
INVISIBLE CITIES: EXPLORING

PSYCHOLOGICAL URBAN DATA
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Abstract

Planners and social psychologists have suggested that the recognizability of the urban

environment is linked to people’s socio-economic well-being. We build a web game that

puts the recognizability of London’s streets to the test. It follows as closely as possible

one experiment done by Stanley Milgram in 1972. Each participant dedicates only few

minutes to the task (as opposed to 90 minutes in Milgram’s). We collect data from 2,255

participants (one order of magnitude a larger sample) and build a recognizability map

of London based on their responses. We find that some boroughs have little cognitive

representation; that recognizability of an area is explained partly by its exposure to

Flickr and Foursquare users and mostly by its exposure to subway passengers; and

that areas with low recognizability do not fare any worse on the economic indicators

of income, education, and employment, but they do significantly suffer from social

problems of housing deprivation, poor living conditions, and crime. These results

could not have been produced without analyzing life off- and online: that is, without

considering the interactions between urban places in the physical world and their virtual

presence on platforms such as Flickr and Foursquare.

We then use the results of this experiment, along with other urban data, to

tackle the problem of identifying interesting and memorable pictures in photo sharing

sites. Past proposals for identifying such pictures have relied on either metadata (e.g.,

likes) or visual features. In practice, techniques based on those two inputs do not al-

ways work: metadata is sparse (only few pictures have considerable number of likes),

and extracting visual features is computationally expensive. In mobile solutions, geo-

referenced content becomes increasingly important. The premise behind this work is

that pictures of a neighborhood is linked to the way the neighborhood is perceived by

people: whether it is, for instance, distinctive and beautiful or not. Since 1970s, urban

theories proposed by Lynch, Milgram and Peterson aimed at systematically capturing

the way people perceive neighborhoods. Here we tested whether those theories could

be put to use for automatically identifying appealing city pictures. We did so by gath-

ering geo-referenced Flickr pictures in the city of London; selecting six urban qualities
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associated with those urban theories; computing proxies for those qualities from online

social media data; and ranking Flickr pictures based on those proxies. We find that

our proposal enjoys three main desirable properties: it is effective, scalable, and aware

of contextual changes such as time of day and weather condition. All this suggests new

promising research directions for multi-modal learning approaches that automatically

identify appealing city pictures.

Palavras-chave: Social Media, Web Science, Spatial Analysis, Urban Informatics,

Future Cities.
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Resumo

Urbanistas e psicólogos sociais sugeriram que a facilidade de reconhecimento de um

certo ambiente urbano está ligado ao bem estar social-econômico de seus habitantes.

Nós criamos um jogo online que testa o reconhecimento das regiões de Londres. Ele

segue, da forma mais próxima posśıvel, um experimento conduzido por Stanley Mil-

gram em 1972. Cada participante dedica apenas alguns minutos nessa tarefa (con-

trastando com os 90 minutos do experimento de Milgram). Nós coletamos resultados

de 2.255 participantes (amostra com uma ordem de grandeza maior) e, baseando-se

nas respostas, constrúımos o mapa de reconhecimento de Londres. Nós descobrimos

que alguns bairros possuem baixa representação cognitiva; que o reconhecimento de

uma área é explicada parcialmente pela sua exposição no Flickr e Foursquare e, mais

fortemente, ao fluxo de pessoas no metrô; e que áreas com baixo reconhecimento não

se mostram piores em indicadores econômicos como renda, educação e emprego, mas

sofrem significativamente de problems sociais como privação habitacional, condições

precárias de vida e crime. Esses resultados não seriam posśıveis sem uma análise dos

ambiente online e offline: isto é, sem considerar as interações de locais no mundo real

e a sua presença virtual em plataformas como o Flickr e Foursquare.

Em seguida, nós usamos os resultados desse experimento, juntamente com outros

dados urbanos, para contribuir para o problema de identificação de imagens interes-

santes e memoráveis em sites de compartilhamento de fotos. Até então, propostas para

identificação dessas imagens basearam-se ou em metadados (e.g., curtidas) ou carac-

teŕısticas visuais. Na prática, técnicas baseadas nesses dois métodos não funcionam

sempre: metadados são esparsos (apenas uma pequena porção de imagens tem um

número considerável de curtidas), e a extração de caracteŕısticas visuais é computa-

cionalmente custoso. Em soluções móveis, conteúdos geo-referenciados têm se tornado

cada vez mais importantes. A premissa por trás deste trabalho é que as fotos de uma

região estão ligadas com o modo como essa região é percebida: por exemplo, se ela é

vista como bonita e caracteŕıstica ou não. Desde os anos 70, teorias urbanas propostas

por Lynch, Milgram e Peterson visam capturar sistematicamente o modo como as pes-
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soas entendem suas cidades. Neste estudo, nós testamos se essas teorias poderiam ser

usada para identificar automaticamente figuras atraentes em cidades. Para isso, coleta-

mos fotos geo-referenciadas de Londres no Flickr; selecionamos seis qualidades urbanas

associadas às teorias urbanas mencionadas anteriormente; computamos meios para pr-

ever essas qualidades a partir de dados de redes sociais; e, com base nisso, ordenamos

as fotos do Flickr. Nós descobrimos que nossa proposta possui três propriedades dese-

jadas nesse contexto: ela é efetiva, escalável, e senśıvel a mudanças de contexto, como

hora do dia e condição climática. Esses resultados sugerem novas direções de pesquisa

para abordagens de aprendizado multimodal que automaticamente identificam fotos

urbanas relevantes em serviços de compartilhamento de imagens.

Palavras-chave: Mı́dias Sociais, Web Science, Análise Espacial, Informática Urbana,

Cidades do Futuro.
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Chapter 1

Introduction

The share of the world’s population living in cities has recently surpassed 50 percent.

By 2025, we will see another 1.2 billion people living in cities. The world is in the midst

of an immense population shift from rural areas to cities, not least because urbanization

is powered by the potential for enormous economic benefits. Those benefits will be only

realized, however, if we are able to manage the increased complexity that comes with

larger cities. The ‘smart city’ agenda, in which this work falls into, is about the use

of technological advances to collect and analyze urban data from different sources to

create better cities.

In a general way, this research contributes to both the urban and computing re-

search communities by combining early urban studies of how citizens perceive their

cities with modern techniques of data science. In one side, the urban research commu-

nity benefit from the advances in data collection and analysis and, on the other hand,

the computer science community can explore new ways of applying psychological the-

ories to otherwise typically computational problems.

This research is deeply rooted in early urban studies (Milgram et al. [1972]; Mil-

gram and Jodelet [1976]; Lynch [1960]), but also taps into recent computing research,

especially research on “games with a purpose”, whereby one outsources certain activ-

ities (e.g., labeling images) to humans in an entertaining way (Von Ahn and Dabbish

[2008]); research on large-scale urban dynamics (Crandall et al. [2009]; Cranshaw et al.

[2012]; Noulas et al. [2012]); research on how location-based services affect people’s be-

havior (Bentley et al. [2012]; Cramer et al. [2011]; Lindqvist et al. [2011]); and research

on predicting popularity of pictures based on social features (van Zwol et al. [2010]).
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2 Chapter 1. Introduction

1.1 Psychological Maps

The geographic map of a city consists of, among other entities, streets and buildings

and reflects an objective representation of the city. By contrast, a psychological map

(also known as mental map) is a subjective representation that each city dweller carries

around in his/her head. Lynch [1960], in the seminal book The Image of the City

states:

“Most often our perception of the city is not sustained, but rather partial,

fragmentary, mixed with other concerns. Nearly every sense is in operation,

and the image is the composite of them all.”

To understand the evolution of this perception, consider a tourist. Tourists who just

arrived in a new city start with few reference points (e.g., a hotel, the main street, a

couple of tube stations) and then, as they expand the representation in their minds,

they slowly begin to build a more thorough picture.

Over the years, cities have been built and maintained in a way that it is imagin-

able, i.e., that mental maps of the city are clear and economical of mental effort. That

is because studies have posited that good imaginability allows city dwellers to feel at

home and increase their community well-being (Lynch [1960]). People generally feel

at home in cities whose neighborhoods are recognizable. Comfort resulting from little

effort, the argument goes, would impact individual and ultimately collective well-being.

The good news is that the concept of imaginability is quantifiable. Since Stanley

Milgram’s work in New York and Paris (Milgram et al. [1972]; Milgram and Jodelet

[1976]), researchers have drawn recognizability maps by recruiting city dwellers, show-

ing them scenes of their city, and testing whether they could recognize where those

scenes were: depending on which places are correctly recognized, one could draw a

collective psychological map of the city. The problem is that such an experiment takes

time (in Milgram’s, each participant spent 90 minutes for the recognition task), is costly

(because of paid participants), and cannot be conducted at scale (so far the largest one

had 200 participants). That is why the link between recognizability of a place and

well-being of its residents has been hypothesized, qualitatively shown, but has never

been quantitatively tested at scale.

On the first part of this work we test whether the recognizability of a place makes

it a more desirable part of the city to live. We make the following contributions:

• We build a crowdsourcing web game that puts the recognizability of London’s

streets to the test (Chapter 3). It picks up random locations from Google Street
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View and tests users to see if they can determine in which subway location (or

borough or region) the scene is. In a period of five months, we have collected data

from 2,255 users, have built a collective recognizability map of London based on

their responses, and quantified the recognizability of different parts of the city.

• By analyzing the recognizability of London regions (Section 4.1), we find that

the general conclusions drawn by Milgram for New York hold for London with

impressive consistency, suggesting external validity of our results. Central London

is the most recognizable region, while South London has little cognitive coverage.

Londoners would answer “West London” when unsure, making the most incorrect

guesses for that region - hence a West London response bias. We also find that

the mental map of London changes depending on where respondents are from -

London, UK, or rest of the world.

• We test to which extent an area’s recognizability is explained by the area’s expo-

sure to people (Section 4.2). In particular, we study exposure to users of three

social media services and to underground passengers. By collecting 1.2M Twitter

messages, 224K Foursquare check-ins, 76.6M underground trips, and 1.3M Flickr

pictures in London, we find that, the more a social media platform’s content is

geographically salient (e.g., Flickr’s), the better proxy it offers for recognizability.

• Upon census data showing the extent to which areas are socially deprived or not,

we test whether recognizability of an area is negatively related with the area’s

socio-economic deprivation (Section 4.3). We find that recognizability is indeed

low in areas that suffer from housing deprivation, poor living conditions, and

crime.

1.2 Ranking of Pictures in Photo-Sharing Websites

On the second part of the work, we use the data collected, along with other information,

to contribute to the problem of identifying interesting and memorable geo-referenced

pictures in photo sharing sites.

Currently, to determine which pictures are interesting and memorable, researchers

have heavily explored solutions based on either metadata (e.g., likes, comments) or

visual features, or the combination of both. The main idea is that interesting pictures

are the ones that have received a considerable number of likes or that contain the visual

cues people often perceive to be interesting. Unfortunately, as we shall see in Section

5.1, metadata happens to be sparse (only few pictures have considerable number of
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likes), and visual extraction is computationally expensive and needs to be augmented

with additional classes of features to guarantee good levels of accuracy.

To complement those solutions, we set out to consider a key element that has been

hitherto left out: the idea of neighborhood. Pictures taken in a neighborhood reflect

the neighborhood itself and people’s idea of it. Since urban sociology has already

dealt with those psychological aspects, we use prominent urban theories that aimed

at explaining, for example, why a neighborhood is recognizable and distinctive (Lynch

[1960]; Milgram et al. [1972]), and why it is perceived to be beautiful, quiet, and happy

(Peterson [1967]). In so doing, we make the following main contributions:

• We gather geo-referenced Flickr pictures and contextual variables (e.g., weather

conditions) in the city of London (Section 5.2).

• We identify six main qualities that describe the way a city is psychologically

perceived (Section 5.3) and quantify those qualities using proxies computed from

Flickr and Foursquare data (Section 5.4).

• We rank Flickr pictures based on those proxies and find that such a ranking

enjoys three main desirable properties (Section 5.5). First, it is effective, in

that, the ranked results are similar yet complementary to the results produced

by existing metadata-based solutions. Second, it is computationally inexpensive

and, as such, scalable: our proxies are defined at the level of city rather than of

picture and can be computed offline (no need for real-time updates). Third, it is

aware of contextual factors (Section 5.6): different values of the same proxy can

be computed as a function of, for example, the time of day or weather condition.

As we shall conclude in Section 4.4, these results suggest that, to offer a better

mobile experience, future multi-modal learning research should further explore the idea

of combining traditional features with domain-specific ones.



Chapter 2

Background

2.1 Hand-drawn maps of the city

Figure 2.1: Hand-drawn maps of San Francisco from Annechino and Cheng [2011]
experiment

In“The Image of the City”, Lynch [1960] created a psychological map of Boston by

interviewing Bostonians. Based on hand-drawn maps of what participants’ “versions of

Boston” looked like, he found that few central areas were know to almost all Bostonians,

while vast parts of the city were unknown to its dwellers. More than ten years later,

Stanley Milgram repeated the same experiment in a variety of other cities (e.g., Paris,

New York). Milgram was an American social psychologist who conducted various

studies, including a controversial study on obedience to authority and the original small

world (six degree of separation) experiment (Milgram [1977]). Milgram was interested

in understanding mental models of the city, and he turned to Paris to study them: his

participants drew maps of what “their versions of Paris” looked like, and these maps

5



6 Chapter 2. Background

were combined to identify the intelligible and recognizable parts of the city. Since then,

researchers have collected people’s opinions about neighborhoods in the form of hand-

drawn maps in different cities, including (more recently) San Francisco (Annechino and

Cheng [2011]) and Chicago (Bentley et al. [2012]).

2.2 Identification of city scenes

Figure 2.2: Scenes from New York from Milgram et al. [1972] experiment

The problem with the hand-drawn map experiment is that it takes time and it

is not clear how to aggregate the variety of unique configurations of answers that are

bound to appear. One way of fixing that problem is to place a number of constraints

on the participants when externalizing their maps. In this vein, before his experience

with Paris, Milgram constrained the experiment to the point of reducing it to a simple

question: “If an individual is placed at random at a point in the city, how likely is he

to know where he is?” (Milgram et al. [1972]). The idea is that one can measure the

relative “imaginability” of cities by finding the proportion of residents who recognize

sampled geographic points. That simply translates into showing participants scenes of

their city and testing whether they can recognize where the scenes are. Milgram did

setup and successfully run such an experiment in lecture theaters. Each participant

spent roughly 90 minutes on the task, and he collected responses from as many as 200

participants for New York. Hitherto the experimental setup in which maps are drawn

has been widely replicated (Annechino and Cheng [2011]; Bentley et al. [2012]), while

that in which scenes are recognized has received far less attention. Next, we try to

re-create the latter experimental setup at scale by building an online crowdsourcing

platform in which each participant plays a one-minute game, a game with a purpose.



Chapter 3

Urbanopticon London

We have created an online game that asks users to identify Google Street View

(Panorama) scenes 1 (an example is shown in Figure 3.1) of London. The project aims

to learn how its players mentally map different locations around the city, ultimately

creating a London-wide map of recognizability.

Figure 3.1: Example of Google Street View Scene

3.1 Mechanics

For each round, the game shows the player a randomly-selected scene in London and

ask him/her to guess the nearest subway station, or generally what section of the city

(borough/region) (s)he is seeing. Answers shouldn’t be too hard, and that is why we

choose the finest-grained answer to be subway stations as those are the most widely-

used point of references among Londoners and visitors alike. To avoid sparsity problems

1http://bit.ly/SebbCj

7
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8 Chapter 3. Urbanopticon London

(too few answers per picture), a random scene is selected within a 300-meter radius

from a tube station but not next to it (to avoid easing recognizability). The idea is

that, by collecting a large number of responses across a large number of participants,

we can determine which areas are recognizable. By testing which places are remarkable

and unmistakable and which places represent faceless sprawl, we are able to draw the

recognizability map of London.

3.2 Gamification

Having the game at hand, now the question is whether individuals are likely to adopt

and play with it. To increase such a likelihood, we borrow engagement strategies from

what is known as “gamification”. This relies on identifying the techniques that make

video games enjoyable and applying them to other kinds of “more serious” activities,

from training soldiers to tackling difficult scientific problems Werbach [2012]. The

strategies we implemented in our game include:

Giving Points. Von Ahn and Dabbish [2008] states: “One of the most direct

methods for motivating players in games is to grant points for each instance of successful

output produced. Using points increases motivation by providing a clear connection

among effort in the game, performance, and outcomes”. When playing the game, each

player receives a score that increases with the number of correct guesses of where

a given picture was taken. To enhance the gaming experience, we reward not only

strictly correct guesses (which are the only ones considered for experimental sake) but

also “geographically close” ones by awarding points based on the Euclidian distance

d between a user’s guess and the correct answer. The idea is that guesses within

a radius of 300 meters still amount to reasonable scores, while those outside it are

severely and increasingly penalized depending on how far they are from the correct

answer. To reduce the number of random guesses, we allow for an “I Don’t Know”

answer, which still rewards players with 15 points. After being presented with 10

pictures, the player has completed one round and (s)he can share the resulting score

on Facebook or Twitter with only one click. The score is supposed to facilitate the

player’s assessment of his/her performance against previous game rounds or against

other players (Von Ahn and Dabbish [2008]). From the distribution of number answers

for each player (Figure 3.2a), we find multiples of 10 to be outliers, suggesting that

players do tend to complete at least one round. After the first round, each player is

also shown a small questionnaire (e.g., age, gender, location) (s)he is asked to complete.

Participants engaging in multiple rounds are identified through browser cookies, which
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uniquely identify users 2.
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Figure 3.2: Number of Answers for Each User/Scene. (a) Each game round consists of
10 pictures - that is why outliers are multiples of 10. The analysis considers the 40%
of users who have completed one round. (b) The number of answers each scene has
received is normally distributed thanks to randomization.

Social Media Integration. Players can post their scores on the two social media

platforms of Facebook and Twitter after each round with a default message of the form

“How well do you know London? My score . . . ”. The goal of such a message is to make

Facebook and Twitter users aware of the game.

Randomness. “Games with a purpose should incorporate randomness. For ex-

ample, inputs for a particular game session are typically selected at random from the

set of all possible inputs. Because inputs are randomly selected, their difficulty varies,

thus keeping the game interesting and engaging for expert and novice players alike.”

(Von Ahn and Dabbish [2008]). In our game, pictures are chosen randomly with the

hope of creating a sense of freshness and increasing replay value. In addition, ran-

domizing the selection of picture is a good idea for experimental sake. Randomization

reduces spatial biases and leads to reliable results, producing a distribution of answers

for each picture that is not skewed. In our analysis, such a distribution will turn out

to be distributed around a mean of 37.11 (Figure 3.2b), and no scene has less than 20

answers.

Overall, by providing a clear sense of progression and goals that are challenging

enough to maintain interest but not so hard as to put players off, we hope to capture

that sense of engagement typical of gamification platforms.

2Unless two users use the same computer and the same username on it. This situation should
represent a minority of cases though.
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3.3 From beta to final

We build a working prototype featuring those desirable engagement properties and

ascertain the extent to which it works in a controlled beta test involving more than 45

urban planners, architects, and computer scientists. We receive four main feedbacks:

Ease. The game is found to be difficult and, as such, frustrating to play. That is

because random pictures from every (remote) part of London are shown. One player

said: “I’ve been living in London for the past 35 years and I felt like a tourist. There

were so many places I had no clue where they were. It is frustrating to get a score of 200

[out of 1000]! ”. To fix this problem, we manually add pictures of easily recognizable

places (e.g., spots that are touristic or close to subway stations) and show them together

with the randomly selected places from time to time. For the purpose of study, these

“fake” pictures are ignored - they are just meant to improve the gaming experience and

retention rate.

Feedbacks. The beta version does not show any feedback about which are the

correct answers. A large number of testers feel that the game could be an opportunity

to learn more about London. That is why, for each incorrect guess, the final version of

the game also shows the right answer.

Sense of purpose. The site does not contain any explanation about the research

aims behind the game. Yet, our testers feel that providing a sense of purpose to players

was essential. The final version contains a short explanation of how the game is designed

for purposes beyond pure entertainment, and how it might be used to promote urban

interventions where needed.

Beyond one type of answer. The game asks players to guess the correct subway

station. Many testers feel the need for coarser-grained answers. “I know this is West-

minster [a borough in London], but I have no idea of the exact tube station!”, says one

player. The final version thus allows for multiple types of answers: not only subway

stations but also boroughs (50 points) or regions such as Central London and South

London (25 points).

To sum up, the final version of the game works by giving a player ten (random

plus morale boosting) images in Greater London (Figure 3.3). The player can either

guess the tube station, borough, region, or click “Don’t know” to move ahead. At

the end of the round, the player is given a total score based on the fraction of correct

answers. The score can be automatically shared on Facebook or Twitter, and the player

is presented with a survey that asks for personal details like birth location, place of

employment, and familiarity with the city itself.
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Figure 3.3: Screenshot of the Crowdsourcing Game. The city scene is on the left, and
the answer box on the right.

3.4 Launch

We make the final version of the game publicly available and issue a press release in

April 2012 (Figure 3.4). Shortly after that, the game is featured in major newspa-

pers, including The Independent (UK national newspaper) and New Scientist. After

5 months, we collect data from as many as 2,255 participants: 739 connecting from

London (IP addresses), 973 from the rest of UK, and 543 outside UK. A fraction of

those participants (287) specified their personal details. The percentage of male-female

participants overall is 60%-40% and slightly changes depending on one’s location: it

stays 60%-40% in London but changes to 65%-35% in UK and 45%-55% outside it.

Also, across locations, average age does not differ from London’s, which is 36.4 years

old. As for geographic distribution of respondents, we find a strong correlation between

London population and number of respondents across regions (r = 0.82). Having this

data at hand, we are now ready to analyze it.
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London UK World Total

Answers 7,238 8,705 3,972 19,915
Users 739 973 543 2,255

Gender (%)
Male 59.13 64.34 46.51 59.58
Female 40.87 35.66 53.49 40.42

Age (%)
<18 0.87 0.78 0.00 0.70
18-24 16.52 24.81 9.30 19.16
25-34 41.74 38.76 51.16 41.81
35-44 16.52 13.95 20.93 16.03
45-54 13.91 13.95 6.98 12.89
55-64 5.22 6.20 9.30 6.27
65+ 5.22 1.55 2.33 3.14
Mean (years) 36.39 33.88 34.52 34.98

Table 3.1: Statistics of Participants. Gender and age are available for those 287 par-
ticipants (13%) who have been willing to provide personal details.
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Figure 3.4: Initial Visitors on the Site. Peaks are registered for: (1) Cambridge press
release; (2) The Independent article; (3) New Scientist article; and (4) residual sharing
activity on Facebook and Twitter.
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Recognizability Results

4.1 Relative recognizability

The goal of this project is to quantify the relative recognizability of different parts

of London. Since familiarity with different parts of the city might depend on place

of residence, we filter away participants outside London and consider Londoners first.

According to the Greater London Authority’s division, London is divided into five

different city (sub) regions 1. Thus, our first research question is to determine which

proportion of the Google Street View scenes from each region were correctly attributed

to the region. Since users were asked to name either the borough of each scene or the

subway station closest to it, we consider an answer to be correct, if the region of the

scene is the same as the region of the answered borough/subway station. For each of

the five regions, we compute the region’s percentage recognizability by summing the

number of correct answers and then dividing by the total number of answers. Figure 4.1

reports the results. Clearly, Central London emerges as the most recognizable of the

five regions, with about two and a half as many correct placements as the others.

Conventional wisdom holds that Central London is better known than other parts of

the city, as it hosts the main squares, major railway and subway stations, and most

popular touristic attractions and night-life “hotspots”. Interestingly, the East Region

is twice as recognizable than the North Region. It is difficult to draw conclusions on

why this is. However, the three most likely explanations are:

Sample Bias. It might depend on the distribution of the home and work addresses

of our participants. However, that is unlikely, as the correlation between London

population across regions and number of participants who answered the survey is as

1http://bit.ly/UewEtu
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Figure 4.1: Recognizability Across London Regions. This is computed based on
whether scenes are recognized at: (a) region level; (b) borough level; or (c) subway
station level.

high as r = 0.82.

Large volume of visitors. High recognizability for the East part of the city can

be explained by an experiential effect. Large numbers of people are expected to visit

that part of the city: workers at Canary Wharf, visitors to Olympic Park, Excel,

City airport, and O2 arena. A recent study of Londoners’ whereabouts on Foursquare

conducted by Bawa-Cavia [2011] found them to be skewed towards mostly Central

London and partly East London - especially the central east part. The north parts are

unlikely to have been visited by similar volumes of people. In Section 4.2, we will see

that there is a significant correlation between recognizability of an area and the area’s

exposure to specific subgroups of individuals. For example, we will see that the more

passengers use an area’s subway station, the more recognizable the area (r = 0.45).

Distinctiveness of the built environment. The East region includes most of the

City and Canary Wharf (financial area with skyscrapers), as well as the O2 arena and

Docklands region, all more visually recognizable areas than comparable parts of the

North region. Also, East London has been affected by large homogeneous post-war

housing projects that make the area quite distinctive (Glendinning and Muthesius

[1994]).

Next, we adopt a more stringent criterion of recognition, that is, we determine

what proportion of the scenes in each of the five regions were placed in the correct

borough. By analyzing the answers at borough-level, we find substantial differences

(Figure 4.1b). A scene placed in Central London is almost three times more likely to

be placed in the correct borough than a scene in East London, and are four times more

likely than a scene in West or North London.

When we then apply even a more stringent criterion of recognition (subway sta-
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Figure 4.2: Cartogram of London Boroughs. The geographic area is distorted based
on borough’s recognizability.

tion), the correct guesses are drastically reduced (Figure 4.1c), as one expects. Inter-

estingly, the information value of Central London is less pronounced. Central London

scenes are only one and a half time more likely to be associated with the correct subway

station than a scene in East London. Guessing the correct subway stations is hard,

the more so in the central part of the city where stations are close to each other. Dur-

ing post-game interviews, one participants noted: “Perhaps people know where places

are, but have difficulty identifying which of the [subway stations] it is actually close

to.” Despite these differences, the relative recognizability (ranked recognizability of the

five regions) does not change. Figure 4.2 shows the cartogram of London boroughs.

The geometry of the map is distorted based on recognizability scores. Central London

dominates, while South London is relegated at the bottom.

Another aspect to consider is that one is likely to recognize areas closer to where

one lives or works. Based on our survey respondents, we find that there is no relation-

ship between recognizability of a scene and a respondent’s self-reported home location.

On the contrary, participants are more likely to recognize scenes in Central London

rather than scenes in their own boroughs.

The recognizability of each region does not change depending on which parts of

the city Londoners live, but does change depending on whether participants are in

UK or not. Based on our participants’ IP addresses 2, we infer the cities where they

2There might be cases of misclassification of cities and of people who use VPNs. However, at the
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Figure 4.3: Recognizability Across London Regions by Respondent Location. On the
maps of London, lighter colors correspond to more recognizable boroughs.

But identified as
Region
actually is

C E W N S
Combined

Errors
Don’t
Know

Central 40.79 4.52 4.33 1.03 2.13 12.02 47.19
East 6.97 16.58 6.80 6.30 7.46 27.53 55.89
West 10.10 6.42 12.70 5.77 5.92 28.21 59.09
North 6.85 4.79 12.67 8.90 7.53 31.85 59.25
South 6.04 5.37 11.41 3.36 5.37 26.17 68.46

Response Bias* 29.96 21.1 35.21 16.46 23.04

* popular among wrong guesses

Table 4.1: Matrix of Correct Classifications and Misclassifications.

are connecting from, and compute aggregate correct guesses by respondent location -

that is, by whether participants connect from London, from the rest of UK, or outside

UK (Figure 4.3). As expected, the number of correct guesses drastically decreases for

participants outside London - but with two exceptions. First, scenes of South London

are more recognizable for participants in the rest of UK than for Londoners themselves.

That is because Londoners tend to know Southfields (known as “The Grid”, which a

series of parallel roads that consist almost entirely of Edwardian terrace houses), while

people in the rest of UK recognize scenes not only in Southfields, but also in Clapham

South, Balham, South Wimbledon, and Tooting Broadway in that order. Second,

recognizability of Central London remains the same across participants from all over:

participants outside UK are as good as those inside it at recognizing scenes in Central

London. Hosting the most popular tourist attractions in the world, Central London is

vividly present in the world’s collective psychological map.

three coarse-grained levels of London vs. rest of UK vs. rest of the world, misclassification should
have a negligible effect.
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So far we have focused on correct guesses. Now we turn to errors that respondent

often make, looking for widely-shared sources of confusion. We wish to know in which

regions (e.g., North, South) a scene from, say, East London is often misplaced. To

this end, Table 4.1 shows a matrix reporting both the percentage of correct guesses

and that of wrong ones for each region. Central London is pre-eminent in Londoners’

shared psychological maps as it is hardly confused with any other region. At times,

instead, South and North London are thought to be West. It seems that, if respondents

do not know where to place a scene, they would preferentially opt for West London.

Indeed, the West part of the city is the most popular answer for those who end up

guessing wrongly (last row in Table 4.1). We found a West London response bias, as

Milgram et al. [1972] would put it 3.

Summary. Taken together, the results suggest two generalizable principles on

why people recognize an area. They do so because they are exposed to it (Central

London attracts dwellers from all over the city), and because the area offers a distinctive

architecture (e.g., stadium, tower building) or cultural life (as the central part of East

London notoriously does). Milgram found the very same two principles to hold for New

York as well in 1972. So much so that Milgram hypothesized that the extent to which a

scene will be recognized can be described by R = f(C ·D), where R is recognition (our

recognizability), C centrality of population flow (in the next section, we will see how to

compute flow of subway passengers), and D is the social or architectural distinctiveness.

It follows that, with simplifying assumptions (e.g., f is a linear relationship), one could

derive an area’s social or architectural distinctiveness by simply dividing recognizability

by subway passenger flow. Since we are interested in the relative recognizability and

flow, we take the rank values for these two quantities, compute their ratio, and report

the results in Table 4.2. The most distinctive area is Blackfriars. It should be no

coincidence that its older parts happen to“have regularly been used as a filming location

in film and television, particularly for modern films and serials set in Victorian times,

notably Sherlock Holmes and David Copperfield” 4. In line with Milgram et al. [1972]’s

experiment with New Yorkers , we find that the acquisition of a mental map is not

necessarily a direct process but can also be indirect through, for example, movies. The

following quote from one of our participants is telling: “I’ve done the quiz 3 or 4 times

in the last couple of days, and am surprised how well I am doing - not just because I

live in New Zealand, many thousands of kilometres from London (although I did live

there for 10 years), but mainly because I am getting good scores on parts of London I

3Milgram found that New Yorkers would opt for answering “Queens” when unsure - hence he
referred to a “Queens response bias”

4 http://en.wikipedia.org/wiki/Blackfriars,_London

http://en.wikipedia.org/wiki/Blackfriars,_London
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name R C rR rC D

Blackfriars 9.09 4583 30 2 15.00
Park Royal 20.00 13119 61 5 12.20
Pinner 10.00 13823 37 6 6.17
Royal Oak 10.00 16681 37 8 4.63
Westbourne Park 16.66 24593 54 13 4.15
Hornchurch 7.14 11988 16 4 4.00
Essex Road 5.55 2027 4 1 4.00
Oakwood 11.11 22321 41 11 3.73
Hillingdon 6.67 9482 11 3 3.67
Acton Town 40.00 33022 73 22 3.32

Table 4.2: Subway Stations of Socially/Architecturally Distinctive Areas. For each
area, R is the recognizability, C is the flow centrality (number of unique subway pas-
sengers), rR and rC are the corresponding ranked values, and D is the normalized
distinctiveness.

have never been to. North and Eastern boroughs like Brent and Haringey seem to be

recognisable, even though I have never knowingly gone there. Possibly some recognition

from TV programs, or just - could it be - that there is something intrinsically North

London about certain types of houses? ”

4.2 Recognizability and Exposure

4.2.1 Digital Data for Exposure

The goal of the game is to quantify the recognizability of the different parts of the city.

It has been shown by Milgram et al. [1972] that New Yorkers are able to recognize an

area partly because they were exposed to it. Thus, to quantify the extent to which it is

so in London, we measure the exposure that an area receives by computing the number

of overall unique individuals who happen to be in the area. These individuals are of

four subgroups: those who post Twitter messages while in the area, those who visit

locations (e.g., restaurants, bars) and say so on Foursquare, those who take pictures of

the area and post them on Flickr, and those who catch a train in the closest subway

station. We are thus able to associate the recognizability of an area with the area’s

exposure both in the physical and virtual worlds.

Twitter geo-enabled users. Our goal is to retrieve as large and unbiased a sample

of geo-referenced tweets as possible. To do this, we use the public streamer API,
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which connects to a continuous feed of a random sample of all ever shared tweets, and

crawl geo-referenced tweets within the bounding box of Greater London. During the

period that goes from December 25th 2011 to January 12th 2012, we retrieve 1,238,339

geo-referenced tweets posted by 57,615 different users.

Foursquare users. Gowalla, Facebook Places, and Foursquare are popular mobile

social-networking applications with which users share their whereabouts with friends.

In this work, we consider the most used social-networking site in London - Foursquare

(Bawa-Cavia [2011]). Users can check-in to locations (e.g., restaurants) and share their

whereabouts. We consider the geo-referenced tweets collected by Cheng et al. [2011a].

They collected Twitter updates (single tweets) that report Foursquare check-ins all

over the world. We take the 224,533 check-ins that fall into Greater London. Those

check-ins are posted by 8,735 users.

Flickr users. We collect photo metadata from Flickr.com using the site’s public

search API. To collect all publicly available geo-referenced pictures in the Greater

London area, we divide the area into 30K cells, search for photos in each of them,

and retrieve metadata (e.g., tags, number of comments, and annotations). The final

dataset contains metadata for 1,319,545 London pictures geo-tagged by 37,928 users.

This reflects a complete snapshot of all pictures in the city as of December 21st 2011.

Subway passengers. In 2003, the public transportation authority in London intro-

duced an RFID-based technology, known as Oyster card, which replaced traditional

paper-based magnetic stripe tickets. We obtain an anonymized dataset containing a

record of every journey taken on the London rail network (including the London Un-

derground) using an Oyster card in the whole month of March 2010. A record registers

that a traveler did a trip from station a at time ta, to station b at time tb. In total, the

dataset contains 76.6 million journeys made by 5.2 million users, and is available upon

request from the public transportation authority.

Demographics of the individuals under study. Activity analyzed in this work

clearly relates only to certain social groups, and the exclusionary aspect of certain

segments of the population should be acknowledged. It would be thus interesting to

compare the demographics of the different types of individuals we are studying here.

From a recent Ignite report on social media (Ignite [2012]), global demographics of

Foursquare and Twitter show a pronounced skew towards university educated 25-34

year old women (66% women for Foursquare and 61% for Twitter), while those of

Flickr.com
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Flickr show a pronounced skew towards university educated 35-44 year old women (54%

women). The demographics of subway passengers is by far the most representative but

is also slightly skewed towards male with above-average income in the two age groups

of 25-44 and 45-59 (TfL [2011]). Instead, demographics of our London gamers show a

skew towards 25-34 year old men (60% men). Thus, compared to social media users,

our gamers reflect similar age groups but are more likely to be men. This demographic

comparison should inform the interpretation of our results.

4.2.2 Recognizability and Exposure

Subway passengers Flickr users Foursquare users Geo−enabled
 Twitter users

r = 0.40 r = 0.36 r = 0.33 r = 0.21

Figure 4.4: Area recognizability vs. Exposure to Four Classes of Individuals. Correla-
tions are computed at borough level.

After computing each area’s exposure to people of four subgroups5 (i.e., to users

of the three main social media sites and to underground passengers), we are now ready

to relate the area’s exposure to its recognizability. We compute the Pearson’s product-

moment correlation between recognizability and exposure, for all four classes of individ-

uals. Pearson’s correlation r ∈ [−1, 1] is a measure of the linear relationship between

two variables. We expect that the more a given class of individuals is representative of

the general population, the higher its correlation with recognizability. When computing

the correlation, if necessary (e.g., because of skewness), variables undergo a logarithmic

transformation. Figure 4.4 shows the relationship between recognizability and exposure

to the four classes of individuals, with corresponding correlation coefficients (which are

all significant at level p < 0.001). To put results into context, we should say that

the exposure measures derived from the three social media sites all show very similar

pair-wise correlations with exposure to subway passengers (r ≈ 0.60), yet their cor-

relations with recognizability show telling differences. Given that subway passengers

are slightly more representative of the general population than social media users (TfL

5By area, we mean UK census area also known as Lower Super Output Area, which we will
introduce in Section 4.3.
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Exposure Central East West North London

Subway 0.87 0.65 0.63 0.95 0.73
Flickr 0.62 0.50 0.27 0.89 0.63
Foursquare 0.72 0.36 0.22 0.97 0.58
Twitter 0.56 0.28 0.11 0.97 0.52

Table 4.3: Correlations between recognizability and Exposure by Region. Correlations
are computed at region level. South London does not have enough subway stations to
attain statistically significant correlations.

[2011]), it comes as no surprise that they show the highest correlation (r = 0.40). Both

Flickr and Foursquare users are also associated with robust correlations (r = 0.36 and

r = 0.33). By contrast, having the least geographically salient content, Twitter shows

a moderate correlation (r = 0.21). If we break the results down to regions (Table 4.3)

and show which regions’ recognizability is easy to predict from exposure and which not,

we see that exposure to any social media subgroup of individuals would predict the

recognizability of North London (r = 0.95). By contrast, the subgroup whose exposure

correlates with recognizability the most in Central London is Foursquare (r = 0.72),

and in East London is Flickr’ (r = 0.50). That is largely because Foursquare activity

is skewed towards Central London.

4.3 Recognizability and Well-being

As already mentioned in the introduction, Lynch [1960] outlined a theory connecting

urban recognizability to a person’s well-being. To test this theory, we now gather census

data on an area’s socio-economic well-being and relate it to the area’s recognizability.

Facets of Socio-economic Well-being. Since 2000, the UK Office for National

Statistics has published, every three or four years, the Indices of Multiple Deprivation

(IMD), a set of indicators which measure deprivation of small census areas in England

known as Lower-layer Super Output Areas (Mclennan et al. [2011]). These census areas

were designed to have a roughly uniform population distribution so that a fine-grained

relative comparison of different parts of England is possible. As per formulation of IMD,

deprivation is defined in such a way that it captures the effects of several different fac-

tors. More specifically, IMD consists of seven components: 1. Income deprivation (e.g.,

number of people claiming income support, child tax credits or asylum); 2. Employment

deprivation (e.g., number of claimants of jobseeker’s allowance or incapacity benefit);

3. Health deprivation (e.g., including a standard measure of premature death, rate of
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(b) Area Level

Figure 4.5: Correlation between recognizability and Deprivation at the Level of (a)
Borough or (b) Area. For both, the composite index IMD is not shown as it does not
correlate. Also, correlations significant at level p < 0.001 are shown with black (as
opposed to grey) bars.

adults suffering mood and anxiety disorders); 4. Education deprivation (e.g., education

level attainment, proportion of working adults with no qualifications); 5. barriers to

Housing and services (e.g., homelessness, overcrowding, distance to essential services);

6. Crime (e.g., rates of different kinds of criminal act); 7. Living Environment Depri-

vation (e.g., housing condition, air quality, rate of road traffic accidents); and finally a

composite measure known as IMD which is the weighted mean of the seven domains.

Recognizability and Well-being. We start at borough level, correlate each facet

of deprivation with recognizability, and obtain the results shown in Figure 4.5a 6.

We find that the composite score IMD does not correlate with recognizability at all.

Neither does income, education, or (un)employment. What correlates are aspects less

related to economic well-being and more related to social well-being: boroughs with

low recognizability tend to suffer from housing deprivation (r = 0.64) and poor living

environment (r = 0.62). Given the strong correlations 7, one could easily predict which

boroughs suffer from housing deprivation and poor living conditions based on relative

recognizability scores.

One might now wonder whether that would also be possible from social media

data. We correlate each of the deprivation facets with exposure to the four subgroups

6To ease the interpretation of the correlation coefficients, we transformed (inverted) the deprivation
scores, in that, the higher they are (e.g., high crime index), the better it is (e.g., low-crime area). We
would thus expect the correlations between transformed deprivation scores and recognizability to be
generally positive.

7Unless otherwise noted all correlations are significant at level p < 0.001.
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(subway passengers plus users of three social media). For housing, we see that data on

recognizability is hardly replaceable by social media data. Boroughs not suffering from

housing deprivation (as per log-transformed score) are more recognizable (r = 0.64),

and yet do not seem to be more exposed to our subgroups - all correlations between

housing deprivation and exposure are not statistically significant. Instead, for living

environment, we see that data on recognizability can be replaced by social media data.

Boroughs with good living conditions are more recognizable (r = 0.61), and do tend to

be more exposed to subway passengers (r = 0.56), Flickr users (r = 0.57), Foursquare

users (r = 0.52), and Twitter users (r = 0.46, p < 0.01).

Here we are not claiming that each census area in a borough is the same. If we

were to say that, we would commit an ecological fallacy. For indicators that show high

variability within a borough, however, there is a danger of committing such a fallacy.

We therefore investigate correlations at the lower geographic level of census area. We

correlate each facet of deprivation with recognizability and obtain the results shown in

Figure 4.5b. Again, the composite score IMD does not correlate with recognizability,

while housing, living environment, and crime all do: areas with low recognizability

tend to suffer from housing deprivation (r = 0.29), poor living environment (r = 0.23),

and crime (r = 0.22). Crime has been added to the list of indicators associated with

recognizability, and that is because crime is one of the deprivation facets that varies

the most within a borough among the seven.

To sum up, from the previous results, we might say that, based on recognizability

scores of areas, we could predict whether an area suffers from crime or not. Instead,

based on recognizability scores of boroughs, one could predict not only whether but also

to which extent a borough suffers from poor living conditions and housing deprivation.

By contrast, social media data could only be used to identify boroughs with poor living

conditions.

4.4 Discussion

This work is deeply rooted in early urban studies but also taps into recent computing

research, especially research on “games with a purpose”, whereby one outsources cer-

tain activities (e.g., labeling images) to humans in an entertaining way (Von Ahn and

Dabbish [2008]); research on large-scale urban dynamics (Crandall et al. [2009]; Cran-

shaw et al. [2012]; Noulas et al. [2012]); and research on how location-based services

affect people’s behavior (Bentley et al. [2012]; Cramer et al. [2011]; Lindqvist et al.

[2011]). Initially, with this study, we were aiming at informing social media research
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in the urban context by establishing which social media data could be used as proxy

for recognizability and exposure (key aspects in studies of urban dynamics). It turns

out that the answer is complex, suggesting a word of caution on researchers not to

take social media data at face value. However, there is one generalizable finding: the

more the content is geographically salient (e.g., Foursquare’s whereabouts vs. Twitter

messages), the more it is fit for purpose.



Chapter 5

Ranking City Pictures Using Urban

Data

In this chapter, we use the data collected from the previous experiment, along with

other urban data, to contribute to the problem identifying interesting geo-referenced

pictures in photo sharing sites.

5.1 Related Work

To identify the pictures users tend to like, researchers have often used metadata. This

is generally of two types. The first is textual metadata and is the most widely used:

it consists of comments and tags users have annotated a picture with (van Zwol et al.

[2010]). The second type of metadata consists of social features and has received less

attention. van Zwol et al. [2010], for example, used the communication and social

network of Flickr users for predicting the number of likes (favorites) a picture has

received. They found that social features alone yielded a good baseline performance,

but the addition of textual features resulted in greatly improved precision and recall.

Despite showing good accuracies, approaches that rely on metadata suffer from

coverage. That is because the frequency distributions of tags, comments, or any other

social feature are power law: few pictures are heavily annotated, while many have little

(if any) annotation (Sigurbjörnsson and van Zwol [2008]). As such, approaches solely

relying on metadata do not work for most of the pictures.

In those situations, researchers have explored the use of visual categorization.

The most effective method is called bag-of-word model (Datta et al. [2006]). This

computes descriptors at specific points in an image. It has been shown that, given an

image’s descriptors, machine learning algorithms are able to predict whether people

25
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tend to find the image interesting and appealing (Redi and Merialdo [2012]). The

problem with visual categorization is that it is computationally expensive: it might

take weeks to process 380 hours of video frames (van de Sande et al. [2011]). To fix

that, research effort has gone into designing faster methods and building new parallel

computing architectures.

Within the multimedia research community, a considerable number of research

papers have been proposing the combined use of metadata and visual features. These

works employ multi-modal machine learning approaches that model topical, visual, and

social signals together. Their goal has mainly been to predict which pictures users find

appealing and aesthetically pleasing (van Zwol et al. [2010]).

Those previous solutions have been designed to fit the general-purpose scenario

of web ranking. However, when considering how pictures will be consumed on mobile

phones, one might find that location becomes key: ranking pictures in location-based

services might consider whether the neighborhoods in which the pictures were taken

have high recognizability, are highly visited, beautiful, or quiet. We set out to do just

that by identifying desirable urban qualities from seminal work done in the 1970s.

5.2 Datasets

Within the bounding box of the city of London, we crawled 1.2M geo-referenced pictures

using the Flickr public API. We also crawled their metadata, which includes: latitude

and longitude points, number of comments, tags, upload date, taken date, number

of favorites (those are Flickr’s equivalent of likes), and number of views. The last

two values have been used by past research as a signal of user preference for pictures

(Yildirim and Süsstrunk [2013]): the higher a picture’s ratio of number of favorites

to number of views, the more the picture’s views have been converted into user likes.

Figure 5.1 shows the density of photos in our dataset across London.

In addition to geo-referenced pictures, we collect data about two contextual fac-

tors. The first is ‘time of the day’ and is computed based on the time each picture

was taken: if it was taken between 6am and 10pm, we consider it to be taken during

the ‘day’ (similar to Mart́ınez and Santamaŕıa [2012]); otherwise, we consider it to be

taken at ‘night’. This results in 79.5% of the pictures being taken at ‘day’ and 20.5%

at ‘night’ (Figure 5.2). Alternative temporal segmentations could have been chosen.

We explored a variety of them and they all resulted in comparable percentages for day

vs. night. The imbalance for number of pictures between day vs. night is natural as

people tend to take more pictures during the day. However, this imbalance does not
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Figure 5.1: London Density Map of Photos in our Dataset.

compromise any of our results as there are enough pictures at night to ensure statisti-

cally significance. The temporal span of the pictures in our dataset goes from 2002 to

2013.

Figure 5.2: Fraction of Photos in each Hour of the Day (‘day’ is [6am − 10pm]). We
have 79.5% of the pictures being taken during the ‘day’ and 20.5% during ‘night’.

The second contextual feature for which we collect data concerns weather condi-

tions. We collect weather data from the British Atmospheric Data Centre for 11 years

(2002-2013)1. This consists of hourly observation and amounts to roughly 10GB of

data. We classify weather conditions as follows: cloudy vs. not-cloudy; hot vs. cold;

humid vs. dry; high visibility vs. low visibility; windy vs. not-windy.

1http://badc.nerc.ac.uk/data/ukmo-midas/WH Table.html



28 Chapter 5. Ranking City Pictures Using Urban Data

5.3 Urban Qualities

Before mining those datasets, we need to identify the urban qualities that reflect peo-

ple’s psychological perceptions of the city. In addition to Recognizability and Dis-

tinctiveness (Section 4.1), we also make use of two other qualities:

Eventfulness Yildirim and Süsstrunk [2013] have partly shown that routinely visited

places (e.g., the daily street from home to the train station) are expected to be associ-

ated with geo-referenced content that is less interesting than that associated with places

that are visited in exceptional circumstances (e.g. places visited only on weekends or

holidays).

To capture that intuition, we compute a measure that we call ‘routine score’. We

do so on a Foursquare dataset released by Cheng et al. [2011b]: 22,387,930 Foursquare

check-ins collected from September 2010 to January 2011. From these check-ins, we

extracted those that happen to be in London: 230,785 check-ins in 8,197 places from

8,895 distinct users. To avoid computing anomalous scores, we filter out users with

less than 10 check-ins and places which were visited by less than 10 distinct users.

Then, for each user, we compute the fraction of times (s)he visits each location. By

aggregating those user scores at each location (we used a geometric average as scores

are skewed), we are able to compute a location’s routine score in the range [0, 1]: the

higher it is, the more routine visits the location enjoys. To ease illustration, from the

routine score, we derive its complementary measure, which we call ‘eventfulness score’

and is just 1 minus the routine score.

Beauty, Quiet, and Happiness Not only mental maps but also aesthetically pleasing

environments are associated with community well-being. Researchers in environmental

aesthetics have widely studied the relationship between well-being and the ways urban

dwellers perceive their surroundings (Nasar [1994]; Taylor [2009]; Weber et al. [2008]).

In 1967, Peterson [1967] proposed a methodology for quantifying people’s perceptions

of a neighborhood’s visual appearance: he selected ten dimensions that reflected visual

appearance (e.g., preference for the scene, greenery, open space, safety, beauty) and had

140 participants rate 23 pictures of urban scenes taken in Chicago along those dimen-

sions. Based on his analysis, he concluded that preferences for urban scenes are best

captured by asking questions concerning the beauty and safety of those scenes: beauty

is synonymous with visual pleasure and appearance. To capture visual pleasure, the

concept of beauty is thus key, and that is why it is our first perception quality. Beauty

is indeed one of the three dimensions that recent work concerned with urban aesthetics
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has tried to quantify (Quercia et al. [2013]). In this work, researchers collected votes on

the extent to which hundreds of London urban scenes were perceived to be beautiful,

quiet, and happy by more than 3.3K crowdsourcing participants. We get hold of the

scores for beauty, quiet, and happiness at both subway and borough levels.

The researchers chose quiet because of popular discussions on ‘city life’. Sound

artist Jason Sweeney proposed a platform where people crowdsource and geo-locate

quiet spaces, share them with their social networks, and take audio and visual snap-

shots. It is called Stereopublic2 and is “an attempt to both promote ‘sonic health’

in our cities and offer a public guide for those who crave a retreat from crowds” -

both for those in need of quietness and for people with disabilities, like autism and

schizophrenia.

The remaining quality is that of happiness. This quality reflects the ultimate goal

behind the 1970s research we have referred to: Milgram, Lynch and colleagues were

after understanding which urban elements help to create intelligible spaces and would

ultimately make residents happy.

Overall, we consider the three qualities of beauty, quiet, and happiness plus

recognizability, distinctiveness, and eventfulness. Each of those qualities is de-

fined at the two geographic levels of study: subway and borough levels.

5.4 Modeling Urban Qualities

To see how our urban qualities change depending on contextual factors, we need to

build predictive models for each of them. To see why, consider our urban quality of

beauty as an example. Its values could be represented on a heat map of London: darker

squares (larger values) contain crowdsourced pictures considered to be beautiful, while

lighter squares (smaller values) contain pictures considered to be less beautiful. One

could then build a predictive model for beauty that estimates the extent to which those

squares are dark (or light) on input of, say, Flickr or Foursquare metadata (e.g., likes on

pictures, check-ins in Foursquare venues). By having this model at hand and stratifying

the input metadata according to, say, time of day (e.g., number of favorites for photos

taken at night), one could test which squares the model predicts to be beautiful at

night, assuming that its predictions do not dramatically change with the contextual

factors. We will test the validity of this assumption in Section 5.6.

The input features are derived from Flickr and Foursquare. These features include

number of views, number of favorites, number of comments, number of tags, number of

2http://www.stereopublic.net/

http://www.stereopublic.net/
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photos, number of unique Flickr users, number of unique Foursquare users, and number

of check-ins. Since the urban qualities are defined at the levels of subway station and

borough, we aggregate those features at the two levels. Then, if skewed, the features

are log-transformed and, as such, their averages are not arithmetic but geometric.

On input of those features, we put the following models to test: linear model

(least squares), decision tree regressor, support vector regression, ADA boost regressor,

gradient boosting regressor, extra trees regressor and random forest regressor. For all

the models, we have tried different parameter values and found that the default ones

specified in the scikit-learn library3 produced reasonable results. For brevity, we report

only those results.

The predictive accuracies of the models are expressed with two measures: i) Mean

Squared Error (MSE), which reflects the differences between the values predicted by the

model under test and the actual values; and ii) Spearman’s rank correlation ρ between

two ordered lists of areas: in one list, areas are ranked by the model’s predicted values;

in the other list, areas are ranked by the actual values; ρ ranges from -1 to 1: it is 0 if

the two lists are dissimilar, +1 if the two lists are exactly the same (best match), and

-1 if the two lists are exactly reversed.

Figure 5.3 shows the models’ error values (left panel) and accuracy values (right

panel) for “in sample” predictions4. The large pink area reflects the statistical sig-

nificance of the baseline being extremely low. The more sophisticated models (e.g.,

ADA boost, Gradient Boost) perform exceptionally well, yet simpler models (e.g., lin-

ear model, decision tree) show competitive performance: for all qualities other than

quiet, the squared errors are below 0.03. The same goes for Spearman’s ρ, which is

always above 0.50 for all models. If we reduce the number of input features from 12 to

6, those results do not significantly change, suggesting that overfitting has little to do

with such good prediction accuracies. To further reinforce this last point, we will now

see to which extent such predicted values are associated with actual appealing content.

5.5 Rankings by Urban Qualities

We have just established how accurately off-the-shelf models can predict the urban

qualities from Flickr and Foursquare metadata. However, we have not yet ascertained

whether the predictions of those models would ultimately result into the selection of

appealing geo-referenced pictures. To ascertain that, we need to determine which

pictures are to be considered appealing. We do so by resorting to the widely-used

3http://scikit-learn.org/stable/
4We could not use cross-validation given the limited number of subway stations or boroughs.

http://scikit-learn.org/stable/
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Figure 5.3: Mean Squared Error (left panel) and Spearman’s Correlation ρ (right panel)
for Area Rankings Produced by Seven Models plus Baseline. Each panel shows the
results at both borough and subway station levels.

normalized measure of community (user) appeal of picture i used in Yildirim and

Süsstrunk [2013]:

appeali =
number of favoritesi

number of viewsi

The higher a picture’s ratio of number of favorites to number of views, the more

the picture’s views have led to user likes. Pictures with few views do not need to be

filtered away as their presence does not affect the overall ranking: pictures with many

favorites and views will still be highly ranked.

We use the appeal measure to produce lists of geo-referenced pictures. Each list

orders areas in a different way (we will see how) and, for each area, top k pictures

ordered by appeal are, in turn, shown. Given that pictures are always ordered by

appeal, the desirability of such a list depends on the ordering of areas. We produce

two lists with two distinct orderings. In the first, areas are ordered at random (baseline

list). In the second list, areas are ordered by a predicted urban quality (e.g., beauty

list) 5. As a result, both lists contain pictures that Flickr users have liked, but the order

of areas in one list differs from that in other list. As such, by comparing the two lists,

one can establish whether the urban qualities are useful for ranking city pictures or

not. If there is no difference between the ways the two lists fare, then either the urban

quality of, say, beauty does not happen to promote appealing geo-reference photos or

its predicted values do not accurately reflect beautiful areas.

To quantitatively ascertain whether each of those two lists return appealing con-

tent, we build a third one, which we call ideal list : in it, pictures are ordered by appeal

without any consideration for the areas in which they were taken. The more similar

the beauty list to the ideal list, the more the urban quality of beauty is able to promote

5We use an urban quality’s predicted values and not the actual values to test to which extent our
predictions are reasonable and whether they could be used in realistic scenarios.



32 Chapter 5. Ranking City Pictures Using Urban Data

pictures that users have liked on Flickr. To measure the similarity of the two lists, we,

again, use Spearman’s rank correlation ρ.

Figure 5.4 shows the results, which suggest two noteworthy considerations. The

first is that the baseline list greatly differs from the ideal list (as the red line shows)

and differs from the remaining lists related to our urban qualities (suggesting that

the ordering of areas matters). The second consideration is that the working hypoth-

esis behind our work holds true: ordering areas by a given urban quality tends to

preferentially promote city pictures that are indeed appealing. The quality that most

successfully promotes appealing content is that of beauty (ρ = 0.69), followed by rec-

ognizability (ρ = 0.58), eventfulness (ρ = 0.53) and distinctiveness (ρ = 0.47). These

results are further confirmed by visually inspecting the set of pictures ranked by each

urban quality (Appendix A).

Figure 5.4: Similarity (Spearman’s ρ) between the Ideal List and a List generated by
one of our Urban Qualities. The similarity between baseline and the ideal list is shown
in red with corresponding standard errors. For this barplot, the number of pictures per
area is set to k = 3.

Figure 5.5 further shows that the Spearman correlation remains high as the user

list of suggested pictures grows: suggesting five or even ten pictures in each area does

not degrade the results at all. We also find that beautiful areas tend to be associated

with appealing content, while quiet areas are not (the rank by quiet is comparable

to the baseline). This might be because quiet areas either are not associated with

appealing content or are difficult to predict out of the metadata we have used here.

Perhaps, further investigation should go into enlarging the pool of metadata to include

textual descriptors or even city-wide sound recordings 6.

6http://cs.everyaware.eu/event/widenoise

http://cs.everyaware.eu/event/widenoise
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Figure 5.5: Similarity (Spearman’s ρ) between the Ideal List and a List Generated by
one of our Urban Qualities. The similarity varies with the number k of pictures per
area (i.e., as the recommended list gets longer).

5.6 Contextual Factors

We now study how the predicted values of our urban qualities change depending on

two contextual variables: time of day, and weather conditions.

To do so, in input of each of the models in the previous section, we give different

features whose values change with the contextual variables. As we have mentioned in

Section 5.4, this methodology is valid only if a model does not dramatically change

with context. To test this assumption, we study whether the predictive accuracies of

our models do not significantly change with time of day or weather, and we find this

to be the case (Figure 5.6).
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Figure 5.6: Accuracy of the Predicted Urban Qualities by Contextual Factors. Simi-
larity (Spearman’s ρ) between predicted and actual values for different contexts. The
correlations do not significantly change for: day vs. night; cold vs. hot; dry vs. humid;
not-cloudy vs. cloudy; low vs. high visibility; not-windy vs. windy.
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5.6.1 Time of day

Using the definition of day vs. night in Section 5.2, Figure 5.7 shows the similarity

(Spearman ρ) between the ideal list and a list generated by a given urban quality

during different times of the day. The higher the similarity, the more the generated

list contains appealing content. We find that beautiful areas tend to be associated

with appealing content more during the day than during the night (the cerulean bar

decreases from day to night). In a similar way, eventful areas are associated with

appealing content during the day, which might reasonably suggest that people do not

tend explore new parts of the city at night. Also, by visually inspecting the pictures in

the top 5 most recognizable areas at day vs. those in the top 5 at night (Figure 5.8),

one observes two distinctive sets of results, which speaks to the external validity of our

approach.

Figure 5.7: Rank Correlation (Spearman’s ρ) Between the Ideal List and a List Gen-
erated by one of our Urban Qualities for Day vs. Night.

Figure 5.8: Pictures in Top 5 most Recognizable Areas at Day vs. Night.

5.6.2 Weather

For every day present in our weather dataset between 2002 and 2013, we discretize

each of the five weather variables listed in Table 5.1 into lower class and upper class
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depending on whether their values are in the bottom or upper quartiles (Table 5.1

(b) shows the resulting thresholds). Depending on the weather condition of the day

a picture was taken, we associate the five discretized values with the picture. For

example, for a photo taken at 2007-06-09 17:05, its associated weather variables are:

wind speed is 2knots, air temperature is 24.7◦C, wet bulb temperature is 18.0◦C,

cloud level is 6oktas, and visibility is 12km. That translates into associating the

following discretized values with the picture: hot, humid, not-windy, low-visibility, and

not-cloudy. Table 5.1 (c) shows the fraction of photos taken under different weather

conditions: as one expects, photos are taken in non-cold and non-dry days; also, people

tend to avoid cloudy days while preferring high visibility days.

Air Temperature Wet bulb temp Wind speed Cloud level Visibility

(a) Binary Discretization

Lower Condition cold dry not-windy not-cloudy low-visibility
Upper Condition hot humid windy cloudy high-visibility

(b) Threshold Values

tlower 7.2◦C 5.8◦C 5.0knots 2.0oktas 12.0km
tupper 15.9◦C 13.2◦C 11knots 8.0oktas 29.0km

(c) Distribution of Photos

< tlower 16.4% 17.5% 24.2% 34.4% 18.9%
> tupper 40.5% 36.0% 31.8% 26.8% 27.3%
In-between 43.1% 46.5% 44.0% 27.3% 53.8%

Table 5.1: Summary of the Binary Discretization of Five Weather Variables.
.

Figure 5.9 shows the similarity (Spearman ρ) between the ideal list and a list

generated by a given urban quality under different weather conditions. We find that,

with hot weather (which, in London, means a temperature above 16 degrees Celsius),

any type of area (whether it is recognizable, distinctive, eventful, beautiful, or happy)

is associated with appealing content. Dry and cold turn out to be the weather condi-

tions that most negatively affect the production of appealing content. Again, ranking

pictures during hot vs. cold days results in meaningful and inexpensive segmentations

(Figure 5.10).
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Figure 5.9: Rank Correlation (Spearman’s ρ) Between the Ideal List and the Lists
Generated by one of our Urban Qualities across Different Weather Conditions.

Figure 5.10: Pictures in the Top 5 Most Recognizable Areas During Hot vs. Cold Days.
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Discussion

6.1 Psychological Maps

Limitations. To increase response rate, we kept the survey as short as possible. It asks

a minimum number of questions from which controlled variables are derived. However,

this choice has drawbacks. For example, the survey asks for home location but does

not ask for any other information about one’s urban recognizability reach (the parts

of the city one better knows visually). The problem is that one would know better

(apart from the area one lives) also areas near work and on the way back home. We

acknowledge this limitation but also stress that these differences are likely to cancel

themselves out in a big sample like ours because of randomization. Also, some pictures

might be more revealing than others. The game has two kinds of pictures. The fake

pictures (excluded from the analysis) are meant to increase retention rate and, as such,

are easy to recognize - they depict touristic locations or well-known stations. The real

pictures (included in the analysis) are instead less informative as they have been vetted

by us. However, they might still contain clues that make them recognizable.

6.1.1 Smart Cities Meet Web Science

The share of the world’s population living in cities has recently surpassed 50 percent.

By 2025, we will see another 1.2 billion people living in cities. The world is in the midst

of an immense population shift from rural areas to cities, not least because urbanization

is powered by the potential for enormous economic benefits. Those benefits will be only

realized, however, if we are able to manage the increased complexity that comes with

larger cities. The ‘smart city’ agenda is about the use of technological advances in

37
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physical and computing infrastructure to manage that complexity and create better

cities. We will now discuss the ways in which this work suggests that the future of web

scientists is charged with great potentials.

Planning urban interventions. We have shown that the relationship between recog-

nizability and specific aspects of socio-economic deprivation is strong enough to identify

boroughs suffering from high housing deprivation and poor living conditions, and also

areas affected by crime. There is strong demand for making cities smarter, and the

ability to identify areas in need could provide real-time information to, for example,

local authorities. They could receive early warnings and identify areas of high depriva-

tion quickly and at little cost, which is beneficial for cash-strapped city councils when

planning renewal initiatives. However, before making any policy recommendation, rec-

ognizability data (based on a convenience sample) needs to be supplemented by other

types of data - for example, by underground data (Lathia et al. [2012]; Smith et al.

[2013]).

Making experiments on the web. By turning the execution of the experiment into

a game, we have applied principles from games to a serious task and and have been

consequently able to harness thousands of human brains. This might be fascinating

to social science researchers, who must usually pay people to participate in their ex-

periments. The game we have presented inverts that rule: players will happily fork

out time for the privilege of being allowed to test their knowledge of London. Indeed,

participants were rewarded with being able to test how well they knew London. One

participant added: “Yesterday we had few friends over for dinner. I started to play the

game on my laptop, and that escalated into a ridiculous competition among all of us

that left my husband - the only Londoner in the room - quite injured, so to speak”.

Rewarding schemes. We should design and test alternative engagement strategies.

For now, we have focused on intrinsic (as opposed to extrinsic) rewards (Werbach

[2012]). That is because recent psychological experiments (summarized in Werbach

[2012]) have suggested that“intrinsic rewards (the enjoyment of a task for its own sake)

are the best motivators, whereas extrinsic rewards, such as badges, levels, points or even

in some circumstances money, can be counter-productive” (TheEconomist [2012]). In

this vein, it might be beneficial to build a similar game on crowdsourcing platforms

where participants are paid (e.g., on Mechanical Turk) and test how different reward

schemes affect the externalization of the mental map. Finally, more research has to go

into determining which incentives make engagement sustainable.
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Limitations. This work is the first step towards using urban features to identify

appealing geo-referenced content. In the future, research should go into combining all

classes of features together. One simple way of doing so is to order each area’s pictures

depending on how appealing they are (appeal can be derived from visual features).

The second limitation is that new ways of presenting pictures other than segmenting

them by city neighborhoods (which are politically-defined and might be arbitrary at

times) are in order: one could, for example, show pictures by areas that emerge from

location-based data. Cranshaw et al. Cranshaw et al. [2012] used Foursquare data to

draw dynamic boundaries in the city: what they called ‘livehoods’. However, any work

that uses location-based data (including ours) should account for the limitation of the

data itself: the geographic distribution of Foursquare check-ins is biased Rost et al.

[2013] (e.g., a user is likely to check-in more at restaurants than at home), and that

can greatly affect the computation of our routine scores. Finally, given our promising

results, it might be beneficial to further explore the use of urban features in cold-start

situations, which are increasingly common.

Complementary to existing approaches. This work has to be considered comple-

mentary to existing approaches. By no means, it is meant to replace ranking solutions

based on metadata or on visual features. Instead, all these solutions can be used to-

gether considering that they work under different conditions: whenever pictures come

with rich metadata, then that metadata could be used to rank them; by contrast, in

cold-start situations, our lightweight ranking combined with visual features might well

be the only option at hand. We have shown that this option is viable as it offers good

baseline performance. More generally, our results speak to the importance of incorpo-

rating cross-disciplinary findings. This work heavily borrows from 1970s urban studies

and is best placed within an emerging area of Computer Science research, which is of-

ten called ‘urban informatics’. Researchers in this area have been studying large-scale

urban dynamics Crandall et al. [2009]; Cranshaw et al. [2012]; Noulas et al. [2012], and

people’s behavior when using location-based services such as Foursquare Bentley et al.

[2012]; Cramer et al. [2011]; Lindqvist et al. [2011].
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Conclusion

In the sixties, scholars started to design experiments that captured the psychological

representations that dwellers had of their cities. In mid-2012, we have translated their

experimental setup into a 1-minute web game with a purpose, and have began with

a deployment in London. We have gained insights into the differing perceptions of

London that are held by not only Londoners but also people in UK and the rest of the

world. The pre-eminence of Central London in the world’s collective psychological map

speaks to the popularity of its landmarks and touristic locations. The acquisition of a

mental map is a slow process that does not necessarily come from direct experience but

might be indirectly learned from, for example, atlases or movies. It comes as no surprise

that Blackfriars, having being often used as a filming location, turned out to be the

most socially/architecturally distinctive area - that is, an area whose recognizability is

explained less by exposure to people and more by its distinctiveness. We have been

able to quantitatively show the extent to which Londoners’ collective psychological map

tallies with the socio-economic indicators of housing deprivation, living environment

conditions, and crime. By then comparing different social media platforms, we have

suggested that a platform’s demographics and geographic saliency determine whether

its content is fit for urban studies similar to ours or not. This is a preliminary yet useful

guideline for the web community who has recently turned to the study of large-scale

urban dynamics derived from social media data.

We have used these results, along with other urban data, to assist the problem of

automatic identification of appealing pictures, which has been often casted as a ranking

problem. By contrast, we posited that, in a geo-enabled environment, the research

roadmap should differ and revolve around the concept of neighborhood. Before this

work, we did not know whether and, if so, how some of the 1970s theories in urban

sociology could be practically used to identify appealing city pictures. We have shown
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that, upon theories proposed by Lynch, Milgram and Peterson, one is indeed able to

do so. We hope that these results will encourage further work on multi-modal machine

learning approaches that combine traditional (e.g., visual, textual, and social) features

with domain-specific urban features.
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Appendix A

Pictures Ranking

For a visual, more subjective analysis we show here the Flickr pictures Ranked by

Urban Qualities plus Baseline (last row). As an example, in the first row, the most

appealing pictures in the top (bottom) five most recognizable areas are shown.
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