
FORMULAÇÕES E ALGORITMOS EM PROGRAMAÇÃO

INTEIRA PARA O PROBLEMA DO CAIXEIRO VIAJANTE

COM COLETA E ENTREGA SOBRE CARREGAMENTO LIFO

AFONSO HENRIQUE SAMPAIO

FORMULAÇÕES E ALGORITMOS EM PROGRAMAÇÃO

INTEIRA PARA O PROBLEMA DO CAIXEIRO VIAJANTE

COM COLETA E ENTREGA SOBRE CARREGAMENTO LIFO

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

ORIENTADOR: SEBASTIÁN ALBERTO URRUTIA

Belo Horizonte

Maio de 2014

AFONSO HENRIQUE SAMPAIO

FORMULATIONS AND ALGORITHMS IN INTEGER

PROGRAMMING FOR THE PICKUP AND DELIVERY

TRAVELLING SALESMAN PROBLEM WITH MULTIPLE

STACKS

Dissertation presented to the Graduate Pro-
gram in Computer Science of the Univer-
sidade Federal de Minas Gerais. Departa-
mento de Ciência da Computação in partial
fulfillment of the requirements for the de-
gree of Master in Computer Science.

ADVISOR: SEBASTIÁN ALBERTO URRUTIA

Belo Horizonte

May 2014

© 2014, Afonso Henrique Sampaio.
Todos os direitos reservados.

Sampaio, Afonso Henrique

S237r Formulations and algorithms in integer programming
for the pickup and delivery travelling salesman problem
with multiple stacks / Afonso Henrique Sampaio. — Belo
Horizonte, 2014

xxvi, 65 f. : il. ; 29cm

Dissertação (mestrado) — Universidade Federal de
Minas Gerais. Departamento de Ciência da Computação

Orientador: Sebastián Alberto Urrutia

1. Computação — Teses. 2. Otimização combinatória —
Teses. 3. Programação inteira — Teses. 4. Problema do
caixeiro viajante. I. Orientador. II. Título.

CDU 519.6*61 (043)

Para a minha mãe e minha irmã. E para o meu pai.

ix

Acknowledgments

Firstly, thanks, praise and love to my mother, Clarinda, and my sister, Tainara. Because

of these two, I don’t remember any moment of worry or fear during this work - I always

could count with their support and it’s hard to express how hugely I am grateful to them.

For all his previous support and great incentive, from the very beginning of my life to the

end of his, I would not be in the position of accomplish this work if was not by my father,

Afonso — only some time after a man’s death we regard his absence as incomprehensible.

I am hugely grateful to Sebastián for his tremendous support throughout all the de-

velopments of this project. I had the pleasure of work with him before and this time was

no exception — he was not only a great supervisor but also a great friend!

For the philosophical discussions which helped endure in the face of failure but re-

joice in the eventual success, for sharing some few bad but lots of great moments, for

the companionship, my sincerely big thanks to Harlley Lima, Phillipe Samer, Henrique

Chevreux, Felipe Repolês and Thiago Cardoso. amigo — é que a gente seja, mas sem pre-

cisar de saber o por quê é que é!

I had the chance of meet great folks at LaPO, including, but not limited to: Evelyn

Cavalcante, Vitor Andrade, Vinícius Morais, Amadeu Almeida, Ramon Lopes, Luis Hen-

rique, Cristopher Moreira, Tiago Januário and all others I forgot.

My grateful thanks to the Master’s thesis committee for the feedback, corrections

and suggestions, many of then I tried to follow in this final version of the text.

Additionally, I am grateful for the financial support given by CAPES through a schol-

arship.

xi

“Muita coisa é inata, mas muito é feito pelo treinamento. Por isso, ninguém será

bem-sucedido se se poupar, se não mergulhar fundo nos temas maiores e se não estiver em

condições de se empenhar até o extremo por causas insignificantes.”

(Walter Benjamim, Rua de Mão Única - Obras Escolhidas II.)

xiii

Abstract

This dissertation addresses the Pickup and Delivery Travelling Salesman Problem with

Multiple Stacks and algorithmic approaches to obtain its exact solution. In this problem,

a single vehicle must serve a set of customer requests defined by a pair of pickup and

delivery destinations of an item. The vehicle contains a fixed number of stacks where

each request is loaded at a pickup location and unloaded at the corresponding delivery

location. Each stack has finite capacity, and its loading/unloading sequence must follow

the last-in-first-out policy, i.e. for each stack, just the last item loaded can be unloaded at

its corresponding delivery location.

We propose a new integer programming formulation for this problem with a poly-

hedral representation described by exponentially-many inequalities. In particular, we in-

troduce a new set of variables used to model the last-in-first-out policy for loading and

unloading items. With the inclusion of these new variables, finding violations concern-

ing the capacity of each stack or the LIFO policy for a given tour can be done by solving

polynomial problems. These ideas are used within a branch-and-cut algorithm to solve

the proposed formulation.

Computational results show that our approach is competitive with the best algo-

rithm in the literature, outperforming it for some benchmark instances. Also, two new

certificates of optimality are provided.

Keywords: Travelling Salesman Problem, Vehicle Routing Problem, loading constraints,

Integer Linear Programming, branch-and-cut..

xv

Resumo

Nesta dissertação, abordamos o Problema do Caixeiro Viajante com Coleta e Entrega so-

bre Carregamento LIFO (PDTSPMS) e métodos para a obtenção de sua solução exata. O

problema consiste em determinar o trajeto de menor custo de um veículo que deve aten-

der um conjunto de requisições de clientes. Cada requisição é composta por uma locali-

zação de coleta, onde um determinado item é carregado no veículo, e por uma localiza-

ção de entrega, onde esse item é descarregado. Para realizar o processo de carregamento

e descarregamento dos items, o veículo conta com um conjunto de pilhas com capaci-

dade finita. Um item quando carregado neste veículo ocupa o topo de uma das pilhas e

apenas itens que estão no topo das pilhas podem ser descarregados nas correspondentes

localizações de entrega.

Apresentamos um nova formulação em Programação Inteira para o problema e

propomos um algoritmo branch-and-cut para obter a solução ótima dessa formulação.

Em particular, utilizamos um conjunto exponencial de desigualdades para modelar a

política de carregamento do veículo através da adição de um novo conjunto de variáveis.

A partir da inclusão dessas novas variáveis, conseguimos identificar violações da política

de carregamento (seja na ordem ou na capacidade) para um dado trajeto através da reso-

lução de problemas polinomiais.

Resultados computacionais mostram que nosso algoritmo é competitivo em re-

lação ao melhor algoritmo proposto na literatura, resolvendo algumas instâncias de teste

com menor tempo computacional. Além disso, o algoritmo foi capaz de determinar cer-

tificados de otimalidade para duas instâncias não solucionadas anteriormente.

Palavras-chave: Caixeiro Viajante, Roteamento de veículos, restrições de carregamento,

Programação Linear Inteira, branch-and-cut..

xvii

List of Figures

2.1 Example of a PDTSPMS route (a) and the stacks configuration during the load-

ing and unloading process (from b to i). 7

2.2 A route that is optimal depending on values of K and Q. 11

3.1 Example of a forbidden path for a vehicle with K = 2 stacks. 16

3.2 LIFO constraint . 19

3.3 The proposed LIFO inequalities. 20

3.4 Capacity SEC . 21

3.5 Infeasible path inequalities. 23

4.1 Separation procedure for LIFO inequalities. 33

xix

List of Tables

5.1 Benchmark instances for both classes. 42

5.2 Model comparison for C1 instances. 43

5.3 Model comparison for C2 instances. 43

5.4 Overall results on C1 instances. 45

5.5 Overall results for each instance in class C1. 45

5.6 Overall results on C2 instances. 45

5.7 Overall results for each instance in class C2. 46

A.1 Detailed results for C1 instances. 54

A.2 Detailed results for C1 instances (continued). 55

A.3 Detailed results for C1 instances (continued). 56

A.4 Detailed results for C2 instances. 57

A.5 Detailed results for C2 instances (continued). 58

A.6 Detailed results for C2 instances (continued). 59

xxi

List of Acronyms

B&C branch-and-cut

ILP Integer Linear Programming

LIFO Last-in-First-Out

VRP Vehicle Routing Problem

TSP Travelling Salesman Problem

PDTSP Pickup and Delivery Travelling Salesman Problem

PDTSPL Pickup and Delivery Travelling Salesman Problem with LIFO Loading

PDTSPMS Pickup and Delivery Travelling Salesman Problem with Multiple Stacks

DTSPMS Double Travelling Salesman Problem with Multiple Stacks

xxiii

Contents

Acknowledgments xi

Abstract xv

Resumo xvii

List of Figures xix

List of Tables xxi

List of Acronyms xxiii

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 2

2 The Pickup and Delivery TSP with Multiple Stacks 5

2.1 Preliminary definitions . 5

2.2 Problem definition . 6

2.3 Literature review and related work . 8

2.4 The structure of PDTSPMS . 10

3 Integer Programming Formulations for the PDTSPMS 13

3.1 From the TSP to the PDTSPMS . 14

3.1.1 ILP formulation for PDTSP . 14

3.1.2 The PDTSPL . 15

3.1.3 The PDTSPMS . 16

3.2 The proposed ILP formulation for PDTSPMS 18

3.2.1 Valid Inequalities . 20

3.3 Summary . 23

xxv

4 An Exact Algorithm for PDTSPMS 25

4.1 Overview . 25

4.2 Valid inequalities . 26

4.2.1 Inequalities for the PDTSPMS . 26

4.2.2 Inequalities for the PDTSP . 28

4.3 Separation procedures . 29

4.3.1 Subtour elimination constraints . 29

4.3.2 PDTSP inequalities . 30

4.3.3 LIFO inequalities . 31

4.3.4 Capacity inequalities . 33

4.4 Branch-and-Cut algorithm . 34

4.4.1 Preprocessing . 34

4.4.2 Symmetry breaking . 34

4.4.3 Initial Model and Cut Pool . 35

4.4.4 Separation strategy . 35

4.4.5 Implementation details . 37

4.5 Final remarks . 39

5 Computational Results 41

5.1 Overview . 41

5.2 Effectiveness of valid inequalities . 43

5.3 Comparison with results from literature . 44

5.3.1 C1 instances . 46

5.3.2 C2 instances . 47

5.3.3 Analysis . 47

5.4 Conclusions . 48

6 Conclusion and Future Work 51

6.1 Contributions . 51

6.2 Further work . 52

A Detailed results 53

Bibliography 61

xxvi

Chapter 1

Introduction

One of the most studied problems in Combinatorial Optimization is the Vehicle Routing

Problem (VRP). Its rich structure and economic importance in real world yield a variety

of related problems in which more complex operating constraints such as vehicle capac-

ity [Baldacci et al., 2004], precedence relations between clients [Santos et al., 2013], time

windows [Azi et al., 2010], to cite just a few, are of interest.

Variants of the problem that integrate routing and loading issues have received spe-

cial attention recently. In some transportation applications, not only the weight of items

being transported are a concern in the design of feasible routes, but other characteristics

such as dimensional shape, the manipulation of these items (for example, when dealing

with fragile items), among others. In that sense, one operating constraint arises when di-

mensional sizes of items are considered and the cargo must fit inside the vehicle loading

area. Another constraint emerges when unloading operations should be performed with-

out rearranging the items, so the vehicle loading sequence determines which items can

be unloaded at a given location.

The solution of vehicle routing problems in the literature mostly involves solving

some variant of the famous Travelling Salesman Problem (TSP). Traditionally, the prob-

lem is stated as: given a set of cities and the cost of travelling between each pair of them,

find a minimum cost tour that visits each city exactly once. Despite its simple statement,

the optimal solution for the TSP is a classical combinatorial optimization challenge. The

problem has been studied since the 1950 decade and it is intrinsically related to the de-

velopments in the fields of Mathematical Programming.

In this work, we tackle the Pickup and Delivery Travelling Salesman Problem with

Multiple Stacks (PDTSPMS). Suppose that a single vehicle is available to serve a set of

customer transportation requests defined by the pickup and delivery locations of an item.

In order to perform this task, the vehicle uses a set of independent stacks of finite capacity.

1

2 CHAPTER 1. INTRODUCTION

Loading and unloading of the items being transported in each stack must follow the Last-

in-First-Out (LIFO) policy. The objective is to serve all requests with a route of minimum

cost that satisfies the loading/unloading policy.

1.1 Motivation

The problem finds applications in the routing of transportation vehicles where freight is

loaded and unloaded in the vehicles from the rear. For instance, in the transportation

of heavy or fragile items, or hazardous materials, reallocating the items en route can be

prohibitive. In that sense, just the last item loaded in a stack is accessible and it must be

delivered before all other items that were loaded before it.

Ladany and Mehrez [1984] show a real application at an expedition company in Is-

rael. The problem was faced when planning the route of a truck collecting items in the

city of Tel Aviv and, after all items were collected, delivering them in the city of Haifa. The

truck could only be loaded through the rear door. Reshuffling of items inside the vehicle

was a very cumbersome task, so that the unloading sequence was defined by the inverse

order of loading.

The problem was also presented by Levitin and Abezgaouz [2003] in the context

of a warehouse, where automated guided vehicles (AGV) are used for carrying multiple

loads between workstations. They cite an example in manufacturing systems, where the

loading and unloading of the items being transported by the AGV’s consume more time

than transportation itself. In this scenario, material are transported in pallets, and each

one picked up by the AGV is placed on the top of a batch of pallets. When an AGV needs to

deliver a pallet at some workstation and there are pallets addressed to other workstations

above it, all of them need to be unloaded and loaded back after the desired pallet was

unloaded. They proposed an algorithm to plan an optimal route for an AGV in such a

way that only the last loaded pallet can be unloaded at the workstations, avoiding this

rearrangement during the unloading process.

1.2 Contributions

The main concern in this dissertation is to describe a new Integer Linear Programming

(ILP) formulation and a method for obtaining exact solutions to the PDTSPMS. Our ap-

proach will be tested with instances that have been tackled before in the literature. We

build our ILP model based on a previous formulation recently presented for a more re-

stricted case where the vehicle contains just one stack of unlimited capacity. In fact, the

1.2. CONTRIBUTIONS 3

formulation presented in the literature for the PDTSPMS was built on the same work, but

our approach differ from the one in the literature in the type of variables used and in the

way the LIFO policy is tackled.

A branch-and-cut (B&C) approach is proposed and we show that, within our formu-

lation, inequalities used to dictate the LIFO policy are simpler to express. This easiness

in the expression decrease the computational effort involved in the separation of violated

inequalities. The algorithm for separating them is described in this dissertation. Albeit

the proposed formulation uses more variables, it will be shown that they are indeed more

descriptive, potentially leading to a better description of the feasible set of the problem.

We assess the quality of our algorithm and compare the results with those obtained

by the best algorithm available in the literature. Our approach proved to be competitive,

solving some benchmark instances in less time than the state-of-the art algorithm. Also,

we were able to achieve optimality certificates for two instances not previously solved.

We convey all these ideas throughout the text as follows:

Chapter 2 The Pickup and Delivery Travelling Salesman Problem with Multiple Stacks The

precise definition of PDTSPMS is given. The mathematical notation adopted in

the text and some combinatorial properties of the problem are presented. We re-

view the literature on the problem, highlighting algorithmic approaches usually

employed to achieve a solution as well as related work on problems resembling

PDTSPMS.

Chapter 3 Integer Programming Formulation for PDTSPMS We propose a novel ILP formu-

lation for PDTSPMS and develop three classes of valid inequalities. Differences be-

tween our approach and the literature are identified. We stress the weakness and

advantages of our formulation vis-a-vis the formulation in the literature.

Chapter 4 An Exact Algorithm for PDTSPMS We employ the ideas developed in previous

chapter within a branch-and-cut algorithm to solve PDTSPMS exactly. Further im-

plementation issues are described.

Chapter 5 Computational Results Using our proposed algorithm, we solve instances from the

literature and analyse the results as compared with those obtained with the state-

of-the-art algorithm.

Chapter 6 Conclusion and Future Work Finally, we assess the contributions given by this work

and discuss possible directions for further work.

Chapter 2

The Pickup and Delivery Travelling

Salesman Problem with Multiple

Stacks

In this chapter, the problem we address in this dissertation is formally stated. The adopted

notation and definitions used in the mathematical context through the text are presented

in Section 2.2. Also, we review the literature on the problem, pointing out solution strate-

gies and other related problems in Section 2.3. Some aspects concerning the structure of

the solutions are presented in Section 2.4.

2.1 Preliminary definitions

Given a set V of points in some space, we define A = {(i , j)|i , j ∈ V } as the set of arcs

between two points in V and use G(V , A) to denote the directed graph G on V with arcs

A, and use the terms points and vertices interchangeably. Also, we define the cost of arc

(i , j) ∈ A by ci j as some constant value (for example, the distance between points i and j

or the time spent traversing the arc).

A walk in G is a finite, non-empty sequence of vertices W = v0, v1, ..., vk such that

(vi , vi+1) ∈ A for 0 ≤ i < k. If all vertices in W are distinct, then we call W a path. If v0 = vk

then we call it a tour. The cost of a path W is the sum of the costs of its constituent arcs.

Define x = {xi j |(i , j) ∈ A} as the incidence vector of a tour in G such that xi j = 1 iff

arc (i , j) is traversed by the tour and 0 otherwise. Let F = {x1, ...,xr } be the set of incidence

vectors of tours in G . The convex hull of F , Q = conv(F), is the polytope of tours in G .

The polyhedral region obtained by replacing the integrality xi j ∈ {0,1} by 0 ≤ xi j ≤ 1 is P ,

5

6 CHAPTER 2. THE PICKUP AND DELIVERY TSP WITH MULTIPLE STACKS

the feasible set of the linear relaxation, such that Q⊂P .

In this work, we consider Integer Linear Programming formulations whose feasible

set are bounded and non-empty. Also, the cost ci j is integer-valued, and we do not make

any assumptions on the value of c j i (the Asymmetric TSP) or assume the triangle inequal-

ity to hold.

The separation problem for Q is the problem of, given a vector x ∈ R|A|, decide

whether x ∈Q or find some vector a ∈ R|A| and a number b ∈ R such that aT y ≤ b ∀y ∈Q
and aT x > b. In the latter case, we say that the valid inequality aT y ≤ b is violated by x. A

class C is a family of inequalities within the ILP formulation that models one characteris-

tic that is satisfied by all elements of F . A separation procedure for a class C and a vector

x is a subroutine that finds one or more inequalities in class C violated by x.

2.2 Problem definition

The Pickup and Delivery Travelling Salesman Problem with Multiple Stacks is defined on

a direct (complete graph) G = (V , A), where V = {0,1, ...,2n+1} is a set of locations in some

given space and A = {(i , j) : i , j ∈V } is the set of arcs between those locations such that ci j

is the cost of traversing arc (i , j) ∈ A. Locations 0 and 2n +1 represent the initial and final

depots, respectively. Locations P = {1,2, ...,n} represent pickup points while locations D =
{n+1, ...,2n} represent delivery points. A single vehicle must visit each location attending

the transportation requests, where n is the number of requests. Each request is defined

by a location of pickup i ∈ P , where an item of size qi is loaded into the vehicle and by a

corresponding delivery location n + i ∈ D , where this same item is unloaded. The vehicle

contains a number K of loading stacks, each of them with a constant capacity Q ≥ qi ∀i ∈
P . Loading and unloading operations for each stack must follow the LIFO policy: when

loading an item, it is placed at the top of the stack and is the only item loaded in that stack

which can be directly accessed from the rear of the vehicle. Thus, only items at the top

of each stack can be unloaded and, consequently, if the vehicle visits a delivery location,

only the corresponding delivery locations of those items can be visited. The aim of the

problem is to determine a route of minimum total cost that starts at depot 0, transports

each item between its associated pickup and delivery locations while satisfying the LIFO

policy, and ends at depot 2n + 1. For the sake of simplicity, throughout the text we will

refer to the item loaded into the vehicle at location i ∈ P and unloaded at n+i ∈ D as item

i . Also, let M = {0, ...,K −1} be the set of labels for each stack, and associate an item of size

−qi to the delivery location n + i ∈ D .

In Figure 2.1, we depict an optimal solution for an instance of the problem consist-

2.2. PROBLEM DEFINITION 7

ing of four customer requests (n = 4) which must be attended by a vehicle containing two

stacks of capacity Q = 4. The initial (location 0) and the final (location 2n +1) depots are

the same location. The four items to be collected at locations 1, 2, 3, 4 and delivered at

locations 5, 6, 7, 8 have lengths q1 = 4, q2 = 3, q3 = 2 and q4 = 1. In part 2.1a, we depict the

route traversed by the vehicle and, from 2.1b to 2.1i, we illustrate how items are arranged

inside the vehicle after the loading and unloading operations are performed. After leav-

ing depot 0, the vehicle loads item 1 on the first stack. This configuration is illustrated in

part 2.1b. Then, items 2 (2.1c) and 4 (2.1d) are loaded on stack 1. Item 4 is delivered at

location 8 and item 1 at 5. Parts 2.1e and 2.1f show the stacks configuration immediately

after those operations, respectively. Item 3 is loaded on stack 0, and item 2 is unloaded

from stack 1 at location 6. Finally, the vehicle unloads item 3 from stack 0 at location 7

and returns to the depot (location 9) with all stacks empty.

0-9 1

2

3

4

5

6

7

8

(a)

Vehicle Rear

(b)

Vehicle Rear

(c)

Vehicle Rear

(d)

Vehicle Rear

(e)

Vehicle Rear

(f)

Vehicle Rear

(g)

Vehicle Rear

(h)

Vehicle Rear

(i)

Figure 2.1: Example of a PDTSPMS route (a) and the stacks configuration during the load-
ing and unloading process (from b to i).

PDTSPMS consists of the general optimization problem below. In Chapter 3, we de-

scribe ILP formulations for obtaining elements in F and how to impose both the prece-

dence and the LIFO policy.{
min

∑
(i , j)∈A

ci j xi j |x ∈F satisfying the precedences, LIFO and capacity of each stack.

}

8 CHAPTER 2. THE PICKUP AND DELIVERY TSP WITH MULTIPLE STACKS

2.3 Literature review and related work

The PDTSPMS firstly appeared in the literature in a more relaxed version, namely, the

Pickup and Delivery Travelling Salesman Problem with LIFO Loading (PDTSPL) in which

the vehicle contains just one stack of unlimited capacity. This problem was tackled with

heuristic approaches in Carrabs et al. [2007b] where instances varying from 375 to 500

requests were considered. Li et al. [2011] developed a Variable Neighbourhood Search

(VNS) heuristic using search operators based on a tree data structure and applied the al-

gorithm for solving instances with up to 500 requests. The first exact solution methods

were based on branch-and-bound algorithms using TSP relaxations [Pacheco, 1997; Cas-

sani, 2004]. Instances with up to 11 requests were solved. In Carrabs et al. [2007a] the size

of solved instances was increased to 15, and some instances with up to 21 requests were

also solved to optimality using a different branch-and-bound scheme with additive lower

bounds based on relaxations of the TSP given by the assignment and shortest spanning

r-arborescence problems. Recently, Cordeau et al. [2010] proposed three integer formula-

tions for the PDTSPL, two of them for the capacitated case, and one for the uncapacitated

case, with focus on the latter case. In particular, they proposed an exponentially-sized set

of inequalities to impose the LIFO policy and some sets of valid inequalities used within

a B&C algorithm capable of solving instances with up to 25 requests.

Another problem related to PDTSPMS is the Double Travelling Salesman Problem

with Multiple Stacks (DTSPMS), introduced by Petersen and Madsen [2009]. In this prob-

lem, the vehicle also contains a number of stacks of limited capacity to store the items, but

must collect all the items before delivering any of them. After collecting all the items, the

vehicle returns to the depot and the delivery route must consider the LIFO policy of the

stacks. The authors presented a mathematical formulation and some meta-heuristic so-

lution approaches to the problem. Felipe et al. [2009] proposed four neighborhood struc-

tures and applied them to a VNS heuristic. Côté et al. [2012b] developed a Large Neigh-

bourhood Search (LNS) heuristic for the PDTSPMS and applied it to DTSPMS instances.

A local search approach was proposed by Urrutia et al. [2013]. Rather than applying the

heuristic to construct the routes, the authors applied the local search to the construction

of a feasible loading plan and used a dynamic programming algorithm to map the plan

into corresponding optimal routes.

Concerning the exact solution of the DTSPMS, Petersen et al. [2010] presented sev-

eral exact approaches, solving instances with up to 25 requests. An exact approach to the

DTSPMS was also presented by Lusby et al. [2010]. The method is based on finding the k-

best tours to each of the separate pickup and delivery routes and matching the solutions

leading to a feasible loading plan. Borne et al. [2012] addressed the uncapacitated version

2.3. LITERATURE REVIEW AND RELATED WORK 9

of DTSPMS. They provide a polyhedral study of the problem and an ILP formulation for

the case where two stacks are available and for which the linear programming relaxation

is polynomial-time solvable.

As a more constrained Travelling Salesman Problem, the PDTSPMS can benefits

from the advancements already made for this classical problem. Scientific literature for

the TSP dates back to the 1950 decade and is intrinsically linked to the developments of

Integer Programming itself [Chvátal et al., 2010]. For an extensive study on the aspects of

the TSP solution, the reader is referred to Applegate et al. [2007].

The Pickup and Delivery Travelling Salesman Problem can also be viewed as a re-

stricted version of PDTSPMS. A more general case is the Precedence Constrained TSP, in

which each vertex has one or more predecessors, and was first addressed by Balas et al.

[1995]. The authors presented a polyhedral study and derived several classes of facet

inducing inequalities, some of them used in the formulation proposed in this disserta-

tion. Ascheuer et al. [2000] proposed a B&C algorithm for this problem, solving instances

of the asymmetric TSP varying from 18 to 101 vertices and containing from four to 131

precedence relations among the vertices. A polynomial formulation for the problem was

proposed by Sarin et al. [2005]. Gouveia and Pesneau [2006] proposed new extended for-

mulations for the Precedence Constrained TSP using extra binary variables to model the

precedence relation among the vertices. They derived a set of valid inequalities and de-

veloped a B&C algorithm capable of obtaining the exact solution of one not previously

solved instance. More recently, Dumitrescu et al. [2010] tackled the Pickup and Delivery

Travelling Salesman Problem (PDTSP), in which a pick-up must precede its correspond-

ing delivery. The authors presented polyhedral results and a B&C algorithm capable of

solving instances not solved by previous approaches, involving up to 35 requests. The

PDTSP was also solved with exact methods in Kalantari et al. [1985] and Hernández-Pérez

and Salazar-González [2004]. For an extensive survey on pickup and delivery problems,

the reader is referred to Berbeglia et al. [2007].

Combining routing and loading issues of vehicles has been the concern of many

works in the VRP literature. In particular, two-dimensional and three-dimensional load-

ing constraints, in which geometrical aspects are taken into account when loading an item

inside the vehicle, are solved in Iori et al. [2007] and Tarantilis et al. [2009], respectively.

Other kinds of loading constraints can be found on literature. For an extensive overview

of problems arising from the combination of both routing and loading aspects, the reader

is referred to Iori and Martello [2010].

Recently, Côté et al. [2012a] proposed the first exact algorithm for solving the

PDTSPMS. They provided three formulations used within a B&C algorithm. The best

results were obtained with a formulation using an exponential number of inequalities

10 CHAPTER 2. THE PICKUP AND DELIVERY TSP WITH MULTIPLE STACKS

that extend the LIFO constraints proposed by Cordeau et al. [2010] for the case where

more than one stack is available, and using some new capacity inequalities adapted from

the VRP for the PDTSPMS. Instances with up to 21 requests are solved by the algorithm,

where two classes of instances were considered, namely, instances with unit size items

and with items varying in size from one to ten. They also used their algorithm effectively

on DTSPMS instances.

2.4 The structure of PDTSPMS

We next illustrate how the values of K and Q, the number of stacks and the capacity of

each, respectively, are crucial to determine the set of feasible solutions of PDTSPMS.

For a given problem instance, suppose that K equals (or is greater than) the number

of requisitions, n. Then, an optimal route that complies with the precedence relations

between each pickup and delivery locations is an optimal solution to PDTSPMS. Note

that when visiting a pickup location, this vehicle always has an empty stack. Thus, items

loaded into this vehicle are readily available for unload, and the corresponding deliveries

locations can be visited. In that sense, whereas an optimal solution to the PDTSP provides

a lower bound for PDTSPMS, an optimal solution for the latter tends to be more different

from the former as K is decreased from n to 1.

Another remarkable issue concerns the total capacity available inside the vehicle,

namely, T = K ×Q. The example below shows that it is possible to have optimal tours of

different values even when the total loading area inside the vehicles are the same.

Consider an instance of PDTSPMS with n requests, where the pickup and delivery

locations are given by the vertices of a regular (2n +1)-gon inside the R2, and assume the

location of vertex 0 equals the location of vertex 2n + 1 (that is, the initial and the final

depots are the same location). Suppose that the optimal solution for the PDTSP in this

instance is the perimeter of the polygon, and that all items have capacity one. Starting at 0,

the next nine vertices represent six pickup locations followed by three delivery locations.

The dashed arc represents the path p from n+1 to the final depot, such that p = n+6,n+
5,n+4,7,n+7, ...,n,2n,0. That is, p can be attended using just one position of a stack. If a

vehicle with total capacity T = 6, where K = 2 and Q = 3, was to follow the path from 0 to

6, then a configuration of the stacks immediately after loading item 6 is illustrated in part

(b) of Figure 2.2. Accordingly, after leaving 6, this vehicle can continue as in the optimal

solution and follow the path n+3,n+2,n+1, p. On the other hand, for a vehicle with K = 3

and Q = 2 it is not possible to follow this same path. After loading items 1 to 6, in order for

this vehicle follows the path n+3,n+2,n+1, items 3, 2 and 1 should be at the top of some

2.4. THE STRUCTURE OF PDTSPMS 11

stack when the vehicle visit each respectively delivery location. But no such configuration

is possible when K = 3 and Q = 2 for the loading sequence 1, 2, 3, 4, 5, 6, as we depict in

part (c) of Figure 2.2. The value of the optimal tour using the first vehicle, z∗
1 , is the same

value of the optimal PDTSP tour, whereas an optimal tour using the second vehicle does

use arcs outside the perimeter of the polygon. The value of this tour, z∗
2 , satisfy z∗

2 > z∗
1 .

If one of the dimensions K or Q is held constant, the value of an optimal solution for

a PDTSPMS instance using a vehicle with total capacity T̄ is indeed a lower bound on the

value for this same instance using a vehicle with total capacity inferior to T̄ . The smaller

loading area can be seen as included in T̄ . If K is held constant, for example, then an

optimal solution for a vehicle with stack capacity two is still valid for a vehicle with stack

capacity three (that is, the extra capacity is not used).

Finally, we observe that the solution of the PDTSPMS is highly symmetrical. All

stacks have the same capacity and since we do not constrain any item to be load or unload

from a specific stack, they are all identical. Thus, each solution of the PDTSPMS has a set

of K ! equivalent solutions, one for each permutation of the K stacks labels.

0

1

234

5

6

n+3

n+2

n+1

(a)

3 6
2 5
1 4

(b)

∗ 3 ∗
1 2 ∗

∗ ∗ ∗
1 2 3

2 ∗ ∗
1 3 ∗

3 ∗ ∗
1 2 ∗

(c)

Figure 2.2: An optimal route for the PDTSP is depicted in (a). The route starts at depot
0, visits six pickup locations and three delivery locations. The dashed arc represents the
path p. In (b) we illustrate a possible configuration of the load area after items 1-6 were
loaded inside a vehicle with K = 2 and Q = 3. All possible configurations for loading these
items on a vehicle with K = 3 and Q = 2 are shown in (c). Observe that this vehicle can
not follow the path from 0 to n +1 in the perimeter, as any of these configurations allows
the path n + 3,n + 2,n + 1 to be visited. Thus, the value of the optimal solution for the
PDTSPMS using this vehicle is strictly greater than for the vehicle with K = 2 and Q = 3.
(∗ ∈ {4,5,6})

Chapter 3

Integer Programming Formulations for

the PDTSPMS

This chapter presents the proposed ILP formulation for the Pickup and Delivery Travel-

ling Salesman Problem with Multiple Stacks. Since our work builds on formulations from

previous work in the literature, we firstly review an ILP model for the Pickup and Deliv-

ery Travelling Salesman Problem. Then, we show how the LIFO policy can be imposed in

the previous model using an exponential-sized class of inequalities, considering a vehicle

with just one stack of unlimited capacity (PDTSPL). This class is then extended to cope

with the more general case where the vehicle contains multiple stacks of limited capacity

(PDTSPMS). Finally, based on all these previous work, we describe the formulation we

propose in Section 3.2.

Some additional notation is needed before we introduce the formulations. In what

follows, we use the notation below:

• S̄ =V /S, S ⊆V ;

• x(S) =∑
i , j∈S xi j ;

• x(S,T) =∑
i∈S, j∈T xi j ;

• x(i ,S) = x({i },S);

• x(S, i) = x(S, {i });

• S is the collection of subsets S ⊂V , such that 0 ∈ S, 2n +1 ∉ S and there exists i ∈ P

for which i ∉ S and n + i ∈ S;

• Ω is the collection of subsets S ⊂ P ∪D , such that there exists at least a j ∈ P for

which j ∈ S and n + j ∉ S, or n + j ∈ S and j ∉ S;

13

14 CHAPTER 3. INTEGER PROGRAMMING FORMULATIONS FOR THE PDTSPMS

• i ≺ j if the vehicle visits location i before location j ;

• π(S) = {i ∈ P : n + i ∈ S ⊂V } denotes the predecessors of subset S;

• σ(S) = {n + i ∈ D : i ∈ S ⊂V } denotes the successors of subset S;

• q(S) =∑
i∈S qi .

The path from the initial depot 0 to the final depot 2n + 1 is a tour if they are the

same location. However, it will be referred as a tour even if they are distinct locations.

3.1 From the TSP to the PDTSPMS

We consider a standard ILP formulation for the asymmetric TSP, consisting of two equa-

tions (the degree equations) for each vertex and an exponentially-sized class of inequali-

ties known as subtour elimination constraints (SEC). Formulations with polynomial sets

of variables and constraints exist for the TSP (e.g. Miller et al. [1960]), although the polyhe-

dra associated with their linear relaxation are usually weaker compared with the standard

formulation (see [Padberg and Sung, 1991]). In any case, a polyhedral description P such

that P = conv(F) for this problem is hard to find unless P = NP.

In the remainder of this section, we show how the basic TSP formulation is extended

in order to impose the precedence among each pair of pickup and delivery (that is, a tour

satisfying i ≺ n + i ∀i ∈ P) and the LIFO policy for loading and unloading the items, first

for the PDTSPL and then for the PDTSPMS. Valid inequalities used to strengthen the for-

mulations and separation procedures used for identifying violated inequalities within a

B&C algorithm for each exponentially-sized class are described in Chapter 4.

3.1.1 ILP formulation for PDTSP

First, we show a classic ILP formulation for the PDTSP. To this end, associate binary vari-

ables xi j to each arc (i , j) ∈ A, taking value 1 if and only if location j is visited immediately

after i , and 0 otherwise.

The following model formulates PDTSP:

min

{ ∑
(i , j)∈A

ci j xi j |x ∈P ∩B|A|
}

(3.1)

3.1. FROM THE TSP TO THE PDTSPMS 15

where the polyhedral region P is given by:

x(i ,V) = 1 i ∈ P ∪D ∪ {0} (3.2)

x(V , i) = 1 i ∈ P ∪D ∪ {2n +1} (3.3)

x(S) ≤ |S|−1 S ⊆ P ∪D, |S| ≥ 2 (3.4)

x(S) ≤ |S|−2 S ∈S (3.5)

0 ≤ xi j ≤ 1 (i , j) ∈ A (3.6)

The objective function (3.1) minimizes the cost of the vehicle route. Constraints (3.2) and

(3.3) (the degree constraints) ensure that each location is visited exactly once. Observe

that the initial and final depots are different entities inside the model, though they may

correspond to the same location. Constraints (3.4) are the subtour elimination constraints

(SEC) and impose connectivity on the route by eliminating all cycles with vertices in P∪D

since any cycle on the vertices in S requires |S| arcs. Constraints (3.5) were proposed by

Balas et al. [1995] in the context of the Precedence-constrained TSP. Observe that for

S ∈ S , there exists i ∈ P for which i ∉ S and n + i ∈ S. Thus, inequalities (3.5) eliminate all

paths with vertices in S that start in 0 and visiting n + i before visiting i , hence violating

the precedence of the pickup and delivery locations.

Observe that an integer feasible solution of P correspond to an incidence vector of

a tour in G that satisfies the precedence of each pair of pickup and delivery.

3.1.2 The PDTSPL

Considering PDTSPL, in which the vehicle contains only one stack of infinite capacity,

Cordeau et al. [2010] introduce a class of inequalities to impose the LIFO policy in the

model (3.1)-(3.6). Their proposed constraints are of the form:

x(i ,S)+x(S)+x(S,n + i) ≤ |S| S ∈Ω, i ,n + i ∉ S, i ∈ P (3.7)

Inequality (3.7) forbids a path from i ∈ P to n + i ∈ D going through a set S ∈Ω. Observe

that in such a path, if j ∈ S and n + j ∉ S, the vehicle loads item i in the stack, then loads

item j but unloads item i before item j , violating the LIFO policy. If n+ j ∈ S and j ∉ S, the

vehicle loads item i and then unloads item j before unloading item i . The authors show

that inequalities (3.7) are sufficient to impose the LIFO policy.

16 CHAPTER 3. INTEGER PROGRAMMING FORMULATIONS FOR THE PDTSPMS

3.1.3 The PDTSPMS

Note, however, that inequalities (3.7) are not necessarily valid for PDTSPMS when multi-

ple stacks are available (K > 1). In particular, observe that items i and j in the above ex-

ample could be loaded in different stacks. Thus, immediately after visiting the set S ∈Ω,

both delivery locations, n+i and n+ j , could be visited by the vehicle. Let L= {i1, i2, ..., il }

be a sequence of pickup locations for which i1 ≺ . . . ≺ il ≺ n + i1 ≺ . . . ≺ n + il . Items in L
are said to cross each other. Observe that, for a vehicle with K stacks, a sequence L with

K +1 or more items leads to an infeasible solution concerning the LIFO policy.

Côté et al. [2012a] showed how to extend inequalities (3.7) for the case when K ≥ 2.

Consider a set L = {i1, i2, ..., iK+1 ∈ P, i j 6= ik } of pickup locations where each element in

L crosses all other elements. Then, i1 ≺ i2 ≺ ... ≺ iK+1 ≺ n + i1 ≺ ... ≺ n + iK+1 is induced.

The authors propose the following inequalities to forbid paths in which such a situation

occurs:

K∑
h=1

[x(ih ,Sih+1)+x(Sih+1)+x(Sih+1 ,n + ih)] ≤
K+1∑
h=2

|Sih |+K −1 (3.8)

where Sih≥2 = {ih , ih+1, ..., iK+1,n+i1, ...,n+ih−2} (n+i0 is defined as iK+1 and the sequence

from n + i1 to iK+1 is empty for h = 2).

An example for a vehicle with two stacks is depicted in Figure 3.1. Inequality (3.8)

forbids all paths from i1 to n+i2 going through sets Si2 = {i2, i3 = n+i0} and Si3 = {i3,n+i1}.

i1 i2 i3 n + i1 n + i2 n + i3

Si2
Si3

Figure 3.1: Example of a forbidden path for a vehicle with K = 2 stacks.

Concerning the stacks capacity, Côté et al. [2012a] derived an adaptation of the clas-

sic rounded capacity inequalities, widely used in the context of the capacitated VRP, con-

sidering the whole vehicle loading area (K ×Q) instead of a single stack capacity, Q. Since

those inequalities are not sufficient to guarantee that the capacity of each stack will not be

exceeded, the authors also propose a set of inequalities of type (3.7), that is, eliminating

all paths from a pickup i ∈ P to n + i ∈ D going through all vertices inside set S, but con-

sidering the case when z(S) >Q(K −1), where z(S) = max{q(π(S)\S),−q(σ(S)\S)}. Items

3.1. FROM THE TSP TO THE PDTSPMS 17

crossing item i cannot be loaded in the same stack as i , so they must fit in the remaining

Q(K −1) available space. Also, the authors extend these inequalities to deal with a set con-

taining k items crossing each other, where 2 ≤ k ≤ K −1 items. To reduce the complexity

in the procedure for separating such inequalities, the authors only use values of k = 2 or

3. Again, these inequalities are not sufficient to ensure a solution not violating the stacks

capacity.

To ensure a solution where the capacity of each stack is not exceeded, each time

a tour satisfying the precedence of each pair of pickup and delivery is found, a packing

problem is solved. The solution of this problem is an assignment of each item to a stack,

such that the LIFO policy and the capacity constraints are satisfied. Suppose that the tour

is fixed and known. Let ai r = 1 if item i is loaded inside the vehicle when the location at

position r of the tour is visited and ai r = 0, otherwise. Let zi k = 1 if the vehicle loads item

i in stack k and zi k = 0, otherwise. The packing problem is formulated as:

∑
k∈M

zi k = 1 i ∈ P (3.9)

zi k + z j k ≤ 1 (i , j) ∈ I ,k ∈ M (3.10)∑
i∈P

ai r qi zi k ≤Q r ∈ {1,2, ...,2n},k ∈ M (3.11)

zi k ∈ {0,1} i ∈ P,k ∈ M (3.12)

where I is the set of all pair of items crossing each other in the given tour (computed

in O(n2) time).

Each item is assigned to just one stack by (3.9). (3.10) impose items crossing each

other to be loaded on different stacks. The capacity of each stack is preserved by (3.11),

stating that at any location of the path p, the total length of items loaded in each stack do

not exceed Q. If the solution of this packing problem is infeasible, an inequality is then

inserted in the model to cut this path form the set of feasible solutions. Otherwise, the

tour is feasible concerning both the LIFO policy and the capacity constraints.

To conclude this section, Côté et al. [2012a] also note that no polynomial time algo-

rithm is expected for the packing problem. Indeed, in the particular case where all items

are picked up before any delivery is made (DTSPMS), the packing problem is NP-Hard

[Toulouse and Wolfler Calvo, 2009; Casazza et al., 2012].

18 CHAPTER 3. INTEGER PROGRAMMING FORMULATIONS FOR THE PDTSPMS

3.2 The proposed ILP formulation for PDTSPMS

In this section, we propose an alternative ILP formulation for the PDTSPMS in which we

explore model (3.1)-(3.6), adding new variables and constraints to handle the multiple

stacks availability. Our main goal is to facilitate the expression of inequalities for the LIFO

policy within this formulation and to avoid the need of solving a difficult packing problem

to ensure a feasible solution. In particular, the model (3.1)-(3.6) gives the base of our

formulation, providing the set of tours satisfying the PDTSP condition. To state the LIFO

conditions, we utilize a new set of variables.

Consider the following binary variable vector y ∈B|A||M |:

yk
i j =

1 if immediately after visiting location i ∈V , the vehicle loads (j ∈ P)

or unloads (j ∈ D) item j to or from stack k

0 otherwise

Using variables yk
i j we have, at each arc (i , j) ∈ A, information concerning the op-

eration performed by the vehicle when it arrives at location j coming from location i .

Variables yk
i j are linked to variables xi j by the equations:

xi j =
∑

k∈M
yk

i j (i , j) ∈ A (3.13)

If an item is loaded in stack k, it must be unloaded from this same stack. This con-

straint can be stated through the following equations:

∑
i∈V /{2n+1}

yk
i j =

∑
i∈V /{0,2n+1}

yk
i ,n+ j , j ∈ P, k ∈ M (3.14)

Observe that depot 2n+1 cannot be the predecessor of any location nor depot 0 can be the

predecessor of a delivery location. In both cases, a precedence is violated by the vehicle.

Next, we show how to express the LIFO constraints using yk
i j variables. Instead of

finding a set of K + 1 items that cross each other, thus violating the LIFO policy, and K

subsets (Sh2 , ...,ShK+1) to write inequalities (3.8), we adapt inequalities (3.7) using variables

yk
i j to impose that items crossing each other must be loaded on different stacks. Let i , j ∈

P such that i ≺ j ≺ n + i , and S ∈Ω, j ∈ S, i ,n + i ,n + j ∉ S. As noted earlier, a path from

i to n + i through S is LIFO infeasible when the vehicle contains only one stack. On the

other hand, if K ≥ 2 then items i and j must be loaded on different stacks. As we have

information on which stack both items i and j are loaded, we can use variables yk (S, j)

and yk (S,n + i) to remove from the solution space not all the paths from i to n + i going

3.2. THE PROPOSED ILP FORMULATION FOR PDTSPMS 19

through S, but the paths with a stack configuration that leads to infeasibility (that is, a

configuration where the vehicle loads items i and j on the same stack when traversing

that path).

In Figure 3.2 we depict a graphical representation. Observe that items i and j cross

each other in this example. Thus, if the vehicle goes from i to n + i through S (entering

and leaving S only through i and n+i , respectively) then items i and j must be loaded on

different stacks, or the vehicle must leave and enter S more than once. Using the new set

of variables, we can state this condition with the following inequalities:

x(i ,S\{ j })+x(S,S\{ j })+ yk (S ∪ {i }, j)+ yk (S,n + i) ≤ |S| S ⊂ P ∪D, i , n + i ∉ S, j ∈ S

(3.15)

k ki j n + i

n + jS

Figure 3.2: A forbidden path where items i and j cross each other.

Therefore, inequalities (3.15) cut all paths from i to n + i in which the vehicle (i)

loads item i on stack k, (ii) goes through the clients in S (without visiting clients outside

S) and, in particular, loads (or unloads) item j on stack k, (iii) leaves S and immediately

unloads item i from stack k at location n + i .

However, we note the following. Consider the example in Figure 3.3, and suppose

that items i and j are in the same stack. In the path from i to n + i going through the set

S, the subpath in between i and j is not infeasible in the loading/unloading sequence. In

other words, even if we change this subpath, the whole path would still be infeasible, as

item i would still be unloaded after the load of item j (and n + j is not in this path). In

fact, that is where the real problem lies: item j is loaded and then the vehicle attempts to

deliver item i before delivering item j . In Figure 3.3a, we illustrate this situation. Instead

of using the set S, we just consider a subset S′ ⊆ S containing j (but not containing i , n+i

or n + j) in our inequalities.

20 CHAPTER 3. INTEGER PROGRAMMING FORMULATIONS FOR THE PDTSPMS

i j n + i

n + jS S′

(a)

i n + j n + i

j S′ S

(b)

Figure 3.3: The proposed LIFO inequalities.

Now we describe how the LIFO policy can be imposed within our formulation.

yk (S̄′, j)+x(S′)+ yk (S′,n + i) ≤ |S′| i ,n + i ,n + j ∉ S′, j ∈ S′, k ∈ M (3.16)

Observe that, for the case where n + j ∈ S and j ∉ S, as we depict in 3.3b, then the

roles of i and j are interchanged in inequalities (3.16).

Variables y are used when we want to state explicitly the stack in which the vehicle

loads an item, and variables x when we just want to specify an arc in the path. More

specifically, we are concerned about the loading/unloading of items i and j in stack k

and not about items in S′\{ j }. Note that when items i or j are not loaded in stack k the

inequality is trivially satisfied assuming all other constraints in (3.1)-(3.6) are in place.

Therefore, inequalities (3.16) cut all paths from j to n + i in which the vehicle (i) loads

item j in stack k, (ii) goes through the clients in S′ (without visiting clients outside S′) and

(iii) unloads item i from stack k at location n + i .

Our proposed ILP model can be seen as composed of two levels. In the upper level,

the PDTSP is formulated and x ∈ B|A| provides a solution for this problem. In the lower

level, we use variables y ∈ B|A|K to model the LIFO policy in the tours. The two levels are

coupled by constraints (3.13).

In Chapter 4 we describe the separation procedure for the class of inequalities (3.16).

3.2.1 Valid Inequalities

Here, we introduce some valid inequalities within our formulation that explore the partic-

ular structure of the PDTSPMS. Valid inequalities used in the context of the PDTSP, that

is, not considering the loading and unloading of the items, are presented in Chapter 4.

3.2. THE PROPOSED ILP FORMULATION FOR PDTSPMS 21

Successor Inequalities

Suppose that item i is loaded on stack k. Then, if the vehicle visits a delivery location

n + j immediately after visiting location i , j 6= i , it cannot perform the delivery operation

through stack k, as the item on the top of stack k is i . That is, the only item loaded on stack

k that can be delivered is i . Then, we can derive the following set of valid inequalities:

yk (V , i)+ yk (i ,D\{n + i }) ≤ 1 i ∈ P,k ∈ M (3.17)

Capacity subtour elimination constraints (CSEC)

Let S ⊂ P ∪ D be a set such that q(π(S)\S) > Q. If the vehicle performs all pickups in

π(S)\S on stack k, it must enter and leave the set S more than once. This holds because,

if the vehicle enters and leaves S just once, when the vehicle enters set S, the items to

be delivered in π(S)\S are all loaded in stack k overloading its capacity. This leads to the

following valid inequality:

x(S ∪ {v},S\∆)+ yk (S ∪ {v},∆) ≤ |S|−1 v ∈ P ∪D, k ∈ M , q(π(S)\S) >Q (3.18)

where set ∆ ⊂ D is composed by the deliveriy locations in S with corresponding pickup

locations outside S, and v ∈ P ∪D is the vertex visited immediately before the vehicle

enters the set S.

Figure 3.4 illustrates the idea of inequalities (3.18). In this example, Q = 10, π(S)\S =
{a,b,c}, qa = qb = 4 and qc = 3, thus q(π(S)\S) = 11 and ∆= {n +a,n +b,n + c}. If vehicle

leaves v , enters and leaves S just once (that is x(S) = |S|−1), items a, b and c can not be

all loaded on the same stack, or the vehicle needs to enter and leave S more than once in

order to satisfy the inequality.

a

b

c

v
n + a n + c

n + b
S

Figure 3.4: A violated capacity subtour elimination constraint. Solid arcs represent unload
operations from stack K .

A similar inequality can be derived for the successors σ(S)\S of a set S when

−q(σ(S)\S) >Q:

22 CHAPTER 3. INTEGER PROGRAMMING FORMULATIONS FOR THE PDTSPMS

x(S ∪ {v},S\Π)+ yk (S ∪ {v},Π) ≤ |S|−1 v ∈ P ∪D ∪ {0}, k ∈ M , −q(σ(S)\S) >Q (3.19)

where set Π ⊂ P is composed by the pickup locations in S with corresponding delivery

locations outside S.

Infeasible path inequalities

The infeasible path inequalities presented for PDTSPMS in Côté et al. [2012a] are used

for eliminating tours that violate the LIFO loading policy or the stacks capacity. Given an

infeasible path W with |W | arcs, let x(W) denote the sum of xi j variables representing the

arcs in W . A path inequality is given by:

x(W) ≤ |W |−1, W ∈Φ (3.20)

whereΦ is the set of paths that violate the LIFO or capacity constraints.

In our formulation, we also use a kind of path inequalities but, since the LIFO policy

is already enforced by inequalities (3.16), we use them just to eliminate tours for which

the capacity of some stack is exceeded. Denote W̄ = {w ∈ W : yk
i w = 1} as the set of items

in W loaded or unloaded on stack k, and Ŵ = {w ∈ W : yk
i w = 0} as the items loaded or

unloaded on some other stack l 6= k. Let yk (W̄) be the sum of variables yk
i j such that (i , j)

is an arc in the path W such that j ∈ W̄ , and x(Ŵ) be the sum of variables xi , j , (i , j) ∈ W

and j ∈ Ŵ . Our capacity infeasible path inequalities are as follow:

yk (W̄)+x(Ŵ) ≤ |W |−1, k ∈ M , W ∈Ψ (3.21)

where Ψ is the set of paths for which q(W̄) > Q that is, if the vehicle follows this

path loading items in W̄ on stack k then the capacity of this stack will be exceeded at the

end of the path. An example of an infeasible path inequality is illustrated by figure 3.5.

Consider a vehicle with stack capacity Q = 10, and that items i1 and i3 have length 6 and

item i2 has length 3. In the figure, solid arcs represent operations performed on stack k,

and the dashed ones represent operations done on a different stack. Suppose that the

vehicle arrives at location j1 with stack k empty. Items i1, i2 and i3 are loaded on stack k.

After loading item i2, the total used space is 9. When the vehicle arrives at location i3 the

capacity of stack k is exceeded, since the lengths of items i1 and i3 sum up to 12.

Following the described notation, W̄ = {i1, i2,n + i2, i3}, Ŵ = { j1,n + j1,n + j2} and

3.3. SUMMARY 23

j1

i1 n+ j1 i2 n+ j2 n+ i2

i3

Figure 3.5: Infeasible path inequalities. Dashed arcs correspond to operations performed
on a stack different of k. The total item length load on stack k for this path is qi1 + qi2 −
qi2 +qi3 >Q.

the inequality for this path becomes:

yk
j1,i1

+xi1,n+ j1 + yk
n+ j1,i2

+xi2,n+ j2 + yk
n+ j2,n+i2

+ yk
n+i2,i3

≤ 6−1 = 5

Observe that for the operations performed on stack k, variables yk
i j are used. If the

load/unload operation is performed on another stack, variables xi j are used, meaning

that it does no matter which stack is used, the path is still infeasible.

In Chapter 4 we show that separating path inequalities is easy when the solution is

integral. Note that we do not limit W to be a tour passing through all clients and, in this

way, we may cut infeasible capacity paths of any size that may be part of many infeasible

tours.

3.3 Summary

This chapter presented ILP formulations for the PDTSPMS based on a classical model for

the PDTSP, but adopting rather different approaches for modelling the LIFO policy. In

the formulation proposed by Côté et al. [2012a], the LIFO policy is enforced through in-

equalities that prohibit paths having K +1 or more items crossing each other since, in this

case, no packing of the items is possible. When a feasible PDTSP route is found, a packing

subproblem is solved to ensure a feasible solution to the PDTSPMS, as the inequalities

concerning the capacity of each stack are not sufficient to cut all infeasible solutions.

In our approach, we add more variables to the formulation to tackle the load/unload

operations on each arc. In this way, rather than considering a path with K +1 items cross-

ing each other, the LIFO inequalities in our formulation state that two items crossing each

other need to be loaded on different stacks.

On one hand, the packing subproblem solved in Côté et al. [2012a] is NP-Hard, on

the other hand, our formulation uses more variables and, thus, solving the model may

24 CHAPTER 3. INTEGER PROGRAMMING FORMULATIONS FOR THE PDTSPMS

be harder. Additional variables are often used to achieve compact formulations (with a

polynomial set of constraints and variables) for the asymmetric TSP [Gouveia and Pires,

2001]. We refer to Gouveia and Pesneau [2006] for an example in which the additional

variables are used in the context of extended formulations to allow a better description

of the problem. The authors used an additional (polynomial) set of precedence variables

to better model the problem and to derive several exponential sets of inequalities used

within a B&C algorithm.

We close this chapter by noting that all the proposed valid inequalities within our

formulation were derived from the particular structure of the PDTSPMS. A more in-depth

analysis of the polyhedral structure of the problem could be interesting for deriving strong

inequalities for the problem using techniques from Integer Programming theory.

Chapter 4

An Exact Algorithm for PDTSPMS

In what follows, we describe the branch-and-cut algorithm used to obtain an exact so-

lution using our proposed formulation for the Pickup and Delivery Travelling Salesman

Problem with Multiple Stacks. Instead of solving a packing subproblem for every feasible

Pickup and Delivery Travelling Salesman Problem tour found during the algorithm and,

in case the packing is infeasible, removing this tour from the solution space, in our ap-

proach we obtain paths leading to infeasible tours concerning the capacity of each stack

from the current integer solution. Hence, besides eliminating the need of solving a poten-

tially hard packing subproblem, we eliminate from the solution space all tours containing

an infeasible subpath.

Valid inequalities concerning the capacity of the stacks and valid inequalities com-

monly used for strengthening the PDTSP polytope are presented in Section 4.2. The sep-

aration procedures for each class of inequalities in our formulation are presented in Sec-

tion 4.3. Decision choices taken during the implementation of the B&C algorithm are

described in Section 4.4, followed by some general remarks in Section 4.5.

4.1 Overview

Polyhedral approaches such as B&C algorithms are among the most successful methods

for solving the asymmetric TSP to optimality [Fischetti and Toth, 1997]. Moreover, con-

sidering the PDTSP, the B&C algorithm proposed by Dumitrescu et al. [2010] is capable

of solving instances not solved by previous approaches. For the PDTSPMS, the first exact

algorithm proposed by Côté et al. [2012a] is also a B&C algorithm.

Considering a minimization problem, cutting planes algorithms start with an ap-

proximation, say Q′, for the problem polytope Q and add ‘cuts’, or inequalities that inter-

sected with Q′ form a better approximation for Q. Within a branch-and-bound scheme,

25

26 CHAPTER 4. AN EXACT ALGORITHM FOR PDTSPMS

a series of increasing lower bounds are obtained by solving the relaxation of Q′, and a

series of decreasing upper bounds can be obtained through primal heuristics and the ex-

ploration of the search tree. If the lower and upper bounds coincide, then the optimal

feasible solution for the polytope Q′ is proved to be optimal for Q. These bounds give a

certificate of quality (or gap) of the current solution concerning the optimal solution. For

more detailed content regarding cutting planes and general decomposition techniques,

the reader is referred to Fügenschuh and Martin [2005] and Jünger et al. [1995].

One of the most important aspects in the success of a B&C algorithm is its ability

to generate strong cuts, or inequalities that are among the most effective in providing

a better approximation for the problem polytope and better lower and upper bounds.

Describing valid inequalities that are facet-defining in the polytope can be a hard task.

Polyhedral studies concerning the structure of the asymmetric TSP and PDTSP polytopes

provide results for obtaining such inequalities. In the case of the DTSPMS, Borne et al.

[2012] provided the dimension of the associated polytope and proved that every facet

of the asymmetric TSP polytope also defines a facet in the former. To the best of our

knowledge, no study provides such analysis of the polyhedral structure of the PDTSPMS

or PDTSPL polytopes, and such endeavor is out of the reach of this dissertation.

4.2 Valid inequalities

4.2.1 Inequalities for the PDTSPMS

Valid inequalities within our formulation exploiting the particular structure of the prob-

lem were presented in Chapter 3. In particular, with the successor inequalities (3.17) we

restrict the successor of a given pickup i concerning the LIFO policy, and with (3.18),

(3.19) and the infeasible path inequalities (3.21) we eliminate from the solution space

those tours containing subpaths leading to some infeasibility due to the capacity of the

stacks.

We also include in our model an adaptation of a classical inequality used in the

context of the capacited VRP. The capacity constraint of each vehicle in this problem can

be imposed as follows:

x(S, S̄)+x(S̄,S) ≥ 2r (S) ∀S ⊂ P ∪D (4.1)

Inequalities (4.1) impose that the minimum number of vehicles required to serve

the customers in S, r (S), enter and leave the set (S does not include any of the depots).

The value of r (S) can be computed by solving a bin-packing problem for the item set S,

4.2. VALID INEQUALITIES 27

each of capacity qi , i ∈ S and bins of capacity Q. Since this problem is NP-Hard, a lower

bound
⌈ |q(S)|

Q

⌉
for r (S) can be used and the inequality remains valid [Cordeau et al., 2007].

Côté et al. [2012a] provided an adaptation of those inequalities for dealing with the

PDTSPMS. Rather than considering each stack individually, the authors ignore the pres-

ence of multiple stacks and take into account the whole vehicle capacity K ×Q, and the

rounded capacity inequalities for the PDTSPMS become:

x(S, S̄)+x(S̄,S) ≥ 2

⌈ |q(S)|
KQ

⌉
∀S ⊂ P ∪D (4.2)

These inequalities are not sufficient to cut all infeasible capacity tours since it is

possible to have a set S for which (4.2) is not violated, but packing the items of the cus-

tomers in S inside the vehicle accordingly to the LIFO policy for a given tour necessarily

violates the capacity of some stack. Note that, within our formulation, inequalities (4.2)

only reference variables xi j that is, those variables used to model the tour ignoring the

LIFO policy.

We also use another class of valid inequalities proposed by Côté et al. [2012a]. The

conflict capacity inequalities are defined as:

x(i ,S)+x(S)+x(S,n + i) ≤ |S| ∀S ⊂ P ∪D, i ,n + i ∉ S, z(S) >Q(K −1) (4.3)

where z(S) = max{q(π(S)\S),−q(σ(S)\S)}, and π(S)\S are the set of pickup locations not

in S but for which the corresponding delivery is in S, andσ(S)\S) are the delivery locations

not in S for which the pickup is in S (note the minus sign, as a delivery location n + i

has item length −qi). Recall that items crossing an item i cannot be loaded on the same

stack as i , thus they must fit in the remaining (K −1)Q available space. Hence, if z(S) =
q(π(S)\S) > (K − 1)Q then it is not possible for this vehicle to load item i , then visit the

set S and immediately visit n + i after visiting the set S, since items in π(S)\S cross item i

and, thus, these items should fill at most (K −1)Q space. Observe that an item for which

the pickup is in S but the delivery is outside S also crosses item i (given that i is visited

immediately before S and n+i immediately after S). Thus, if z(S) =−q(σ(S)\S) > (K −1)Q

then those items crossing item i inside S also should fill at most (K −1)Q space.

Côté et al. [2012a] also extend inequalities (4.3) to deal with a set L = {i1, ..., ik } of k

items crossing each other, 2 ≤ k ≤ K −1. The proposed inequalities have the same form as

(3.8), but K is replaced with k, the number of items. Since the calculation of z(Si2 , ...,Sik)

involves computing the intersection of these sets, the authors only use values k = 2 and

k = 3 in order to decrease computational time during the separation procedure. Again,

even if k = K −1, those inequalities are not sufficient to cut all infeasible capacity tours.

28 CHAPTER 4. AN EXACT ALGORITHM FOR PDTSPMS

We only use inequalities (4.3), that is for k = 1. Again, within our formulation these

inequalities only refer to variables xi j .

4.2.2 Inequalities for the PDTSP

Being a pickup and delivery problem, PDTSPMS may benefit from valid inequalities for

PDTSP. Balas et al. [1995] introduced a set of inequalities, lifting the sub-tour elimination

constraints, considering the more general problem where each vertex can have multiple

successors or predecessors (not just one successor, for a pickup, or just one predecessor,

for a delivery, as in the PDTSP).

x(S)+x(S, S̄ ∩π(S))+x(S ∩π(S), S̄\π(S)) ≤ |S|−1 S ⊂ P ∪D (4.4)

x(S)+x(S̄ ∩σ(S),S)+x(S̄\σ(S),S ∩σ(S)) ≤ |S|−1 S ⊂ P ∪D (4.5)

where B = {(i , j) : i ≺ j } is the set of precedences that must be satisfied and π(S) = {i ∈
V \{0} : (i , j) ∈ B for some j ∈ S} and σ(S) = { j ∈V \{0} : (i , j) ∈ B for some i ∈ S}. In particu-

lar, if i ≺ j is a precedence that must be satisfied, inequalities (4.6) are also valid:

x(j ,S)+x(S)+x(S, i) ≤ |S| ∀S ⊆V \{0,2n +1, i , j } (4.6)

(4.4) and (4.5) are referred as predecessor and successor inequalities, respectively. Note

that, for the PDTSP (and for the PDTSPMS), the set of precedences that must be satisfied

is B = {(i ,n + i) : i ∈ P }, so in (4.6) we replace j by n + i , and the definitions of π and

σ are those described in Chapter 3. In Balas et al. [1995] it is shown that for a set Q ⊂
V \{0,2n + 1, i , j }, if S = Q ∪ { j } then (4.4) strictly dominates (4.6). Similary, if S = Q ∪ {i }

then (4.5) strictly dominates (4.6).

We also consider another set of valid inequalities introduced by Balas et al. [1995].

Let S1, ...Sm ⊂ P ∪D be mutually disjoint subsets such that σ(Si)∩ Si+1 6= ;, Sm+1 = S1,

then the precedence cycle breaking inequalities are valid:

m∑
i=1

x(Si) ≤
m∑

i=1
|Si |−m −1 (4.7)

For instance, for m = 2 and S1 = {i ,n + j } and S2 = { j ,n + i } in a violated inequality

(4.7) either a cycle occurs inside S1 or S2, or one of the precedences i ≺ n + i , j ≺ n + j is

violated.

4.3. SEPARATION PROCEDURES 29

4.3 Separation procedures

We now describe the separation procedures used to find violated constraints for each

exponentially-sized class of inequalities within our formulation. For some classes, exact

approaches are implemented, that is, if a given vector (x∗,y∗) violates any inequality in a

class, the procedure is capable of finding it. In particular, for inequalities (3.4), (3.5), (3.16)

and (3.21) exact procedures are used and we can state whether an integral vector (x∗,y∗) is

a solution to our model. Valid inequalities presented in Section 4.2 are separated through

heuristic procedures, that is, the procedure may terminate without finding any violation

even when the solution does not satisfy an inequality in one of these classes.

Given a vector (x∗,y∗) ∈ R|A|×RK |A| with non-negative entries, the associated sup-

port graph G∗ is the directed graph with vertices V ∗ = P ∪ D ∪ {0,2n + 1} and arcs

A∗ = {(i , j)|x∗
i j > 0}. The exact separation algorithms that we use are those described by

Cordeau et al. [2010]. They basically consist of solving maximum flow problems in G∗

for given source and sink vertices, where the weight of an arc (i , j) ∈ A∗ is w(i , j) = x∗
i j .

If the solution of the flow problem falls bellow a given value, a set S ∈ V violating some

inequality is computed using the mincut-maxflow theorem.

We highlight that only the values of x are used in the construction of the support

graph for the separation of the subtour elimination constraints and the PDTSP inequal-

ities, that is, those classes that do not consider the loading aspect of the solution. For

the separation of our proposed inequalities for modelling the LIFO policy, we modify the

support graph with the information provided by the vector y.

When the vector (x∗,y∗) is integral, rather than solving flow problems to find cuts,

in this work we use a different approach and apply specialized algorithms that take ad-

vantage of this special graph structure to solve the separation problem with less effort.

4.3.1 Subtour elimination constraints

Given a non-empty subset S of P ∪D , the subtour inequality (3.4) for S requires that at

most |S|−1 arcs joining vertices in S are used, otherwise a cycle would be formed. Thus,

this inequality can be written as x(S, S̄)+x(S̄,S) ≥ 2, that is, the variables corresponding to

arcs joining vertices in S to vertices outside S and the variables joining vertices outside S

to vertices in S must sum to at least 2. On the other hand, if 0 ∈ S and i ∉ S for some i ∈ P ,

since no arc enters 0 the sum of the variables joining vertices inside S to vertices outside

S (in particular i) must sum to at least 1, that is x(S, S̄) ≥ 1 (an integer path from 0 to i is

illustrative; note that exactly one arc leaves S). Also, if 2n +1 ∉ S and n + i ∈ S for some

n + i ∈ D , since no arc leaves 2n +1 we have x(S, S̄) ≥ 1 (in an integer path from n + i to

30 CHAPTER 4. AN EXACT ALGORITHM FOR PDTSPMS

2n +1, exactly one arc leaves S). Now, observe that if a cycle exist for a subset T ⊂ P ∪D ,

then x(S, S̄) < 1 for some S such that 0 ∈ S i ∈ P, i ∈ T and i ∉ S, or for some S such that

n + i ∈ T , n + i ∈ S, 2n +1 ∉ S.

The exact separation of (3.4) consist of solving a max-flow from 0 to each pickup

i ∈ P , and from each delivery n + i ∈ D to 2n + 1. In both cases, a violated inequality

is found if the flow value is smaller than 1. In the first case, the set S computed by the

mincut-maxflow theorem will contain both 0 and 2n+1 since, because of the degree equa-

tions (3.2) and (3.3), the support graph G∗ will be such that every flow that leaves vertex

0 must reach vertex 2n +1. Accordingly, instead of using S to define the cut, we use S̄. To

avoid generating the same cut for a given vector (x∗,y∗), we do not not run the max-flow

problem when the sink (resp. source) pickup (resp. delivery) location is already included

in previous sets S violating a (3.4) inequality.

In the case of an integral input vector, the separation of (3.4) consist of identifying

the connected components of G∗. In particular, observe that if G∗ violates any inequality

(3.4), then G∗ is induced by a path from 0 to 2n +1 and by C1, ...,Cl cycles, where each Ci ,

1 ≤ i ≤ l , defines a violated SEC. We proceed by identifying the path from 0 to 2n+1. Then,

we choose an arbitrary vertex i not included in this path and follow the path starting at i

until this vertex is visited again, computing Ci and adding an inequality (3.4) for this set.

We continue until all cycles are identified.

4.3.2 PDTSP inequalities

For the exact separation of inequalities (3.5) we proceed as follows. First, for a given set

S ∈ S , an inequality (3.5) for S requires that at most |S| − 2 arcs joining vertices in S are

used, otherwise a path from 0 to a delivery, say, n + i without visiting the correspondent

picku-up i would be formed, thus violating the precedence. Note that this inequality is

equivalent to x(S, S̄) ≥ 2 since if a path starts at 0 and visits all vertices in S (in particular

n + i), but visits i ∉ S before n + i , then it must leaves the set at least two times (also note

that 2n+1 ∉ S). For each pickup i ∈ P the support graph need to be modified, adding arcs

(0,n+i) and (i ,2n+1) both with capacity 2. The max-flow from 0 to 2n+1 is computed, if

this value is smaller than 2 then a set S ∈S that violates (3.5) is found (note that i , 2n+1 ∉ S

and 0,n +1 ∈ S by the mincut-maxflow theorem).

For integral vectors, observe that within a cycle it is not possible to define a visiting

order on the vertices, hence a precedence inequality can not be defined. On the other

hand, we can find violated cuts on the path from 0 to 2n +1 since we start the tour at 0.

Starting at the initial depot 0, we visit the vertices in the path until we reach a delivery n+i

for which the corresponding pickup i was not visited yet. The set S = {0, ...,n + i } (that is

4.3. SEPARATION PROCEDURES 31

the path from 0 to n + i), defines a violated inequality (3.5).

Instead of using the heuristic procedures described by Cordeau et al. [2010] for sep-

arating inequalities (4.4) and (4.5), we proceed as follows. An exact algorithm was pro-

posed by the same authors for separating inequalities (4.6) (recall that in the PDTSP the

successor of i is n + i). A dummy vertex 2n + 2 is inserted in G∗ and connected to ev-

ery other vertex v ∈ P ∪D with arcs of capacity w(2n +2, v) = x∗
n+i ,v + x∗

v,i . The capacity

of arcs (2n + 1, i), (0, i) and (n + i , i) are set to 2. If the max-flow from 2n + 2 to i is less

than 2, then a violated inequality (4.6) is found (note that we discard 2n +2 from S and

0, i ,n + i ,2n +1 ∉ S, according to the definition). Instead of adding this cut to the model,

we extend the set S with {n + i } and {i } for defining violated inequalities (4.4) and (4.5),

respectively, since both inequalities dominates (4.6).

For inequalities (4.7), Cordeau et al. [2010] derived a heuristic approach to separate

them. But the lower bounds at the root node using the obtained inequalities were not

good and they were not included in the final model. We include all inequalities (4.7) for

m = 2 and sets S1 = {i ,n+ j } S2 = { j ,n+ i }, for each pair i , j ∈ P in the initial model. In our

experiments, this approach proved to give overall better results than not including any of

these inequalities.

4.3.3 LIFO inequalities

To separate our proposed inequalities (3.16), we devised the following heuristic algorithm.

For a given pair i , j ∈ P and a stack k, we need to check if there exist a set S such that i ∈ S,

j ,n + j ,n + i ∉ S, for which the vehicle loads item i on stack k, visits the customers in S

and immediately delivery item j from stack k, thus violating the LIFO policy.

Recall inequalities (3.16):

yk (S̄, i)+x(S)+ yk (S,n + j) ≤ |S| j ,n + j ,n + i ∉ S, i ∈ S, k ∈ M

and note that they are equivalent to:

x(S, S̄)+ ∑
l 6=k

y l (S̄, i)+ yk (S̄,n + j)+ ∑
l 6=k

y l (S,n + j) ≥ 2 j ,n + j ,n + i ∉ S, i ∈ S, k ∈ M

(4.8)

that is, if (3.16) is satisfied then the vehicle leaves set S at least two times (term x(S, S̄)),

or it loads item i on a stack l 6= k (term y l (S̄, i)), or it does not unload item j from stack

k immediately after visiting the customers in S (term yk (S̄,n + j)) or it unloads item j

immediately after visiting S but does so from a stack l 6= k (term y l (S,n + j)). Given a

32 CHAPTER 4. AN EXACT ALGORITHM FOR PDTSPMS

fractional solution (x∗,y∗), we create the support graph G∗ and modify it in the following

way:

1. increase the capacity of arcs (i ,u) by the value yk
u,n+ j , u ∈ (P ∪D)\{i ,n + j };

2. increase the capacity of arc (i , j) by the value
∑

l 6=k y l (V , i);

3. set the capacity of the arcs (j ,n + j), (n + j , j), (n + j ,n + i) and (n + i ,n + j) to 2;

4. solve the max-flow from i to j . If the flow value is smaller than 2 then, by the

mincut-maxflow theorem, we can obtain a set S such that i ∈ S, j ,n + j ,n + i ∉
S. Now, we need to check if for this set S the last part of the expression (4.8),∑

l 6=k y l (S,n+ j), does not render the inequality satisfied. If not, S defines a violated

inequality (3.16).

Figure 4.1 illustrates the idea behind the modification on the support graph to ob-

tain a violated inequality (3.16). Basically, we aggregate the values
∑

l 6=k y l (V , i) on x∗
i j , and

yk
u,n+ j on x∗

i ,u , u = 1...2n. Then, when we run the max-flow problem, what we are comput-

ing is exactly x(S, S̄) and this value takes into account the sum
∑

l 6=k y l (S̄, i)+ yk (S̄,n + j).

Thus, if x(S, S̄) < 2, the set S is a candidate to define a violated (4.8). But we need to check

the last part of the expression, not accounted in the modification of the graph. Observe

that if the set S found does not define a violated inequality, it is still possible that another

set, S∗, defining a cut with capacity greater or equal x(S, S̄) render the inequality violated,

since we may have
∑

l 6=k y l (S∗,n + j) <∑
l 6=k y l (S,n + j).

For an integral vector solution, the separation can be performed with a simpler ap-

proach, using the values of yk
i j for each arc in the solution. As in the case of separating

the precedence inequalities, if the solution contains cycles, we do not try to find violated

LIFO inequalities within the cycle, since we can not define a visiting order for the vertices

in the cycle. Thus, we just consider the path from 0 to 2n +1. We start at the first visited

pickup, say i , loaded at some stack k for which n + i is in the path and i ≺ n + i (note that

all this information can be obtained with simply traversing the path in O(V)). Then, we

obtain a path i ,S,n + i , and look inside S for a pickup j loaded at stack k (that is yk
l j = 1

for some l ∈ S ∪ {i }) and for which n + j ∉ S, or for a delivery n + j ∈ S for which j ∉ S

such that yk
l ,n+ j = 1 for some l ∈ S ∪ {i } (that is, item j was loaded on stack k). In the first

case, a violated inequality (3.16) is obtained for the subpath S′ ⊆ S from j to n + i and, in

the second case, for the subpath S′ ⊆ S from i to n + j . Recall figure 3.3 for a better view

of these procedures. We proceed looking for all pickups satisfying the conditions of the

above i ∈ P in the path from 0 to 2n +1.

4.3. SEPARATION PROCEDURES 33

i

n+i

n+j

j

u

Figure 4.1: Separation procedure for inequalities (3.16). The solid thick lines represent
arcs in the support graph. For u = 1...2n, we increase the weight of arc (i ,u) by the value
yk

u,n+ j and the weight of arc (i , j) by
∑

l 6=k y l (V , i).

4.3.4 Capacity inequalities

Concerning the capacity inequalities, we opt not to use the heuristic procedure used by

Côté et al. [2012a] for the separation of (4.2). The authors note it is relatively easy to find

a set S violating such an inequality. The heuristic is based on some random parameters,

and they run the procedure only five times. In our algorithm, we use the sets already com-

puted by the other separation procedures and check if they define a violated inequality. In

particular, after solving the separation procedures for the subtour elimination constraints

and the inequalities (4.4) and (4.5), if the sets that have been determine do not define vio-

lated cuts, we check if they define a violated inequality (4.2). To avoid including the same

cut more than once, we just add at most one inequality (4.2) for each solution (x∗,y∗).

Inequalities (4.3), are only separated for integral solutions. While separating LIFO

inequalites, if the set S in the path i ,S,n+ i does not define any violated inequality (3.16),

we check if z(S) >Q(K −1). If this is the case, then the set S defines a violated inequality

(4.3).

We search for violated inequalities (3.18) and (3.19) for the same sets as for inequal-

ities (4.2). First we check if q(π(S)\S) > Q and if this is the case, we look for the vertex v

maximizing x(v,S) and check for each k ∈ M whether a violated inequality (3.18) is ob-

tained for v and S. If not, in the case of −q(σ(S)\S) >Q, we perform the same verification

for (3.19).

Finally, the separation of the infeasible path inequalities (3.21), when the solution

34 CHAPTER 4. AN EXACT ALGORITHM FOR PDTSPMS

(x∗,y∗) is integral, is done in the following way. If the path from 0 to 2n + 1 does not

contain any invalid precedence (n+i ≺ i), we follow the path, keeping track of the residual

capacity of each stack. When the vehicle loads an item on some stack k and the total

length exceed Q, we add a path inequality from the last position in which stack k was

empty to this last pickup performed. Observe that the LIFO policy for load and unload

the vehicle are not a concern here, just the total capacity of each stack. That is, the vehicle

unloads item i from stack k even when this item is not on the top of stack k.

4.4 Branch-and-Cut algorithm

We are now in a position to describe the implementation of our B&C algorithm to solve

the proposed formulation for the PDTSPMS.

4.4.1 Preprocessing

Before starting the algorithm, we eliminate some variables from our model. Graph G can

be reduced eliminating some of its arcs that do not appear in any feasible solution. Depot

2n+1 cannot be the successor of a pickup location nor depot 0 can be the predecessor of a

delivery location. Thus, arcs of the form (0, j), j ∈ D and (i ,2n+1), i ∈ P are removed from

the graph, that is, we do not consider variables x0, j nor xi ,2n+1. Also, as location n + i ∈ D

cannot be the direct predecessor of its corresponding pickup i ∈ P , arcs (n + i , i) ∀i ∈ P

can also be excluded.

4.4.2 Symmetry breaking

Variables y introduced some degree of symmetry on our formulation. In fact, any feasible

solution has a set of equivalent solutions consisting in the same tour interchanging the

stack assignment of items from two or more stacks.

Note that the vehicle arrives at the final depot 2n +1 with all stacks empty and that

the predecessor of this depot is necessarily a location d ∈ D . Also, observe that the first

location visited by the vehicle immediately after leaving depot 0 is necessarily a location

p ∈ P and that this load operation can be done using any stack. In order to break part of

the symmetry in our model, both operations are fixed to stack 0. Constraints (4.9) and

(4.10) below are added to our formulation:

4.4. BRANCH-AND-CUT ALGORITHM 35

∑
j∈P

y0
0, j = 1 (4.9)

∑
i∈D

y0
i ,2n+1 = 1 (4.10)

4.4.3 Initial Model and Cut Pool

The initial model consists in the objective function (3.1), the degree constraints (3.2) and

(3.3), the symmetry constraints (4.9) and (4.10), the coupling constraints (3.13) between

variables x and y, and the constraints (3.14) to ensure that an item is loaded and unloaded

from the same stack. We also include all subtour elimination constraints (3.4) with |S| = 2

and the precedence cycle breaking inequalities (4.7) for m = 2 and S1 = {i ,n + j }, S2 =
{ j ,n + i }. Finally, we include a successor inequality (3.17) for each i ∈ P, k ∈ M .

4.4.4 Separation strategy

Initially, we drop the integrality constraints on x and y, and try to separate violated cuts

by solving the max-flow problems described in previous section using the hierarchical

order illustrated by Algorithm (1). In order to reduce computational time, the algorithm

only tries to find violated LIFO cuts (3.16) for pairs of pickups i , j ∈ P and stack k ∈ M

for which yk (V , i) > 0.5 and yk (V , j) > 0.5 that is, for pairs of pickups having more than

50% of the associated items loaded on the same stack k. Also, note that when a violated

inequality (3.16) is found for i , j ∈ P k ∈ M it is valid for all k ′ ∈ K \{k}, even if they are not

violated. Accordingly, if a violated cut is found for a given stack, an inequality is added

∀k ∈ M .

When no violated cut is found, we proceed to the branch-and-cut phase, where the

root node is given by the model returned by Algorithm 1, with solution (x∗,y∗). At each

other node of the branch-and-bound tree, if the associated solution is fractional, the sepa-

ration is performed as in Algorithm 1, but we do not separate the LIFO inequalities (3.16).

In our tests, separating these inequalities at fractional nodes resulted in many violated

cuts and a large model to solve. This approach performed better from a computational

point of view, giving better running times. Also, the cuts are added globally that is, all

inequalities are valid for every node in the tree.

For a node with integral solution, the separation routines are implemented taking

advantage of the special structure of the support graph. In particular, if no violated in-

equality (3.4), (3.5) and (3.16) are found, we only need to check if the capacity of each

stack is not exceeded to have a feasible solution for the PDTSPMS. In the strategy pre-

36 CHAPTER 4. AN EXACT ALGORITHM FOR PDTSPMS

Algorithm 1 Computes a LP-solution (x∗,y∗)
.
1: Construct the support graph G∗
2: T ←;
3: for all i ∈ P\T do
4: Run the max-flow from 0 to i and obtain the mincut set S
5: if f low < 1 then
6: A violated cut (3.4) for S̄ has been found, add it to the model.
7: T ← T ∪S
8: else {if no inequality (4.2), (3.18), (3.19) were added for x∗,y∗.}
9: Check if S defines violated inequalities (4.2), (3.18), (3.19) and add then to the model.
10: end if
11: end for
12: T ←;
13: for all i ∈ D\T do
14: Run the max-flow from i to 2n +1 and obtain the mincut set S.
15: if f low < 1 then
16: A violated cut (3.4) for S has been found, add it to the model.
17: T ← T ∪S
18: else {if no inequality (4.2), (3.18), (3.19) were added for x∗,y∗.}
19: Check if S defines violated inequalities (4.2), (3.18), (3.19) and add then to the model.
20: end if
21: end for

22: for all i ∈ P do
23: Modify G∗ accordingly to subsection 4.3.2 and run the maxflow from 0 to 2n +1. Obtain the mincut set S.
24: if f low < 2 then
25: A violated inequality (3.5) has been found, add it to the model.
26: end if
27: Modify G∗ accordingly to subsection 4.3.2 and run the maxflow from 2n +2 to i . Obtain the mincut set S.
28: if f low < 2 then
29: A violated inequality (4.6) has been found.
30: Violated (4.4) and (4.5) are defined for S = S ∪ {n + i } and S = S ∪ {i }, respectively. Add then to the model.
31: else {if no inequality (4.2) were added so far.}
32: Check if S defines a violated inequality (4.2), and add it to the model.
33: end if
34: end for

35: for all i ∈ P do
36: for all j ∈ P\{i } do
37: for all k ∈ M do
38: if yk (V , i) > 0.5 and yk (V , j) > 0.5 then
39: Modify G∗ accordingly to subsection 4.3.3 and run the maxflow from i to j . Obtain the mincut set S.
40: if f low +∑

l 6=k y l (S,n + j) < 2 then
41: A violated inequality (3.16) has been found.
42: Add an inequality (3.16) ∀k ∈ M for the given S, i , j .
43: end if
44: end if
45: end for
46: end for
47: end for
48: if No violated cuts were found then
49: Terminate the LP-solution.
50: else
51: Solve the model again with the new inequalities found and obtain (x∗,y∗).
52: Go back to 1.
53: end if

4.4. BRANCH-AND-CUT ALGORITHM 37

sented by Côté et al. [2012a], this is done by solving a packing problem for the tour (not

violating any (3.4) and (3.5)). In the case of a feasible packing solution, the tour is a fea-

sible solution for the PDTSPMS. If not, this tour is eliminated from the solution space

with a path inequality (3.20). In our formulation, we can simulate the load and unload

operations performed by the vehicle using the variables yk
i j , and check whether the tour

violates the capacity of some stack. For each violation found, a path inequality (3.21) is

separated, thus eliminating all tours containing this path.

The separation strategy for an integral solution is depicted in Algorithm 2. Recall

that the support graph is induced by a path W = 0, ...,2n +1, and by cycles C1, ...,Cl , one

for each violated SEC (3.4).

4.4.5 Implementation details

Our algorithm uses CPLEX 12.5 as a B&C framework through the Concert API Library. All

preprocessing, heuristics and automatic cut generation of the solver are turned off. The

callback mechanism is used for the separation of user cuts and lazy constraints. We give

preference to variables xi j over variables yk
i j during branching. In doing this, our aim is

to first obtain a tour and then separate violated LIFO and capacity inequalities. The node

selection, variable and direction for branching are chosen using CPLEX’s default values.

As we consider instances with integer-valued costs, we set the absolute MIP gap tolerance

and the absolute objective difference cut-off parameters of CPLEX to 0.9999.

For the cut separation solving maximum flows problems, we used an implemen-

tation of Dinic’s algorithm [Dinitz, 2006] with worst-case complexity of O(|V ∗|2|A∗|) .

We also tested an implementation of the highest-label preflow-push algorithm of Gold-

berg and Tarjan [1986] available in the open-source Library for Efficient Modelling and

Optimization in Networks (LEMON) [Dezs et al., 2011] with worst-case running time

O(|V ∗|2p|A∗|). An advantage of push-relabel algorithms is that in applications where just

the flow value and the minimum cut set is required (as is the case in the separation pro-

cedures), the implementation can be adjusted to run slightly faster, running just the first

phase of the algorithm.

We performed a set of tests for assessing the empirical performance of both im-

plementations. Six batches of 100 support graphs G∗(V ∗, A∗), with |V ∗| ranging from

28 to 44 and |A∗| from 27 to 103, were submitted to each algorithm and the total time

spent for solving each batch (obtaining the flow and the minimum cut set for each prob-

lem) recorded. Empirically, our implementation of Dinic’s algorithm performed better for

those instances. The data structures used in LEMON are quite more elaborated than the

graph data structures we use in our algorithm. The running times can be explained by

38 CHAPTER 4. AN EXACT ALGORITHM FOR PDTSPMS

Algorithm 2 Separation strategy for an integral solution (x∗,y∗)
.
1: Construct the support graph G∗
2: Find the path W = 0, ...,2n +1 and the connected components C1, ...,Cl ⊂ P ∪D . {W = w0 = 0, w1, ..., wr = 2n +1}

3: for all Ci , 1 ≤ i ≤ l do
4: Include a SEC (3.4) for Ci .
5: end for

6: S ← {0}, i ← 1.
7: while wi 6= 2n +1 do
8: S ← S ∪ {wi }.
9: if wi ∈ D and π({wi }) ∉W then
10: A violated inequality (3.5) has been found for S.
11: end if
12: i ← i +1.
13: end while

14: for all i ∈ P : i , n + i ∈W do
15: Find de subpath i ,S,n + i in W .
16: if yk

l j = 1, j ∈ P,n + j ∉W, l ∈ S ∪ {i } or yk
l ,n+ j = 1,n + j ∈ D, j ∉W, l ∈ S ∪ {i } then

17: A violated inequality (3.16) has been found.(with the roles of i and j interchanged accordingly with the case).
18: else {no j ∈ P or n + j ∈ D could be found.}
19: if q(S) > (K −1)Q then
20: A violated inequality (4.3) has been found for S and i ,n + i .
21: end if
22: end if
23: end for

24: if No violated inequality (3.5) was found then
25: load [0], ..., load [K −1] ← 0.
26: st ar t [0], ..., st ar t [K −1] ← 0.
27: i ← 1.
28: while wi 6= 2n +1 do
29: Let k ∈ M such that yk

wi−1wi
= 1.

30: if wi ∈ Pand load [k] = 0 then
31: st ar t [k] ← i −1.
32: end if
33: load [k] ← load [k]+qi .
34: if load [k] >Q then
35: An infeasible inequality for the path starting at wst ar t [k] ending at wi has been found. Add (3.21) for each k ∈ M .
36: end if
37: i ← i +1.
38: end while
39: end if

40: if No violated cut was found then
41: print (x,y) is a feasible solution for PDTSPMS.
42: end if

4.5. FINAL REMARKS 39

the burden incurred in creating such structures. For an overview of the computational

aspects of various maximum flow algorithms, the reader is referred to Ahuja et al. [1997].

4.5 Final remarks

In this chapter, valid inequalities to strengthen the PDTSP polytope and valid inequalities

for PDTSPMS concerning the capacity of the vehicle were presented. The B&C algorithm

relies on separation procedures for the exponentially-sized classes of inequalities based

on max-flow problems, when the solution is fractional, and on specialized algorithms for

integral solutions. In particular, for the proposed LIFO inequalities, we devised a heuristic

procedure when the solution is fractional and an exact procedure for integral solutions.

Some implementation decisions were made in order to improve the running time

of the B&C algorithm. For example, in the case that a separation procedure is able to

find more than one violated inequality, a wide range of strategies to decide which ones

to include in the model can be adopted (the first cut found, all violated inequalities, the

mostly violated among all, orthogonal cuts). In our experiments, the trade-off between

the time for computing all violated cuts for a given solution, and then deciding which

ones to include and the impact that the selected cuts had on the overall performance of

the algorithm did not endorse such approaches. Hence, we use a quite straightforward

strategy as illustrated by Algorithms 1 and 2.

Another implementation issue concerns the size of the support graph G∗ during

the separation procedures. Shrink algorithms [Padberg and Rinaldi, 1990] could be used

to decrease computational time on separation procedures using the max-flow algorithm.

Given the relative small size of the instances considered in this work (from 24 to 44 nodes),

we opt to not use such an approach.

Chapter 5

Computational Results

This chapter presents an experimental evaluation of the proposed B&C algorithm for solv-

ing the ILP formulation for the Pickup and Delivery Travelling Salesman Problem with

Multiple Stacks. Section 5.1 describes the computational scenario for running the ex-

periments and the data sets for benchmark instances. We investigate the impact of the

proposed valid inequalities on the performance of the algorithm in Section 5.2. Next, we

present a comparison with the results available in the literature for the B&C algorithm by

Côté et al. [2012a]. Finally, in Section 5.4, we analyse the results and assess the weaknesses

and advantages of the proposed algorithm.

5.1 Overview

All algorithms described in the previous chapter were implemented in C++ and compiled

using version 4.7.3 of the g++ compiler with -O3 flag activated. The tests were run on an

2.2GHz Intel Xeon E5520 processor with 16GB of RAM running Linux.

The benchmark data set used in our experiments is the set of instances introduced

by Côté et al. [2012a]. The authors generated the instances based on Pickup and Delivery

Travelling Salesman Problem with LIFO Loading benchmark instances in Cordeau et al.

[2010] and Carrabs et al. [2007a,b]. The clients distance matrix of each instance is taken

from one of the following TSP instances from the TSPLIB [Reinelt, 1991]: a280, att532,

brd14051, d15112, d18512, fnl4461, nrw1379, pr1002, ts225. In each file, the location of

the first city is defined as the initial (location 0) and final depots (location 2n + 1). The

smallest instance consist of the first 23 cities and form the base for constructing the larger

instances. For the assignment of the vertices as pick-up or delivery locations, the 22 sub-

sequent cities are paired randomly, obtaining the n = 11 requests. The larger instances

(n = 13,15,17,19,21) are built sequentially by performing a random pairing between the

41

42 CHAPTER 5. COMPUTATIONAL RESULTS

C1 class C2 class
Instance K Q K Q
a280 2 2 2 12
att532 3 3 2 15
brd14051 2 2 3 11
d15112 3 2 3 10
d18512 2 3 2 14
fnl4461 4 1 3 10
nrw1379 3 2 4 10
pr1002 2 2 3 13
ts225 2 2 2 12

Table 5.1: Benchmark instances for both classes.

new locations added in each step to form the extra pickup and delivery assignments. This

procedure is outlined in Carrabs et al. [2007a] in order to ensure that the solution cost of

a larger instance is always at least as large as the cost of a smaller instance from the same

file.

In that way, 54 instances were generated and divided in nine PDTSP base instances

each with six values for the number of requests, namely, n = 11,13,15,17,19,21 (resp.

24,28,32,36,40,44 locations). Now, two classes of instances for the PDTSPMS are gen-

erated. In the first class, C1, the length of each pickup, qi , is 1, the number of stacks, K , is

a random number between 2 and 4, and the capacity, Q, of each stack is a random num-

ber between 1 and 3. In the second class, C2, the length of items is a random number

between 1 and 10, the number of stacks is a random number between 2 and 4, and the

capacity is a random number between 10 and 15. Those values are justified by Côté et al.

[2012a] in order to obtain difficult instances for which the optimal solution of the PDTSP

for an instance is not an optimal solution to the PDTSPMS. Table 5.1 report the number

of stacks (K) and the capacity (Q) used to generate each instance within each of the nine

TSPLIB files.

After reading the location of each city in the TSPLIB file, the cost associated with

each arc, ci j , is rounded to the nearest integer. We use an initial upper bound (UB) on the

optimal value of each instance provided by the Large Neighbourhood Search heuristic in

Côté et al. [2012b].

5.2. EFFECTIVENESS OF VALID INEQUALITIES 43

Model Solved Root Gap Time Cuts Path
Plain 31 5.40% 0.66% 491.2 967.3 610.7
(3.17) 32 5.19% 0.24% 436.8 782.3 539.4

(3.18,3.19) 32 5.14% 0.20% 435.2 895.9 547.6
(3.17,3.18,3.19) 32 5.19% 0.18% 401.0 821.3 546.3

Table 5.2: Model comparison for C1 instances.

Model Solved Root Gap Time Cuts Path
Plain 24 5.31% 0.00% 151.9 570.7 696
(3.17) 24 5.27% 0.00% 183.6 548.3 729

(3.18,3.19) 23 5.31% 0.10% 273.7 626.6 688.8
(3.17,3.18,3.19) 24 5.28% 0.00% 238.8 543.4 556.6

Table 5.3: Model comparison for C2 instances.

5.2 Effectiveness of valid inequalities

In Tables 5.2 and 5.3, we evaluate the contributions of the proposed successor inequal-

ities (3.17), and the capacity subtour elimination constraints (3.18, 3.19) on tackling the

set of of 34 (resp. 24) solved instances on class C1 (resp. C2) by the B&C algorithm in Côté

et al. [2012a]. For these experiments, we also set the maximum computation time to one

hour. In the row Plain, we report the results obtained with our B&C algorithm consid-

ering the initial model described in Section 4.4 without including inequalities (3.17) and

not checking for violated inequalities (3.18, 3.19) during the execution of Algorithm 1. In

the subsequent rows, we add one of these two families of inequalities to the Plain formu-

lation and, in the last row, we add the two families. For each model, we give the num-

ber of solved instances (Solved), the average root node lower bound (Root) computed as

100*(UB-LB)/UB, the average gap (Gap) between the best lower bound and UB (for un-

solved instances), the average CPU time (Time), the average number of cuts of type (3.16)

(LIFO cuts), (4.2), (4.3), (3.18) and (3.19) (capacity cuts) added through the execution of

the algorithm. Finally, in column Path, we report the number of path inequalities (3.21)

generated.

We observe that some classes of inequalities (the precedence and successor in-

equalities (4.4, 4.5), the rounded capacity inequalities (4.2), the LIFO inequalities (3.16)

and the CSEC (3.18, 3.19)) are not separated exactly during the execution of Algorithm 1,

used to obtain the root lower bound. Thus, although we include all inequalities (3.17), it

is possible that different violated cuts are found for each model. This explains the small

deterioration on the root gap values on the last row of each table, that is, the root gap is

44 CHAPTER 5. COMPUTATIONAL RESULTS

slightly greater using the two classes than when using just one of the classes.

For class C1, two instances could not be solved (d18512 for n = 15 and fnl4461 for

n = 17) by any of models and the Plain model could neither solve the instance (ts225 for

n = 17). The root gap and the gap on unsolved instances could be slightly improved with

the addition of the inequalities. Also, the number of added cuts to impose the LIFO policy

and assignments that do not violate the capacity of each stack (Cuts) is reduced with the

inclusion of the proposed inequalities.

In the context of C2 instances, only one instance (ts225 for n = 13) could not be

solved by the model including the CSEC inequalities (3.18, 3.19). The root gap could also

be improved with the addition of the inequalities, but the contributions were smaller than

for C1 instances. Nevertheless, the number of added Cuts and the path inequalities could

also be reduced. On the other hand, the CPU time was increased with the inclusion of the

inequalities, mostly likely due to the procedure of identifying cuts of type (3.18, 3.19).

The small contribution of the proposed inequalities on the root node lower bound

can be explained by the fact that these inequalities may only contribute to the packing of

the items, without necessarily changing the tour. For example, on C1 instances att532 for

n = 11,13,15,17, nrw1379 for n = 11 and ts225 for n = 11,13, the optimal PDTSP tour is

feasible concerning the LIFO policy, that is, there is a feasible packing for this tour satisfy-

ing both the loading/unloading operations and the capacity of each stack. Thus, the im-

pact of the proposed inequalities is more significant towards the assignment of the items

in the stacks and not on the modification of the tour.

In the following reports, the model with our proposed inequalities (3.17) and (3.18,

3.19) will be considered.

5.3 Comparison with results from literature

Next, we report a comparative analysis of the results obtained in this work in comparison

with those obtained by the B&C by Côté et al. [2012a] on the PDTSPMS instances. We

note that the authors performed their tests using a 2.2GHz AMD Opteron 275 processor.

Also, the maximum computation time was set to one hour. Accordingly, in running our

experiments, we also set this time limit. The initial upper bound (UB) on both algorithms

are those provided by the LNS heuristic in Côté et al. [2012b].

In Tables1 5.4 and 5.6 we summarize the overall results obtained by both approaches

for each class of instances, C1 and C2, respectively. In each table, we report the number

1The reported values for the average final gap on unsolved instances (Gap) in a class were computed
based on the detailed data available in Côté et al. [2012a]. The Gap value for each class presented in this
latter work did not match the detailed results reported for each instance in a class.

5.3. COMPARISON WITH RESULTS FROM LITERATURE 45

Method Solved Root Gap Time Path
Côté et al. [2012a] B&C 34 6.1% 6.00% 381.9-1573.8 8.3

Our B&C 33 9.18% 11.2% 212.5-1529.9 506.7

Table 5.4: Overall results on C1 instances.

Côté et al. B&C Our B&C
Instance Solved Root Gap Time Solved Root Gap Time
a280 5 6.20 10.35 499.5 5 11.91 6.19 239.4
att532 6 2.00 – 342.4 6 2.16 – 36.4
brd14051 2 6.15 4.29 19.5 2 16,79 15,76 12,6
d15112 4 7.73 7.54 834.6 4 9,16 8,85 220.5
d18512 3 5.71 6.12 2230.2 2 6.65 4.47 1.05
fnl4461 4 6.22 3.29 30.4 3 11.28 15.57 1004.3
nrw1379 1 10.92 8.46 0.9 1 11.51 9.20 0.5
pr1002 5 3.98 2.31 459.6 6 5.19 – 187.8
ts225 4 5.76 3.92 13.1 4 7.98 3.35 137.2

Table 5.5: Overall results for each instance in class C1.

Method Solved Root Gap Time Path
Côté et al. [2012a] B&C 24 7.8% 6.6% 312.2-2138.8 186.5

Our B&C 25 9.8% 10.2% 224.2-1988.6 460.7

Table 5.6: Overall results on C2 instances.

of instances solved (Solved) over the total of 54, the average root node gap (Root), that

is, the relative value between the objective value achieved before starting the branching

phase of the algorithm (lower bound , LB) and the optimal value (the final UB, in the

case of unsolved instances) computed as 100*(UB-LB)/UB. Next, we report the average

final dual gap (Gap) on unsolved instances. Finally, we show the average CPU time in

seconds (Time), considering just the solved instances and considering all instances, and

the average number of path inequalities (3.20) generated (Path), one for each infeasible

packing subproblem solved by the algorithm of Côté et al. [2012a] and, in the case of our

approach, the average number of violated inequalities (3.21) found for integer solutions.

Tables 5.5 and 5.7 report the overall results obtained on each of the nines base

TSPLIB instances considered, for class C1 and C2, respectively. (The column Time report

the average time on the solved instances). In Appendix A, we show the detailed results

considering each particular instance in both classes.

46 CHAPTER 5. COMPUTATIONAL RESULTS

Côté et al. B&C Our B&C
Instance Solved Root Gap Time Solved Root Gap Time
a280 4 8.32 9.81 400.9 5 13.11 4.63 195.0
att532 2 7.93 7.00 2.5 2 8,55 6,16 0.5
brd14051 2 6.64 4.60 482.2 2 14,85 17,69 85.0
d15112 3 8.23 5.06 620.0 3 8.49 3.96 324.3
d18512 1 7.23 5.56 70.6 1 12.59 9.74 27.6
fnl4461 3 5.87 6.74 17.3 3 4,21 4,67 32.3
nrw1379 1 9.78 7.05 1.3 1 10.98 8.59 0.5
pr1002 6 3.17 – 324.9 6 2.97 – 60.3
ts225 2 12.77 8.64 493.1 2 17,6 6,74 1425.8

Table 5.7: Overall results for each instance in class C2.

5.3.1 C1 instances

For class C1, our algorithm could solve 33 out of 54 instances, while 34 are solved by the

B&C algorithm by Côté et al. [2012a]. Our algorithm was not capable of solving two in-

stances solved by the latter (d18512 for n = 15 and fnl4461 for n = 17), but on the other

hand, we could provide a new certificate of optimality for an instance not solved before

(pr1002 for n = 21). Except for these cases, the set of solved instances for class C1 are the

same. Although on average the root gap values obtained with the proposed algorithm are

higher, for those sets with the same number of solved instances we could achieve better

execution times and/or smaller values for the final gap on unsolved instances. In partic-

ular, for the benchmark instance att532, our algorithm outperforms the previous results

especially in the larger-sized instance (n = 21). The root node gap value is slightly smaller

(3.53% against 3.60%) but the time to solve this instance is reduced by one order of magni-

tude. We note that, for att532 in C1, the optimal PDTSP tour is also an optimal PDTSPMS

tour for n = 11,13,15,17,19, and after the addition of few LIFO and capacity inequalities, a

feasible assignment of the items in each stack is obtained. On the other hand, for n = 21,

the optimal PDTSP tour needs to be slightly modified to allow the correct sequence of

loads and unloads of the items. Our algorithm achieves this modification after the ad-

dition of less cuts (769 against 3110), while the algorithm by Côté et al. [2012a] needs to

solve at least 32 packing subproblems to cut feasible PDTSP tours rendering an infeasible

packing of the items from the solution space.

We highlight the inability of our proposed algorithm in solving instances brd14051

and fnl4461. For the former, while the time to tackle the two solved instances (n = 11,13)

was smaller than the time for solving these same instances with the B&C algorithm by

Côté et al. [2012a], the final gap on unsolved instances were larger, especially for the in-

5.3. COMPARISON WITH RESULTS FROM LITERATURE 47

stances with more requests (n = 19,21). In the set fnl4461, we could not solve three in-

stances (n = 17,19,21) and the time to tackle the solved ones were also higher. For in-

stances in this set, the vehicle contains K = 4 stacks and capacity, Q = 1. Our algorithm

generates a larger number of LIFO and capacity inequalities for instances in this set.

Few inequalities (3.20) are generated by the packing subproblem described by Côté

et al. [2012a] for instances in C1, meaning that when a feasible PDTSP tour is found

by their algorithm the packing subproblem is unlikely to be infeasible. Observe that

the average time for tackling all instances is essentially the same for the two algorithms

(1573.8−1529.9).

5.3.2 C2 instances

In the context of instances in class C2, our algorithm was capable of solving instance a280

for n = 19 requests, not previously solved. All other instances solved before (24) were also

solved. Values for the average root gap were higher in our algorithm, but the difference

is smaller than for C1 instances, and for the sets fnl4461 and pr1002 these values were

smaller. Moreover, for the sets with the same number of solved instances, the execution

time and/or the final gap on unsolved instances were improved with our algorithm.

As for class C1, our algorithm performs comparatively worst on the brd14051 and

fnl4461 sets. Although the time to solve the two instances in brd14051 (n = 11,13) is much

smaller (85-482.2secs), the final gap for the larger unsolved instances was too high. For the

set fnl4461 better root lower bound and final gaps on unsolved instances were obtained

using our algorithm, but the time to solve the instances were almost doubled. Again, this

set contains the instances where the vehicle contains the tightest stack capacity (Q = 10).

Class C2 contains the instances in which more path inequalities (3.20) are gener-

ated with the packing procedure by Côté et al. [2012a]. This may explain the difference

on the total execution time of both algorithms. We highlight the difference for solving in-

stance brd14051 with n = 13 requests. While the B&C by Côté et al. [2012a] took 960.4 sec-

onds, solving at least 1820 packing subproblems and generating 5276 LIFO and capacity

cuts, our algorithm took 168.2 seconds, generating only 308 cuts and 297 path inequalities

(3.21).

5.3.3 Analysis

It is worth to mention the impact that the number of stacks, the capacity and the size

of each item have on the tractability of solving a particular instance. For example, while

all instances in set att532 are solved for class C1, for class C2 only the cases n = 11,13 are

48 CHAPTER 5. COMPUTATIONAL RESULTS

solved to optimality. On the other hand, both algorithms take more time to solve instances

in the set pr1002 for class C1 than C2. Also, the B&C by Côté et al. [2012a] could not solve

the instance pr1002 with n = 21 requests in class C1, while all instances in class C2 are

solved. Finally, observe that the cost of optimal tours for pr1002 in class C2 are smaller

than in C1 (our algorithm proved the optimal value of 20150 for n = 21), meaning that

packing the not all unitary items inside this vehicle for feasible PDTSP tours is easier. In

that sense, problem difficulty is largely dependent on the characteristics of the vehicle (K

and Q) and on the size of the items to be transported.

Nevertheless, as noted by Côté et al. [2012a], it seems that if solving the PDTSP is

hard, the same applies to find an optimal PDTSPMS tour. Only the smaller instances

are solved for the sets brd14051 (n = 11,13) and nrw1379 (n = 11) for both classes. For

nrw1379, while it is easy to solve instances with n = 11 requests, for the larger instances

none of the algorithms could not reduce the final gap below 3% .

Concerning the performance of both algorithms on the set of benchmark instances,

our proposed B&C generates a search tree with more nodes. This is due to the extra vari-

ables y ∈ B|A|K . Despite this fact, we could achieve better execution times on several in-

stances for both classes. We emphasize that with the addition of the extra set of variables

y ∈B|A|K , our B&C algorithm can find violations of the LIFO policy and on the capacity of

each stack without the need of solving a hard packing subproblem. Moreover, our algo-

rithm generates less LIFO and capacity inequalities in solving the majority of instances.

5.4 Conclusions

This chapter presented a computational experience with B&C algorithms for solving the

PDTSPMS exactly. Our algorithm relies on a new formulation for the problem, adding a

new set o variables to better describe the LIFO and the capacity inequalities.

Besides the classical arc inclusion variables xi j , we consider an extra set of binary

variables yk
i j that model the loading and unloading operations on each stack. While the

approach in the literature only considers the arc variables and postpone the assignment

of each item to a stack when a feasible PDTSP tour is found, in our approach we use the

new set of variables to simultaneously impose constraints on the tour and on the pack-

ing of the items inside the vehicle. We reported computational results that support this

approach.

We could obtain two new optimality certificates. Also, we could improve the dual

gap for several unsolved instances. The gap values obtained at the root node were worst

for our algorithm on larger instances for which the PDTSP problem is hard to solve. This

5.4. CONCLUSIONS 49

can be explained by the fact that we do not separate violated cuts for one class of valid

inequalities for the PDTSP separated in the B&C algorithm by Côté et al. [2012a]. In future

work, the impact of adding such inequalities should be investigated.

Chapter 6

Conclusion and Future Work

This dissertation addressed the exact solution of the Pickup and Delivery Travelling Sales-

man Problem with Multiple Stacks. This is a difficult combinatorial problem that arises

from the combination of routing and loading aspects on the Vehicle Routing Problem.

For concluding the work, this final chapter assesses the contributions made by this

dissertation. Next, we discuss future work and research possibilities which could further

contribute to the developments of exact algorithms to solve the PDTSPMS.

6.1 Contributions

The main contributions of this dissertation were the introduction of a new ILP formula-

tion for the PDTSPMS and a B&C algorithm for solving this formulation. The algorithm

uses some valid inequalities from previous work, but new valid inequalities within the

new formulation were also proposed. We have applied this algorithm on a set of bench-

mark instances from the literature. Our algorithm was able to solve to optimality two

instances not solved before. Also, the final dual gap for some unsolved instances could be

improved.

The first exact algorithm proposed by Côté et al. [2012a] relies on solving a packing

subproblem for the assignment of the items to a stack for a given tour. As an attempt to

avoid the need of solving such a difficult problem, we introduce a new set of variables to

better model the loading and unloading operations performed by the vehicle. In doing so,

our aim was to couple the routing and loading aspects and derive procedures that could

facilitate the search for violations on the loading and unloading policy of the stacks.

Our computational experiments supported the new approach. Not only could we

obtain new optimality certificates, but we could also solve several instances with less

computational effort. The results also point out that more attention should be paid to

51

52 CHAPTER 6. CONCLUSION AND FUTURE WORK

the separation of valid inequalities for the Pickup and Delivery Travelling Salesman Prob-

lem, as for some cases the root lower bound obtained with our algorithm is still very low,

especially for the larger instances for which the associated PDTSP is difficult to solve.

The work is also of interest since it provided a new approach for solving the

PDTSPMS, confirming the results of the only one exact algorithm for the problem [Côté

et al., 2012a].

6.2 Further work

One source of weakness in this work is that in looking for cuts in some classes, instead of

investigating the structure of the current solution and try to construct a set S ⊂ P∪V defin-

ing a violated inequality, we use the sets computed on separation procedures of other

classes. Despite the fact that we could find several violated cuts using this approach, it

would be interesting to investigate the use of specialized heuristic separation procedures

for these classes.

Another possible investigation concerns the use of our proposed B&C algorithm to

solve the Double Travelling Salesman Problem with Multiple Stacks instances as Côté et al.

[2012a] have done. We plan to adapt our algorithm and evaluate its performance on this

problem.

Finally, polyhedral approaches like B&C algorithms would benefit from a better un-

derstanding of the polyhedral structure of the problem. Findings towards this direction

could provide new insights on the development of stronger formulations and valid in-

equalities that may leverage the efficiency of such approaches.

Appendix A

Detailed results

This appendix reports the detailed results for each benchmark instance proposed by Côté

et al. [2012a]. Recall that the base for each instance consist of the TSPLIB file given in

column Instance, where the assignment of the pickup and deliver locations is performed

as described in Section 5.1. Thus, we have 54 base PDTSP instances divided in nine sets

and six values for the number of requisitions n. Using these instances, two classes of

PDTSPMS instances are generated: in class C1 the items have unitary size and, in class

C2, items have sizes randomly chosen from the set {1,2, ...,10}.

In the following tables, the column Instance report the details of each instance. UB

is the initial upper bound provided by the heuristic of Côté et al. [2012b]. Opt is the op-

timal value. The columns Root, Gap are the same as described in Section 5.1, and Time

is the CPU time in seconds. Column Cuts reports the number of LIFO cuts (3.16), and

capacity cuts (3.18), (3.19), (4.2) and (4.3) added by our proposed B&C algorithm, and, in

the case of the algorithm of Côté et al. [2012a], the number of LIFO cuts (3.8) and capacity

cuts (4.2) and (4.3). Column Nodes reports the number of nodes in the search tree.

For each one of the six instances within a TSPLIB file, the best solution is displayed

in bold. The quality of a solution is measured accordingly with the execution time to

solve the instance, or the final gap for unsolved instances. Tables A.1, A.2 and A.3 refer to

instances in class C1. Tables A.4, A.5 and A.6 refer to instances in class C2.

53

54 APPENDIX A. DETAILED RESULTS

In
stan

ce
P

ro
p

o
sed

B
&

C
C

ô
té

B
&

C
n

am
e

n
U

B
O

p
t

R
o

o
t

G
ap

T
im

e
C

u
ts

Path
N

o
d

es
R

o
o

t
G

ap
T

im
e

C
u

ts
Path

N
o

d
es

a280
11

449
449

10,58
5,9

483
159

1573
3,79

2,0
192

0
42

13
488

477
10,47

19,4
722

229
1611

3,46
6,9

168
0

41
15

613
542

13,28
607,6

1665
845

11226
4,59

105,1
679

0
320

17
633

624
10,9

93,3
694

285
3813

5,54
181,3

1139
0

631
19

709
669

10,76
470,9

947
447

9813
5,81

2202,1
3434

0
1982

21
773

n
.a

15,48
6,19

3600
2324

1811
29926

13,98
10,35

3600
3702

0
1923

att532
11

4177
4177

1,02
0,1

17
0

3
0,93

0,2
10

0
2

13
4937

4937
1,18

0,2
18

0
3

1,31
0,7

7
0

6
15

5151
5151

2,86
0,7

35
3

24
2,30

2,9
24

0
17

17
5294

5294
1,91

0,8
77

30
19

1,51
2,8

19
0

10
19

5587
5587

2,48
2,6

101
54

102
2,35

13,8
30

0
25

21
9266

9266
3,53

214,0
769

1725
13552

3,60
2034,2

3110
32

4020

b
rd

14051
11

4396
4396

3,74
2,5

133
41

207
3,69

8,7
314

0
84

13
4439

4439
4,48

22,7
185

26
1672

4,46
30,4

642
3

164
15

4809
n

.a.
10,4

4,79
3600

443
15

30639
8,38

3,41
3600

31596
0

4894
17

4945
n

.a.
12,46

9,57
3600

500
17

22004
6,87

4,65
3600

20525
0

3267
19

6704
n

.a.
33,88

32,56
3600

799
42

14738
8,87

4,72
3600

9645
0

1905
21

6923
n

.a.
35,81

16,15
3600

908
20

8289
4,60

4,40
3600

7024
0

1305

Tab
le

A
.1:D

etailed
resu

lts
fo

r
C

1
in

stan
ces.

55

In
st

an
ce

P
ro

p
o

se
d

B
&

C
C

ô
té

et
al

.B
&

C
n

am
e

n
U

B
O

p
t

R
o

o
t

G
ap

T
im

e
C

u
ts

Pa
th

N
o

d
es

R
o

o
t

G
ap

T
im

e
C

u
ts

Pa
th

N
o

d
es

d
15

11
2

11
74

60
3

74
60

3
4,

79
0,

9
15

5
24

16
3

6,
32

2,
9

98
2

66
13

80
69

0
80

69
0

7,
85

14
,8

99
8

30
8

20
63

6,
89

37
,0

45
4

0
26

5
15

89
75

4
89

75
4

5,
96

13
,7

49
9

22
3

21
19

4,
82

20
,6

20
0

8
12

2
17

96
80

4
96

80
4

9,
51

85
2,

6
23

79
61

6
23

77
7

6,
51

32
78

85
69

66
54

02
19

10
36

09
n

.a
.

11
,4

2
5,

67
36

00
30

74
49

4
22

36
5

8,
86

5,
39

36
00

51
10

1
26

30
21

10
90

48
n

.a
.

15
,4

3
12

,0
3

36
00

12
44

14
2

92
28

12
,9

7
9,

68
36

00
38

75
0

13
90

d
18

51
2

11
42

80
42

80
1,

02
0,

4
61

30
56

1,
03

1,
4

46
0

8
13

43
01

43
01

1,
2

1,
7

32
4

57
26

2
1,

30
5,

7
10

3
0

32
15

46
38

46
38

6,
99

1,
94

36
00

53
70

15
37

69
58

8
5,

84
25

74
,1

15
09

0
33

1
79

01
17

47
41

n
.a

.
8,

34
2,

32
36

00
39

24
45

5
42

46
0

6,
68

3,
56

36
00

92
99

0
42

78
19

49
17

n
.a

.
9,

91
4,

48
36

00
31

46
26

8
25

26
8

8,
22

5,
78

36
00

52
98

0
30

37
21

51
00

n
.a

.
12

,4
6

9,
16

36
00

12
83

81
14

33
5

11
,1

9
9,

02
36

00
33

21
0

19
23

fn
l4

46
1

11
18

89
18

89
0,

48
0,

2
15

1
12

6
35

0,
50

0,
6

54
0

10
13

20
88

20
88

2,
39

7,
2

47
1

39
7

16
14

0,
50

1,
6

81
0

8
15

23
56

23
56

6,
69

30
05

,5
26

58
21

65
13

78
56

1,
78

16
,8

23
8

0
73

17
25

17
25

17
9,

69
4,

29
36

00
34

67
18

67
45

48
7

3,
80

10
2,

6
56

0
0

16
8

19
29

33
n

.a
.

18
,5

7
15

,2
7

36
00

31
95

84
7

25
54

1
11

,0
2

3,
02

36
00

88
83

0
26

39
21

35
61

n
.a

.
29

,8
7

27
,1

4
36

00
59

94
12

88
14

87
4

19
,7

1
3,

55
36

00
71

74
0

14
08

Ta
b

le
A

.2
:D

et
ai

le
d

re
su

lt
s

fo
r

C
1

in
st

an
ce

s
(c

o
n

ti
n

u
ed

).

56 APPENDIX A. DETAILED RESULTS

In
stan

ce
P

ro
p

o
sed

B
&

C
C

ô
té

etal.B
&

C
n

am
e

n
U

B
O

p
t

R
o

o
t

G
ap

T
im

e
C

u
ts

Path
N

o
d

es
R

o
o

t
G

ap
T

im
e

C
u

ts
Path

N
o

d
es

n
rw

1379
11

2690
2690

2,12
0,5

43
4

12
2,16

0,9
39

0
6

13
3061

n
.a.

11,39
5.00

3600
2299

452
32750

10,74
3,68

3600
21519

1
10552

15
3117

n
.a.

10,67
5,95

3600
790

31
39037

10,67
5,63

3600
18099

0
7165

17
3197

n
.a.

10,24
5,72

3600
1032

31
24576

10,07
6,21

3600
11748

0
4310

19
3476

n
.a.

15,84
13,2

3600
799

1
18407

14,97
12,11

3600
7324

0
2253

21
3799

n
.a.

18,83
16,17

3600
970

0
9820

16,89
14,69

3600
5533

0
1466

p
r1002

11
13718

13718
2,73

0,2
54

42
39

1,05
0,4

45
0

7
13

15436
15436

5,30
1,4

78
117

355
3,34

5,1
121

0
37

15
16268

16268
5,80

38,6
326

895
6995

5,01
146,6

1686
0

813
17

17601
17601

6,01
164,5

377
1092

14322
4,30

384,2
3143

0
1484

19
18673

18673
5,62

343,7
425

1619
18917

4,33
1761,7

9266
0

4414
21

20199
20150

5,66
578,7

496
1332

18772
5,88

2,31
3600

4388
0

2456

ts225
11

22000
22000

0.00
0,3

50
95

52
0,00

1,5
66

3
20

13
29395

29395
0.00

0,1
52

17
8

0,26
2,4

51
0

15
15

32541
32541

4,48
286,3

2636
1866

28041
2,66

4,0
63

0
10

17
36405

36405
10,67

262,2
1504

1636
16409

7,78
44,4

241
1

73
19

40395
n

.a.
15,61

0,63
3600

1565
1335

63491
10,55

2,18
3600

5309
0

3156
21

43056
n

.a.
17,14

6,07
3600

894
122

34298
13,31

5,65
3600

4980
0

2299

Tab
le

A
.3:D

etailed
resu

lts
fo

r
C

1
in

stan
ces

(co
n

tin
u

ed
).

57

In
st

an
ce

P
ro

p
o

se
d

B
&

C
C

ô
té

et
al

.B
&

C
n

am
e

n
U

B
O

p
t

R
o

o
t

G
ap

T
im

e
C

u
ts

Pa
th

N
o

d
es

R
o

o
t

G
ap

T
im

e
C

u
ts

Pa
th

N
o

d
es

a2
80

11
45

5
45

5
11

,7
6

4,
0

32
0

97
76

0
4,

89
8,

6
25

2
5

82
13

47
9

47
9

12
,5

3
5,

6
36

3
12

8
81

5
4,

62
15

,3
45

0
3

13
9

15
59

2
55

3
15

,0
1

25
5,

5
96

7
39

5
73

69
5,

95
49

7,
5

31
05

19
11

31
17

65
5

63
5

12
,4

4
23

4,
3

84
2

51
1

66
25

6,
93

10
82

,3
25

09
4

11
06

19
71

7
67

7
11

,8
2

47
5,

7
10

39
58

9
90

06
11

,5
7

6,
94

36
00

76
22

11
32

66
21

79
3

n
.a

.
15

,1
5

4,
63

36
00

17
22

12
28

28
31

4
15

,9
8

12
,6

8
36

00
41

99
0

17
53

at
t5

32
11

41
90

41
90

1,
32

0,
1

27
6

6
0,

50
0,

3
17

0
3

13
50

33
50

33
3,

07
0,

9
75

40
12

0
3,

31
4,

7
97

0
44

15
56

65
n

.a
.

11
,6

8
3,

72
36

00
93

0
27

4
54

86
9

11
,0

8
5,

23
36

00
13

26
3

0
78

42
17

59
20

n
.a

.
12

,1
3

6,
40

36
00

85
5

10
8

44
43

7
11

,6
0

6,
98

36
00

10
77

2
0

55
51

19
61

84
n

.a
.

12
,3

6,
22

36
00

99
6

10
1

26
78

9
11

,2
6

7,
68

36
00

50
83

0
25

60
21

10
02

5
n

.a
.

10
,8

0
8,

31
36

00
62

0
29

87
36

9,
85

8,
12

36
00

43
11

0
15

66

b
rd

14
05

1
11

43
86

43
86

3,
52

1,
9

71
3

10
0

3,
45

4,
0

66
0

31
13

44
59

44
58

4,
88

16
8,

3
40

0
29

7
14

51
3

4,
87

96
0,

4
52

76
18

20
65

40
15

47
95

n
.a

.
10

,0
9

6,
13

36
00

66
3

0
39

32
4

10
,0

7
3,

99
36

00
29

33
4

0
58

02
17

48
91

n
.a

.
11

,5
8,

43
36

00
79

6
48

22
21

2
11

,2
5

8,
21

36
00

20
21

8
0

35
69

19
62

76
n

.a
.

29
,3

8
27

,7
2

36
00

23
28

17
4

12
90

7
5,

25
2,

81
36

00
10

01
5

0
21

80
21

63
22

n
.a

.
29

,7
4

28
,4

8
36

00
11

53
38

61
66

4,
95

3,
37

36
00

64
94

0
18

46

Ta
b

le
A

.4
:D

et
ai

le
d

re
su

lt
s

fo
r

C
2

in
st

an
ce

s.

58 APPENDIX A. DETAILED RESULTS

In
stan

ce
P

ro
p

o
sed

B
&

C
C

ô
té

etal.B
&

C
n

am
e

n
U

B
O

p
t

R
o

o
t

G
ap

T
im

e
C

u
ts

Path
N

o
d

es
R

o
o

t
G

ap
T

im
e

C
u

ts
Path

N
o

d
es

d
15112

11
73872

73872
3,85

0,8
229

86
119

5,40
5,1

98
12

78
13

81657
81657

8,94
224,1

2288
1040

22060
8,52

452,7
2935

996
3734

15
91799

91799
8,06

748,0
1472

1516
49969

7,34
1402,2

4781
1673

7027
17

97040
n

.a.
9,73

2,56
3600

4991
2332

50850
9,21

3,22
3600

8631
93

5481
19

99729
n

.a.
7,98

1,85
3600

4093
738

40675
7,88

3,48
3600

5160
8

3784
21

105242
n

.a.
12,37

7,48
3600

2538
303

19036
11,03

8,50
3600

3048
0

1706

d
18512

11
4341

4341
2,41

27,6
646

176
6605

2,40
70,6

1467
186

1085
13

4572
n

.a.
7,05

3,47
3600

3370
775

72309
5,97

2,35
3600

28051
3162

17907
15

4893
n

.a.
11,84

4,33
3600

2779
334

30533
6,91

2,82
3600

13879
0

4795
17

5099
n

.a.
14,28

8,00
3600

1841
127

14487
5,84

4,15
3600

14801
0

3672
19

5359
n

.a.
17,34

12,77
3600

1410
66

19221
9,56

6,48
3600

8993
0

2535
21

5768
n

.a.
22,6

20,13
3600

947
25

13624
12,69

12,00
3600

5936
0

1520

fn
l4461

11
1883

1889
0,16

0,1
65

37
33

0,66
0,5

30
1

6
13

2088
2088

2,39
23,5

855
316

6083
2,19

14,7
332

33
189

15
2262

2262
2,81

73,4
865

437
10797

2,99
36,8

502
26

224
17

2428
n

.a.
6,38

2,75
3600

3647
757

74835
7,31

3,09
3600

12539
2

6083
19

2634
n

.a.
9,32

6,60
3600

3939
683

39123
11,11

8,35
3600

7019
7

3603
21

2773
n

.a.
9,94

7,46
3600

2785
366

13986
10,94

8,79
3600

2522
0

1919

Tab
le

A
.5:D

etailed
resu

lts
fo

r
C

2
in

stan
ces

(co
n

tin
u

ed
).

59

In
st

an
ce

P
ro

p
o

se
d

B
&

C
C

ô
té

et
al

.B
&

C
n

am
e

n
U

B
O

p
t

R
o

o
t

G
ap

T
im

e
C

u
ts

Pa
th

N
o

d
es

R
o

o
t

G
ap

T
im

e
C

u
ts

Pa
th

N
o

d
es

n
rw

13
79

11
26

90
26

90
2,

04
0,

5
73

34
25

2,
34

1,
3

38
0

9
13

30
55

n
.a

.
10

,1
7

3,
19

36
00

10
34

24
7

51
59

3
10

,4
8

2,
82

36
00

27
11

0
5

13
39

5
15

31
16

n
.a

.
10

,6
4

6,
19

36
00

13
38

73
36

08
4

10
,6

1
5,

62
36

00
13

52
5

18
66

14
17

31
97

n
.a

.
10

,2
8

6,
15

36
00

11
43

14
23

58
6

10
,1

4
6,

01
36

00
11

45
2

0
46

28
19

34
22

n
.a

.
14

,5
4

11
,6

6
36

00
10

90
0

14
21

7
12

,0
2

9,
47

36
00

43
20

0
14

82
21

37
69

n
.a

.
18

,1
9

15
,7

6
36

00
15

66
0

10
78

1
13

,0
8

11
,3

3
36

00
53

90
0

16
03

p
r1

00
2

11
13

52
7

13
52

7
1,

92
0,

4
10

3
10

0
16

1
1,

55
2,

0
39

18
68

13
15

22
1

15
22

1
4,

21
17

,8
19

4
90

7
66

17
3,

92
14

,2
17

0
60

27
1

15
15

67
6

15
67

6
2,

56
14

,4
16

7
84

5
37

68
3,

19
30

,9
33

3
35

30
1

17
17

00
9

17
00

9
2,

59
20

,8
16

9
11

21
29

42
2,

79
75

,7
57

4
52

42
7

19
18

13
6

18
13

6
3,

28
17

2,
5

26
5

27
58

15
03

1
3,

31
50

4,
8

20
85

66
15

58
21

19
61

3
19

61
3

3,
29

13
5,

9
22

5
10

19
10

18
8

4,
24

13
22

,2
40

18
95

26
50

ts
22

5
11

22
00

0
22

00
0

0.
00

0,
2

81
51

28
0,

00
0,

9
39

0
9

13
34

00
0

34
00

0
13

,5
4

1,
45

36
00

23
09

14
69

11
48

61
10

,6
0

98
5,

3
91

91
46

8
54

19
15

37
70

3
n

.a
.

17
,5

6
5,

2
36

00
22

47
85

1
10

01
05

10
,5

7
3,

44
36

00
15

07
7

80
2

88
84

17
41

70
3

n
.a

.
21

,6
2

7,
09

36
00

26
84

67
2

64
03

0
15

,2
3

5,
63

36
00

10
79

6
39

2
65

49
19

45
70

3
n

.a
.

25
,5

5
11

,0
9

36
00

11
62

29
4

15
34

7
20

,0
3

11
,2

9
36

00
46

52
0

23
48

21
49

09
7

n
.a

.
27

,3
3

13
,2

3
36

00
13

91
24

2
21

82
6

20
,2

1
14

,1
8

36
00

34
76

0
17

59

Ta
b

le
A

.6
:D

et
ai

le
d

re
su

lt
s

fo
r

C
2

in
st

an
ce

s
(c

o
n

ti
n

u
ed

).

Bibliography

Ahuja, R. K., Kodialam, M., Mishra, A. K., and Orlin, J. B. (1997). Computational investiga-

tion of maximum flow algorithms. European Journal of Operational Research, (3):509--

542. ISSN 1572-5286.

Applegate, D. L., Bixby, R. E., Chvatal, V., and Cook, W. J. (2007). The Traveling Salesman

Problem: A Computational Study (Princeton Series in Applied Mathematics). Princeton

University Press, Princeton, NJ, USA. ISBN 0691129932, 9780691129938.

Ascheuer, N., Jünger, M., and Reinelt, G. (2000). A branch & cut algorithm for the asym-

metric traveling salesman problem with precedence constraints. Computational Opti-

mization and Applications, 17(1):61--84.

Azi, N., Gendreau, M., and Potvin, J.-Y. (2010). An exact algorithm for a vehicle routing

problem with time windows and multiple use of vehicles. European Journal of Opera-

tional Research, 202(3):756–763.

Balas, E., Fischetti, M., and Pulleyblank, W. (1995). The precedence-constrained asym-

metric traveling salesman polytope. Mathematical Programming, 68(1-3):241--265.

Baldacci, R., Hadjiconstantinou, E., and Mingozzi, A. (2004). An exact algorithm for the

capacitated vehicle routing problem based on a two-commodity network flow formu-

lation. Operations Research, 52(5):723--738. ISSN 0030-364X.

Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., and Laporte, G. (2007). Static pickup and

delivery problems: a classification scheme and survey. TOP: An Official Journal of the

Spanish Society of Statistics and Operations Research, 15(1):1--31. ISSN 1134-5764.

Borne, S., Grappe, R., and Lacroix, M. (2012). The Uncapacitated Asymmetric Travel-

ing Salesman Problem with Multiple Stacks. In Mahjoub, Markakis, V., Milis, I., and

Paschos, V., editors, Combinatorial Optimization, volume 7422 of Lecture Notes in Com-

puter Science, pages 105--116. Springer Berlin Heidelberg.

61

62 BIBLIOGRAPHY

Carrabs, F., Cerulli, R., and Cordeau, J.-F. (2007a). An additive branch-and-bound algo-

rithm for the pickup and delivery traveling salesman problem with lifo or fifo loading.

INFOR: Information Systems and Operational Research, 45(4):223--238.

Carrabs, F., Cordeau, J. F., and Laporte, G. (2007b). Variable neighborhood search for the

pickup and delivery traveling salesman problem with lifo loading. INFORMS Journal

on Computing, 19(4):618--632. ISSN 1526-5528.

Casazza, M., Ceselli, A., and Nunkesser, M. (2012). Efficient algorithms for the double

traveling salesman problem with multiple stacks. Computers & Operations Research,

39(5):1044--1053. ISSN 03050548.

Cassani, L. (2004). Algoritmi euristici per il TSP with rear-loading. Master’s thesis, DTI -

Università degli Studi di Milano.

Chvátal, V., Cook, W., Dantzig, G., Fulkerson, D., and Johnson, S. (2010). Solution of a

Large-Scale Traveling-Salesman Problem. In Jünger, M., Liebling, T. M., Naddef, D.,

Nemhauser, G. L., Pulleyblank, W. R., Reinelt, G., Rinaldi, G., and Wolsey, L. A., editors,

50 Years of Integer Programming 1958-2008, pages 7--28. Springer Berlin Heidelberg.

Cordeau, J.-F., Iori, M., Laporte, G., and Salazar González, J. J. (2010). A branch-and-cut

algorithm for the pickup and delivery traveling salesman problem with LIFO loading.

Networks, 55(1):46--59.

Cordeau, J.-F., Laporte, G., Savelsbergh, M. W., and Vigo, D. (2007). Vehicle routing. In

Barnhart, C. and Laporte, G., editors, Transportation, volume 14 of Handbooks in Oper-

ations Research and Management Science, pages 367 – 428. Elsevier.

Côté, J.-F., Archetti, C., Speranza, M. G., Gendreau, M., and Potvin, J.-Y. (2012a). A branch-

and-cut algorithm for the pickup and delivery traveling salesman problem with multi-

ple stacks. Networks, 60(4):212--226.

Côté, J.-F., Gendreau, M., and Potvin, J.-Y. (2012b). Large neighborhood search for

the pickup and delivery traveling salesman problem with multiple stacks. Networks,

60(1):19--30.

Dezs, B., Jüttner, A., and Kovács, P. (2011). LEMON - an Open Source C++ Graph Template

Library. Electronic Notes in Theoretical Computer Science, 264(5):23--45. ISSN 1571-

0661.

Dinitz, Y. (2006). Dinitz’ Algorithm: The Original Version and Even’s Version. In Goldre-

ich, O., Rosenberg, A., and Selman, A., editors, Theoretical Computer Science, volume

BIBLIOGRAPHY 63

3895 of Lecture Notes in Computer Science, chapter 10, pages 218--240. Springer Berlin

Heidelberg, Berlin, Heidelberg.

Dumitrescu, I., Ropke, S., Cordeau, J.-F., and Laporte, G. (2010). The traveling salesman

problem with pickup and delivery: polyhedral results and a branch-and-cut algorithm.

Mathematical Programming, 121(2):269--305.

Felipe, A., Ortuño, T., and Tirado, G. (2009). The double traveling salesman problem with

multiple stacks: A variable neighborhood search approach. Computers & Operations

Research, 36(11):2983--2993. ISSN 0305-0548.

Fischetti, M. and Toth, P. (1997). A polyhedral approach to the asymmetric traveling sales-

man problem. Management Science, 43(11):1520--1536. ISSN 0025-1909.

Fügenschuh, A. and Martin, A. (2005). Computational Integer Programming and Cut-

ting Planes, volume 12 of Handbooks in Operations Research and Management Science,

pages 69--121. Elsevier.

Goldberg, A. V. and Tarjan, R. E. (1986). A new approach to the maximum flow problem.

In Proceedings of the eighteenth annual ACM symposium on Theory of computing, STOC

’86, pages 136--146, New York, NY, USA. ACM.

Gouveia, L. and Pesneau, P. (2006). On extended formulations for the precedence con-

strained asymmetric traveling salesman problem. Networks, 48(2):77--89. ISSN 0028-

3045.

Gouveia, L. and Pires, J. M. (2001). The asymmetric travelling salesman problem: on gen-

eralizations of disaggregated Miller-Tucker-Zemlin constraints. Discrete Applied Math-

ematics, 112(1-3):129–145. ISSN 0166-218X. Combinatorial Optimization Symposium,

Selected Papers.

Hernández-Pérez, H. and Salazar-González, J.-J. (2004). A branch-and-cut algorithm for

a traveling salesman problem with pickup and delivery. Discrete Applied Mathematics,

145(1):126--139. ISSN 0166218X.

Iori, M., González, J. J. S., and Vigo, D. (2007). An Exact Approach for the Vehicle

Routing Problem with Two-Dimensional Loading Constraints. Transportation Science,

41(2):253--264. ISSN 1526-5447.

Iori, M. and Martello, S. (2010). Routing problems with loading constraints. TOP: An

Official Journal of the Spanish Society of Statistics and Operations Research, 18(1):4--27.

ISSN 1134-5764.

64 BIBLIOGRAPHY

Jünger, M., Reinelt, G., and Thienel, S. (1995). Practical Problem Solving with Cutting

Plane Algorithms in Combinatorial Optimization, volume 20 of DIMACS series in dis-

crete mathematics and theoretical computer science, pages 111--152. American Mathe-

matical Society.

Kalantari, B., Hill, A. V., and Arora, S. R. (1985). An algorithm for the traveling sales-

man problem with pickup and delivery customers. European Journal of Operational

Research, 22(3):377--386. ISSN 03772217.

Ladany, S. P. and Mehrez, A. (1984). Optimal routing of a single vehicle with loading and

unloading constraints. Transportation Planning and Technology, 8(4):301--306.

Levitin, G. and Abezgaouz, R. (2003). Optimal routing of multiple-load AGV subject to

LIFO loading constraints. Computers & Operations Research, 30(3):397--410. ISSN

03050548.

Li, Y., Lim, A., Oon, W.-C., Qin, H., and Tu, D. (2011). The tree representation for the

pickup and delivery traveling salesman problem with LIFO loading. European Journal

of Operational Research, 212(3):482--496. ISSN 03772217.

Lusby, R. M., Larsen, J., Ehrgott, M., and Ryan, D. (2010). An exact method for the

double TSP with multiple stacks. International Transactions in Operational Research,

17(5):637--652.

Miller, C. E., Tucker, A. W., and Zemlin, R. A. (1960). Integer Programming Formulation of

Traveling Salesman Problems. J. ACM, 7(4):326--329. ISSN 0004-5411.

Pacheco, J. A. (1997). Heurístico para los problemas de rutas con carga y descarga en

sistemas LIFO. Quaderns d’estadística i investigació operativa, 21(1-2).

Padberg, M. and Rinaldi, G. (1990). An efficient algorithm for the minimum capacity cut

problem. Mathematical Programming, 47(1-3):19--36.

Padberg, M. and Sung, T.-Y. (1991). An analytical comparison of different formulations of

the travelling salesman problem. Mathematical Programming, 52(1-3):315--357.

Petersen, H. L., Archetti, C., and Speranza, M. G. (2010). Exact solutions to the double

travelling salesman problem with multiple stacks. Networks, 56(4):229--243.

Petersen, H. L. and Madsen, O. B. G. (2009). The double travelling salesman problem with

multiple stacks - Formulation and heuristic solution approaches. European Journal of

Operational Research, 198(1):139--147. ISSN 03772217.

BIBLIOGRAPHY 65

Reinelt, G. (1991). TSPLIB - A Traveling Salesman Problem Library. ORSA Journal on

Computing, 3(4):376--384. ISSN 0899-1499.

Santos, F. A., Mateus, G. R., and da Cunha, A. S. (2013). The pickup and delivery prob-

lem with cross-docking. Computers & Operations Research, 40(4):1085--1093. ISSN

03050548.

Sarin, S. C., Sherali, H. D., and Bhootra, A. (2005). New tighter polynomial length formu-

lations for the asymmetric traveling salesman problem with and without precedence

constraints. Operations Research Letters, 33(1):62--70. ISSN 01676377.

Tarantilis, C. D., Zachariadis, E. E., and Kiranoudis, C. T. (2009). A hybrid metaheuristic

algorithm for the integrated vehicle routing and three-dimensional container-loading

problem. Intelligent Transportation Systems, IEEE Transactions on, 10(2):255--271.

ISSN 1524-9050.

Toulouse, S. and Wolfler Calvo, R. (2009). On the complexity of the multiple stack TSP,

kSTSP. In Chen, J. and Cooper, editors, Theory and Applications of Models of Computa-

tion, volume 5532 of Lecture Notes in Computer Science, pages 360--369. Springer Berlin

Heidelberg.

Urrutia, S., Milanés, A., and Løkketangen, A. (2013). A dynamic programming based lo-

cal search approach for the double traveling salesman problem with multiple stacks.

International Transactions in Operational Research. In press.

	Acknowledgments
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 The Pickup and Delivery TSP with Multiple Stacks
	2.1 Preliminary definitions
	2.2 Problem definition
	2.3 Literature review and related work
	2.4 The structure of PDTSPMS

	3 Integer Programming Formulations for the PDTSPMS
	3.1 From the TSP to the PDTSPMS
	3.1.1 ILP formulation for PDTSP
	3.1.2 The PDTSPL
	3.1.3 The PDTSPMS

	3.2 The proposed ILP formulation for PDTSPMS
	3.2.1 Valid Inequalities

	3.3 Summary

	4 An Exact Algorithm for PDTSPMS
	4.1 Overview
	4.2 Valid inequalities
	4.2.1 Inequalities for the PDTSPMS
	4.2.2 Inequalities for the PDTSP

	4.3 Separation procedures
	4.3.1 Subtour elimination constraints
	4.3.2 PDTSP inequalities
	4.3.3 LIFO inequalities
	4.3.4 Capacity inequalities

	4.4 Branch-and-Cut algorithm
	4.4.1 Preprocessing
	4.4.2 Symmetry breaking
	4.4.3 Initial Model and Cut Pool
	4.4.4 Separation strategy
	4.4.5 Implementation details

	4.5 Final remarks

	5 Computational Results
	5.1 Overview
	5.2 Effectiveness of valid inequalities
	5.3 Comparison with results from literature
	5.3.1 C1 instances
	5.3.2 C2 instances
	5.3.3 Analysis

	5.4 Conclusions

	6 Conclusion and Future Work
	6.1 Contributions
	6.2 Further work

	A Detailed results
	Bibliography

