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Abstract

The availability of surveillance cameras placed in public locations has increased
vastly in the last years, providing a safe environment for people at the cost of huge
amount of visual data collected. Such data are mostly processed manually, a task
which is labor intensive and prone to errors. Therefore, automatic approaches must
be employed to enable the processing of the data, so that human operators only
need to reason about selected portions.

Focused on solving problems in the domain of visual surveillance, computer
vision problems applied to this domain have been developed for several years aim-
ing at finding accurate and efficient solutions, required to allow the execution of
surveillance systems in real environments. The main goal of such systems is to an-
alyze the scene focusing on the detection and recognition of suspicious activities
performed by humans in the scene, so that the security staff can pay closer atten-
tion to these preselected activities. However these systems are rarely tackled in a
scalable manner.

Before developing a full surveillance system, several problems have to be
solved first, for instance: background subtraction, person detection, tracking and re-
identification, face recognition, and action recognition. Even though each of these
problems have been researched in the past decades, they are hardly considered in a
sequence. Each one is usually solved individually. However, in a real surveillance
scenario, the aforementioned problems have to be solved in sequence considering
only videos as the input.

Aiming at the direction of evaluating approaches in more realistic scenarios,
this work proposes a framework called Smart Surveillance Framework (SSF), to al-
low researchers to implement their solutions to the above problems as a sequence of
processing modules that communicates through a shared memory.

The SSF is a C++ library built to provide important features for a surveil-
lance system, such as a automatic scene understanding, scalability, real-time oper-

ation, multi-sensor environment, usage of low cost standard components, runtime
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re-configuration, and communication control.
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Resumo

A disponibilidade de cameras de vigilancia dispostas em locais ptblicos tem au-
mentado significativamente nos tltimos anos, provendo um ambiente seguro paras
as pessoas ao custo de uma enorme quantidade de dados visuais coletada. Estes
dados sdo, em sua maioria, processados manualmente, uma tarefa que é trabalhosa
e propensa a erros. Entretanto, é desejavel que abordagens automaticas possam ser
utilizadas no processamento dos dados, de modo que os operadores humanos ne-

cessitem tomar decisdes apenas em determinados momentos.

Focados em solucionar problemas no dominio de vigilancia visual, técnicas
de visdo computacional aplicadas a este dominio tém sido desenvolvidas durante
varios anos com o objetivo de encontrar solugdes precisas e eficientes, necessarias
para permitir a execugdo de sistemas de vigildncia em ambientes reais. O principal
objetivos destes sistemas € a andlise de cenas focando na detec¢do e reconhecimento
de atividades suspeitas efetuadas por humanos, para que a equipe de seguranca
possa focar sua atengdo nestas atividades pré-selecionadas. Entretanto estes sis-
temas sdo raramente escalaveis.

Antes de desenvolver um sistema de vigilancia completo, é necessario re-
solver vérios problemas, por exemplo: remogdo de fundo, detec¢do de pessoas, ras-
treamento e re-identificacdo, reconhecimento de faces e reconhecimento de agdes.
Mesmo que cada um destes problemas tenham sido estudado nas dltimas décadas,
eles sdo dificilmente considerados como uma sequéncia. Cada um é geralmente
solucionado de forma individual. No entanto, em um ambiente real de vigilancia,
os problemas citados precisam ser solucionados em ordem, considerando apenas o
video como a entrada.

Com o objetivo de avaliar abordagens em um cenario mais realista, este tra-
balho propde um framework chamado Smart Surveillance Framework (SSF), que per-
mite os pesquisadores a implementar suas solugdes para os problemas acima citados
como uma sequéncia de médulos de processamento que se comunicam por meio de

uma memoria compartilhada.
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O SSF é uma biblioteca C++ desenvolvida para prover caracteristicas impor-
tantes a um sistema de vigilancia como: uma interpretagdo automaética das cenas,
escalabilidade, operagdes em tempo real, ambientes multi-sensores, utilizagdo de
componentes padrdes de baixo custo, reconfiguracdo em tempo de execugao e con-

trole da comunicacgéo.
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Chapter 1

Introduction

Due to the reduction in prices of cameras and the increase in network connectivity,
the number of surveillance cameras placed in several locations increased signifi-
cantly in the past few years. If on one hand, a distributed camera network provides
visual information in real time covering large areas, on the other hand, the num-
ber of images acquired in a single day can be easily in the order of billions, which
complicates the storage of all data and prevents their manual processing, posing a
problem for monitoring such areas [Porikli et al., 2013].

While the ubiquity of video surveillance is advantageous for protection since
it provides safer environments, the monitoring of such large amount of visual data
is a challenging task when performed manually by a human operator. In addition,
most of the visual data do not present interesting events from the surveillance stand-
point, turning it into a repetitive and monotonous task for humans [Hampapur,
2008; Davies and Velastin, 2007]. Hence, automatic understanding and interpre-
tation of activities performed by humans in videos present great interest because
such information can assist the decision making process of security agents [Ham-
papur, 2008]. For instance, instead of a security agent monitoring continually about
50 screens with live security video feed (tasks which humans do not present high
performance due to the lack of important events during most of the time), an auto-
mated system might perform a filtering in the videos and indicate only those video
segments that are more likely to contain interesting activities, such as suspicious
activities that might lead to a crime.

Smart visual surveillance systems deal with the real-time monitoring of objects
within an environment. The main goal of these systems is to provide automatic
interpretation of scenes and understand actions and interactions of the observed

agents based on the visual information acquired. Current research regarding these

1



2 CHAPTER 1. INTRODUCTION

automated visual surveillance systems tend to combine multiple disciplines, such
as computer vision, signal processing, telecommunications, management and socio-
ethical studies. Nevertheless, there is still a lack of contributions from the field of
system engineering to the research [Valera and Velastin, 2005].

Humans are the main focus in the surveillance since they are the agents that
perform actions that change the state of the scene. For instance, a person may in-
teract with objects in the scene to execute a task, such as the removal of an object
from a vehicle, or interact with other people to accomplish a goal, which may char-
acterize a suspicious activity. Therefore, the design of processing methods focusing
on humans is extremely important to being able to determine what is the role of
each person in the scene so that responsibilities can be attributed, for example, to

determine which subjects have been involved in a specific activity.

A sequence of problems have to be solved before one is able to analyze activi-
ties being performed in a video. Among them are the background subtraction [Pic-
cardi, 2004], pedestrian detection [Dollér et al., 2012], face recognition [Zhang and
Gao, 2009], tracking and re-identification [Bedagkar-Gala and Shah, 2014], and ac-
tion recognition [Poppe, 2010]. All these problems present several solutions in the
literature, however, they are usually treated individually, which is not suitable for
applying in to real surveillance systems where the only inputs are video feeds with-
out annotations such as in current available datasets, i.e., the evaluation of face
recognition methods is performed using already detected faces, which is not the

case in surveillance scenarios.

To allow researchers to evaluate their methods in more realistic scenarios, this
work proposes a framework called SSF!. This framework is composed of a shared
memory structure and a set of independent processing modules that communicates
through data written and read from the shared memory. One module is fed with
data provided by another module in both synchronous or asynchronous way, al-
lowing the establishment of a sequence of execution. Therefore, one can use al-
ready implemented modules to solve some of the problems and implement his/her
own module to solve a specific problem. An advantage is that modules can be im-
plemented individually without knowledge regarding the implementation details,
such as internal structures or input/output interfaces of other modules. In other
words, the only external information that a module needs to report to the frame-
work is data types it will consume and produce. Thus, the inputs and outputs of
other modules are irrelevant to it. Figure 1.1 shows how the modules are indepen-

IThe SSF is available for download at http://www.ssig.dcc.ufmg.br/ssf/
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dent of each other. The details of framework will be discussed in the next chapters.

Shared Memory

Module 01 Module 02 Module 03

Figure 1.1: The modules must know only their inputs and outputs since there is
no direct communication between modules, but only through the shared memory,
which makes the framework more flexible.

1.1 Motivation

In the last two decades, professionals of industry and researchers have dedicated
their studies to improve surveillance systems. To understand the increase of works
related to video surveillance, Huang [2014] searched the keywords video and surveil-
lance in IEEE Xplore Digital Library? and the IEEE Computer Society Digital Li-
brary>. Figure 1.2 shows a histogram of theses publications as a function of the year.
The large number of publications in the past ten years indicates that research on
surveillance video is very active.

Although visual surveillance has been subject to a huge growth, most frame-
works for developing methods and applications for this research area do not address
some problems in a comprehensive manner. Problems such as scalability and flex-
ibility, described in more details in the following chapters, were the motivation for
developing this Master’s Thesis.

The small number of frameworks that are open and focus on visual surveil-
lance usually require a steep learning curve. In addition, with the contemporary
advances in video sensors and increasing availability of network cameras allowing
the deployment of large-scale surveillance systems, distributed in a wide coverage
area, the design of smart and scalable surveillance system remains a research prob-

2http://www.ieeexplore.ieee.org/
3http://www.computer.org/csdl/
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Figure 1.2: Histogram of publications in IEEE Computer Society Library and IEEE
Xplore Digital Library whose metadata contains the keywords video and surveillance
(Adapted from [Huang, 2014]).

lem: how to design scalable video surveillance systems considering aspects related

to processing power, memory consumption and network bandwidth?

In general, when the researchers work with high-level problems, they have
to deal with a sequence of problems. These researchers present several solutions
in the literature, but in general, they treat the problems individually. Hence, to
find the best composition of such problems, they need to spend time working with
these applications first, instead of working directly with their application of inter-
est. For instance, before approaching the individual action recognition problem, the
researcher usually have to perform pedestrian detection to locate each pedestrian
in the image and, only after that, the approach for action recognition may be em-
ployed. Therefore, dealing with the problems individually does not allow to find
out what are the effects of the processing on the following steps.

It is desirable to employ an automatic mechanism to test various system com-
ponents and to enable the comparison with other methods already developed. Such
a mechanism is very important to the research community since it will facilitate
comparison and validation of algorithms usually employed in visual surveillance
applications.

Considering the aforementioned aspects, this Master’s Thesis was developed
with the objectives listed in the next section.
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1.2 Dissertation’s Goal

This work proposes a framework for a scalable video analysis able to readily inte-
grate different computer vision algorithms into a functional surveillance system of
third generation (the third generation of surveillance systems is presented in Sec-
tion 2.2.1).

The Smart Surveillance Framework (SSF) aims to bring several improvements
providing scalability and flexibility, allowing the users to focus only on their appli-
cation by treating the sequence of problems as a module set which communicates
through a shared memory.

The framework will also be an important tool for the research community,
since it makes easier to compare and evaluate algorithms used in visual surveillance

applications.

1.3 Contributions

The main contributions provided by the development of the SSF are the following;:

e A novel framework to allow the processing of large amounts of data provided

by multiple surveillance network cameras;

e A platform to compare and exchange research results in which researchers can

contribute with modules to solve specific problems;

e A framework to allow fast development of new video analysis techniques

since one can focus only on his/her specific task;

e Creation of a high-level semantic representation of the scene using data ex-

tracted by low-level modules to allow the execution of activity recognition;

o A testbed to allow further development on activity understanding since one
can focus directly on using real data, instead of annotated data that may pre-

vent the method from working on real environments;

e A scheme to allow scalable feature extraction that uses the full power of multi-

core architectures;

Another important contribution is a review of published papers in recent years

that discuss the issues and challenges involved in the deployment of modern visual
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surveillance systems, as well the discussion of similar works to the proposed frame-
work.

Finally, the SSF may also contribute to improve teaching and learning activi-
ties related to computer vision and image processing, for instance in introductory
courses, because the modularization of problems enables the identification and char-
acterization of the steps involved in diverse application domains, which help in-
structors and students in keeping their focus on specific subjects.

During the development of this work, we have produced two technical papers
which have been submitted for publication. The following list provides references

to these documents.

e Published: Nazare, A. C., Santos, C. E., Ferreira, R., and Schwartz, W. (2014).
Smart surveillance framework: A versatile tool for video analysis. In IEEE Winter
Conference on Applications of Computer Vision (WACV 2014).

o Accepted: Nazare, A. C., Ferreira, R., and Schwartz, W. (2014). Scalable Fea-
ture Extraction for Visual Surveillance. In Iberoamerican Congress on Pattern
Recognition (CIARP 2014).

In addition to these publications, a tutorial on the SSF will be presented during
the Conference on Graphics, Pattern and Images (SIBGRAPI 2014). The acceptance
of this tutorial also resulted in an invitation for publication of a survey on Revista
de Informética Tedrica e Aplicada (RITA).

1.4 Dissertation Organization

This dissertation is organized into the following chapters. Chapter 2 reviews the
published papers in the past years about the issues and challenges on visual surveil-
lance systems. Chapter 3 describes the proposed Smart Surveillance Framework
(SSF). Chapter 4 presents our experimental evaluation. Finally, Chapter 5 points

our final remarks.



Chapter 2

Related Works

Several works related to video surveillance have been proposed in the past years.
In this chapter, we review mainly works that focus on developing of visual surveil-
lance applications. First, Section 2.1 presents the most common problems tackled
in visual surveillance, as well as the relationship among these problems. In Sec-
tion 2.1, is also focus to feature extraction problem, which is approached by one of
the tools provided by the proposed framework, the Feature Extraction Server (FES),
discussed in Section 3.3. Then, Section 2.2 presents a review of published papers
in recent years that discuss the issues and challenges involved in the deployment
of modern visual surveillance systems and discusses works similar to the proposed
framework.

2.1 Visual Surveillance

Since interactions among humans provide relevant information for activity under-
standing, the analysis of images and videos involving humans (application domain
known as Looking at People (LAP) [Gavrila, 1999]) presents large interest of the
research community, being widely employed to applications such as visual surveil-
lance, biometrics and forensics. In this scope, solving computer vision problems
such as feature extraction [Li and Allinson, 2008], background subtraction [Pic-
cardi, 2004], pedestrian detection [Dolldr et al., 2012], face recognition [Zhang and
Gao, 2009], person tracking [Yilmaz et al., 2006], person re-identification [Bedagkar-
Gala and Shah, 2014], gesture recognition [Mitra and Acharya, 2007], pose estima-
tion [Poppe, 2007], action recognition [Poppe, 2010], and activity recognition [Ag-
garwal and Ryoo, 2011] is fundamental to model interactions among agents to un-

derstand high-level activities performed in a scene under surveillance.

7



8 CHAPTER 2. RELATED WORKS

According to the taxonomy described in Nazare et al. [2014], the problems
above might be divided into four groups: visual information representation, regions
of interest location, tracking and identification, and knowledge extraction, summa-
rized in Table 2.1. Figure 2.1 shows these groups and the relationship among the
problems. While modules located at the top of the diagram define low-level prob-
lems, in the sense that they present low dependency to solutions obtained by other
problems, e.g., background subtraction and pedestrian detection, modules at the
bottom comprise high level problems since they depend on the results of other prob-

lems, e.g., action and activity recognition.

Regions of Interest Locations
Image Background Pedestrian
Filtering Subtraction Detection
Tracking and Identification

I
I

I

I

|

|
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I

I
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Information
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Knowledge Extraction
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} Feature } L

} Transformation \ T T T T T T T T T T T T T T T T T T T T T T T T T T T T
I

! I .
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Knowledge Representation

Figure 2.1: Diagram illustrating the main problems considered in visual surveillance
applications, and their dependencies. Visual information is captured by the feature
extraction which feeds several modules. The results obtained by each module are
employed to perform scene analysis and understanding. Adapted from [Nazare
et al., 2014].

loAe1
onewWIO|

The arrow in the right-hand side of Figure 2.1 represents the dependencies
among the problems. For example, to solve the action recognition, one first needs to
correctly detect and track the person who is executing an action. Tasks composing
this process might be affected by errors propagated along the task chain (e.g., de-
tection errors will affect the tracking of a person, which will prevent the recognition
of the action executed by this person). Therefore, it is necessary to solve the tasks
in an accurate manner so that one will be able to solve problems presenting several
dependencies, such as the activity recognition, responsible for making inferences
regarding the activities being executed in a scene (e.g., loitering, identification of

suspicious collaborations or carjacking).
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Visual Information Representation comprehends tasks aiming at representing the
information contained in the visual data, e.g., converting pixel information to a fea-
ture space which is more robust to noise and transformations taking place in the
video. The main tasks related to this category are feature extraction and feature
space transformation. Even though it is not shown in the diagram of Figure 2.1, to
maintain the readability, the majority of the tasks depends on the feature extraction.

The goal of the Regions of Interest Location is to narrow down efficiently the
locations of the scene where information regarding activities taking place can be
extracted. A motivation for locating regions of interest is to reduce the computa-
tional cost and therefore to focus the processing power on the higher level process-
ing tasks. Among the tasks in this category are image filtering (salience detection),
background subtraction and pedestrian detection.

Once the tasks in the previous category have located the relevant regions in the
scene for each frame, the problems in the Tracking and Identification category will es-
timate their trajectories and identify the agents based on information including their
appearance or their faces. Such information will be necessary later for recognizing
which actions an agent has performed over the time, for instance.

The last category, referred to as Knowledge Extraction, deals with problems re-
sponsible for extracting high level knowledge from the scene. Therefore, once the
objects and agents have been located, identified and their trajectories have been es-
timated, their actions will be recognized so that collaborations among agents char-
acterizing suspicious activities can be recognized.

Besides the aforementioned categories, the Knowledge Representation is an im-
portant component in a surveillance system. It is responsible for building a scene
representation based on the results of each problem so that one can use such infor-
mation to make inferences and perform scene analysis.

The final stages in a surveillance system are storage and retrieval. In the past
years, many research has been done in how to store and retrieve all the obtained
surveillance information in an efficient manner, especially when it is possible to
have different data formats and types of information to retrieve [Valera and Velastin,
2005]. Among them, we can cite the works published in [Hampapur et al., 2007;
Choe et al., 2013].

The framework developed in this work has been designed to allow researchers
to tackle with the problems shown in Figure 2.1 in such a way that the results
achieved by solving these problems feed an inference system and the knowledge
can be used to understand the scene and the activities performed by the agents
(persons).
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Visual Information Representation

Since videos and images provide only pixels, this first category is respon-
sible for converting this representation to a feature space by employing

Overview a data transformation referred to as feature extraction. The resulting fea-
ture space is usually transformed due to its high dimension or need for
a more flexible representation.

Problems - Local Feature Descriptors - Feature Space Transformation

Regions of Interest Location

Problems on this category are responsible for locating the objects or re-
gions of interest aiming at reducing the search space for the problems on
the higher level categories. The main goal of the methods to solve these

Overview ] -
problems is to perform as fast and as accurately as possible so that the
algorithms in the next categories can focus only on the relevant parts of
the scene.
- Filtering Regions of Interest - Pedestrian Detection

Problems

- Background Subtraction

Tracking and Identification

Once the agents and relevant objects have been located, the algorithms
on this class are responsible for providing their identification and trajec-

Overview . - 3 :
tories in the scene based on information provided by multiple cameras
that are capturing the scene.
- Person Trackin - Face Recognition
Problems . g. .. . 5 .
- Person Re-identification - Pose Estimation

Knowledge Extraction

This category comprises problems aiming at obtaining relevant infor-
mation of the scene that will allow the security personnel to receive

Overview . . o
high level information regarding events such as suspicions activities and
agent’s intentions, which will aid in the decision making process.
- Gesture Recognition - Activity Recognition

Problems &n Y &

- Action Recognition

Table 2.1: Overview of computer vision problems applied to visual surveillance.

2.1.1 Local Feature Descriptors

The visual information contained in an image (or video) can only be accessed
through its pixels, but the direct use of pixels presents undesired effects such as
being affected by noise and illumination changes. Therefore, many general classes
of low-level descriptors have been proposed [de Siqueira et al., 2013; Nascimento
et al., 2012; Randen and Husoy, 1999; Li and Allinson, 2008; van de Sande et al.,
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2010; Mikolajczyk and Schmid, 2005; Zhang et al., 2007; Gauglitz et al., 2011] focus-
ing on different image characteristics, such as color, shape, and texture.

Local feature descriptors are used to describe local regions in the images. Two
main approaches are employed to sample these regions. The first is based on the
detection of interest points (discriminative points located usually in corners of ob-
jects detected by feature detectors [Mikolajczyk and Schmid, 2005; Li and Allinson,
2008]), and the sampling of regions around them. The second approach simply
samples local regions from the image in a uniform manner. Even though the latter
approach generates more data, it tends to miss information from regions that cannot
be captured by the feature detector. At the end, each local regions will be described
by a feature vector according to the extraction method being employed.

Feature extraction is critical for surveillance systems since several algorithms
require feature descriptors as input. However, most feature extraction algorithms
are highly time consuming and not suitable for real time applications. Researchers
have also devoted their studies to optimize the feature extraction methods. One of
the early works was proposed by Viola and Jones [2001], the integral image, an in-
termediate representation that allows faster computation of rectangle features. Dol-
lar et al. [2009] proposed linear and non-linear transformations to compute multi-
ple registered image channels, called Integral Channel Feature. Authors employed
these descriptors into their CHNFTRS detector achieving state-of-the-art results in
pedestrian detection. Based on their previous work on Integral Channel Feature,
Dollar et al. [2010] proposed a feature extraction method that exploits the inter-
polation of features in different image scales, significantly reducing the cost and
producing faster detectors when coupled with cascade classifiers. Recently, Marin
et al. [2013] proposed the use of Random Forests to combine multiple local experts.
To reduce computational cost, the multiple local experts share the extracted fea-
tures. Another approach is the use of parallel architectures, as multi-core proces-
sors and General Purpose Graphics Processing Unit (GPGPU), for feature extraction.
For instance, Prisacariu and Reid [2009] showed in their work efficient ways to ex-
tract Histogram of Oriented Gradients (HOG) descriptors using GPGPU, achieved
speedups of over 67 x from the standard sequential code.

Among the several known feature descriptors, we can mention few relevant
methods. a) Scale Invariant Feature Transformation (SIFT) [Lowe, 2004] - a local
image region is divided into a grid (e.g.; 4 x 4 pixels and a gradient orientation
histogram is computed for each cell of the grid; b) Histogram of Oriented Gradi-
ents (HOG) [Dalal and Triggs, 2005] - a histogram of location and orientation of
image gradients is constructed and used as feature vector (see details on Figure 2.2);
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c) Gray-Level Co-occurrence Matrix (GLCM) [Haralick et al., 1973] - the occurrence
of pairs of pixel intensities is tabulated in a matrix, from which statistical measures
are computed and used as feature descriptors. The last two feature descriptors will
be considered in our experiments to evaluate the proposed framework.
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Figure 2.2: Illustration of HOG computation.

To address the feature extraction problem, the SSF provides a powerful tool:
the Feature Extraction Server (FES), which allows the feature extraction to be per-
formed using the entire computational power available in the system to maximize
the performance (one can use all available CPU cores) and also allows researchers
to use feature descriptors implemented by third parties. The Feature Extraction
Server (FES) is detailed in Section 3.3.

2.2 Surveillance Systems

Nowadays, there is an increasing interest in surveillance applications because of the
availability of low-cost sensors and processors. There is also an emerging need from
the public for improving safety and security in urban environments and the signif-
icant utilization of resources in public infrastructure. These two factors associated
with the growing maturity of algorithms and techniques, enable the application of
technology in public, military and commercial sectors [Regazzoni et al., 2001].
Smart visual surveillance systems deal with the real-time monitoring of objects
within an environment. The main goal of these systems is to provide an automatic
interpretation of scenes and to understand and predict the actions and interactions
of the observed objects based on the information acquired by video cameras.
Current research in automated visual surveillance systems tends to com-
bine multiple disciplines such as those mentioned earlier with signal processing,

telecommunications, management and socio-ethical studies. Nevertheless there is
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be lack of contribution from the field of system engineering to the research [Valera
and Velastin, 2005].

The next sections will overview the state of art in Smart Visual Surveillance
Systems, introducing the evolution of these systems, as well as their applications,

requirements and challenges.

2.2.1 Evolution of Surveillance Systems

Security surveillance systems are becoming crucial in situations in which personal
safety could be compromised resulting from criminal activity. For this, video cam-
eras are constantly being installed for security reasons in prisons, parks, banks, au-
tomatic teller machines, gas stations, and elevators, which are the most susceptible
for criminal activities [Raty, 2010]. For instance, Figure 2.3a shows a set of cameras
placed at Tom Lee Park, Memphis, Tennessee, USA.

In general, images provide by a set of cameras may be monitored in real time at
the command center (Figure 2.3b), where exists many display screens from which se-
curity personnel constantly monitors suspicious activities (Figure 2.3c). Images can
also be archived for investigative purposes. However, the entire burden of watch-
ing video, detecting threats, and locating suspects are assigned to the human oper-
ator. This process of manually watching video is known to be tedious, ineffective,
and expensive [Hampapur, 2008], because the attention span of human observers
is inevitably limited [Davies and Velastin, 2007]. Therefore, the addition of compu-
tational intelligence to alert the observers to the infrequent image feed which con-
tained events of possible importance was thus a natural development as computing
resources became both cheaper and more powerful.

According to Valera and Velastin [2005] and Réaty [2010], the technological evo-
lution of surveillance systems can be divided into three generations, which are sum-
marized in Table 2.2.

The first generation of surveillance systems started with analogue CCTV (Closed-
Circuit Television). These systems consist of a number of cameras placed in multiple
locations and connected to a set of monitors, usually placed in a single control room,
via switches (a video matrix). The main disadvantages of these systems concern the
reasonably small attention span of operators that may result in a significant miss
rate of the events of interest. The advantage is that they provide good performance
in some cases and the technology is mature. To perform computational processing
on this type of system conversion from analog to digital video is required which
may cause quality degradation.
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(c) Surveillance system screen.

Figure 2.3: Elements of a surveillance environment: (a) Cameras at Tom Lee Park,
Memphis, Tennessee, USA (Extracted from: http://goo.gl/XsvBpb); (b) Integrated
command and control center of Minas Gerais, Brazil (Extracted from: http://goo.
gl/B7hmgp); (c) Example of a surveillance system screen which shows camera im-
ages (Extracted from: http://goo.gl/nvYVhG).

The advent of digital CCTV and high performance computers have led to the
development of semi-automatic systems, known as second generation of surveillance
systems. This generation benefited from the early progress in digital video com-
munications, e.g., digital compression, robust transmission and bandwidth reduc-
tion. The advances of the second generation are that the surveillance efficiency of
CCTV is enhanced. The difficulties lie within the robust detection and tracking al-
gorithms needed for behavioral analysis. Most of the research in this category is
based on the creation of computer vision algorithms aiming at improving results for

identification, tracking of multiple objects in complex scenes, human behavior com-
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First Generation

Techniques - Analogue Closed-Circuit Television (CCTV) systems
Coverage - Small/Medium areas (i.e. shop, banks, schools)
Smart - No

Data processing - None

Advantages - Good performance in some situations and mature technology
Problems - Use analogue techniques
Research - Digital versus analogue

CCTV video compression

Second Generation

Techniques - Automated by combining computer vision with CCTV systems
Coverage - Small/Medium areas (i.e. shop, banks, schools)

Smart - Yes

Data processing - Low

Advantages - Increase the surveillance efficiency of CCTV systems
Problems - Robust algorithms required for behavioral analysis
Research - Automatic learning of scene variability and patterns of behaviors

Third Generation

Techniques - Automated wide-area surveillance system
Coverage - Large areas (i.e. cities, highways)

Smart - Yes

Data processing - High

Advantages - More accurate information and distribution of different sensors type
- Distribution of information (integration and communication)
Problems ) ]
- Moving platforms, multi-sensor platforms
- Distributed versus centralized intelligence
Research

Data fusion and multi-camera surveillance techniques

Table 2.2: Summary of technical evolution of intelligent surveillance systems.
(Adapted from [Valera and Velastin, 2005]).



16 CHAPTER 2. RELATED WORKS

prehension, and multi-sensor data fusion. The second generation also improved
intelligent human-machine interfaces, performance evaluation of video processing
algorithms, signal processing for video compression and multimedia transmission
for video-based surveillance systems [Raty, 2010].

In the third generation, the technology revolves around wide-area surveillance
systems, dealing with a large number of cameras, geographically distributed re-
sources and several monitoring points. Such factors allowed the acquisition of more
accurate information by combining different types of sensors and the distribution
of the information. The difficulties are in achieving efficient information integration
and communication, the establishment of design methodologies, and the task of de-
signing and deploying multi-sensor platforms. The current research concentrates on
distributed and centralized intelligence, data fusion, probabilistic reasoning frame-
works, and multi-camera surveillance techniques [Valera and Velastin, 2005]. Ac-
cording to Réty [2010] the main objective of the fully third generation system is to
ease efficient data communication, management, and extraction of events in real-
time video from a large collection of sensors. To achieve this goal, improvements
in automatic recognition functionalities and digital multiuser communications are
required.

2.2.2 General Surveillance Systems

Several surveillance systems of the third generation have been designed and devel-
oped both in the industry and in the academia. These systems can be classified into
two groups: general purpose and specialized in a certain function. Most works in
the literature describe systems in the latter group ()discussed in Section 2.2.3).
Different from the specialized systems, the SSF can be classified as general
purpose because the user (researcher) has the freedom to develop his/her modules
(as described in Section 3.6) and use them for any purpose involving surveillance.
The following paragraphs present examples of known general-purpose systems and
their similarities and differences with the framework proposed in this work.
Several technologies for video-based surveillance have been developed under
a United States government funded program called Video Surveillance and Mon-
itoring (VSAM) [Collins et al., 2000]. This program, which can be considered one
of the pioneers among the third-generation systems, looked at several fundamental
issues in detection, tracking, auto-calibration, and multi-camera systems. The goal
of VSAM was to develop efficient wide-area video surveillance systems using a dis-
tributed network of cameras. The system provided the capability to detect, track, lo-
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calize and visualize objects within the known environment. Similar to other newer
systems, the SSF incorporates several concepts based on VSAM, such as scalability,
modularization and code reuse.

Knight [Shah et al., 2007] is a fully automated system with multiple surveil-
lance cameras that detects, categorizes and tracks moving objects in the scene using
computer vision techniques. Although it can be used in various types of surveillance
environments, the Knight is a closed framework that does not allow the implemen-
tation of new methods to replace or extend to the existing ones. In addition, it is a
commercial system, hindering its use in academia.

Another system is the IBM Smart Surveillance System (S3) [Tian et al., 2008],
which is among the most advanced surveillance systems nowadays. It provides
the following capabilities: automatic monitoring of a scene, management of surveil-
lance data, perform event based retrieval and receive real-time event alerts. In S3,
computer vision routines are not implemented directly into the system, but as plu-
gins. One of its disadvantages it that it requires the use of technologies from IBM,
such as IBM DB2 and IBM WebSphere, which reduces its applicability for research
purposes.

San Miguel et al. [2008] and Suvonvorn [2008] proposed two general-purpose
frameworks for processing and analyzing surveillance videos. Similarly to the SSF,
they enable the development of modules for processing images and videos. How-
ever, they have adopted a different approach for data communication between the
modules. In [San Miguel et al., 2008], the communication between modules is
mapped through a database system, while in [Suvonvorn, 2008], the modules com-
municate directly, where a buffer is used as an exchange zone. In contrast, modules
in the SSF do not communicate directly, but through a shared memory, which allows
modules to be launched in an asynchronous way and the dependency among them
can be defined as parameters, making the SSF versatile and flexible.

Xie et al. [2002] proposed a Software Infrastructure for Smart Space (SISS),
called Smart Platform. A smart space is a typical multi-modal system which typ-
ically involved dozens of distributed computation and perception modules that are
usually not developed for running together, such as speech recognition, person-
tracking and gesture recognition. The Smart Platform is a flexible and extensible
cross-platform system that allows modules to be restarted or moved to different
hosts and system reconfigurations in execution time. It was designed for pervasive
computing, so it does not meet some requirements of video surveillance analysis,
such as lack of mechanisms to facilitate the representation of object tracking, actions

and activities.
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The work proposed by Afrah et al. [2009] addresses two aspects in the devel-
opment of vision-based systems that are not fully exploited in many current frame-
works: abstraction above low-level details and high-level module reusability. They
proposed a systematic classification of subtasks in vision-based system develop-
ment. However, this framework is inflexible in according to the exchange of mod-
ules, preventing researchers from comparing results obtained by different methods,
which would be an important feature for the academic community.

With a proposal similar to the SSF, the work proposed by Wang et al. [2012]
presents a vision system architecture that can readily integrate computer vision pro-
cessing and make application modules share services and exchange messages trans-
parently. The model of computation assumed by the authors is the same used in
the SSF. In this model, modules communicate with each other through a shared
memory and are executed independently and in parallel.

Despite their similarities, there are some key difference between the two ap-
proaches: 2) Wang et al. [2012] system, the processing is centralized for some tasks,
such as capturing sensor data, encoding and decoding video streams, and trans-
forming different types of data, but on the SSF all processing is performed in par-
allel on modules, which allows a better use of the processing power; b) the shared
memory on the SSF stores the scene information in a hierarchy based on the nec-
essary structures for surveillance environment to avoid data redundancy, allowing
low memory consumption (for more details, see Section 3.2); c) the SSF allows one
to perform complex queries on data in shared memory through the Complex Query
Server (CQS) (Section 3.4).

Another aspect that differentiates SSF from other systems is that SSF imple-
ments the Feature Extraction Server (FES), described in Section 3.3, which allows
the feature extraction to be performed using the entire computational power avail-
able in the system with the objective of maximizing the performance (one can use all
available CPU cores). In the other systems mentioned earlier, the feature extraction

rocess receives no special treatment, being under the user’s responsibility.
y

2.2.3 Applications

To design efficient systems, it is necessary that researchers understand the nature
of the environments in which the systems will be used. Another issue is to be able
to interpret the requirements of the end user. Regazzoni et al. [2001]; Valera and
Velastin [2005]; Sedky et al. [2005]; Hampapur et al. [2003] classified real-world ap-

plications into the following monitoring categories:
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Public Area
Detect anomalous behavior from a person or a group of people in subways,
parking lots, stadiums, large facilities and other public areas;

Interior and Exterior of Buildings
Improve safety in buildings, such as banks, shopping malls and houses. Ac-
cess control, intrusion detection, object removal/abandoned alert and people

counting are common surveillance tasks in this category.

Transport
Monitoring for railway stations, airports and maritime environments, traffic

measure, accident detection and autonomous navigations.

Military
Surveillance of strategic infrastructure, enemies movements in the battlefields

and air monitoring.

Entertainment
Interactive games interface, sport analysis, broadcast of abstract and sports

events.

Efficiency Improvement
Long routine tasks, personalized training, coordination in workplace, compil-

ing consumer demographics and monitor.

There are several published papers on surveillance applications. Among them
we can mention, the work of Xia et al. [2013] that focuses on wide-area traffic mon-
itoring for highway roads. Odobez et al. [2012], in turn, designed a metro station
monitoring system that aims at automatically detecting dangerous situations which
may lead to accidents or violence. The system proposed by Thornton et al. [2011]
allows an operator to search through large volumes of airport surveillance video
data to find persons that match a particular attribute profile. Siebel and Maybank
[2004] especially deal with the problem of multi-camera tracking and person han-
dover, on metro stations, within the ADVISOR surveillance system. A framework
for people searching, where the user can specify personal attributes through queries
such as “Show me the bald people who entered a given building last Saturday wearing
a red shirt”, was proposed by Vaquero et al. [2009]. It is important to notice that,
many surveillance applications are of commercial license, and thus, there are none

scientific sources that describe them.
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Being a general tool, the SSF enables the development of many types of appli-
cations since coding specific modules to address many visual surveillance problems
allows the user to develop various applications types. In addition, the exchange/-
combination of these modules can generate new applications. Appendix A illus-

trates an example of real application developed using the SSF.

2.2.4 Challenges

As mentioned earlier, surveillance systems of the third generation contribute sig-
nificantly to the design of various types of secure environments. Meanwhile, along
with improvements, several challenges have emerged, causing many researchers
devote their studies to do so. The work published by Liu et al. [2009] discusses
some challenging issues faced by researchers. Other papers addressing the chal-
lenges of smart surveillance systems have been published recently, such as Réty
[2010]; Haering et al. [2008]; Hampapur et al. [2003]; Regazzoni et al. [2001]. The
next paragraphs present an overview on these challenges.

Quality and Consistency of Data Image

Images are not always perfect in such systems. For instance, objects of interest can
be partially occluded, camera lenses maybe covered or damaged, the person being
identified may have covered himself/herself by purpose. Even when these prob-
lems do not exist, there are other aspects causing decreasing the image quality, such
as, poor illumination, sensor noise, particularly in poor lighting conditions and low

resolution of the cameras.

The detection of events related to certain individuals comes from different
cameras when the individuals are moving, for instance in an airport. Therefore,
events detected from multiple cameras/sensors relating to the same object (person-
/people) must be combined to reduce uncertainty and inconsistency. A typical sce-
nario is that from a camera with poor visibility a male is detected while from the
audio recording it strongly indicates a female. So adequate methods must be ap-
plied to resolve this inconsistency:.

This type of challenge comprises several sub-challenges in computer vision.
Since they are out of the focus of this work, these problems will not be detailed.
Please, see [Liu et al., 2013; Valera and Velastin, 2005; Réaty, 2010] for further reading.
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Flexibility and Scalability

A large-scale video surveillance system comprises many video sources distributed
over a large area, transmitting live video streams to a central location for monitor-
ing and processing. Contemporary advances in video sensors and the increasing
availability of networked digital cameras have allowed the deployment of large-
scale surveillance systems over existing network infrastructure. However, design-
ing a smart and scalable surveillance system remains a research problem: how to
design scalable video surveillance systems according to aspects related to process-
ing power, memory consumption and network bandwidth?

Besides the wide availability of cameras, the emergence of high-resolution im-
age sensors at higher frame rates (Frames per Second (FPS)) contribute to the in-
crease of the amount of generated data. From the charts in Figure 2.4, it can be
concluded that the quality of images generated by a camera is directly proportional
to the computational power needed to process them. This is a problem for surveil-
lance systems: being able to process data in real time. Thus, novel solutions are
needed to handle restrictions of video surveillance systems, both in terms of com-
munication bandwidth and computing power. A solution to decrease the necessary
bandwidth is to allocate machines, responsible for processing, close to the sensors.

The framework proposed in this work deals with the scalability problem
through the implementation of modules (see Section 3.6) which are executed in par-
allel. Thus, the researcher can partition his/her problem into smaller problems and
execute them as a pipeline. Another feature that contributes to the performance is
the FES, detailed in Section 3.3.

Privacy

According to Fleck and Strasser [2010], the privacy is a fundamental and very per-
sonal property to be respected so that each individual can maintain control of the
flow of information about himself/herself. According to Gilbert [2007], privacy
comprises confidentiality, anonymity, self-determination, freedom of expression,
and control of personal data.

In the surveillance environment, it is important to guarantee privacy, as per-
sons within a perimeter covered by cameras have very little choice of being filmed
or not, whereas e.g., in the case of cell phone tracking the user still has the choice
to turn his phone off. Additionally, it is not always apparent where cameras are lo-
cated. Another problem is that operators are not always well-intentioned, such as
recently happened on Araraquara (Sdo Paulo, Brazil) in which the operators were



22 CHAPTER 2. RELATED WORKS

( N 7

< 70 1 W10 fps 45 1 W 320 x 240 -

2 60 40 4

s W 20 fps - | W 640 x 480

= 50 = > 1280 x 720

% 5 30 fps g 30 o

_E 40 = 25

%5 30 | % 20 |

g 20 - 2

2 l 8 10 |

10
5 |
2 o | === ‘-l I ‘-l ‘
320x240  640x480  1280x720 1920 x 1080 1 5 10 25
Image Size Number of Cameras
& J J
(a) Pixels Acquired per Camera (b) Bandwith Required
4 N

1200 —
W 320 x 240

1000 640 x 480

800 - 1280 x 720

600

400 - -I
200 -
Day

Week Fortnight Month

Storage Required (GB)

Period of Time

(c) Video Storage per Camera

Figure 2.4: Illustration of the impact caused by the large amount of data generated:
(a) Number of pixels acquired by a single camera in terms of resolution and frame
rate; (b) Bandwidth required by a variable number of video cameras; (c) Space nec-
essary for video data storage. The charts were generated using information from
the tool available in http://goo.gl/PzLFOc.

1. Therefore, an

using the surveillance cameras to inappropriately look at women
automated and privacy-respecting surveillance system is a desirable goal.

According to Fleck and Strasser [2008], the latest video analysis systems
emerging are based on centralized approaches that impose strict limitations to pri-
vacy.

An example of functionality able to maintain the privacy of individuals is mask
out some portions of the image. The whole moving object, or just the face of the
person can easily be masked out or pixellated, as illustrated in Figure 2.5. Other
functionalities, such as abstraction, multiple privacy levels and encryption, are de-
scribed in Winkler and Rinner [2010].

Even though the face information should be maintained during the visualiza-
tion, it for instance, need to be available in the system so that one can make infer-

ences. Thus, only when necessary (for instance, during a crime investigation), the

IStory available at: http://folha.com/no1384502 (in Portuguese)
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faces may be viewed and only by authorized persons.

Figure 2.5: Masking out the face of a personal to address privacy concerns. (Extract
from: http://goo.gl/maps/pdioc).

Besides of the papers which discuss the privacy of technical manner, there are
several others that deal with the subject of a sociological point of view, as the work
published in Posner [2008], where is discussed how surveillance systems must ad-

dress some aspects of privacy, which are guaranteed by the law of the United States.

System Evaluation

Second Haering et al. [2008], one of the major challenges of developing a smart
surveillance system is that it has to operate robustly during the entire time in a in
wide range of scenarios. The only way to ensure robust and reliable performance is
to perform extensive testing.

The following questions are relevant for system evaluation. Is it possible to
establish a repository containing some common surveillance scenarios? Who are the
people providing these scenarios, and what are the evaluations criteria? To answer
these questions, Venetianer and Deng [2010] discuss some of the major challenges
involved and provides a case study for addressing the evaluation problem.

For algorithms in other areas, such as machine learning, there are standard
data sets to validate, evaluate and compare the algorithms. However, for visual
surveillance systems, each security concern is different, the objects being recognized
and events being detected are more specific according to the application. Therefore,
it is a very difficult task to evaluate a complete surveillance system from a case
awareness viewpoint [Liu et al., 2009].

The performance evaluation of video analysis systems requires significant
amount of annotated data. Typically, annotation is a very expensive and tedious
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process. Additionally, there can be significant errors in annotations and part of the
evaluation of the surveillance systems depends on what the system operator con-
siders as relevant action since they are not objective. All of these issues make per-
formance evaluation a significant challenge [Hampapur et al., 2003].

For the aforementioned reasons, it is desirable an automatic mechanism that
allows to test various system components and that facilitates comparison with ex-
isting methods. With the proposed framework is possible to solve the comparison
of methods problem since it is very easy to change only the modules that perform a
particular function without having to recode the entire rest of the process. Thus, the
results generated by these modules may be fairly compared. The automated test for
the entire surveillance system with a given purpose can also be done in the SSF just
by writing specialized modules for this task.



Chapter 3

Smart Surveillance Framework

The SSF is a C/C++ library built using the Open Source Computer Vision Library
(OpenCV) and the C++ Standard Template Library (STL) to provide a set of func-
tionalities to aid researchers not only on the development of surveillance systems
but also on the creation of novel solutions for problems related to video surveil-

lance, as those described in Section 2.1.

One of its main goals is to provide a set of data structures to describe the scene
allowing researches to focus only on their problems of interest and to use this in-
formation without creating such infrastructure for every problem that will be tack-
led, as it is done in the majority of cases nowadays. For instance, if a researcher
is working on individual action recognition, he/she would need firstly to capture
data, detect and track people, and only then perform action recognition. By using
the SSF, one just needs to launch the detection and tracking modules (that might
have been implemented by somebody else), to provide the people’s location. In this
case, one may concentrate only on the problem at hand, action recognition without

concerning with the design of data representation, storage and communication.

The framework was designed to provide features for a third generation
surveillance system [Réty, 2010; Valera and Velastin, 2005], such as tools to perform
scene understanding, scalability, real-time operation, multi-sensor environment, us-
age of low-cost standard components, runtime re-configuration, and communica-
tion control. The next sections describe the design choices of the SSF to provide
such desirable features.

25
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3.1 Architecture

Figure 3.1 presents the architecture of the proposed framework containing its main
components. Such components can be divided into two main parts: SSF kernel and
user modules. The first part is composed of the SSF core that can be configured and
its components which allow the researcher (user) to develop his/her applications
and surveillance-related methods focusing only on the computer vision algorithms
without concerning with data communication, storage, search and module synchro-
nization. The second part are the modules, (described in Section 3.6), which are
components written by the user using an interface to communicate with the shared
memory using specific data types (SMData). Such components are independent and
do not communicate directly, only through the shared memory. Such design allows
the reuse of modules as components of applications with different goals and in-
creases the flexibility of the framework once the modules with the same purpose are
interchangeable.

________________________________________________________________ 1
|
|

SSF Kernel

Execution Control

Complex Feature
Query Extraction
Server Server

(cQs) Shared Memory (SM) (FES)

R —— e RN ——1

——— ———

User Module 01 User Module 02 User Module 03 User Module 04

Shared Memory Image Shared Memory Shared Memory
and CQS Utilization Acquisition Utilization and FES Utilization

R N N E E EREEEEE————————————————————

Figure 3.1: Architecture of the Smart Surveillance Framework (SSF).

The SSF kernel is composed of the following components: a) Shared Memory:
the backbone of the SSF, it allows the communication among all other components
of the framework once they do not communicate directly to each other; b) Feature
Extraction Server (FES): allows the user to implement and develop feature extrac-

tion methods that will be executed in an asynchronous manner aiming at maximiz-
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ing the usage of the computational resources available in the system; c) Complex
Query Server (CQS): this component allows modules to search for specific data in
the shared memory by taking advantage of Prolog, queries in SQL databases, among
others; d) Execution Control: this component controls the execution of the modules,
internal components of the SSF and is responsible for the SSF initialization. In ad-
dition, this component has a graphical interface to aid the user to configure the
runtime environment.

3.2 Shared Memory

To allow modules to be designed and implemented independently from each other,
it is necessary preventing direct data transmission among them, otherwise, one
modules would need to be aware of other module interface, which would reduce
the flexibility when integrating a set of modules to solve a given task. To address
this constraint, the SSF provides a resource to store and control of the data com-
munication between the user modules. This feature, referred to as shared memory,
defines an interface to modules write and read data items.

The shared memory was designed to enable the development of many types
of applications, including applications that are not in the visual surveillance scope.
For this proposed, it was composed of three components, as illustrated in Figure 3.2,
described as follows.

The first component, called Memory Manager, is responsible for the storage and
management of the handled data. In the SSF, the data items are created by user
modules and their references are passed on to the shared memory and the Memory
Manager becomes responsible for the management of these references.

Since surveillance systems must handle large volumes of data (see Sec-
tion 2.2.4), the memory on the SSF host machine can be easily filled. Thus, to deal
this problem, the Memory Manager has a mechanism to detect when the primary
memory is almost full and store the oldest entries on a secondary storage device (i.e.
a hard disk or a solid-state drive (SSD)), thus increasing the memory limit that can
be used by the SSF. In this way, when a data is required, the memory manager first
checks whether it is in primary memory, otherwise it is retrieved from the secondary
memory.

The second component is the Basic Shared Memory, responsible for the func-
tions to access the data. This component does not depend on the context of the

application, that is, their interface functions are general (i.e., functions to write and
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Figure 3.2: Components of the shared memory.

read data items) and have no knowledge of the data type being manipulated.

The third component, the Specialized Shared Memory, is a specialization of the
shared memory, with surveillance purposes. This component provides methods
and specific data types for the surveillance domain and is available when the user
is developing user modules.

Focusing on surveillance, the shared memory stores the scene information in a
hierarchy to avoid data redundancy, as showed in Figure 3.3. All data structures are
stored in lists and only their unique identifiers on the lists are stored in the elements
of the hierarchy, which not only avoids the need for updating the information every
time the data structures are changed, but also reduces the data redundancy.

Figure 3.3: Hierarchical structure in the shared memory to store information regard-
ing the scene under surveillance.
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The following data structures and attributes are used in the shared memory to

represent the scene under surveillance:

Feed is a sequence of frames that may have been obtained from a video file, a set of

image files or frames obtained from a surveillance camera.

Frame contains an image of the feed and the attributes associated to it. Its attributes
contain feature descriptors extracted from the frame, masks provided by the
background subtraction and filtering methods and samples with possible ob-

ject locations in the frame.

Sample represents the region of a frame containing an object. Its attributes contain
feature descriptors, reference to the frame, sample location and possibly the
gesture and pose when the sample belongs to a person.

Tracklet contains a set of samples from consecutive frames belonging to a single
object. Its attributes contain feature descriptors extracted from the tracklet
(usually temporal features) and the actions performed by the person during

the tracklet duration.

Object is defined as being a set of tracklets belonging to a single individual associ-

ated with an identifier (for instance, the person’s name).

Besides the standard structures in the SSF, it is also possible to create new data
structures by heritage of a prototype data, referred as user data. The user data allows
specific data definition such as sensors output (audio, temperature, multi-spectral
images) or exchange of specific data types between modules, such as classification
models.

Even though the hierarchical design chosen for the shared memory results in
low memory consumption because there are no data duplication, the amount of data
generated during processing can still be very large (for instance, a video feed being
recorded for hours). To handle that, the SSF has a management mechanism that
detects when the amount of memory allocated is close to the maximum available
(or a maximum set by the user) and transfer to the secondary memory (hard disk)
the least-requested data items. If any data stored on disk is requested again, it is
transferred back to the main memory. This mechanism assures memory availability
for processing, thereby contributing to the scalability of the system and allowing the
use of low-cost computers with limited memory.

Another feature of the shared memory is that it is incremental in the sense that

when a new data item is stored, it receives a new and unique identifier together
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with a creation time stamp. With such information, one can trace back the entire
execution of the system. For instance, one could verify when tracklets were merged
and when new objects were created, which might be useful in the development of
novel object tracking and recognition approaches.

As mentioned earlier, the shared memory also allows the communication be-
tween modules in an indirect manner - a module M; writes a data item to the shared
memory, then other modules, say M, and M3 can request this data item by setting
the data type and the module that has generated it, as illustrated in Figure 3.2. The
producer (module M) writes the data item that can be read by any other consumer
modules (modules M; and M3 in the example), which makes the framework more
flexible in the sense that only the consumer modules have to indicate from which

modules the will receive a given data type, the producer only writes its outputs to
the SM.

3.3 Feature Extraction Server

As pointed out earlier, feature extraction is required to solve several problems in
surveillance. Due to the large amount of data, this step must be efficient. However,
even though local feature extraction methods have been proposed [Dollar et al.,
2009; Viola and Jones, 2001], the feature extraction is still a time-consuming task. To
reduce the computation cost, we developed the Feature Extraction Server (FES), a
runtime framework which allows leveraging of modern parallel architectures aim-
ing at increasing the performance of such methods.

The FES relies on an asynchronous approach to receive requests, process them
and return feature vectors to modules with the objective of maximizing the occu-
pancy of the processing units available. Once a request is sent to the FES, it does
not block the processing being executed in the module, which can continue work-
ing while the request is been processed by the FES. For instance, the module might
be processing the feature vectors already extracted while others are being extracted.
Therefore, all features vectors do not need to be stored in memory before process-
ing, preventing from high memory consumption. In fact, the maximum amount of
allocated memory can be set to avoid the process from using the virtual memory.

Figure 3.4 illustrates the main components of the feature server: request control,
extraction method and feature extraction memory. Using the FES, a feature extraction re-
quest is performed as follows. First, a module sends extraction requests by passing
image regions from which the features will be extracted by a given method. Such re-
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quests are sent to a queue in the request control, which allows the module to make all
requests for an image and continue its processing while the features are extracted.
Then, the request control selects the extraction method chosen by the module and
forward the requests to the extraction method, which process them using N instances.
First, it checks the memory availability in the feature extraction memory, if there is not
memory available, the extraction waits until some memory has been released. Fi-
nally, once the feature extraction is completed, the feature vector is pushed to the

output queue and it is ready to be retrieved by the requesting module.
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Figure 3.4: Feature Extraction Server (FES) and its interface with a module.

The request control is responsible for screening the requests made by the mod-
ules. It is composed of an input queue a data structure for storing information re-
garding the feature extraction methods available. Once a request enters the queue,
the request control forwards it to the correct feature extraction method. The request
control is useful in the sense that the feature extraction becomes centralized, such
that two modules requiring the same feature extraction method will use the same
instance of the extraction method, which will allow the usage of cached features if
two modules request feature extraction for the same image region.

The extraction method manages the feature extraction for a specific feature de-
scriptor, such as HOG, GLCM and others [Li and Allinson, 2008]. When the ex-
traction method receives a request, it first verifies in the cache if the same request
had been made before and the feature descriptors are already available, if so, re-
turn them, otherwise it checks in the feature extraction memory whether there is
memory available in the feature extraction memory (Experiments show that the
usage of cache reduces greatly the computational cost for feature extraction, see
Section 4.3.2.).

The feature extraction memory allows the FES to set a limit of memory that can

be used for the feature extraction process, otherwise the entire memory available in
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the machine could be consumed quickly compromising the execution. If there is no
memory available, the extraction method is blocked until some memory is released
(some module retrieves an extracted feature vector from the output queue, process
it, and sets as released), otherwise, it sends the request to one of its instances to
perform the actual feature extraction for an image region. Also, it avoids memory
reallocation, since the probability of feature vectors being the same size is great.
The advantages provided by the FES include the following. Besides of using
methods already implemented, the user can implement his/her own feature extrac-
tion methods which will have their processing distributed according to the compu-
tational power at hand or according to the parameter setting chosen by the user.
In addition, it allows users to develop novel feature descriptors and evaluate them
easily on problems such as detection and recognition. Finally, this centralization ap-
proach based on a server to extract features allows the caching of features vectors so

that several modules might share the same vectors for different purposes.

3.4 Complex Query Server

To search for specific data, such as actions being performed in a given time interval
or tracklets intersection of two given subjects, one may retrieve data from the shared
memory by implementing the query in a module. However, such approach may be
inefficient since the architecture of the shared memory is optimized for simple write
and read requests. To allow user modules to search efficiently for specific data in
the shared memory, the SSF provides the Complex Query Server (CQS).

CQS is independent of the underlying query/inference solution, for instance
Relational or Big Data Databases and logic programming such as Prolog. There-
fore, the user modules are not required to know how to write a query in a specific
solution. To achieve this independence, the CQS defines a common interface with
modules so that each complex query solution underlying must implement this CQS
common interface which either may be simplified to allow easily integration with
as many underlying solutions as possible or may also be complete enough to eas-
ily allow complex queries. Any implementation of an underlying query/inference
solution in the CQS common interface can be performed by implementing initial-
ization, storing and querying methods. The following paragraphs describe how these
methods are used in the SSF.

The initialization method requires that the user informs which fields for in-

stance, time-stamp of image, location of sample and time interval of a tracklet, will



3.5. EXECUTION CONTROL 33

be stored in the CQS for future search. This information is given at the definition
of each data type and allows the framework to grow in a scalable way, i.e., without
modifying CQS structure when new data types are incorporated to the framework.

At execution time, the CQS initializes by iterating over each data type and
registering the searchable fields. This initialization is required in some solutions
to create underlying structures such as tables in SQL Databases. Then, the CQS
retrieves data items from the shared memory and passes them to storing methods
so, they can be registered in the underlying structure (a row in SQL Database or a
fact in Prolog).

For the querying methods, a user module retrieves a copy of a CQS instance
with access only to query methods. Query methods are subdivided into filter and
retrieve methods: filter methods are simple operations (“equal to", “less than", “or",
among others) that receive field and data types and change the internal state of
the CQS instance by building a partial filter of the field and integrating it with the
previously state; retrieve methods return data to the user considering the filtered
state of the CQS instance.

As an example, suppose that one is interested in recognizing a fighting activity
between two subjects by analyzing the output of an identity recognition module and
an action recognition module. The fighting activity is characterized by two subjects,
close together, facing each other, and at least one of them is performing punching
actions. Examples of queries to identify this fighting activity are given in Prolog, SQL
and in CQS query format in Figure 3.5. In this example, tracklets are represented
by horizontal lines and the action being performed is shown inside a rectangle. A
tighting activity may be characterized by any two subjects that are close together
facing each other and at least one subject is performing punching actions. The query
result R is the reference to the video segment containing the action.

3.5 Execution Control

The SSF components may be set by parameter settings, which increases the cus-
tomization of the framework. The parameters might be supplied via a configuration
file or assigned through the Graphical User Interface (GUI). Once the configuration
file is provided, the Execution Control is responsible for initializing the remaining
components and for assigning values to the parameters.

The SSF first initializes the internal components (i.e., FES and CQS), by as-

signing values to its parameters. Then, the instantiation and configuration of the
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MY fighting (P1,P2,T) :-

1) [punching (P1,T), punching(P2,T)],
o Facing (P1,P2,T),

o Close (P1,P2,T).

SELECT timestamp FROM
tracklet AS Tl JOIN
tracklet AS T2 ON
TimeIntersect (T1l,T2) AND
Facing (T1,T2) AND Close(T1,T2)
JOIN action ON action.tracklets IN (Tl.id,T2.id)
WHERE action.id = PUNCHING

COSQuery Tl = GetCQSQuery (VIDEOSEG) ;

CQSQuery T2 = GetCQSQuery (VIDEOSEG) ;
Tl.Intersection(T INI,T END,T2);
T1.NotIn(ID,T2);T2 = Tl.Equal (ACTION,PUNCHING) ;
Tl.Facing(T2);

Tl1.Close(T2);
CQSResult R

SQL

CQS Query

’

Tl.RetrieveData () ;

Figure 3.5: Examples of queries in Prolog, SQL and CQS to identify the fighting
activity by analyzing the output of a module that recognizes tracklets of subjects
and another module that performs action recognition.

parameters of the user modules is performed. It is worth noting that only the mod-
ules that are listed on the configuration are initialized. The execution control also
defines data flows referred to as data streams, between modules and shared mem-
ory. These streams are declared in the configuration file (or in the GUI), in which
the user defines how the modules will communicate with shared memory, stating
which types of data will be transmitted, according to those that are implemented in

the user module.

Due to the large number of parameters, the configuration file becomes com-
plex and difficult to maintain. Thus, to deal with this problem, the SSF provides
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a Graphical User Interface (GUI) component, as shows the Figure 3.6. Its goal is
help the user to configure the runtime environment for the SSF. Through it, we can
perform the following tasks: a) configure modules defining the parameters values;
b) create and setup pipelines; c) define the data flow between the modules and/or
pipelines; d) configure the SSF internal components, such as the shared memory and

CQs.

= Smart Surveillance Framework - sl

Configuratont a

uuuuuuuuu

Pipelinetxecution19

Figure 3.6: Screenshot of the Parameter Setup Interface. Red and green dots indicate
inputs and outputs of a module, respectively. Blue box are User Modules, while light
green box represents pipelines.

3.6 User Modules

The user modules are designed to allow the development of typical routines of a
surveillance system, such as person detection, background subtraction, face recog-
nition, person tracking and re-identification, and action and activity recognition.
Every module follows the same standard interface, in which the user (researcher)
defines its input and output data types and its parameters without specifying which
module will provide or receive them. This is done later, in execution time by reading
the dependencies from a parameter file (or the GUI), which makes the framework
highly flexible and versatile. Once the module is launched, an execution routine
(where the user implement his/her method), is called. This routine reads from and
writes to the shared memory using a standard interface provided by the framework.
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As mentioned in Section 3.2, the modules work independently, in other words,
arunning module is not aware of the existence of others. This allows the exchange of
modules of the same type without affecting the operation of the system. Moreover,
modules are executed in different threads, which increases the performance of the
system, enabling real-time processing. For each module is specified what types of
data it will provide and also, if necessary, what types of data it will consume. This
way, the module creates information but is not aware of which modules will use it.

Another important feature is the creation of execution pipelines — collections of
user modules behaving as a single module. A pipeline allows one to group several
modules of individual methods in a sequence. For instance, Figure 3.7 illustrates a
face recognition pipeline which consists of the following modules: a) background
subtraction; b) face detection; and c) face recognition. After defined, multiple in-
stances of the pipeline can be launched just by changing their inputs. For instance,
one pipeline can be launched to process data from each surveillance camera attached
to the system. Such a feature also makes the framework more scalable.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3.7: Illustration of an execution pipeline.

Since the modules are executed asynchronously, it is the responsibility of
shared memory to perform data synchronization because a module might consume
information faster than another module can provide. Figure 3.8 illustrates an exam-
ple of synchronization between two modules (M; and M) and the shared memory
(SM). In the first instant of time (¢1), M7 writes a new data item to the SM while M,
reads and processes the current data item in the memory. At time t,, the module M;
is processing, while M, reads and processes the only available data item. Since there
is no more data to read in t3, M> is locked until a new information is made avail-
able, which occurs in t4. Finally, at t5, M is unlocked and performs a new reading.
Therefore, by using locking mechanisms in the data reading, the SM is able to syn-
chronize dependencies among modules without compromising the performance of
independent modules.

In real scenarios, it might be relevant that the surveillance system is able to pro-
cess different types of sources besides images, such as audio and proximity sensors.
To achieve that, users can implement specific data definitions for sensor readings

and process them inside the modules. Another advantage of using user data and
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Figure 3.8: Example of the SSF module synchronization approach.

user modules for data acquisition is that one can take advantage of specific sensor
hardware, such as camera built-in filters, Pan—tilt-zoom (PTZ) control and sensor
alarms. Indeed, the SSF implements a PTZ camera control module that allows other
modules to send command to IP cameras, allowing operations such as zooming in
to the face region for proper face recognition, or moving a camera around to track a
suspicious person.






Chapter 4

Experimental Results

This chapter evaluates important aspects of the framework proposed in this work.
Section 4.1 explores the framework scalability, Section 4.2 describes experiments to
evaluate the communication latencies caused by the architecture of Shared Memory
and Section 4.3 discusses the performance of the Feature Extraction Server (FES).
Finally, Section 4.4 discusses the results obtained.

All experiments were conducted using computer with two Intel®
Xeon™ 2.40GHz processor with 6 physical cores each, 32GB of main memory

and running Windows' operating system.

4.1 Framework Scalability

This section presents two experiments to demonstrate the scalability of the frame-
work. The SSF allows the user to perform parallelization of methods by decompos-
ing the problem into subproblem. The following will describe briefly the types of
problem decomposition which are dealt in these experiments.

The goal of a decomposition is to divide the problem into independent sub-
problems. They can mostly be written independently. Two general methodologies
are commonly used. The first, termed data decomposition, assumes that the overall
problem consists in executing computational operations or transformations to one
or more data structures and, further, that these data structures may be divided and
operated upon. The second, called task decomposition, divides the work based on
different operations or functions. In a sense, the SSF supports both task decomposi-
tion (by the decomposition of a large problem into smaller parts, which in turn, are
implemented through the modules) and data decomposition (by the instantiation of

39
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several modules, with the same purpose, where, each module will handle a portion
of the dataset) [Kumar, 2002].

Figure 4.1a shows a problem being treated in the traditional way, i.e., sequen-
tially. In this approach, each input data is processed sequentially and individually.
In the SSF, this approach is equivalent to solve the entire problem inside a single
user module containing all problem tasks, for instance, a standalone user module
performing the detection and recognition tasks.

Figure 4.1b shows a task decomposition of the problem shown in Figure 4.1a.
In this case, each sub-problem is addressed in parallel and various subsets of the
data are processed simultaneously in a pipeline composed of specific modules for
each task. The implementation of specific user modules for each task enables the
implementation of this decomposition type on the proposed framework. From the
above example, the detection and recognition would be implemented in separate
modules, which would allow them to run in parallel.

Figure 4.1c illustrates a data decomposition approach for the same problem.
Here, the entire problem is replicated, the dataset is partitioned and each replica
is responsible for a subset of the data. The SSF enables the decomposition of data
through the pipeline replication.

The aforementioned decomposition techniques are not exclusive and can often
be combined, as illustrated in Figure 4.1d, a decomposition commonly implemented
in the SSF. It allows not only data decomposition but also task decomposition at the
same time, taking fully advantage of the processing power of multi-core processors.

The following experiments demonstrate the application of parallelism on the
SSF through the approaches of problem decomposition presented above. As a start-
ing problem (sequential method), twelve series of similar image processing opera-
tions were implemented. This number of sequence operations was chosen because
of the number of available cores on the test machine. Therefore, the sequential
method of example has as input an image I and a series of operations p;, where
the computational cost C of all operations is similar, in other words, C(p;) = C(pj),
for all values of 1 < 7,j < 12. A dataset containing 100 images of 640 x 480 pixels

was used.

4.1.1 Data Decomposition Evaluation

In this experiment, the sequential method has been implemented as a single SSF
module and replicated n times, as illustrated in Figure 4.1c, in which each instance

of the method is responsible for processing 100/n images from the dataset. The
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(a) Sequential approach to a problem. In the SSF, the entire problem is solved within a
single user module.
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(c) Data decomposition. In the SSF, the data is split into subsets and each subset is
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Figure 4.1: Examples of problem decomposition
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value of n was varied from 1 to 12 and each experiment was executed ten times.
Figures 4.2a and 4.2b report the average execution time and speedup achieved by
the data decomposition approach, respectively.
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Figure 4.2: Results of the experiments considering the data decomposition ap-
proach.

As shown in Figures 4.2a and 4.2b, it is advantageous to use of the framework
to parallelize the processing of a considerable number of images. The speedup ob-
tained by the data decomposition approach is very close to linear. This fact demon-
strates that the communication overhead caused by the SSF is minimal. Section 4.2
presents a detailed evaluation of the communication overhead caused by the SSF.

4.1.2 Task Decomposition Evaluation

This experiment demonstrates whether the use of task decomposition approach
is advantageous in the framework. The sequential method is divided into n sub-
problems, each of which implemented as a SSF module. Then, these modules are
interconnected forming a pipeline, similar to Figure 4.1b. The value of n was varied
from 1 to 12, i.e., the sequential method was divided into up to 12 sub-problems.

The division of the sequential method in sub-problems was conducted in three
distinct ways. In the first, the n modules had the same computational complexity,
i.e., the problem was equally divided and the computational load of modules were
balanced. In the second way, at least one of the n modules had at least 25% of
the operations of sequential method while the other 75% were equally distributed
among the n — 1 remaining modules. The third is similar to the second. In his case,
however, only 50% of the operations were reserved for only one module. The results
are presented in Figures 4.3a and 4.3b, according to the execution time and speedup,
respectively.
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Figure 4.3: Results of the experiments considering task decomposition.

Analyzing the results, one can observe that the task decomposition is success-
ful when there is a balance between the parts. Figure 4.3b presents an almost linear
speedup for the case where the operations of the sequential method were divided
equally among the modules. However, the two other examples, in which the divi-
sion into sub-tasks was unbalanced, did not show any cost reduction starting from a
certain number of modules. For the example where 25% of the operations are under
the responsibility of only one module, the time improvement was observed only for
up to 4 modules. From then on, there was no performance gain because the time
spent by the module that was overloaded will always be greater than or equal to
25% of the total time. To the overhead of 50%, the improvement was observed only
for up to 2 modules due to the same reasons previously discussed. This experiment
demonstrates that the task decomposition in SSF can be scalable if conducted in a

balanced way:.

4.2 Communication Latency

To evaluate the overhead caused by the communication between the modules and
the shared memory, we conducted an experiment in which an image (SSF frame data
type) was transmitted between a certain number of modules. For that, a pipeline
with n modules was created and each module just forwards the image frame (with-
out performing any processing) to the next module. The time elapsed between the
instant at which the first and the last module of the pipeline (Modules 01 and 7, re-
spectively) performed the reading of the image was computed to estimate the data
latency. Figure 4.4 illustrates this experiment.

This experiment considered pipelines with sizes of 1, 3, 5, 7, 10 and 15 mod-
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Figure 4.4: Setup of the experiment performed to compute the data latency in the
SSE.

ules. In addition, for each pipeline size, executions with 1, 3 and 5 simultaneous
pipelines were tested. To perform this experiment, a total of 100 different images
were transmitted and the average time spent for each move across the pipeline was
calculated. The results are showed in Figure 4.5.
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Figure 4.5: Results of the experiments regarding the data latency for the framework.

Results shown in Figure 4.5 demonstrate that the overhead caused by the in-
creased number of modules simultaneously connected to the shared memory is low.
Although this overhead exists, it is negligible when compared with the processing
time of the data, usually orders of magnitude higher.

4.3 Feature Extraction Server (FES) Evaluation

This section describes the experiments conducted to evaluate the performance of
the Feature Extraction Server (FES). The evaluation was conducted using three
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traditional methods of features extraction: Pixel Intensity, Histogram of Oriented
Gradients (HOG) [Dalal and Triggs, 2005] and Gray-Level Co-occurrence Matrix
(GLCM) [Haralick et al., 1973]. Even though there are many other feature extrac-
tion methods, we have chosen these three methods because they present different
computational cost and memory consumption, allowing us to evaluate different as-
pects of the Feature Extraction Server (FES).

The experiments consist in extracting feature descriptors of an image with a
resolution of 640 x 480 pixels, using the aforementioned methods. To represent a
realistic scenario, we employ the sliding window algorithm [Forsyth and Ponce,
2011], widely used in object detection, to sample the image regions from which the
feature descriptors are extracted. This algorithm works by exhaustively scanning an
input image to generate a set of coordinates of several detection windows in multi-
ple scales. For this work, we follow the block setup used in Dalal and Triggs [2005],
in which each detection window is split into 105 blocks and we set the stride and
scales parameters to generate a total of 48,495 detection windows per image. We
evaluate the FES regarding two aspects: the performance of parallel feature extrac-
tion by increasing the number of extraction instances and improvements obtained

by the cache memory in the feature extraction.

4.3.1 Number of Instances

To demonstrate the performance of parallelism provided by FES, we conducted ex-
periments based on the number of instances used in the extraction. Each experiment
consisted in the execution of a method repeated ten times and varying the number
of instances from 1 to 12.

As shown in Figure 4.6, one can observe an improvement in the computa-
tional performance as a function of the number of instances used in the FES, which
demonstrates the advantage of its usage in multi-core environments. The GLCM
(Figure 4.6a) method showed a proportional reduction in run time on all experi-
ments, while for the other two methods, HOG and intensity, Figures 4.6b and 4.6¢
respectively, it was only observed up to six instances. In the HOG case, there is a
slightly increase in the run time starting from nine instances. This is because the
computational complexity of HOG and intensity is smaller when compared to the
GLCM, hence there is an overhead caused by the FES, starting at nine instances.
This behavior can be explained by the Amdahl’s Law'. This law states that a fraction

L Amdahl’s law, also known as Amdahl’s argument, is named after computer architect Gene Amdahl,
and is used to find the maximum expected improvement to an overall system when only part of
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Figure 4.6: Computation time obtained for the feature extraction as a function of the
number of extraction instances.

of sequential operations, even in small numbers, can significantly limit the speedup
achieved by a multi-core computer.

Figure 4.6d shows the speedup obtained for each feature extraction method.
The speedup achieved with the GLCM method presents a linear growth, demon-
strating the scalability of the FES for computationally expensive methods. For the
HOG and intensity methods, the speedup presented a linear growth up to only five
instances due to the overhead present in the FES which is more evident when the

method is not very computational expensive.

4.3.2 Cache Size

This set of experiments aims at showing the performance gain obtained when the
cache memory is used for the feature extraction method and when its size is in-
creased. We performed experiments where each extraction method is individually

the system is improved. It is often used in parallel computing to predict the theoretical maximum
speedup using multiple processors Amdahl [1967].
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executed for a different cache with at most C entries, where C € {0, 512, 1024,
2048, 4096, 8192, 16384, 32768, 65536} by varying the number of instances in 1, 2, 4,

and 8. Each experiment was executed ten times. The average computational time is

reported in Figure 4.7.
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Figure 4.7: Computation time with the addition of cache memory with multiple
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Figure 4.7a shows a significant reduction in time for the GLCM without using
cache (near 80% for a cache of size 512), for every number of instances. The improve-
ment is also observed for 1024, 2048, 4096, and 8192 cache size. However, starting
from 16834 entries, the runtime does not decrease. This is because the number of
extracted features is not enough to fill the entire cache.

The cache utilization also significantly contributed to the performance of HOG
and intensity. However, this contribution is only observed when the HOG is per-
formed in one or two instances and when the pixel intensity is executed for a single
instance, although two instances result in a slightly reduction in the run time.

Unlike the previous results, experiments with 4 and 8 instances for HOG and
intensity increased the run time due to the overhead caused by competition for ac-
cess to the cache, since the low computational cost of the methods yields the in-
stances to quickly compute the features and consequently making them wait to have
access to write to the cache memory. One may also notice a small increase in run
time for cache values above 8192, which we believe is also caused by poor spatial
locality of the memory.

4.4 Discussion and Remarks

This chapter has presented the experimental evaluation of our proposed framework.
In this section, we presented a discussion and remarks of the achieved results.

The experiment regarding the scalability of the framework showed good re-
sults with nearly linear speedup in most cases. The data decomposition can be eas-
ily implemented in SSF and shows promising results in cases where the dataset can
be partitioned equally. However, partitioning a dataset into several sub-sets is not
always possible, as there may be dependence among the data. The speedup pre-
sented by task decomposition only has a linear behavior when the modules have
a similar computational cost, which leads us to conclude that the manner of task
decomposition is performed interferes on the framework scalability.

According to the experiments, the latency of communication between the mod-
ules and the shared memory was low, when compared with the time required to
perform processing pertaining to video surveillance operations.

Results regarding the Feature Extraction Server (FES) demonstrated that we
are able to achieve almost linear speedup, provided that the method is computation
intensive, and also demonstrated that enabling cache decreases by 80% the runtime.



Chapter 5

Conclusions

This work proposed a novel framework to allow further development on computer
vision methods and surveillance applications. The architecture of the Smart Surveil-
lance Framework (SSF) allows the simultaneous execution of multiple user modules
that can be developed independently since they have communication and synchro-
nization through a shared memory, which contributes to the scalability and flexibil-
ity. The framework also provides two important components, the feature extraction
server and the complex query server, these components maximize the computa-
tional resource usage and facilitate the scene understanding, respectively.

The proposed framework will be made publicly available and besides of mak-
ing surveillance research using real data and in real-time processing easier, it will
also allow researchers to provide their methods (implemented as modules) to be
used by other researchers to compare how results. Nowadays, it is difficult to com-
pare results to previously published works since the code is not always available or
it is necessary to adapt the code to work on new data sets. By using the SSF, one
can provide the source-code (or just its compiled version) of the module to solve a
computer vision problem and when another researcher proposes a novel solution,
he/she can use that module to compare the results different data sets or to compare
the computational cost in the same machine. Therefore, the SSF might also con-
tribute to a more accurate validation of computer vision algorithms, mainly those

related to surveillance.

5.1 Future Works

As future works, we propose: a) extensions of the SSF to provide new features in-
cluding the distribution of the processing and the data to multiple computers to
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make it even more scalable; b) improvement of the Graphical User Interface (GUI) to
allows data processing visualization, which currently is not focus of many research
but is very useful to provide a better understanding of the behavior of computer
vision algorithms, mainly when large amounts of data are used and the processing
is done in parallel; c) improvement of persistence mechanism in secondary mem-
ory using the information of which modules are running and which data requests
are being performed; and, finally, d) the incorporation of security and privacy to
the framework by adding data encryption and user permission levels to preserve
person’s identities, which will allow the SSF to be employed in real surveillance

applications.
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Appendix A

Application Example:
Self-Organizing Traffic Lights

This appendix on based in Souza et al. [2014] and it described how an application
can be developed using the SSF.

The traffic light is a valuable device to control the vehicular and pedestrian
traffic. One of its main issues is that several traffic lights might be improperly cali-
brated once they do not consider the differences in pedestrian mobility from region
to region. As each region presents different pedestrians with different characteris-
tics, there is a need for automatic approaches.

For such purpose, two challenging cases in transport engineering literature
must be handled. The first case happens when pedestrians with reduced speed
cannot cross the street within the available time. The second case happens when
the traffic light for pedestrians remains open for a long time even when there are no
pedestrians waiting to cross. Such problem may be tackled by the same approaches
adopted by traditional visual surveillance methods.

The problem can be solved by the following approach, divided in the steps
depicted in Figure A.la and Figure A.1b presents the application configuration on
the SSF Graphical User Interface (GUI).

The steps of application are described as follows:

1. First, the pedestrians must be detected using a pedestrian detection method,
such as the HOG Detector [Dalal and Triggs, 2005], the LatSVM Detec-
tor Felzenszwalb et al. [2010] or [de Melo et al., 2014] (Pedestrian Detection
Module).
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(a) Workflow of the application example. The pedestrian position in each frame is determined in
the pedestrian detector and pedestrian tracking modules. Then, the pedestrian position is used
to estimate a distribution map where pedestrians walk when crossing the street and to estimate
the speed and trajectory of these pedestrians to set the red flashing time in the pedestrian traffic
light. (Adapted from Souza et al. [2014].)
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(b) Configuration of the Traffic Light application.

Figure A.1: Self-Organizing Traffic Lights application example.

2. Based on the detected pedestrians, one must follow the pedestrians based on

a tracking approach to estimate where they are heading to and their velocity
(Tracking Module).

3. The next step is splitted into two parts. The first part handles the crosswalk
segmentation based on the pedestrian’s velocity (Crosswalk Segmentation
Module). In this scenario, pedestrians that are moving belongs to the cross-
walk, while non-moving pedestrians are more likely to be at the crosswalk’s

border. The second part estimates the speed and trajectory of each pedestrian
(Speed Module).
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4. The information collected by both parts are employed by the traffic light man-
ager to determine the amount of time of red and flashing red, which will allow
the pedestrians to finish their cross or to lock the traffic light if there are no
pedestrians waiting to cross (Traffic Light Manager Module).

Such solution to the problem may be easily implemented using the SSF since it
allows to abstract several layers of the problem. The user may split each of these
steps into its equivalent modules. Most modules that compose the traffic light
pipeline do not need to be implemented. Hence, the major concern of the user is
to handle the data through the modules and implementing the traffic light manager.

A of the SSF main advantages is its flexibility to test several parameters and
methods for each module, which allows the user to select the best ones for the given
application. For instance, the user can easily try different pedestrian detectors to
find which is the more suitable for his/her application.

Finally, the implemented solution to this problem can be easily shared and

assessed by peers, once the user makes the module publicly available.
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