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Resumo

No protocolo OSPF, dado um conjunto de pesos para cada link, os dados são rotea-
dos através do menor caminho entre o remetende e o destinatário. O problema da
atribuição de pesos OSPF (do inglês OSPF weight setting problem) consiste em definir
os pesos dos links de uma rede de computadores, de tal forma que o roteamento resulte
na rede menos congestionada possível. A maioria dos trabalhos da literatura assumem
que uma única matriz de demandas estática está disponível. Entretanto, o tráfego
em redes de computadores pode variar significantemente ao longo do tempo, e não é
prático para o administrador da rede mudar manualmente os pesos dos links toda vez
que uma variação significante ocorrer. Estes fatores motivaram o desenvolvimento de
modelos de otimização para o problema que lidam com incerteza no tráfego. Ao invés
de minimizar o congestionamento médio em relação aos vários cenários, como é o caso
dos trabalhos da literatura, nós propomos um novo modelo de otimizaçao, baseado em
Otimização Robusta, onde o congestionamento em cada cenário é considerado individ-
ualmente. Nós argumentamos que o usuário experimenta cada cenário individualmente.
Portanto, uma solução que é boa na média pode resultar numa qualidade de serviço
ruim na perspectiva do usuário. Experimentos computacionais, realizados em redes
realísticas e artificiais, mostram que, comparado à abordagem que minimiza o caso
médio, nossa abordagem consegue reduzir o arrependimento em 25%, enquanto au-
menta o congestionamento médio em apenas 0.72%, indicando que nossa abordagem
pode ser uma alternativa melhor para a atribuição de pesos OSPF.
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Abstract

On OSPF protocol, given a set of weights for each link, the data are routed through the
shortest paths between the sender and the receiver. The OSPF weight setting problem
consists in assigning the link weights such that the respective shortest path routing
results in the least congested network. Most of the works in the literature assume that
a single static demand matrix is available. However, the traffic on computer networks
may significantly vary in different periods of time, and it is not practical for the network
operator to manually change the weights of the links each time significant variation
in traffic occurs. These factors motivated the development of optimization models
for OSPF weight setting that deal with traffic uncertainties. Instead of minimizing the
average congestion over all scenarios as is the case of the works in the literature, we pro-
pose a new optimization models, based on Robust Optimization, where the congestion
in each scenario is considered individually. We argue that the user experiences each sce-
nario individually. Therefore, a solution that is good on average may sometimes result
in a bad quality-of-service from the user point of view. Computational experiments,
performed on realistic and artificial instances, show that, compared to the approach
that minimizes the average case, our approach is able to reduce the congestion regret
by 25%, while increasing the average congestion by only 0.72%, indicating that our
approach may be a better alternative for weight setting in OSPF networks.
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Chapter 1

Introduction

The Internet is a global network connecting routers, switches, and hubs that commu-
nicate mainly through the Internet Protocol (IP). The data is transmitted in small
units called packets, that contain the message being sent, the destination address, as
well as other relevant information. Every subnetwork that is under the administra-
tion of a single institution is called an autonomous system (AS), as shown on Figure
1.1. The Internet can be divided into two layers of protocols: the intra-domain layer,
implemented by the Interior Gateway Protocols (IGPs), is responsible for managing
the traffic inside an autonomous system, while the inter-domain layer deals with the
traffic between the autonomous systems.

Autonomous System

Internet

Figure 1.1: An autonomous system on the Internet
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2 Chapter 1. Introduction

One of the responsibilities of an AS is to solve the routing problem, that consists
in deciding the paths through which the network flow is going to pass. Since there are
many possible routes for each demand, deciding the path of the data is crucial to avoid
link overloading, in order to achieve better response times and to keep the network
reliable. There are several protocols that provide intra-domain routing, such as RIP,
OSPF and IS-IS. Each organization is responsible for choosing the protocol that suits
best its demands. Nowadays, OSPF and IS-IS are the most common choices.

The Open Shortest Path First (OSPF) protocol is an IGP that was created by
the OSPF working group of the Internet Engineering Task Force [Moy, 1998]. In OSPF
routing, the network administrator assigns integer weights to each link of the network.
These weights are used as lengths to calculate the shortest paths between all pairs of
routers, and the data is routed through the shortest paths. In the case of multiple
shortest paths, the traffic is split evenly, among all outgoing links that belong to the
shortest paths. This behavior is called Equal Cost Multi-Path (ECMP) rule. Figure
1.2 shows an example of OSPF routing with the ECMP rule. In the first case (a), all
links have the same weight, and all the 10 megabits are routed through the shortest
path (S → X → T ) of length 2. On the second case (b), there are two shortest paths
of length 3: (S → X → T ) and (S → Z → Y → T ). Therefore, the flow is split evenly
among links (S,X) and (S,Z).

1.1 Problem Definition

The weight setting problem (WSP) consists in assigning the link weights in order to
optimize an objective function that models some network performance metric. The
problem is part of a wider area, called Traffic Engineering, responsible for managing
the resources of the network to satisfy the user demands. It was proven to be NP-hard
in [Fortz and Thorup, 2000].

WSP was modeled by Fortz and Thorup [2000] as follows. Given a directed graph
G = (N,A), where N is a set of nodes that represent the routers, and A is a set of
arcs that represent the links. The capacity of each link a ∈ A is denoted by ca ∈ N,
and d is a demand matrix, where each element dij ∈ N tells how much traffic flows
from i ∈ N to j ∈ N . The decision variables wa ∈ {1, . . . , 65535} are the weights
assigned to each link a ∈ A, and the objective function aims to minimize the function
Φ that models the network congestion. Given the weight of each link a ∈ A, let la be
the resulting amount of flow passing through arc a, and φa(la) be the monotonically
increasing piecewise linear convex function that models the congestion of a, where
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S T

X

Y

Z

1

1 1

1

1 Path Length Flow (Mb)

(S → X → T ) 2 10
(S → Z → Y → T ) 3 0

(a) In this example, all link weights are set to 1. The shortest path between S and T is (S → X → T ). Thus,
all traffic is sent through it.

1

S T

X

Y

Z

2

1

1

1 Path Length Flow (Mb)

(S → X → T ) 3 5
(S → Z → Y → T ) 3 5

(b) In this example, the weight of link S → T is set to 2, and there are two shortest paths. Therefore, the
traffic is split among them.

Figure 1.2: Example of OSPF routing, and the ECMP rule

ua = la
ca

is the utilization ratio of the link a. The Equation 1.1 shows the derivative
φ′a(la) of the function φa(la). The objective function Φ is defined as the sum of φa for
all arcs a ∈ A, as shown on Equation 1.2. A graphic representation of φa is given in
Figure 1.3. The more the flow of an arc is close to its capacity, the more expensive it
is to add flow to it. We note that in this model the amount of flow la of the arc a ∈ A
can be larger than its capacity ca. However, in this case the congestion cost of a is
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exponentially large.

φ′a(la) =



1 for 0 ≤ la
ca

< 1/3

3 for 1/3 ≤ la
ca

< 2/3

10 for 2/3 ≤ la
ca

< 9/10

70 for 9/10 ≤ la
ca

< 1

500 for 1 ≤ la
ca

< 11/10

5000 for 11/10 ≤ la
ca

(1.1)

Φ =
∑
a∈A

φa(la) (1.2)
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Figure 1.3: Cost function φa for arcs with capacity ca = 1

There are several objective functions that can be used for Traffic Engineering.
Balon et al. [2006] compared and evaluated nine objectives found in the literature,
and concluded that, despite each objective have its own pros and cons, the objective
function used by Fortz and Thorup [2000] performs well in all scenarios. Therefore, in
this work we focus on the problem as modeled by Fortz and Thorup [2000], in which
the function Φ is used as the objective function.

The works [Fortz and Thorup, 2000; Pióro et al., 2002; Ericsson et al., 2002; Buriol
et al., 2005; Reis et al., 2011] assume that a single static demand matrix is available.
However, the traffic on computer networks may significantly vary in different periods
of time. Unfortunately, it is not practical for the network operator to manually change
the weights of the links each time a significant variation in traffic occurs, because this
might disrupt the consistency and dependability of network operations. These factors
motivated the development of models for OSPF weight setting that deal with traffic
uncertainties [Fortz and Thorup, 2002; Mulyana and Killat, 2005; Abrahamsson and
Bjorkman, 2009; Altın et al., 2010; Altin et al., 2012].
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The most prominent of these works are those of Fortz and Thorup [2002] and
Altin et al. [2012]. They assume that the uncertainty in the network traffic can be
approximated by a set R of demand matrices, with each matrix representing a possible
scenario of traffic. Given the weight of each link a ∈ A, let Φr be the cost of Φ for
the demand matrix r ∈ R. The objective function used in these works consists in
minimizing the sum of Φr for all demand matrices in R, i.e. ΦS = min

∑
r∈R

Φr. This is

equivalent to minimize the average of Φr, for all r ∈ R, as the number of matrices in
R is fixed.

In this dissertation, we propose a new approach for the OSPF weight setting
problem that also uses a set of demand matrices (traffic scenarios) to model the un-
certainty in the network traffic. However, instead of minimizing the average value of
Φr, as is the case of [Altin et al., 2012; Fortz and Thorup, 2002], in our approach each
scenario is considered individually. We argue that, the user experiences each scenario
individually. Therefore, a solution that is good on average may sometimes result in a
bad quality-of-service from the user point of view, during some of the scenarios.

We propose three new optimization models for weight setting in OSPF networks
based on Robust Optimization. First, we propose a minmax model that minimizes
the congestion cost of the most congested scenario. Next, as the latter is generally
considered a conservative approach, we propose a minmax regret and a minmax relative
regret model that minimize, for each scenario, the regret of using the given weight
setting, instead of the optimal weight setting, for that scenario. As finding the cost
of the optimal weight setting for one scenario is NP-Hard, our approach uses the well
known lower bound to this cost proposed in [Fortz and Thorup, 2000]. As far as we
know, this is the first work in the literature that uses this approach in order to deal
with robust optimization problems with discrete sets of scenarios, where the classic
optimization counterpart is NP-Hard.

To solve the proposed models, we extend, evaluate, and compare the best algo-
rithms for the OSPF weight setting problem in the literature. The first algorithm is
the tabu search of Fortz and Thorup [2000], and the second is the genetic algorithm of
Buriol et al. [2005]. Both approaches are extended for each of the three models. Com-
putational experiments, performed on realistic and artificial instances, show that our
approach is able to reduce the congestion regret of Fortz and Thorup [2002] by 25%,
while increasing the average congestion by only 0.72%, indicating that our approach
may be a better alternative for weight setting in OSPF networks.

The remainder of this text is organized as follows. Chapter 2 reviews relevant
works related to Traffic Engineering and Robust Optimization. Then, Chapter 3
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presents the models proposed in this work and the algorithms used to solve them.
Next, the computational experiments are presented in Chapter 4, and concluding re-
marks are drawn in the last chapter.



Chapter 2

Related works

Before the work of Fortz and Thorup [2000], the common approach to OSPF weight
setting was to set the weight of a link to a value inversely proportional to its capacity,
as recommended by the router manufacturer Cisco. Thereafter, there have been many
works in the literature related to this problem. In this chapter, we review some of these
papers that are related to this dissertation.

In Section 2.1, we review the works that deal with the OSPF weight setting prob-
lem and a single demand matrix. As WSP is NP-Hard, the most important methods to
solve it are based on heuristics. The works [Fortz and Thorup, 2000; Fortz and Ümit,
2011] use tabu search based algorithms, while [Ericsson et al., 2002; Buriol et al., 2005;
Reis et al., 2011] use genetic algorithms. Besides, a simulated annealing heuristic is
proposed in [Pióro et al., 2002]. Other methods are also proposed, such as the La-
grangian relaxation of Pióro et al. [2002]; Srivastava et al. [2005] and the branch and
cut of Parmar et al. [2006]. In addition, Fortz et al. [2003] and Broström and Holmberg
[2006] studied a variant of WSP that seeks routes that perform well in the case of link
failures.

In Section 2.2, we review works that tackled variants of the problem that aim at
obtaining networks capable of dealing with uncertainty in the traffic demands. [Fortz
and Thorup, 2002; Altin et al., 2012] focus on obtaining routes that minimize the av-
erage network congestion, while Mulyana and Killat [2005] try to obtain routes that
minimize the link utilization ratio. Besides, Abrahamsson and Bjorkman [2009] seek
routes that maximize the spare capacity on the links, in order to allow a future in-
creasing in traffic.

In Section 2.3, we review works that deal with uncertainty in the General Routing
Problem (GRP). The latter is a generalization of WSP that has no ECMP constraint.
This problem can be solved in polynomial time, and the works of [Altın et al., 2010;

7
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Altin et al., 2012; Buriol et al., 2005; Ericsson et al., 2002; Fortz and Thorup, 2000]
showed that the solution to this problem is a lower bound very close to the cost of the
optimal solution of WSP. Applegate and Cohen [2003, 2006] discussed the problem of
finding a good route with little information about the traffic. Ben-Ameur and Kerivin
[2005]; Tabatabaee et al. [2007] modeled the uncertainty in GRP with polyhedral de-
mands, while Zhanga et al. [2005] proposed a multi-objective approach that minimizes
both the average and the maximum link utilization.

2.1 OSPF weight setting problem

The first effort to solve WSP was made by Fortz and Thorup [2000]. They propose a
tabu search heuristic called IGP-WO. First, an initial solution is generated by assigning
random weights, within the range [0, 20], for each link. Next, two neighborhoods are
defined for the current solution x. The first, called single weight change, is defined
as any solution that can be generated by changing the weight of a single link of x.
In the second, called evenly balanced flows, they take a node s that has flow going
to target t, and set the weights of the arcs (s, u) ∈ A in such a way that there is
one shortest path from s to t, passing through u, for each neighbor u of s. Initially,
δ = 20% of the neighbors are evaluated at each iteration. Whenever a better solution
is found on this restricted neighborhood of the current solution, δ is divided by 3, and
the current solution is updated. If no improving neighbor is found, the value of δ is
doubled, and the search continues from the best of the neighbors. A hash table is used
to avoid cycling. This procedure also makes use of a perturbation procedure. After
300 iterations without improving the current solution, the weight of 10% of the arcs
are randomly changed. The procedure stops after 5000 iterations. The results of this
heuristic were improved by Fortz and Ümit [2011]. They used a different heuristic
to provide the initial solution for the tabu search. The latter consists in solving the
General Routing Problem for the same instance with a column generation algorithm.
Then, the weight of each links is set to the value of the respective dual variable in the
optimal solution of the column generation.

Pióro et al. [2002] presented a mixed-integer linear programming formulation
for the variant that aims at minimizing the maximum utilization, and proposed four
different methods to solve it. The first is a local search, called weights’ adjustment. The
main idea for the procedure is to increase the weight of overloaded links, and decrease
the weight of underloaded links. The second method is based on Simulated Annealing
[Johnson et al., 1989], where a neighbor is defined as any solution (weight setting) that
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can be generated by increasing or decreasing the weight of a single link in the current
solution. The third uses Lagrangian relaxation [Geoffrion, 1974], and solve the dual of
the GRP to obtain solutions, with the objective of maximizing the residual capacity.
The fourth is a two-phase algorithm. On the first phase it tries to find routes for each
demand, and on the second phase it tries to find a weight setting that induces these
routes. Computational experiments showed that the weights’ adjustment heuristic is
better for small networks, while the two-phase algorithm is better for bigger networks.

Parmar et al. [2006] used the formulation proposed in [Pióro et al., 2002], and
proposed heuristics to obtain feasible initial solutions, and a branch and cut algorithm
to solve the problem at optimality. The latter was able to reduce the average optimality
gap of CPLEX from 35% to 5% on small instances with up to 15 nodes. However,
optimal solutions are obtained for only 7 out of the 18 instances tested.

Srivastava et al. [2005] tackled three variants of the problem that differ from each
other by their objective functions: minimization of the overall congestion, minimization
of the maximum link utilization, and a combination of both. Two scaling factors are
used to prioritize one function over another. They use a Lagrangian relaxation based
dual method to find solutions. The authors evaluate the quality of the solutions in
terms of maximum utilization, fraction of used capacity, number of overloaded links,
fraction of required extra capacity (when infeasible), and overall congestion (modeled
by function Φ). They conclude that the composite objective function performs well
for the various measures, and can be adjusted to satisfy the objective of the network
administrator.

Ericsson et al. [2002] used a Biased Random Key Genetic Algorithm (BRKGA) to
solve the OSPF weight setting problem, named GAOSPF. An individual is represented
by a vector of weights w = {wa ∈ [1, wmax] : a ∈ A}, where wmax is set to 20. The
initial population is generated by choosing a random weight for each arc a ∈ A. The
fitness function used is Φ. According to the fitness of all individuals, they are separated
in sets A, B and C. The best solutions are kept in A, the worst in C, and the rest in B.
The next generation is created as follows. First, all individuals in A are copied to the
next generation. Next, each individual in set B is replaced by the result of a crossover
between two individuals: one from set A and the other from B ∪ C. Then the set C
is replaced by new randomly generated solutions. With this algorithm, they found
solutions as good as those of [Fortz and Thorup, 2000] in most of the topologies, but
were unable to find good solutions for random graphs. They argued that the maximum
running time set was not long enough to GAOSPF converge to good solutions for these
instances.
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Buriol et al. [2005] implemented a hybrid genetic algorithm (HGA) to improve
GAOSPF. They perform a local search on each individual after the crossover operation.
The local search selects the five most congested arcs, and increase their weights, by
one unit at a time, to the limit of wmax−wa

4
. They were able to obtain better results

in comparison to GAOSPF, and achieved solutions competitive with those of the tabu
search of [Fortz and Thorup, 2000].

2.2 Uncertain demands

Fortz and Thorup [2002] proposed an optimization model for OSPF weight setting,
where the congestion of the network was optimized for a set of demand matrices,
representing different scenarios of traffic. They aim at finding a single arrangement of
weights that generate routes that are good for the demand matrices on average. Given
a set of demand matrices (scenarios of traffic) R, let Φr be the cost of the solution for
a demand matrix r ∈ R. The objective function is to minimize the sum of Φr for all
demand matrices in R, as shown on Equation 2.1.This is equivalent to minimizing the
average of Φr, for all r ∈ R, as the number of matrices in R is fixed. They proposed
an extension of the IGO-WO heuristic to solve this variant of WSP. Here, we refer to
this heuristic as IGP-AVE. The latter is equal to IGP-WO, except for the objective
function, that minimizes the sum of the network congestion.

min
∑
r∈R

Φr (2.1)

Mulyana and Killat [2005] considered a model based on outbound traffic con-
straints, where, instead of using a demand matrix, they calculate the load based on the
maximum amount of traffic originating from each node. The objective is to minimize
the maximum utilization. They solve the model with an heuristic approach based on
simulated annealing.

Abrahamsson and Bjorkman [2009] also tackled the uncertainty on the demands,
by defining a cost function that increases faster when the link flow exceeds 80% of its
capacity. They argue that the 20% spare capacity may be enough to handle future
variations in the traffic. The authors apply a tabu search based on the one presented
on [Fortz and Thorup, 2000].

Altın et al. [2010] used a different approach to tackle the uncertainty on OSPF
routing. The variation in the demands is modeled by a set of linear inequalities, with a
lower and an upper bound for each demand, forming a polyhedronD, that contains each
demand matrix r. Given a solution x, they propose a metric, called performance ratio,
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that consists of the ratio between (i) the maximum utilization of x on the worst scenario
of traffic and (ii) the least maximum utilization for that scenario. The objective is to
find the weight setting that has the minimum performance ratio. They propose a flow
formulation and a tree formulation, and solve them using a branch and price algorithm.
Computational experiments showed that the algorithm does not find optimal solutions
within 2 hours of running time for 25 out of 44 instances for the tree formulation, and
for 27 out of 44 instances for the flow formulation. Besides, the performance gets worse
as the networks get larger.

In [Altin et al., 2012], the authors proposed an heuristic for the OSPF weight
setting problem with polyhedral demands. Differently from [Altın et al., 2010], the
objective function is the same as [Fortz and Thorup, 2002], that is, to minimize the
sum of Φr for all demand matrices in D. As the number of demand matrices in D grows
exponentially with the number of nodes, they propose an iterative two-step heuristic to
solve this problem. It starts with a set D̃ with a single demand matrix from D. Next,
at each iteration, the procedure samples a new demand matrix from D, and then runs
the IGP-WO heuristic of [Fortz and Thorup, 2002] to optimize D̃. The procedure stops
after 50 iterations. The routes given by the heuristic are compared to routes obtained
for the general routing problem with uncertain demands. The authors conclude that
it is possible to achieve routes on OSPF comparable to unconstrained routing.

2.3 General routing problem

The general routing problem is a generalization of the OSPF weight setting problem
that has no ECMP constraint, i.e. the traffic does not need to be split evenly among
outgoing links within shortest paths with the same length. As this problem is similar
to WSP, we review below the works that deal with uncertainty for GRP.

Balon et al. [2006] compared nine versions of GRP that differ from each other by
the objective functions. The Fortz objective [Fortz and Thorup, 2000] minimizes the
convex piecewise linear function Φ. The MIRA objective maximizes the max flow on
the network. The idea is to obtain a network that has a better chance of sending more
traffic without exceeding the capacity of the links. The Blanchy objective function is∑

a∈A

(ua − umean)2 + β
∑
a∈A

(ua)
2,

where umean is the average link utilization of the network, and β is a parameter that
allows to give more importance to one or another part of the function. The former tries
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to provide load balancing, and the latter to reduce the network cost by decreasing the
size of the shortest paths. The MeanDelay objective minimizes

∑
a∈A

1

ca − la
,

and the weighted version, WMeanDelay, minimizes

∑
a∈A

la
ca − la

.

Both functions aim at reducing the overall load on the network. The InvCap objective
minimizes the total utilization, i.e.,

∑
a∈A

ua. The umax objective minimizes the maximum

utilization. The MinHop objective minimizes the total load, i.e.,
∑
a∈A

la. Finally, the

objective Degrande is a weighted sum of umax and InvCap. The authors solve the
problem to optimality for each objective function, using instances with real and artificial
networks. The objectives are compared for 6 metrics. The computation results showed
that Delay, Degrande and Fortz are the best objectives to satisfy the requirements of
traffic engineering. Among these, the most used in the literature is Fortz. Therefore,
we focus our work on this objective function. The GRP is formulated as a Linear
Programming problem as follows [Fortz and Thorup, 2000].

min Φ =
∑
a∈A

φa(la) (2.2)

subject to
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∑
x:(x,y)∈A

f
(s,t)
(x,y) −

∑
z:(y,z)∈A

f
(s,t)
(y,z) =


−ds,t if y = s,

ds,t if y = t,

0 otherwise

x, y, s, t ∈ N (2.3)

la =
∑

(s,t)∈NxN

f (s,t)
a a ∈ A (2.4)

φa(la) ≥ la a ∈ A (2.5)

φa(la) ≥ 3la −
2

3
ca, a ∈ A (2.6)

φa(la) ≥ 10la −
16

3
ca, a ∈ A (2.7)

φa(la) ≥ 70la −
178

3
ca, a ∈ A (2.8)

φa(la) ≥ 500la −
1468

3
ca, a ∈ A (2.9)

φa(la) ≥ 5000la −
16318

3
ca, a ∈ A (2.10)

f (s,t)
a ≥ 0 a ∈ A; s, t ∈ N (2.11)

The objective function (2.2) minimizes the total congestion, calculated as the sum
of the congestion of each link of the network. Constraints (2.3) are the flow conservation
constraints, that guarantee that the demands for each pair (s, t) are satisfied. The load
on the links is calculated by constraints (2.4). Constraints (2.5) to (2.10) define the
cost function φa(la). The optimal solution of this formulation is used as a lower bound
to OSPF routing in [Fortz and Thorup, 2000; Ericsson et al., 2002; Buriol et al., 2005;
Reis et al., 2011; Fortz and Ümit, 2011].

There are many variants of the general routing problem that deal with uncertain
demands [Applegate and Cohen, 2003, 2006; Tabatabaee et al., 2007; Ben-Ameur and
Kerivin, 2005; Zhanga et al., 2005; Belotti and Mustafa, 2008]. The most important
are reviewed below.

Applegate and Cohen [2003, 2006] studied the problem with little information on
the demands. They assume that the traffic is proportional to the link capacity, and
derive a traffic matrix. From that traffic matrix, they create others, with traffic varying
within an arbitrary range. The idea is that the routing must be good for all traffic
matrices inside that range. The objective, which is also used in [Altın et al., 2010], is
to minimize the maximum performance ratio over all traffic matrices.

Ben-Ameur and Kerivin [2005] modeled the uncertainties on the demands as a
polyhedron, as in [Altin et al., 2012]. The objective is to minimize the congestion on
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the network, considering the congestion as the sum of the flow in all arcs multiplied by
the routing cost of the arc, which is the Euclidean distance between end nodes of the
arc. The authors solve the model with a linear programming solver.

Zhanga et al. [2005] applied a multi-objective framework in order to balance the
average case and the worst case scenarios. They consider a set of traffic matrices,
representing the peak demands of six consecutive hours. They use two objectives. The
first is a weighted sum of the average link cost (PD) and the maximum link cost (FD),
i.e., (1 − β)PD + βFD, where the cost of a link is denoted by la

ca−la . The second is a
weighted sum of the average network cost (PA) and the maximum network cost (FD),
i.e., (1−β)PA +βFA, where the network cost is the sum of the link costs. The authors
tackled the general routing problem and the OSPF weight setting problem, and solve
them with linear programming and local search, respectively. For the general routing
problem, they were able to achieve up to 15% of improvement on the worst case, with
a reduction of only 3% on the average case. No improvement was observed for the
OSPF weight setting problem.

Tabatabaee et al. [2007] also used a polyhedral representation of the demands.
They use two kinds of constraints to form the polyhedron, named Pipe and Hose model
constraints. On the Pipe model, each demand is represented by an upper bound. On
the Hose model, there is an upper bound for the total amount of traffic emanating
from each node, and another upper bound for the traffic received by each node. The
objective is to minimize the maximum utilization for all traffic matrices inside the
polyhedron. The authors formulate a linear programming problem, and solve it with
a column generation algorithm. They test the Pipe and Hose model constraints, and
also test the possibility of link failures on the network.

The Table 2.1 presents a summary of the related works described above. The
first column shows the reference to the work. The second column displays the objective
function of the optimization model used. The last column shows the method used to
solve the problem.

Further details about intra-domain routing, shortest path routing protocols, and
the general routing problem can be found in the surveys [Pióro and Medhi, 2004; Bley
et al., 2010; Fortz, 2011; Altın et al., 2009].
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Work Objective (minimize) Method

OSPF

Fortz and Thorup [2000] congestion Local search

Pióro et al. [2002] overloaded links
average link overload
exceeded capacity
congestion

Local search
Lagrangian relaxation
Simulated annealing
Two-phase algorithm

Ericsson et al. [2002] congestion Genetic algorithm

Buriol et al. [2005] congestion Genetic algorithm

Srivastava et al. [2005] congestion
maximum utilization

Lagrangian relaxation

Parmar et al. [2006] maximum utilization Branch and cut

Fortz [2011] congestion Local search

OSPF + Link failure

Fortz et al. [2003] congestion Local search

Broström and Holmberg [2006] disturbance after failure Column generation

OSPF + Uncertainty

Fortz and Thorup [2002] congestion Local search

Mulyana and Killat [2005] maximum utilization Simulated annealing

Abrahamsson and Bjorkman
[2009]

maximum utilization Local search

Altın et al. [2010] performance ratio Branch and price

Altin et al. [2012] congestion Local search

GRP + Uncertainty

Applegate and Cohen [2003, 2006] maximum utilization
performance ratio

Linear programming

Ben-Ameur and Kerivin [2005] congestion Linear programming

Zhanga et al. [2005] maximum utilization
congestion

Linear programming
Local search

Tabatabaee et al. [2007] maximum utilization Linear programming

Table 2.1: Summary of the related works.





Chapter 3

Robust optimization approach

In this chapter, we propose three robust optimization models for the OSPF weight
setting problem. Here, the term Robust Optimization (RO) refers to the framework
discussed in [Kouvelis and Yu, 1997], and must not be confused with robustness to link
failures, and polyhedral demand uncertainty.

There are three common approaches to deal with uncertainty on decision making.
The first is to estimate the data, and assume that a given scenario is expected in the
future. Thereafter, the problem can be solved as a regular deterministic problem.
Naturally, this method has the disadvantage of having to forecast the future, which,
depending on the problem, can be challenging. Also, it is only suitable when the
decision maker is interested only in the most likely scenario, and not in the whole set
of possible scenarios.

Another approach, is to use Stochastic Programming, where the uncertainty is
modeled by a set of random variables with a known probability distribution. The model
is solved based on the expected outcome of the variables. Differently from the previous,
this method recognizes the possibility of multiple scenarios in the future. However, it
also relies on estimating the data, as the probabilities have to be known in advance.

Robust Optimization [Kouvelis and Yu, 1997] is a way to deal with uncertainty
in decision making, where the variability of the data is represented by deterministic
values. It is specially useful for when the decision maker is interested on the outcome
of all potential scenarios, and not only the expected or the most likely to happen. This
situation is common when the decision has to be made once, and cannot be changed
easily, or when the decision maker does not want to assume the risk of under-performing
for some scenarios.

The OSPF weight setting problem fits into both categories. The weights cannot
be changed frequently, as it could disrupt the consistency and dependability of the

17
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network. Furthermore, it may not be interesting for the network to have a low average
congestion, with a high congestion in some specific scenarios, since the user experiences
each scenario individually.

One of the first works on robust optimization was [Soyster, 1973], but only in the
late 90s that the term robust optimization was consolidated by the works of [Ben-Tal
and Nemirovski, 1998, 1999; El Ghaoui and Lebret, 1997; El Ghaoui et al., 1998; Kou-
velis and Yu, 1997]. Many classic problems have robust versions, such as the shortest
path problem [Coco et al., 2014], the minimum spanning tree problem, knapsack prob-
lem, resource allocation problem and the assignment problem [Kasperski et al., 2005].
Recent works have shown that robust optimization has been successfully used in many
optimization problems [Gabrel et al., 2013]. We refer to the book [Kouvelis and Yu,
1997] for an overview on robust optimization and related problems.

The robust optimization framework presented on [Kouvelis and Yu, 1997] defines
three critical steps to build a robust model. The first is the structuring the uncertain
data. The most common approaches use a discrete set of scenarios, each one with a
single value for each parameter, or an interval of values for each parameter, which leads
to an infinite number of scenarios. The second step is to choose the appropriate robust
criterion. [Kouvelis and Yu, 1997] highlight the minmax (or absolute robust), minmax
regret (or robust deviation) and minmax relative regret (or relative robustness). The
third and last step is to join the previous steps in a complete robust model. Given
the robust model, a solution is said to be robust if it has the smallest value for the
robust criterion, among all feasible solutions. A robust optimization problem consists
in finding a robust solution for a given robust model.

In this work, we focus on robust optimization models where the uncertainty is
modeled by a set of discrete scenarios. The scenarios can be retrieved by capturing
snapshots of the network traffic in different moments of time. The optimization criteria
for robust optimization determine how conservative is the robust model [Kouvelis and
Yu, 1997]. Our models differ from each other by the robust optimization criteria used
in the objective function. We use three criteria on our models: minmax, minmax regret
and minmax relative regret.

Let R be the set of scenarios for a given problem, and X be the set of feasible
solutions for this problem. Let also xr be the cost of solution x for the scenario r. The
minmax criterion is defined as

min
x∈X

max
r∈R
{xr}, (3.1)

i.e., the robust solution is the one that minimizes the maximum value of xr over all
scenarios.
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Given R, X, and xr as defined above, the regret of a solution x ∈ X for a scenario
r ∈ R is defined as the difference between xr and the cost x∗r of the optimal solution
x∗r for the scenario r, i.e. the regret of using x instead of x∗r if scenario r occurs. The
minmax regret criterion is defined as

min
x∈X

max
r∈R
{xr − x∗r}, (3.2)

i.e., the robust solution is the one that minimizes the maximum regret over all scenarios.

Analogously, the relative regret of a solution x ∈ X for a scenario r ∈ R is the
regret of using x instead of x∗r relative to xr, i.e. (xr − x∗r)/x∗r. The minmax relative
regret criterion is

min
x∈X

max
r∈R
{xr − x

∗
r

x∗r
}. (3.3)

The relative regret may be a better metric than regret, because in the former the
regret is normalized by the value of x∗r, which can be very different for each scenario.
For instance, let two solutions x′ and x′′, as well as two scenarios r′ and r′′ such that
x′r′ = 11, x∗r′ = 1, x′′r′′ = 100, and x∗r′′ = 90. The regret of x′ in r′ (11− 1 = 10) is the
same as that of x′′ in r′′ (100 − 90 = 10). However, one can see that the cost of x′ in
r′ is tenfold that of x∗r′ , while the cost of x′′ in r′′ is only 11% larger than that of x∗r′′ .

3.1 Robust optimization models

The robust models for OSPF are defined as follows. As in [Fortz and Thorup, 2002],
we are given a directed graph G = (N,A), where N is a set of nodes that represent
the routers, and A is a set of arcs that represent the links. The capacity of each link
a ∈ A is denoted by ca ∈ N, and R is a set of demand matrices, where each element
drij ≥ 0 tells how much traffic flow is sent from i ∈ N to j ∈ N in the demand matrix
(scenario) r ∈ R. The decision variables wa ∈ {1, . . . , 65535} are the weights assigned
to each link a ∈ A.

The minmax OSPF weight setting problem aims at finding a set of weights that
minimizes the congestion in the most congested scenario. The network congestion is
modeled with the cost function Φ (Equation 1.1). Let Φr(x) be the cost of a solution
x for the scenario r, the objective is defined as

min
x∈X

max
r∈R
{Φr(x)}, (3.4)

i.e., to find the solution that minimizes the maximum congestion in the network over all
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scenarios. Besides being possibly too conservative, this model might result in solutions
whose weights are over tunned to the scenario where the traffic in the network is the
largest, while the congestion in the other scenarios might be much larger than the
minimum possible congestion for that scenario. To overcome these drawbacks and to
obtain a set of weights that is good for all scenarios simultaneously, we propose two
other models for the OSPF weight setting problem.

The minmax regret OSPF weight setting problem aims at finding a set of weights
x that minimizes the maximum difference in the network congestion obtained by using
x instead of using the best set of weights for each scenario. As finding the best set of
weights for a single demand matrix is NP-Hard, we used a lower bound to this value,
proposed in [Fortz and Thorup, 2000]. This lower bound is obtained by relaxing the
constraint imposing that the traffic must be split equally between outgoing links of the
shortest paths. The resulting problem is the general routing problem, which can be
formulated as a linear programming problem and solved in polynomial time, as seen
on Section 2.3. The works of [Altın et al., 2010; Altin et al., 2012; Buriol et al., 2005;
Ericsson et al., 2002; Fortz and Thorup, 2000] showed that this lower bound is very
close to the cost of the optimal solution for the single matrix problem. Given Φr(x) as
defined above, the objective function is

min
x∈X

max
r∈R
{Φr(x)− lbr}, (3.5)

where lbr is the lower bound to the minimum congestion for the scenario r. Analogously,
the minmax relative regret OSPF, evaluates the relative deviation between the solution
and the best solution possible for each scenario. The objective function is

min
x∈X

max
r∈R
{Φr(x)− lbr

lbr
}. (3.6)

3.2 Heuristics for the robust models

To solve the three optimization problems defined above, we extended two important
heuristics used in the literature. The first is the tabu search proposed in [Fortz and
Thorup, 2000] and the second is the hybrid genetic algorithm of [Buriol et al., 2005].
We chose them because both are frequently used in the literature [Fortz and Thorup,
2000, 2002; Fortz et al., 2003; Ericsson et al., 2002; Buriol et al., 2005; Reis et al.,
2011; Altin et al., 2012], and give near-optimal solutions for the OSPF weight setting
problem.
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3.2.1 Tabu search

Algorithm 1 shows the pseudo-code of the tabu search IGP-RO. It starts with a ran-
dom solution, where each link is assigned a weight in the range [1, 20] (Line 1). The
neighborhood is any solution achievable by changing the weight of one link. The neigh-
bors are chosen by picking a random arc, and then a random weight, different from
the current one. At each iteration of the search, a percentage δ of the neighborhood
is searched (Lines 4 to 7). If an improving solution is found, δ is divided by three.
Otherwise, δ is doubled (Lines 8 to 13). The initial value of δ is 10% (Line 2), the min-
imum is 1%, and the maximum 40%. If a solution is not improved after 10 iterations, a
perturbation occurs (Lines 14 and 15). The perturbation consists in adding a random
integer between [−2, 2] to the weight of 10% of the arcs . The procedure stops after
the stopping condition is met, or when the current solution has the same cost of the
relaxed solution. To avoid evaluating the same solution more than once, and to avoid
cycling between solutions, a hash table is used to store all the solutions that have been
evaluated.

Algorithm 1 : Tabu search
1: Initialization: find an initial solution x by assigning random weights to each link
2: δ = 10%
3: Search: while stopping criterion is not met:
4: while δ of the neighborhood was not covered
5: sample neighbor
6: if neighbor was not evaluated:
7: evaluate neighbor
8: if better solution was found:
9: move to better solution
10: δ = δ/3
11: else:
12: move to solution with same cost
13: δ = δ · 2
14: if solution was not improved for 10 iterations:
15: perturb solution
16: End: return best solution found

3.2.2 Genetic Algorithm

The genetic algorithm BRKGA-RO starts with a population of 50 individuals (solu-
tions), randomly built. At each generation (iteration of the algorithm), the individuals
are separated into three groups, based on their fitness. The less the cost, the better the
fitness is. Figure 3.1 shows how the evolution takes place in the algorithm. The 20%
fittest individuals are put on group A. The 10% worst are put on group C, and the
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other 70% on group B. The individuals of the group A are maintained. The individu-
als of group C are discarded, and new random individuals are put in their places. The
individuals of group B are enrolled on a process called crossover, where new individuals
are created by mixing the individuals of group A and B ∪ C. An individual from A
and an individual from B ∪ C are selected randomly to be the parents. The weights of
each link of the new individual are chosen with a 70% probability from parent A and
30% from parent B ∪ C. The algorithm stops after reaching a time limit.

Group C

Group B

Group A

Group C

Group B

Group A

Crossover

New

Generation N Generation N+1

Individuals from A are maintained.

The crossover operation creates 
new individuals by combining 
genes from A, B and C.

Individuals from C are discarded, 
and new individuals are randomly 
created.

Figure 3.1: Evolution of the population.

As [Buriol et al., 2005], we apply a local search on each individual. This local
search consists in sorting the links in terms of link utilization, selecting the 5 most
utilized links, and raising their weights, one by one, from wa to dwa + wmax−wa

4
e. For

our algorithm, we define the most utilized links as the links in which the utilization is
the highest, taken all scenarios together.

3.2.3 Implementation Issues

The execution time bottleneck of both heuristics is the calculation of the cost of a
given solution. To obtain the cost, firstly, we must know the shortest paths between
all pair of nodes on the graph. The shortest paths can be obtained by reversing the
direction of the links and running Dijkstra’s algorithm for each target node. Then we



3.2. Heuristics for the robust models 23

must calculate the flow on the graph. This is done by computing, for each demand,
how much flow will pass on each arc. Then, the value of Φ is calculated based on the
loads of the arcs. These steps are repeated for each scenario.

To reduce this bottleneck, we use the algorithms and data structures of [Buriol
et al., 2008]. With them, at each iteration, we only need to recalculate the shortest
paths and flows for the nodes that had their shortest paths changed.

For a given solution, all shortest paths between each pair of nodes, and the flow
passing on each arc are stored. The first step is finding the set Q of nodes that had
their shortest paths affected by changing the weight wa of an arc a. The set is stored
on a Heap structure, where the key is the distance to the target. This way, we can
retrieve the most distant node of the set in constant time.

There are four situations in which Q is empty, and we can stop the procedure on
the beginning. If wa is increasing, and is not on the shortest path. If a is increasing
and is in the shortest path, but there is an alternative path to the target, we just need
to remove the path that contains a from the list of shortest paths. If wa is decreasing,
and the minimum distance between the tail node of a and the target does not change.
If wa is decreasing and a enters the shortest path, we just need to insert the path that
contains a in the list of shortest paths.

If none of the above situations occur, we insert all nodes that had their shortest
paths affected by the weight change in Q, and then run Dijkstra’s algorithm only for
this subset of nodes.

With the shortest paths, the next step is to calculate the loads on the arcs. We
already have the subset Q of affected nodes, therefore we only need to recalculate the
loads for the arcs that connect these nodes. The others will remain unaffected. This
only works if the calculus starts from the most distant node to the target, since the
load on an arc depends on the load arriving from the previous nodes. As Q is a Heap,
finding the most distant node is done in constant time.

The neighborhoods of our local searches change only one arc at a time, thus the
number of nodes that have the shortest paths modified is small, effectively improving
the performance of the algorithms.





Chapter 4

Computational experiments

In this chapter we present the computational experiments used to test the models
and algorithms presented in the previous sections. In Section 4.1 we describe the test
environment, the set of test instances and the experiments. Then, in Section 4.2 we
show the results and analyze them.

We define an approach as a combination of an optimization model and the algo-
rithm used to solve the respective optimization problem. Five approaches are evaluated
in the computational experiments. The first approach, called IGP-WO, is based on the
tabu search of [Fortz and Thorup, 2000], and the second approach, BRKGA, is based
on the genetic algorithm of [Buriol et al., 2005]. As these approaches work with a single
demand matrix model, they are run for the so called peak matrix, as suggested by Fortz
and Thorup [2002]. The peak matrix contains the maximum value of traffic for each
demand. Fortz and Thorup [2002] argue that if a weight setting is good for this matrix,
it has a good chance of being good for all scenarios. The third approach, referred here
as IGP-AVE, is based on the model of [Fortz and Thorup, 2002], that optimizes the
sum of the congestion of multiple demand matrices using a tabu search. This is the
same as optimizing the average congestion, as the number of demand matrices is fixed.
The last two approaches, IGP-RO and BRKGA-RO, are the extensions proposed in
Section 3.2 that optimize each of the three robust criteria described in the previous
chapter.

Four hypotheses are investigated in this chapter. The first is that the approaches
that optimize the peak matrix (IGP-WO and BRKGA) perform much worse than
IGP-AVE for the robust models. The second is that IGP-RO and BRKGA-RO can
perform better than IGP-AVE for the robust models, since solutions that have a good
performance on average can have a bad performance on a specific scenario. The third
hypothesis is that the performance of IGP-RO and BRKGA-RO over IGP-AVE in-
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creases as the degree of variability on the traffic increases. The fourth hypothesis is
that IGP-RO and BRKGA-RO can also provide good results for the average conges-
tion, since optimizing the worst case scenario may also optimize the average case. To
evaluate these hypotheses we execute two experiments. The first compares the ap-
proaches that use a single demand matrix (IGP-WO and BRKGA) with IGP-AVE,
that considers multiple demand matrices. The second experiment compares IGP-AVE,
that optimizes the average case, with IGP-RO and BRKGA-RO, that optimize the
robust objectives.

4.1 Environment

The experiments were carried out on a single core of a 2.4 GHz Intel Xeon, with 32
GB of RAM memory, running GNU/Linux operating system. The heuristics IGP-
WO, BRKGA, IGP-AVE, IGP-RO and BRKGA-RO were implemented from scratch
in C++ and compiled with GNU/GCC version 4.6.3. The random numbers used in
all heuristics were generated using the Mersenne Twister generator [Matsumoto and
Nishimura, 1998]. CPLEX version 12.5 was used to calculate the lower bound to the
optimal solution of each scenario.

We use the same parameters of [Fortz and Thorup, 2000] for the IGP-WO, IGP-
AVE and IGP-RO heuristics. The initial value of δ is set to 10%, wmax is set to 20, and
the stop condition is 10 minutes of running time. For the BRKGA and BRKGA-RO
heuristics, the population size is 50, partitioned into 20% for A, 10% for B and the
rest for C. The probability of one gene be inherited from A is 70%. The value of wmax

is set to 20, and the stop condition is 10 minutes of running time, as is the case of
IGP-WO, IGP-AVE and IGP-RO.

Two sets of instances were used. The first set was downloaded from SNDLib
[Orlowski et al., 2010]. There are 13 instances based on 4 realistic network topologies,
namely abilene, geant, nobel and germany. Each instance has 24 scenarios, one
for the traffic of each hour of the day. There are 5 instances respective to the abilene
network and 6 respective to the geant network, because more than one day of traffic
was available for these networks. However, there is only one instance respective to the
nobel network and another respective to the germany network, because only one day
of traffic was available for these networks.

The second set of instances, based on artificial networks, was generated using
the GT-ITM generator of [Zegura et al., 1996], also used in [Fortz and Thorup, 2000;
Ericsson et al., 2002; Buriol et al., 2005]. A total of 10 instances, named hier, were
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generated using a 2-level hierarchical topology, because it is the topology that best
represents the networks of ISPs [Fortz and Thorup, 2000]. There are two kinds of arcs
in this topology. Local arcs, that have their capacity set to 200, and long distance
arcs, that have their capacity set to 1000. We generated the demands as in [Fortz and
Thorup, 2000], which assigns more traffic between closer nodes. For each node, two
random numbers Xi, Yj ∈ [0, 1] are generated. Further, a random number Zij ∈ [0, 1]

is generated for each demand. Then, the demand dij between nodes i and j is set to

dij = α ·Xi · Yj · Zij · e−distij/2∆,

where distij is the Euclidean distance between nodes i and j, and ∆ is the maximum
Euclidean distance between any pair of nodes. The parameter α is used to generate
instances with different degrees of variability on the traffic. Let p ∈ {1, 2, ..., 10} be the
number that identifies the instance, and N (m, v) be a function that returns a random
number respecting the Gaussian distribution, with mean m, and variance v. The value
of α is given by

α = N (20, p).

Therefore, each instance has a different variance, and thus a different degree of vari-
ability on the demands.

Table 4.1 summarizes the characteristics of each instance set. The first column
gives the name of the network used. The second and third columns show respectively
the number of nodes and arcs. The number of scenarios in each instance is displayed in
the fourth column. The last column shows the number of instances for that network.

|N | |A| |R| Instances

Realistic

abilene 12 15 24 5
geant 22 36 24 6
nobel 17 26 24 1
germany 50 88 24 1

Artificial hier 20 58 24 10

Table 4.1: Characteristics of the networks used in the experiments.
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4.2 Results

In the first experiment, IGP-WO, BRKGA, and IGP-AVE are executed for 10 minutes,
and the values shown are the average of 20 runs, with different seeds for the pseudo-
random number generator. The results for minmax OSPF, minmax regret OSPF and
minmax relative regret OSPF are presented in Tables 4.2, 4.3 and 4.4, respectively.
The first column displays the name of the instance. The next three columns show the
results for IGP-WO. The second column gives the relative improvement of IGP-WO
over IGP-AVE (i.e. (IGP-AVE − IGP-WO) / IGP-AVE). The third column displays
the coefficient of variation of the executions, i.e., the standard variation divided by the
mean. The fourth columns shows the number of iterations performed by the algorithm.
The last three columns show the same values for BRKGA.

IGP-WO BRKGA
Improvement CV Iterations Improvement CV Generations

abilene1 -1.05% 0.71% 7,110.48 -0.61% 0.58% 3,971.90
abilene2 -0.31% 0.00% 6,887.76 -0.32% 0.03% 3,474.24
abilene3 -2.09% 0.77% 6,698.48 -1.81% 0.93% 3,872.76
abilene4 0.66% 0.05% 23,622.29 0.64% 0.11% 3,193.81
abilene5 -2.63% 0.54% 7,259.24 -0.54% 0.93% 3,974.43
geant1 -0.23% 0.43% 875.67 0.07% 0.36% 642.33
geant2 -0.44% 0.31% 725.71 -0.23% 0.27% 772.95
geant3 -1.82% 0.22% 781.48 -1.58% 0.30% 828.24
geant4 -0.99% 0.11% 829.95 -0.57% 0.23% 618.67
geant5 1.07% 0.33% 766.57 1.31% 0.29% 626.71
geant6 1.28% 0.35% 782.19 1.26% 0.28% 592.67
nobel -1143.49% 20.41% 1,734.19 -1198.80% 0.03% 1,680.19
germany -13.20% 77.97% 337.00 -1.22% 5.43% 38.24

hier1 0.02% 0.23% 1,126.43 -0.83% 2.34% 649.00
hier2 -0.03% 0.30% 1,162.95 -0.65% 0.95% 687.14
hier3 -0.06% 0.30% 1,146.95 -0.83% 1.40% 642.05
hier4 -0.05% 0.38% 1,429.57 -0.76% 0.65% 666.81
hier5 -0.11% 0.36% 1,105.62 -0.77% 0.88% 650.48
hier6 -0.04% 0.35% 1,180.90 -0.62% 0.77% 674.43
hier7 0.16% 0.30% 1,164.76 -0.79% 0.97% 646.71
hier8 0.03% 0.34% 1,220.00 -0.49% 0.72% 632.71
hier9 -0.04% 0.40% 1,223.19 -0.54% 1.30% 637.67
hier10 -0.18% 0.42% 1,190.95 -0.59% 0.88% 686.75

Average -50.59% 4.59% 3,059.23 -52.58% 0.90% 1,341.78

Table 4.2: Results of the algorithms of the literature for minmax OSPF

It can be observed in Table 4.2 that, for minmax OSPF, IGP-WO is better than
IGP-AVE in 6 out of the 23 instances, and BRKGA in 4 out of the 23. Apart from
instances nobel and germany, IGP-WO is at most 2.63% worse than IGP-AVE, and
BRKGA is at most 1.51%. On average, IGP-WO is 50.59% worse than IGP-AVE, and
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BRKGA is 52.58% worse. Comparing IGP-WO and BRKGA, IGP-WO have better
results on 14 of 23 instances. Therefore, IGP-AVE is the best choice between the
three algorithms for minmax OSPF. It performs better because it considers multiple
demand matrices, and not only a single peak matrix, avoiding the oversimplification of
the traffic.

IGP-WO BRKGA
Improvement CV Iterations Improvement CV Generations

abilene1 -7.23% 3.31% 7,110.48 -4.59% 2.89% 3,971.90
abilene2 -16.92% 0.00% 6,887.76 -17.17% 0.53% 3,474.24
abilene3 -682.16% 20.25% 6,698.48 -620.37% 28.02% 3,872.76
abilene4 6.58% 0.51% 23,622.29 6.38% 1.16% 3,193.81
abilene5 -72.74% 8.89% 7,259.24 -14.92% 22.49% 3,974.43
geant1 -92.75% 9.22% 875.67 -81.30% 4.94% 642.33
geant2 -138.68% 9.20% 725.71 -115.06% 9.33% 772.95
geant3 -167.46% 5.16% 781.48 -154.42% 6.00% 828.24
geant4 -73.22% 3.68% 829.95 -55.39% 4.54% 618.67
geant5 -42.98% 8.71% 766.57 -43.51% 3.03% 626.71
geant6 -19.88% 7.23% 782.19 -19.98% 5.22% 592.67
nobel -4497.36% 21.95% 1,734.19 -4717.27% 0.03% 1,680.19
germany -28.64% 261.46% 337.00 18.61% 24.41% 38.24

hier1 -41.59% 13.73% 1,126.43 -75.09% 86.22% 649.00
hier2 -29.86% 10.93% 1,162.95 -59.16% 32.32% 687.14
hier3 -28.23% 12.41% 1,146.95 -63.34% 44.29% 642.05
hier4 -22.92% 12.79% 1,429.57 -54.22% 20.46% 666.81
hier5 -11.83% 14.79% 1,105.62 -52.15% 33.81% 650.48
hier6 -6.10% 12.48% 1,180.90 -32.21% 21.23% 674.43
hier7 1.58% 11.24% 1,164.76 -40.85% 24.31% 646.71
hier8 -2.78% 10.10% 1,220.00 -34.04% 22.13% 632.71
hier9 -6.21% 10.87% 1,223.19 -31.47% 30.91% 637.67
hier10 -17.15% 13.51% 1,190.95 -30.65% 17.26% 686.75

Average -260.81% 20.97% 3,059.23 -273.57% 19.37% 1,341.78

Table 4.3: Results of the algorithms of the literature for minmax regret OSPF

The Table 4.3 shows that, for minmax regret OSPF, IGP-WO and BRKGA were,
on average, 260.81% and 273.53% worse than IGP-AVE, respectively. Both heuristics
had better results than IGP-AVE in 2 out of the 23 instances. IGP-WO was better
than BRKGA in 15 out of the 23 instances. Table 4.4 presents similar results. IGP-WO
and BRKGA are worse than IGP-AVE, and IGP-WO is slightly better than BRKGA.
Analogously to the minmax OSPF, IGP-AVE performs better on minmax regret OSPF
and minmax relative regret OSPF because it considers multiple demand matrices.

In the second experiment, we compare IGP-AVE approach, that optimizes the
average congestion, with the two approaches proposed in this dissertation, that opti-
mize each of the three robust criteria. Each algorithm was executed for 10 minutes, and
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IGP-WO BRKGA
Improvement CV Iterations Improvement CV Generations

abilene1 -24.46% 8.45% 7,110.48 -10.94% 9.59% 3,971.90
abilene2 -22.50% 0.00% 6,887.76 -22.86% 0.73% 3,474.24
abilene3 -1023.81% 10.78% 6,698.48 -987.30% 16.80% 3,872.76
abilene4 -3.34% 0.39% 23,622.29 -3.22% 0.31% 3,193.81
abilene5 -70.43% 8.76% 7,259.24 -13.41% 22.46% 3,974.43
geant1 -81.40% 8.76% 875.67 -71.24% 3.78% 642.33
geant2 -196.00% 7.54% 725.71 -176.86% 7.79% 772.95
geant3 -161.88% 5.56% 781.48 -150.67% 6.80% 828.24
geant4 -96.46% 3.03% 829.95 -89.76% 1.81% 618.67
geant5 -34.40% 8.81% 766.57 -34.95% 3.12% 626.71
geant6 -96.73% 4.50% 782.19 -96.43% 2.91% 592.67
nobel -4536.46% 22.12% 1,734.19 -4759.92% 0.03% 1,680.19
germany -18.19% 288.25% 337.00 37.69% 18.79% 38.24

hier1 -127.27% 14.66% 1,126.43 -145.13% 59.85% 649.00
hier2 -107.25% 12.55% 1,162.95 -131.42% 24.94% 687.14
hier3 -102.45% 15.21% 1,146.95 -115.53% 30.51% 642.05
hier4 -92.71% 13.83% 1,429.57 -116.08% 21.21% 666.81
hier5 -73.23% 13.61% 1,105.62 -103.66% 29.21% 650.48
hier6 -60.04% 12.94% 1,180.90 -80.54% 15.81% 674.43
hier7 -47.48% 12.75% 1,164.76 -89.91% 18.74% 646.71
hier8 -51.29% 11.11% 1,220.00 -87.44% 25.58% 632.71
hier9 -60.70% 8.74% 1,223.19 -83.78% 24.12% 637.67
hier10 -62.06% 10.33% 1,190.95 -69.94% 11.96% 686.75

Average -310.89% 21.86% 3,059.23 -321.88% 15.52% 1,341.78

Table 4.4: Results of the algorithms of the literature for minmax relative regret OSPF

the values shown are the average of 20 runs with different seeds for the pseudo-random
number generator. The results for minmax OSPF, minmax regret OSPF and minmax
relative regret OSPF are presented in Tables 4.5, 4.6 and 4.7 respectively. The first
column displays the name of the instance. The next three columns show the results
for IGP-RO. The second column gives the relative improvement of IGP-RO over IGP-
AVE (i.e. (IGP-AVE − IGP-RO) / IGP-AVE). The third column displays the coefficient
of variation of the executions, i.e., the standard variation divided by the mean. The
fourth columns shows the number of iterations performed by the algorithm. The last
three columns show the same values for BRKGA-RO.

Table 4.5 shows that IGP-RO was worse than IGP-AVE only on the germany

instance, and obtained an average improvement of 1.29% over IGP-AVE. BRKGA-RO
was better than IGP-AVE in 12 out of the 13 realistic instances, but was worse on all 10
artificial instances. The inferior performance of BRKGA-RO can be explained by the
size of the instances. Networks abilene, geant and nobel have up to 36 arcs, while
germany and hier have 58 and 88 arcs, respectively. With larger networks, the time
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IGP-RO BRKGA-RO
Improvement CV Iterations Improvement CV Generations

abilene1 0.12% 0.05% 2,686.19 0.07% 0.04% 406.24
abilene2 0.43% 0.05% 2,573.05 0.23% 0.23% 364.38
abilene3 0.29% 0.00% 2,346.62 0.29% 0.00% 391.00
abilene4 0.79% 0.27% 5,273.24 0.49% 0.38% 336.67
abilene5 0.42% 0.01% 2,744.43 0.39% 0.04% 385.10
geant1 1.16% 0.07% 199.81 1.00% 0.18% 72.29
geant2 1.06% 0.13% 250.33 1.09% 0.13% 79.76
geant3 0.17% 0.37% 182.67 0.28% 0.05% 82.10
geant4 0.87% 0.11% 285.43 0.69% 0.21% 75.10
geant5 1.57% 0.20% 217.38 1.56% 0.14% 68.81
geant6 1.88% 0.34% 229.95 1.89% 0.28% 70.57
nobel 2.83% 1.27% 893.38 2.06% 0.97% 178.10
germany -2.48% 27.92% 118.33 -15.87% 8.66% 6.00

hier1 1.37% 0.13% 464.29 -1.90% 2.18% 79.33
hier2 1.38% 0.43% 467.38 -2.02% 1.62% 76.29
hier3 1.60% 0.13% 415.29 -1.09% 1.33% 78.62
hier4 1.70% 0.31% 360.71 -1.51% 1.28% 76.05
hier5 1.95% 0.18% 370.57 -2.24% 2.24% 77.90
hier6 2.20% 0.15% 371.33 -2.12% 2.17% 78.24
hier7 2.43% 0.12% 378.38 -0.71% 1.49% 81.48
hier8 2.41% 0.67% 374.10 -0.82% 1.51% 81.48
hier9 2.74% 0.16% 370.10 -1.23% 1.46% 80.29
hier10 2.68% 0.12% 371.81 -1.76% 2.41% 81.38

Average 1.29% 1.44% 954.12 -0.92% 1.26% 143.79

Table 4.5: Results of the robust algorithms for minmax OSPF

required to calculate the cost of a solution increases. On network germany, BRKGA-
RO was able to perform only 6 generations in 10 minutes, while IGP-RO executed
about 118.33 iterations on average. Therefore, the time for BRKGA-RO to converge
to good solutions on large sized instances is much higher than that of IGP-RO.

The results for minmax regret OSPF and minmax relative regret OSPF are dis-
played in Tables 4.6 and 4.7. They show that IGP-RO was better than IGP-AVE
and BRKGA-RO for most of the instances. IGP-RO had an average improvement of
24.93% over IGP-AVE on minmax regret OSPF, and 16.10% on minmax relative regret
OSPF. Again, BRKGA-RO had worse results than IGP-RO for larger networks.

Figure 4.1 shows the improvement of IGP-RO over IGP-AVE on the 10 instances
with artificial networks. Recall that each of these instances have a different level of
variation on the traffic, with 1 being the most uniform, and 10 being the most varied.
For minmax OSPF the improvement starts in 1.37% and goes up to 2.74% on the ninth
instance. For minmax regret OSPF, the impact of the variation of the traffic on the
improvement is more clear. On instance 1 it is 39.31%, and reaches 57.21% toward
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IGP-RO BRKGA-RO
Improvement CV Iterations Improvement CV Generations

abilene1 0.94% 0.26% 2,705.62 0.46% 1.13% 398.52
abilene2 9.56% 4.75% 2,552.67 2.42% 5.85% 383.14
abilene3 0.00% 0.00% 2,226.71 0.00% 0.00% 393.90
abilene4 8.51% 0.92% 3,981.14 2.34% 3.49% 342.24
abilene5 11.56% 0.21% 2,743.19 10.82% 1.35% 388.24
geant1 -2.32% 9.36% 194.10 0.19% 11.20% 74.52
geant2 -4.55% 15.59% 246.57 -10.83% 13.37% 77.43
geant3 -9.34% 18.87% 186.00 -10.05% 8.14% 84.38
geant4 7.75% 11.72% 271.29 7.47% 7.28% 71.57
geant5 -0.30% 11.07% 208.62 6.90% 6.91% 69.29
geant6 21.85% 17.63% 206.24 32.21% 6.71% 71.81
nobel 35.11% 8.91% 1,603.00 24.89% 16.87% 180.62
germany 0.81% 119.00% 117.00 -42.62% 25.81% 6.05

hier1 39.31% 23.70% 420.67 -286.41% 35.86% 78.05
hier2 41.78% 13.25% 428.90 -319.41% 60.08% 76.19
hier3 48.43% 11.78% 423.95 -188.94% 49.85% 80.43
hier4 45.73% 15.18% 425.29 -177.82% 41.20% 76.86
hier5 49.72% 12.49% 427.43 -186.88% 44.62% 79.19
hier6 51.79% 11.71% 438.29 -157.23% 41.83% 77.67
hier7 53.56% 10.27% 415.90 -106.16% 34.03% 81.05
hier8 56.07% 9.43% 449.05 -106.59% 35.09% 79.00
hier9 57.21% 8.61% 437.67 -117.80% 44.48% 81.57
hier10 50.15% 11.94% 446.43 -129.51% 38.43% 81.71

Average 24.93% 15.07% 937.20 -76.20% 23.20% 144.93

Table 4.6: Results of the robust algorithms for minmax regret OSPF

the last instances. The same is seen on minmax relative regret OSPF. It starts with
24.03% of improvement, and reaches 43.89%. This happens because, as the level of
variation increases, the regret of the solutions also increase. Therefore, the approaches
that optimize the regret perform better.

The last analysis is presented on Table 4.8, comparing IGP-WO, BRKGA, IGP-
RO and IGP-AVE for the average network congestion objective, used in [Fortz and
Thorup, 2002]. The first column shows the instance. The second and third columns
show the improvement on the network congestion of IGP-WO and BRKGA over IGP-
AVE. The next three columns show the improvement on the network congestion of
IGP-RO over IGP-AVE using the minmax, minmax regret and minmax relative regret
objectives, respectively. Using a minmax objective results in the biggest average loss, of
1.55%. This corroborate with the fact that minmax is the most conservative objective.
Comparing with Tables 4.5, 4.6 and 4.7, usingminmax OSPF results in an improvement
of 1.29% on its objective, while reducing 1.55% on the total congestion objective. On
the other hand, with minmax regret OSPF, the loss is on average 0.72%, but the
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IGP-RO BRKGA-RO
Improvement CV Iterations Improvement CV Generations

abilene1 1.54% 0.25% 2,682.43 0.88% 0.24% 413.86
abilene2 12.14% 1.86% 2,517.81 -0.83% 6.43% 392.67
abilene3 0.00% 0.00% 2,207.38 0.00% 0.00% 390.10
abilene4 1.72% 0.38% 2,865.76 0.00% 1.23% 351.86
abilene5 5.14% 0.61% 2,866.62 4.76% 1.88% 399.67
geant1 23.88% 11.37% 212.24 20.84% 7.05% 74.95
geant2 -20.57% 24.78% 255.00 -20.57% 16.87% 80.00
geant3 0.22% 22.71% 188.95 7.85% 10.79% 80.48
geant4 14.27% 18.06% 268.71 12.68% 10.20% 78.38
geant5 21.61% 13.93% 202.52 32.19% 4.06% 70.86
geant6 3.27% 15.03% 214.05 8.77% 4.03% 70.71
nobel 35.24% 7.79% 2,790.67 27.46% 14.46% 178.90
germany -74.93% 130.57% 117.57 -49.24% 84.66% 6.00

hier1 24.03% 10.04% 415.86 -361.69% 44.00% 78.24
hier2 24.77% 12.89% 415.43 -373.11% 26.71% 74.43
hier3 31.34% 10.43% 413.10 -292.92% 48.35% 77.38
hier4 29.90% 16.36% 415.38 -212.31% 44.93% 79.52
hier5 33.87% 7.93% 418.90 -286.50% 57.67% 76.19
hier6 38.08% 12.71% 438.48 -233.05% 54.95% 79.67
hier7 42.24% 9.03% 429.67 -163.18% 48.27% 81.43
hier8 43.89% 9.57% 429.00 -204.48% 29.98% 79.48
hier9 39.13% 18.14% 430.71 -190.64% 29.09% 80.86
hier10 39.55% 9.23% 481.67 -185.21% 39.33% 114.86

Average 16.10% 15.81% 942.52 -106.88% 25.44% 148.28

Table 4.7: Results of the robust algorithms for minmax relative Regret OSPF

improvement on the regret is 24.93%. Similarly, with minmax relative regret OSPF,
the loss on the total congestion objective is 1.05%, while the improvement on the
relative regret is 16.10%. These results show that by using an objective function based
on the regret, one can sharply increase the performance of the network on the worst
cases, without losing performance on the average case.
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Figure 4.1: Improvement of IGP-RO for the artificial instances.

IGP-RO
IGP-WO BRKGA MinMax Regret Relative Regret

abilene1 -4.79% -2.67% -0.52% -0.53% -0.63%
abilene2 -1.90% -1.92% -0.85% -0.42% -0.40%
abilene3 -2.71% -2.61% -0.50% 0.00% 0.00%
abilene4 -0.44% -0.42% -0.06% -0.05% 0.09%
abilene5 -1.46% -0.63% -1.00% -1.00% -0.46%
geant1 -2.20% -1.90% -0.97% -0.42% -0.41%
geant2 -2.03% -1.79% -0.63% -0.30% -0.32%
geant3 -2.07% -1.96% -0.70% -0.25% -0.36%
geant4 -2.05% -1.57% -0.59% -0.33% -0.70%
geant5 -1.04% -0.91% -0.93% -0.37% -0.56%
geant6 -1.67% -1.68% -0.95% -0.52% -0.27%
nobel -98.02% -102.61% -1.50% -2.23% -2.47%
germany -1.89% -6.13% -6.05% -5.08% -13.54%

hier1 -1.37% -1.74% -1.81% -0.37% -0.27%
hier2 -1.41% -1.80% -1.79% -0.44% -0.28%
hier3 -1.55% -1.97% -1.99% -0.42% -0.33%
hier4 -1.60% -2.11% -1.88% -0.49% -0.40%
hier5 -1.58% -2.13% -2.18% -0.53% -0.40%
hier6 -1.72% -2.00% -2.08% -0.51% -0.44%
hier7 -1.78% -2.49% -2.06% -0.56% -0.46%
hier8 -2.02% -2.46% -2.27% -0.54% -0.42%
hier9 -2.16% -2.58% -2.12% -0.54% -0.50%
hier10 -2.26% -2.44% -2.26% -0.61% -0.54%

Average -6.08% -6.46% -1.55% -0.72% -1.05%

Table 4.8: Results of IGP-WO, BRKGA and IGP-RO for total network congestion.



Chapter 5

Conclusion

The OSPF weight setting problem consists in defining the routes of the data on a
computer network ruled by OSPF protocol, to satisfy an objective function. In this
work, we proposed three optimization models for the problem, based on the Robust
Optimization framework of [Kouvelis and Yu, 1997]. Instead of minimizing the average
network congestion as is the case of the other works in the literature, we considered
each scenario individually, since a solution that is good on average may sometimes
result in a bad quality-of-service in some of the scenarios. The minmax OSPF is the
most conservative model, while minmax regret OSPF and minmax relative regret OSPF
are less conservative.

Three approaches of the literature were applied to the robust models, on real-
istic and artificial networks. Comparing the approaches, we conclude that IGP-AVE
provides better results than IGP-WO and BRKGA, as IGP-AVE considers multiple
demand matrices instead of a peak matrix. Further, we introduced extensions of al-
gorithms of the literature, and performed computational experiments with them. The
results pointed out that the classic approach of minimizing the average congestion may
result in the network being over congested in some of the scenarios, resulting in a po-
tential bad quality of-service from the user point-of-view. With our approaches, we
are able to have networks with 24.93% less regret, while increasing in only 0.72% the
average congestion, and 16.10% less relative regret, with 1.02% increase in the average
congestion. This indicates that our optimization models may be a better alternative
for weight setting in OSPF networks.
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5.1 Future works

IGP-RO can replace IGP-WO in the iterative two-step heuristic of Altin et al. [2012], in
order to efficiently optimize an exponentially large number of scenarios. Future works
may also develop new exact or heuristic algorithms for the optimization problems
presented here, or propose new lower bounds for the cost of the optimal solutions for
these problems. Besides, the optimization models proposed here may be extended for
other IGP protocols, such as IS-IS Callon [1990] and DEFT Xu et al. [2007].
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