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Abstract

This dissertation introduces the Restricted Robust Shortest Path problem (R-RSP), a

robust optimization version of the Restricted Shortest Path problem (R-SP), a classi-

cal NP-hard problem. Given a digraph G, we associate a cost interval and a resource

consumption value with each arc of G. R-RSP aims at �nding a path from an ori-

gin to a destination vertices in G that satis�es a resource consumption constraint and

minimizes a robust optimization criterion, called restricted robustness cost. This prob-

lem has practical applications, as routing electrical vehicles in urban areas, when one

looks for a path from a location to another taking into account tra�c jams and the

vehicles' autonomy. R-RSP belongs to a new class of problems composed by robust

optimization problems whose classical versions (i.e., parameters known in advance)

are already NP-hard. We refer to this class as robust-hard problems. Problems in

this class are particularly challenging, as solely evaluating the cost of a solution re-

quires solving a NP-hard problem, which corresponds to the classical counterpart of

the problem considered. In this study, we discuss some theoretical aspects of R-RSP,

including its computational complexity. Indeed, we show that both R-RSP and its

decision version are NP-hard. We also derive a MILP formulation (with a polynomial

number of variables and an exponential number of constraints) for R-RSP. Based on

this formulation, we propose a heuristic method for R-RSP that consists in solving an

approximate compact MILP formulation that uses dual information of the linear relax-

ation of R-SP. Moreover, a Benders-like decomposition approach is proposed to solve

R-RSP at optimality. We also present some techniques to improve the convergence

speed of the method by providing initial bounds, as well as by generating additional

Benders cuts. Computational experiments show the e�ectiveness of the proposed algo-

rithms. We highlight that the procedures to solve R-RSP presented in this dissertation

are not limited to the referred problem, as they can be extended to other robust-hard

problems.
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Resumo

Introduzimos o problema do caminho mais curto restrito robusto (R-RSP, do inglês re-

stricted robust shortest path problem), uma versão de otimização robusta do problema

do caminho mais curto restrito (R-SP, do inglês restricted shortest path problem), um

clássico problema NP-difícil. Dado um grafo orientado G, associamos um intervalo de

custo e um valor de recurso a cada arco de G. R-RSP visa encontrar um caminho de

menor custo de um vértice de origem a um de destino emG que satisfaz uma restrição de

consumo máximo de recurso e minimiza um critério de otimização robusta, chamado

de desvio robusto restrito. R-RSP tem aplicacões práticas, como em roteamento de

veículos elétricos em áreas urbanas, quando se procura um caminho de uma localiza-

ção a outra levando em consideração engarrafamentos e a autonomia energética do

veículo. R-RSP pertence a uma nova classe de problemas composta por problemas de

otimização robusta cujas versões de otimização clássica já são NP-difícil. Referimo-nos

a essa classe como problemas robusto-difícil. Problemas nessa classe são particular-

mente desa�adores, uma vez que calcular o custo de uma solução envolve resolver um

problema NP-difícil, que corresponde à versão clássica do problema considerado. Neste

estudo, discutimos aspectos teóricos de R-RSP, incluindo sua complexidade computa-

tional. De fato, mostramos que tanto R-RSP como sua versão de decisão são NP-difícil.

Derivamos uma formulação de programação inteira mista (com um número polinomial

de variáveis e um número exponencial de restrições) para R-RSP. Baseando-nos nessa

formulação, propomos uma heurística para R-RSP que consiste em resolver uma for-

mulação de programação inteira mista que usa informação dual da relaxação linear

de R-SP. Propomos ainda uma estratégia baseada em decomposição de Benders para

resolver R-RSP na otimalidade. Apresentamos algumas técnicas para melhorar a ve-

locidade de convergência do método a partir da obtenção de limites iniciais e da geração

de cortes de Benders adicionais. Experimentos computacionais mostram a e�cácia dos

algoritmos propostos. Destacamos que os procedimentos para resolver R-RSP apre-

sentados nesta dissertação não se limitam ao referido problema, já que eles podem ser

estendidos a outros problemas robusto-difícil.
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Chapter 1

Introduction

Di�erent approaches can be applied to model problems under uncertain data. Stochas-

tic programming [Spall, 2003], for example, models uncertainty through a probabilistic

description and is mostly applied whenever the probability law associated with the

uncertain data is known in advance. Alternatively, in Robust Optimization (RO)

[Kouvelis and Yu, 1997], the variability of the data is represented by deterministic

values in the context of scenarios. Here, a scenario corresponds to a parameters as-

signment, i.e., a value is �xed for each parameter subject to uncertainty. In this sense,

two main approaches are adopted to model RO problems: the discrete scenarios model

and the interval data model. In the former, only a discrete set of possible scenarios is

considered. In the latter, the uncertainty referred to a parameter is represented by a

continuous interval of possible values. Di�erently from the discrete scenarios model, the

in�nite many possible scenarios that arise in the interval data model are not explicitly

given. Nevertheless, in both models, a classical (i.e., parameters known in advance)

optimization problem takes place whenever a scenario is established.

The most commonly adopted RO criteria are the absolute robustness criterion,

the min-max regret (also known as robust deviation criterion) and the min-max relative

regret (also known as relative robustness criterion). The absolute robustness criterion

is based on the anticipation of the worst possible conditions. Solutions for RO prob-

lems under such criterion tend to be conservative, as they optimize only a worst-case

scenario. The min-max regret and the min-max relative regret are less conservative

criteria and have been adopted in several works (e.g., Averbakh [2005]; Montemanni

[2006]; Montemanni et al. [2007]; Pereira and Averbakh [2011]; Coco et al. [2014a]). In-

tuitively speaking, the regret of a solution in a given scenario is the di�erence between

the cost of such solution and the cost of an optimal one in the referred scenario. In this

sense, the min-max regret criterion aims at minimizing (among all feasible solutions)

1



2 Chapter 1. Introduction

the maximum (among all possible scenarios) regret. In turn, the relative regret of a

solution in a given scenario consists of the corresponding regret normalized by the cost

of an optimal solution for the scenario considered. We refer to Kouvelis and Yu [1997];

Coco et al. [2014b] for details on RO models and criteria.

Robust optimization versions of several combinatorial optimization problems have

been studied in the literature, addressing, for example, uncertainties over costs. Han-

dling uncertain costs brings an extra level of di�culty, such that even polynomially

solvable problems become NP-hard in their corresponding robust versions (see, e.g.,

[Aron and Hentenryck, 2004; Aissi et al., 2005; Kasperski, 2008]). A recent trend is

to further investigate RO problems whose classical counterparts are already NP-hard.

We refer to these problems as robust-hard problems. The RO problem introduced in

this study, namely the Restricted Robust Shortest Path problem (R-RSP), belongs to

this class of problems, along with the robust traveling salesman problem [Montemanni

et al., 2007], the robust knapsack problem [Deineko and Woeginger, 2010], and the

robust set covering problem [Pereira and Averbakh, 2013], among others [Deineko and

Woeginger, 2010; Solano-Charris et al., 2014].

Robust-hard problems are particularly challenging, as solely evaluating the cost

of a feasible solution requires solving a NP-hard problem, which corresponds to the

classical counterpart of the RO problem considered. As far as we know, no work in the

literature was able to provide a compact Integer Linear Programming (ILP) formulation

(with a polynomial number of variables and constraints) for any robust-hard problem.

In fact, the standard exact methods used to solve robust-hard problems are based on

the generation of a possibly exponential number of cuts (see, e.g., Montemanni et al.

[2007]; Pereira and Averbakh [2013]). Since the generation of each cut is linked to

the resolution of a NP-hard problem instance (precisely, the classical counterpart of

the RO problem considered), these strategies present several challenges. For example,

the size of the instances e�ciently solvable is considerably smaller than the size of the

instances solved in the corresponding classical counterparts. Innovative approaches are

then required to better handle these problems.

In this study, we are interested in robust-hard optimization problems that con-

sider the interval data model under the min-max regret. In particular, we focus on

R-RSP, which is a RO version of the Restricted Shortest Path problem (R-SP), an ex-

tensively studied NP-hard problem [Garey and Johnson, 1979; Handler and Zang, 1980;

Aneja et al., 1983; Beasley and Christo�des, 1989; Hassin, 1992; Wang and Crowcroft,

1996].

R-SP is de�ned on a digraph G = (V,A), where V is the set of vertices and A

is the set of arcs. With each arc (i, j) ∈ A, we associate nonnegative values cij and
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dij, which represent, respectively, the arc cost and the resource consumption incurred

by using that arc. An origin and a destination vertices are also given, as well as a

nonnegative value β, used to limit the resource consumed along a path (given by the

summation of the resource consumption of each arc of the path). R-SP consists in

�nding a shortest path (with respect to arc costs) from the origin to the destination

while not exceeding the limit β on the resource consumption. In R-RSP, the cost of the

arcs are de�ned by intervals of values, and the problem is to �nd a path that minimizes

the maximum regret (min-max regret) while satisfying the resource consumption limit.

R-RSP has applications in determining paths in urban areas, with a length (dis-

tance) constraint and uncertainties related to travel time. These uncertainties can

happen due to tra�c jams, bad weather conditions, etc. Here, uncertainties are repre-

sented by values in continuous intervals, which estimate the minimum and the maxi-

mum times to traverse each pathway. R-RSP can model situations involving electrical

vehicles with a limited battery (energy) autonomy. A similar application arises in

telecommunications �eld, when one wants to determine a path to send a data packet

from an origin to a destination node in a network, while satisfying a Quality of Service

(QoS) guarantee [Wang and Crowcroft, 1996; Apostolopoulos et al., 1998]. Also in this

case, the transmission lines are subject to uncertain delays due to the varying tra�c

load on the network. To the best of our knowledge, R-RSP has not been studied in

the literature, and this is also the �rst study to model and to propose procedures for

solving it. Therefore, with respect to R-RSP, the contributions of this dissertation are

twofold. First, we introduce R-RSP, along with a theoretical study and a Mixed Integer

Linear Programming (MILP) formulation (with a polynomial number of variables and

an exponential number of constraints) for the problem. Second, we propose a linear

programming based heuristic and Benders-like decomposition algorithms (which com-

bine speed-up techniques) to solve this formulation. We highlight that the procedures

to solve R-RSP presented in this study are not limited to the referred problem, as they

can be extended and applied to solve other robust-hard problems.

The remaining of this dissertation is organized as follows. In Chapter 2, we discuss

related works by pointing out the main studies concerning R-SP and some variations

of the Robust Shortest Path problem (RSP) [Gupta and Rosenhead, 1968; Rosenhead

et al., 1972; Kouvelis and Yu, 1997; Zieli«ski, 2004; Averbakh, 2005]. Additionally, we

present a literature review on robust-hard problems.

Chapter 3 is dedicated to introduce R-RSP and to study theoretical aspects re-

garding the problem. In Section 3.1, we give the formal de�nition of R-SP and, in

Section 3.2, we present a mathematical formulation for the problem. Moreover, a theo-

retical study is conducted in Section 3.3, and the problem's computational complexity
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is discussed in Section 3.4. We show the NP-hardness of both R-RSP and the decision

problem associated with it.

In Chapter 4, we propose a linear programming based heuristic to tackle robust-

hard problems as a case study on solving R-RSP. It consists in solving a MILP formu-

lation based on the dual of the linear relaxation of the classical optimization problem

counterpart. Then, in Chapter 5, a Benders-like decomposition approach widely used

to solve RO problems [Montemanni and Gambardella, 2005; Montemanni, 2006; Monte-

manni et al., 2007; Pereira and Averbakh, 2011, 2013] is adapted to R-RSP. In addition,

we discuss some techniques able to improve the convergence speed of the method by

providing initial bounds, as well as by generating additional Benders cuts. These tech-

niques are coupled with the Benders-like decomposition approach in di�erent manners

to generate a total of eight exact algorithms.

Chapter 6 is dedicated to computational experiments. In Section 6.1, we intro-

duce two benchmarks of instances inspired by the applications described in Chapter 1.

Furthermore, in Section 6.2, we show the computational results concerning the heuris-

tic and the exact algorithms on solving the two benchmarks of instances. Concluding

remarks are provided in the last chapter.



Chapter 2

Related works

2.1 The restricted shortest path problem

R-SP is known to be NP-hard [Garey and Johnson, 1979; Handler and Zang, 1980] even

for acyclic graphs [Bondy and Murty, 1976; Wang and Crowcroft, 1996]. The main ex-

act algorithms to solve R-SP found in the literature can be classi�ed into two groups:

Lagrangian relaxation procedures and dynamic programming procedures. The former

procedures use Lagrangian relaxation to handle ILP formulations for the problem (see,

e.g., Handler and Zang [1980]; Beasley and Christo�des [1989]). In addition, prepro-

cessing techniques have been presented in Aneja et al. [1983] and re�ned in Beasley

and Christo�des [1989]. These strategies identify arcs and vertices that cannot com-

pose an optimal solution for R-SP through the analysis of the reduced costs related

to the resolution of dual Lagrangian relaxations. More recently, Santos et al. [2007]

proposed a path ranking approach that linearly combines the arc costs and the resource

consumption values to generate a descent direction of search. In turn, the dynamic pro-

gramming procedures for R-SP consist of label-setting and label-correcting algorithms,

such as the one proposed in Joksch [1966] and further improved in Dumitrescu and

Boland [2003] by the addition of preprocessing strategies. Recently, Zhu and Wilhelm

[2012] developed a three-stage label-setting algorithm that runs in pseudo-polynomial

time and stands among the state-of-the-art methods dedicated to R-SP, along with

the algorithms presented in Santos et al. [2007] and in Dumitrescu and Boland [2003].

We refer to Pugliese and Guerriero [2013] for a survey of the main contributions with

respect to exact methods to solve R-SP.

Although NP-hard, R-SP can be solved e�ciently by some of the aforemen-

tioned procedures (particularly, the ones proposed in Santos et al. [2007]; Dumitrescu

and Boland [2003]; Zhu and Wilhelm [2012]). Moreover, optimization softwares, as

5
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CPLEX1, are also competitive in handling reasonably-sized instances (with up to 3000

vertices) of the problem [Zhu and Wilhelm, 2012]. These evidences encourage the

investigation of more realistic and complex models, such as the RO version of R-SP

introduced in this study, namely R-RSP, which deals simultaneously with a limit on

the resource consumption and with uncertain arc costs.

2.2 The robust shortest path problem

R-RSP is also related to RSP, a RO counterpart of the classical shortest path problem

[Shimbel, 1953]. RSP is de�ned on a digraph whose arcs are subject to uncertain costs.

Given an origin and a destination vertices, RSP consists in �nding a path (from the

origin to the destination) that minimizes a given RO criterion. RSP was introduced by

Gupta and Rosenhead [1968], and, since then, some variants of the problem have been

proposed by considering di�erent RO models and criteria. In Kouvelis and Yu [1997],

the problem was �rstly modeled under the interval data and the discrete scenarios

models. In addition, three RO criteria were applied to RSP in the study: the absolute

robustness criterion, the min-max regret and the min-max relative regret. In the same

study, the authors also proved the NP-hardness of several RO problems, including the

interval data min-max relative regret version of RSP. In Coco et al. [2014a], the �rst

MILP formulation for such version of the problem was presented, along with heuristic

procedures for solving it.

R-RSP is particularly related to Interval min-max Regret Robust Shortest Path

problem (IRRSP), the RSP version that considers the interval data model under the

min-max regret. IRRSP is de�ned on a digraph G = (V,A), where V is the set of

vertices and A is the set of arcs. With each arc (i, j) ∈ A, we associate a cost interval

[lij,uij], where lij ∈ Z+ is the lower bound, and uij ∈ Z+ is the upper bound on this

interval of cost, with lij ≤ uij. An origin vertex o and a destination vertex t are also

given. An example of an IRRSP instance is showed in Figure 2.1.

Let P be the set of all paths from o to t and A[p] be the set of arcs that compose

a path p ∈ P .

De�nition 1. A scenario s is an assignment of arc costs, i.e., a cost csij ∈ [lij, uij] is

�xed ∀ (i, j) ∈ A.

Let S be the set of all possible scenarios of G. The cost of a path p ∈ P in a

scenario s ∈ S is given by Cs
p =

∑
(i,j)∈A[p]

csij.

1http://www.ilog.com/products/cplex/
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Figure 2.1: Example of an IRRSP instance, with origin o = 0 and destination t = 3.
The notation [lij, uij] gives the cost interval associated with each arc (i, j) ∈ A.
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De�nition 2. The robust deviation of a path p ∈ P in a scenario s ∈ S, denoted by

rsp, is the di�erence between the cost Cs
p of p in s and the cost of a minimum cost path

p∗(s) ∈ P in s, i.e., rsp = Cs
p − Cs

p∗(s).

De�nition 3. The robustness cost of a path p ∈ P , denoted by Rp, is the maximum

robust deviation of p among all possible scenarios, i.e., Rp = max
s∈S

rsp.

De�nition 4. A path p∗ ∈ P is said to be a robust path if it has the smallest robustness

cost among all paths in P , i.e., p∗ = arg min
p∈P

Rp.

De�nition 5. IRRSP consists in �nding a robust path.

IRRSP has been largely studied in the literature, and dedicated procedures have

been developed, such as the branch-and-bound algorithm of Montemanni et al. [2004]

and the Benders-like decomposition approach of Montemanni and Gambardella [2005].

Both algorithms are able to solve instances in random graphs with up to 4000 nodes

and real instances with up to 2500 nodes. Moreover, preprocessing techniques able to

identify arcs that cannot compose an optimal solution, namely weak-arcs, have been

proposed by Kara³an et al. [2001] and later improved by Catanzaro et al. [2011].

In Kasperski et al. [2005], scenario-based procedures were proposed to solve IR-

RSP. The �rst, called Algorithm Mean (AM), returns a shortest path in the median

scenario, where the cost of each arc (i, j) ∈ A is set to its respective mean value, given

by
(lij+uij)

2
. According to Kasperski and Zieli«ski [2007], AM is a 2-approximation al-

gorithm. The second procedure, called Algorithm Upper (AU), returns a shortest path

in the worst-case scenario, where each arc cost is set to its corresponding upper bound.

The third, called Algorithm Mean Upper (AMU), returns the best solution found by

AM and AU. Therefore, AMU is also 2-approximative [Kasperski and Zieli«ski, 2007].

Recently, in Pérez et al. [2012], a simulated annealing heuristic inspired by Kirkpatrick

et al. [1983] was proposed to solve IRRSP.
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2.3 Robust-hard problems

As far as we know, Montemanni et al. [2006, 2007] were the �rst studies to address

a robust-hard problem, i.e., a RO version of a classical NP-hard problem. In such

works, the interval min-max regret traveling salesman problem was investigated. In

Montemanni et al. [2007], a mathematical formulation with an exponential number

of constraints was proposed for the problem, along with exact approaches to solve it.

Precisely, a branch-and-bound algorithm, a branch-and-cut algorithm and a Benders-

like decomposition algorithm were proposed and computationally compared. The latter

algorithm, which adapts a Benders-like decomposition approach widely used to solve

RO problems (see, e.g., Montemanni and Gambardella [2005]; Montemanni [2006]),

outperforms the other exact algorithms on the benchmarks of instances considered.

Montemanni et al. [2006] presented heuristic procedures for the problem. The heuristics

use the idea proposed in Kasperski et al. [2005] and consist in solving the classical

traveling salesman problem [Dantzig et al., 1954] in selected scenarios. In addition, the

authors proposed preprocessing techniques able to identify edges that cannot compose

an optimal solution tour.

In Pereira and Averbakh [2013], the interval min-max regret set covering problem

was introduced. The authors proposed a mathematical formulation for the problem

that is similar to the one proposed by Montemanni et al. [2007] for the interval min-

max regret traveling salesman problem. As in Montemanni et al. [2007], the proposed

formulation has an exponential number of constraints. The authors also adapted to

the problem the standard Benders-like decomposition approach for RO problems (see,

e.g., Montemanni and Gambardella [2005]; Montemanni [2006]) and presented an ex-

tension of the method that aims at generating multiple Benders cuts per iteration of

the decomposition. Moreover, the work presents an exact approach that uses Benders

cuts in the context of a branch-and-cut framework. Such approach, as well as the

extended Benders-like decomposition, outperforms the standard Benders-like decom-

position on the instances tested. With respect to heuristic solutions, the same work

[Pereira and Averbakh, 2013] proposed scenario-based procedures that �nd feasible so-

lutions by solving the classical set covering problem [Revelle et al., 1970] in few selected

scenarios. The authors also proposed a genetic algorithm and a memetic algorithm for

the problem. The latter algorithm uses a Benders decomposition within the framework

of the genetic algorithm to strengthen the crossover operator. According to the results,

this hybrid heuristic outperforms the basic genetic algorithm and was able to �nd the

same or better solutions than the branch-and-cut algorithm when given a same 900

seconds time limit.
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A few works dealt with RO versions of the classical knapsack problem. For

instance, Yu [1996] and Kouvelis and Yu [1997] addressed a version of the problem

where the uncertainty over each item pro�t is represented by a discrete set of possible

values. In these works, the absolute robustness criterion is considered. In Yu [1996], the

author proved that this version of the problem is strongly NP-hard when the number

of possible scenarios is unbounded and pseudo-polynomially solvable for a bounded

number of scenarios. For the version of the robust knapsack problem that considers

the min-max regret criterion under a discrete set of scenarios, Kouvelis and Yu [1997]

provided a pseudo-polynomial algorithm for solving the problem when the number

of possible scenarios is bounded. When the number os scenarios is unbounded, the

problem becomes strongly NP-hard and there is no approximation scheme for it [Aissi

et al., 2007, 2009].

Recently, in Deineko and Woeginger [2010], the computational complexity of

the interval data min-max regret version of the knapsack problem was studied. The

authors showed that the corresponding decision problem is complete for the complexity

class
∑p

2 [Meyer and Stockmeyer, 1972], i.e., the problem is at the second level of

the polynomial hierarchy. The polynomial hierarchy was established as an attempt

to properly classify decision problems that appear to be harder than NP-complete

problems. Such hierarchy contains complexity classes that generalize the classes P, NP

and co-NP to oracle machines. Particularly, the complexity class
∑p

2 lies one level

above the class NP in the polynomial hierarchy. We refer to Papadimitriou [1994],

Chapter 17, for details on the polynomial hierarchy.





Chapter 3

The restricted robust shortest path

problem

In this chapter, we formally describe R-RSP and derive a MILP formulation for the

problem, along with some theoretical results. Moreover, we discuss the computational

complexity of both R-RSP and its corresponding decision version.

3.1 Problem de�nition and notation

R-RSP is de�ned on a digraph G = (V,A), where V is the set of vertices and A is the

set of arcs. With each arc (i, j) ∈ A, we associate a resource consumption dij ∈ R+ and

a cost interval [lij,uij], where lij ∈ Z+ is the lower bound, and uij ∈ Z+ is the upper

bound on this interval of cost, with lij ≤ uij. The origin vertex o and the destination

vertex t are also given, as well as a value β ∈ R+, parameter used to limit the resource

consumed along a path from o to t, as discussed in the sequence. An example of a

R-RSP instance is given in Figure 3.1.

Let P be the set of all paths from o to t and A[p] be the set of arcs that compose

a path p ∈ P . The following de�nitions describe R-RSP formally.

De�nition 6. A scenario s is an assignment of arc costs, i.e., a cost csij ∈ [lij, uij] is

�xed ∀ (i, j) ∈ A.

Let S be the set of all possible scenarios of G. The cost of a path p ∈ P in

a scenario s ∈ S is given by Cs
p =

∑
(i,j)∈A[p]

csij. Similarly, the resource consumption

referred to a path p ∈ P is given by Dp =
∑

(i,j)∈A[p]

dij. Also consider P(β) = {p ∈ P

11
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Figure 3.1: Example of a R-RSP instance, with origin o = 0 and destination t = 3. The
notation [lij, uij]{dij} means, respectively, the cost interval [lij, uij] and the resource
consumption {dij} associated with each arc (i, j) ∈ A.
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| Dp ≤ β}, the subset of paths in P whose resource consumptions are smaller than or

equal to β.

De�nition 7. A path p∗(s, β) ∈ P(β) is said to be a β-restricted shortest path in a

scenario s ∈ S if it has the smallest cost in s among all paths in P(β), i.e., p∗(s, β) =

arg min
p∈P(β)

Cs
p .

De�nition 8. The β-restricted robust deviation of a path p ∈ P(β) in a scenario

s ∈ S, denoted by r
(s,β)
p , is the di�erence between the cost Cs

p of p in s and the cost of

a β-restricted shortest path p∗(s, β) ∈ P(β) in s, i.e., r(s,β)
p = Cs

p − Cs
p∗(s,β).

De�nition 9. The β-restricted robustness cost of a path p ∈ P(β), denoted by Rβ
p ,

is the maximum β-restricted robust deviation of p among all possible scenarios, i.e.,

Rβ
p = max

s∈S
r

(s,β)
p .

De�nition 10. A path p∗ ∈ P(β) is said to be a β-restricted robust path if it has the

smallest β-restricted robustness cost among all paths in P(β), i.e., p∗ = arg min
p∈P(β)

Rβ
p .

De�nition 11. R-RSP consists in �nding a β-restricted robust path.

3.2 Mathematical formulation

The mathematical formulation for R-RSP proposed here makes use of Theorem 1 (pre-

sented below), which is derived from analogous results for other RO problems, including

IRRSP (see, e.g., Kara³an et al. [2001]; Yaman et al. [2001]; Montemanni et al. [2007]).

First, consider the scenario induced by a path p ∈ P , denoted by sp, for which

each arc in A[p] has its cost set to its upper bound, while all the remaining arcs of A have

their cost values set to their corresponding lower bounds, i.e., cspij = uij ∀ (i, j) ∈ A[p]
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and c
sp
ij = lij ∀ (i, j) ∈ A\A[p]. Figure 3.2 shows an example of the scenario sp̃ induced

by the path p̃ = {0, 1, 2, 3} in the graph presented in Figure 3.1.

Figure 3.2: Scenario sp̃ induced by the path p̃ = {0, 1, 2, 3} in the graph presented in
Figure 3.1. For each arc (i, j) ∈ A, the notation csp̃ij {dij} means, respectively, the arc

cost c
sp̃
ij in the scenario sp̃ and its resource consumption {dij}.
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Theorem 1. For any value β ∈ R+ and any path p ∈ P(β), the β-restricted robust

deviation of p is maximum in the scenario sp induced by p.

Proof. Consider a value β ∈ R+, a path p ∈ P(β), and let s∗ ∈ S be the scenario in

which the β-restricted robust deviation of p is maximum, i.e., Rβ
p = r

(s∗,β)
p . It holds

that

r(s∗,β)
p = Cs∗

p − Cs∗

p∗(s∗,β) =
∑

(i,j)∈A[p]\A[p∗(s∗,β)]

cs
∗

ij −
∑

(i,j)∈A[p∗(s∗,β)]\A[p]

cs
∗

ij . (3.1)

Considering the de�nition of the scenario sp induced by p, we have

∑
(i,j)∈A[p]\A[p∗(s∗,β)]

c
sp
ij ≥

∑
(i,j)∈A[p]\A[p∗(s∗,β)]

cs
∗

ij , (3.2)

∑
(i,j)∈A[p∗(s∗,β)]\A[p]

c
sp
ij ≤

∑
(i,j)∈A[p∗(s∗,β)]\A[p]

cs
∗

ij . (3.3)

Applying (3.2) and (3.3) in (3.1), we obtain

r(s∗,β)
p ≤

∑
(i,j)∈A[p]\A[p∗(s∗,β)]

c
sp
ij −

∑
(i,j)∈A[p∗(s∗,β)]\A[p]

c
sp
ij = Csp

p − Csp
p∗(s∗,β). (3.4)

Since p∗(sp, β) is a β-restricted shortest path in sp, it holds that
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C
sp
p∗(sp,β) ≤ C

sp
p∗(s∗,β). (3.5)

Moreover, from (3.4) and (3.5), it can be deduced that

r(s∗,β)
p ≤ Csp

p − Csp
p∗(s∗,β) ≤ Csp

p − Csp
p∗(sp,β) = r(sp,β)

p . (3.6)

Thus, the β-restricted robust deviation of p is maximum in the scenario sp, i.e.,

Rβ
p = r

(s∗,β)
p = r

(sp,β)
p .

For example, consider the graph presented in Figure 3.1 and the scenario sp̃

induced by the path p̃ = {0, 1, 2, 3} (as showed in Figure 3.2). Also let the resource

limit be β = 3. According to Theorem 1, the β-restricted robustness cost of p̃ is

given by Rβ
p̃ = r

(sp̃,β)
p̃ = C

sp̃
p̃ − C

sp̃
p∗(sp̃,β) = (2 + 2 + 5) − (3 + 5) = 1. Theorem 1

reduces R-RSP to �nding a path p∗ ∈ P(β) such that p∗ = arg min
p∈P

r
(sp,β)
p , i.e., p∗ =

arg min
p∈P(β)

{Csp
p − Csp

p∗(sp,β)}. However, notice that computing the β-restricted robustness

cost of any feasible solution p for R-RSP implies �nding a β-restricted shortest path in

the scenario sp induced by p. Therefore, solely evaluating the cost of a solution requires

solving a R-SP instance, i.e., a NP-hard problem.

Let us consider decision variables y on the choice of arcs belonging or not to a

β-restricted robust path: yij = 1 if arc (i, j) ∈ A belongs to the solution path; yij = 0,

otherwise. Likewise, let the binary variables x identify a β-restricted shortest path in

the scenario induced by the path de�ned by y, such that xij = 1 if an arc (i, j) ∈ A
belongs to this β-restricted shortest path, and xij = 0, otherwise. A non-linear compact

formulation for R-RSP is given as follows:

min
y∈P(β)

( ∑
(i,j)∈A

uijyij − min
x∈P(β)

∑
(i,j)∈A

(lij + (uij − lij)yij)xij
)
. (3.7)

In order to derive a MILP formulation from (3.7), we add a free variable ρ and

linear constraints that explicitly bound ρ with respect to all the feasible paths that x

can represent. The resulting formulation is provided from (3.8) to (3.15).
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(F) min
∑

(i,j)∈A

uijyij − ρ (3.8)

s.t.
∑

j:(j,o)∈A

yjo −
∑

k:(o,k)∈A

yok = −1, (3.9)

∑
j:(j,i)∈A

yji −
∑

k:(i,k)∈A

yik = 0 ∀ i ∈ V \{o, t}, (3.10)

∑
j:(j,t)∈A

yjt −
∑

k:(t,k)∈A

ytk = 1, (3.11)

∑
(i,j)∈A

dijyij ≤ β, (3.12)

ρ ≤
∑

(i,j)∈A

(lij + (uij − lij)yij)x̄ij ∀ x̄ ∈ P(β), (3.13)

yij ∈ {0, 1} ∀ (i, j) ∈ A, (3.14)

ρ free. (3.15)

The �ow conservation constraints (3.9)-(3.11), along with the domain constraints

(3.14), ensure that y de�nes a path from the origin to the destination vertices. In fact,

as pointed out in Kara³an et al. [2001], these constraints do not prevent the existence

of additional cycles of cost zero disjoint from the solution path. Notice, however, that

every arc (i, j) of such cycles necessarily has lij = uij = 0 and, thus, they do not modify

the value of the objective function in (3.8) associated with y. Hence, these cycles are

not considered in the remainder of this study.

Constraint (3.12) limits the resource consumption of the path de�ned by y to be

at most β, whereas constraints (3.13) guarantee that ρ does not exceed the value related

to the inner minimization in (3.7). Note that, in (3.13), x̄ is a constant vector, one for

each path in P(β). Moreover, constraints (3.13) are tight whenever x̄ identi�es a β-

restricted shortest path in the scenario induced by the path that y de�nes. Constraint

(3.15) gives the domain of variable ρ.

The number of constraints (3.13) grows exponentially, since it corresponds to the

number of paths in P(β). This fact discourages applying formulation F directly to

solve large-sized R-RSP instances. However, this fomulation is suitable to be handled

by decomposition methods, such as the Benders-like decomposition approach presented

in the next section.
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3.3 Theoretical results

In this section, we propose new IRRSP results and extend them to R-RSP. In addition,

we derive some theoretical R-RSP results inspired by analogous results concerning

IRRSP in the literature (see Kara³an et al. [2001]). We �rst highlight an IRRSP result

used to reduce the number of scenarios that must be considered during the search of a

robust path.

Figure 3.3: Scenario sp̃ induced by the path p̃ = {0, 1, 2, 3} in the graph presented in
Figure 2.1. For each arc (i, j) ∈ A, it is shown the arc cost c

sp̃
ij in sp̃.
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Theorem 2 (Kara³an et al. [2001]). The robust deviation of a path p is maximum in

the scenario sp induced by p, where the costs of all arcs on p are in their corresponding

upper bounds and the costs of all other arcs are in their lower bounds.

Consider, in Figure 3.3, the scenario sp̃ induced by the path p̃ = {0, 1, 2, 3} in
the graph presented in Figure 2.1. According to Theorem 2, the robustness cost of p̃

is given by Rp̃ = r
sp̃
p̃ = C

sp̃
p̃ − C

sp̃
p∗(sp̃) = (2 + 2 + 5) − (2 + 1) = 6. Theorem 2 reduces

IRRSP to �nding a path p∗ ∈ P such that p∗ = arg min
p∈P

r
sp
p = arg min

p∈P
{Csp

p − Csp
p∗(sp)}.

Property 1. Given two arbitrary sets Z1 and Z2, it holds that Z1 = (Z1∩Z2)∪(Z1\Z2)

and, likewise, that Z2 = (Z1 ∩ Z2) ∪ (Z2\Z1).

Theorem 3. For any non-elementary path p ∈ P containing at least one cycle, there

is a corresponding elementary path p̃ ∈ P, such that A[p̃] ⊂ A[p] and rsp̃p̃ ≤ r
sp
p .

Proof. Consider a non-elementary path p ∈ P containing at least one cycle. Let G[p]

be the subgraph of G induced by the arcs in A[p] and p̃ be an elementary path from o

to t in G[p]. We have A[p̃] ⊂ A[p] and, therefore, p̃ ∈ P(β). By de�nition,

r
sp̃
p̃ = C

sp̃
p̃ − C

sp̃
p∗(sp̃). (3.16)

Consider the set Ā = A[p]\A[p̃] of the arcs in p which do not belong to p̃. As p

is supposed to contain at least one cycle, we have Ā 6= ∅. Besides, since A[p̃] ⊂ A[p],
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the di�erence between scenarios sp and sp̃ consists of the cost values assumed by the

arcs in Ā. More precisely,

c
sp̃
ij = c

sp
ij ∀(i, j) ∈ A\Ā, (3.17)

c
sp
ij = uij ∀(i, j) ∈ Ā, (3.18)

c
sp̃
ij = lij ∀(i, j) ∈ Ā. (3.19)

Then, we obtain

C
sp̃
p̃ =

∑
(i,j)∈A[p̃]

uij =
∑

(i,j)∈A[p]

uij −
∑

(i,j)∈A[p]\A[p̃]

uij = Csp
p −

∑
(i,j)∈Ā

uij. (3.20)

Applying Property 1 to sets A[p∗(sp̃)] and A[p]:

A[p∗(sp̃)] =

(a1)︷ ︸︸ ︷
(A[p∗(sp̃)] ∩ A[p])∪(A[p∗(sp̃)]\A[p]). (3.21)

Since A[p̃] ⊂ A[p] and Ā = A[p]\A[p̃], it follows that

A[p] = A[p̃] ∪ (A[p]\A[p̃]) = A[p̃] ∪ Ā. (3.22)

Therefore, expression (a1) of (3.21) can be rewritten as

(A[p∗(sp̃)] ∩ A[p]) = (A[p∗(sp̃)] ∩ (A[p̃] ∪ Ā)) =

(A[p∗(sp̃)] ∩ A[p̃]) ∪ (A[p∗(sp̃)] ∩ Ā). (3.23)

Applying (3.21) and (3.23) to C
sp̃
p∗(sp̃) and C

sp
p∗(sp̃), we obtain:

C
sp̃
p∗(sp̃) =

∑
(i,j)∈A[p∗(sp̃)]∩A[p̃]

c
sp̃
ij +

∑
(i,j)∈A[p∗(sp̃)]∩Ā

c
sp̃
ij +

∑
(i,j)∈A[p∗(sp̃)]\A[p]

c
sp̃
ij , (3.24)

C
sp
p∗(sp̃) =

∑
(i,j)∈A[p∗(sp̃)]∩A[p̃]

c
sp
ij +

∑
(i,j)∈A[p∗(sp̃)]∩Ā

c
sp
ij +

∑
(i,j)∈A[p∗(sp̃)]\A[p]

c
sp
ij . (3.25)
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Considering (3.17)-(3.19), (3.24) and (3.25), we deduce that the only di�erence

between the cost of path p∗(sp̃) in sp and its cost in sp̃ is given by the arcs which

are simultaneously in Ā and in A[p∗(sp̃)]. Thus, expressions (3.24) and (3.25) can be

reformulated as

C
sp̃
p∗(sp̃) =

∑
(i,j)∈A[p∗(sp̃)]∩A[p̃]

uij +
∑

(i,j)∈A[p∗(sp̃)]∩Ā

lij +
∑

(i,j)∈A[p∗(sp̃)]\A[p]

lij, (3.26)

C
sp
p∗(sp̃) =

∑
(i,j)∈A[p∗(sp̃)]∩A[p̃]

uij +
∑

(i,j)∈A[p∗(sp̃)]∩Ā

uij +
∑

(i,j)∈A[p∗(sp̃)]\A[p]

lij. (3.27)

Subtracting (3.27) from (3.26):

C
sp̃
p∗(sp̃) − C

sp
p∗(sp̃) =

∑
(i,j)∈A[p∗(sp̃)]∩Ā

lij −
∑

(i,j)∈A[p∗(sp̃)]∩Ā

uij. (3.28)

Therefore,

C
sp̃
p∗(sp̃) = C

sp
p∗(sp̃) −

∑
(i,j)∈A[p∗(sp̃)]∩Ā

(uij − lij). (3.29)

Applying (3.20) and (3.29) in (3.16):

r
(sp̃)
p̃ = Csp

p −
∑

(i,j)∈Ā

uij −
(
C
sp
p∗(sp̃) −

∑
(i,j)∈A[p∗(sp̃)]∩Ā

(uij − lij)
)

=

Csp
p − Csp

p∗(sp̃) +
∑

(i,j)∈A[p∗(sp̃)]∩Ā

(uij − lij)−
∑

(i,j)∈Ā

uij. (3.30)

One may note that

∑
(i,j)∈A[p∗(sp̃)]∩Ā

(uij − lij)−
∑

(i,j)∈Ā

uij ≤

∑
(i,j)∈Ā

(uij − lij)−
∑

(i,j)∈Ā

uij ≤
∑

(i,j)∈Ā

(−lij). (3.31)

Since Ā ⊂ A and lij ≥ 0, ∀(i, j) ∈ A, it follows that ∑
(i,j)∈Ā

(−lij) ≤ 0 and, thus,
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∑
(i,j)∈A[p∗(sp̃)]∩Ā

(uij − lij)−
∑

(i,j)∈Ā

uij ≤ 0. (3.32)

From (3.30) and (3.32),

r
(sp̃)
p̃ ≤ Csp

p − Csp
p∗(sp̃). (3.33)

As p∗(sp) is a path with the smallest cost in sp among all the paths in P , including
p∗(sp̃), it holds that C

sp
p∗(sp̃) ≥ C

sp
p∗(sp). Thus,

r
(sp̃)
p̃ ≤ Csp

p − Csp
p∗(sp̃) ≤ Csp

p − Csp
p∗(sp). (3.34)

By de�nition, r
(sp)
p = C

sp
p − Csp

p∗(sp). Therefore, r
(sp̃)
p̃ ≤ r

(sp)
p .

Directly from Theorem 2 and Theorem 3, we obtain the following result.

Corollary 1. There is an elementary path p ∈ P which is a robust path.

We use the same mathematical argumentation of Theorem 3 to prove that the

referred IRRSP result holds for R-RSP.

Theorem 4. Given a value β ∈ R+, for any non-elementary path p ∈ P(β) containing

at least one cycle, there is a corresponding elementary path p̃ ∈ P(β), such that A[p̃] ⊂
A[p] and r(sp̃,β)

p̃ ≤ r
(sp,β)
p .

Proof. Consider a value β ∈ R+ and a non-elementary path p ∈ P(β) containing at

least one cycle. Let G[p] be the subgraph of G induced by the arcs in A[p] and p̃ be an

elementary path from o to t in G[p]. We have A[p̃] ⊂ A[p] and, therefore, p̃ ∈ P(β).

By de�nition,

r
(sp̃,β)
p̃ = C

sp̃
p̃ − C

sp̃
p∗(sp̃,β). (3.35)

Consider the set Ā = A[p]\A[p̃] of the arcs in p which do not belong to p̃. As p

is supposed to contain at least one cycle, then Ā 6= ∅. Moreover, since A[p̃] ⊂ A[p], the

di�erence between scenarios sp and sp̃ consists of the cost values assumed by the arcs

in Ā. More precisely,



20 Chapter 3. The restricted robust shortest path problem

c
sp̃
ij = c

sp
ij ∀(i, j) ∈ A\Ā, (3.36)

c
sp
ij = uij ∀(i, j) ∈ Ā, (3.37)

c
sp̃
ij = lij ∀(i, j) ∈ Ā. (3.38)

It follows that

C
sp̃
p̃ =

∑
(i,j)∈A[p̃]

uij =
∑

(i,j)∈A[p]

uij −
∑

(i,j)∈A[p]\A[p̃]

uij = Csp
p −

∑
(i,j)∈Ā

uij. (3.39)

Applying Property 1 to sets A[p∗(sp̃, β)] and A[p]:

A[p∗(sp̃, β)] =

(a2)︷ ︸︸ ︷
(A[p∗(sp̃, β)] ∩ A[p])∪(A[p∗(sp̃, β)]\A[p]). (3.40)

Since A[p̃] ⊂ A[p] and Ā = A[p]\A[p̃], it follows that

A[p] = A[p̃] ∪ (A[p]\A[p̃]) = A[p̃] ∪ Ā. (3.41)

Therefore, expression (a2) of (3.40) can be rewritten as

(A[p∗(sp̃, β)] ∩ A[p]) = (A[p∗(sp̃, β)] ∩ (A[p̃] ∪ Ā)) =

(A[p∗(sp̃, β)] ∩ A[p̃]) ∪ (A[p∗(sp̃, β)] ∩ Ā). (3.42)

Applying (3.40) and (3.42) to C
sp̃
p∗(sp̃,β) and C

sp
p∗(sp̃,β), we obtain:

C
sp̃
p∗(sp̃,β) =

∑
(i,j)∈A[p∗(sp̃,β)]∩A[p̃]

c
sp̃
ij +

∑
(i,j)∈A[p∗(sp̃,β)]∩Ā

c
sp̃
ij +

∑
(i,j)∈A[p∗(sp̃,β)]\A[p]

c
sp̃
ij , (3.43)

C
sp
p∗(sp̃,β) =

∑
(i,j)∈A[p∗(sp̃,β)]∩A[p̃]

c
sp
ij +

∑
(i,j)∈A[p∗(sp̃,β)]∩Ā

c
sp
ij +

∑
(i,j)∈A[p∗(sp̃,β)]\A[p]

c
sp
ij . (3.44)

Considering (3.36)-(3.38), (3.43) and (3.44), we deduce that the only di�erence

between the cost of path p∗(sp̃, β) in sp and its cost in sp̃ is given by the arcs which
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are simultaneously in Ā and in A[p∗(sp̃, β)]. Thus, expressions (3.43) and (3.44) can

be reformulated as

C
sp̃
p∗(sp̃,β) =

∑
(i,j)∈A[p∗(sp̃,β)]∩A[p̃]

uij +
∑

(i,j)∈A[p∗(sp̃,β)]∩Ā

lij +
∑

(i,j)∈A[p∗(sp̃,β)]\A[p]

lij, (3.45)

C
sp
p∗(sp̃,β) =

∑
(i,j)∈A[p∗(sp̃,β)]∩A[p̃]

uij +
∑

(i,j)∈A[p∗(sp̃,β)]∩Ā

uij +
∑

(i,j)∈A[p∗(sp̃,β)]\A[p]

lij. (3.46)

Subtracting (3.46) from (3.45),

C
sp̃
p∗(sp̃,β) − C

sp
p∗(sp̃,β) =

∑
(i,j)∈A[p∗(sp̃,β)]∩Ā

lij −
∑

(i,j)∈A[p∗(sp̃,β)]∩Ā

uij. (3.47)

Therefore,

C
sp̃
p∗(sp̃,β) = C

sp
p∗(sp̃,β) −

∑
(i,j)∈A[p∗(sp̃,β)]∩Ā

(uij − lij). (3.48)

Applying (3.39) and (3.48) in (3.35):

r
(sp̃,β)
p̃ = Csp

p −
∑

(i,j)∈Ā

uij −
(
C
sp
p∗(sp̃,β) −

∑
(i,j)∈A[p∗(sp̃,β)]∩Ā

(uij + lij)
)

=

Csp
p − Csp

p∗(sp̃,β) +
∑

(i,j)∈A[p∗(sp̃,β)]∩Ā

(uij − lij)−
∑

(i,j)∈Ā

uij. (3.49)

One may note that

∑
(i,j)∈A[p∗(sp̃,β)]∩Ā

(uij − lij)−
∑

(i,j)∈Ā

uij ≤

∑
(i,j)∈Ā

(uij − lij)−
∑

(i,j)∈Ā

uij ≤
∑

(i,j)∈Ā

(−lij). (3.50)

Since Ā ⊂ A and lij ≥ 0 ∀(i, j) ∈ A, it follows that ∑
(i,j)∈Ā

(−lij) ≤ 0 and, thus,
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∑
(i,j)∈A[p∗(sp̃)]∩Ā

(uij − lij)−
∑

(i,j)∈Ā

uij ≤ 0. (3.51)

From (3.49) and (3.51),

r
(sp̃,β)
p̃ ≤ Csp

p − Csp
p∗(sp̃,β). (3.52)

As p∗(sp, β) is a path with the smallest cost in sp among all the paths in P(β),

including p∗(sp̃, β), it holds that C
sp
p∗(sp̃,β) ≥ C

sp
p∗(sp,β). Thus,

r
(sp̃,β)
p̃ ≤ Csp

p − Csp
p∗(sp̃,β) ≤ Csp

p − Csp
p∗(sp,β). (3.53)

By de�nition, r
(sp,β)
p = C

sp
p − Csp

p∗(sp,β). Therefore, r
(sp̃,β)
p̃ ≤ r

(sp,β)
p .

Directly from Theorem 1 and Theorem 4, we obtain the following result.

Corollary 2. For any β ∈ R+, there is an elementary path p ∈ P(β) which is β-

restricted robust path.

Consider the scenario co-induced by a path p ∈ P , denoted by s̄p, for which each

arc in A[p] has its cost set to its lower bound, while all the remaining arcs of A have their

cost values set to their corresponding upper bounds, i.e, cs̄pij = lij ∀(i, j) ∈ A[p] and

c
s̄p
ij = uij ∀(i, j) ∈ A\A[p]. Figure 3.4 shows an example of the scenario s̄p̃ co-induced

by the path p̃ = {0, 1, 2, 3} in the graph presented in Figure 3.1.

Figure 3.4: Scenario s̄p̃ co-induced by the path p̃ = {0, 1, 2, 3} in the graph presented

in Figure 3.1. For each arc (i, j) ∈ A, the notation cs̄p̃ij {dij} denotes, respectively, the
arc cost c

s̄p̃
ij in the scenario s̄p̃ and its resource consumption {dij}.
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Lemma 1. Given a value β ∈ R+ and a path p ∈ P(β), if there is a path p′ ∈ P(β)

such that C s̄p
p′ < C

s̄p
p , then Cs

p′ < Cs
p in every scenario s ∈ S.

Proof. Consider a value β ∈ R+ and a path p ∈ P(β). Suppose that there is a path

p′ ∈ P(β) such that C
s̄p
p′ < C

s̄p
p . Applying Property 1 to sets A[p] and A[p′], we obtain

A[p] = (A[p] ∩ A[p′]) ∪ (A[p]\A[p′]), (3.54)

A[p′] = (A[p′] ∩ A[p]) ∪ (A[p′]\A[p]). (3.55)

Therefore, the costs C
s̄p
p′ and C

s̄p
p can be expressed as

C s̄p
p =

∑
(i,j)∈A[p]∩A[p′]

c
s̄p
ij +

∑
(i,j)∈A[p]\A[p′]

c
s̄p
ij , (3.56)

C
s̄p
p′ =

∑
(i,j)∈A[p′]∩A[p]

c
s̄p
ij +

∑
(i,j)∈A[p′]\A[p]

c
s̄p
ij . (3.57)

Applying (3.56) and (3.57) to the assumption that C
s̄p
p′ < C

s̄p
p , we have

∑
(i,j)∈A[p′]∩A[p]

c
s̄p
ij +

∑
(i,j)∈A[p′]\A[p]

c
s̄p
ij <

∑
(i,j)∈A[p]∩A[p′]

c
s̄p
ij +

∑
(i,j)∈A[p]\A[p′]

c
s̄p
ij , (3.58)

which implies

∑
(i,j)∈A[p′]\A[p]

c
s̄p
ij <

∑
(i,j)∈A[p]\A[p′]

c
s̄p
ij . (3.59)

Let s be any scenario in S. By the de�nition of the scenario s̄p, we have

∑
(i,j)∈A[p′]\A[p]

c
s̄p
ij =

∑
(i,j)∈A[p′]\A[p]

uij ≥
∑

(i,j)∈A[p′]\A[p]

csij, (3.60)

∑
(i,j)∈A[p]\A[p′]

c
s̄p
ij =

∑
(i,j)∈A[p]\A[p′]

lij ≤
∑

(i,j)∈A[p]\A[p′]

csij. (3.61)

Using (3.60) and (3.61) in (3.59):
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∑
(i,j)∈A[p′]\A[p]

csij ≤
∑

(i,j)∈A[p′]\A[p]

c
s̄p
ij <

∑
(i,j)∈A[p]\A[p′]

c
s̄p
ij ≤

∑
(i,j)∈A[p]\A[p′]

csij. (3.62)

By adding
∑

(i,j)∈A[p′]∩A[p]

csij to each side of the inequality (3.62) and by considering

Property 1, we obtain:

Cs
p′ =

∑
(i,j)∈A[p′]\A[p]

csij +
∑

(i,j)∈A[p′]∩A[p]

csij <
∑

(i,j)∈A[p]\A[p′]

csij +
∑

(i,j)∈A[p′]∩A[p]

csij = Cs
p .

Proposition 1. Given a value β ∈ R+ and a path p ∈ P(β), if p is a β-restricted

robust path, then there is a scenario s ∈ S in which p is a β-restricted shortest path.

Proof. Consider a value β ∈ R+ and a path p ∈ P(β). We prove that the counterposi-

tive holds, i.e., if there is no scenario s′ ∈ S in which p is a β-restricted shortest path,

then p is not a β-restricted robust path. In this sense, let p′ ∈ P(β) be a β-restricted

shortest path in the scenario s̄p co-induced by p and suppose that there is no scenario

s′ ∈ S (including s̄p) in which p is a β-restricted shortest path. From this assumption,

it follows that C
s̄p
p′ < C

s̄p
p and, according to Lemma 1,

Cs
p′ < Cs

p ∀s ∈ S. (3.63)

Let p∗(sp′ , β) ∈ P(β) be a β-restricted shortest path in the scenario sp′ induced

by p′. Considering (3.63) for the scenario sp′ and subtracting the same value C
sp′

p∗(sp′ ,β)

from each side of the resulting inequality, we obtain:

C
sp′

p′ − C
sp′

p∗(sp′ ,β) < C
sp′
p − Csp′

p∗(sp′ ,β). (3.64)

According to Theorem 1:

Rβ
p′ = r

(sp′ ,β)

p′ = C
sp′

p′ − C
sp′

p∗(sp′ ,β), (3.65)

Rβ
p = r(sp,β)

p = Csp
p − Csp

p∗(sp,β) ≥ Cs
p − Cs

p∗(s,β) ∀s ∈ S. (3.66)
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From (3.64)-(3.66), it follows that:

Rβ
p′ = C

sp′

p′ − C
sp′

p∗(sp′ ,β) < C
sp′
p − Csp′

p∗(sp′ ,β) ≤ Csp
p − Csp

p∗(sp,β) = Rβ
p . (3.67)

Therefore, Rβ
p′ < Rβ

p , which implies that p is not a β-restricted robust path.

3.4 Computational complexity

R-SP is as a special case of R-RSP, in which lij = uij ∀ (i, j) ∈ A. Therefore, R-RSP, as
R-SP, is NP-hard, even for acyclic digraphs [Wang and Crowcroft, 1996]. Furthermore,

we show that the decision problem associated with R-RSP, namely Decision-R-RSP, is

also NP-hard. Considering the R-RSP de�nitions presented in Section 3.1, Decision-

R-RSP is de�ned as follows.

Input: A digraph G = (V,A) such that each arc (i, j) ∈ A is associated with a resource

consumption dij ∈ R+ and with a cost interval [lij,uij], where lij ∈ Z+ is the

lower bound and uij ∈ Z+ is the upper bound, lij ≤ uij. An origin o ∈ V and

a destination t ∈ V are given, as well as a value β ∈ R+ and a value k ∈ Z+.

For short, 〈G, l, u, d, o, t, β, k〉.

Question: Is there a path p from o to t in G such that Dp ≤ β and Rβ
p ≤ k?

We reduce the decision version of IRRSP, namely Decision-IRRSP, which is NP-

complete [Zieli«ski, 2004], to Decision-R-RSP. Considering the IRRSP de�nitions pre-

sented in Section 2.2, Decision-IRRSP is de�ned as follows.

Input: A digraph G = (V,A) such that each arc (i, j) ∈ A is associated with a cost

interval [lij,uij], where lij ∈ Z+ is the lower bound and uij ∈ Z+ is the upper

bound, lij ≤ uij. An origin o ∈ V and a destination t ∈ V are given, as well

as a value k ∈ Z+. For short, 〈G, l, u, o, t, k〉.

Question: Is there a path p from o to t in G such that Rp ≤ k?

Consider the following claims.

Claim 1. For any β ∈ R+ and any scenario s ∈ S, if there exists a β-restricted shortest
path in s from o to t, then there is a β-restricted shortest path in s from o to t that is

also an elementary path.
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Claim 2. For any scenario s ∈ S, there is a minimum cost path in s from o to t that

is an elementary path.

Theorem 5. Decision-IRRSP ≤p Decision-R-RSP.

Proof. First, consider the function f : {〈G, l, u, o, t, k〉} 7→ {〈G′, l′, u′, d′, o′, t′, β, k′〉}
that maps Decision-IRRSP instances to Decision-R-RSP instances through the follow-

ing reduction:

G′ = (V ′, A′) = (V,A) = G, (3.68)

l′ij = lij, ∀(i, j) ∈ A′ = A, (3.69)

u′ij = uij, ∀(i, j) ∈ A′ = A, (3.70)

d′ij = 1, ∀(i, j) ∈ A′ = A, (3.71)

o′ = o, (3.72)

t′ = t, (3.73)

β = |V ′| − 1 = |V | − 1, (3.74)

k′ = k. (3.75)

Notice that the asymptotic time complexity of such reduction is O
(
|V | +

|A|
)
, and, thus, a Decision-IRRSP instance is polinomially reducible to a Decision-

R-RSP instance. For the sake of simplicity, we consider f(〈G, l, u, o, t, k〉) =

〈G′, l′, u′, d′, o′, t′, β, k′〉 = 〈G, l, u, d, o, t, |V |, k〉 in the following. Now, we have to prove

that Decision-IRRSP is satis�ed for a given 〈G, l, u, o, t, k〉 if, and only if, Decision-R-

RSP is satis�ed for the corresponding 〈G, l, u, d, o, t, |V |, k〉.
⇒ Given a Decision-IRRSP instance 〈G, l, u, o, t, k〉, suppose that there exists a

path p from o to t such that Rp ≤ k. Two possibilities exist:

• If p is an elementary path, then it has at most |V | − 1 arcs. Notice that, from

(3.74), β = |V | − 1. Moreover, from (3.71), Dp ≤ |V | − 1 = β. Consider Claim 2

and let p∗(sp) ∈ P be a minimum cost path in sp that is also an elementary path.

Also let p∗(sp, β) ∈ P(β) be a β-restricted shortest path in sp. We have that

Dp∗(sp) ≤ β and, moreover, that C
sp
p∗(sp,β) = C

sp
p∗(sp). Considering Theorem 1 and

Theorem 2, it follows that

Rβ
p = r(sp,β)

p = Csp
p − Csp

p∗(sp,β) = Csp
p − Csp

p∗(sp) = rspp = Rp ≤ k,

and, thus, p satis�es Decision-R-RSP for 〈G, l, u, d, o, t, |V |, k〉;
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• If p is not an elementary path, then, from Theorem 3, there exists an elementary

path p̃ ∈ P in G such that r
sp̃
p̃ ≤ r

sp
p . Consider Claim 2 and let p∗(sp̃) ∈ P

be a minimum cost path in sp̃ that is also elementary. From (3.74), consider

β = |V | − 1 and let p∗(sp̃, β) ∈ P(β) be a β-restricted shortest path in sp̃.

Notice that Dp̃ ≤ |V | − 1 and that Dp∗(sp̃) ≤ |V | − 1. Then, it follows that

C
sp̃
p∗(sp̃,β) = C

sp̃
p∗(sp̃). Considering Theorem 1 and Theorem 2, we obtain

Rβ
p̃ = r

(sp̃,β)
p̃ = C

sp̃
p̃ − C

sp̃
p∗(sp̃,β) = C

sp̃
p̃ − C

sp̃
p∗(sp̃) = r

sp̃
p̃ ≤ rspp = Rp ≤ k,

and, thus, p̃ satis�es Decision-R-RSP for 〈G, l, u, d, o, t, |V |, k〉.

Therefore, if Decision-IRRSP is satis�ed for a given 〈G, l, u, o, t, k〉, then Decision-
R-RSP is also satis�ed for the corresponding 〈G, l, u, d, o, t, |V |, k〉.

⇐ Now, take a Decision-R-RSP instance 〈G, l, u, d, o, t, β, k〉, with β = |V | − 1,

and suppose that there exists a path p′ from o to t in G such that Rβ
p′ ≤ k. Consider

Claim 1 and let p∗(sp′ , β) ∈ P(β) be a β-restricted shortest path in sp′ that is also

elementary. Moreover, consider Claim 2 and let p∗(sp′) ∈ P be a minimum cost path

in sp′ that is also elementary. From (3.71) and (3.74), any elementary path from o to

t in G belongs to P(β), which implies C
sp′

p∗(sp′ )
= C

sp′

p∗(sp′ ,β). Considering Theorem 1 and

Theorem 2, we obtain

Rp′ = r
sp′

p′ = C
sp′

p′ − C
sp′

p∗(sp′ )
= C

sp′

p′ − C
sp′

p∗(sp′ ,β) = r
(sp′ ,β)

p′ = Rβ
p′ ≤ k.

Therefore, p′ satis�es Desicion-RSP for 〈G, l, u, o, t, k〉. Moreover, if Decision-R-

RSP is satis�ed for a given 〈G, l, u, d, o, t, |V |, k〉, then Decision-IRRSP is also satis�ed

for the corresponding 〈G, l, u, o, t, k〉.

From Theorem 5, we obtain the computational complexity of Decision-R-RSP.

Corollary 3. Decision-R-RSP is NP-hard.

Whether Decision-R-RSP belongs or not to NP is still an open issue.





Chapter 4

A linear programming based

heuristic

In this Chapter, we present (as a case study on solving R-RSP) a Linear Programming

based Heuristic, namely LPH, to tackle robust-hard problems. It consists in solving

a MILP formulation based on the dual of the linear relaxation of the classical opti-

mization problem counterpart. In the case of R-RSP, the proposed heuristic uses dual

information regarding the linear relaxation of R-SP to deal with the compact non-linear

formulation (3.7), from which formulation F , (3.8)-(3.15), is derived. For this purpose,
consider the following R-SP ILP formulation used to compute a β-restricted shortest

path p∗(s, β) ∈ P(β) in a scenario s ∈ S. The binary variables x de�ne p∗(s, β), such

that xij = 1 if an arc (i, j) ∈ A belongs to A[p∗(s, β)], and xij = 0, otherwise.

(I) min
∑

(i,j)∈A

csijxij (4.1)

s.t.
∑

j:(j,o)∈A

xjo −
∑

k:(o,k)∈A

xok = −1, (4.2)

∑
j:(j,i)∈A

xji −
∑

k:(i,k)∈A

xik = 0 ∀ i ∈ V \{o, t}, (4.3)

∑
j:(j,t)∈A

xjt −
∑

k:(t,k)∈A

xtk = 1, (4.4)

∑
(i,j)∈A

dijxij ≤ β, (4.5)

xij ∈ {0, 1} ∀ (i, j) ∈ A. (4.6)

The objective function in (4.1) represents the cost, in the scenario s, of a path

29
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de�ned by x, while constraints (4.2)-(4.6) ensure that x identi�es a path in P(β).

Relaxing the integrality on x, we obtain the following Linear Programming (LP) for-

mulation:

(L) θ(s,β) = min
∑

(i,j)∈A

csijxij (4.7)

s.t. Constraints (4.2)-(4.5),

xij ≥ 0 ∀ (i, j) ∈ A. (4.8)

The domain constraints xij ≤ 1 ∀ (i, j) ∈ A were omitted from L, since they are

redundant. Let θ(s,β) be the optimal value for the problem L in a scenario s. Observe

that θ(s,β) provides a lower bound on the solution of I in the scenario s. We can then

de�ne a new metric to evaluate the quality of a path in P(β).

De�nition 12. The β-heuristic robustness cost of a path p ∈ P(β), denoted by Hβ
p , is

the di�erence between the cost C
sp
p of p in the scenario sp induced by p and the relaxed

cost θ(sp,β) in sp, i.e., H
β
p = C

sp
p − θ(sp,β).

Proposition 2. For any path p ∈ P(β), the β-heuristic robustness cost of p gives an

upper bound on the β-restricted robustness cost of p.

Proof. Consider a path p ∈ P(β). According to Theorem 1, the β-restricted robustness

cost of p is given by Rβ
p = r

(sp,β)
p = C

sp
p − C

sp
p∗(sp,β), where p

∗(sp, β) ∈ P(β) is a β-

restricted shortest path in sp. One may note that θ(s,β) ≤ Cs
p∗(s,β) for any scenario

s ∈ S, including sp. Hence,

Hβ
p = Csp

p − θ(sp,β) ≥ Csp
p − Csp

p∗(sp,β) = Rβ
p . (4.9)

De�nition 13. A path p̃∗ ∈ P(β) is said to be a β-heuristic robust path if

it has the smallest β-heuristic robustness cost among all the paths in P(β), i.e.,

p̃∗ = arg min
p∈P(β)

Hβ
p .

The heuristic proposed in this work aims at �nding a β-heuristic robust path and

relies on the hypothesis that such a path is a near-optimal solution for R-RSP. The

problem of �nding a β-heuristic robust path can be modeled by adapting formulation

(3.7). In this sense, the binary variables y now represent a β-heuristic robust path in
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P(β). Furthermore, considering the scenario sy induced by the path de�ned by y, the

nested minimization in (3.7) is replaced by θ(sy ,β). We obtain:

min
y∈P(β)

( ∑
(i,j)∈A

uijyij − θ(sy ,β)

)
. (4.10)

Given a scenario s ∈ S, the value assumed by θ(s,β) can be represented by the

dual of L, as follows:

(L̃) θ(s,β) = max λt − λo − βµ (4.11)

s.t. λj ≤ λi + csij + dijµ ∀ (i, j) ∈ A, (4.12)

µ ≥ 0, (4.13)

λk free ∀ k ∈ V. (4.14)

The dual variables {λk : k ∈ V } and µ are associated, respectively, with con-

straints (4.2)-(4.4) and with constraint (4.5) in the primal problem L. Since L̃ is a

maximization problem, its objective function, along with (4.12)-(4.14), can be used to

replace the relaxed cost θ(sy ,β) in (4.10), thus deriving the following formulation:

min
y∈P(β)

( ∑
(i,j)∈A

uijyij −
From (4.11)︷ ︸︸ ︷

(λt − λo − βµ)

)
(4.15)

s.t. λj ≤ λi + lij + (uij − lij)yij + dijµ ∀ (i, j) ∈ A, (4.16)

µ ≥ 0, (4.17)

λk free ∀ k ∈ V. (4.18)

Notice that constraints (4.16) consider the cost of each arc (i, j) ∈ A in the

scenario sy induced by the path identi�ed by variables y, i.e., the cost of each arc

(i, j) ∈ A is given by lij + (uij − lij)yij. The domain constraints (4.17) and (4.18)

related to L̃ remain the same. Now, we give a MILP formulation for the problem of

�nding a β-heuristic robust path.
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(H) min
∑

(i,j)∈A

uijyij − λt + λo + βµ (4.19)

s.t.
∑

j:(j,o)∈A

yjo −
∑

k:(o,k)∈A

yok = −1, (4.20)

∑
j:(j,i)∈A

yji −
∑

k:(i,k)∈A

yik = 0 ∀ i ∈ V \{o, t}, (4.21)

∑
j:(j,t)∈A

yjt −
∑

k:(t,k)∈A

ytk = 1, (4.22)

∑
(i,j)∈A

dijyij ≤ β, (4.23)

Constraints (4.16)-(4.18),

yij ∈ {0, 1} ∀ (i, j) ∈ A. (4.24)

The objective function in (4.19) represents the β-heuristic robustness cost of the

path de�ned by the variables y. Constraints (4.20)-(4.23) and (4.24) ensure that y

belongs to P(β). Constraints (4.16)-(4.18) are the remaining restrictions related to L̃.
The heuristic consists in solving the corresponding H problem in order to �nd

a β-heuristic robust path p̃∗ ∈ P(β). Note that p̃∗ is also a feasible solution path

for R-RSP, and, according to Proposition 2, its β-heuristic robustness cost provides

an upper bound on the solution of R-RSP. Such bound is improved by evaluating the

actual β-restricted robustness cost of p̃∗. In this study, we solve H directly with an

optimization solver.



Chapter 5

Benders-like decomposition

approaches

Benders decomposition method was originally proposed by Benders [1962] (see also

Geo�rion [1972]). Later on, methodologies able to improve such method were studied

by McDaniel and Devine [1977]; Magnanti and Wong [1981]; Fischetti et al. [2010].

In this chapter, we adapt to R-RSP a Benders-like decomposition approach that is

a state-of-the-art method used to solve RO problems [Montemanni and Gambardella,

2005; Montemanni, 2006; Montemanni et al., 2007; Pereira and Averbakh, 2011, 2013].

Furthermore, we discuss some techniques able to improve the convergence speed of the

proposed exact method.

5.1 Standard Benders decomposition

As discussed in Section 3.2, formulation F has an exponential number of constraints

(3.13), one for each path in P(β). Since several of these constraints are inactive at

optimality, they can be generated on demand whenever they are violated. In this

sense, given a set Γ ⊆ P(β), Γ 6= ∅, consider the relaxed robustness cost metric de�ned

as follows.

De�nition 14. A path p∗(s,Γ) ∈ Γ is said to be a Γ-relaxed shortest path in a scenario

s ∈ S if it has the smallest cost in s among all paths in Γ, i.e., p∗(sp,Γ) = arg min
p∈Γ

Cs
p .

De�nition 15. The Γ-relaxed robustness cost of a path p ∈ P(β), denoted by RΓ
p , is

the di�erence between the cost C
sp
p of p in the scenario sp induced by p and the cost

of a Γ-relaxed shortest path p∗(sp,Γ) ∈ P(β) in sp, i.e., RΓ
p = C

sp
p − Csp

p∗(sp,Γ).

33
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Proposition 3. For any Γ ⊆ P(β), Γ 6= ∅, and any path p ∈ P(β), the Γ-relaxed

robustness cost RΓ
p of p gives a lower bound on the β-restricted robustness cost Rβ

p of

p.

Proof. Consider a set Γ ⊆ P(β), Γ 6= ∅, and a path p ∈ P(β). According to Theorem 1,

the β-restricted robustness cost of p is given by Rβ
p = r

(sp,β)
p = C

sp
p − Csp

p∗(sp,β), where

p∗(sp, β) ∈ P(β) is a β-restricted shortest path in sp. By de�nition, the Γ-relaxed

robustness cost of p is given by RΓ
p = C

sp
p − C

sp
p∗(sp,Γ), where p

∗(sp,Γ) ∈ P(β) is a

Γ-relaxed shortest path in sp. Notice that C
sp
p∗(sp,β) ≤ C

sp
p′ for all p

′ ∈ P(β), including

p∗(sp,Γ). Therefore,

RΓ
p = Csp

p − Csp
p∗(sp,Γ) ≤ Csp

p − Csp
p∗(sp,β) = Rβ

p . (5.1)

Proposition 4. If Γ = P(β), then, for any path p ∈ P(β), it holds that RΓ
p = Rβ

p .

Proof. Consider a set Γ = P(β) and a path p ∈ P(β). In this case, a Γ-relaxed shortest

path p∗(sp,Γ) ∈ P(β) in sp is also a β-restricted shortest path p∗(sp, β) ∈ P(β) in sp.

Therefore, considering Theorem 1,

RΓ
p = Csp

p − Csp
p∗(sp,Γ) = Csp

p − Csp
p∗(sp,β) = Rβ

p . (5.2)

De�nition 16. A path p̄∗ ∈ P(β) is said to be a Γ-relaxed robust path if it has the

smallest Γ-relaxed robustness cost among all the paths in Γ, i.e., p̄∗ = arg min
p∈Γ

RΓ
p .

Considering the relaxed metric discussed above, we propose a Benders-like de-

composition algorithm to solve F . The algorithm, referred to as Standard Benders, is

described in Algorithm 1. Let P(β)ψ ⊆ P(β) be the set of paths (Benders cuts) that

are available at an iteration ψ, and Fψ be a relaxed version of F in which constraints

(3.13) are replaced by

ρ ≤
∑

(i,j)∈A

(lij + (uij − lij)yij)x̄ij ∀ x̄ ∈ P(β)ψ. (5.3)

Thus, the relaxed problem Fψ, called master problem, is de�ned by (3.8)-(3.12),

(3.14), (3.15) and (5.3). One may observe that Fψ is precisely the problem of �nding

a Γ-relaxed robust path, with Γ = P(β)ψ.
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Let ubψ keep the best upper bound found (until an iteration ψ) on the solution

of F . Notice that, at the beginning of Standard Benders, P(β)1 contains the initial

Benders cuts available, whereas ub1 keeps the initial upper bound on the solution of

F . In this case, P(β)1 = ∅ and ub1 := +∞. At each iteration ψ, Standard Benders

algorithm obtains a solution by solving a corresponding master problem Fψ and seeks

a constraint (3.13) that is most violated by this solution. One may observe that,

initially, no constraint (5.3) is considered, since P(β)1 = ∅. An initialization step is

then necessary to add at least one path to P(β)1, thus avoiding unbounded solutions

during the �rst resolution of the master problem. In this sense, it is computed a β-

restricted shortest path in the worst-case scenario su, with each arc in A having its

cost value set to its upper bound, i.e., cs
u

ij = uij ∀ (i, j) ∈ A (Step I, Algorithm 1).

Algorithm 1: Standard Benders.

Input: Graph G = (V,A), limit β, vertices o and t
Output: (ȳ∗, R∗), where ȳ∗ is a β-restricted robust path, and R∗ is its

corresponding β-restricted robustness cost

ψ := 1; ub1 := +∞; P(β)1 := ∅;
Step I. (Initialization)

Find a β-restricted shortest path x̄0 ∈ P(β) in the scenario su;
P(β)1 := P(β)1 ∪ {x̄0};
Step II. (Master problem)

Solve the relaxed problem Fψ, obtaining a solution (ȳψ, ρ̄ψ);
Step III. (Auxiliary problem)

Find a β-restricted shortest path x̄ψ ∈ P(β) in the scenario sȳψ induced by ȳψ and

compute Rβ
ȳψ

= C
s
ȳψ

ȳψ
− Csȳψ

x̄ψ
, the β-restricted robustness cost of ȳψ;

Step IV. (Stopping condition)

lbψ :=
∑

(i,j)∈A
uij ȳ

ψ
ij − ρ̄ψ;

if lbψ ≥ Rβ
ȳψ

then

ȳ∗ := ȳψ;
R∗ := Rβ

ȳψ
;

Return (ȳ∗, R∗);
end

else

ubψ := min{ubψ, Rβ
ȳψ
};

ubψ+1 := ubψ;
P(β)ψ+1 := P(β)ψ ∪ {x̄ψ};
ψ := ψ + 1;
Go to Step II;

end

After the initialization step, the iterative procedure takes place. At each iteration

ψ, the corresponding relaxed problem Fψ is solved (Step II, Algorithm 1), obtaining
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a solution (ȳψ, ρ̄ψ). For the sake of simplicity, the notation ȳψ is used in the sequel

meaning the actual path in P(β) that this solution represents. Then, the algorithm

checks if (ȳψ, ρ̄ψ) violates any constraint (3.13) of the original problem F , i.e., if there
is a constraint (5.3) that should have been considered in Fψ and was not. For this

purpose, it is solved an auxiliary problem that computes Rβ
ȳψ

(the actual β-restricted

robustness cost of ȳψ) by �nding a β-restricted shortest path x̄ψ in the scenario sȳψ

induced by ȳψ (see Step III, Algorithm 1).

Let lbψ =
∑

(i,j)∈A
uij ȳ

ψ
ij − ρ̄ψ be the value of the objective function in (3.8) related

to the solution (ȳψ, ρ̄ψ) of the current master problem Fψ. Notice that, considering

Γ = P(β)ψ, lbψ corresponds to the Γ-relaxed robustness cost of ȳψ. Thus, according

to Proposition 3, lbψ gives a lower bound on the solution of F . Moreover, since ȳψ

is a path in P(β), its β-restricted robustness cost Rβ
ȳψ

gives an upper bound on the

solution of F . Accordingly, if lbψ reaches Rβ
ȳψ
, the algorithm stops. Otherwise, ubψ and

ubψ+1 are both set to the best upper bound found by the algorithm until iteration ψ.

In addition, a new constraint (5.3) is generated from x̄ψ and added to Fψ+1 by setting

P(β)ψ+1 := P(β)ψ ∪ {x̄ψ} (see Step IV of Algorithm 1). One may observe that the

algorithm stops when the value ρ̄ψ corresponds to the cost of x̄ψ in the scenario sȳψ ,

i.e., the optimal solution for Fψ is also feasible (and, therefore, optimal) for F .
Notice that the auxiliary problems that arise in Standard Benders (as well as the

initialization step) involve solving R-SP instances. Then, any exact algorithm for R-SP

(see, e.g., Santos et al. [2007]; Dumitrescu and Boland [2003]; Zhu and Wilhelm [2012])

can be applied to solve these problems. Indeed, an optimization solver may be used to

directly handle an ILP formulation for R-SP. The convergence of Standard Benders is

ensured by Proposition 4 and the following results.

Lemma 2. If F is feasible, then every R-SP problem that arises in Standard Benders

is also feasible.

Proof. Assume that F is feasible. Then, we must have P(β) 6= ∅. This implies the

existence of a β-restricted shortest path in every scenario s ∈ S, and, thus, any R-SP

problem that arises while executing Algorithm 1 is also feasible.

Proposition 5. At each iteration ψ ≥ 1 of Algorithm 1, if the stopping condition is

not satis�ed, then the resolution of the corresponding auxiliary problem leads to a new

path x̄ψ ∈ P(β)\P(β)ψ.

Proof. Consider an iteration ψ ≥ 1 of Algorithm 1 and assume, by contradiction,

that (I) the stopping condition is not satis�ed, and (II) the resolution of the auxiliary
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problem of iteration ψ does not lead to a path in P(β)\P(β)ψ. Let (ȳψ, ρ̄ψ) be the

solution obtained from the resolution of the corresponding master problem Fψ. From
Lemma 2, the auxiliary problem of iteration ψ is feasible, and, thus, its resolution

leads to a β-restricted shortest path x̄ψ ∈ P(β) in the scenario sȳψ induced by ȳψ.

From assumption (I), we must have lbψ < Rβ
ȳψ
. Considering Theorem 1 and letting

Γ = P(β)ψ, we have that lbψ = RΓ
ȳψ
, and, moreover,

C
s
ȳψ

ȳψ
− Cs

ȳψ

p∗(s
ȳψ
,Γ) = RΓ

ȳψ = lbψ < Rβ
ȳψ

= C
s
ȳψ

ȳψ
− Cs

ȳψ

p∗(s
ȳψ
,β), (5.4)

where p∗(sȳψ ,Γ) is a Γ-relaxed shortest path in sȳψ and p∗(sȳψ , β) is a β-restricted

shortest path in sȳψ . From (5.4), we obtain

C
s
ȳψ

p∗(s
ȳψ
,Γ) > C

s
ȳψ

p∗(s
ȳψ
,β). (5.5)

Notice that, since x̄ψ is also a β-restricted shortest path in sȳψ , it follows, from

(5.5), that

C
s
ȳψ

p∗(s
ȳψ
,Γ) > C

s
ȳψ

p∗(s
ȳψ
,β) = C

s
ȳψ

x̄ψ
. (5.6)

Furthermore, as p∗(sȳψ ,Γ) is a Γ-relaxed shortest path in sȳψ , and, from assump-

tion (II), x̄ψ belongs to P(β)ψ = Γ, we also have that

C
s
ȳψ

p∗(s
ȳψ
,Γ) ≤ C

s
ȳψ

x̄ψ
, (5.7)

which, considering (5.6), is a contradiction.

5.2 Extended Benders decomposition

The extended version of Standard Benders here presented, called Extended Benders,

uses additional information obtained while solving each master problem to generate,

whenever possible, more than a single Benders cut per iteration of the algorithm.

Precisely, whenever a new incumbent solution is found in the process of solving a master

problem, such solution is stored to be later used in the generation of Benders cuts. This

idea was suggested in Fischetti et al. [2010] and �rstly applied to a robust-hard problem

in Pereira and Averbakh [2013]. Extended Benders is described in Algorithm 2.

After the initialization (Step I, Algorithm 2), which is done as in Standard Ben-

ders, an improved iterative procedure takes place. At each iteration ψ, the correspond-

ing Fψ problem is solved (as a master problem) to obtain a solution (ȳψ, ρ̄ψ), and all

the incumbent solution vectors ȳ found along the process are stored in a set Πψ (Step

II, Algorithm 2). Notice that, in this case, an incumbent solution consists of the best
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Algorithm 2: Extended Benders.

Input: Graph G = (V,A), limit β, vertices o and t
Output: (ȳ∗, R∗), where ȳ∗ is a β-restricted robust path, and R∗ is its

corresponding β-restricted robustness cost

ψ := 1; ub1 := +∞; P(β)1 := ∅;
Step I. (Initialization)

Find a β-restricted shortest path x̄0 ∈ P(β) in the scenario su;
P(β)1 := P(β)1 ∪ {x̄0};
Step II. (Master problem)

Solve the relaxed problem Fψ, obtaining a solution (ȳψ, ρ̄ψ), and store in Πψ all the

incumbent (integer and feasible) solution vectors ȳ found along the process;

Step III. (Auxiliary problem)

Find a β-restricted shortest path x̄ψ ∈ P(β) in the scenario sȳψ induced by ȳψ and

compute Rβ
ȳψ
, the β-restricted robustness cost of ȳψ;

Step IV. (Stopping condition)

lbψ :=
∑

(i,j)∈A
uij ȳ

ψ
ij − ρ̄ψ;

if lbψ ≥ Rβ
ȳψ

then

ȳ∗ := ȳψ;
R∗ := Rβ

ȳψ
;

Return (ȳ∗, R∗);
end

else

Cψ := {x̄ψ};
ubψ := min{ubψ, Rβ

ȳψ
};

forall ȳ ∈ Πψ do
Find a β-restricted shortest path x̄ ∈ P(β) in the scenario sȳ induced by ȳ
and compute Rȳ, the β-restricted robustness cost of ȳ ;

Cψ := Cψ ∪ {x̄} ;
ubψ := min{ubψ, Rȳ};

end

ubψ+1 := ubψ;
P(β)ψ+1 := P(β)ψ ∪ Cψ;
ψ := ψ + 1;
Go to Step II;

end

feasible solution known at a given point of the resolution of Fψ. Moreover, since only

the incumbent solution values referred to y variables are stored in Πψ, any solution in

this set represents a path in P(β).

As in Standard Benders, an auxiliary problem is then solved in order to compute

the β-restricted robustness cost Rβ
ȳψ

of the path identi�ed by ȳψ. This is done by

�nding a β-restricted shortest path x̄ψ in the scenario sȳψ induced by ȳψ (Step III,

Algorithm 2). If the stopping condition is satis�ed, i.e., the current lower bound
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(given by lbψ =
∑

(i,j)∈A
uij ȳ

ψ
ij − ρ̄ψ) reaches the upper bound provided by Rβ

ȳψ
, then ȳ

is an optimal solution for F and the algorithm stops. Otherwise, let Cψ be the set

of Benders cuts generated at iteration ψ. Initially, Cψ := {x̄ψ}. For each ȳ ∈ Πψ,

a β-restricted shortest path x̄ in the scenario induced by ȳ is found (by solving a R-

SP problem) and added to Cψ. Then, new constraints (5.3) are generated from Cψ
and added to Fψ+1 by setting P(β)ψ+1 := P(β)ψ ∪ Cψ. In addition, the β-restricted

robustness costs referred to ȳψ and to the solutions in Πψ are used to update ubψ, the

best upper bound found until iteration ψ (see Step IV, Algorithm 2).

5.3 Warm start procedures

We present three warm start procedures able to further improve the performance of the

Benders decompositions previously discussed by providing initial Benders cuts referred

to constraints (5.3), as well as initial upper bounds. The �rst procedure, whose idea

was suggested in McDaniel and Devine [1977], consists in solving a linearly relaxed

version of F , namely F̃ , in which constraints (3.14) are replaced by

0 ≤ yij ≤ 1 ∀ (i, j) ∈ A. (5.8)

F̃ is then de�ned by (3.8)-(3.13), (3.15) and (5.8). This problem is solved via a

slightly modi�ed Standard Benders. In this case, the master problem of any iteration

ψ of the decomposition is a LP problem de�ned by (3.8)-(3.12), (3.15), (5.3) and (5.8).

Therefore, a solution vector ȳψ referred to a master problem is not necessarily a binary

vector and may not represent a path in P(β). Moreover, the scenario sȳψ induced by

ȳψ is now de�ned as c
s
ȳψ

ij = lij + (uij − lij)ȳψij ∀(i, j) ∈ A, which allows the existence

of arc costs that are neither the lower nor the upper bounds of the corresponding cost

intervals. Likewise, the cost of ȳψ in a scenario s ∈ S is now given by Cs
ȳψ

=
∑

(i,j)∈A
csij ȳ

ψ
ij.

The auxiliary problems remain providing valid Benders cuts by solving R-SP problems.

These cuts are stored along the process of solving F̃ to be later used to initialize either

Standard Benders or Extended Benders while solving F . We refer to the procedure

described above as Relaxation Start (RS).

The second procedure, called Heuristic Start (HS), uses the heuristic LPH pre-

sented in Chapter 4. Precisely, the β-restricted robustness cost Rβ
p̃∗ of the β-heuristic

robust path p̃∗ ∈ P(β) found by the heuristic gives an initial upper bound on the

solution of F . Furthermore, the β-restricted shortest path p∗(sp̃∗ , β) ∈ P(β) obtained

while computing Rp̃∗ is stored as a Benders cut.
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The third procedure, namely Extended Heuristic Start (Extended HS), adapts

LPH to retrieve information able to provide additional Benders cuts in the same way

as in Extended Benders. Such procedure can be seen as an extension of HS and is

described in Algorithm 3. First, the heuristic problem H is solved, obtaining a β-

heuristic robust path represented by ȳ∗. In addition, all the incumbent solutions found

along the process are stored in a set Π, initially empty. As in LPH, problem H can be

directly handled with an optimization solver. The β-restricted robustness cost referred

to ȳ∗ is then computed by �nding a β-restricted shortest path x̄∗ in the scenario sȳ∗

induced by ȳ∗ (Step I, Algorithm 3). Let C be the set of valid Benders cuts obtained

by the procedure. Also let ub∗ keep the smallest β-restricted robustness cost found so

far. At this point of the execution, C := {x̄∗} and ub∗ := Rβ
ȳ∗ . For each ȳ ∈ Π, a

β-restricted shortest path x̄ in the scenario induced by ȳ is found (by solving a R-SP

problem) and added to C. In addition, the β-restricted robustness costs referred to the

solutions in Π are computed and used to update ub∗ (see Step II, Algorithm 3).

Algorithm 3: Extended HS.

Input: Graph G = (V,A), distance limit β, vertices o and t
Output: (C, ub∗), where C is the set of available Benders cuts, and ub∗ is the

smallest β-restricted robustness cost found

Π := ∅;
Step I. (Heuristic initialization)

Solve the heuristic problem H, obtaining a solution ȳ∗, and store in Π all the

incumbent solution vectors ȳ found along the process;

Find a β-restricted shortest path x̄∗ ∈ P(β) in the scenario sȳ∗ induced by ȳ∗ and

compute Rβȳ∗ , the β-restricted robustness cost of ȳ∗ ;
Step II. (Additional cuts generation)

C := {x̄∗};
ub∗ := Rβȳ∗ ;

forall ȳ ∈ Π do
Find a β-restricted shortest path x̄ ∈ P(β) in the scenario sȳ induced by ȳ and

compute Rβȳ , the β-restricted robustness cost of ȳ ;

C := C ∪ {x̄} ;
ub∗ := min{ub∗, Rβȳ};

end

Return (C, ub∗);

Notice that all of these procedures provide at least one Benders cut to be added to

P(β)1, the set of initial cuts available to Standard Benders (and to Extended Benders).

The initialization step (Step I of Algorithms 1 and 2) can then be skipped whenever

these procedures are adopted. In the next chapter, we describe and compare, in terms

of computational performance, some variants of Standard and Extended Benders ob-
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tained from coupling the speed-up procedures discussed above with the Benders-like

decomposition approaches.





Chapter 6

Computational experiments

In this chapter, we introduce two benchmarks of R-RSP instances and use them to

evaluate, out of computational experiments, the e�ectiveness of LPH. We also com-

pare the quality of the solutions obtained by Standard Benders and Extended Benders

while solving these benchmarks of instances. In addition, we analyse the impact of

the warm start procedures presented in Section 5.3 on the performance of both Stan-

dard and Extended Benders. For this purpose, we couple these procedures with the

Benders-like decomposition approaches in di�erent manners, as detailed in the sequel

(see Section 6.2.2).

All the codes are in C++, along with the optimization solver ILOG CPLEX 12.5

under default parameter settings. The computational experiments were performed on

a 64 bits Intel R© Xeon R© E5405 machine with 2.0 GHz of clock and 7.0 GB of RAM

memory, under Linux operating system. Whenever a R-SP problem had to be solved,

we used CPLEX to handle the ILP formulation I directly. We also used CPLEX to

solve each master problem of the Benders-like decompositions. Every exact algorithm

tested was set to run for up to 3600 seconds.

6.1 Benchmarks description

Due to the lack of R-RSP instances in the literature, we generated two benchmarks

of instances inspired by the applications described in Section 1. These benchmarks

were adapted from two sets of RSP instances. Kara³an instances [Kara³an et al.,

2001] resemble telecommunication networks, while Coco instances [Coco et al., 2014a]

resemble urban transportation networks.

Kara³an instances have been largely used in experiments concerning RSP

[Kara³an et al., 2001; Montemanni and Gambardella, 2004; Montemanni et al., 2004;

43
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Montemanni and Gambardella, 2005; Coco et al., 2014a]. They consist of layered

[Sugiyama et al., 1981] and acyclic [Bondy and Murty, 1976] digraphs. In these di-

graphs, each of the κ layers has the same number ω of vertices. There is an arc from

every vertex in a layer b ∈ {1, . . . , κ − 1} to every vertex in the adjacent layer b + 1.

Moreover, there is an arc from the origin vertex o to every vertex in the �rst layer, and

an arc from every vertex in the layer κ to the destination vertex t. These instances

are named K-v-Φmax-δ-ω, with 0 < δ < 1, where v is the number of vertices (aside

from o and t) and Φmax is an integer value. For each arc (i, j) ∈ A, a random integer

value Φij is uniformly chosen in the range [1,Φmax]. Afterwards, random values lij and

uij are uniformly selected, respectively, in the ranges [(1 − δ) · Φij, (1 + δ) · Φij] and

[lij, (1 + δ) · Φij]. Note that Φ plays the role of a base case scenario from which the

uncertainty is generated. Figure 6.1 shows an example of an acyclic digraph with 3

layers of width 2.

Figure 6.1: An acyclic digraph with 3 layers of width 2. Here, o = 0 and t = 7.
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Coco instances consist of grid digraphs based on n×m matrices, where n is the

number of rows and m is the number of columns. Each matrix cell corresponds to a

vertex in the graph, and there are two bidirectional arcs between each pair of vertices

whose respective matrix cells are adjacent. The origin o is de�ned as the upper left

vertex, and the destination t is de�ned as the lower right vertex. These instances are

named G-n×m-Φmax-δ, with 0 < δ < 1, where Φmax is an integer value. Given Φmax

and δ values, the cost intervals are generated as in the Kara³an instances. Figure 6.2

gives an example of a grid digraph.

Figure 6.2: A 2× 4 grid digraph, with o = 0 and t = 7.
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For all instances, the resource consumption associated with each arc is given by

a random integer value uniformly selected in the interval (0, 10]. The small size of

the interval allows the generation of instances in which most of the arcs are candidate

to appear in an optimal solution, increasing the number of feasible solutions. The
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symmetry with respect to arc resource consumptions was preserved, i.e., we considered

dij = dji for any pair of adjacent vertices i and j such that (i, j) ∈ A and (j, i) ∈ A.
The resource consumption limit β of a given instance was computed as follows.

Consider the set P of all the paths from o to t, and let p̄ ∈ P be a shortest path in

terms of resource consumption, i.e., p̄ = arg min
p∈P

Dp. We set β = 1.1 ·Dp̄, which means

that is given a 10% tolerance with respect to the minimum resource consumption Dp̄.

This way, the resource consumption limit is tighter.

6.2 Results

We generated Kara³an and Coco instances of 1000 and 2000 vertices (approximately),

with Φmax ∈ {20, 200}, δ ∈ {0.5, 0.9} and ω ∈ {5, 10, 25}. Considering these values,

a set of 10 instances was generated for each possible parameter con�guration. In

summary, 480 instances were used in the experiments of LPH and the exact algorithms.

6.2.1 LPH

Computational experiments were carried out in order to evaluate if the proposed heuris-

tic e�ciently �nds optimal or near-optimal solutions for the two benchmarks of in-

stances described above. Results for Kara³an and Coco instances are reported in

Tables 6.1 and 6.2, respectively. The �rst column displays the name of each set of 10

instances. The second column shows the number of instances solved at optimality by

any of the exact algorithms (detailed in Section 6.2.2) within 3600 seconds of execu-

tion. The third and fourth columns show, respectively, the average and the standard

deviation (over the 10 instances) of the relative optimality gaps given by 100 · UB∗−LB∗
UB∗

.

LB∗ and UB∗ are, respectively, the best lower and upper bounds obtained by any exact

algorithm for a given instance. The �fth column displays the average processing time

(in seconds) of LPH. The sixth column shows the average (over the 10 instances) of

the heuristic optimality gaps given by 100 · UBlph−LB∗
UBlph

, where UBlph is the β-restricted

robustness cost of the solution obtained by LPH for a given instance. The standard

deviation of these gaps is given in the last column. Notice that LB∗ remains the best

lower bound obtained by any exact algorithm within 3600 seconds of execution and,

therefore, it might not correspond to the cost of an optimal solution. Thus, the afore-

mentioned heuristic gaps may overestimate the actual gaps between the cost of the

heuristic solution and the cost of an optimal one.

Regarding Kara³an instances (Table 6.1), it can be seen that the average optimal-

ity gaps referred to the solutions provided by LPH are at most 3.46% for the instances
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Table 6.1: Computational results of LPH for the layered and acyclic digraph instances.

Exact algorithms LPH

Test set #opt AvgGAP(%) StDev(%) Time(s) AvgGAP(%) StDev(%)

K-1000-20-0.5-5 10 0.00 0.00 11.17 0.00 0.00
K-1000-20-0.9-5 2 3.58 2.90 31.66 3.46 2.78
K-1000-200-0.5-5 10 0.00 0.00 9.29 0.16 0.28
K-1000-200-0.9-5 5 1.36 1.64 23.22 1.36 1.64

K-1000-20-0.5-10 10 0.00 0.00 12.29 0.07 0.22
K-1000-20-0.9-10 10 0.00 0.00 19.32 0.00 0.00
K-1000-200-0.5-10 10 0.00 0.00 11.34 0.31 0.97
K-1000-200-0.9-10 10 0.00 0.00 26.81 0.05 0.15

K-1000-20-0.5-25 10 0.00 0.00 23.65 0.00 0.00
K-1000-20-0.9-25 10 0.00 0.00 29.57 0.24 0.76
K-1000-200-0.5-25 10 0.00 0.00 25.71 0.00 0.00
K-1000-200-0.9-25 10 0.00 0.00 33.15 0.00 0.00

K-2000-20-0.5-5 0 8.61 3.86 74.73 8.35 3.72
K-2000-20-0.9-5 0 14.90 2.60 288.43 14.09 2.25
K-2000-200-0.5-5 0 8.30 2.27 79.02 8.00 2.19
K-2000-200-0.9-5 0 15.52 2.59 557.90 14.54 2.59

K-2000-20-0.5-10 8 0.57 1.34 104.45 0.58 1.22
K-2000-20-0.9-10 1 3.46 2.99 292.36 3.23 2.69
K-2000-200-0.5-10 8 0.29 0.84 126.97 0.28 0.84
K-2000-200-0.9-10 1 2.32 1.99 238.33 2.18 1.86

K-2000-20-0.5-25 10 0.00 0.00 141.14 0.00 0.00
K-2000-20-0.9-25 10 0.00 0.00 263.55 0.07 0.22
K-2000-200-0.5-25 10 0.00 0.00 144.20 0.04 0.13
K-2000-200-0.9-25 10 0.00 0.00 249.86 0.02 0.05

Average 2.46 0.96 2.38 1.02

with 1000 vertices (see K-1000-20-0.9-5), while those of the exact algorithms are up to

3.58% for the same instances. Moreover, the average optimality gaps referred to the

solutions provided by LPH are at most 14.54% for the instances with 2000 vertices

(see K-2000-200-0.9-5), whereas those of the exact algorithms are up to 15.52% for the

same instances. In fact, the average optimality gap of LPH over all Kara³an instances

(2.38%) is slightly tighter than that of the exact algorithms (2.46%). It can also be

observed that, for a same number of vertices, the smaller the value of ω is, the larger

the average gaps achieved by the heuristic (as well as by the exact algorithms) are.

For the hardest instances (with ω = 5), the average gaps of the solutions provided by

LPH are smaller than or equal to those of the exact algorithms (except for K-1000-

200-0.5-5). Notice that the larger optimality gaps observed for the more challenging

instances do not necessarily indicate that LPH is ine�ective in solving these instances.

In fact, the larger gaps may be due to insu�cient quality of the lower bounds provided

by the exact algorithms. With respect to computational time e�ort, LPH required

at most 33.15 seconds of execution (on average) for the instances with 1000 vertices
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Table 6.2: Computational results of LPH for the grid digraph instances.

Exact algorithms LPH

Test set #opt AvgGAP(%) StDev(%) Time(s) AvgGAP(%) StDev(%)

G-32x32-20-0.5 10 0.00 0.00 4.37 0.22 0.70
G-32x32-20-0.9 10 0.00 0.00 5.59 0.69 1.67
G-32x32-200-0.5 10 0.00 0.00 4.44 3.11 4.72
G-32x32-200-0.9 10 0.00 0.00 5.92 0.00 0.00

G-20x50-20-0.5 10 0.00 0.00 4.43 0.42 1.34
G-20x50-20-0.9 10 0.00 0.00 5.22 0.76 1.10
G-20x50-200-0.5 10 0.00 0.00 4.93 0.78 2.45
G-20x50-200-0.9 10 0.00 0.00 5.88 0.58 0.74

G-5x200-20-0.5 10 0.00 0.00 11.61 0.10 0.31
G-5x200-20-0.9 10 0.00 0.00 20.83 0.12 0.16
G-5x200-200-0.5 10 0.00 0.00 9.45 0.29 0.66
G-5x200-200-0.9 10 0.00 0.00 23.46 0.12 0.35

G-44x44-20-0.5 10 0.00 0.00 14.65 0.81 1.42
G-44x44-20-0.9 10 0.00 0.00 17.04 0.55 1.04
G-44x44-200-0.5 10 0.00 0.00 16.18 0.00 0.00
G-44x44-200-0.9 10 0.00 0.00 21.61 0.13 0.22

G-20x100-20-0.5 10 0.00 0.00 21.97 0.00 0.00
G-20x100-20-0.9 10 0.00 0.00 31.32 0.61 1.13
G-20x100-200-0.5 10 0.00 0.00 21.77 0.25 0.66
G-20x100-200-0.9 10 0.00 0.00 28.07 0.21 0.37

G-5x400-20-0.5 7 0.50 0.85 68.95 0.75 1.10
G-5x400-20-0.9 1 3.33 2.32 169.93 3.15 2.21
G-5x400-200-0.5 4 1.92 2.09 88.28 1.95 2.05
G-5x400-200-0.9 0 5.45 2.00 279.05 5.28 1.95

Average 0.47 0.30 0.87 1.10

(see K-1000-200-0.9-25) and at most 557.90 seconds (on average) for the instances with

2000 vertices (see K-2000-200-0.9-5).

Regarding Coco instances (Table 6.2), it can be seen that the average optimality

gaps referred to the solutions provided by LPH are at most 5.28% (see G-5x400-200-

0.9), while those of the exact algorithms are up to 5.45% for the same instances. The

average optimality gap of the exact algorithms over all Coco instances is very small

(0.47%), while that of LPH is close to this value (0.87%). It can also be observed that

the instances based on 5x400 grids are harder to solve than the other grid instances.

Moreover, the average relative gaps referred to the solutions provided by LPH are close

to those of the exact algorithms for the hardest grid instances. The results indicate that

LPH is an e�ective heuristic to solve Coco instances. With respect to computational

time e�ort, LPH required, on average, at most 279.05 seconds of execution (see G-

5x400-200-0.9).
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6.2.2 Exact algorithms and warm start procedures

The �rst experiment was performed in order to compare the quality of the solutions

obtained by Standard Benders and Extended Benders for the two benchmarks and,

thus, check if generating additional Benders cuts as in Extended Benders leads to

better quality bounds. Results for Kara³an and Coco instances are reported in Tables

6.3 and 6.4, respectively. The �rst column displays the name of each set of 10 instances.

For each algorithm, the �#opt� column displays the number of instances solved at

optimality within 3600 seconds of execution. The average processing time (in seconds)

spent in solving these instances is reported in the next column in a row. If no instance in

the set was solved at optimality, this entry is �lled with a dash. For each set of instances,

it is also reported the average and the standard deviation (over the 10 instances) of the

relative optimality gaps given by 100 · UBb−LBb
UBb

, where LBb and UBb are, respectively,

the best lower and upper bounds obtained by the corresponding algorithm within the

time limit. The last row shows, for each algorithm, the average of the optimality gaps

over all instances considered and the average of the standard deviations referred to

each set of instances.

Regarding Kara³an instances (Table 6.3), it can be seen that the average opti-

mality gaps referred to the solutions provided by Standard Benders are up to 7.54% for

the instances with 1000 vertices (see K-1000-20-0.9-5), while those of Extended Ben-

ders are at most 4.35% for the same instances. Moreover, the average optimality gaps

referred to the solutions provided by Standard Benders are up to 25.90% for the in-

stances with 2000 vertices (see K-2000-200-0.9-5), whereas those of Extended Benders

are at most 21.41% for the same instances. Indeed, the average gaps of the solutions

provided by Extended Benders are smaller than or equal to those of Standard Benders

for all sets of instances. In addition, Extended Benders was able to solve at optimality

seven more instances than Standard Benders (three from K-1000-200-0.9-5, two from

K-1000-20-0.5-5, one from K-1000-200-0.5-5 and one from K-2000-200-0.5-10). We also

notice that, for a same number of vertices, the smaller the value of ω is, the larger the

average gaps achieved by both algorithms are.

With respect to Coco instances (Table 6.4), the average optimality gaps referred

to the solutions provided by Standard Benders are up to 11.69% (see G-5x400-200-0.9),

while those of Extended Benders are at most 7.92% for the same instances. The average

optimality gap of Standard Benders over all Coco instances is very small (1.18%), while

that of Extended Benders is even tighter (0.66%). Indeed, the average relative gaps

referred to the solutions provided by Extended Benders are smaller than or equal to

those of Standard Benders for all sets of instances. Notice that the instances based
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Table 6.3: Computational results of Standard Benders and Extended Benders for the
layered and acyclic digraph instances, with 3600 seconds of time limit.

Standard Benders Extended Benders

GAP GAP

Test set #opt Time(s) Avg(%) StDev(%) #opt Time(s) Avg(%) StDev(%)

K-1000-20-0.5-5 8 1612.77 0.33 0.74 10 1364.84 0.00 0.00
K-1000-20-0.9-5 2 2228.30 7.54 5.33 2 1183.74 4.35 3.73
K-1000-200-0.5-5 9 989.83 0.02 0.07 10 721.04 0.00 0.00
K-1000-200-0.9-5 1 2035.99 4.98 3.34 4 1867.38 1.88 2.36

K-1000-20-0.5-10 10 103.66 0.00 0.00 10 170.91 0.00 0.00
K-1000-20-0.9-10 10 247.38 0.00 0.00 10 272.06 0.00 0.00
K-1000-200-0.5-10 10 55.76 0.00 0.00 10 151.68 0.00 0.00
K-1000-200-0.9-10 10 458.15 0.00 0.00 10 424.64 0.00 0.00

K-1000-20-0.5-25 10 23.40 0.00 0.00 10 40.88 0.00 0.00
K-1000-20-0.9-25 10 41.63 0.00 0.00 10 71.75 0.00 0.00
K-1000-200-0.5-25 10 24.38 0.00 0.00 10 49.46 0.00 0.00
K-1000-200-0.9-25 10 52.57 0.00 0.00 10 98.19 0.00 0.00

K-2000-20-0.5-5 0 - 14.72 5.74 0 - 10.80 4.83
K-2000-20-0.9-5 0 - 25.08 2.66 0 - 20.21 2.67
K-2000-200-0.5-5 0 - 14.60 3.09 0 - 11.75 2.63
K-2000-200-0.9-5 0 - 25.90 3.45 0 - 21.41 3.70

K-2000-20-0.5-10 8 1538.56 1.01 2.39 8 1539.18 0.65 1.58
K-2000-20-0.9-10 0 - 7.57 4.00 0 - 4.61 4.14
K-2000-200-0.5-10 4 970.60 1.59 2.35 5 1681.78 0.58 1.34
K-2000-200-0.9-10 0 - 6.17 2.40 0 - 3.47 2.55

K-2000-20-0.5-25 10 196.35 0.00 0.00 10 300.64 0.00 0.00
K-2000-20-0.9-25 10 470.72 0.00 0.00 10 541.09 0.00 0.00
K-2000-200-0.5-25 10 173.27 0.00 0.00 10 366.05 0.00 0.00
K-2000-200-0.9-25 10 658.04 0.00 0.00 10 753.94 0.00 0.00

Average 4.56 1.48 3.32 1.23

on 5x400 grids are harder than the other grid instances. Extended Benders was able

to solve at optimality more instances than Standard Benders, specially for the sets of

hardest instances (see, for example, G-5x400-20-0.5 and G-5x400-200-0.5). The results

suggest that solely generating additional Benders cuts referred to incumbent solutions

(as in Extended Benders) improves the overall quality of the bounds obtained for both

benchmarks.

The second experiment was performed in order to evaluate the impact of the

warm start procedures discussed in Section 5.3 on the quality of the solutions obtained

by Standard Benders and Extended Benders. Table 6.5 describes a total of six al-

gorithms obtained from coupling the warm start procedures with these Benders-like

decomposition approaches in di�erent manners. The �rst column displays the name of

the resulting algorithm, whereas the second, third and fourth columns indicate which

warm start procedures are used in the corresponding algorithm. The last two columns
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Table 6.4: Computational results of Standard Benders and Extended Benders for the
grid digraph instances, with 3600 seconds of time limit.

Standard Benders Extended Benders

GAP GAP

Test set #opt Time(s) Avg(%) StDev(%) #opt Time(s) Avg(%) StDev(%)

G-32x32-20-0.5 10 10.46 0.00 0.00 10 27.18 0.00 0.00
G-32x32-20-0.9 10 11.70 0.00 0.00 10 36.58 0.00 0.00
G-32x32-200-0.5 10 9.42 0.00 0.00 10 30.81 0.00 0.00
G-32x32-200-0.9 10 13.14 0.00 0.00 10 42.57 0.00 0.00

G-20x50-20-0.5 10 8.83 0.00 0.00 10 18.78 0.00 0.00
G-20x50-20-0.9 10 11.82 0.00 0.00 10 33.47 0.00 0.00
G-20x50-200-0.5 10 8.55 0.00 0.00 10 35.59 0.00 0.00
G-20x50-200-0.9 10 17.01 0.00 0.00 10 57.07 0.00 0.00

G-5x200-20-0.5 10 423.59 0.00 0.00 10 297.39 0.00 0.00
G-5x200-20-0.9 9 704.22 0.28 0.89 10 741.82 0.00 0.00
G-5x200-200-0.5 10 167.59 0.00 0.00 10 187.41 0.00 0.00
G-5x200-200-0.9 8 1110.11 0.22 0.55 10 669.96 0.00 0.00

G-44x44-20-0.5 10 32.16 0.00 0.00 10 91.02 0.00 0.00
G-44x44-20-0.9 10 39.06 0.00 0.00 10 141.27 0.00 0.00
G-44x44-200-0.5 10 31.24 0.00 0.00 10 119.11 0.00 0.00
G-44x44-200-0.9 10 49.78 0.00 0.00 10 176.38 0.00 0.00

G-20x100-20-0.5 10 44.76 0.00 0.00 10 134.42 0.00 0.00
G-20x100-20-0.9 10 108.33 0.00 0.00 10 258.88 0.00 0.00
G-20x100-200-0.5 10 61.86 0.00 0.00 10 214.04 0.00 0.00
G-20x100-200-0.9 10 84.77 0.00 0.00 10 240.37 0.00 0.00

G-5x400-20-0.5 0 - 2.82 2.00 5 2788.59 0.80 1.23
G-5x400-20-0.9 0 - 7.87 3.98 1 3239.56 4.38 2.95
G-5x400-200-0.5 1 2963.11 5.47 4.38 4 2593.59 2.72 2.85
G-5x400-200-0.9 0 - 11.69 3.47 0 - 7.92 3.26

Average 1.18 0.64 0.66 0.43

especify which Benders-like decomposition approach is adopted along with the warm

start procedures.

Table 6.5: Algorithms obtained from coupling Standard Benders and Extended Benders
with the warm start procedures.

Warm Sart Procedure Benders Decomposition Algorithm

Algorithm RS HS Extended HS Standard Benders Extended Benders

RS-Benders × ×
HS-Benders × ×
RS&HS-Benders × × ×

Extended RS-Benders × ×
Extended HS-Benders × ×
Extended RS&HS-Benders × × ×

Tables 6.6 and 6.7 display the results concerning the �rst three algorithms in
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Table 6.5, the ones that couple the warm start procedures with Standard Benders.

Tables 6.8 and 6.9 show the results concerning the last three algorithms in Table 6.5,

which couple the warm start procedures with Extended Benders. The �rst column

displays the name of each set of 10 instances. For each algorithm, the �#opt� column

displays the number of instances solved at optimality within 3600 seconds of execution.

The average processing time (in seconds) spent in solving these instances is reported in

the next column in a row. If no instance in the set was solved at optimality, this entry is

�lled with a dash. Notice that the processing time referred to solving a given instance

includes the time spent by the warm start procedures. For each set of instances, it

is also reported the average and the standard deviation (over the 10 instances) of the

relative optimality gaps given by 100 · UBb−LBb
UBb

. LBb and UBb are, respectively, the

best lower and upper bounds obtained by the corresponding algorithm within the time

limit. The last row shows, for each algorithm, the average of the optimality gaps over

all instances considered and the average of the standard deviations referred to each set

of instances.
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Table 6.6: Computational results of RS-Benders, HS-Benders and RS&HS-Benders for the layered and acyclic digraph instances,
with 3600 seconds of time limit.

RS-Benders HS-Benders RS&HS-Benders

GAP GAP GAP

Test set #opt Time(s) Avg(%) StDev(%) #opt Time(s) Avg(%) StDev(%) #opt Time(s) Avg(%) StDev(%)

K-1000-20-0.5-5 8 1573.25 0.22 0.53 7 1414.10 0.28 0.48 8 1629.03 0.17 0.37
K-1000-20-0.9-5 2 2364.28 7.40 5.04 2 2359.35 5.90 3.88 2 2427.22 5.78 3.69
K-1000-200-0.5-5 10 1212.22 0.00 0.00 9 966.39 0.10 0.33 10 1213.41 0.00 0.00
K-1000-200-0.9-5 1 1747.17 5.17 3.56 1 2045.70 3.94 2.58 1 1951.49 3.73 2.60

K-1000-20-0.5-10 10 114.73 0.00 0.00 10 119.12 0.00 0.00 10 113.23 0.00 0.00
K-1000-20-0.9-10 10 258.50 0.00 0.00 10 271.99 0.00 0.00 10 272.50 0.00 0.00
K-1000-200-0.5-10 10 61.16 0.00 0.00 10 66.56 0.00 0.00 10 74.57 0.00 0.00
K-1000-200-0.9-10 10 391.97 0.00 0.00 10 469.29 0.00 0.00 10 442.88 0.00 0.00

K-1000-20-0.5-25 10 32.75 0.00 0.00 10 43.06 0.00 0.00 10 54.56 0.00 0.00
K-1000-20-0.9-25 10 47.29 0.00 0.00 10 66.11 0.00 0.00 10 76.51 0.00 0.00
K-1000-200-0.5-25 10 32.62 0.00 0.00 10 46.18 0.00 0.00 10 54.95 0.00 0.00
K-1000-200-0.9-25 10 52.09 0.00 0.00 10 76.80 0.00 0.00 10 79.98 0.00 0.00

K-2000-20-0.5-5 0 - 13.94 5.11 0 - 10.65 3.77 0 - 10.17 3.84
K-2000-20-0.9-5 0 - 20.09 2.46 0 - 18.30 2.75 0 - 15.83 2.23
K-2000-200-0.5-5 0 - 13.88 3.35 0 - 10.96 2.29 0 - 10.30 2.38
K-2000-200-0.9-5 0 - 22.08 3.23 0 - 18.87 3.04 0 - 16.10 2.62

K-2000-20-0.5-10 8 1382.02 1.03 2.28 8 1570.92 0.93 2.17 8 1402.06 0.94 2.11
K-2000-20-0.9-10 0 - 6.41 4.33 0 - 6.44 3.71 0 - 5.33 3.23
K-2000-200-0.5-10 4 867.18 1.39 2.25 4 997.00 1.28 1.77 4 907.11 1.13 1.68
K-2000-200-0.9-10 0 - 5.42 3.14 0 - 5.10 2.48 0 - 4.20 2.23

K-2000-20-0.5-25 10 204.66 0.00 0.00 10 323.48 0.00 0.00 10 355.93 0.00 0.00
K-2000-20-0.9-25 10 315.05 0.00 0.00 10 714.59 0.00 0.00 10 554.43 0.00 0.00
K-2000-200-0.5-25 10 189.81 0.00 0.00 10 293.97 0.00 0.00 10 318.33 0.00 0.00
K-2000-200-0.9-25 10 443.44 0.00 0.00 10 873.65 0.00 0.00 10 662.04 0.00 0.00

Average 4.04 1.47 3.45 1.22 3.07 1.12
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Table 6.7: Computational results of RS-Benders, HS-Benders and RS&HS-Benders for the grid digraph instances, with 3600
seconds of time limit.

RS-Benders HS-Benders RS&HS-Benders

GAP GAP GAP

Test set #opt Time(s) Avg(%) StDev(%) #opt Time(s) Avg(%) StDev(%) #opt Time(s) Avg(%) StDev(%)

G-32x32-20-0.5 10 15.07 0.00 0.00 10 13.37 0.00 0.00 10 18.10 0.00 0.00
G-32x32-20-0.9 10 18.10 0.00 0.00 10 16.05 0.00 0.00 10 23.00 0.00 0.00
G-32x32-200-0.5 10 16.38 0.00 0.00 10 12.20 0.00 0.00 10 18.98 0.00 0.00
G-32x32-200-0.9 10 18.31 0.00 0.00 10 15.83 0.00 0.00 10 22.45 0.00 0.00

G-20x50-20-0.5 10 13.03 0.00 0.00 10 11.56 0.00 0.00 10 15.91 0.00 0.00
G-20x50-20-0.9 10 18.38 0.00 0.00 10 15.90 0.00 0.00 10 21.90 0.00 0.00
G-20x50-200-0.5 10 12.14 0.00 0.00 10 11.30 0.00 0.00 10 15.82 0.00 0.00
G-20x50-200-0.9 10 21.96 0.00 0.00 10 18.99 0.00 0.00 10 26.11 0.00 0.00

G-5x200-20-0.5 10 438.82 0.00 0.00 10 422.14 0.00 0.00 10 395.55 0.00 0.00
G-5x200-20-0.9 9 723.82 0.28 0.89 9 745.53 0.24 0.77 9 672.59 0.26 0.83
G-5x200-200-0.5 10 158.83 0.00 0.00 10 168.12 0.00 0.00 10 164.71 0.00 0.00
G-5x200-200-0.9 7 791.80 0.25 0.50 7 758.44 0.20 0.43 7 722.27 0.21 0.44

G-44x44-20-0.5 10 47.17 0.00 0.00 10 41.31 0.00 0.00 10 56.35 0.00 0.00
G-44x44-20-0.9 10 53.50 0.00 0.00 10 49.97 0.00 0.00 10 71.33 0.00 0.00
G-44x44-200-0.5 10 48.96 0.00 0.00 10 43.35 0.00 0.00 10 60.96 0.00 0.00
G-44x44-200-0.9 10 66.32 0.00 0.00 10 62.63 0.00 0.00 10 85.82 0.00 0.00

G-20x100-20-0.5 10 72.12 0.00 0.00 10 59.44 0.00 0.00 10 86.54 0.00 0.00
G-20x100-20-0.9 10 110.83 0.00 0.00 10 127.95 0.00 0.00 10 148.63 0.00 0.00
G-20x100-200-0.5 10 86.12 0.00 0.00 10 72.09 0.00 0.00 10 90.85 0.00 0.00
G-20x100-200-0.9 10 79.23 0.00 0.00 10 94.49 0.00 0.00 10 108.14 0.00 0.00

G-5x400-20-0.5 0 - 2.89 2.04 0 - 2.22 1.54 1 3602.02 2.07 1.43
G-5x400-20-0.9 0 - 7.35 3.64 0 - 6.09 3.03 0 - 5.56 2.83
G-5x400-200-0.5 1 3228.53 5.29 4.12 1 3134.86 4.21 3.43 1 3454.40 3.87 3.03
G-5x400-200-0.9 0 - 10.96 2.87 0 - 8.72 2.35 0 - 7.95 2.06

Average 1.13 0.59 0.90 0.48 0.83 0.44
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With respect to Kara³an instances (Table 6.6), the average optimality gaps re-

ferred to the solutions provided by RS-Benders, HS-Benders and RS&HS-Benders are

up to, respectively, 7.40%, 5.90% and 5.78% for the instances with 1000 vertices (see

K-1000-20-0.9-5), whereas those of Standard Benders are up to 7.54% for the same

instances (see Table 6.3, K-1000-20-0.9-5). For the instances with 2000 vertices, the

average optimality gaps referred to the solutions provided by RS-Benders, HS-Benders

and RS&HS-Benders are up to, respectively, 22.08%, 18.87% and 16.10% (see K-2000-

200-0.9-5), whereas those of Standard Benders are up to 25.90% for the same instances

(see Table 6.3, K-2000-200-0.9-5). Notice that the average optimality gap of RS&HS-

Benders over all Kara³an instances (3.07%) is the smallest among the three algorithms

considered, followed by that of HS-Benders (3.45%). In fact, the average gaps of the

solutions provided by RS&HS-Benders are smaller than or equal to those of the other

two algorithms for all sets of instances. Also notice that, for a same number of vertices,

the smaller the value of ω is, the harder to solve the instances are.

Regarding Coco instances (Table 6.7), the average optimality gaps referred to

the solutions provided by RS-Benders, HS-Benders and RS&HS-Benders are up to,

respectively, 10.96%, 8.72% and 7.95% (see K-5x400-200-0.9). Recall that the average

optimality gaps referred to the solutions provided by Standard Benders are up to

11.69% for the same instances (see Table 6.4, K-5x400-200-0.9). Also observe that the

instances based on 5x400 grids remain harder to solve than the other grid instances.

The average optimality gap of RS&HS-Benders over all Coco instances (0.83%) is

the smallest among the three algorithms considered, followed by that of HS-Benders

(0.90%). In addition, RS&HS-Benders was always able to provide tighter average

optimality gaps for the hardest instances (5x400 grids).
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Table 6.8: Computational results of Extended RS-Benders, Extended HS-Benders and Extended RS&HS-Benders for the layered
and acyclic digraph instances, with 3600 seconds of time limit.

Extended RS-Benders Extended HS-Benders Extended RS&HS-Benders

GAP GAP GAP

Test set #opt Time(s) Avg(%) StDev(%) #opt Time(s) Avg(%) StDev(%) #opt Time(s) Avg(%) StDev(%)

K-1000-20-0.5-5 10 1402.40 0.00 0.00 10 1320.75 0.00 0.00 10 1334.42 0.00 0.00
K-1000-20-0.9-5 2 1150.47 4.36 3.56 2 1107.51 3.60 2.94 2 1112.97 3.67 2.88
K-1000-200-0.5-5 10 693.81 0.00 0.00 10 737.45 0.00 0.00 10 697.54 0.00 0.00
K-1000-200-0.9-5 3 1261.35 1.79 2.26 4 2026.45 1.42 1.68 3 1318.72 1.52 1.74

K-1000-20-0.5-10 10 159.41 0.00 0.00 10 170.67 0.00 0.00 10 166.75 0.00 0.00
K-1000-20-0.9-10 10 248.15 0.00 0.00 10 277.77 0.00 0.00 10 264.57 0.00 0.00
K-1000-200-0.5-10 10 131.18 0.00 0.00 10 171.17 0.00 0.00 10 138.48 0.00 0.00
K-1000-200-0.9-10 10 388.30 0.00 0.00 10 444.51 0.00 0.00 10 408.31 0.00 0.00

K-1000-20-0.5-25 10 39.64 0.00 0.00 10 57.86 0.00 0.00 10 58.61 0.00 0.00
K-1000-20-0.9-25 10 62.95 0.00 0.00 10 91.70 0.00 0.00 10 86.18 0.00 0.00
K-1000-200-0.5-25 10 41.42 0.00 0.00 10 68.28 0.00 0.00 10 65.13 0.00 0.00
K-1000-200-0.9-25 10 72.12 0.00 0.00 10 134.55 0.00 0.00 10 107.50 0.00 0.00

K-2000-20-0.5-5 0 - 10.06 4.83 0 - 9.11 3.94 0 - 8.66 3.75
K-2000-20-0.9-5 0 - 16.97 2.50 0 - 16.53 2.89 0 - 14.92 2.61
K-2000-200-0.5-5 0 - 10.35 3.16 0 - 8.67 2.23 0 - 8.50 2.46
K-2000-200-0.9-5 0 - 17.88 3.09 0 - 17.47 3.18 0 - 15.58 2.63

K-2000-20-0.5-10 8 1446.07 0.63 1.40 8 1586.70 0.58 1.35 8 1560.16 0.63 1.41
K-2000-20-0.9-10 1 3586.15 3.96 3.46 0 - 3.82 3.02 0 - 3.75 3.00
K-2000-200-0.5-10 8 2337.12 0.43 1.22 6 2158.96 0.53 1.10 6 1972.94 0.33 0.83
K-2000-200-0.9-10 0 - 2.72 2.44 1 3600.63 2.76 2.05 1 3398.78 2.46 2.00

K-2000-20-0.5-25 10 311.08 0.00 0.00 10 404.45 0.00 0.00 10 395.10 0.00 0.00
K-2000-20-0.9-25 10 417.52 0.00 0.00 10 763.11 0.00 0.00 10 653.37 0.00 0.00
K-2000-200-0.5-25 10 296.03 0.00 0.00 10 474.49 0.00 0.00 10 416.05 0.00 0.00
K-2000-200-0.9-25 10 564.58 0.00 0.00 10 946.03 0.00 0.00 10 789.25 0.00 0.00

Average 2.88 1.16 2.69 1.02 2.50 0.97
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Table 6.9: Computational results of Extended RS-Benders, Extended HS-Benders and Extended RS&HS-Benders for the grid
digraph instances, with 3600 seconds of time limit.

Extended RS-Benders Extended HS-Benders Extended RS&HS-Benders

GAP GAP GAP

Test set #opt Time(s) Avg(%) StDev(%) #opt Time(s) Avg(%) StDev(%) #opt Time(s) Avg(%) StDev(%)

G-32x32-20-0.5 10 25.26 0.00 0.00 10 29.37 0.00 0.00 10 28.40 0.00 0.00
G-32x32-20-0.9 10 32.97 0.00 0.00 10 34.57 0.00 0.00 10 32.79 0.00 0.00
G-32x32-200-0.5 10 28.83 0.00 0.00 10 32.15 0.00 0.00 10 30.28 0.00 0.00
G-32x32-200-0.9 10 38.98 0.00 0.00 10 41.91 0.00 0.00 10 40.24 0.00 0.00

G-20x50-20-0.5 10 19.43 0.00 0.00 10 21.11 0.00 0.00 10 21.45 0.00 0.00
G-20x50-20-0.9 10 32.76 0.00 0.00 10 42.10 0.00 0.00 10 36.39 0.00 0.00
G-20x50-200-0.5 10 26.78 0.00 0.00 10 33.11 0.00 0.00 10 30.85 0.00 0.00
G-20x50-200-0.9 10 47.10 0.00 0.00 10 52.38 0.00 0.00 10 45.62 0.00 0.00

G-5x200-20-0.5 10 311.47 0.00 0.00 10 323.36 0.00 0.00 10 298.33 0.00 0.00
G-5x200-20-0.9 10 736.58 0.00 0.00 9 468.19 0.02 0.06 9 425.86 0.02 0.06
G-5x200-200-0.5 10 169.03 0.00 0.00 10 195.68 0.00 0.00 10 178.08 0.00 0.00
G-5x200-200-0.9 10 699.52 0.00 0.00 10 714.88 0.00 0.00 10 675.15 0.00 0.00

G-44x44-20-0.5 10 79.63 0.00 0.00 10 101.89 0.00 0.00 10 89.42 0.00 0.00
G-44x44-20-0.9 10 116.86 0.00 0.00 10 150.13 0.00 0.00 10 120.80 0.00 0.00
G-44x44-200-0.5 10 106.70 0.00 0.00 10 130.85 0.00 0.00 10 112.61 0.00 0.00
G-44x44-200-0.9 10 153.18 0.00 0.00 10 182.59 0.00 0.00 10 166.50 0.00 0.00

G-20x100-20-0.5 10 129.51 0.00 0.00 10 147.21 0.00 0.00 10 143.08 0.00 0.00
G-20x100-20-0.9 10 227.48 0.00 0.00 10 280.96 0.00 0.00 10 242.72 0.00 0.00
G-20x100-200-0.5 10 195.65 0.00 0.00 10 217.25 0.00 0.00 10 197.53 0.00 0.00
G-20x100-200-0.9 10 190.06 0.00 0.00 10 260.44 0.00 0.00 10 255.36 0.00 0.00

G-5x400-20-0.5 6 2850.81 0.81 1.36 7 2988.21 0.52 0.89 6 2961.06 0.52 0.83
G-5x400-20-0.9 1 3034.43 4.53 3.40 1 2923.29 3.57 2.37 1 2847.87 3.42 2.44
G-5x400-200-0.5 4 2501.02 2.50 2.59 4 2530.38 2.12 2.24 4 2503.07 1.94 2.11
G-5x400-200-0.9 0 - 7.56 2.94 0 - 5.81 2.28 0 - 5.47 2.01

Average 0.64 0.43 0.50 0.33 0.47 0.31
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With respect to Kara³an instances (Table 6.8), the average optimality gaps re-

ferred to the solutions provided by Extended RS-Benders, Extended HS-Benders and

Extended RS&HS-Benders are up to, respectively, 4.36%, 3.60% and 3.67% for the

instances with 1000 vertices (see K-1000-20-0.9-5), whereas those of Extended Ben-

ders are up to 4.35% for the same instances (see Table 6.3, K-1000-20-0.9-5). For the

instances with 2000 vertices, the average optimality gaps referred to the solutions pro-

vided by Extended RS-Benders, Extended HS-Benders and Extended RS&HS-Benders

are up to, respectively, 17.88%, 17.47% and 15.58% (see K-2000-200-0.9-5), whereas

those of Extended Benders are up to 21.41% for the same instances (see Table 6.3, K-

2000-200-0.9-5). Moreover, the average optimality gap of Extended RS&HS-Benders

over all Kara³an instances (2.50%) is the smallest among the three algorithms consid-

ered, followed by that of Extended HS-Benders (2.69%).

Regarding Coco instances (Table 6.9), the average optimality gaps referred to

the solutions provided by Extended RS-Benders, Extended HS-Benders and Extended

RS&HS-Benders are up to, respectively, 7.56%, 5.81% and 5.47% (see K-5x400-200-

0.9). Recall that the average optimality gaps referred to the solutions provided by

Extended Benders are up to 7.92% for the same instances (see Table 6.4, K-5x400-

200-0.9). Also in this case, notice that the instances based on 5x400 grids remain

harder to solve than the other grid instances. Moreover, the average optimality gap of

Extended RS&HS-Benders over all Coco instances (0.47%) is the smallest among the

algorithms considered, followed by that of Extended HS-Benders (0.50%). Indeed, the

average gaps of the solutions provided by Extended RS&HS-Benders are smaller than

or equal to those of the other algorithms in Table 6.9 for all sets of instances, except

for G-5x200-20-0.9.

Figures 6.3 and 6.4 summarize the results concerning the quality of the bounds

obtained by the exact algorithms for the hardest instance sets considered. Precisely,

Figure 6.3 displays, for each algorithm, the average and the standard deviation of the

relative optimality gaps referred to the instance set G-5x400-200-0.9, whereas Figure 6.4

shows those values referred to the instance sets K-1000-20-0.9-5 and K-2000-20-0.9-

5. Notice that Extended RS&HS-Benders clearly outperforms, on average, the other

algorithms in solving the three instance sets highlighted. In fact, when compared

to Standard Benders, Extended RS&HS-Benders achieved an improvement of 53.21%

in terms of average gaps for G-5x400-200-0.9. With respect to K-1000-20-0.9-5 and

K-2000-20-0.9-5, that improvement was of 51.32% and 39.84%, respectively.
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Figure 6.3: Summary of the results concerning the quality of the bounds obtained by
the exact algorithms for the hardest grid digraph instances (instance set G-5x400-200-
0.9).

6.2.3 Discussion

From the results, LPH was able to provide optimal or near optimal solutions for most

of the instance sets considered. Regarding the test sets for which not all optimality

certi�cates were available, the average optimality gaps of the solutions obtained by

LPH are close to the best among those of the exact methods. In fact, the average gap

of LPH over all layered and acyclic instances was only 2.38% (see Table 6.1). Likewise,

the average gaps of LPH over all grid instances was only 0.87% (see Table 6.2).

According to the results, Extended RS&HS-Benders outperforms (in terms of av-

erage optimality gaps achieved) the other exact algorithms presented in this study for

both benchmarks of instances considered. Coupling the warm start procedures here

discussed with the Benders-like decomposition approaches was successful in tightening

the optimality gaps referred to the solutions obtained for the two benchmarks. More-

over, Extended Benders achieved, on average, better optimality gaps than Standard

Benders for all sets of instances considered. The results suggest that generating Benders

cuts referred to incumbent solutions (as in Extended Benders) is able to improve the

overall quality of the bounds obtained. The results also indicate that the initial upper

bounds provided by LPH play an important role in tightening the average optimality

gaps referred to the exact algorithms that use HS and Extended HS as warm start

procedures. Considering the test conditions established, none of the exact algorithms

stood out in terms of time e�ciency. On the other hand, we highlight that the average
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(b) Instance set K-2000-20-0.9-5

Figure 6.4: Summary of the results concerning the quality of the bounds obtained by
the exact algorithms for the hardest layered and acyclic digraph instances.

execution times of LPH was remarkably smaller than those of the exact algorithms for

all instance sets considered.

We used di�erent parameter combinations in the generation of the test instances.

Notice that, considering a same number of vertices in a layered and acyclic digraph

instance, a smaller width (given by the number ω of vertices per layer) implies more lay-

ers between the origin and the destination vertices. In this sense, the results regarding

Kara³an instances suggest that the exact algorithms (as well as LPH) bene�t from the

degrowth of the networks' number of layers. In fact, instances generated under ω = 5
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(specially the ones with 2000 vertices) are the hardest ones (among Kara³an instances)

for all algorithms. Furthermore, instances based on 5x400 grids are the hardest ones

(among Coco instances) for all the algorithms considered.

For the hardest instances, the results also suggest that networks generated under

a higher δ value (in particular, δ = 0.9) tend to become even more di�cult to be solved

by any of the exact algorithms tested. A possible explanation for this behavior is that

higher δ values might increase the occurrence of overlapping cost intervals, as pointed

out in other RO studies in which the uncertainty is generated in a similar manner

[Kara³an et al., 2001; Pereira and Averbakh, 2013]. From the results, it is not clear

how the variation of Φmax (parameter used to de�ne the case base scenario Φ, from

which the uncertainty is generated) interferes in the performance of the algorithms

analysed.



Chapter 7

Concluding remarks

In this study, we formally de�ned a new robust-hard problem, namely the Restricted

Robust Shortest Path problem (R-RSP). Furthermore, some theoretical aspects of the

problem were discussed, including its computational complexity. Indeed, we showed

that both R-RSP and its decision version are NP-hard. We derived a MILP formulation

(with a polynomial number of variables and an exponential number of constraints) for

R-RSP. Based on this formulation, we proposed a heuristic method, namely LPH,

that uses dual information of R-RSP's classical optimization problem counterpart.

Furthermore, we adapted to R-RSP a standard Benders-like decomposition approach

that is a state-of-the-art method to solve RO problems. In addition, we discussed some

techniques able to improve the convergence speed of the exact method by providing

initial bounds, as well as by generating additional Benders cuts. These techniques were

coupled with the Benders-like decomposition approach in di�erent manners to generate

a total of eight exact algorithms.

We introduced two benchmarks of instances adapted from the literature of a

well-known RO problem related to R-RSP. The �rst benchmark consists of layered and

acyclic digraphs, whereas the second one is based on grid digraphs. These benchmarks

were used in computational experiments in order to evaluate the e�ectiveness of the

proposed algorithms. With respect to LPH, the results indicate that the heuristic is

e�ective in solving the two benchmarks of instances considered. In fact, the average

gap of LPH over all layered and acyclic instances was only 2.38%. Likewise, the average

gaps of LPH over all grid instances was only 0.87%. Moreover, the average processing

times of LPH were remarkably smaller than those of the exact algorithms for both

benchmarks considered. These results point out to the fact that the proposed heuristic

approach may also be e�cient in �nding good quality solutions for other robust-hard

problems.

61



62 Chapter 7. Concluding remarks

With respect to the exact algorithms, the results of the experiments suggest that

solely generating Benders cuts referred to incumbent solutions is able to improve the

overall quality of the bounds obtained by the standard Benders-like decomposition

algorithm for both benchmarks. Additional experiments were conducted in order to

evalutate the impact of the speed-up techniques on the quality of the bounds obtained

by the Benders-like decomposition algorithms. For all of the test sets considered, the

improved algorithms were able to tighten the average optimality gaps obtained by the

standard algorithm within 3600 seconds of execution. In addition, new optimality

certi�cates were found for some of the more challenging sets of instances. Particularly,

Extended RS&HS-Benders outperforms (in terms of average optimality gaps achieved)

the other exact algorithms presented in this study for both benchmarks of instances

considered.

This study opens several directions for further research on the topic. For in-

stance, local search strategies, as Local Branching [Fischetti and Lodi, 2003], can be

added to our heuristic method in order to further improve the quality of the solutions

obtained. Recall that, in this study, the MILP heuristic problems that arise in LPH are

directly handled with an optimization solver. Investigating alternative ways to solve

such problems might lead to even more e�cient procedures. Research can also be done

in order to apply the proposed heuristic, as well as the improved exact methods, to

solve other robust-hard problems. Further research may also investigate complexity

issues concerning robust-hard problem in general. Such study is particularly relevant,

as it may enable the development of more tractable mathematical formulations for this

class of problems.



Bibliography

Aissi, H., Bazgan, C., and Vanderpooten, D. (2005). Complexity of the min-max and

min-max regret assignment problems. Operations Research Letters, 33(6):634�640.

Aissi, H., Bazgan, C., and Vanderpooten, D. (2007). Approximation of min-max and

min-max regret versions of some combinatorial optimization problems. European

Journal of Operational Research, 179(2):281�290.

Aissi, H., Bazgan, C., and Vanderpooten, D. (2009). Min-max and min-max regret

versions of combinatorial optimization problems: A survey. European Journal of

Operational Research, 197(2):427�438.

Aneja, Y. P., Aggarwal, V., and Nair, K. P. K. (1983). Shortest chain subject to side

constraints. Networks, 13:295�302.

Apostolopoulos, G., Guérin, R., Kamat, S., and Tripathi, S. K. (1998). Quality of

Service based routing: A performance perspective. SIGCOMM Computer Commu-

nication Review, 28(4):17�28.

Aron, I. D. and Hentenryck, P. V. (2004). On the complexity of the robust spanning

tree problem with interval data. Operations Research Letters, 32(1):36�40.

Averbakh, I. (2005). Computing and minimizing the relative regret in combinatorial

optimization with interval data. Discrete Optimization, 2(4):273�287.

Beasley, J. and Christo�des, N. (1989). An algorithm for the resource constrained

shortest path problem. Networks, 19:379�394.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming

problems. Numerische Mathematik, 4(1):238�252.

Bondy, J. A. and Murty, U. S. R. (1976). Graph Theory with Applications. Elsevier,

New York.

63



64 Bibliography

Catanzaro, D., Labbé, M., and Salazar-Neumann, M. (2011). Reduction approaches

for robust shortest path problems. Computers & Operations Research, 38:1610�1619.

Coco, A. A., Júnior, J. C. A., Noronha, T. F., and Santos, A. C. (2014a). An integer

linear programming formulation and heuristics for the minmax relative regret robust

shortest path problem. Journal of Global Optimization, 60(2):265�287.

Coco, A. A., Solano-Charris, E. L., Santos, A. C., Prins, C., and Noronha, T. F.

(2014b). Robust optimization criteria: state-of-the-art and new issues. Technical

report, Université de Technologie de Troyes, Troyes, France.

Dantzig, G. B., Fulkerson, D. R., and Johnson, S. M. (1954). Solution of a large-scale

traveling-salesman problem. Operations Research, 2:393�410.

Deineko, V. G. and Woeginger, G. J. (2010). Pinpointing the complexity of the interval

min-max regret knapsack problem. Discrete Optimization, 7(4):191�196.

Dumitrescu, I. and Boland, N. (2003). Improved preprocessing, labeling and scaling

algorithms for the weight-constrained shortest path problem. Networks, 42(3):135�

153.

Fischetti, M. and Lodi, A. (2003). Local branching. Mathematical Programming, 98(1-

3):23�47.

Fischetti, M., Salvagnin, D., and Zanette, A. (2010). A note on the selection of Benders'

cuts. Mathematical Programming, 124(1-2):175�182.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA.

Geo�rion, A. M. (1972). Generalized Benders decomposition. Journal of Optimization

Theory and Applications, 10(4):237�260.

Gupta, S. K. and Rosenhead, J. (1968). Robustness in sequential investment decisions.

Management Science, 15(2):B�18�B�29.

Handler, G. and Zang, I. (1980). A dual algorithm for the constrained shortest path

problem. Networks, 10:293�310.

Hassin, R. (1992). Approximation schemes for the restricted shortest path problem.

Mathematics of Operations Research, 17(1):36�42.



Bibliography 65

Joksch, H. (1966). The shortest route problem with constraints. Journal of Mathemat-

ical Analysis and Applications, 14(2):191�197.

Kara³an, O. E., Pinar, M. Ç., and Yaman, H. (2001). The robust shortest path problem

with interval data. Technical report, Bilkent University, Ankara, Turkey.

Kasperski, A. (2008). Discrete Optimization with Interval Data: Minmax Regret and

Fuzzy Approach (Studies in Fuzziness and Soft Computing). Springer Berlin.

Kasperski, A., Kobyla«ski, P., Kulej, M., and Zieli«ski, P. (2005). Minimizing maximal

regret in discrete optimization problems with interval data, in: Issues in Soft Com-

puting. Decisions and Operations Research, O. Hryniewicz, J. Kacprzyk, D. Kuchta

(eds.). Akademicka O�cyna Wydawnicza EXIT, Warszawa.

Kasperski, A. and Zieli«ski, P. (2007). On the existence of an FPTAS for minmax

regret combinatorial optimization problems with interval data. Operations Research

Letters, 35(4):525�532.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated

annealing. Science, 220(4598):671�680.

Kouvelis, P. and Yu, G. (1997). Robust Discrete Optimization and Its Applications.

Kluwer Academic Publishers, Boston.

Magnanti, T. L. and Wong, R. T. (1981). Accelerating Benders decomposition: Algo-

rithmic enhancement and model selection criteria. Operations Research, 29(3):464�

484.

McDaniel, D. and Devine, M. (1977). A modi�ed Benders' partitioning algorithm for

mixed integer programming. Management Science, 24(3):312�319.

Meyer, A. R. and Stockmeyer, L. J. (1972). The equivalence problem for regular

expressions with squaring requires exponential space. In Proceedings of the 13th

Annual Symposium on Switching and Automata Theory (Swat 1972), pages 125�129.

IEEE Computer Society.

Montemanni, R. (2006). A Benders decomposition approach for the robust span-

ning tree problem with interval data. European Journal of Operational Research,

174(3):1479�1490.

Montemanni, R., Barta, J., and Gambardella, L. (2006). Heuristic and preprocessing

techniques for the robust traveling salesman problem with interval data. Technical

report, Dalle Molle Institute for Arti�cial Intelligence.



66 Bibliography

Montemanni, R., Barta, J., and Gambardella, L. M. (2007). The robust traveling

salesman problem with interval data. Transportation Science, 41:366�381.

Montemanni, R. and Gambardella, L. M. (2004). An exact algorithm for the ro-

bust shortest path problem with interval data. Computers & Operations Research,

31(10):1667�1680.

Montemanni, R. and Gambardella, L. M. (2005). The robust shortest path problem

with interval data via Benders decomposition. 4OR, 3:315�328.

Montemanni, R., Gambardella, L. M., and Donati, A. V. (2004). A branch and bound

algorithm for the robust shortest path problem with interval data. Operations Re-

search Letters, 32(3):225�232.

Papadimitriou, C. H. (1994). Computational Complexity. Addison-Wesley.

Pereira, J. and Averbakh, I. (2011). Exact and heuristic algorithms for the interval data

robust assignment problem. Computers & Operations Research, 38(8):1153�1163.

Pereira, J. and Averbakh, I. (2013). The robust set covering problem with interval

data. Annals of Operations Research, 207(1):217�235.

Pérez, F., Astudillo, C., Bardeen, M., and Candia-Véjar, A. (2012). A simulated

annealing approach for the minmax regret path problem. In Proceedings of the Con-

gresso Latino Americano de Investigación Operativa (CLAIO)-Simpósio Brasileiro

de Pesquisa Operacional (SBPO) 2012. Rio de Janeiro, Brazil.

Pugliese, L. D. P. and Guerriero, F. (2013). A survey of resource constrained shortest

path problems: Exact solution approaches. Networks, 62(3):183�200.

Revelle, C., Marks, D., and Liebman, J. C. (1970). An analysis of private and public

sector location models. Management Science, 16(11):692�707.

Rosenhead, M. J., Elton, M., and Gupta, S. K. (1972). Robustness and optimality as

criteria for strategic decisions. Operational Research Quarterly, 23:413�430.

Santos, L., Coutinho-Rodrigues, J., and Current, J. R. (2007). An improved solution

algorithm for the constrained shortest path problem. Transportation Research Part

B: Methodological, 41(7):756�771.

Shimbel, A. (1953). Structural parameters of communication networks. The bulletin

of mathematical biophysics, 15(4):501�507.



Bibliography 67

Solano-Charris, E. L., Prins, C., and Santos, A. C. (2014). Heuristic approaches for

the robust vehicle routing problem. In Combinatorial Optimization, Lecture Notes

in Computer Science, pages 384�395. Springer International Publishing.

Spall, J. C. (2003). Introduction to Stochastic Search and Optimization: Estimation,

Simulation and Control. Wiley, New York.

Sugiyama, K., Tagawa, S., and Toda, M. (1981). Methods for visual understanding of

hierarchical system structures. IEEE Transactions on Systems, Man & Cybernetics,

11(2):109�125.

Wang, Z. and Crowcroft, J. (1996). Quality-of-Service routing for supporting multime-

dia applications. IEEE on Selected Areas in Communications, 14(7):1228�1234.

Yaman, H., Kara³an, O. E., and Pinar, M. Ç. (2001). The robust spanning tree problem

with interval data. Operations Research Letters, 29:31�40.

Yu, G. (1996). On the max-min 0-1 knapsack problem with robust optimization appli-

cations. Operations Research, 44(2):407�415.

Zhu, X. and Wilhelm, W. E. (2012). A three-stage approach for the resource-

constrained shortest path as a sub-problem in column generation. Computers &

Operations Research, 39(2):164�178.

Zieli«ski, P. (2004). The computational complexity of the relative robust shortest path

problem with interval data. European Journal of Operational Research, 158:570�576.





Appendix A

Additional tables

A.1 AMU

We adapted to R-RSP the scenario-based heuristic AMU proposed in Kasperski et al.

[2005] for IRRSP. In the case of R-RSP, AMU consists in �nding β-restricted shortest

paths in two speci�c scenarios: (I) the median scenario, where the cost of each arc

(i, j) ∈ A is set to its respective mean value, given by
(lij+uij)

2
, and (II) the worst-

case scenario, where each arc cost is set to its corresponding upper bound. Then,

the heuristic computes the β-restricted robustness cost of each of these two paths and

returns the smallest value, along with its corresponding path.

With respect to AMU, the results for Kara³an and Coco instances are reported in

Tables A.1 and A.2, respectively. The �rst column displays the name of each set of 10

instances. The second column shows the number of instances solved at optimality by

any of the exact algorithms proposed in this study, within 3600 seconds of execution.

The third and fourth columns show, respectively, the average and the standard devia-

tion (over the 10 instances) of the relative optimality gaps given by 100 · UB∗−LB∗
UB∗

. LB∗

and UB∗ are, respectively, the best lower and upper bounds obtained by any exact

algorithm for a given instance. The �fth column displays the average processing time

(in seconds) of AMU. The sixth column shows the average (over the 10 instances) of

the heuristic optimality gaps given by 100 · UBamu−LB∗
UBamu

, where UBamu is the β-restricted

robustness cost of the solution obtained by AMU for a given instance. The standard

deviation of these gaps is given in the last column. Notice that LB∗ remains the best

lower bound obtained by any exact algorithm within 3600 seconds of execution and,

therefore, it might not correspond to the cost of an optimal solution. Thus, the afore-

mentioned heuristic gaps may overestimate the actual gaps between the cost of the

heuristic solution and the cost of an optimal one.
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Table A.1: Computational results of AMU for the layered and acyclic digraph instances.

Exact algorithms AMU

Test set #opt AvgGAP(%) StDev(%) Time(s) AvgGAP(%) StDev(%)

K-1000-20-0.5-5 10 0.00 0.00 4.09 4.10 3.59
K-1000-20-0.9-5 2 3.58 2.90 4.07 7.83 3.81
K-1000-200-0.5-5 10 0.00 0.00 4.09 3.68 2.18
K-1000-200-0.9-5 5 1.36 1.64 4.03 7.45 2.46

K-1000-20-0.5-10 10 0.00 0.00 5.37 3.06 2.70
K-1000-20-0.9-10 10 0.00 0.00 5.40 4.52 3.20
K-1000-200-0.5-10 10 0.00 0.00 5.19 1.57 1.84
K-1000-200-0.9-10 10 0.00 0.00 5.18 4.50 2.98

K-1000-20-0.5-25 10 0.00 0.00 9.48 3.12 4.52
K-1000-20-0.9-25 10 0.00 0.00 9.66 2.35 3.69
K-1000-200-0.5-25 10 0.00 0.00 9.39 1.27 2.71
K-1000-200-0.9-25 10 0.00 0.00 9.50 1.13 1.89

K-2000-20-0.5-5 0 8.61 3.86 14.61 12.31 4.04
K-2000-20-0.9-5 0 14.90 2.60 14.68 17.66 1.88
K-2000-200-0.5-5 0 8.30 2.27 14.38 11.56 2.72
K-2000-200-0.9-5 0 15.52 2.59 14.43 18.70 3.02

K-2000-20-0.5-10 8 0.57 1.34 17.67 4.08 3.26
K-2000-20-0.9-10 1 3.46 2.99 17.41 6.90 3.57
K-2000-200-0.5-10 8 0.29 0.84 17.00 3.39 2.22
K-2000-200-0.9-10 1 2.32 1.99 17.08 6.31 3.27

K-2000-20-0.5-25 10 0.00 0.00 28.57 5.98 7.21
K-2000-20-0.9-25 10 0.00 0.00 28.44 1.46 1.54
K-2000-200-0.5-25 10 0.00 0.00 28.87 1.53 2.11
K-2000-200-0.9-25 10 0.00 0.00 28.04 2.70 2.76

Average 2.46 0.96 5.71 3.05

A.2 Warm Start procedures

Tables A.3 and A.4 display the average execution times referred to the warm start pro-

cedures for Coco and Kara³an instances, respectively. For each test set of 10 instances,

the average execution times of RS, HS and Extended HS are given in seconds.
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Table A.2: Computational results of AMU for the grid digraph instances.

Exact algorithms AMU

Test set #opt AvgGAP(%) StDev(%) Time(s) AvgGAP(%) StDev(%)

G-32x32-20-0.5 10 0.00 0.00 4.35 4.16 9.20
G-32x32-20-0.9 10 0.00 0.00 4.53 5.38 7.49
G-32x32-200-0.5 10 0.00 0.00 4.43 1.56 2.72
G-32x32-200-0.9 10 0.00 0.00 4.30 3.90 5.89

G-20x50-20-0.5 10 0.00 0.00 3.75 2.71 5.94
G-20x50-20-0.9 10 0.00 0.00 3.89 1.80 2.93
G-20x50-200-0.5 10 0.00 0.00 4.13 2.54 5.09
G-20x50-200-0.9 10 0.00 0.00 4.03 2.33 4.43

G-5x200-20-0.5 10 0.00 0.00 3.80 5.29 4.89
G-5x200-20-0.9 10 0.00 0.00 3.77 4.40 1.69
G-5x200-200-0.5 10 0.00 0.00 3.83 4.82 3.57
G-5x200-200-0.9 10 0.00 0.00 3.86 7.81 3.87

G-44x44-20-0.5 10 0.00 0.00 13.27 0.97 1.92
G-44x44-20-0.9 10 0.00 0.00 13.21 3.92 8.06
G-44x44-200-0.5 10 0.00 0.00 12.69 5.05 4.02
G-44x44-200-0.9 10 0.00 0.00 12.45 2.70 3.23

G-20x100-20-0.5 10 0.00 0.00 14.01 2.81 5.26
G-20x100-20-0.9 10 0.00 0.00 13.84 5.41 4.98
G-20x100-200-0.5 10 0.00 0.00 14.45 1.64 1.97
G-20x100-200-0.9 10 0.00 0.00 13.59 3.37 3.27

G-5x400-20-0.5 7 0.50 0.85 13.27 5.50 3.36
G-5x400-20-0.9 1 3.33 2.32 13.21 8.43 3.30
G-5x400-200-0.5 4 1.92 2.09 13.26 6.77 3.12
G-5x400-200-0.9 0 5.45 2.00 13.11 10.52 3.70

Average 0.47 0.30 4.33 4.33
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Table A.3: Average execution times (in seconds) of the warm start procedures for the
grid digraph instances.

Warm start procedure

Test set RS HS Extended HS

G-32x32-20-0.5 1.07 4.37 7.50
G-32x32-20-0.9 1.08 5.59 9.74
G-32x32-200-0.5 1.07 4.44 7.14
G-32x32-200-0.9 1.06 5.92 10.28

G-20x50-20-0.5 0.97 4.43 6.81
G-20x50-20-0.9 0.95 5.22 7.83
G-20x50-200-0.5 1.06 4.93 8.24
G-20x50-200-0.9 1.05 5.88 9.30

G-5x200-20-0.5 0.97 11.61 16.92
G-5x200-20-0.9 0.93 20.83 28.86
G-5x200-200-0.5 0.98 9.45 15.71
G-5x200-200-0.9 0.96 23.46 31.34

G-44x44-20-0.5 3.15 14.65 26.40
G-44x44-20-0.9 3.25 17.04 25.21
G-44x44-200-0.5 3.22 16.18 26.88
G-44x44-200-0.9 3.14 21.61 34.58

G-20x100-20-0.5 3.66 21.97 35.34
G-20x100-20-0.9 3.40 31.32 54.08
G-20x100-200-0.5 3.56 21.77 35.71
G-20x100-200-0.9 3.43 28.07 43.04

G-5x400-20-0.5 3.30 68.95 93.90
G-5x400-20-0.9 3.31 169.93 207.78
G-5x400-200-0.5 3.28 88.28 116.40
G-5x400-200-0.9 3.30 279.05 325.02
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Table A.4: Average execution times (in seconds) of the warm start procedures for the
layered and acyclic digraph instances.

Warm start procedure

Test set RS HS Extended HS

K-1000-20-0.5-5 1.02 11.17 15.15
K-1000-20-0.9-5 1.02 31.66 39.88
K-1000-200-0.5-5 1.04 9.29 14.31
K-1000-200-0.9-5 1.02 23.22 30.74

K-1000-20-0.5-10 1.36 12.29 17.14
K-1000-20-0.9-10 1.34 19.32 25.96
K-1000-200-0.5-10 1.31 11.34 14.43
K-1000-200-0.9-10 1.32 26.81 34.01

K-1000-20-0.5-25 2.34 23.65 28.49
K-1000-20-0.9-25 2.40 29.57 35.54
K-1000-200-0.5-25 2.30 25.71 31.75
K-1000-200-0.9-25 2.26 33.15 38.71

K-2000-20-0.5-5 3.69 74.73 97.20
K-2000-20-0.9-5 3.72 288.43 323.54
K-2000-200-0.5-5 3.62 79.02 113.26
K-2000-200-0.9-5 3.60 557.90 586.53

K-2000-20-0.5-10 4.46 104.45 127.27
K-2000-20-0.9-10 4.39 292.36 333.73
K-2000-200-0.5-10 4.27 126.97 148.77
K-2000-200-0.9-10 4.30 238.33 268.74

K-2000-20-0.5-25 7.22 141.14 163.03
K-2000-20-0.9-25 7.02 263.55 286.09
K-2000-200-0.5-25 7.14 144.20 167.14
K-2000-200-0.9-25 6.98 249.86 273.17
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