
SMOV: PROTECTING PROGRAMS AGAINST BUFFER

OVERFLOW IN HARDWARE

ANTONIO LEMOS MAIA NETO

SMOV: PROTECTING PROGRAMS AGAINST BUFFER

OVERFLOW IN HARDWARE

Dissertação apresentada ao Programa de Pós-
-Graduação em Ciência da Computação do
Instituto de Ciências Exatas da Universidade
Federal de Minas Gerais como requisito par-
cial para a obtenção do grau de Mestre em
Ciência da Computação.

ORIENTADOR: LEONARDO BARBOSA E OLIVEIRA

COORIENTADOR: OMAR PARANAIBA VILELA NETO

Belo Horizonte

Fevereiro de 2015

ANTONIO LEMOS MAIA NETO

SMOV: PROTECTING PROGRAMS AGAINST BUFFER

OVERFLOW IN HARDWARE

Master’s thesis presented to the Graduate Pro-
gram in Ciência da Computação of the Uni-
versidade Federal de Minas Gerais in partial
fulfillment of the requirements for the degree
of Master in Ciência da Computação.

ADVISOR: LEONARDO BARBOSA E OLIVEIRA

CO-ADVISOR: OMAR PARANAIBA VILELA NETO

Belo Horizonte

February 2015

c© 2015, Antonio Lemos Maia Neto.
Todos os direitos reservados.

Maia Neto, Antonio Lemos

M217s SMOV: Protecting Programs against Buffer Overflow
in Hardware / Antonio Lemos Maia Neto. — Belo
Horizonte, 2015

xxii, 52 p. : il. ; 29cm

Dissertação (mestrado) — Universidade Federal de
Minas Gerais

Orientador: Leonardo Barbosa e Oliveira
Coorientador: Omar Paranaiba Vilela Neto

1. Computação - Teses. 2. Computadores - Medidas de
segurança. 3. Redes de computadores - Medidas de
segurança - Teses. I. Orientador.II. Coorientador.III. Título.

CDU 519.6*22(043)

A Rui e Toninha

ix

Acknowledgments

I apologize to English readers, but I must express my gratitude in Portuguese.
Agradeço primeiramente a Deus, pelo dom da vida e os caminhos aos quais me conduz.

"Senhor que a Tua vontade leve a minha de cabresto, pra todo sempre até a querência do céu"
(Dom Luis Felipe de Nadal). Aos meus pais Rui e Toninha e à minha irmã Lella que, como
sempre, superaram-se nas demonstrações de amor e carinho, me dando forças para seguir
com meus objetivos. Ao meu anjo Marina que alegra meus dias e me faz tão feliz.

Ao meu orientador e amigo Leo, por tamanha generosidade na condução desse trabalho
e, principalmente, pelos conselhos valiosos. Ao meu co-orientador Omar, pelas dúvidas
sanadas, textos revisados e provocações futebolísticas. Àqueles que ajudaram diretamente
na execução deste trabalho: Leandro e professores Fernando e Wong.

À minha família que amo de todo o coração. De maneira especial à minha prima Tali,
serei eternamente grato a tudo o que fez por mim. À família Lima/Acorinti que me acolheu
como um filho. Aos amigos de Passos, BH e Campinas, pela grande parceria.

Aos amigos do wisemap e a todos os funcionários do DCC/UFMG, principalmente
as secretárias do departamento que souberam responder com gentileza às minhas inúmeras
requisições e dúvidas.

Às agências de fomento à pesquisa brasileiras, CNPq e CAPES, e à Intel pelo apoio
financeiro.

Enfim, agradeço a todos que me ajudaram a concluir esse trabalho.

xi

Resumo

Estouro de Arranjos (Buffer Overflow – BOF) continua a ser uma das principais vulnerabil-
idades encontradas em software. Ano passado, a comunidade de Segurança da Informação
foi surpreendida quando pesquisadores revelaram uma vulnerabilidade de BOF no OpenSSL.
Linguagens de programação como C e C++, amplamente usadas para desenvolvimento de
sistemas e em uma grande variedade de aplicações, não proveem Verificação de Limites
de Arranjos (Array Bound Checks – ABCs) nativamente. Existem inúmeras propostas que
visam a proteção de memória para essas linguagens, através de soluções baseadas em soft-
ware ou hardware. Ainda assim, entretanto, essas técnicas acabam por comprometer o de-
sempenho dos programas, o que não é uma solução ideal para o problema. Este trabalho
apresenta uma nova abordagem para alcançar verificação de limites de arranjos e acesso à
memória (quando permitido) através de uma única instrução. Nós discutimos como ela pode
ser implementada em arquiteturas com tamanho variável de instruções e disponibilizamos
uma implementação de referência.

xiii

Abstract

A Buffer Overflow (BOF) continues to be among the top causes of software vulnerabili-
ties. Last year the security world was taken by surprise when researches unveiled a BOF
in OpenSSL. Languages like C and C++, widely used for system’s development and for a
large variety of applications, do not provide native Array-Bound Checks (ABC). A myriad
of proposals endeavor memory protection for such languages by employing both software-
and hardware-based solutions. Due to numerous reasons, none of them have yet reached the
mainstream. In this work, we propose a novel approach to achieve an array’s bound-check
and a memory access (when allowed) within a single instruction. We discuss how it can be
implemented on variable-length ISAs and provide a reference implementation.

xv

List of Figures

2.1 Push parameter and call funtion foo. 7
2.2 Beginning of function foo. 8
2.3 Calling function fread. 9
2.4 Execution of function fread - Buffer Overflow. 10
2.5 Returning from the function fread - Execution flow changed. 11
2.6 Heartbleed - A BOF vulnerability found in OpenSSSL. 12
2.7 Fetch stage in the Y86 pipeline. 14
2.8 Decode stage in the Y86 pipeline. 15
2.9 Execute stage in the Y86 pipeline. 15
2.10 Memory stage in the Y86 pipeline. 16
2.11 WriteBack stage in the Y86 pipeline. 16
2.12 Y86 pipeline. 17
2.13 Complete MPX-based pipeline and associated components with our additions in

red. 20

4.1 Fetch stage in the modified Y86 pipeline. 26
4.2 Decode stage in the modified Y86 pipeline. 27
4.3 Execute stage in the modified Y86 pipeline. 28
4.4 Memory stage in the modified Y86 pipeline. 28
4.5 Encoding and meaning of each field of a SMOV instruction. 29
4.6 Complete pipeline and associated components with our additions in red. 30

5.1 Runtime overhead caused by different security approaches. 42
5.2 Speed up of the two hardware strategies on top of the software-based approach. 43
5.3 Logical elements overhead to implement the two hardware strategies on top of

the original Y86 project. 45

xvii

List of Tables

1.1 Unprotected (left) and protected (right) versions of a program in C. 2

2.1 Unprotected (left) and protected (right) versions of a program in assembly. . . . 13
2.2 rmmovl, mrmovl and subl instructions pipeline stages. 18

3.1 Comparison of hardware-related approaches that protect against BOFs. 24

4.1 Processing required for smrmovl and srmmovl instructions. 29

5.1 Identification of global array accesses (left) and their replacement to use SMOV
(right). 40

5.2 Evaluation result of different ways to guard memory accesses. 41
5.3 Comparison of different implementations of the Y86 processor. 44

xix

Contents

Acknowledgments xi

Resumo xiii

Abstract xv

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Contribution . 3

1.2 Publications and Submissions . 3

1.3 Organization . 4

2 Background 5
2.1 Buffer Overflow . 5

2.2 ABCs and its computational cost . 12

2.3 Y86 Architecture . 13

2.4 Memory Protection Extension - MPX . 18

3 Related Work 21
3.1 Static and Dynamic memory protection techniques 21

3.2 Hardware-based memory protection techniques 22

4 SMOV 25
4.1 Architecture Choice . 25

4.1.1 Design . 26

4.1.2 Programming Interface and Capabilities 30

4.2 Implementation Efforts . 31

xxi

5 Evaluation 37
5.1 Methodology . 37
5.2 Results . 41
5.3 Hardware Cost . 44

6 Conclusion and Future Work 47

Bibliography 49

xxii

Chapter 1

Introduction

A Buffer Overflow (BOF) takes place whenever a system allows data to be accessed out of
the bounds of an array [Cowan et al., 2000; Wagner et al., 2000; Lhee and Chapin, 2003;
Bishop et al., 2012]. An adversary can leverage that to overwrite memory space that guides
program’s execution flow, divert it towards a malicious code, and thus take system control.
BOFs are considered one of the most challenging sources of vulnerabilities in computing
systems [Cowan et al., 2000].

The Morris worm [Moore et al., 2002] is a good case in point of how devastating BOF
attacks might be. Back in 1988, the worm made use of the then-novel technique of buffer
over-write, a sort of BOF, and compromised approximately 10% of the computers connected
to the Internet.

Earlier in 2014, Internet users were taken by surprise when the security community
found a new BOF vulnerability named Heartbleed 1, which allowed attackers to over-read an
array. Half a million web servers were affected by it. The worsening factor was because the
hole was found in OpenSSL, a widely used security library. Heartbleed is deemed by some
as the worst security flaw that has been ever discovered on the Internet.

BOF attacks are still frequent because languages like C and C++, commonly used for
system programming, do not prevent out-of-bounds memory accesses [Haugh and Bishop,
2003; Nagarakatte et al., 2010]. Those languages are inherently unsafe, since their semantics
legitimately allow this sort of "illegal" memory access: an array[i] access is considered safe
if (a) the variable i is greater than or equal to zero; and (b) the variable i is less than the
defined length of array.

Operating systems and compilers writers have developed over time a series of defense
mechanisms to protect against a few memory-violation issues. The most notable ones are
Address Space Layout Randomization (ASLR) and Data Execution Prevention (DEP) - also

1http://heartbleed.com/

1

http://heartbleed.com/

2 CHAPTER 1. INTRODUCTION

Table 1.1: Unprotected (left) and protected (right) versions of a program in C.

#define BUFSIZE 512

int main() {

int buffer[BUFSIZE];

int a,i,j;

...

for(i;i<j;i++) {

buffer[i] = a;

}

}

#define BUFSIZE 512

int main() {

int buffer[BUFSIZE];

int a,i,j;

...

for(i;i<j;i++) {

if(i >= 0 && i < BUFSIZE)

buffer[i] = a;

}

}

known as the No-eXecute bit (NX). That eventually led to more advanced attacks such as
the Return-to-libC attack [Tran et al., 2011] and its variations like Return Oriented Program-
ming [Buchanan et al., 2008]. Current defenses against those are not totally efficient [Carlini
and Wagner, 2014].

A myriad of proposals endeavor to mitigate BOF vulnerabilities by resorting to the so-
called Array-Bound Checks (ABCs), which are tests performed at runtime to ensure that a
particular array access is safe. An ABC check is demonstrated on the right side of Table 1.1.

ABCs can either be implemented in software, by instrumenting code with assertion
statements, or in hardware, via a combination of multiple general-purpose instructions. How-
ever, both approaches tend to degrade program’s performance and, consequently, do not pro-
vide a satisfying solution against BOFs.

Software-based approaches usually consist of two passes. Initially, a program’s as-
sembly is scanned to find code snippets containing potential vulnerabilities. Afterwards, in
a second pass, ABCs are inserted to the select places. While effective in preventing BOFs
from happening, such approaches typically slow down the resulting program by a signifi-
cant amount of time. For instance, AddressSanitizer [Serebryany et al., 2012], a popular
tool maintained by Google, is known to cause 70% time and 200% memory consumption
overhead.

Hardware-based approaches (e.g., Devietti et al. [2008]; Nagarakatte et al. [2012,
2014]; Intel Corporation [2013]) offer new specific machine instructions for bound-checking
purposes. They differ from each other in a variety of factors: the overall format and con-

1.1. CONTRIBUTION 3

tent of an instruction, the number of instructions necessary to complete a safe array access,
the number of cycles a particular check takes, whether both the upper and lower limits are
checked at once, and the required supporting hardware components.

Evaluation of hardware-based ABC solutions can be guided by distinct fronts: en-
ergy consumption, hardware size, hardware design and implementation complexity, Instruc-
tion Set Architecture (ISA) and compiler related friendliness. Ultimately, performance of a
bound-checking enabled program is evaluated. Nevertheless, results are usually difficult to
reproduce and subjected to characteristics and limitations of a particular simulation/emula-
tion environment [Binkert et al., 2011; Bellard, 2005; Binkert et al., 2006; Yourst, 2007] or
tightly coupled with a particular hardware architecture implementation.

1.1 Contribution

In this work, we present SMOV, a hardware-based solution for BOFs that consists of a pair
of secure load and secure store instructions. The novelty in our instructions is the fact they
perform an ABC and a memory access, when allowed, altogether. Our key observation is
that a subtraction is an operation fast enough to be computed in sequence to an addition of
the Arithmetic Logical Unit (ALU) operation without disturbing the normal pipeline.

We present our solution from a practical but still general perspective, accompanied by
the formalism necessary to hardware design. Although our instructions have a x86-like for-
mat, they can easily be extended to any architecture that allows variable-length instructions.
Given the subtleness involved in hardware performance evaluation, along with details that
are highly simulation/emulation environment dependent, we prefer to focus our discussion
on the overall modeling of SMOV and to describe how it can be implemented, since this is
an important aspect not covered in previous work. On the other hand, in order to keep our
ideas tangible, we offer a synthesizable Verilog for an academical processor which can be
used for real evaluations.

1.2 Publications and Submissions

Below there is a list of publications related to this work:

• MAIA NETO, A. L. ; MELO, L. T. C. ; O. P. VILELA NETO, O. P. ; PEREIRA, F. M.
Q. ; OLIVEIRA, L. B. Protecting Programs Against Memory Violation In Hardware.
In: IEEE Latin America Transactions, 2015.

4 CHAPTER 1. INTRODUCTION

• MAIA NETO, A. L. ; PARAIBA, O ; PEREIRA, F. ; OLIVEIRA, L. B. . S-MOVL:
Protegendo Sistemas Computacionais contra Ataques de Violação de Memória por
meio de Instruções em Hardware. In: Simpósio Brasileiro em Segurança da Infor-
mação e de Sistemas Computacionais (SBSeg’14), 2014, Belo Horizonte.

• TORRES, E. ; MAIA NETO, A. L. ; PARAIBA, O ; OLIVEIRA, L. B. . Implemen-
tação em Hardware de Instrução Segura de Acesso à Memória - Caso MIPS 16 bit.
In: Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais
(SBSeg’14), 2014, Belo Horizonte.

Our work was also submitted to:

• IEEE/IFIP International Conference on Dependable System and Networks (DSN’15);

• IEEE Global Communications Conference,Exhibition & Industry Forum (GLOBE-
COM’15).

1.3 Organization

The remainder of this work is structured as follows. In Chapter 2 we present definitions and
background concepts that are key for understanding our work. Chapter 3 discusses related
work. Chapter 4 presents our solution. Chapter 5 evaluates SMOV in terms of runtime and
hardware overhead. We conclude and comment about future work in Chapter 6.

Chapter 2

Background

In this chapter, we briefly present important background information for the understanding
of our work. We begin with a description of BOF vulnerability. Section 2.2 explains what
ABCs are and their cost when implemented in software. In Section 2.3, we present the Y86
architecture, then Section 2.4 analyses a hardware-based strategy to protect against BOF.

2.1 Buffer Overflow

A BOF occurs when we want to access data inside an array but end up accessing memory
out of its bounds. This vulnerability is still possible in some programming languages that do
not protect out-of-bounds memory accesses, such as C and C++. It can appear in different
ways, for instance:

• direct memory manipulation without checking the access index: array[i] – where
i is less than 0 or greater than or equal to the size of array;

• array copy without checking the size of the destination array:
memcpy(dest,src,num) – where the size of the destination array dest is
less than num;

• file reading without checking the size of the destination array:
fread(buffer,sizeof(char),517,file) – where the size of the ar-
ray buffer is less than 517 bytes.

An adversary can use a buffer overflow to overwrite memory space that guides pro-
gram’s execution flow, divert it towards a malicious code, and thus take system control. As
an example, consider the Code 2.1. In the function foo, the array buffer receives 517
bytes read from the file badfile, however the array’s size is 12 bytes.

5

6 CHAPTER 2. BACKGROUND

#include <stdio.h>

void foo(FILE *badfile){

char buffer[12];

...

fread(buffer,sizeof(char),517,badfile);

...

return 1;

}

int main() {

FILE *badfile;

badfile = fopen(“file”,”r”);

foo(badfile);

fclose(badfile);

return 1;

}

Code 2.1: C program with a highlighted buffer overflow vulnerability.

Figures 2.1 to 2.5 describe step-by-step how the program’s execution flow can be
changed due to this BOF vulnerability. We are going to see the result of each instruction
in the stack during the program execution. Each figure show on the left side the current
instruction of the Code 2.1 in its assembly instructions representation and, on the right side,
the stack’s current layout:

1. in the first step we consider that the file badfile was already open and its file de-
scriptor is in register %eax. This value is push onto the stack by the instruction movl
%eax, (%esp) to serve as parameter to the function foo. The function is called
by the instruction call foo. It pushes the return address onto the stack and changes
the execution flow to foo’s address;

2.1. BUFFER OVERFLOW 7

Figure 2.1: Push parameter and call funtion foo.

2. function foo begins by saving the current base pointer (called old in the figure), setting
a new one and reserving stack space for the current function. This reserved space
includes the 12 bytes for the local array buffer;

8 CHAPTER 2. BACKGROUND

Figure 2.2: Beginning of function foo.

3. the following instructions push the parameters of the function fread onto the stack
and call the function;

2.1. BUFFER OVERFLOW 9

Figure 2.3: Calling function fread.

4. the function fread fills the buffer’s 12 bytes, however, it was required to read 517
bytes, so the portion of memory located over the buffer is also filled causing a BOF.
Notice that the return address described in step 2 is changed;

10 CHAPTER 2. BACKGROUND

Figure 2.4: Execution of function fread - Buffer Overflow.

5. when foo terminates, it must change the execution flow to the return address saved
onto the stack. However, this value was changed by fread, therefore the execution
flow will be deviated to somewhere else than it was supposed to be.

2.1. BUFFER OVERFLOW 11

Figure 2.5: Returning from the function fread - Execution flow changed.

Another type of BOF is related to reading adjacent memory of an array. This is the
kind of problem that have been found in OpenSSL, a library written in C that is used to
protect computing systems and their communications. The problem’s behavior is shown in
Figure 2.6. OpenSSL has a feature – called Heartbeat – where the client can ask the server
to respond a specific challenge. However, the client could misinform the challenge’s size
and get a response sized greater than the challenge, revealing sensitive information. This
problem, called HeartBleed, compromised 17% of SSL web servers which used certificates
issued by trusted certificate authorities, accounting for around half a million certificates.
Heartbleed is deemed by some as the worst security flaw that has been ever discovered on
the Internet.

12 CHAPTER 2. BACKGROUND

Figure 2.6: Heartbleed - A BOF vulnerability found in OpenSSSL.

2.2 ABCs and its computational cost

A simple way to protect a C program against a BOF is testing the particular index variable
against the upper and lower bounds of the allocated memory that corresponds to the array.
For example, Table 1.1 shows an unprotected (to the left) and a protected (to the right)
versions of the same program. In the latter, there is a bound limit verification of the index
i before the assignment buffer[i] = a. Thus, if someone tries to execute the program
with i < 0 or i ≥ BUFSIZE in the unprotected version, a BOF occurs. Whereas in the
protected version the assignment is prevented.

Table 2.1 shows the same programs in their Y86 assembly code. Eight additional
instructions are required to check the bounds of the array (four instructions for each bound),
as highlighted in the right side of the table. The instruction mrmovl loads the index i

in a register; instruction irmovl loads the bound (lower or higher) in another register;
instruction subl subtracts the values; finally, instructions js or jg are conditional branches
that, depending on the result of the subtraction, deviate the program flow.

As it can be observed, bound-checking comes at a high cost. This becomes too expen-
sive in complex applications that require a large number of verifications. Indeed, there are
works showing that the application of ABCs implemented in software can cause an overhead
up to 70% in execution time [Serebryany et al., 2012].

2.3. Y86 ARCHITECTURE 13

L3:

mrmovl -12(%ebp),%eax

mrmovl -4(%ebp), %edx

rrmovl %eax, %edi

sall $2, %edi

addl %ebp, %edi

rmmovl %edx,-2060(%edi)

mrmovl -12(%ebp),%edi

iaddl $1, %edi

rmmovl %edi, -12(%ebp)

L2:

mrmovl -12(%ebp),%eax

mrmovl -8(%ebp), %edi

subl %edi, %eax

jl L3

irmovl $0, %eax

leave

L4:

mrmovl -12(%ebp), %edi

irmovl $0, %ebx

subl %ebx, %edi

js L3

if((i>=0)

mrmovl -12(%ebp),%edi

irmovl $511, %ebx

subl %ebx, %edi

jg L3

&&(i<BUFSIZE))

mrmovl -12(%ebp), %eax

mrmovl -4(%ebp), %edx

rrmovl %eax, %edi

sall $2, %edi

addl %ebp, %edi

rmmovl %edx, -2060(%edi)


buffer[i] = a;

L3:

mrmovl -12(%ebp), %edi

iaddl $1, %edi

rmmovl %edi, -12(%ebp)

L2:

mrmovl -12(%ebp), %eax

mrmovl -8(%ebp), %edi

subl %edi, %eax

jl L4

irmovl $0, %eax

leave

Table 2.1: Unprotected (left) and protected (right) versions of a program in assembly.

2.3 Y86 Architecture

Y86 is a 32-bit ISA inspired by x86/IA32. The Y86 ISA has fewer data types, instructions,
and addressing modes when compared to x86. Still, it is sufficiently complete to allow us to
write and execute complex programs in a five-step pipelined processor. Within the scope of
this work, the most relevant instructions are those related to data manipulation in memory,
and data comparison, as summarized below:

• mrmovl: memory read (memory→ register);

• rmmovl: memory write (register→ memory);

• subl: subtract two operands for comparison.

14 CHAPTER 2. BACKGROUND

Next, we present a description of what is done in each one of the five stages of the
pipelined Y86 processor when the aforementioned instructions are executed:

1. Fetch: the Program Counter (PC) is used as the memory address and the fetch stage
reads the bytes of an instruction from memory. The instructions bytes are sorted out
and stored in special pipeline registers so they can be used in the upcoming stages.
The value valP , computed as the current PC plus the length of the fetched instruction,
will be the address of the next instruction - in the case of jumps or function returns it
must be adjusted, but we will not enter the details here. The fields of the instruction
along with their meaning are listed below:

• icode and ifun: instruction opcode, and function that must be executed in the
execute stage, respectively;

• rA and rB: possible register specifier byte;

• valC: possible constant word whose meaning depends on the instruction (it is an
offset in case of a memory access instruction).

In Figure 2.7 we have a visual representation of each field of an instructions in the
Fetch stage:

Figure 2.7: Fetch stage in the Y86 pipeline.

2. Decode: the operands used in the instruction (at most 2 – rA and rB) are retrieved
from the register file in the form of valA and valB. The constant valC is passed through
the stages, as can be seen in Figure 2.8:

2.3. Y86 ARCHITECTURE 15

Figure 2.8: Decode stage in the Y86 pipeline.

3. Execute: the Arithmetic Logic Unit (ALU) performs the operation specified by the
instruction (ifun). It sums the constant valC to the content valB of the base register
rB. This result forms the effective memory address in case of a memory access
instruction. In the case of a subtraction, the ALU subtracts the value valA from the
value valB, and the condition codes used for comparisons are set. The result of the
subtraction is named as valE. Figure 2.9 presents this behaviour;

Figure 2.9: Execute stage in the Y86 pipeline.

4. Memory: the effective address calculated in the previous stage is used to access
the memory. The memory control determines if the operation is a load or a store.

16 CHAPTER 2. BACKGROUND

Data is read from the memory address to valM in case of a load operation, or the
value valA is written to the memory address in case of a store, as shown in Firuge 2.10;

Figure 2.10: Memory stage in the Y86 pipeline.

5. Write back: this stage writes the ALU’s output (valE) or data read from memory
(valM) to the register file.

Figure 2.11: WriteBack stage in the Y86 pipeline.

2.3. Y86 ARCHITECTURE 17

Figure2.12 shows the full pipeline of Y86 architecture.

Figure 2.12: Y86 pipeline.

Table 2.2 summarizes how the three previously mentioned instructions proceed
through the stages of the pipeline. These should be read from top to bottom, as they are
evaluated in a sequence. Each line in the table describes an assignment (represented by←)
to some signal or stored data. For instance, x ← Mn[Y] and Mn[Y] ← x indicates, respec-
tively, a read from memory and a write of n bytes to memory. If the source or destination of

18 CHAPTER 2. BACKGROUND

an operation is a register, R[y] is used instead of Mn[Y]. Lastly, the notation x : y ←M1[Y]

means that the components of a byte are split between two variables: x receives the least
significant 4 bits of M1[Y] while y receives the most significant 4 bits.

Stage rmmovl rA,valC(rB) mrmovl valC(rB),rA subl rA,rB

Fetch icode : ifun←M1[PC] icode : ifun←M1[PC] icode : ifun←M1[PC]

rA : rB ←M1[PC + 1] rA : rB ←M1[PC + 1] rA : rB ←M1[PC + 1]

valC ←M4[PC + 2] valC ←M4[PC + 2] valP ← PC + 2

valP ← PC + 6 valP ← PC + 6 PC ← valP

PC ← valP PC ← valP

Decode valA← R[rA] valB ← R[rB] valA← R[rA]

valB ← R[rB] valB ← R[rB]

Execute valE ← valB + valC valE ← valB + valC valE ← valB − valA

SetCC

Memory M4[valE]← valA valM ←M4[valE]

Write back R[rA]← valM R[rB]← valE

Table 2.2: rmmovl, mrmovl and subl instructions pipeline stages.

2.4 Memory Protection Extension - MPX

This section describes the operation of an approach similar to ours, the Memory Protection
Extension (MPX). MPX is a set of processor features documented by Intel on July 2013 [Intel
Corporation, 2013] that associates bounds with pointers, and checks, via hardware, if the
pointer based accesses are suitably constrained. These operations are performed by using a
new set of instructions added to the processor ISA. The general flow of checking a memory
access using this approach is described below.

1. Create the pointer bounds information: the first task is to load in special registers
the pointer’s bounds. It is done through the new instruction bndmk. The instruction
bndmk %edi,%ebx,%bnd0 sets the lower 32 bits of the register bnd0 with the
content of register %edi, and the higher 32 bits of bnd0 with the sum of the con-
tents of registers %edi and %ebx. It means that %edi should keep the lower bound
information and %ebx the size of the array.

2. Check the bounds: there are two instructions to perform the array bounds check be-
fore a memory access. To check the lower bound is used the instruction bndcl

%eax,%bnd0, that verifies if the content of register %eax is lower than the con-
tent of the lower 32 bits of the register bnd0, if so an interruption is raised. Simi-
larly, the upper bound is verified by the instruction bndcu. The statement bndcu

2.4. MEMORY PROTECTION EXTENSION - MPX 19

%eax,%bnd0 checks if the content of %eax is greater than the higher 32 bits of
special register bnd0, if so an interruption is raised.

3. Conclude memory access: if MPX does not raise any interruption during the bounds
check, the memory access can be concluded. This task is done through the regular
memory access instructions load and store.

Figure 2.13 presents a MPX-based project over the original Y86 pipeline, containing
the basic operation of MPX (instructions bndmk, bndcl and bndcu).

As we could see in the previous definition, MPX adds special registers to keep the
pointers’ bounds. In fact, there are four new special registers to keep the bounds. Even that it
is not in the scope of this work, it is worth mention that to deal with more than four pointers,
MPX provides instructions that read or write this kind of information to/from memory. It has
an internal organization in the form of directories.

Another interesting feature found in MPX is backwards compatibility. The MPX in-
structions when executed in legacy Intel hardware are interpreted as NOP (No Operation)
instructions. We speculate that is the main reason MPX does not optimize even more its
new set of instructions, like performing the bound checks and memory access in a single
instruction.

20 CHAPTER 2. BACKGROUND

Figure 2.13: Complete MPX-based pipeline and associated components with our additions
in red.

Chapter 3

Related Work

The literature contains a vast number of techniques to protect computational sys-
tems(e.g. Jones and Kelly [1997]; Haugh and Bishop [2003]; Wagner et al. [2000]; Xie et al.
[2003]; Dhurjati et al. [2006]; Serebryany et al. [2012]; Misra [1987]; Wagner and Dean
[2001]; Evans and Larochelle [2002]; Chess and West [2007]; Holzmann [2002]; Cousot
et al. [2005]; Viega et al. [2000]; Cowan et al. [1998]; Bell [1999]; Wilander and Kamkar
[2003]; Newsome and Song [2005]; Piromsopa and Enbody [2006]; Francillon et al. [2009];
McGregor et al. [2003]; Devietti et al. [2008]; Nagarakatte et al. [2014]; Intel Corpora-
tion [2013]). In this chapter, we shall focus on the most prominent ones and those that
directly relate to our work, hardware-based protection against BOFs. Before diving into
the hardware-related approaches, we shall mention the methods that can be implemented
at the compiler/run-time level. To make our review more systematic, we shall divide these
strategies into static and dynamic approaches.

3.1 Static and Dynamic memory protection

techniques

Among the static techniques [Misra, 1987; Wagner and Dean, 2001; Evans and Larochelle,
2002; Chess and West, 2007; Holzmann, 2002; Cousot et al., 2005; Chess and West, 2007;
Chipounov and Candea, 2011], there exist works that are specially tailored to identify
memory-related vulnerabilities, such as those that we seek to prevent with our new instruc-
tions. For instance, Array Checker [Xie et al., 2003] implements a symbolic, flow-sensitive
analysis to find out which memory accesses can fall out-of-bounds. This tool points back
to programmers which functions are vulnerable. The programmers must fix the vulnerable
code until no more warnings are reported. Similar behavior is implemented by ITS4, another

21

22 CHAPTER 3. RELATED WORK

static analysis tool [Viega et al., 2000]. Static analyses, such as these two, can be used to
replace ordinary load/store operations with our guarded instructions.

Differently from static analyses, dynamic analyses are implemented while the program
runs. A common way to implement this kind of analysis is through the dynamic instrumen-
tation of binary code [Cowan et al., 1998; Bell, 1999; Wilander and Kamkar, 2003; New-
some and Song, 2005; Ozdoganoglu et al., 2006; Piromsopa and Enbody, 2006; Dhurjati
et al., 2006; Francillon et al., 2009; Serebryany et al., 2012]. For instance, Piromsopa et al.

have designed and implemented a technique to protect the return address of functions. They
maintain a shadow memory in such a way that every word in the original memory space is
shadowed with a bit, which indicates if that work has a high or a low security level. Any
attempt to move information from a higher to a lower level may awake a resident system
that handles such exceptions. To implement their idea, the authors have modified data and
control flow instructions used in an IA32 emulator. For instance, branches such as return,
call and jump, check the shadow bit of the addresses where they are pointing. There are
techniques, implemented at the hardware level, whose goal is to make dependable systems
safer. For instance, Francillon et al. Francillon et al. [2009] have proposed new machinery to
protect the return address of functions against illegal control flow changes. Their approach
also uses a verification bit to prevent unwanted writes on the return address of functions.
Similar to Piromsopa et al.’s, Francillon et al.’s also require modifications in the instruction
set architecture. We have also modified instructions in a x86-like architecture, but our idea
is very different: we do not create a shadow area to determine if memory is valid or invalid.
Our instructions use compiler support to guard array accesses whose symbolic size we can
infer statically.

3.2 Hardware-based memory protection techniques

As mentioned before, hardware-based approaches (e.g., Devietti et al. [2008]; Nagarakatte
et al. [2012, 2014]; Intel Corporation [2013]) typically offer new machine instructions for
specific bound-checking purposes. They differ from each other in a variety of factors. We
analyze them over the following aspects: whether the checking method is explicit or implicit;
whether both the upper and lower limits are checked together, whether the memory access
can be combined into the check; the required hardware support; and backwards compatibil-
ity.

Scheduled to emerge in the market this year is the Intel’s Memory Protection Exten-
sion [Intel Corporation, 2013] (MPX). MPX introduces a family of instruction to store, re-
cover and verify bounds of arrays. The supporting hardware comes with four special bound

3.2. HARDWARE-BASED MEMORY PROTECTION TECHNIQUES 23

registers, machinery to index bound tables efficiently, and other integration features. MPX’s
programming interface to perform bound-checking is composed by two instructions: bndcu
to check the upper bound, and bndcl to check the lower bound. A violation triggers an ex-
ception and the program is terminated. Otherwise, execution flow continues, and a standard
mov instruction may be performed. We believe that one of reasons for such independent
checks is due to backwards compatibility: if a program is running on unsupported hardware,
those instructions are converted to NOPs. We imagine that a similar mechanism could be
employed with the SMOV instructions, since we carefully designed them in a way that the
data necessary for a non-secure mov instruction is embedded into the secure version. In ad-
dition, x86 has powerful addressing modes and variable-length encoding, which makes this
idea feasible. Having that in mind, SMOV is the only work that allows an architecture to
combine security (through bound-checking), memory access, and backwards compatibility
altogether.

WatchdogLite [Nagarakatte et al., 2014] is another work, similar in principle to MPX,
where the bound-checking method is explicit. However, instead of extending the hard-
ware with special registers, it relies on general propose registers for bound-checking. The
programming interface adds a single instruction, SChk, that checks both lower and upper
bounds of an array. WatchdogLite also requires a standard mov instruction to access mem-
ory. It does not address backwards compatibility aspects.

The other category of hardware-based ABC is through an implicit method. This is
adopted by HardBound [Devietti et al., 2008] and Watchdog [Nagarakatte et al., 2012]. Un-
der this method, the program must inform, through special instructions (setbounds in
HardBound and setident in Watchdog) the lower and upper portions of memory that rep-
resent arrays. With this information, the hardware takes care of checking the bounds before
any access to this marked memory is performed. To support the implicit method, these pro-
posals have to augment the pointer data type with metadata to keep track of the size of the
allocated regions. This requires deep changes in a typical computer architecture, like the ad-
dition of a cache of meta data and a new, or augmented, register file, resulting in an expensive
hardware. Once the bounds are implicitly checked by the hardware, one can say that they the
memory access is also performed. It is not totally clear whether this is a kind of two-phase
microcode operation. These works do not mention backwards compatibility either.

Table 3.1 summarizes the features found on each discussed solution, including ours.
The table also shows runtime information and hardware overhead assumptions. SMOV is
not as fast as Hardbound, at the price of more flexibility and simpler hardware.

24 CHAPTER 3. RELATED WORK

Table 3.1: Comparison of hardware-related approaches that protect against BOFs.

MPX WatchdogLite HardBound Watchdog SMOV

checking
method

explicit explicit implicit implicit explicit

register
file changes

3 no 3 3 no

bound check
+

access

no no no no 3

addressed
backwards

compatibility

3 no no no 3

runtime
overhead

N/A 29% 9% 25% 18%

hardware
overhead

N/A N/A N/A N/A 3.6%

Chapter 4

SMOV

In this chapter, we present SMOV, a hardware-based solution against BOF attacks. To the
best of our knowledge, this is the first work that demonstrates the idea and feasibility of
performing an array bound-check and a memory access as part of a single instruction.

4.1 Architecture Choice

Hardware performance benchmarks are often difficult to reproduce due to hardware imple-
mentation variations. While cycle-accurate simulators and emulators [Yourst, 2007; Bellard,
2005] do exist, results become more subjective on how we extend the underlying platform
to consider new hardware components and datapath changes. In-house simulators and tools
have also been used for hardware-based ABC proposals [Nagarakatte et al., 2014], but those
are even less accessible in the sense of validation and adoption. An interesting alternative
would be open-source hardware [Parulkar et al., 2008], but unfortunately there does not seem
to exist a full-blown x86 implementation available 1.

The strategy we have taken to realize SMOV is to implement it on top of the publicly
available Y86 research architecture [Bryant and David Richard, 2003]. The Y86 is a 32-bit
ISA inspired by x86. It has fewer data types, instructions, and addressing modes, but it is
complete enough to allow us to execute real programs in a five-step pipelined processor. The
reader familiar with Intel’s x86 should find it easy to bridge the two ISAs. For those who
need a thorough introduction, please refer to Bryant and David Richard [2003].

1http://zet.aluzina.org/index.php/Zet_processor

25

http://zet.aluzina.org/index.php/Zet_processor

26 CHAPTER 4. SMOV

4.1.1 Design

SMOV relies on two new instructions, one is a secure load and the other is a secure store.
They are derived from the following standard move operations from Y86:

• mrmovl: Load (memory→ register);

• rmmovl: Store (register→ memory);

Our central idea is to embed two extra registers, one for the upper bound and another
for the lower bound, in the standard move operations so they can be used for bound-checking.
The memory access is only allowed if the particular address being indexed is within the allo-
cated memory region for the array in question. Otherwise, program execution is terminated.

The impact of adding those registers to the instruction, performing the valid memory
region computation, and eventually allowing the memory access, is observed under different
perspectives. We individually analyze all of them.

1. Instruction Fetch and Encoding: we use two extra registers, rU and rL, to store
the upper and lower bounds of an array, respectively. This means one byte larger than
the largest standard Y86 instruction. As long as the architecture allows us to read
this extra byte without an increased cycle, there should exist no collateral effect, since
the Y86 uses variable-length encoding. When compared to the standard Y86 load
and store instructions, rmmovl rA,D(rB) and mrmovl D(rB),rA, our corre-
sponding secure versions look like srmmovl rA,D(rB),rU,rL and smrmovl

D(rB),rA,rU,rL. Figure 4.1 shows each field of the instructions in the modified
Y86 Fetch stage:

Figure 4.1: Fetch stage in the modified Y86 pipeline.

2. Register File: in order to have the secure registers decoded together with the other
two registers that are part of a standard move operation, the register file must support
four simultaneous read ports. In the worst case, a convention could require that bound
registers are always read in the second half of the clock cycle and impose a constraint
that reading and writing to bound registers within a single cycle is illegal. Figure 4.2

4.1. ARCHITECTURE CHOICE 27

presents the Decode stage of the modified Y86 pipeline, where the four read port
register file can be seen:

Figure 4.2: Decode stage in the modified Y86 pipeline.

3. ALU and Bound-Checking: bound-checking requires that two subtractions are made:
MI−ML and thatMU−MI , or in Y86 notation, rU - D(rB) and D(rB) - rL.
At this moment, the ALU is already busy computing an addition of a register-indirect
memory address. Therefore, we insert two specific-purpose subtractors to check the
bounds. We also need a flagging mechanism that immediately points out whether the
subtractions’ result is zero, greater than zero, or negative - this can be achieved with
a combination logic circuit. Addition and subtractions are relative fast operations and
can normally be cascaded without any overhead. In particular, it is worth to recall that
a Translation Lookaside Buffer (TLB) miss leads to a penalty of several cycles and
main memory access is a well-known limiting factor of a pipeline. Figures 4.3 and 4.4
show the extra subtractors, and the logic circuit added to the Execute and Memory
stages of the Y86 pipeline:

28 CHAPTER 4. SMOV

Figure 4.3: Execute stage in the modified Y86 pipeline.

Figure 4.4: Memory stage in the modified Y86 pipeline.

To summarize, Table 4.1 shows how our secure instructions evolve through the pipeline
stages. A few of the operations performed are just the same as those from the original
Y86 rmmovl and mrmovl instructions. The portions highlighted in red are the ones we
introduced. A visual representation of the srmmovl and smrmovl encodings, along with

4.1. ARCHITECTURE CHOICE 29

the meaning of each field, is illustrated by Figure 4.5. Finally, the entire pipeline, registers,
and major components are presented by Figure 4.6. The parts in red are again our own
additions.

Stage srmmovl rA,D(rB),rU,rL smrmovl D(rB),rA,rU,rL

Fetch icode : ifun←M1[PC] icode : ifun←M1[PC]

rA : rB ←M1[PC + 1] rA : rB ←M1[PC + 1]

valC ←M4[PC + 2] valC ←M4[PC + 2]

rU : rL←M1[PC+ 6] rU : rL←M1[PC+ 6]

valP ← PC + 7 valP ← PC + 7

PC ← valP PC ← valP

Decode valA← R[rA]

valB ← R[rB] valB ← R[rB]

valU← R[rU] valU← R[rU]

valL← R[rL] valL← R[rL]

Execute valE ← valB + valC valE ← valB + valC

UB← (valU− valE > 0) UB← (valU− valE > 0)

LB← (valE− valL ≥ 0) LB← (valE− valL ≥ 0)

Memory UB && LB ? M4[valE]← valA : Except UB && LB ? valM ←M4[valE] : Except
Write back R[rA]← valM

Table 4.1: Processing required for smrmovl and srmmovl instructions.

Figure 4.5: Encoding and meaning of each field of a SMOV instruction.

30 CHAPTER 4. SMOV

Figure 4.6: Complete pipeline and associated components with our additions in red.

4.1.2 Programming Interface and Capabilities

We identify a few prominent aspects that, although not intrinsically tight to our ABC pro-
posal, are relevant to be discussed. In this regard, we raise attention to the fact that SMOV is
a high-level proposal to achieve bound-checking and memory access within a single instruc-
tion. Specifically, it consists of a secure version of load and store operations, combined with

4.2. IMPLEMENTATION EFFORTS 31

a technical reference on how to implement it on a variable-length ISA pipeline, accompanied
by a deep analysis on the involved aspects.

SMOV is not to be thought of as a complete memory protection platform such as Intel’s
MPX [Intel Corporation, 2013]. In fact, given the extent and flexibility of x86, we claim that
our combined bound-checking and memory access secure instructions could augment MPX’s
programming interface that is currently composed of only two bound-checking instructions,
namely bndcu and bndcl, that independently check the upper and lower bound of an array,
and without completing the memory access.

As an orthogonal aspect, MPX provides a way to store and load array bounds that are
kept in a Bound-Register Table. In fact, this is reflected at the Application Binary Interface
(ABI) level that comes with bound-preserving calling conventions. Such a concept could
be equally implemented on an architecture that implements SMOV’s secure instructions. A
similar observation concerns the bound-specific registers provided by MPX, to which SMOV
would impose no restrictions.

A particularly useful characteristic of our secure instructions is that they carry under-
neath all the data necessary to perform a non-secure load or store. Without knowing how
exactly an Intel processor transforms (through microcode) an MPX instruction into a NOP,
when running on unsupported hardware, we imagine that a similar transformation could be
employed to convert a secure load/store instruction into a standard load/store.

4.2 Implementation Efforts

The foundation of our implementation is both the simulator and the synthesizable Verilog
from Bryant and David Richard [2003] available online2. We extended the Y86 proces-
sor with the hardware modifications that we propose and, of course, with the handling of
smrmovl and srmmovl instructions. Following, we have the C (software simulator) and
Verilog (hardware project) codes showing the changes in each pipeline stage of the proces-
sor:

• Fetch: in the Codes 4.1 and 4.2 we can verify the fetch of the registers that keep the
bounds information rL and rU;

regids = HPACK(REG_NONE, REG_NONE);

if (gen_need_plus_regids()) {

get_byte_val(mem, valp, ®ids);

valp ++;

2http://csapp.cs.cmu.edu/public/students.html

http://csapp.cs.cmu.edu/public/students.html

32 CHAPTER 4. SMOV

}

if_id_next->ru = HI4(regids);

if_id_next->rl = LO4(regids);

Code 4.1: Part of the C code needed to implement smrmovl and srmmovl in the
Fetch Stage of the Y86 simulator.

assign rA = ibytes[7:4];

assign rB = ibytes[3:0];

assign valC = need_regids ? ibytes[39:8] : ibytes[31:0];

assign rL = need_plus_regids ? ibytes[43:40] : 4’hf;

assign rU = need_plus_regids ? ibytes[47:44] : 4’hf;

Code 4.2: Part of the Verilog code needed to implement smrmovl and srmmovl in the
Fetch Stage of the Y86 hardware project.

• Decode: in this stage it’s the implementation of the two new read ports added to the
register file. The values read are kept in variables named valL and valU, as we can
see in Codes 4.3 and 4.4;

d_regvala = get_reg_val(reg, id_ex_next->srca);

d_regvalb = get_reg_val(reg, id_ex_next->srcb);

d_regvalu = get_reg_val(reg, id_ex_next->srcu);

d_regvall = get_reg_val(reg, id_ex_next->srcl);

Code 4.3: Part of the C code needed to implement the new two read ports in the register
file - Decode Stage of the Y86 simulator.

module regfile(dstE, valE, dstM, valM,

srcA, valA, srcB, valB,

srcL, valL, srcU, valU,

reset, clock,

eax, ecx, edx, ebx, esp, ebp, esi, edi);

...

input [3:0] srcL;

output [31:0] valL;

input [3:0] srcU;

output [31:0] valU;

...

assign valL =

4.2. IMPLEMENTATION EFFORTS 33

srcL == REAX ? eax :

srcL == RECX ? ecx :

srcL == REDX ? edx :

srcL == REBX ? ebx :

srcL == RESP ? esp :

srcL == REBP ? ebp :

srcL == RESI ? esi :

srcL == REDI ? edi :

0;

assign valU =

srcU == REAX ? eax :

srcU == RECX ? ecx :

srcU == REDX ? edx :

srcU == REBX ? ebx :

srcU == RESP ? esp :

srcU == REBP ? ebp :

srcU == RESI ? esi :

srcU == REDI ? edi :

0;

Code 4.4: Part of the Verilog code needed to implement the new two read ports in the
register file - Decode Stage of the Y86 hardware project.

• Execute: the Arithmetic Logic Unit have to be extended to calculate two more sub-
tractions, setting the values of the secure. These operations are shown in Codes 4.5
and 4.6;

word_t compute_alu(alu_t op,

word_t argA, word_t argB,

bool_t *lower,

bool_t *upper,

word_t argL, word_t argU) {

...

word_t subVal, subA, subB;

bool_t zero, sign, ovf;

subA = argL;

subB = val;

34 CHAPTER 4. SMOV

subVal = subB-subA;

zero = (subVal == 0);

sign = ((int)subVal < 0);

ovf = (((int) subA > 0) == ((int) subB < 0)) &&

(((int) subVal < 0) != ((int) subB < 0));

*lower = ((sign^ovf^1)|(zero));

subA = val;

subB = argU;

subVal = subB-subA;

zero = (subVal == 0);

sign = ((int)subVal < 0);

ovf = (((int) subA > 0) == ((int) subB < 0)) &&

(((int) subVal < 0) != ((int) subB < 0));

*upper = ((sign^ovf^1)&(zero^1));

return val;

}

Code 4.5: Part of the C code that implements the two extra subtractions in the Execute
state of the Y86 simulator.

module alu(aluA, aluB, alufun, valE, new_cc,

lower_bound, upper_bound, aluL, aluU);

...

input [31:0] aluL, aluU;

output lower_bound;

output upper_bound;

...

assign lower_bound = ((aluB + aluA) >= aluL)? 1’b1:1’b0;

assign upper_bound = ((aluB + aluA) < aluU)? 1’b1:1’b0;

Code 4.6: Part of the Verilog code that implements the two extra subtractions in the
Execute state of the Y86 hardware project.

• Memory: the control signal related to the secure access must be evaluated to decide if
the flow continues or is interrupted. In the Codes 4.7 and 4.8 we can see these signals
being checked/generated.

4.2. IMPLEMENTATION EFFORTS 35

mem_addr = gen_mem_addr();

mem_data = gen_mem_data();

sec_write = gen_mem_sec_write();

mem_write = gen_mem_write();

mem_write = (mem_write) &&

(!sec_write ||

(sec_write &&

sec_upper_bound &&

sec_lower_bound));

sec_read = gen_mem_sec_read();

mem_read = gen_mem_read();

mem_read = (mem_read) &&

(!sec_read ||

(sec_read &&

sec_upper_bound &&

sec_lower_bound));

...

if((sec_write || sec_read) &&

(!sec_upper_bound || !sec_lower_bound)){

sim_log("\tRaise Interruption\n");

Code 4.7: Part of the C code where the secure signals are evaluated and the interruption
is set - Memory Stage of the Y86 simulator.

assign interruption = ((mem_sec_read & !top_mem_read) |

(mem_sec_write & !top_mem_write));

Code 4.8: Part of the Verilog code where the interruption signals is set - Memory Stage
of the Y86 hardware project.

From that on, we were able to have concrete measurements of how many clock cycles
a program takes to execute.

Based on Intel’s reference documentation [Intel Corporation, 2013], we also devel-
oped an alternative ABC scheme inspired by MPX on top of Y86, so we could make some
comparisons in our benchmark. In this scheme, we implemented the MPX basic instructions:

1. bndmk to create the bound registers;

36 CHAPTER 4. SMOV

2. bndcu to verify the upper bound;

3. bndcl to check the lower bound.

Figure 2.13 presents the modified pipeline considering MPX-based instructions.
Naturally, we also needed to extend the author’s assembler, which is now also able to

generate Y86 object code for our instructions. Nevertheless, a quite useful practical contribu-
tion we have is a synthesizable Verilog implementation for the well-known Altera DE2-115
FPGA3 using a real SRAM. Although it might not be clear at first, the original Y86 Ver-
ilog code synthesizes a memory component within the FPGA itself, assuming a somewhat
peculiar memory specification which allows a more convenient implementation of the archi-
tecture without having to worry about alignment, concurrent reads during Fetch and Memory

stages, and the ability to entirely retrieve a maximum-length instruction of 6 bytes in one go,
which might not be possible in a 32-bit system.

We also have an on-going effort that, to our knowledge, will be the first Y86 compiler.
This is an LLVM-based backend publicly available4. Once the fundamental parts are com-
plete we plan to integrate our safe instructions combined with an smart front-end that would
help us improve code generation by eliminating ABCs [Nazaré et al., 2014] whenever we
detect it is safe to do so.

3https://github.com/ltcmelo/Y86Proc
4https://github.com/ltcmelo/llvm

https://github.com/ltcmelo/Y86Proc
https://github.com/ltcmelo/llvm

Chapter 5

Evaluation

In this chapter, we present our experiments to evaluate SMOV. We describe our methodology
in Section 5.1, and analyze the results in Section 5.2. In Section 5.3, we discuss a Verilog
synthesis of SMOV and estimate the hardware overhead when compared to the original Y86
architecture.

5.1 Methodology

To evaluate our work we use three programs from the Stanford [Lattner and Adve, 2004]
benchmark: Bubblesort, Quicksort and Perm. They were slightly modified to make the Y86
assembly code generation more convenient. The programs were compiled using gcc version
5.0.0 - revision 214719, this version of the compiler allows us to generate code with the
MPX extensions enabled. We currently have an on-going effort to create what would be
the first Y86 compiler, however it is not ready yet. Therefore, we converted the 32-bit x86
assembly code into Y86 using an in-house "transliterate" script. We then obtained a binary
compatible with our simulator by using modified assemblers that understand SMOV or MPX
instructions. For each program, we considered four variations:

1. Unprotected: each array access is done without bound-checks. Code 5.1 presents the
C code of the sort function in the Bubblesort program;

void Bubble() {

int i, j;

top=n-1;

while (top>0) {

i=0;

while (i<top) {

37

38 CHAPTER 5. EVALUATION

if (list[i] > list[i+1]) {

j = list[i];

list[i] = list[i+1];

list[i+1] = j;

}

i=i+1;

}

top=top-1;

}

}

Code 5.1: Unprotected version of the C code of the sort function in Bubblesort.

2. Software-based: a safe version of the program, but with additional software ABCs -
implemented with conditional branches inserted before all load and store instructions
that involve array accesses. In Code 5.2 we have all the ABCs highlighted;

void Bubble() {

int i, j;

top=n-1;

while (top>0) {

i=0;

while (i<top) {

if((i>=0) && (i<n) && (i+1>=0) && (i+1<n))

if (list[i] > list[i+1]) {

if ((i>=0) && (i<n))

j = list[i];

if((i>=0) && (i<n) && (i+1>=0) && (i+1<n))

list[i] = list[i+1];

if ((i+1>=0) && (i+1<n))

list[i+1] = j;

}

i=i+1;

}

top=top-1;

}

5.1. METHODOLOGY 39

}

Code 5.2: C code of the sort function in Bubblesort with array bound checks
implemented directly by the programmer.

3. MPX: using the appropriate gcc flags1 we generate MPX-conformant code. The MPX
instructions used to load the limits of an array to special registers (bndmk), to verify
the upper bound of an array (bndcu), and to verify the lower bound of an array (bndcl)
can be seen highlighted in Code 5.3. This code shows part of the Bubblesort algorithm
implemented in the Y86 assembly language;

Bubble:

...

irmovl 1604,%eax

irmovl sortlist,%ebx

bndmk %ebx,%eax,%bnd0

bndmk %ebx,%eax,%bnd0

...

mrmovl -4(%ebp), %eax

rrmovl %edx, %edi

sall $2, %eax

iaddl list, %edi

bndcl %edi,%bnd0

bndcu 3(%edi),%bnd0

rmmovl %eax,(%edi)

...

Code 5.3: Part of the code of the Bubblesort function protected with MPX instructions
in Y86 assembly.

4. SMOV: our hardware-based solution. In the assembly code, all unprotected versions
of load and store instructions that manipulate arrays were replaced by a SMOV instruc-
tion. The identification of such loads and stores is simplified by the fact that the arrays
from the evaluation programs are global. This makes gcc use the variable’s name as
a displacement, simulating a compiler intelligence for the array-bounds tracking. Ta-
ble 5.1 illustrates the identification of unprotected global array accesses (left) and their
SMOV replacement (right).

1-fcheck-pointer-bounds -mmpx

40 CHAPTER 5. EVALUATION

Bubble:

...

mrmovl -4(%ebp), %eax

iaddl $1, %eax

rrmovl %eax, %edi

sall $2, %edi

mrmovl list(%edi), %edx

mrmovl -4(%ebp), %eax

rrmovl %eax, %edi

sall $2, %edi

rmmovl %edx, list(%edi)

...

Bubble:

...

mrmovl -4(%ebp), %eax

iaddl $1, %eax

rrmovl %eax, %edi

sall $2, %edi

irmovl list, %ebx

irmovl list, %ecx

iaddl $1597, %ecx

smrmovl list(%edi),%edx,%ecx,%ebx

mrmovl -4(%ebp), %eax

rrmovl %eax, %edi

sall $2, %edi

irmovl list, %ebx

irmovl list, %ecx

iaddl $1597, %ecx

srmmovl %edx,list(%edi),%ecx,%ebx

...

Table 5.1: Identification of global array accesses (left) and their replacement to use SMOV
(right).

A point that can be raised by the analysis of the Code 5.3 is about the different access
addresses used by the MPX bound-checking instructions and those from SMOV. Notice that
the memory address used to check the upper bound (bndcl) is the sum of the address used
by the lower bound-check (bndcu) plus three bytes (instruction bndcu 3(%edi),%bnd0).
This is due to the fact the operation involves a 4-byte integer, which means that if the memory
access starts at, let’s say, addr, it will affect the bytes M1[addr],M1[addr+1],M1[addr+2]

and M1[addr + 3]. Therefore, the lower bound must be compared with the lowest memory
position affected, and the upper bound compared with the highest memory address affected.

On the other hand, our solution uses the same address to check both bounds in the
same instruction. SMOV keeps the bounds in general purpose registers demanding the load
of this information before each use of the secure instructions, so the compiler, which knows
the data-type in question, can properly set the upper bound letting the last possible address in
accordance with the size of the data being manipulated. This behavior is shown on the right
side of the Table 5.1 by the instructions iaddl $1597,%ecx. The real size of the array is
1600 (400 integer elements) but the value 1597 (400× 4− 3) is being used as upper bound.

We ran each program with one of our simulators (MPX or SMOV)2, and collected the
reported number of instructions and cycles. Results are discussed in the next section.

2The unprotected and software-secured versions can be run in any Y86 simulator. The results in terms of
cycles and number of instructions must be the same.

5.2. RESULTS 41

5.2 Results

In this section, we present and discuss our results (Table 5.2).

Bubblesort Instructions Cycles CPI Exec. time (s) Runtime Overhead

Unprotected 328622114 432722716 1.32 54.090 -
Software-based 735922114 1079582716 1.47 134.948 149%
MPX 472382714 576483316 1.22 72.060 33%
SMOV 424462114 528562716 1.25 66.070 22%

Quicksort Instructions Cycles CPI Exec. time (s) Runtime Overhead

Unprotected 2024315 2650117 1.31 0.331 -
Software-based 3654915 5096217 1.39 0.637 92%
MPX 2637215 3263017 1.24 0.408 23%
SMOV 2430915 3056717 1.26 0.382 15%

Perm Instructions Cycles CPI Exec. time (s) Runtime Overhead

Unprotected 205149315 258538417 1.26 32.317 -
Software-based 366425315 500452417 1.37 62.557 94%
MPX 278619615 332008717 1.19 41.501 28%
SMOV 245468315 298857417 1.22 37.357 16%

Table 5.2: Evaluation result of different ways to guard memory accesses.

The first column of Table 5.2 shows the program and its version. The next two columns
show the total number of instructions and cycles needed to run the program. CPI gives us the
number of cycles per instruction. To compute the execution time, we consider a hypothetical
8 Mhz processor. Finally, the last column reports the runtime overhead when we compare
each safe version against the unprotected – original – code.

If we consider Quicksort, then we see that the software-based ABCs have caused a
92% runtime overhead. All the hardware approaches have decreased this amount, albeit by
different factors. The overhead imposed by MPX is 23%. SMOV yields an overhead of 15%.
This result show us that SMOV yields 40% less cycles than the software strategy and 6%
less cycles than the MPX approach when employed in our benchmark. Still considering the
hypothetical 8 Mhz processor, we have that the code with ABCs implemented in software,
and the code with MPX extensions run in 0.637s and 0.408s. Our solution, on the other hand,
takes only 0.382s to execute.

The results observed in the Bubblesort case study, SMOV has given us a 22% runtime
overhead while the software-based and MPX-based approaches have yielded overheads of

42 CHAPTER 5. EVALUATION

149% and 33%, respectively. These numbers mean that SMOV reduced the runtime overhead
caused by the software version by 83% and the runtime overhead caused by the MPX version
by 33%. In the 8 Mhz processor these numbers represent 134.948s and 72.060s for the last
strategies and 66.070s for our solution.

For the last the program, Perm, SMOV reduced the runtime overhead caused by the
software-based ABC, and MPX variations by 83%, and 45%. The runtime overhead found
in software-based version was 94%, in MPX it was 28%, and in SMOV 16%. In terms
of execution time, the SMOV variation runs in 37.357s, the software-based approach takes
62.557s, and the MPX version 41,501s, considering the hypothetical 8 Mhz processor.

Figure 5.1: Runtime overhead caused by different security approaches.

Figure 5.1 provides a visual comparison between the different runtime overheads im-
posed by the three safe approaches. SMOV had its best relative results in the Perm case
study. This happened because Perm performs all possible combinations of elements in an
array, which represents a high number of array accesses. Thus, the implementation of this
algorithm exercises more array bound checks.

In all case studies, we had similar behavior in the Cycles per Instructions relation
when comparing with the unprotected version. The software-based variation has increased

5.2. RESULTS 43

CPI. This increase comes from the fact that software ABCs are implemented through con-
ditional branches instructions, which can, sometimes, lead to branch mispredictions. In face
of mispredictions, some extra cycles are required to adjust the program’s execution. Another
possible cause of the increase is data hazards – when the next instruction depends on the
result of the current one. Data hazards also can lead to a stall in the processor, requiring
extra cycles to manipulate the correct data. Our solution, and also MPX, do not increase the
CPI, on the contrary, they reduced this relation. The reduction happens because SMOV and
MPX increase the number of executed instructions, however the majority of these instruc-
tions do not incur in stalls in the processor. The extra registers in MPX reduce even more the
CPI relation. That is because having more registers, the probability of data hazards evolving
general propose registers is reduced.

Figure 5.2 shows the speed up obtained by each hardware solution, when compared to
the software-based approach. These data gives us an idea about how faster is the runtime of
a program when we change from a software-based ABC to one of the hardware-based ap-
proaches. The results show that MPX can accelerate the runtime for Bubblesort, Quicksort,
and Perm by 87%, 56%, and 50%, respectively, while SMOV gives accelerations of 104%,
66%, and 67%.

Figure 5.2: Speed up of the two hardware strategies on top of the software-based approach.

44 CHAPTER 5. EVALUATION

The results found in our experiments tell us that, on average, SMOV reduces the run-
time overhead caused by the software approach by 83% and the runtime overhead caused by
MPX by 37%. The average speedup found indicates that our solution can run these programs
1,79x faster than when the ABCs are implemented in software, and 1,09x faster than when
they are implemented using the MPX extensions.

5.3 Hardware Cost

It is a hard task to estimate the hardware cost without having the actual hardware. However,
the literature indicates us that a good estimative is the number of logic elements reported by
the design tool after the HDL synthesis. The table 5.3 presents this result besides the number
of C code lines needed to implement each version of the simulator, the size of each exe-
cutable, and the number of lines of Verilog code needed to describe each hardware project.

Y86 original project MPX SMOV
Number of lines - C code 2459 3002 2881
Simulator - executable size(KBytes) 52 254 62
Number of lines - Verilog code 1004 1417 1341
Number of logical elements 279 320 289

Table 5.3: Comparison of different implementations of the Y86 processor.

The number of logical elements confirm us that SMOV can be implemented with few
hardware changes. In fact, the overhead gotten when comparing with the original version
(Figure 5.3) is only 3.58%. On the other hand, the MPX-like project took 14.70% more
logical elements than the original version. The bigger overhead reached by the MPX version
is explained by the new register file that needs to be added to the project.

5.3. HARDWARE COST 45

Figure 5.3: Logical elements overhead to implement the two hardware strategies on top of
the original Y86 project.

Chapter 6

Conclusion and Future Work

Programming languages that do not natively provide ABCs, such as C or C++, are suscepti-
ble to BOFs. There are both software- and hardware-based approaches that aim at providing
memory protection to programs written in those languages. This is normally done by instru-
menting the source with assertion or in hardware, via a combination of dedicated instructions.
However, those proposals end up causing a high runtime overhead, compromising programs’
performance, or incurring on a significant hardware size/cost penalty. This work proposes
SMOV, a novel hardware-based approach able to perform ABCs and memory access within
a single instruction. SMOV consists of a pair of secure load and secure store instructions.
We present our solution from a practical but still general perspective, accompanied by the
formalism necessary to hardware design. We focus on demonstrating how it can be im-
plemented on a typical variable-length ISA architecture and discuss all relevant hardware
details, an aspect that is not covered by previous work. Our proof of concept, implemented
on top of an academical architecture, presented an overhead of 3.6% in terms of hardware
size compared to the original processor. In our experimental results, SMOV could secure the
considered programs causing a runtime overhead of 18%, running, on average, 1.79 times
faster than a corresponding program with software-based ABC. The two results combined
show that our solution reaches good level of security a simple and cheap hardware project.

One of the challenges we faced during our experiments was the absence of an Y86
compiler. We had to adjust the programs almost by hand. A script was developed to translate
instructions from x86 assembly to Y86, however we still had to check the correctness of the
translation and locate the memory access instructions to change them by the secure ones.
Some workarounds were used - global arrays to identify array access, for instance - even so,
the process could be automated by a tool working in one of the compilation phases if such
compiler existed. This is a natural extension of this work. There is already an on-going effort
to develop the Y86 compiler and tools that uses a hardware apparatus like ours.

47

48 CHAPTER 6. CONCLUSION AND FUTURE WORK

We believe that SMOV is a step towards delivering users secure, reliable, and ulti-
mately systems with improved efficiency. Besides, we are also making contributions to-
wards the improvement of the Y86 ecosystem, by extending the experimentation platform
and the simulator, by providing synthesizable Verilog for a well-known FPGA, and by the
development of the aforementioned compiler.

Bibliography

Bell, T. (1999). The concept of dynamic analysis. ACM SIGSOFT Software Engineering

Notes.

Bellard, F. (2005). Qemu, a fast and portable dynamic translator. In Proceedings of the

USENIX Annual Technical Conference, FREENIX Track.

Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A., Hestness,
J., Hower, D. R., Krishna, T., Sardashti, S., et al. (2011). The gem5 simulator. ACM

SIGARCH Computer Architecture News.

Binkert, N. L., Dreslinski, R. G., Hsu, L. R., Lim, K. T., Saidi, A. G., and Reinhardt, S. K.
(2006). The m5 simulator: Modeling networked systems. IEEE Micro.

Bishop, M., Engle, S., Howard, D., and Whalen, S. (2012). A taxonomy of buffer overflow
characteristics. IEEE Transactions on Dependable and Secure Computing.

Bryant, R. and David Richard, O. (2003). Computer systems: a programmer’s perspective.
Prentice Hall.

Buchanan, E., Roemer, R., Shacham, H., and Savage, S. (2008). When good instructions go
bad: Generalizing return-oriented programming to risc. In Proceedings of the Conference

on Computer and Communications Security (CCS’08).

Carlini, N. and Wagner, D. (2014). Rop is still dangerous: Breaking modern defenses. In
Proceedings of the USENIX Security Symposium (USENIX Security’14).

Chess, B. and West, J. (2007). Secure programming with static analysis. Addison-Wesley
Professional.

Chipounov, V. and Candea, G. (2011). Enabling sophisticated analyses of x86 binaries with
revgen. In Proceedings of the International Conference on Dependable Systems and Net-

works Workshops (DSN-W’11).

49

50 BIBLIOGRAPHY

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., and Rival, X.
(2005). The ASTRÉE analyzer. In Proceedings of the European Symposium on Program-

ming (ESOP’05).

Cowan, C., Pu, C., Maier, D., Hinton, H., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle,
P., Zhang, Q., et al. (1998). Stackguard: Automatic adaptive detection and prevention of
buffer-overflow attacks. In Proceedings of the USENIX Security Symposium (USENIX

Security’98).

Cowan, C., Wagle, F., Pu, C., Beattie, S., and Walpole, J. (2000). Buffer overflows: At-
tacks and defenses for the vulnerability of the decade. In Proceedings of the Information

Survivability Conference and Exposition (DISCEX’00).

Devietti, J., Blundell, C., Martin, M. M., and Zdancewic, S. (2008). Hardbound: architec-
tural support for spatial safety of the c programming language. ACM SIGOPS Operating

Systems Review.

Dhurjati, D., Kowshik, S., and Adve, V. (2006). SAFECode: enforcing alias analysis for
weakly typed languages. In Proceedings of the Conference on Programming Language

Design and Implementation (PLDI’06).

Evans, D. and Larochelle, D. (2002). Improving security using extensible lightweight static
analysis. IEEE software.

Francillon, A., Perito, D., and Castelluccia, C. (2009). Defending embedded systems against
control flow attacks. In Proceedings of the Workshop on Secure Execution of Untrusted

Code (SecuCode’09).

Haugh, E. and Bishop, M. (2003). Testing c programs for buffer overflow vulnerabilities. In
Proceedings of the Symposium on Network and Distributed System Security (NDSS’03).

Holzmann, G. J. (2002). Static source code checking for user-defined properties. In Pro-

ceedings of the Integrated Design and Process Technology (IDPT’02).

Intel Corporation (2013). Intel Architecture Instruction Set Extensions Programming Refer-
ence. https://software.intel.com/en-us/isa-extensions.

Jones, R. W. and Kelly, P. H. (1997). Backwards-compatible bounds checking for arrays and
pointers in c programs. In Proceedings of the Symposium on Automated and Analysis-

Driven Debugging (AADEBUG’97).

https://software.intel.com/en-us/isa-extensions

BIBLIOGRAPHY 51

Lattner, C. and Adve, V. S. (2004). LLVM: A compilation framework for lifelong pro-
gram analysis & transformation. In Proceedings of the Code Generation and Optimization

(CGO’04).

Lhee, K.-S. and Chapin, S. J. (2003). Buffer overflow and format string overflow vulnerabil-
ities. Software: Practice and Experience.

McGregor, J. P., Karig, D. K., Shi, Z., and Lee, R. B. (2003). A processor architecture
defense against buffer overflow attacks. In Proceedings of the International Conference

on Information Technology: Research and Education (ITRE’03).

Misra, D. K. (1987). A quasi-static analysis of open-ended coaxial lines. IEEE Transactions

on Microwave Theory and Techniques.

Moore, D., Shannon, C., and claffy, k. (2002). Code-red: a case study on the spread and
victims of an internet worm. In Proceedings of the Workshop on Internet Measurment

(IMW’02).

Nagarakatte, S., Martin, M. M., and Zdancewic, S. (2012). Watchdog: Hardware for safe
and secure manual memory management and full memory safety. In Proceedings of the

International Symposium on Computer Architecture (ISCA’12).

Nagarakatte, S., Martin, M. M., and Zdancewic, S. (2014). Watchdoglite: Hardware-
accelerated compiler-based pointer checking. In Proceedings of the International Sym-

posium on Code Generation and Optimization (CGO’14).

Nagarakatte, S., Zhao, J., Martin, M. M., and Zdancewic, S. (2010). CETS: compiler en-
forced temporal safety for c. In Proceedings of the International Symposium on Memory

Management (ISMM’10).

Nazaré, H., Maffra, I., Santos, W., Oliveira, L. B., Gonnord, L., and Quintão Pereira, F. M.
(2014). Validation of memory accesses through symbolic analyses. In Proceedings of the

International Conference on Object Oriented Programming Systems Languages & Appli-

cations (OOPSLA’14).

Newsome, J. and Song, D. (2005). Dynamic taint analysis for automatic detection, analy-
sis, and signature generation of exploits on commodity software. In Proceedings of the

Computer Security Applications (ACSAC’00).

Ozdoganoglu, H., Vijaykumar, T., Brodley, C. E., Kuperman, B. A., and Jalote, A. (2006).
Smashguard: A hardware solution to prevent security attacks on the function return ad-
dress. IEEE Transactions on Computers.

52 BIBLIOGRAPHY

Parulkar, I., Wood, A., Hoe, J. C., Falsafi, B., Adve, S. V., Torrellas, J., and Mitra, S. (2008).
Opensparc: An open platform for hardware reliability experimentation. In Proceedings of

the Workshop on Silicon Errors in Logic-System Effects (SELSE’08).

Piromsopa, K. and Enbody, R. J. (2006). Secure bit: Transparent, hardware buffer-overflow
protection. IEEE Transactions on Dependable and Secure Computing.

Serebryany, K., Bruening, D., Potapenko, A., and Vyukov, D. (2012). Addresssanitizer: a
fast address sanity checker. In Proceedings of the USENIX Annual Technical Conference.

Tran, M., Etheridge, M., Bletsch, T., Jiang, X., Freeh, V., and Ning, P. (2011). On the
expressiveness of return-into-libc attacks. In Proceedings of the International Symposium

on Recent Advances in Intrusion Detection (RAID’11).

Viega, J., Bloch, J.-T., Kohno, Y., and McGraw, G. (2000). ITS4: A static vulnerability
scanner for c and c++ code. In Proceedings of the Computer Security Applications (AC-

SAC’00).

Wagner, D. and Dean, R. (2001). Intrusion detection via static analysis. In Proceedings of

the IEEE Symposium on Security and Privacy (S&P’01).

Wagner, D., Foster, J. S., Brewer, E. A., and Aiken, A. (2000). A first step towards automated
detection of buffer overrun vulnerabilities. In Proceedings of the Symposium on Network

and Distributed System Security (NDSS’00).

Wilander, J. and Kamkar, M. (2003). A comparison of publicly available tools for dynamic
buffer overflow prevention. In Proceedings of the Symposium on Network and Distributed

System Security (NDSS’03).

Xie, Y., Chou, A., and Engler, D. (2003). Archer: using symbolic, path-sensitive analysis to
detect memory access errors. In Proceedings of the ACM SIGSOFT Software Engineering

Notes (SEN’03).

Yourst, M. T. (2007). PTLsim: A cycle accurate full system x86-64 microarchitectural
simulator. In International Symposium on Performance Analysis of Systems and Software

(ISPASS’07).

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contribution
	1.2 Publications and Submissions
	1.3 Organization

	2 Background
	2.1 Buffer Overflow
	2.2 ABCs and its computational cost
	2.3 Y86 Architecture
	2.4 Memory Protection Extension - MPX

	3 Related Work
	3.1 Static and Dynamic memory protection techniques
	3.2 Hardware-based memory protection techniques

	4 SMOV
	4.1 Architecture Choice
	4.1.1 Design
	4.1.2 Programming Interface and Capabilities

	4.2 Implementation Efforts

	5 Evaluation
	5.1 Methodology
	5.2 Results
	5.3 Hardware Cost

	6 Conclusion and Future Work
	Bibliography

