in three parts, each one corresponding to the comparison between the data of
two of the three groups.

There are significant differences in the usage of types between all groups. These
differences, however, are not as clear as those found in the previous anlayses. Let
us start with the comparison between projects in the Static and Dynamic and the
Dynamic Only groups. There are significant differences only in private declarations
and declarations of fields. Still, these differences are not very large, (0.01, 0.08) for
fields and (0.02, 0.09) for private declarations. All in all, these two groups present very
similar behavior when typing their declarations, apart from those two exceptions.

The comparison between the Static and the other groups shows more clear differ-
ences. Most of the p values reported by the Tukey HSD test are equal to 0. However,
constructor parameters and protected declarations never present significant differences.
This indicates a strong influence of these types of declarations over the programmers’
behavior. There are two other cases that do not present significant differences, method
returns and public declarations, both in the comparisons between programmers of the
Dynamic and Static groups. It is important to say though that the p value reported
in these two cases is relatively small, 0.01. These differences are considered not signif-
icant only because we are using a very strict confidence level, but would be considered
significantly different under a confidence level of 0.05.

30 Chapter 4. Results

Declaration Type Background N Mean Median std. dev.

Static 782 0.56 0.52 0.35
Field Both 3183 0.43 0.39 0.34

Dynamic 2035 0.38 0.36 0.29

Constructor
Parameter

Static 224 0.83 1.00 0.33
Both 991 0.80 1.00 0.35

Dynamic 455 0.80 1.00 0.34

Method
Parameter

Static 662 0.73 0.91 0.34
Both 2694 0.67 0.84 0.36

Dynamic 1511 0.65 0.83 0.37

Method
Return

Static 764 0.73 0.85 0.30
Both 3205 0.66 0.75 0.32

Dynamic 1912 0.68 0.74 0.29

Local Variable
Static 798 0.39 0.31 0.36
Both 3230 0.28 0.17 0.32

Dynamic 1817 0.25 0.14 0.30

Figure 4.6: Usage of types by declaration type and programmer background

4.6. Programmers’ Background 31

The results reported in this section suggest a positive answer for Question Q3,
i.e, programmers use types differently depending on their background. This difference
is larger when comparing those projects of the Static group with projects of the other
groups. These results are statistically strong, but should be generalized with care. The
detailed results reported by the Tukey HSD test reveal many exceptions, specially in
the comparison between the groups comprising the projects of those programmers who
have at least one dynamically typed language in their portfolio, Static and Dynamic
and Dynamic Only. This comparison reveals that, for all kinds and visibilities of
declarations, the difference is either not significant or small.

Declaration Type Background n mean median std. dev.

Static 757 0.73 0.83 0.29
Public Both 3191 0.68 0.75 0.30

Dynamic 1904 0.69 0.71 0.27

Protected
Static 287 0.92 1.00 0.20
Both 1275 0.94 1.00 0.18

Dynamic 825 0.93 1.00 0.20

Private
Static 787 0.56 0.53 0.34
Both 3196 0.43 0.40 0.33

Dynamic 2040 0.38 0.37 0.28

Figure 4.7: Usage of types by declaration visibility and programmer background

32 Chapter 4. Results

Table 4.5: Tukey Honest Significant Differences Test results for the comparison between
the usage of types by declaration type and programmers background

Declaration Type p Difference

Static and Dynamic
vs.

Static

Field 0 (-0.17, -0.07)
Constructor Parameter 1.0 (-0.12, 0.06)
Method Parameter 0 (-0.11, 0.00)
Method Return 0 (-0.11, -0.01)
Local Variable 0 (-0.15, -0.05)

Dynamic
vs.

Static

Field 0 (-0.23, -0.12)
Constructor Parameter 0.99 (-0.12, 0.07)
Method Parameter 0 (-0.14, -0.02)
Method Return 0.01 (-0.10, 0.00)
Local Variable 0 (-0.18, -0.07)

Static and Dynamic
vs.

Dynamic

Field 0 (0.01, 0.08)
Constructor Parameter 1.00 (-0.07, 0.06)
Method Parameter 0.84 (-0.02, 0.06)
Method Return 0.94 (-0.05, 0.02)
Local Variable 0.12 (-0.00, 0.06)

Table 4.6: Tukey Honest Significant Differences Test results for the comparison between
the usage of types by declaration visibility and programmers background

Declaration Visibility p Difference

Static and Dynamic
vs.

Static

Public 0.00 (-0.10, 0.00)
Protected 1.00 (-0.07, 0.09)
Private 0.00 (-0.18, -0.08)

Dynamic
vs.

Static

Public 0.01 (-0.10, 0.01)
Protected 1.00 (-0.08, 0.09)
Private 0.00 (-0.23, -0.13)

Static and Dynamic
vs.

Dynamic

Public 0.98 (-0.04, 0.03)
Protected 1.00 (-0.05, 0.06)
Private 0.00 (0.02, 0.09)

4.7. Project Size, Age and Number of Commits 33

4.7 Project Size, Age and Number of Commits

This section investigates whether programmers use types differently in their code de-
pending on the project characteristics. We analyze three project metrics: age, number
of lines of code and number of commits. We start by analyzing the correlation between
these metrics and the relative use of types in declarations by type and visibility. The
Spearman rank correlation coefficient is used for this purpose. This coefficient, which
ranges from -1 to 1, is a measure of the dependence between two variables. A positive
value means that two variables are correlated, i.e, as the value of one grows, so does
the value of the other. A negative value means an inverse correlation. Values close to
1 or -1 indicate very strong relationships and values above 0.5 or below -0.5 can be
considered strong correlations.

Table 4.7: Spearman Correlation between the usage of types and the size, age and
number of commits of projects

Declaration Type/Visibility Size Age Commits

Field 0.221 -0.063 0.153
Constructor Parameter -0.072 -0.132 -0.053
Method Parameter -0.123 -0.079 -0.004
Method Return -0.071 0.168 -0.027
Local Variable 0.057 -0.049 0.112

Public -0.063 0.119 -0.024
Protected -0.286 -0.020 -0.165
Private 0.213 -0.068 0.160

Table 4.7 shows the Spearman correlation coefficient between the usage of types
and the age, size and number of commits of a project. Most of values in this table are
close to 0. There are a few coefficient values which could indicate a relationship, such as
Size vs. Protected or Commits vs. Private, but these relationships are still considerably
weak. All in all, these values do not seem to suggest any direct relationship between
these metrics and the usage of types.

The lack of correlation between the relative usage of types and these metrics does
not necessarily imply that they have no influence on the usage of types. A possibility
is that this influence appears only in the most mature projects, where the values of all
of these three metrics are large enough. In order to determine whether this is true, we
conduct now a comparison between mature projects and the rest of the dataset. We
define a mature project as a project that is 100 days old or more and has, at least,

34 Chapter 4. Results

2KLoC and 100 commits. These numbers were defined by manually inspecting our
dataset and finding that there are popular and mature projects that barely exceed
these three metrics. According to our criteria, there are 223 mature projects in our
dataset, which are characterized in Table 4.8.

Table 4.8: Descriptive statistics for mature projects

Mean Median Std. Dev. Max Total

Size (LoC) 9947 5627 14594 149933 2218189
Commits 487 213 800 6545 108583

Age (Days) 600 574 350 1469 133697

Figures 4.8 and 4.9 show the box plots for the usage of types in mature projects
and others by declaration type and visibility respectively. The ANOVA test reported a
p value equal to 0.0518 for this analysis, which implies that there are no treatments that
are significantly different from each other. Because of this, we do not report the results
for the Tukey HSD test. This result, along with the very low correlation coefficients
reported in Table 4.7, implies that the answer for Question Q4 is negative. There
is no significant difference in how programmers type declarations in mature projects
compared to declarations in other projects.

4.7. Project Size, Age and Number of Commits 35

Declaration Type Project Type n mean median std. dev.

Field
Mature 221 0.53 0.48 0.27
Other 5779 0.43 0.39 0.33

Constructor Mature 172 0.83 1.00 0.30
Parameter Other 1498 0.80 1.00 0.35
Method Mature 222 0.69 0.78 0.29

Parameter Other 4645 0.67 0.86 0.37
Method Mature 222 0.72 0.79 0.24
Return Other 5659 0.68 0.75 0.32
Local Mature 223 0.32 0.22 0.28

Variable Other 5622 0.29 0.17 0.32

Figure 4.8: Usage of types in projects by declaration type and project maturity

36 Chapter 4. Results

Declaration Type Project Type n mean median std. dev.

Public
Mature 223 0.72 0.76 0.24
Other 5629 0.69 0.75 0.29

Protected
Mature 183 0.88 1.00 0.21
Other 2204 0.94 1.00 0.19

Private
Mature 221 0.53 0.48 0.26
Other 5802 0.43 0.40 0.32

Figure 4.9: Usage of types in projects by declaration visibility and project maturity

4.8. Frequency of changes 37

4.8 Frequency of changes

This section investigates whether programmers prefer to type their declarations in
frequently changed code or not. Only the mature projects defined in the previous
section are considered since we would not be able to obtain meaningful results from
small and young projects.

We calculated the Spearman correlation coefficient between the frequency of
changes of a file and the usage of types in that file for all mature projects. In projects
where types are used more often in frequently changed files, this coefficient is positive,
and negative when untyped declarations are preferred. Figure 4.10 displays the cumu-
lative distribution of this coefficient across the mature projects dataset. It shows that
65% of them present a negative Spearman correlation coefficient and that almost half
of these present strong correlations, i.e., inferior to -0.5. On the other hand, only 10%
of the mature projects present strong positive correlations.

Figure 4.10: Spearman ranking for the correlation between frequency of changes of files
and the usage of types in mature projects

Chapter 5

Discussion

This chapter is split in two sections. We try and answer the research questions in
Section 5.1. In Section 5.2, we discuss the threats to the validity of this study.

5.1 Research Questions

In this section, we discuss the results of our study in the light of the research questions
proposed in Section 3.1. Although we were able to obtain a good understanding of the
usage of types in different contexts, the cause for such results is still unclear in many
of them. We provide several hypotheses with the goal of identifying future research
topics that can provide more detailed insights about such causes.

Q1: Do programmers use types more often in the interface of

their modules?

The analysis of the usage of types by kind and visibility of declarations, presented in
Sections 4.2 and 4.3, provides evidence that the answer for Q1 is affirmative. Private
declarations are typed less often than protected and public declarations. Also, fields,
methods and constructors are typed more often than local variables. Although fields
are significantly less typed than methods and constructors, this can be explained by
the fact that most fields are declared privately as shown in Section 3.3. In Groovy,
similar to what happens with Java, interactions with fields of other modules usually
happen through accessor methods.

While it seems that module definitions are typed more often, the cause for such
phenomena is still open to discussion. We believe that the main motivation for this is
the implicit documentation provided by types. In these scenarios, types provide useful

39

40 Chapter 5. Discussion

hints about the behavior of modules (Curtis [1987]) and define pre and post condition
of contracts Meyer [1988]; Meijer et. al. [2004]; Wadler et. al. [2004]; Plosch [1997];
Flanagan [2006]; Furr et. al. [2009]. Users of a well defined module learn how to
use it faster and do not need to read its implementation to understand how to use it.
Programmers may consider that delicate contracts, such as those defined by protected
methods, should be well documented and thus are typed more often.

Constructor parameters and protected declarations are always the elements typed
most often. In addition, the analyses of different contexts, i.e, main and test classes,
mature and non-mature projects and programmers’ backgrounds, show no significant
difference in the usage of types. This reveals that the presence of these particular
declarations is considered by programmers as a more important factor in their choice
whether to type a declaration than these contexts. We hypothesize that programmers
consider documentation more important in these elements. Constructors usually define
the dependencies of an object, at least for its creation. In addition, they might be
the first element that a programmer interacts with when dealing with a new module.
Protected declarations are often used as a means to delegate the implementation of a
method to subclasses, which requires a well defined contract so the superclass can work
properly. Moreover, they give subclasses and other classes in the same package access
to internal elements of a class, forming a tightly coupled relationship (Chidamber et.
al. [1994]).

We can also speculate that declarations that are not part of a module definition,
which are local variables and those with private visibility, require less documentation
and thus are typed less often. Programmers can easily find all the references to these
elements. Local variables are only used inside the block of code where they are declared,
while all the references to elements declared privately are in the same file. This makes
it easier for a programmer to infer the type of such a declaration even when it is not
explicitly defined.

Documentation may not be the only reason why programmers type declarations
in modules interfaces. We can think of at least two other reasons. First, a programmer
might type a declaration so that he or she can get code assistance from the development
environment. For example, typing the declaration of a method parameter allows the
development environment to provide code completion for that parameter inside the
method. Another possibility is that, even though Groovy is actually a dynamically
typed language, programmers might type their declarations thinking that the compiler
will check for type errors, which would lead to safer interactions between modules.

5.1. Research Questions 41

Q2: Do programmers use types less often in test classes and

scripts?

There are notable differences between the usage of types in either test classes or scripts
and the main classes of a program. Sections 4.4 and 4.5 show that, in these scenarios,
programmers use types less often. If we are right about our hypothesis that program-
mers type their modules as a means to document their code, this could explain this
less frequent use of types. Scripts and test classes are usually not designed as reusable
modules. Test classes have the sole goal of verifying a program’s functionality and not
interfering with it while scripts cannot be instantiated or referenced by other modules.
In these scenarios, programmers might perceive documentation as less important. It is
curious however that test code itself is usually perceived as a form of documentation
(Beck [2003]; Meyerovich et. al. [2013]). Because of this, we were expecting program-
mers to actually use more types in test classes as a means to improve the documentation
they provide. Perhaps, although programmers use test classes as documentation, they
might not write them with this goal in mind.

An alternative explanation for the fact that scripts and tests are typed less fre-
quently is that most of them are probably simpler than main classes. As found in the
recent work of Hanenberg et al.(Hanenberg et. al. [2013]), dynamically typed code
potentially has a positive impact on the development time of easier tasks. In such
case, programmers might not type their declarations in scripts or test classes since this
would allow them to finish their tasks faster.

Q3: Does the experience of programmers with other languages

influence their choice for typing their code?

The analysis presented in Section 4.6 indicates that the answer for Question Q3 is
affirmative. The choice for using types on a language with optional typing, such a
Groovy, is in fact influenced by the programmers’ experience with other languages. In
general, those programmers who have only statically typed languages in their portfo-
lio type more often than the others. However, the two groups with projects written
by programmers who have either statically and dynamically typed languages or only
dynamically typed languages are very similar in most cases. Apparently programmers
who develop in an "untyped" language get used to the lack of types, leading them
to declare types less often. This hypothesis supports the work of Daly et al. which
suggests that programmers have ways of reasoning about types that compensate for
the lack of static type information (Daly et. al. [2009]).

42 Chapter 5. Discussion

Q4: Does the size, age or level of activity of a project have any

influence on the usage of types?

We initially believed that, as these metrics grow, the maintenance of projects becomes
more difficult, leading programmers to use more types as a means to make code more
readable. However, the analysis presented in Section 4.7 shows no evidence of such
behavior. We consider two hypotheses in order to explain these results. First, the con-
sidered metrics might not actually correlate to the need for maintenance of projects.
Second, even if these metrics are a good indicative of the necessity of better main-
tainability, once projects start growing and aging, programmers might not have the
opportunity or desire to make their code more maintainable.

Q5: In frequently changed code, do developers prefer typed or

untyped declarations?

In frequently changed code, there are arguments in favor and against using types.
Since types act as documentation, programmers might use them to make code more
maintainable and easier to change (Lamport et. al. [1999]). On the other hand, untyped
source code is simpler and can potentially be changed faster (Siek et. al. [2007]). The
results presented in Section 4.8 however suggests that the latter is considered more
often than the former.

In most projects, the usage of untyped declarations grows as the frequency of
changes in a file increases. A possible explanation for this is that, in such projects,
programmers understand that untyped source code makes maintenance tasks easier.
On the other hand, one can argue that the causal relationship is the opposite, i.e., these
files have to be changed more often due to the use of untyped declarations. However,
since the number of projects for which a significant correlation (or inverse correlation)
can be observed is not very expressive, about 40% of the data set, it is difficult to
generalize these results.

5.2. Threats to Validity 43

5.2 Threats to Validity

In this section, we discuss potential threats to validity of our study. As usual, we have
arranged possible threats in two categories, internal and external validity (Wohlin
[2012]).

Internal Validity

Perhaps the most relevant internal threat to our study is that in a large scale empirical
study such as ours, there might be many confounds which are difficult to identify. In
Section 4.6 we consider that the GitHub portfolio of a programmer represents well his
experience with other languages and type systems, but this might not be true for all
programmers. They may have projects in their portfolio that they have not worked on
or projects hosted elsewhere written in other languages. There is also the possibility of
a programmer having multiple GitHub accounts with different languages in each one,
causing such a programmer to be measured twice with different inferred backgrounds.

We use declaration type and visibility to identify declarations that are part of a
module interface in Section 5.1. However, programmers might not follow these conven-
tions as expected. Also, in Groovy, methods for which the visibility was not explicitly
defined are considered public. In our analysis, such methods are considered as part
the module interfaces regardless of the intentions of the programmer. We expect the
special cases described above not to have a large influence on the final results due to
the large number of programmers and projects considered in our study.

There are other factors that might have influenced programmers besides the ones
considered in this study. Some frameworks require programmers to use typed or un-
typed declarations in some cases. For example, we found that the data collected in test
classes is biased by the fact that popular testing frameworks, such as JUnit, require
test methods to have their returns declared as void. There might be other similar cases
that we are not aware of.

External Validity

Although we have analyzed a very extensive number of Groovy projects, it cannot be
said that we have covered all possible scenarios. By manually inspecting our dataset,
we could find only a few projects with characteristics of software developed inside an
organization. Most of them were developed by small groups of people or open source
communities. Enterprise projects are probably hosted privately on GitHub or in private
servers, and hence unavailable to us.

44 Chapter 5. Discussion

The behavior observed for Groovy projects can be very different in other lan-
guages. Most languages are not like Groovy and feature either static or dynamic
typing, forcing programmers to choose a single typing strategy for all scenarios in a
single project. Even a language with a hybrid typing paradigm might implement differ-
ent strategies which will be perceived differently by the programmers of that language.
Finally, the tools used to code in a given language might influence programmers to
chose different type strategies. These threats illustrate how difficult it is to elaborate
experimental studies that cover a wide number of programming languages, scenarios
and tools.

Chapter 6

Conclusions and Future Work

In this chapter, we show the main conclusions of this study in Section 6.1 and describe
future work in Section 6.2.

6.1 Conclusions

Type systems is an important topic in software engineering and is becoming even more
popular with the growing adoption of dynamically typed languages, such as JavaScript
and Ruby. While using types potentially leads to more reliable and maintainable code,
dynamically typed programs might be faster to write and easier to change. This dis-
sertation presented a study with the goal of finding how programmers of an optionally
typed language perceive these tradeoffs. Through the large scale analysis of the source
code of 6638 projects written in Groovy we were able to find in which situations pro-
grammers preferred the usage of types or not. We found the following results:

• Groovy programmers type declarations that define the interface of modules more
often than other declarations. While public and protected declarations were typed
very frequently, most private declarations and declarations of local variables were
not typed. We also found that protected declarations and declarations of con-
structors, which we believe to be extremely important elements of a module
definition, were almost always typed.

• Types are used differently in test classes and script files. We observed a much
higher usage of types in functional classes and class files than in these scenarios.

• A programmer’s background influences the choice of programmers whether to use
types or not. Those programmers who have developed in at least one dynamically

45

46 Chapter 6. Conclusions and Future Work

typed language use types less frequently than those who have only worked with
statically typed languages.

• Apparently, there is no influence of the size, age or level of activity of a project
on how programmers use types. We have not found any correlation between these
variables and the usage of types. We also analyzed the usage of types in projects
considered mature, where all of these variables had high values, and found no
significant difference to other projects.

• Untyped declarations are more popular in frequently changed files. In most
projects, the files that change more frequently are also those files with a lower
usage of types.

We believe that these results are valuable to developers of programming languages
and development tools, who can base their designs on real user data. Also, programmers
can understand the tradeoffs between using or not types in their projects. Our results
provide a different point of view and complement previous studies, which analyzed
typing strategies through the use of controlled experiments. We hope that the questions
raised in our discussion can inspire other researchers to analyze our findings in more
detail.

6.2 Future Work

Measuring the impact of compile, runtime and unit test error

messages on maintenance time

In future work we want to conduct controlled experiments and qualitative studies in
order to evaluate some of our results in more detail. In particular, we have started a new
study with the goal of comparing the productivity of developers on maintenance tasks
of statically typed software and unit tested dynamically typed software. Our hypothesis
is that, given the proper set of automated tests, dynamically typed languages can lead
to systems which are as robust and maintainable as those written with statically typed
languages.

Our first experiment compares the development time of developers fixing a few
type errors. They are given either compiler error messages, runtime exceptions or unit
test error messages. Preliminary results show that programmers develop their tasks
much faster when dealing with compiler error messages than with runtime exceptions.

6.2. Future Work 47

However, there is no significant difference between those developers dealing with com-
piler error messages and unit test error messages. These results lead us to believe that,
in fact, unit tests make up for the lack of type checking.

ERA: An Elastic Framework for Repository Analysis on the

Cloud

Another work in progress is a framework for the static source code analysis of massive
datasets called Elastic Repository Analysis - ERA1. This framework is based on the ar-
tifacts we built to analyze the Groovy projects in this study. ERA will help researchers
retrieve large numbers of projects from GitHub and process these projects quickly on
the cloud using Amazon Web Services. It will take care of downloading and storing
huge amounts of projects and managing a large set of computing instances to process
such projects.

Groovonomics: Sharing the results with the Groovy community

One of the main contributions of this dissertation is to allow programming language and
tools developers to base their designs on precise and real user data. In particular, we
believe that the Groovy community can greatly benefit from these results. However,
in order to effectively share these results with them, we need to generate a simpler
representation of our data so they can be understood by people outside the academic
community. We are working on an website called groovonomics, which will display such
results in the form of infographics, making them easier to be absorbed.

1http://github.com/carlosgsouza/ERA

Bibliography

K. Beck. Test-driven development: by example. Addison-Wesley Professional, 2003.

K. Bruce. Foundations of object-oriented languages: types and semantics. The MIT
Press, 2002.

M. Bruch, M. Monperrus, and M. Mezini. Learning from examples to improve code
completion systems. In Proceedings of the International Symposium on the Founda-
tions of Software Engineering (FSE), 213-222, 2009.

L. Cardelli. Type systems. ACM Computing Surveys, 28(1), 263-264, 1996.

M. Chang, B. Mathiske, E. Smith, A. Chaudhuri, A. Gal. M. Bebenita, C. Wimmer, and
M. Franz. The impact of optional type information on jit compilation of dynamically
typed languages. SIGPLAN Notices, 47(2), 13-24, 2011.

S. Chidamber and C. Kemerer. A metrics suite for object oriented design. IEEE Trans-
actions on Software Engineering, 20(6), 476-493, 1994.

B. Curtis. Five paradigms in the psychology of programming. MMC, 1987.

M. Daly, V. Sazawal, and J. Foster. An empirical study of static typing in ruby. In Pro-
ceedings of the Workshop on Evaluation and Usability of Programming Languages
and Tools (PLATEAU), 2009.

ERA - Elastic Repository Analysis. http://github.com/carlosgsouza/ERA

N. Fenton and S. Pfleeger. Software metrics: a rigorous and practical approach. PWS
Publishing Co., 1998.

C. Flanagan. Hybrid type checking. ACM SIGPLAN Notices. Vol. 41. No. 1, 2006.

M. Fowler, Domain-specific languages. Pearson Education, 2010.

49

50 BIBLIOGRAPHY

M. Furr et al. Static type inference for Ruby. In Proceedings of the ACM symposium
on Applied Computing (ACM SAC), 2009.

J. Gannon. An experimental evaluation of data type conventions. Communications of
the ACM, 20, 8, 584-595, 1977.

K. Gray. Safe cross-language inheritance. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), pp. 52-75.

K. Gray. Interoperability in a scripted world: Putting inheritance & prototypes to-
gether. In Proceedings of Foundations of Object-Oriented Languages (FOOL), 2011.

K. Gray, R. Findler, M. Andflatt. Fine-grained interoperability through contracts and
mirrors. In Proceedings of the International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), pp. 231-245, 2005.

Groovy programming language. http://groovy.codehaus.org/. Accessed in 10/10/2013.

S. Hanenberg, An experiment about static and dynamic type systems: doubts about
the positive impact of static type systems on development time. SIGPLAN Notices,
45(10), 22-35, 2010.

S. Hanenberg, S. Kleinschmager, R. Robbes, E. Tanter, A. Stefik. An empirical study
on the impact of static typing on software maintainability. Empirical Software En-
gineering - An International Journal, 1-48, 2013.

ISO, and IEC FCD. 25000, Software engineering-software product quality requirements
and evaluation (SQuaRE) - Guide to SQuaRE. International Organization for Stan-
dardization, 2004.

R. E. Kirk. Experimental Design: Procedures for the Behavioral Sciences, 3rd edn.
Brooks/Cole, Pacific Grove, California, 1995.

S. Kleinschmager, S. Hanenberg, R. Robbes, and A. Stefik. Do static type systems
improve the maintainability of software systems? An empirical study. In Proceedings
of the 20th IEEE International Conference on Program Comprehension (ICPC), 153-
162, 2012.

S. Labovitz, Criteria for selecting a significance level: A note on the sacredness of. 05.
The American Sociologist 3.3, 220-222, 1968.

L. Lamport, and L. Paulson. Should your specification language be typed. ACM Trans-
actions on Programming Languages and Systems, 21(3), 502-526, 1999.

BIBLIOGRAPHY 51

C. Mayer, S. Hanenberg, R. Robbes, E. Tanter, and A. Stefik. Static type systems
(sometimes) have a positive impact on the usability of undocumented software: An
empirical evaluation. Technical Report 20120418-005, 2012.

E. Meijer and D. Peter. Static typing where possible, dynamic typing when needed:
The end of the cold war between programming languages. In Proceedings of the
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2004.

B. Meyer. Object-oriented software construction, Vol. 2. Prentice hall, 1988.

L. Meyerovich and A. Rabkin. Empirical analysis of programming language adoption.
In Proceedings of the International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 1-18, 2013.

R. Milner. A theory of type polymorphism in programming. Journal of computer and
system sciences 17.3 (1978): 348-375.

B. Pierce. Types and programming languages. MIT press, 2002.

R. Plosch. Design by contract for Python. Proceedings of the Asia Pacific Software
Engineering Conference (APSEC), 1997.

L. Prechelt and W. Tichy. A controlled experiment to assess the benefits of procedure
argument type checking. IEEE Transactions of Software Engineering, 24(4), 302-312,
1998.

J. Siek, and W. Taha. Gradual typing for objects. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP), 2-27, 2007.

J. Siek, W. Andtaha. Gradual typing for objects. In Proceedings of European Confer-
ence on Object-Oriented Programming (ECOOP), 2-27, 2007.

C. Souza, E. Figueiredo, M. T. Valente. Tipar ou nÃ£o Tipar? Compreendendo Quais
Fatores Influenciam a Escolha por um Sistema de Tipos. In First Brazilian Workshop
on Visualization, Evolution and Software Maintenance (VEM), 2013.

C. Souza, E. Figueiredo. How Do Programmers Use Optional Typing? An Empirical
Study. In 13th International Conference on Modularity (Modularity), 2014.

A. Takikawa, T. S. Strickland, C. Dimoulas, S. Tobin-Hochstadt, M. Felleisen. Gradual
typing for first-class classes. ACM SIGPLAN Notices. Vol. 47. No. 10. ACM, 2012.

52 BIBLIOGRAPHY

Tiobe programming community index. http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html.
Accessed in 23/09/2013.

L. Tratt. Dynamically typed languages. Advances in Computers, vol. 77, 149-184, 2009.

P. Wadler and R. Findler. Well-typed programs can’t be blamed. Proceedings of the
18th European Symposium on Programming Languages and Systems (ESOP), 1-16,
2009.

C. Wohlin et al. Experimentation in software engineering. Springer Publishing Com-
pany, 2012.

Attachment A

Detailed Results

This attachment presents more detailed results. We show, for each scenario, the his-
tograms of the usage of types for all applicable declarations kinds and visibilities. Our
goal is to allow the reader of this dissertation to further analyze the obtained results.
Section A.1 shows detailed results for all projects and files. Section A.2 presents de-
tailed results for the comparison between test classes and main classes while Section
A.3 shows detailed results for the comparison between script files and class files. The
histogram of the usage of types in projects according to their programmers’ back-
grounds is presented in Section A.4. Finally, mature and non mature projects have
their detailed results shown in Section A.5.

A.1 Overall Result

Figure A.1: Usage of types in all declarations

53

54 Attachment A. Detailed Results

Figure A.2: Usage of types in declarations of fields

Figure A.3: Usage of types in declarations of constructor parameters

Figure A.4: Usage of types in declarations of parameters of methods

Figure A.5: Usage of types in declarations of returns of methods

A.1. Overall Result 55

Figure A.6: Usage of types in declarations of local variables

Figure A.7: Usage of types in public declarations

Figure A.8: Usage of types in protected declarations

Figure A.9: Usage of types in private declarations

56 Attachment A. Detailed Results

A.2 Test and Main Classes

Test Classes

Figure A.10: Usage of types in declarations inside test classes

Figure A.11: Usage of types in declarations of fields inside test classes

Figure A.12: Usage of types in declarations of constructor parameters inside test classes

A.2. Test and Main Classes 57

Figure A.13: Usage of types in declarations of parameters of methods inside test classes

Figure A.14: Usage of types in declarations of returns of methods inside test classes

Figure A.15: Usage of types in declarations of local variables inside test classes

Figure A.16: Usage of types in public declarations inside test classes

58 Attachment A. Detailed Results

Figure A.17: Usage of types in protected declarations inside test classes

Figure A.18: Usage of types in private declarations inside test classes

A.2. Test and Main Classes 59

Main Classes

Figure A.19: Usage of types in declarations inside main classes

Figure A.20: Usage of types in declarations of fields inside main classes

Figure A.21: Usage of types in declarations of constructor parameters inside main
classes

60 Attachment A. Detailed Results

Figure A.22: Usage of types in declarations of parameters of methods inside main
classes

Figure A.23: Usage of types in declarations of returns of methods inside main classes

Figure A.24: Usage of types in declarations of local variables inside main classes

Figure A.25: Usage of types in public declarations inside main classes

A.2. Test and Main Classes 61

Figure A.26: Usage of types in protected declarations inside main classes

Figure A.27: Usage of types in private declarations inside main classes

62 Attachment A. Detailed Results

A.3 Script and Class Files

Script Files

Figure A.28: Usage of types in declarations inside script files

Figure A.29: Usage of types in declarations of parameters of methods inside script files

Figure A.30: Usage of types in declarations of returns of methods inside script files

A.3. Script and Class Files 63

Figure A.31: Usage of types in declarations of local variables inside script files

Class Files

Figure A.32: Usage of types in declarations inside class files

Figure A.33: Usage of types in declarations of fields inside class files

64 Attachment A. Detailed Results

Figure A.34: Usage of types in declarations of constructor parameters inside class files

Figure A.35: Usage of types in declarations of parameters of methods inside class files

Figure A.36: Usage of types in declarations of returns of methods inside class files

Figure A.37: Usage of types in declarations of local variables inside class files

A.3. Script and Class Files 65

Figure A.38: Usage of types in public declarations inside class files

Figure A.39: Usage of types in protected declarations inside class files

Figure A.40: Usage of types in private declarations inside class files

66 Attachment A. Detailed Results

A.4 Programmers’ Background

Statically Typed Only

Figure A.41: Usage of types in projects with programmers with statically typed only
background

Figure A.42: Usage of types in declarations of fields in projects with programmers with
statically typed only background

Figure A.43: Usage of types in declarations of constructor parameters in projects with
programmers with statically typed only background

A.4. Programmers’ Background 67

Figure A.44: Usage of types in declarations of parameters of methods in projects with
programmers with statically typed only background

Figure A.45: Usage of types in declarations of returns of methods in projects with
programmers with statically typed only background

Figure A.46: Usage of types in declarations of local variables in projects with program-
mers with statically typed only background

68 Attachment A. Detailed Results

Figure A.47: Usage of types in public declarations in projects with programmers with
statically typed only background

Figure A.48: Usage of types in protected declarations in projects with programmers
with statically typed only background

Figure A.49: Usage of types in private declarations in projects with programmers with
statically typed only background

A.4. Programmers’ Background 69

Dynamically Typed Only

Figure A.50: Usage of types in declarations in projects with programmers with dynam-
ically typed background

Figure A.51: Usage of types in declarations of fields in projects with programmers with
dynamically typed background

Figure A.52: Usage of types in declarations of constructor parameters in projects with
programmers with dynamically typed background

70 Attachment A. Detailed Results

Figure A.53: Usage of types in declarations of parameters of methods in projects with
programmers with dynamically typed background

Figure A.54: Usage of types in declarations of returns of methods in projects with
programmers with dynamically typed background

Figure A.55: Usage of types in declarations of local variables in projects with program-
mers with dynamically typed background

A.4. Programmers’ Background 71

Figure A.56: Usage of types in public declarations in projects with programmers with
dynamically typed background

Figure A.57: Usage of types in protected declarations in projects with programmers
with dynamically typed background

Figure A.58: Usage of types in private declarations in projects with programmers with
dynamically typed background

72 Attachment A. Detailed Results

Statically and Dynamically Typed

Figure A.59: Usage of types in declarations in projects with programmers with stati-
cally and dynamically typed background

Figure A.60: Usage of types in declarations of fields in projects with programmers with
statically and dynamically typed background

Figure A.61: Usage of types in declarations of constructor parameters in projects with
programmers with statically and dynamically typed background

A.4. Programmers’ Background 73

Figure A.62: Usage of types in declarations of parameters of methods in projects with
programmers with statically and dynamically typed background

Figure A.63: Usage of types in declarations of returns of methods in projects with
programmers with statically and dynamically typed background

Figure A.64: Usage of types in declarations of local variables in projects with program-
mers with statically and dynamically typed background

74 Attachment A. Detailed Results

Figure A.65: Usage of types in public declarations in projects with programmers with
statically and dynamically typed background

Figure A.66: Usage of types in protected declarations in projects with programmers
with statically and dynamically typed background

Figure A.67: Usage of types in private declarations in projects with programmers with
statically and dynamically typed background

A.5. Project Maturity 75

A.5 Project Maturity

Mature Projects

Figure A.68: Usage of types in declarations in mature projects

Figure A.69: Usage of types in declarations of fields in mature projects

Figure A.70: Usage of types in declarations of constructor parameters in mature
projects

76 Attachment A. Detailed Results

Figure A.71: Usage of types in declarations of parameters of methods in mature projects

Figure A.72: Usage of types in declarations of returns of methods in mature projects

Figure A.73: Usage of types in declarations of local variables in mature projects

Figure A.74: Usage of types in public declarations in mature projects

A.5. Project Maturity 77

Figure A.75: Usage of types in protected declarations in mature projects

Figure A.76: Usage of types in private declarations in mature projects

78 Attachment A. Detailed Results

Non Mature Projects

Figure A.77: Usage of types in declarations in non-mature projects

Figure A.78: Usage of types in declarations of fields in non-mature projects

Figure A.79: Usage of types in declarations of constructor parameters in non-mature
projects

A.5. Project Maturity 79

Figure A.80: Usage of types in declarations of parameters of methods in non-mature
projects

Figure A.81: Usage of types in declarations of returns of methods in non-mature
projects

Figure A.82: Usage of types in declarations of local variables in non-mature projects

Figure A.83: Usage of types in public declarations in non-mature projects

80 Attachment A. Detailed Results

Figure A.84: Usage of types in protected declarations in non-mature projects

Figure A.85: Usage of types in private declarations in non-mature projects

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Organization

	2 Background
	2.1 Types and Related Work
	2.2 The Groovy Language
	2.2.1 Groovy Type System
	2.2.2 Other Groovy Features

	3 Study Settings
	3.1 Research Questions
	3.2 Data Collection Procedure
	3.3 Dataset
	3.4 Static Code Analyzer

	4 Results
	4.1 Overall Result
	4.2 Kind of Declaration
	4.3 Declaration Visibility
	4.4 Test Classes and Main Classes
	4.5 Script Files and Class Files
	4.6 Programmers' Background
	4.7 Project Size, Age and Number of Commits
	4.8 Frequency of changes

	5 Discussion
	5.1 Research Questions
	5.2 Threats to Validity

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Bibliography
	A Detailed Results
	A.1 Overall Result
	A.2 Test and Main Classes
	A.3 Script and Class Files
	A.4 Programmers' Background
	A.5 Project Maturity

