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Resumo

Esta dissertação apresenta algoritmos e�cientes para anotar e decompor peças de roupas

a partir de dados provindos de redes sociais, como Facebook e Instagram. Anotação de

roupas pode ser informalmente descrito como reconhecer, o mais precisamente possível,

cada peça do traje que aparece em uma imagem. A decomposição, por sua vez, procura

além de anotar as peças de roupa, também localizá-las na imagem. Tais tarefas tem

papel importante em áreas como vigilância, reconhecimento de ações, busca por pessoas,

sistemas de recomendação e de comércio eletrônico. Estes problemas trazem desa�os

interessantes vinculados à visão computacional e ao reconhecimento de padrões como,

por exemplo, distinguir roupas visualmente parecidas mas conceitualmente diferentes,

ou identi�car um padrão para uma peça especí�ca, já que esta pode ter diferentes

cores, formas, texturas e aparência. Inicialmente, o problema de anotação de roupas

foi analisado considerando métodos estatísticos de aprendizado de máquina. Para isso,

uma extensa avaliação das técnicas de extração de características visuais, incluindo

descritores locais e globais, foi feita. Em seguida, formulamos a tarefa de anotação como

um problema de classi�cação multi-modal e multi-rótulo, isto é: (i) conteúdo visual

e textual (tags relacionadas às imagens) estão disponíveis para os classi�cadores, (ii)

os classi�cadores precisam predizer um conjunto de rótulos (um conjunto de peças de

roupas) e, (iii) a decisão sobre quais os rótulos devem ser atribuídas à imagem ocorre

através de uma função, construída a partir de um conjunto de instâncias. Com esta

con�guração, propomos duas abordagens: (i) a pontual, chamada neste trabalho de

MMCA, que usa uma única imagem como entrada para o classi�cador, e (ii) a pareada,

chamada de M3CA, que usa pares de imagens como entrada para seus classi�cadores.

Comparamos ambos os métodos para de�nir qual o melhor para o problema em questão.

Para cada uma, aplicamos um algoritmo de classi�cação que usa regras de associação

para construir modelos de reconhecimento que combina informações visuais e textuais.

Também usamos uma estratégia de minimização de entropia para encontrar quais

rótulosdevem ser associados a cada imagem. Realizamos uma avaliação sistemática dos

métodos propostos usando fotos coletadas de duas grandes mídias sociais relacionadas à

moda, pose.com e chictopia.com. Os resultados mostram que os métodos propostos

fornecem melhorias quando comparados a algoritmos popularmente utilizados que
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variam entre 20% to 30% em termos de acurácia. Em um segundo momento, analisamos

o problema de decomposição de imagens utilizando aprendizado profundo. Propomos

um modelo de redes de convolução utilizando uma estratégia multi-escala. Mais

especi�camente, empregamos diferentes níveis de redes onde cada nível processa imagens

de dimensões diferentes, ou seja, a cada nível as imagens são decompostas em pedaços

menores, possibilitando assim que a rede classi�que pequenos detalhes. No primeiro

nível, imagens com maiores dimensões são processadas em uma rede mais robusta.

As imagens com entropia baixa já adquirem sua classi�cação neste nível, enquanto as

imagens com entropia alta (não classi�cadas perfeitamente) são subdivididas e passam

para o segundo nível. No terceiro patamar, as imagens não classi�cadas no segundo

nível são novamente subdivididas em pedaços ainda menores e, en�m, classi�cadas. Ao

�nal, teremos as classes de cada pedaço da imagem, e podemos recompô-la. Para avaliar

esta abordagem, utilizamos um conjunto de imagens coletadas do site chictopia.com, e

nossos experimentos mostram que nossa abordagem fornecem resultados promissores.

Palavras-chave: Aprendizado de Máquina, Anotação de Imagens, Decomposição

de Imagens, Descritores Visuais, Dicionários Visuais, Aprendizado Profundo, Redes Neu-

ronais.
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Abstract

In this work, we present e�ective algorithms to automatically annotate and parse clothes

from social media data, such as Facebook and Instagram. Clothing annotation can

be informally stated as recognizing, as accurately as possible, each garment item that

appears in a photo. Clothing parsing, in turn, locates and annotates each garment item

in a photo. These tasks play important roles in several areas, including surveillance,

action recognition, person search, recommender systems and e-commerce. They also pose

interesting challenges for existing vision and recognition algorithms, such as distinguish-

ing between similar but conceptually di�erent types of clothes or identifying a pattern

of a speci�c item, since it can have di�erent colors, shapes, textures and appearance.

Initially, the clothing annotation problem was analyzed considering statistical methods

of machine learning. For this purpose, we perform an extensive evaluation of the visual

feature extraction techniques, including global and local descriptors. Then, we formulate

the annotation task as a multi-label and multi-modal classi�cation problem (i) both

image and textual content (i.e., tags related to the image) are available for learning

classi�ers, (ii) the classi�ers must predict a set of labels (i.e., a set of garment items),

and (iii) the decision on which labels to assign to the query photo comes from instances

(or bag of instances) that are used to build a function, which separates labels that should

be assigned to the query photo, from those that should not be assigned. Using this

con�guration, we propose two approaches: (i) the pointwise one, called MMCA, which

uses a single image as input to the classi�ers, and (ii) a multi-instance classi�cation,

called M3CA, also known as pairwise approach, that uses pair of images as input to the

classi�ers. We compare both approaches in order to de�ne the best one for the problem.

For both of them, we propose a classi�cation algorithm that employs association rules in

order to build a recognition model that combines textual and visual information. We also

adopt an entropy-minimization strategy in order to �nd the best set of labels that should

be assigned to the query photo. We conduct a systematic evaluation of the proposed

algorithms using everyday photos collected from two major fashion-related social media,

namely pose.com and chictopia.com. Our results show that the proposed approaches

provide improvements when compared to popular �rst choice multi-label, multi-modal,

multi-instance algorithms that range from 20% to 30% in terms of accuracy. In a second
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phase, we analyzed the clothing parsing problem using deep learning. We propose a

multi-scale convolutional neural network model. Speci�cally, we use di�erent network

levels where each level processes images with di�erent dimensions, i.e., after every

level the images are decomposed into smaller patches, allowing the network to capture

minimal details. In the �rst level, larger images are processed in a robust network.

Images with low entropy already get their �nal class in this level, while the others with

high entropy (classi�cation still unde�ned) are splitted into smaller patches and go to

the next one. In the third and last level, images without �nal classi�cation in the second

level are again divided into even smaller patches and, �nally, classi�ed. At the end,

we have a class associated with each patch of the image and we can recompose it. To

evaluate this approach, we use a dataset crawled from chictopia.com. Our experiments

shows that our proposed approach achieves promising results.

Keywords: Machine Learning, Image Annotation, Image Parsing, Descriptor, Vi-

sual Dictionary, Neural Networks, Deep Learning.
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Chapter 1

Introduction

Computer vision, a computer science area, aims at creating methods and algorithms

capable of understanding a scene and its characteristics. In this �eld, there are methods

capable of acquiring, processing, analyzing and understanding images and, in general,

high-dimensional data from the real world in order to produce information that may

be used in decision making process. Visual recognition, a �eld of computer vision, is

responsible for researching and simulating the human vision system. The main goal of

this �eld is the full understanding of any scene. The basis of this task is made by a tripod

composed by annotation, segmentation and classi�cation of an image. The annotation

task may be described as recognizing the objects of a scene. The segmentation one locates

and annotates the objects in the image. These tasks complement each other and may

help the image classi�cation task in its duty. Thus, this dissertation is focused on these

two tasks applied for fashion images, i.e., clothing parsing and annotation.

Clothing parsing and annotation play important roles in human pose estimation

(Yamaguchi et al. [2012]), action recognition, person search (Weber et al. [2011]; Gallagher

and Chen [2008]), surveillance (Yang and Yu [2011]), cloth retrieval (Liu et al. [2012])

and have applications in fashion industry (Yamaguchi et al. [2012]). Considering the last

one, applications with fashion images gained a lot of visibility with the increase of social

networks and the faster spread of information, since these networks allow their members

to express themselves in di�erent ways, by creating and sharing content, making, for

example, a new trend more successful or not. A particular way of expression being

increasingly adopted is to post photos showing their latest looks and clothes. There

are even speci�c networks for this, such as pose.com and chictopia.com. These social

media channels carry a lot of information that, when analyzed, may help retailers and

e-commerce systems to capture new trends helping to de�ne new products and sales. To

do so, it would be essential to �nd out the most popular clothes and in which segment

they have been used more. Recommendation systems could also use this information to

suggest new clothes based on searches already made or in the wardrobe of the users.

1
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2 Chapter 1. Introduction

Although interesting, to reach suitable results for clothing applications it is nec-

essary to extract all feasible information from the data, and this is only achieved with

images entirely prepared, i.e., images fully annotated or segmented. However, only a

very small percentage of images collected from social media have been associated with

its clothing content (Kalantidis et al. [2013]), and manual methods are too expensive

and maybe impracticable given the total amount of images. So, automatic algorithms

appear as a very appealing alternative to reduce costs, but with di�cult challenges to

overcome. One challenge would be to di�er similar types of garment items. For example,

discerning a shirt from a coat is a very di�cult task since both are very similar. Another

one is that individual clothing items display many di�erent appearance characteristics.

For example, shirts have a wide range of appearances based on cut, color, material and

pattern. Occlusions from other humans or objects, viewing angle and heavy clutter in

the background further complicates the problem.

As introduced, we are particularly interested in two main tasks: clothing parsing

and annotation. The �rst part of this dissertation focuses on image annotation, a task

that may be described as assigning short textual descriptors or keywords (called tags)

to images. These tags are related to speci�c garment items, such as shirts, trousers and

shoes, and multiple tags may be associated with an arbitrary image. We formulate this

task as a supervised classi�cation problem: a process that automatically builds a classi�er

from a set of previously labeled/annotated examples (i.e., the training-set). Then, given

an arbitrary image (i.e., an image in the test-set), the classi�er recognizes the labels/tags

that are more likely to be associated with it. First, we propose a Multi-modal and

Multi-label Clothing Annotation algorithm, or simply MMCA, that uses the pointwise

approach, which is the most commonly used strategy (Zhang et al. [2012]). According

to Liu [2009], the pointwise approach employs the feature vector of each single image as

an instance. In this case, each instance in the training set is composed of the visual and

textual features (labels) of an image q, while the test set is only composed by the visual

features of an image. Second, we propose a Multi-label, Multi-modal and Multi-instance

Clothing Annotation method, or just M3CA, based on the pairwise approach, which is

usually de�ned as an input space that represents instances as being a pair of images, both

represented as feature vectors (Liu [2009]). Hence, each data instance, in the training

and in the test set, is a pair of images: the query image q and the base image b. Labels

associated with base image b are always known in advance in all sets (i.e., base labels) and

labels associated with the query image are only known in advance in the training set (i.e.,

query labels). So, the only di�erence between the training and the test set is the query

labels that are only known in the the former. Thus, for the training set, each instance

(q, b) is composed of a set of base and query labels, plus a set of distances between the

images q and b, while for the test set, each instance is composed by only the base labels

and the visual distances between the images. This combination of visual and textual
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features (labels) is designed in search of improvements of the annotation results. The

visual distances are computed using di�erent image content descriptors (global Huang

et al. [1997]; Stehling et al. [2002]; Pass et al. [1996]; Mahmoudi et al. [2003]; Tao and

Dickinson [2000]; Swain and Ballard [1991]; Huang and Liu [2007]; Zegarra et al. [2008];

Unser [1986] and local Lowe [2004]; Bay et al. [2008]; Calonder et al. [2010]; Leutenegger

et al. [2011]; Rublee et al. [2011]; Alahi et al. [2012]), allowing the proposed method

to get the best from each type of descriptor besides creating a more sparse and robust

approach. We intend to exploit the similarity between images, since similar ones are likely

to share common labels, and thus small distances are expected to increase the membership

probabilities associated with the correct labels for the query image q. Finally, MMCA

and M3CA approaches are compared, looking for the best approach to our application.

Our classi�ers are composed of association rules (Agrawal et al. [1993]), which are

essentially local mappings X → y relating a combination of features in instance X to

a label y. These rules are used collectively, resulting in a membership probability for

each label. In order to provide fast learning times, the proposed algorithm extracts rules

on a demand-driven basis − instead of learning a single and potentially large classi�er

which could be applicable to all instances in the test-set, our algorithm builds multiple

small classi�ers, one for each instance in the test-set. Typical solutions to multi-label

classi�cation employ the top-k approach (Veloso et al. [2007]), where a pre-determined

threshold k is used to select the labels to be assigned to the query image. That is, only

the k labels with the highest membership probabilities are assigned. Instead of relying

on this parameter, we propose an entropy-minimization multi-instance approach which

�nds a di�erent cut point for each instance in the test-set.

The second part of this dissertation focuses on image parsing that may be de-

scribed as a process of partitioning an image into multiple segments (sets of pixels) in

order to simplify its representation into something that is more meaningful and easier to

analyze. In this case, these sets correspond to speci�c garment items in the image. We

formulate this task using a deep learning strategy. We propose a Multi-scale Convolu-

tional Neural Network model, or simply M-CNN, that creates a hierarchy of networks,

where the �rst level processes a large amount of images with bigger dimension while the

last one handles just a small amount of tiles with tiny size. This multi-scale strategy

allows the method to capture minimal details of each image contributing to a more ro-

bust parsing algorithm. To de�ne which images go from one level to another, a entropy

strategy was applied.

The entropy (Alpaydin [2010]), a measure commonly used in information theory,

characterizes the (im)purity of an arbitrary collection of examples. In this case, it denotes

the purity of a single patch in relation to the number of classes associated to it, i.e., the

more classes related to the patch the higher entropy it has (more impure). As introduced,

entropy helps our approach to de�ned which patches are considered classi�ed and which
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ones are not.

Speci�cally, the proposed method uses, in this case, three di�erent network levels1

which process images with di�erent granularities, i.e., after every level the images are

decomposed into smaller patches, allowing the network to capture minimal details. In

the �rst level, larger images are processed in a robust network. Images with low entropy

already get their �nal class in this level, while the others with high entropy (classi�cation

still unde�ned) are splitted into smaller patches and go to the next one. Remaining

images without classi�cation are again divided into even smaller patches and, �nally,

classi�ed in the third level. At the end, we have a class associated with each patch of the

image and a segmentation mask may be built.

In practice, we may observe the following contributions of this dissertation:

• Novel multi-instance, multi-label, multi-modal clothing annotation algorithms with

the aggregation of di�erent types of descriptors.

• Two di�erent methods for clothing annotation that exploits association rules to

create the classi�ers: the MMCA (which follows a pointwise strategy) and the

M3CA (which follows a pairwise strategy) approaches.

• A comparison between all proposed approaches which leads us to de�ne the best

one for our annotation task.

• A set of experiments was conducted to evaluate di�erent visual feature representa-

tion and to analyze the best con�guration for each type in the context of clothing

annotation.

• A systematic set of experiments, using a collection of everyday photos crawled from

popular fashion-related social networks, reveals that our algorithm improves upon

�rst choice learning algorithms (Nguyen et al. [2013]), by a factor that ranges from

20% to 30% in terms of standard accuracy measures.

• Novel multi-scale clothing parsing algorithm using convolutional neural networks.

• Experiments reveals that the proposed algorithm achieves promising results when

compared to popular clothing parsing algorithm.

Some results obtained in this work were published in XXVII Brazilian Symposium

on Computer Graphics and Image Processing (SIBGRAPI). Nogueira et al. [2014] presents

preliminary results of the clothing annotation algorithms proposed in this work.

We organized the remainder of this work in six chapters. Chapter 2 presents related

work. Chapter 3 presents the background concepts necessary for the understanding of
1For this application, only three network levels were used because of the relative small size of the

image and the bene�t between patch size and processing time.
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this work and to make it self-contained. Chapter 4 shows the details of the proposed

approaches for the clothing annotation task, as well as the evaluation protocol and ex-

perimental results obtained with each approach. The details of the proposed approach

for the clothing parsing task, as well as the evaluation protocol and results are presented

in Chapter 5. Finally, Chapter 6 concludes and points out future research directions.





Chapter 2

Related Work

This chapter presents a review of the literature surrounding clothing parsing and anno-

tation, as well as some works of image parsing and annotation, since the former are sub-

problems of the latter. For both tasks, approaches combining supervised machine learn-

ing algorithms and visual feature extraction methods are becoming increasingly popular

(Zhang et al. [2012]). However, there are approaches (Kuntimad and Ranganath [1999])

that learn the features and the classi�ers, all at once.

Main approaches towards automatic image annotation modelled the learning prob-

lem as machine translation (Datta et al. [2008]) or correlation (probabilistic) learning

tasks (Moran and Lavrenko [2014]). Some approaches (Li et al. [2010]; Vens et al. [2008])

adopt a multi-label model, others use multi-modal strategy to improve results (Putthivid-

hya et al. [2010]; Xie et al. [2015]) and, �nally, some works have modelled the problem

as a multi-instance problem (Nguyen et al. [2013]). Furthermore, there are works that

combine the strategies looking for a better performance (Nguyen et al. [2013]; Nogueira

et al. [2014]).

Image parsing has been studied as a step toward general image understanding (Ya-

maguchi et al. [2012]). Approaches usually are modelled as pixel-based (Yamaguchi et al.

[2013]), edge-based (Pal and Pal [1993]) or region(object)-based tasks (Yamaguchi et al.

[2012]; Yang et al. [2014]).

The next sections present some relevant approaches related to these strategies, in

addition to the advantages and disadvantages of each one. Section 2.1 presents the

methods related to clothing annotation, including multi-label, multi-modal and multi-

instance strategies. In Section 2.2, approaches for the clothing parsing are presented.

2.1 Clothing Annotation

There has been a great e�ort in the last few years on the clothing recognition task, with

some works focusing on the annotation task. This recent boost, in clothing recognition

7
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�eld, is occurring perhaps in�uenced by recent advances in pose estimation (Yang and

Ramanan [2011]), what caused a lot of works to emerge (Zhaolao et al. [2013]).

Tokumaru et al. [2002] proposed a system, named �Virtual Stylist�, which aims

to help users to �nd out out�ts that might �t them well. Suh and Bederson [2007]

proposed a semi-automatic approach that enables users to e�ciently update automatically

obtained metadata interactively and incrementally. Shen et al. [2007] introduced the

recommendation of out�ts for speci�c occasions based on textual input that de�nes the

occasion and how the user wants to look like. More recently, the work of Vogiatzis

et al. [2012] described the recommendation of clothes based on the similarity between

users and models appearing in fashion magazines while Kalantidis et al. [2013] presented

a scalable approach to automatically suggest relevant clothing products, given a single

image without metadata. They, actually, formulate the problem as cross-scenario retrieval

where the query is a real-world image, while the products from online shopping catalogues

are usually presented in a clean environment.

Next, more works of image and clothing annotation are presented considering dif-

ferent strategies. Section 2.1.1 presents the approaches using multi-label classi�cation.

In Section 2.1.2, models that use the multi-modal strategy are presented. Approaches

using multi-instance strategy are presented in Section 2.1.3.

2.1.1 Multi-Label Image Annotation

There is a lot of research dealing with single-label classi�cation, where the instances are

associated with a single label. However, in many applications, the instances may be asso-

ciated with a set of labels, which characterizes the problem as a multi-label classi�cation.

Typically, in image annotation applications, an image have more than one label associated

with it and, classi�ers for this task are multi-label ones. According to Tsoumakas and

Katakis [2007], multi-label classi�cation algorithms can be categorized into two di�erent

groups:

1. problem transformation methods and

2. algorithm adaptation methods.

The �rst group includes methods that are algorithm independent, i.e., they trans-

form the multi-label problem into one or more single-label problems. Usually, methods

from this group tend to use probabilistic models, such as Bayesian or Gaussian ones,

to generate adapted algorithms capable to handle and annotate di�erent images. There

is a lot of work in this group that includes (Tsoumakas and Katakis [2007]): (i) binary

relevance method (Makadia et al. [2008]), which earns a determined number of binary

classi�ers, one for each di�erent label in the label set, (ii) binary pairwise classi�cation

approach (Guillaumin et al. [2009]; Moran and Lavrenko [2014]), which transforms the
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multi-label dataset into a certain number of binary label datasets, one for each pair of

labels, and (iii) label combination or label power-set methods (Read et al. [2008]), which

considers each unique set of labels that exists in a multi-label training set as one of the

classes of a new single-label classi�cation task.

Between these methods, binary pairwise classi�cation approaches detach from the

others, since they have been achieving good results. The work of Moran and Lavrenko

[2014] is one of these new methods. They address the image annotation problem by for-

mulating a sparse kernel learning framework for the Continuous Relevance Model (CRM)

(Lavrenko et al. [2003]) that greedily selects an optimal combination of kernels. Guil-

laumin et al. [2009], another binary pairwise approach, used log-likelihood to maximize

the predictions of di�erent tags in the training set, so they could optimally combine a

collection of features that cover di�erent aspects of image content, such as local shape

descriptors, or global color histograms. This combination generates also a multi-modal

method. Tags of the test images are predicted using weighted nearest-neighbor model.

The second group includes methods that extend speci�c learning algorithms in order

to handle multi-label data directly. Well-known approaches include Adaboost (Li et al.

[2010]), decision trees (Vens et al. [2008]), lazy methods (Veloso et al. [2007]; Yamaguchi

et al. [2013]) and, more recently, neural networks (Socher et al. [2011]). In this group,

neural network methods detach from the others, since they have been achieving excel-

lent results in image annotation, segmentation and classi�cation (Socher et al. [2011]),

outperforming traditional algorithms (Gould et al. [2009]), and becoming the current

state-of-the-art in these problems. Our approach may be categorized in this group, since

we adapted a learning algorithm to predict multiple labels for the data.

2.1.2 Multi-Modal Image Annotation

In addition to multi-label classi�cation, there is the multi-modal fusion that gained a lot

of attention recently (Atrey et al. [2010]) due to the bene�t it provides. The integration

of multiple media data and their associated features creates a new scenario normally

referred as multi-modal fusion. Usually, this fusion of multiple modalities can provide

complementary information and increase the overall accuracy of the task. There is a lot

of feasible fusions, such as audio/video or video/textual, though the most common fusion,

when working with images, is the visual/textual one. This fusion takes advantages of:

(i) visual features, that come from the images (usually obtained with descriptors) and,

(ii) textual ones, which may be simpli�ed by the tags/comments associated with each

image. This fusion became really common because given the increasing amount of images

that are currently available on the web with poor accuracy annotation, there has been

considerable interest in the computer vision community to leverage this data to learn

recognition models. According to Atrey et al. [2010], multi-modal fusion algorithms can
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be categorized into three di�erent groups:

1. feature level or early fusion (Xie et al. [2015]), which combines the features extracted

from the input data and then send as input to the classi�ers,

2. decision level or late fusion (Guillaumin et al. [2009]; Fergus et al. [2009]; Guillau-

min et al. [2010]), which isolates the features to create di�erent combinations of

classi�ers using some criterion, and

3. hybrid approach (Nguyen et al. [2013]), which is a combination of both feature and

decision level strategies, taking advantages of both.

Considering the early fusion method, Xie et al. [2015] use images weakly tagged to

improve the image classi�cation performance using statistical approaches. Using the late

fusion strategy, Guillaumin et al. [2009] and Fergus et al. [2009] present similar works that

combine visual and textual features, where the textual ones are represented by labels/tags

associated with images crawled in social networks. Guillaumin et al. [2010] use image tags

to improve the performance of the classi�ers, but they do not assume their availability

for test images. Our approaches follow this strategy by combining visual and textual

features from each images, and delivering them to the learning algorithm, which uses this

combination to create classi�ers. Nguyen et al. [2013] uses the hybrid approach, where

the fusion of multi-modalities may be made in both decision level (labels) and feature

level (visual/textual) by using di�erent models.

2.1.3 Multi-Instance Image Annotation

In traditional supervised learning, an object is represented by a instance (usually, fea-

tures) and associated with a class label. In these cases, a instance may be formally

represented by X and Y represent the set class labels. So, the task is to learn a func-

tion f : X → Y from a given dataset (x1, y1), (x2, y2), ..., (xn, yn) where xi ∈ X and

yi ∈ Y . Although successful, some problems may not �t very well to this model, such

as problems where the object may be associated with a multiple number of instances

simultaneously, as for example, an image may be represented by a myriad of patches

(feature vectors). To deal with this kind of problem, arise the multi-instance learning.

In this framework, a object is described by multiple instances. Formally, X represent the

instance space and Y the set class labels. The task is to learn a function f : X → Y
from a given dataset (X1, Y1), (X2, Y2), ..., (Xn, Yn), where Xi ∈ X is a set of instances

x
(i)
1 , x

(i)
2 , ..., x

(i)
mi , x

(i)
j ∈ X (j = 1, 2, ...,mi), and Yi ∈ Y is the set of labels y(i)1 , y

(i)
2 , ..., y

(i)
li
,

y
(i)
k ∈ Y(k = 1, 2, ..., li). In this case, we are also considering that a object may have more

the one label. mi represent the number of instances in Xi and li the number of labels in

Yi.
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In short, the multiple-instance learning is a variation of supervised learning, which

is the task of learning classi�ers from bags of instances (Maron and Lozano-Pérez [1997])

that may contain as many instances as possible. Recently, this kind of approach became

very popular for some speci�c problems because of the good results achieved. Between

these works, Tang et al. [2010] proposed a method that exploits a uni�ed learning frame-

work which combines the multiple-instance and single-instance representations for image

annotation. Speci�cally, they use an integrated graph-based semi-supervised learning that

associate these types of representations simultaneously. Feng and Xu [2010] proposed

an improved Transductive Multi-Instance Multi-Label (TMIML) learning, which aims

at taking full advantage of both labeled and unlabeled data to address the annotation

problem. Both of these works also use the Corel5K dataset on their experiments.

More recently, Nguyen et al. [2013] proposed a multi-label, multi-modal and multi-

instance approach using Latent Dirichlet Allocation (M3LDA). First, they build the

gist of a scene using Oliva and Torralba [2006] algorithm and then, they consider each

patch of image as an instance, what generated a myriad of items. Each instance may

be represented by a bag of prototypes, which are obtained by clustering visual features

of the patch (Zhou et al. [2012]). Associating instances and tags, they built a learning

algorithm based on Latent Dirichlet Allocation (LDA). With this approach, they can not

only annotate the images as a whole but can also annotate its region, if possible.

In this dissertation, we propose clothing annotation techniques, seeking an alterna-

tive method associating all concepts aforementioned. As mentioned, our methods combine

textual features (labels) with visual ones, in a later fusion mode, looking for improve-

ments of the annotation results. Furthermore, while most works (Nguyen et al. [2013])

treats each region (keypoint) of an image as a instance to create a multi-instance classi�er

resulting in a myriad of features, our proposed pairwise method creates a classi�er by

pairing images and calculating the visual distance between them, which makes the ap-

proach more sparse and robust. A combination of local and global visual features allows

the proposed method to leverage from both of them, exploiting the best of each one in

our application. In addition, di�erent from other works (Tang et al. [2010]; Feng and Xu

[2010]), instead of using less realistic scenarios, our experiments were on full realistic ones

using dataset crawled from the web with tags generated by users from around the globe.

2.2 Clothing Parsing

As presented, there has been a huge interest in the last years on the clothing recognition

task. However, many works focus on special clothing classes and applications (Chen et al.

[2012]; Cushen and Nixon [2012]) and, only in 2012, that generic clothing recognition has

been directly tackled (Yamaguchi et al. [2012]). This interest in clothing recognition is

because the important roles it plays in several areas, such as surveillance and person
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search. For the former area, Yang and Yu [2011] proposed a cloth recognition framework

in videos where the camera angles are �xed and background subtraction can be e�ectively

used for human detection. Cushen and Nixon [2012] also proposed a real time upper body

cloth segmentation in images where people are wearing a monochromatic clothing and

printed/stitched textures. For person search, Gallagher and Chen [2008] proposed a

method that uses facial features and clothing features to recognize individuals in images

based on others pictures (usually from the same person). According to Singh and Singh

[2010], the segmentation process may be organized in three groups:

1. pixel-based (Yamaguchi et al. [2013]), the simplest approach used for segmentation,

classi�es each pixel individually.

2. edge-based (Pal and Pal [1993]), which uses the edges of the image to create patches

that should be used by the learning algorithm.

3. region or object-based (Yamaguchi et al. [2012]; Yang et al. [2014]), that splits the

images into regions (or objects) and classify each one separately.

Between the pixel-based clothing parsing, Yamaguchi et al. [2013] proposed a frame-

work that mixtures global and local models of clothing items with human pose and mask

estimation (this latter to avoid background e�ect). More common than pixel-based pars-

ing, the region-based clothing segmentation simpli�es the problem by assuming that

uniform appearance regions belong to the same item (Gallagher and Chen [2008]) and

reduce the problem to the prediction of a labeling over a set of superpixels. In Yam-

aguchi et al. [2012], a method for clothing parsing is formulated as a labeling problem,

with images segmented into superpixels and clothing labels predicted for each segment

using a Conditional Random Field (CRF) (La�erty et al. [2001]) model. Yang et al. [2014]

proposes a data-driven framework composed of two phases of inference: �rst one extracts

regions of the images and jointly re�nes each region over all images while the second phase

constructs a multi-image graphical model considering the segmented regions as vertices,

and introduces several contexts of clothing con�guration (e.g., item location and mutual

interactions). The label assignment is solved using the some graph cuts algorithm. Our

clothing parsing approach belongs to this group, since we consider little patches to create

the classi�ers. Next, Section 2.2.1 presents neural network methods to tackle the image

parsing task.

2.2.1 Neural Networks

Recently, neural network methods have been employed in a wide range of problems mainly

supported by successful cases of tasks which results were improved using this kind of

approach (Krizhevsky et al. [2012]).
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Although all the attention, just a few applications doing image segmentation have

emerged. Between them, Socher et al. [2011] proposed a neural networks capable of recov-

ering a image from recursive structures (objects) obtained by using Comaniciu and Meer

[2002] method. This algorithm may be used to parse images, as well as natural language

sentences. Schulz and Behnke [2012] proposed a convolutional network architecture for

image segmentation. They use several elements, such as multiple output maps, suitable

loss functions, supervised pre-training, multi-scale inputs, reused outputs, and pairwise

class location �lters.

The main di�erence between these approaches and ours is that we use di�erent

network architectures in the same image with di�erent scales, considering these networks

as a hierarchical structures. Thus, an image goes through all the levels only if extremely

needed, otherwise, it may be segmented without reaching the last level. This process

decreases the test time, being propitious for on the �y applications.





Chapter 3

Background Concepts

This chapter presents some methods we use in this work that are essential for a self-

contained understanding of it. In the �rst phase of this work, we exploit the traditional

combination of machine learning methods and visual image features. To extract the

visual elements of the images, we used feature extraction algorithms (descriptors). These

methods can be classi�ed into three levels:

1. low-level feature extraction,

2. mid-level feature extraction and

3. high-level feature extraction.

Descriptors from the �rst level work at extracting visual properties from the image

via pixel-level operations. This level is crucial and needed for all image analysis procedure.

The mid-level algorithms aim at combining the set of local features into a global image

representation of intermediate complexity. A Bag of Words (BoW), proposed by Sivic

and Zisserman [2006], is a good example and also exploited in this work. The last level

methods take advantage of semantic informations of the image to reduce the semantic

gap. We do not use high-level features, since the reduction of the semantic gap is not the

main problem confronted in this work.

Considering these visual features, a myriad of machine learning methods could be

exploited to create the classi�ers, such as Support Vector Machines (SVM) and associa-

tion rules. Despite all options, a machine learning method that could support multi-label,

multi-modal and multi-instances strategies was preferable. Thus, Lazy Association Clas-

si�ers (LAC) (Veloso et al. [2006]) was chosen given its natural adaptation to multi-modal

approaches, accepting visual and textual features without too much e�ort, and also be-

cause it permits the scalability of the instances without increasing the processing time,

since the number of classes is more relevant to the algorithm than the number of in-

15
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stances. In addition to this, the method easily allows the use of multi-label strategy since

its output consists of a ranking with the classes and respectively probabilities.

In the second phase of this work, we exploit the bene�ts of a Convolutional Neural

Network (CNN) to tackle the clothing parsing problem. Neural networks were chosen

because of several advantages: (i) it can learn the image features and classi�ers (in

di�erent layers) at once, (ii) can adjust the learning process, in execution time, based on

the accuracy of the network, giving more importance to one layer than other depending

on the problem, (iii) it has ability to learn how to do the tasks based on the data given for

training or initial experience and (iv) it can create its own organization or representation

of the information it receives during learning time.

Next, we present all details related to these frameworks. The low-level descriptors

used for the clothing annotation approach are presented in Section 3.1, followed by the

mid-level approaches presented in Section 3.2. The learning algorithm, LAC (Veloso et al.

[2006]), is presented in Section 3.3. Section 3.4 presents detailed information about the

layers used in our neural network.

3.1 Low-level feature extraction

Researchers have been challenged for years to represent images based on their content.

Towards scene understanding, the community created many low-level feature algorithms

to represent visual elements of an image. Feature representation methods can be catego-

rized as:

1. global and

2. local.

Next, we present the concepts, advantages and disadvantages of each method, and

how they evolve through the years. Section 3.1.1 presents the global descriptors used

while Section 3.1.2 presents the local ones.

3.1.1 Global Descriptors

The need of translating image properties, like color, texture, and shape, for example,

has motivated industry and research communities to keep developing new algorithms for

representing images. The search for new methods have been also motivated by the need

of compare and match images, enabling creation of new applications that could work over

images totally by itself. In the beginning of the decade of 1990, several algorithms were

proposed to extract these features from images (Zhang and Lu [2004]). Those techniques

have usually relied on computing a representation that encodes global aspects of images,

therefore called global descriptors.
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These descriptors usually are cheap to obtain since they rely on computing a rep-

resentation that encodes global aspects of images. This brings the advantages of being

simple to compute and to provide a good general idea of the image content. On the other

hand, it brings several disadvantages, like de�ciency of encode details and low e�ective-

ness in some precise applications, like recognition tasks for cluttered images (Tuytelaars

and Mikolajczyk [2007]). Thus, there is a multitude of global descriptors available in the

literature (Zhang and Lu [2004]) that can be used to represent visual elements, which are

strongly based upon the concept of image descriptors (da Silva Torres and Falcão [2006]).

A descriptor expresses perceptual qualities of an image, and is composed by:

1. A feature-vector that encodes image properties, such as color, texture and shape,

and,

2. A distance function that returns the similarity between two images as a function of

the distances between their corresponding feature-vectors.

Both the feature-vector and the distance function a�ect how the descriptor encode the

perceptual qualities of the images. An image descriptor representation to compute the

distance between two input images is presented in Figure 3.1.

Image Descriptor

Feature
Extraction

Feature
Extraction

Vector

Vector

Distance/Similarity
Function

Distance

Figure 3.1: An image descriptor representation.

It is known that di�erent descriptors may provide complementary information about

images, so the combination of multiple descriptors is likely to provide improved perfor-

mance when compared with a descriptor in isolation. However, the optimal combination

of descriptors is data-dependent, as well as a hard task depending on the problem, since

di�erent descriptors may produce di�erent results. We selected 10 global descriptors to

be evaluated for the clothing annotation problem, based on extensive experiments per-

formed by dos Santos et al. [2010], dos Santos et al. [2012] and Penatti et al. [2012], which

pointed out to some of the most interesting image descriptors in the current computer

vision literature. Next, the descriptors we have used in the experiments along with the

�rst phase of this dissertation are presented.

1. Color descriptors:
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a) Auto-Correlogram Color (ACC) (Huang et al. [1997]) maps the spatial infor-

mation of colors by pixel correlations at di�erent distances, i.e., computes the

probability of �nding in the image two pixels with color C at distance d from

each other.

b) Border/Interior Pixel Classi�cation (BIC) (Stehling et al. [2002]) creates the

feature vector from two histograms: one for for the interior pixels and another

for the border ones. When a pixel has the same spectral value in the quantized

space as its four neighbors (the ones which are above, below, on the right, and

on the left), it is classi�ed as interior. Otherwise, the pixel is classi�ed as

border. The two histograms are concatenated and stored into a feature vector.

c) Color Coherence Vector (CCV) (Pass et al. [1996]), which uses an extraction

algorithm that classi�es the image pixels into two groups: �coherent� and

�incoherent�. This classi�cation considers if a pixel belongs or not to a region

with similar colors, that is, coherent regions. The two histograms computed

after the quantization (one for each group) are merged to compose the feature

vector.

d) Global Color Histogram (GCH) (Swain and Ballard [1991]) uses an extraction

method which quantizes the color space in a uniform way and scans the image

computing the number of pixels belonging to each color.

e) Local Color Histogram (LCH) (Swain and Ballard [1991]) splits the image into

�xed-size regions and computes a color histogram for each region. The feature

vector is composed by a concatenation of the histograms of each region.

2. Texture descriptors:

a) Quantized Compound Change Histogram (QCCH) (Huang and Liu [2007])

uses the relation between pixels and their neighbors to encode texture infor-

mation. A square window runs through the image capturing the average gray

value in each step. Four variation rates are then computed by taking into

consideration the average gray values in four directions: horizontal, vertical,

diagonal, and anti-diagonal directions. The average of these four variations is

calculated for each window position.

b) Local Activity Spectrum (LAS) (Tao and Dickinson [2000]) captures texture

spatial activity in four di�erent directions separately: horizontal, vertical, di-

agonal, and anti-diagonal. The four activity measures are computed for a

speci�c pixel by considering the values of neighboring in the four directions.

c) Steerable Pyramid Decomposition (SID) (Zegarra et al. [2008]) uses a set of

�lters sensitive to di�erent scales and orientations. The image is recursively
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decomposed into bands, which have the mean and standard deviation extracted

to be used as features values.

d) Unser (Unser [1986]) computes a histogram of sums Hsum and a histogram

of di�erences Hdif . The former is incremented considering the sum while

the latter is incremented taking account the di�erence between the values of

two neighbor pixels. Measures such as energy, contrast, and entropy can be

extracted from these histograms.

3. Shape descriptors:

a) Edge Orientation Auto-Correlogram (EOAC) (Mahmoudi et al. [2003]) clas-

si�es the edges based on two aspects: boundary orientation and correlation

between neighbor edges. The algorithm has two main steps: (i) image gradi-

ent computation, and (ii) edge orientation auto-correlogram calculation. The

feature vector is composed of the values from this auto-correlogram.

As introduced, global descriptors have some de�ciency when working with object

recognition (Tuytelaars and Mikolajczyk [2007]), what motivated the research community

to developed new visual extraction algorithms, called local descriptors.

3.1.2 Local Descriptors

Local descriptors were developed in beginning of the decade of 2000, and brought new pos-

sibilities to the computer vision community. The success of the local descriptor approach

is explained due to the fact that classical global features have di�culty in distinguishing

foreground from background objects, and thus are not very e�ective in recognition tasks

for images with complex content (many people and objects)(Tuytelaars and Mikolajczyk

[2007]). Furthermore, local descriptors are more powerful to present object properties

and are very precise, because small variations in the objects of the image may avoid sim-

ilar regions to be considered as a match. On the other hand, local descriptors are more

expensive to compute and may produce a variable number of feature vectors per image,

which makes the comparison between a pair of images more complex and expensive.

A local feature is an image pattern that di�ers from its immediate neighborhood

(Tuytelaars and Mikolajczyk [2007]). It is usually associated with a change of an im-

age property or several properties. Local features may be points, edges or small image

patches. According to Tuytelaars [2010], two types of patch-based approaches can be

distinguished:

1. Interest Points: such as corners and blobs, which position, scale and shape are

computed by a feature detector algorithm, which is computationally expensive.
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Interest points focus on �interesting� locations in the image and include various

degrees of viewpoint, illumination invariance and perhaps resolution.

2. Dense Sampling: patches of �xed size are placed on a regular grid (possibly repeated

over multiple scales) that may have di�erent shapes. It gives a better coverage of

the entire object or scene and a �xed number of features per image area. Regions

with less contrast contribute equally to the overall image representation.

Examples of each type of extraction can be seen in Figure 3.2.

(a) (b) (c)

Figure 3.2: Local features extraction: (a) Original image (b) Interest points detection example (c) Dense
sampling example

Like the global descriptors, a myriad of local descriptors are available in the lit-

erature Li and Allinson [2008] and di�erent descriptors may provide complementary in-

formation about images, so the combination of multiple descriptors tends to improved

performance. However, the optimal combination of descriptors is data-dependent and

unlikely to obtain in advance. To select the best low-level descriptors for the clothing

annotation task, we evaluate 6 di�erent feature extraction techniques. This descriptors

were chosen based on extensive experiments performed by Bekele et al. [2013]. Next, the

local descriptors we have used in the experiments along with the �rst phase of this work

are presented.

1. Scale-Invariant Feature Transform (SIFT) (Lowe [2004]) combines a scale invariant

region detector and a descriptor based on the gradient distribution in the detected

regions. It is reasonably invariant to changes in illumination, image noise, rotation,

scaling, and small changes in viewpoint.

2. Speeded Up Robust Features (SURF) (Bay et al. [2008]) is based on multi-scale

space theory and Hessian matrix. It manages to get a smaller feature vector (usually

a half of the SIFT vector size), and outperforms the SIFT method in almost every

transformation or distortion.
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3. Binary Robust Independent Elementary Features (BRIEF) (Calonder et al. [2010])

is created with a set of pairwise intensity comparisons, which are selected randomly

from an Gaussian distribution centered at the feature location.

4. Binary Robust Invariant Scalable Keypoints (BRISK) (Leutenegger et al. [2011])

combines a feature location algorithm and a speci�c keypoint detector in a scale-

space pyramid creating a rotation and scale invariant feature vector.

5. Oriented FAST and Rotated BRIEF (ORB) (Rublee et al. [2011]) computes a ro-

tation invariant local orientation through the use of an intensity centroid, which is

a weighted averaging of pixel values in the local patch (di�erent from the center

of the feature). The orientation is the vector between the feature location and the

centroid. The feature vector is composed by less correlated information, i.e., more

discriminative.

6. Fast Retina KeyPoint (FREAK) (Alahi et al. [2012]) selects keypoints which the

area are evaluated with 43 weighted Gaussians, making it more robust than BRISK.

Creates a rotation invariant feature vector just like ORB.

The local descriptors are usually applied to some type of applications like copy detec-

tion (Law-To et al. [2007]) or object localization (Sivic et al. [2005]). So, the community

has seen that to continue creating applications toward a total scene understanding, new

methods have to be created in order to extract the best as possible from the descriptors.

Toward this goal, mid-level feature extraction aims at transforming low-level descriptors

into a global and richer image representation of intermediate complexity (Boureau et al.

[2010]).

3.2 Mid-level Image Representation

A mid-level representation use local features built upon low-level ones creating a new

representation for an image, without looking for understanding its high-level features.

According to Boureau et al. [2010], in order to get the mid-level representation, the

standard processing follows three steps: (i) low-level local feature extraction, (ii) coding,

which performs transformation of the descriptors into a representation better adapted to

the task and (iii) pooling, which summarizes the coded features. Classi�cation algorithms

are then trained on the mid-level vectors obtained.

Next, we present concept details of the mid-level representation and some variation.

Section 3.2.1 presents the main principles of Bag of (Visual) Words (BoW) method (Sivic

and Zisserman [2006]) while Section 3.2.2 presents BossaNova algorithm (de Avila et al.

[2011]), that has the same principles of mid-level representations with some interesting

ideas.
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3.2.1 Bag of (Visual) Words

A method proposed by Sivic and Zisserman [2006], introduced the idea of representing

images in a similar way as representing text documents. Their method became very

popular for multimedia retrieval and classi�cation systems because it associates similar

objects giving them the same visual representation, which is less expensive to work with

since it is smaller than the representation extracted from local descriptors. Like a text

document may be decomposed as a set of textual words, an image may be analyzed as

a set of local appearances. That way, came the popular name Bag of (Visual) Words

(BoW).

Therefore, images are decomposed into a set of local patches that represent the �rst

step of the mid-level representation. The patches are then assigned to a vocabulary of

patches, called visual dictionary, which the scheme is presented in Figure 3.3.

Visual Words
w , w , ... , w 

Image
Database

Low-Level
Features

Feature Space
Quantization

Visual
Dictionary

w1w2

w3

w4

w5

w6

1 2 n

.
.
.

Figure 3.3: Idea behind the generation of the visual dictionary. After extracting local feature vectors from each
image, the feature space is quantized and each region corresponds to a visual word. Adapted from dos Santos
et al. [2014]

The visual dictionary is the codebook of the available patches that are used to repre-

sent image content. The creation of the codebook can also be referenced as a quantization

of the space of features generating the codewords. This is usually obtained by unsuper-

vised learning, like k-means, over a sample of descriptors from the training data. Over

this new quantized space occurs the coding phase that must consider how the low-level

features of an image are distributed according to that new space. This can be performed

by simply assigning the image local features to the visual words in the dictionary. The

simplest coding in the literature assigns a local descriptor to the closest visual codeword,

giving one (and only one) nonzero coe�cient. This approach is commonly called hard

coding, and may su�er from ambiguity (Philbin et al. [2008]). In order to attenuate the

e�ect of coding errors, one may rely on soft coding (van Gemert et al. [2008]), which is

based on a soft assignment to each codeword, weighted by distances/similarities between

descriptors and codewords.

BoW exploits the concept of visual dictionary to create a single feature vector

for each image as presented in Figure 3.4. The last step of the representation creates

a histogram for each image and is usually referenced as the pooling step. This phase

compacts all information that belongs to a codeword into a single feature vector. It aims
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at preserving the information encoded in the coding step or to discard the least important

properties, generating a feature histogram for the image. Popular pooling approaches are

based on computing the average assignment value of each visual word in the image or

considering only the maximum activation value of them.

w1w2

w3

w4

w5

w6

w1 w2 w3 w4 w5 w6

Visual Words Assignment
...

Assignment Vectors

Pooling

=

Bag of Visual WordsOriginal Image

Segmentation

Figure 3.4: Creating a BoW using the visual dictionary for each image. Given an input image, its local feature
vectors are computed and then assigned to the visual words in the dictionary. Then, occurs the pooling step
creating the histogram. Adapted from dos Santos et al. [2014]

Therefore, the visual dictionary model solves the issue of multiple feature vectors

per image computed by local descriptors. Another advantage is that the description is

more general, eliminating the problem of very precise representations generated by local

descriptors, and making the dictionary-based representations useful in a wider range of

applications.

3.2.2 BossaNova Approach

Di�erent coding/pooling functions generate di�erent results and the best functions are

problem-dependent. Thus, BossaNova, proposed by de Avila et al. [2011], was chosen

to be tested in our application because it may allow a comparison between its di�erent

process with a traditional one used on BoW.

BossaNova di�erentiates from the BoW approach at the coding/pooling stage, re-

sulting in a new representation that better preserves the information from the encoded

local descriptors, by using a density-based pooling step.

Their coding function activates the closest codewords to the descriptor, which cor-

responds to a localized soft coding over the visual codebook. The pooling step estimates

the distribution of the descriptors around each codeword, while the BoW estimates the

distribution around one or determined number of codewords. The BossaNova pooling

process is a non-parametric, density-based estimation of the descriptors distribution gen-

erating a histogram of distances between the descriptors found in the image and each

codeword. Figure 3.5 presents the whole procedure of the BossaNova approach.

3.3 Lazy Associative Classi�ers

Aside the visual features, a multitude of machine learning algorithms could be exploited

in an attempt to solve the clothing annotation task. Despite all options, a main require-
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Figure 3.5: The low-level features extracted from the query image have their dimensionality reduced by PCA
algorithm. Then, there is a localized soft coding followed by a BossaNova polling. A two-step normalization is
made looking for preserve relevant features. Adapted from de Avila et al. [2011]

ment observed was the capacity of handle multi-label, multi-modal and multi-instances

strategies. This way, Lazy Association Classi�ers (or simply LAC), proposed by Veloso

et al. [2006], was chosen given its natural adaptation to multi-modal approaches, accept-

ing visual and textual features without too much e�ort and also because its output is

composed of a ranking with the classes and respective probabilities, allowing the method

to be easily adapted to multi-label tasks. Another advantage is that it permits the scal-

ability of the instances without increasing processing time, since the number of classes of

an instance is more relevant to the algorithm (in terms of computation) than the number

of instances.

LAC uses association rules (Agrawal et al. [1993]) to produce classi�ers that, de-

pending on the task, may predict labels of an image or relevance related to a document.

These rules are patterns describing implications of the form X −→ yi, where X is known

as the antecedent of the rule while yi is the consequent. The antecedent may be any

combination of features, depending on the task, while the consequent may be any label

or class. The rule does not express a classical logical application where X necessarily

entails yi. Instead it denotes the tendency of observing yi when X is observed.

De�nition 1. A formal de�nition of a standard association rule, composed of antecedent

X and consequent yi: X
θ−→ yi

The strength of the association between the antecedent and the consequent is mea-

sured by a statistic θ, which is known as con�dence (Agrawal et al. [1993]) and is simply

the conditional probability of the consequent given the antecedent.

The algorithm receives as input a labelled training-set D and a test-set T , with
classes/labels unknown. From each instance X ∈ D of the training-set, the algorithm ex-
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tracts a rule-set R composed of rules used to predict classes/labels LX that approximates

as accurately as possible L∗X , which represents the ground-truth of the instance, i.e., the

true classes/labels of X. Distances between the instances are discretized (Fayyad and

Irani [1993]) and then assigned to distance intervals, in order to allow for the enumeration

of the association rules.

Basically, each rule {X → yi} ∈ R is a vote given for yi. Thus, after extract the set

rules R, given an instance Z ∈ T , a rule is a valid vote if it is applicable to Z. The way

rules are applicable to an instance is described in De�nition 2. Using this de�nition, it

is possible to select the rules applicable to a speci�c instance Z, denoted as RZ . Hence,

only rules in RZ are considered as valid votes when predicting classes/labels.

De�nition 2. A rule {X → yi} is said to be applicable to instance Z ∈ T if all intervals

in X are in Z, that is, X ⊆ (Z).

Further, Ryi
Z is a subset of RZ containing only rules predicting class/label yi. Votes

in Ryi
Z have di�erent weights, depending on the con�dence θ of the corresponding rules.

Given an arbitrary image Z, the weighted votes for label yi are averaged, resulting in the

score for yi, as shown in Equation 3.1.

s(Z, yi) =

∑
θ(X → yi)

|Ryi
Z |

(3.1)

where X ⊆ Z and |R| represents the set size.
The likelihood of an instance Z being associated with class/label yi is obtained by

normalizing the scores, since the sum of the likelihood of all classes/labels of an instance

should result one. So, as expressed by p̂(yi|Z), the Equation 3.2 shows the normalization.

p̂(yi|Z) =
s(Z, yi)∑
j

s(Z, yj)
. (3.2)

At the end, for each instance, LAC generates a ranking with all the classes/labels

associated with its likelihood (probability). In this case, higher values of p̂(yi|Z) indicate
that the class/label is likely to be associated with Z. On the other hand, lower values of

p̂(yi|Z) indicate that the class/label is not likely to be associated with Z.

3.4 Convolutional Neural Networks

Arti�cial Neural Network (NN), an information processing paradigm, is inspired in bi-

ological nervous systems, such as the brain. The key element of this paradigm is the

novel structure of the information processing system. NN simulations appear to be a

recent development but this �eld was established in 1943 (Mcculloch and Pitts [1943])

with �rst biological models of the brain. Since then, many important advances have
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been boosted by the improvements of computers performance, such as the Perceptron

(Rosenblatt [1958]) and backpropagation algorithm (Rumelhart et al. [1988]). Recently,

this �eld enjoys a lot of interest mainly supported by almost unlimited computational

resources and exciting results in some tasks (Krizhevsky et al. [2012]).

NN is generally presented as systems of interconnected processing units (neurons)

which can compute values from inputs leading to a output that may be used on further

units. These neurons work in agreement to solve a speci�c problem, learning by example,

i.e., a NN is created for a speci�c application, such as pattern recognition or data clas-

si�cation, through a learning process. These neurons compose a processing layer which

may have di�erent types, such as convolutional, softmax and fully-connected, depending

on the operations it realizes over the input. These layers are stacked forming multilayer

neural networks. Di�erent networks may be formed using these several types of layers,

as Convolutional Neural Network (CNN) (LeCun et al. [1989]), Restricted Boltzmann

Machines (RBM) (Salakhutdinov et al. [2007]) and Deep Belief Networks (DBN) (Hinton

[2010]).

CNN were proposed to work over images, since they try to take leverage from the

natural property of an image, i.e., its stationary state. More speci�cally, the statistics of

one part of the image are the same as any other part. Thus, features learned at one part

can also be applied to another region of the image, and the same features can be used

in several locations. Although this advantage, CNN can be also used to model Natural

Language Processing tasks (Kalchbrenner et al. [2014]).

When compared to other types of networks, CNN present several other advantages:

(i) automatically learn local feature extractors, (i) are invariant to small translations

and distortions in the input pattern, and (iii) implement the principle of weight sharing

which drastically reduces the number of free parameters and thus increases their general-

ization capacity. Next, more about the processing units and layers used in this work are

presented.

3.4.1 Processing Units

As introduced, NN has been developed trough the years with di�erent models emerging.

However, the proposition that neurons are the basis of every network still stands. These

arti�cial neurons try to simulate the biological ones in a limited way. Arti�cial neurons

are basically processing units that use several variables as input and, usually, have one

output calculated through the activation function. As presented, an arti�cial neuron

has a weight vector w = (w1, w2, · · · , wm) and a threshold or bias b. The weights are

analogous to the strength of the biological dendritic connections. The bias is considered

the value that must be surpassed by the inputs before an arti�cial neuron become active

(i.e., greater than zero). The activation of a neuron is the sum of the inner product of the
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weight vector with an input vector x = (x1, x2, · · · , xm) plus the bias. A example of the

�rst and simplest processing unit, called linear neuron, can be seen in Figure 3.6a and its

activation function is presented in Equation 3.3. These kind of neurons are simple but

computationally limited as can be seen in Figure 3.6b.

z = b+
∑
i

xi ∗ wi (3.3)

where z represents the output, b is the bias, x the input data and w are the weights.

Others neurons, more robust, have emerged supported by the activation function of

the linear neuron. These innovate by including another step when calculating the func-

tion: (i) calculate the output z using the De�nition 3.3, and (ii) calculate the �nal activa-

tion of the neuron by using this output in some non-linear function, such as Sigmoid and

Hyperbolic Tangent (tanh). Others non-linear functions were created, like Recti�er (Nair

and Hinton [2010]) and Softplus (Glorot et al. [2011]) functions. Figure 3.6b presents the

activation output of all these functions.

z

1

x1

x2

w1
w2

b
(a)

linear

sigmoid
tanh
ReLU
softplus

(b)

Figure 3.6: Arti�cial Neurons: (a) Example of a neuron: z represents the output, b is the bias, x the input
data and w are the weights (b) Possible activation functions.

The processing unit that uses the recti�er as activation function is called Recti�ed

Linear Unit (ReLU) (Nair and Hinton [2010]). This neuron has several advantages when

compared to others: (i) works better to avoid saturation during the learning process,

(ii) induces the sparsity in the hidden units, and (iii) does not face gradient vanishing

problem1 as with sigmoid and tanh function. Because of these advantages, in this work,

our proposed networks are composed of ReLUs. The �rst step of the activation function

of a ReLU is presented in Equation 3.3 (same as a linear neuron) while the second one is

introduced in Equation 3.4.

1The gradient vanishing problem occurs when the propagated errors become too small and the

gradient calculated for the backpropagation step vanishes, making impossible to update the weights of

the layers and achieve a good solution.
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a =

z, if z > 0

0, otherwise
⇔ a = f(z) = max(0, z) (3.4)

The processing units are grouped into layers, which are stacked forming multilayer

neural networks. These layers give the foundation to others, such as convolutional and

fully connected.

3.4.2 Network Layers

The convolutional layer is composed of processing units responsible to capture the features

from the images, where the �rst layer obtains the low-level features (like edges, lines and

corners) while the others get high-level features (like structures, objects and shapes). The

process made in this kind of layer can be decomposed into two phases: (i) a �xed-size

window runs over the image de�ning a region of interest, and (ii) Using the pixels inside

each window as input to the processing units, the features of this region are extracted,

i.e., each pixel is multiplied by its respective weight generating the output of the neuron,

just like Equation 3.3. Thus only one output is generated concerning each region de�ned

by the window. This iterative process results in a new image, generally smaller than

the original one, with the visual features extracted. Figure 3.7 presents some steps of a

convolutional layer capturing features from an image.
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Figure 3.7: Some steps of a 3x3 window of a convolutional layer extracting the features from an image. Figure
adapted from Ng et al. [2011a]

A lot of these features are very similar, since each window may have common pixels,

generating redundant information. So, usually after each convolutional layer, there are

pooling layers that were created in order to reduce the variance of features by computing

some operation of a particular feature over a region of the image. Speci�cally, a �xed-size

window runs over the features extracted by the convolutional layer and, at each step, a
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operation is made to select some features. Usually, two operations may be realized on the

pooling layers: the max or mean operation, which selects the maximum or mean value

over the feature region, respectively. Figure 3.8 presents an example of a pooling layer

using max operation over the features. This process ensures that the same result can

be obtained, even when image features have small translations or rotations, being very

important for object classi�cation and detection. So, the pooling layer is responsible for

sampling the output of the convolutional one preserving the spatial location of the image,

as well as selecting the most useful features for the next layers.
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Figure 3.8: A pooling layer selecting the max value between the features inside a window of size 2x2. Figure
adapted from Ng et al. [2011b]

After several convolutional and pooling layers, there are the fully-connected ones.

This layer, considered as a Multilayer Perceptron Network, is responsible for the high-

level reasoning of the network. It takes all neurons in the previous layer and connects

it to every single neuron it has. The previous layers can be convolutional, pooling or

fully-connected, however the next ones must be fully-connected until the classi�er layer,

because the spatial notion of the image is lost in a fully-connected layer. Since a fully

connected layer occupies most of the parameters, over�tting can easily happen. To pre-

vent over�tting, the dropout method, proposed by Srivastava et al. [2014], was created.

This method randomly drops several neuron outputs, which does not contribute to the

forward pass and backpropagation anymore. Usually, in the input layer, the probability

of dropping a neuron is between 0.5 and 1, while in the hidden layers, a probability of

0.5 is used. This neuron drops are equivalent to decreasing the number of neurons of the

network, improving the speed of training and making model combination practical, even

for deep neural networks. Although this method creates neural networks with di�erent

architectures, those networks share the same weights, permitting model combination and

allowing that only one network is needed at test time.

Finally, after all convolution, pooling and fully-connected layers, a classi�er layer

may be used to calculate the class probability of each instance. The most common classi-

�er layer is the softmax one (Alpaydin [2010]), based on the namesake function, although

there are others, such as PKM-SVM (Lazebnik et al. [2006]). The softmax function,
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or normalized exponential, is a generalization of the multinomial logistic function that

generates a K-dimensional vector of real values in the range (0, 1) which represents a

categorical probability distribution. Equation 3.5 shows how softmax function predicts

the probability for the jth class given a sample vector x.

P (y = j|x) = expx
Twj∑K

k=1 exp
xTwk

(3.5)

where j is the current class being evaluated, x is the input vector and w represent the

weights.

In addition to all these processing layers, there are also ones responsible to process

the data in some special way, such as normalization layers. Several methods to normal-

ize the data may be used, such as local response, local contrast, Gaussian and MinMax

normalization. Between these, the Local response normalization (LRN)(Krizhevsky et al.

[2012]) is the most useful one when using processing units with unbounded activations

(like ReLU), because it permits the local detection of high-frequency features with a big

neuron response, while damping responses that are uniformly large in a local neighbor-

hood.

3.4.2.1 Training Neural Networks

To perform some task and achieve satisfactory results, a multilayer neural network, com-

posed with the presented layers, needs to minimize the loss by right classifying the in-

stances. In order to do this, some di�erentiable cost function, that models the network,

is needed. Several functions have been used in NN through the years, such as quadratic

loss and logarithm loss (or log loss). The quadratic loss function is more common, for

example, when using least squares techniques. It has some interesting properties, like

being symmetric, i.e., an error above the target causes the same loss as the same magni-

tude of error below the target. However, the log loss has become more pervasive because

of exciting results achieved in some problems (Krizhevsky et al. [2012]). When a NN

implements the softmax function as the classi�er layer, log loss regime is used as cost

function. Equation 3.6 presents a general log loss function.

J (θ) = −
N∑
i=1

(
y(i) × log x(i) + (1− y(i))× log(1− x(i))

)
(3.6)

where y represents a possible class, x is a instance and N represents the total number of

instances.

With the cost function de�ned, the NN can be trained in order to minimize the loss

by using some optimization algorithm, such as Stochastic Gradient Descent (SGD), to

gradually update the weights and bias in search of the optimal solution. However, to use

this approach, the partial derivatives of the cost function, for the weights and bias, are
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needed. To obtain these derivatives, the backpropagation algorithm is used. Speci�cally,

it must calculate how the error changes as each weight is increased or decreased slightly.

The algorithm computes each error derivative by �rst computing the rate at which the

error changes as the activity level of a unit is changed. For classi�er layers, this error is

calculated considering the predicted and desired output. For other layers, this error is

propagated by considering the weights between each pair of layers and the error generated

in the most advanced layer.

So, training a NN occurs in two steps: (i) the feed-forward one, that passes the

information through all the network layers, from the �rst until the classi�er one, and

(ii) the backpropagation one, which calculates the error δ generated by the NN and

propagates this error through all the layers, from the classi�er until the �rst one. As

presented, this step also uses the errors to calculate the partial derivatives of each layers

for the weights and bias. Formally, the training process is presented in Algorithm 1.

Algorithm 1: Training process of a NN.
Data: Image

Result: Trained NN

1 for �rst layer until last one perform feed-forward pass do

2 z(l+1) ← W (l) × a(l) + b(l);

3 a(l+1) ← f(z(l+1));

4 for the classi�er layer nl do

5 calculate the error δ

6 δ(nl) ← −(y − a(nl))× f ′
(
z(nl)

)
;

7 for each other layer l = nl − 1, nl − 2, nl − 3, · · · , 2 do
8 propagate the error through all layers

9 δ(l) ← (W (l)δ(l+1))× f ′
(
z(l)
)
;

10 calculate the partial derivatives for weights and bias

11 ∇W (l)J (θ)← δ(l+1)a(l);

12 ∇b(l)J (θ)← δ(l+1);
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Figure 4.1: Illustration of pointwise approach. Predicted labels in blue represent right labels while red ones
represent wrong predictions.

In this chapter, we present our pointwise and pairwise algorithms for automatic

clothing annotation, as well as the experimental protocol and results obtained with these

approaches. Figure 4.1 shows an overview of the pointwise approach, where an input

consists of a single image. Figure 4.2 shows an overview of the pairwise approach, where

pairs of images are given as input to the classi�ers already trained also with paired im-

ages. By doing this, our method calculate the distance between the images, which makes

the approach more sparse, when compared with the literature. Both algorithms build

classi�ers on a demand-driven basis and each classi�er returns membership probabilities

for each label. The �nal set of labels to predict comes by minimizing the entropy of such

membership probabilities.

It is important to emphasize that images posted in online social networks (in par-

ticular those related to clothing) may contain both visual and textual elements, and each

modality may be analyzed in a variety of ways. For instance, visual elements can be

analyzed based on color, texture, shape, and so on. In turn, textual elements,such as

tags or comments, may include terms related to garment items. Speci�cally, we observed

33
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that:

1. Images sharing common garment items are likely to share similar visual elements

(e.g., color, texture and shape), and,

2. People tend to use similar tags with images that share common garment items.

These similarities are exploited by both approaches to create classi�ers capable of

associating similar clothes and then annotate images. Next, the formalism of our proposed

methods is presented. Section 4.1 presents the proposed methods for clothing annotation.

The experimental protocol used is presented in Section 4.2, while the results obtained are

presented in Section 4.3.
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Figure 4.2: Illustration of pairwise approach. In this case, the classi�ers are already trained with paired images
as well. Predicted labels in blue represent right labels while red ones represent wrong predictions.

4.1 Machine Learning Approches for Clothing

Annotation

In this section, we present all the details of the proposed approaches, including algorithms

to combine the results of the pointwise approach, as well as methods to select the labels

that should be assigned to an image. Section 4.1.1 presents the pointwise approach

while the pairwise approach is presented in Section 4.1.2. To simplify its complexity, the

algorithm used to de�ne which labels should be assigned to the query image, presented

in Section 4.1.1.1, is introduced considering only the pointwise method. However, this

algorithm, so-called Minimum Description Length (MDL), is also used in the pairwise

approach. We introduce some proposed methods to combine the results of the pointwise

approach in Section 4.1.1.2.
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4.1.1 Pointwise Approach

Our pointwise algorithm for automatic clothing annotation named Multi-modal/Multi-

Label Clothing Annotation, or simply MMCA, is presented in this section. For this

approach, it is provided a set of single images as input (Liu [2009]). Each image has its

features, i.e., its visual and textual descriptors. De�nition 3 formally describes the input

of our approach.

De�nition 3. An instance is composed by an image q associated with its labels

and visual feature vector. Speci�cally, an instance is represented as a list (q̃) =

{f1, f2, . . . , fm, v1, v2, . . . , vn} of feature vector of size m and n labels.

Our proposed method uses association rules (Agrawal et al. [1993]), as described

in Section 3.3. The algorithm receives as input a labelled training-set D composed of

instances, as described in De�nition 3. Distances between the instances are discretized

(Fayyad and Irani [1993]) and then assigned to distance intervals1, in order to allow

for the enumeration of association rules. The test-set T also consists of records of the

form in De�nition 3, except that labels are unknown. From each instance q̃ ∈ D, the
algorithm extracts a rule-set R composed of garment rules used to predict labels Lq̃,
which approximates as accurately as possible L∗q̃, the ground-truth of the instance q̃. A

garment rule is composed of an antecedent and a consequent, as described in De�nition 1.

In this case, derived from De�nition 4, these rules may contain any mixture of visual and

textual features in the antecedent and a label li (i.e., a garment item) in the consequent.

De�nition 4. A garment rule has the following form:

Distance intervals︷ ︸︸ ︷
{ fj ∧ . . . ∧ fz ∧ vt ∧ . . . ∧ vu } θ−→ li


�trousers�,

�skirt�,

�handbag�,

etc.

where j ≥ 1 and z ≤ m, and t ≥ 1 and u ≤ n.

The operator �∧� represents that the antecedent of a rule is formed with the simple

presence of a determined combination of features and labels. These combinations work

like a signature to the rule.

As introduced, we denote as Rq̃ garment rules applicable to instance q̃ according

to De�nition 2. Further, Rli
q̃ is the subset of Rq̃ containing only rules predicting label

li. Votes in Rli
q̃ have di�erent weights, depending on the con�dence and, the weighted

votes for label li are averaged, resulting in the score s(q̃, li), as shown in Equation 3.1.

The likelihood of query image q being associated with label li is obtained by normalizing

1Hereafter we refer each fi as the corresponding interval.
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the scores, as expressed by p̂(li|q̃) shown in Equation 3.2. This normalization occurs to

restrict the sum of the likelihood of all labels of an speci�c instance to exactly one. So,

at the end, we have a ranking with the labels and its probability for each instance. In

this ranking, higher values of p̂(li|q̃) indicate that the label is likely to be associated with

q.

4.1.1.1 Minimum Description Length

The minimum description length (MDL) principle is a powerful method of inductive

inference, the basis of statistical modeling, pattern recognition and machine learning. It

is based on the Razor of Occam and was �rst proposed by Rissanen [1978]. It holds

that the best explanation, given a limited set of observed data, is the one that permits

the greatest compression of the data. This strategy was explored before to disambiguate

entity names (Davis et al. [2012]) and in our case, was adapted to be used when de�ning

the labels that should be assigned to an image.

So, considering that each instance has some candidate labels (and its probability),

the MDL approach is used to �nd the best cut for these instances, selecting which labels

should be assigned for each one of them. This cut is made based on a validation set

and it is more robust than the top-k approach typically used on multi-labels problems

(Veloso et al. [2007]). More speci�cally, given an instance q̃ and a set of candidate labels

Lq̃ provided by the classi�er,2 we must �nd a cut point cq̃ which delimits labels that are

likely to be associated with the query image from those that are not. In other words,

we must �nd a threshold cq̃, so that only labels in Lq̃ for which p̂(li|q̃) > cq̃ are �nally

predicted.

Our approach searches for a threshold cq̃ that provides the best entropy cut in the

space induced by probabilities p̂(li|q̃) ∀ li ∈ Lq̃. Figure 4.3 illustrates our approach. In

the �gure, symbol � indicates that the corresponding label li is associated with query

image q. Similarly, symbol � indicates that the corresponding label li is not associated

with query image q. Therefore, in the example, labels {l4, l5, l6} are associated with q

(i.e., �), while labels {l1, l2, l3} are not (i.e., �). The �gure shows three possible cut

points for the instance, and the best entropy cut is exactly the one which minimizes the

overall entropy in the probability space.

Obviously, there are more di�cult cases, for which it is not possible to obtain a

perfect separation in the probability space, but our approach is general enough to handle

such harder cases. The basic idea is that any value of cq̃ induces two partitions over the

space of values for p̂(li|q̃), that is, one partition with probabilities that are lower than

cq̃, and another partition with probabilities higher than cq̃. Our approach sets cq̃ to the

2Labels for which p̂(li|q̃) > 0.



4.1. Machine Learning Approches for Clothing Annotation 37

p̂
(l1 |q̃

)

p̂
(l2 |q̃

)

p̂
(l3 |q̃

)

p̂
(l4 |q̃

)

p̂
(l5 |q̃

)

p̂
(l6 |q̃

)

0.00 1.00
� � � � � �

low
entropy

high
entropy

0.00 1.00
� � � � � �

high
entropy

low
entropy

0.00 1.00
� � � � � �

low
entropy

low
entropy

best entropy cut

0.00

Figure 4.3: Looking for the minimum entropy cut for a speci�c instance q̃. Figure adapted from Davis et al.
[2012]

value that minimizes the average entropy of these two partitions. The idea is formally

presented in De�nition 5.

De�nition 5. Consider a list O = {(x1, y1), (x2, y2), . . . , (xn, yn)} where xj ∈ {�,�}
and yj is a membership probability p̂(li|q̃). The list is sorted such that yj ≤ yj+1. Also

consider c as a candidate value for cq̃. In this case, Oc(≤) is a sublist of O for which

the condition yj ≤ c holds for all (xj, yj) ∈ Oc(≤). Similarly, Oc(>) is a sublist of O for

which the condition yj > c holds for all (xj, yj) ∈ Oc(>). In other words, both Oc(≤) and
Oc(>) are partitions of O induced by c.

Firstly, our approach calculates the entropy in O, as shown in Equation 4.1. Then,

it calculates the sum of the entropies in each partition induced by c, according to Equa-

tion 4.2. Finally, it sets cq̃ to the value of c that minimizes E(O)−E(Oc).

E(O) = −
(
N�(O)
|O| × log

N�(O)
|O|

)
−

(
N�(O)
|O| × log

N�(O)
|O|

)
(4.1)

where N� gives the number of labels in Lq̃ but not in L∗q̃, and N� gives the number of

labels in Lq̃ and also in L∗q̃.

E(Oc) =
|Oc(≤)|
|O| × E(Oc(≤)) +

|Oc(>)|
|O| × E(Oc(>)) (4.2)

To use the MDL approach, we employ a validation-set V composed of several in-

stances q̃, so that both the true labels L∗q̃ and the predicted labels Lq̃ are previously

known for all instances in this set. Our goal is to build a function γ(Lq̃) which receives
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as inputs a set of candidate labels Lq̃ and returns the best entropy cut for these labels,

predicting the labels. Thus, the function γ(Lq̃) gives the mean of the best entropy cuts

associated with instances q̃ ∈ V having Lq̃ as candidate labels. Equation 4.3 presents this

mean. If there is no instances q̃ ∈ V having speci�cally the candidate labels, then the

function returns a mean of best cuts of all instances in the validation set.

γ(Lq̃) =
∑

c
Lq̃
q̃

NLq̃
(4.3)

where cLq̃q̃ are best entropy cuts associated with the candidate labels Lq̃ and NLq̃ is the

number of validation instances associated with these labels.

4.1.1.2 Combination Methods Using MMCA

The combination methods proposed in this work join classi�ers that use di�erent visual

features looking for improvements in the overall accuracy. The proposed algorithms may

appear very similar to some ensemble methods in the literature, like bootstrap aggregating

or bagging, but they di�er from them because: (i) the classi�ers are trained with di�erent

features (ii) the training set used is always the same for every classi�ers (only the features

used are di�erent), and (iii) the misclassi�cation of a classi�er is never used again.
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Figure 4.4: Illustration of a proposed combination of the MMCA approach considering only BIC and CCV
descriptors: the majority voting consider each class, with probability more than zero, as a vote with equal
weight. A top-k de�nes which labels should be assigned.

First combination method, called Majority Voting (MV), gives each candidate label

the same weight when voting. More speci�cally, for each instance a classi�er generates,

as presented, a ranking with the labels and its probability. This ranking is pruned using

a top-k approach, and then, each remaining label (the ones with higher probability) gives

an equal vote, creating a �nal ranking ordered by the votes. This �nal ranking is pruned

again (also using a top-k method), resulting in the �nal set of labels that is assigned to
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the image. Figure 4.4 presents a example of this method considering classi�ers trained

using BIC and CCV visual descriptors.

The second proposed combination method, called Majority Probability (MP), gives

each candidate label a weight (equal its probability) when voting. Speci�cally, for an

instance, the method generates a �nal ranking by calculating the mean probability of

each label considering all the rankings. Then, the �nal rank is pruned in top-k way.

Figure 4.5 presents a example of this method considering classi�ers trained using BIC

and CCV visual descriptors.
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Figure 4.5: Illustration of a proposed combination of the MMCA approach considering only BIC and CCV
descriptors: the majority probability calculates the mean of all labels and a top-k is used to de�ne which labels
should be assigned.

4.1.2 Pairwise Approach

In this section, we present our pairwise algorithm for automatic clothing annotation

named Multi-Modal/Multi-Label/Multi-Instance Clothing Annotation algorithm (or sim-

ply M3CA). For this approach (Liu [2009]), pairs of images are provided as input to our

classi�cation algorithm. A pair of images is denoted as an instance, as described in

De�nition 6.

De�nition 6. An instance (q̃b) = (q, b) is composed by a base image b and a query

image q. Labels associated with the base image b are called base labels and are always

known in advance. Labels associated with the query image q must be predicted. An

instance is represented by a set of (visual and textual) distances between q and b, along

with the base labels. Speci�cally, an instance is represented as a list (q̃b) = (q, b) =

{f1, f2, . . . , fm, v1, v2, . . . , vn} of m distance values and n base labels.
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It is important to highlight that the L1 distance function3 was used to calculate the

similarity between two images, since it is suitable for generating sparse vectors due to its

property in producing results with zero or very small values.

Our proposed multi-instance clothing annotation algorithm also uses association

rules (Agrawal et al. [1993]) to produce classi�ers that predict garment items associated

with an arbitrary image, as presented in Section 3.3. The algorithm receives as input

a labelled training-set D composed of records of the form < q,B >, where q is a query

image and B is a bag of base images. The bag B is partitioned into multiple instances of

the form (q̃b,L∗q) = ((q, b),L∗q), where b ∈ B and L∗q is a set of labels associated with the

query image q (i.e., the garment items appearing in image q). Hence, in this case, it is

known in advance the base and query labels, in addition to the feature distances between

q and b. The test-set T also consists of records of the form < q,B >. Again, the bag B

is partitioned into multiple instances (q̃b, ?) = ((q, b), ?). In this case, however, only the

distances between images q and b and the base labels are known, whereas labels L∗q are
unknown.

Just like the pointwise approach, the algorithm extracts a rule-set R composed

of garment rules from each instance q̃b ∈ D. As described in De�nition 4, a garment

rule is composed of an antecedent, with any mixture of visual and textual features, and a

consequent, with a label li. These rules are used to predict labels Lq, which approximates

as accurately as possible L∗q (the ground-truth for query image q).

From R, we extract Rq̃b = R(q,b) that is a set of garment rules applicable to instance

q̃b, according to De�nition 2. Thus, only rules in Rq̃b = R(q,b) are considered as valid

votes when predicting the labels for image q. The subset Rli
q̃b
of Rq̃b contains only rules

predicting label li. Like Equation 3.1, a score for each label s(q̃b, li) is calculated using

the con�dence as weight. The likelihood of query image q being associated with label li is

obtained by normalizing the scores, as expressed by p̂(li|q̃b), shown in Equation 3.2. Just

like the pointwise approach, higher values of p̂(li|q̃b) indicate lower distances between

images q and b, and labels associated with b are also likely to be associated with q.

Analogously to the MMCA aproach, the M3CA algorithm also needs to build the

function γ(L(q̃b)) to select the labels that should be assigned to the query image q. How-

ever, instead of using the function to directly predict the labels, as the MMCA approach,

the M3CA needs to aggregate di�erent instances related to a same query image q to,

�nally, predict the labels using the MDL algorithm.

More speci�cally, a query image q may appear within several (i.e., n) instances

(q̃bi) = (q, bi) ∈ T . For each instance (q̃bi) = (q, bi) ∈ T a speci�c set of labels L(q̃bi)

is associated with q. The �nal set of labels to be predicted is given as Lq = {L(q̃b1)
∪

L(q̃b2)
∪ . . .∪L(q̃bn)

}. After aggregating the labels, we use the best entropy cut to predict

3L1 distance function calculates the di�erence between two feature vectors by summing the absolute

value of each keyword: L1 =
∑N

i=1 |pi − qi|
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Table 4.1: Datasets.

pose.com chictopia.com

Number of photos 2,306 1,579
Number of tags 7,501 5,093
Tags per photo 3.25 3.23

the labels that are associated with q.

4.2 Experimental Protocol

In this section, we present the experimental setup we used in the �rst phase of this dis-

sertation. For the clothing annotation task, we carried out experiments in two scenarios:

1. Ideal scenario: used to evaluate the visual descriptors and their best con�guration

(for example, the size of the visual dictionary). To achieve this, we created a small

dataset composed of 100 images, and to avoid the e�ects of the background, we

performed a manual segmentation of each image. In this scenario, we have single-

class classi�cation (only one class should be assigned to each image) with 10 images

per class. Therefore, we use only the MMCA approach considering that the label

with higher probability is assigned to the image.

2. Realistic scenario: used to analyze the proposed algorithms (MMCA and M3CA)

and the baseline. In this scenario, we used two datasets crawled from social net-

works. Each image may have more the one label (tag), that represents the garment

items, which makes the scenario a multi-label classi�cation. The segmentation was

made automatically using a pose estimation algorithm, proposed by Yang and Ra-

manan [2011].

In this section, we distinguish some di�erences between the scenarios. Section 4.2.1

presents some statistics of the datasets used. The visual and textual features used are

presented in Section 4.2.2. Section 4.2.3 presents the baselines used in this work. The

experimental protocol used are presented in Section 4.2.4. Finally, Section 4.2.5 presents

the measures used to evaluate the experiments.

4.2.1 Datasets

As presented, the ideal scenario was designed to study the impact of the visual features

over the overall accuracy in an attempt to avoid any external or unadvised error. This

scenario consists of a dataset of 100 images (10 classes with 10 images per class) crawled

from instagram.com between October 11 and November 10, 2013.

pose.com
chictopia.com
instagram.com
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We chose to work with the realistic scenario to evaluate the performance of our

method in a more real situation. Thus, we have crawled images and associated tags

from two fashion-related social networks, namely pose.com and chictopia.com. Basic

information about the resulting datasets is shown in Table 4.1. The pose.com dataset

was crawled from January 15, 2014 to January 25, 2014. This resulted in more than

three thousand images. The chictopia.com dataset was crawled from January 25, 2014

to February 5, 2014 resulting in more than two thousands images. At the end, the whole

dataset for our realistic scenario is composed of approximately �ve thousands images.

Combining labels from both datasets leads us to a set of 31 discrete possibilities, including

�trousers�, �glasses�, �shirts�, �shoes�, and �sneakers�.
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Figure 4.6: Cumulative distribution function of labels for both datasets.

Figure 4.7 shows the frequency of each label. As expected, some labels occur fre-

quently (e.g., �shirt�, �jeans�, and �coat�), while others occur only few times (e.g., �tie�,

�stockings�, and �romper�). Figure 4.6 shows the cumulative distribution function for

labels in chictopia.com and pose.com. The probability for an arbitrary image having

at least x labels decreases almost linearly in both cases.
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Figure 4.7: Frequency distribution related to the dataset: (a)-(b) for Chictopia and Pose, respectively.

When working with visual image descriptors a pose estimation and image segmen-

tation is needed since the background may make features more noise. Thus, in order to

avoid the e�ect of background pixels over the description of the image, we have created a

pose.com
chictopia.com
pose.com
chictopia.com
chictopia.com
pose.com
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mask to separate the relevant pixels. For the ideal scenario, the mask creation was made

manually for each image. Figure 4.8 shows the original image and relevant pixels.

(a) (b)

Figure 4.8: Example of manual segmentation: (a) Original image (b) Pixels of interest in white.

For the realistic scenario, we ran a human pose estimation algorithm (Yang and

Ramanan [2011]) and then, create a mask based on the skeleton generated. Speci�cally,

using the skeleton that estimates the human pose, we employ a factor of proportionality

in order to enlarge each line of this estimation, thus encompassing the entire pose. So,

we separate the pixels and obtain the �nal set of relevant pixels (i.e., non-background

pixels).

(a) (b) (c)

Figure 4.9: Example of automatic segmentation: (a) Original image (b) Skeleton generated by Yang and
Ramanan [2011] (c) Pixels of interest in white.

To use this mask, an adaptation was made in the global descriptor algorithms while

they extract the features. For BoW and BossaNova approaches, this mask was used as

an intermediate step to select only relevant points before creating the visual dictionary,

since was used a dense sampling. Figure 4.9 shows the original image, a pose estimation

skeleton (Yang and Ramanan [2011]) and relevant pixels.

We discarded images according to the proportion of background/non-background

pixels. More speci�cally, we discarded all images for which the proportion of relevant



44 Chapter 4. Clothing Annotation

pixels (non-background pixels) is lower than a �xed threshold αmin. We evaluate the

impact of this parameter over the results in Chapter 4.3. Table 4.2 shows the number of

remaining images (i.e., the �nal dataset) for di�erent values of αmin.

Table 4.2: Images with enough relevant pixels.

αmin pose.com chictopia.com

0.05 1,308 1,257
0.10 969 937
0.15 578 421

4.2.2 Features

As introduced, visual and textual features are exploited by our methods in order to create

more e�cient classi�ers. Considering the visual features, there is a myriad of visual image

descriptors available in the literature (Zhang and Lu [2004]) and choosing the most ap-

propriate descriptors for a determined problem is a hard task, since di�erent descriptors

may produce di�erent results. One contribution of this work is to de�ne the most inter-

esting descriptors to solve the clothing annotation problem. We evaluated 10 global and

6 local feature extraction techniques, as presented in Section 3.1. The global descriptors

were evaluated using the raw features extracted while the local ones were transformed

into some mid-level representation and then evaluated. As introduced in Section 3.2, each

local descriptor were evaluated using two di�erent mid-level representations: BoW (Sivic

and Zisserman [2006]) and BossaNova (de Avila et al. [2011]). For the former approach, a

hard assignment was chosen at the coding stage. This occur in order to try a more sparse

histogram, that tends to be easier to learn with. At the pooling stage, a max method

was chosen. For BossaNova technique, after creating the visual features a normalization

is made to get a more sparse histogram. As presented in Section 3.2.2, localized soft

assignment was chosen at the coding stage while a BossaNova pooling was chosen at the

pooling step. It is important to highlight that, for all this techniques, we used a dense

sampling to get the patches, and then, we extract the features.

The textual features are represented by the tags associated with an image, which

may bring useful information of photos that, associated with visual features, may help

creating a more robust application for image annotation. For the realistic scenario, we

created a vocabulary containing relevant terms related to di�erent garments items using

the tags crawled with the images. After �ltering out all terms not in the vocabulary, the

remaining textual content is described with TF-IDF vectors. The TF-IDF transformation

weights each term according to its discriminative capacity. Textual similarity between

two images is assessed using the standard cosine and BM25 measures (Baeza-Yates and

Ribeiro-Neto [2011]).

pose.com
chictopia.com
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It is important to emphasize here that the focus of this work is to automatic an-

notate clothes based on the visual features. We use the textual ones looking only for

improvements of the results and to create a more robust method. Thus, we did a exten-

sive evaluation of the visual descriptors, leaving the evaluation of the textual features as

a future work.

4.2.3 Baseline

To evaluate the methods proposed in this work, we considered the M3LDA algorithm,

proposed by Nguyen et al. [2013] as the baseline. This algorithm is a representative of

the state-of-the-art in multi-label, multi-modal and multi-instance classi�cation. It uses

Latent Dirichlet Allocation (LDA) to create a rank with the most likely labels of each

test image. It provides superior mean Average Precision (mAP) numbers when compared

against popular algorithms such as two MIML models RankLoss (Briggs et al. [2012]),

DBA (Yang et al. [2009]), and two annotation models that allow region annotation, TM

(Duygulu et al. [2002]) and Corr-LDA (Blei and Jordan [2003]).

4.2.4 Cross Validation

For both scenarios, we conducted k-fold cross-validation in order to evaluate the algo-

rithms. According to this protocol, a dataset is randomly split into k mutually exclusive

subset (folds) of almost the same size. For the ideal scenario, the k−1 subsets are chosen

as training set, and the remaining one is the test set. To work with all the dataset,

the cross-validation process is repeated k times, and each time a subset is chosen to be

the test set (without repetition). For the realistic scenario, k − 2 subsets are chosen as

training set, one fold is used as test-set, and the remaining one is the validation-set (i.e.,

in order to build the MDL function). The last subset is only used in the latter scenario,

because in the former we predict only one class per image, so there is no need of the

MDL function. The process is repeated k times, and each time a subset is chosen to be

the validation set while other subset is chosen to be the test one (without repetition),

working with all dataset. At the end, the cross-validation estimate the arithmetic mean

of all runs and the standard deviation between each one. The results reported are the

average of the �ve runs.

Table 4.3 presents the cross-validation used in di�erent scenarios. For the ideal

scenario, where we only use the MMCA approach, we made the experiments with with

cross-validation without the validation-set, since this scenario is composed of single-class

classi�cation. For the realistic scenario, we used cross-validation with the validation-set

when working with both approach, since this is a multi-label scenario, when we need to

build the MDL function to de�ne which labels should be assigned.
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Table 4.3: Cross-validation in di�erent scenarios.

Ideal
Scenario
(single-class)

Realistic
Scenario
(multi-label)

MMCA
√ √

(MDL)
M3CA × √

(MDL)

4.2.5 Evaluation Measures

To evaluate the experiments in the ideal scenario, we used the overall accuracy. For the

realistic scenario, which may be categorized into a multi-label classi�cation, we used the

Jaccard distance as evaluation measure. Speci�cally, given the correct set of labels L∗q
and the predicted set of labels Lq for each query image q in the test-set T , the Jaccard
distance J is given as shown in Equation 4.4.

J =

∑ |{L∗q ∩ Lq}|
|{L∗q ∪ Lq}|
Nq

(4.4)

where Nq is the number of distinct query images in T .

4.3 Results and Discussion

In this section, we present the experimental results to evaluate: (i) visual features, and

(ii) proposed methods. When evaluating the visual features, we build the experiments

in order to investigate how clothing annotation is impacted by di�erent types of visual

features. The second set of experiments, to evaluate the proposed methods, were devised

to investigate: (i) the most suitable approaches for the clothing annotation task, (ii) how

each method is impacted by the proportion of relevant pixels, and (iii) how the proposed

algorithms perform relatively to the baseline.

For investigating the presented items, we tested and varied some parameters to

achieve more robust results. Concerning global descriptors, we have considered only

the size of the association rule used on the classi�er as a parameter. For BoW (Sivic

and Zisserman [2006]), the parameters observed were the size of the rule as well as

the size of the visual dictionary K (the number of keywords generated by the mid-level

representation). Regarding BossaNova approach (de Avila et al. [2011]), in addition to

the parameters evaluated for the BoW, we have observed the number of bins β used in

the quantization step to encode the distances from one local descriptor to clusters. The

default values for the size of the dictionary and the number of bins β were selected using

a parameter evaluation made by de Avila et al. [2011].

In Section 4.3.1, we present the experimental evaluation of the feature descriptors

and then the evaluation of the proposed approaches. For each evaluation process, we
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computed the mean processing time4, in seconds, and the standard deviation based on

�ve executions of each procedure. In Section 4.3.2, we present a comparison among the

methods proposed for clothing annotation and the baseline.

4.3.1 Visual Features Evaluation
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Figure 4.10: The overall accuracy (left) and the processing time (right), in seconds, obtained using global
descriptors. First row shows accuracy numbers for color descriptors. Second one shows the accuracy for texture
descriptors. Last row shows accuracy numbers for shape descriptor.

In this section, we present the experimental results carried out for evaluating visual

descriptors. As introduced in Section 4.2, we use the overall accuracy and an ideal

scenario for these experiments.

Figure 4.10 shows the overall accuracy for the global descriptors followed by the

mean processing time, in seconds, for each descriptor. Each plot groups descriptors

of the same type: color, texture and shape. Between the global descriptors presented in

4The processing time computed is only the time spent by the classi�cation algorithm.



48 Chapter 4. Clothing Annotation

Section 3.1.1, the best ones yield overall accuracy around 25%, which includes BIC, CCV,

GCH and LCH descriptors. ACC, EOAC, and LAS achieved lower accuracy (around 15%)

and are good candidates to be discarded on our next experiments.

 10

 15

 20

 25

 30

 35

 40

 2  3  4

O
ve

ra
ll 

A
cc

ur
ac

y

Rule size

SIFT
SURF

BRIEF
BRISK

FREAK
ORB

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2  3  4

P
ro

ce
ss

in
g 

T
im

e 
(s

)

Rule size

SIFT
SURF

BRIEF
BRISK

FREAK
ORB

 10

 15

 20

 25

 30

 35

 40

 2  3  4

O
ve

ra
ll 

A
cc

ur
ac

y

Rule size

SIFT
SURF

BRIEF
BRISK

FREAK
ORB

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 2  3  4

P
ro

ce
ss

in
g 

T
im

e 
(s

)

Rule size

SIFT
SURF

BRIEF
BRISK

FREAK
ORB

 10

 15

 20

 25

 30

 35

 40

 2  3  4

O
ve

ra
ll 

A
cc

ur
ac

y

Rule size

SIFT
SURF

BRIEF
BRISK

FREAK
ORB

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 2  3  4

P
ro

ce
ss

in
g 

T
im

e 
(s

)

Rule size

SIFT
SURF

BRIEF
BRISK

FREAK
ORB

Figure 4.11: The overall accuracy (left) and the processing time (right), in seconds, obtained with BoW using
hard assignment coding and max pooling in di�erent local descriptors. First row shows the results with K = 1024.
Second one shows the results with K = 2048, and the third shows the overall accuracy with K = 4096.

Figure 4.11 shows the overall accuracy for the BoW using di�erent types of local

descriptors and the mean processing time of each one. The plot represents the results

varying the size of the visual dictionary (or feature vector) K, which was chosen based

on a parameter study made by de Avila et al. [2011]. Through the plot, it is possible to

see that SIFT descriptors yields a good accuracy with any con�guration of K. It is also
possible to observe that when K = 1024 the proposed approach spends much less time if

compare with the others.

Figure 4.12 shows the overall accuracy for the BoW using SIFT descriptor and its

processing time. The plot represents the results varying the size of the visual dictionary

(or histogram of a image) K. According to the plot, one can see that K = 1024 yields
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Figure 4.12: The overall accuracy (left) and the processing time (right), in seconds, obtained with BoW+SIFT,
using hard assignment coding and max pooling.

a good accuracy (27%) if compared with the others. It is also the most stable, with is

virtually the same accuracy for all values of rule size. However, the best results, around

36%, were achieved with K = 2048 and rule size 2, but with the increasing of the rule

size, the accuracy tends to decrease.

Figure 4.13 shows the overall accuracy of BossaNova using di�erent types of local

descriptors, followed by the mean processing time of each one. The plot represents the

results varying the size of the visual dictionary (or histogram of a image) K, which was

chosen based on a parameter study made by de Avila et al. [2011], and preserving the

number of bins used in the quantization step in β = 2.

Note that, according these results, SIFT descriptor is the most consistent one,

since it yields good results independent of the con�guration of K. The ORB descriptors,

for example, yields good results when K = 1024 and K = 4096, but it decreases with

K = 2048. Another example is the SURF descriptor, that yields good results when

K = 2048 and K = 4096, but not so good with K = 1024. It is also possible to observe

that when K = 1024 the processing time spends much less time if compare with the

others.

Figure 4.14 shows the accuracy for the BossaNova approach using only SIFT de-

scriptor, with di�erent dictionary sizes K and the numbers of bins β used in the quanti-

zation step. The values were de�ned based on a parameter evaluation study conducted

by de Avila et al. [2011]. For the parameter β, three di�erent values were evaluated: 2,

3 and 4. However, the results were very similar for all these values. This happens due

to a normalization made by the BossaNova approach while creating the histogram, since

with the increase β the numbers of codewords with high value tends to decrease and the

normalization tries to maintain only the codewords with higher value. Thus, we report

only the results for β = 2. Through the plots, it is possible to see that K = 1024 yields

the best results.



50 Chapter 4. Clothing Annotation

 10

 15

 20

 25

 30

 2  3  4

O
ve

ra
ll 

A
cc

ur
ac

y

Rule size

SIFT
SURF

BRIEF
BRISK

FREAK
ORB

 0

 1000

 2000

 3000

 4000

 5000

 6000

 2  3  4

P
ro

ce
ss

in
g 

T
im

e 
(s

)

Rule size

SIFT
SURF

BRIEF
BRISK

FREAK
ORB

 10

 15

 20

 25

 30

 2  3  4

O
ve

ra
ll 

A
cc

ur
ac

y

Rule size

SIFT
SURF

BRIEF
BRISK

FREAK
ORB

 0

 2000

 4000

 6000

 8000

 10000

 2  3  4
P

ro
ce

ss
in

g 
T

im
e 

(s
)

Rule size

SIFT
SURF

BRIEF
BRISK

FREAK
ORB

 10

 15

 20

 25

 30

 2  3  4

O
ve

ra
ll 

A
cc

ur
ac

y

Rule size

SIFT
SURF

BRIEF
BRISK

FREAK
ORB

 0

 5000

 10000

 15000

 20000

 2  3  4

P
ro

ce
ss

in
g 

T
im

e 
(s

)

Rule size

SIFT
SURF

BRIEF
BRISK

FREAK
ORB

Figure 4.13: The overall accuracy and the processing time, in seconds, obtained with BossaNova using di�erent
local descriptors. First row shows the results with K = 1024. Second one shows the results with K = 2048,
and the third shows the overall accuracy with K = 4096. For all results, the numbers of bins β used in the
quantization step was �xed in 2.
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4.3.2 Proposed Methods Evaluation

For the experiments in realistic scenario, we have selected seven descriptors based on the

experimental results presented in Section 4.3.1. The selected ones are those that yield

at least 21% of accuracy: BIC, CCV, GCH, LCH, QCCH, SID and UNSER. For BoW

and BossaNova approaches, we chose only the best local descriptor: the SIFT one. In

addition to this, we chose to create visual dictionaries with K = 1024 since they achieve

best and stable results.

It is also important to emphasize that based on the results with the ideal scenario,

we could observe that smaller the size rule smaller the processing time and, in most

cases, the accuracy tends to be very close for all variations of size rule. This allows us to

conclude that the lowest value of size rule tends to be the best choice, since we capture

the best bene�t, i.e., we achieve good results in less processing time if compare with

others size rules. Thus, all experiments in this section were made using size rule 2.

Next, the results of the MMCA approach using each one of the visual descriptors are

presented in Section 4.3.2.1. The results of combinations of the outputs of the MMCA

method are presented in Section 4.3.2.2. Finally, a comparison between the proposed

methods and the baseline are presented in Section 4.3.2.3.

4.3.2.1 MMCA Evaluation with Di�erent Visual Descriptors

Figure 4.15 shows all the results for the evaluation of the methods. For each realistic

scenario, we ran all feature descriptors using the MMCA approach and the results are

shown in terms of Jaccard distance and standard deviation between the folds. It is possible

to observe that, for most cases, SID descriptor is the best one amongst all of them. The

BossaNova (BN) approach (using SIFT descriptor) is in second place in some cases,

however, in general, mid-level approaches were not so e�ective, di�ering from the results

observed from in the ideal scenario, where mid-level approaches were better than the

global descriptors. This can be explained by the fact that, how the keypoints of the mid-

level strategies were extracted using dense sampling, when using a perfect segmentation

mask, as in the ideal scenario, there is no noise or wrong codewords generated. However,

if the mask do not perfectly adjust, wrong codewords may be created, interfering in the

�nal result.

4.3.2.2 Visual Descriptors Combination with MMCA

Figure 4.16 shows a comparison between the di�erent combinations of the MMCA ap-

proach. In addition to the two combinations proposed in Section 4.1.1.2, we use two

traditional ones: Condorcet Method (CM) and Borda Counting (BC). All combinations

were evaluated using top-5, top-6 and top-7 approach. As expected, The combination of

MMCA results yields better accuracy than the MMCA approach. The results were very
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Figure 4.15: Results for the MMCA method for Chictopia (left) and Pose (right).

similar, with Borda Counting being better, in most cases, for the Chictopia dataset, and

Majority Probability being better, in most cases, for the Pose dataset.
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Figure 4.16: The results of the combination of outputs of the MMCA for Chictopia (left) and Pose (right). Four
combinations methods were compared: Majority Voting (MV), Majority Probability (MP), Condorcet Method
(CM) and Borda Counting (BC).

4.3.2.3 Comparison with the Proposed Methods with the Baseline

Figure 4.17 shows a comparison between the proposed M3CA and the baseline (M3LDA).

We also included the best results yielded using MMCA and the best results using some

combination algorithm. As expected, accuracy increases with the number of features

available. For both dataset, M3CA provides accuracy improvements that vary from 20%

(M3LDA top-3) to 30% (M3LDA top-7). Through the �gure, it is also possible to see

that with the increasing of the mask α, the accuracy tends to increase. This reveal that

small mask discard important visual features that may be used by the learning algorithm.

The combination of MMCA results yields better accuracy than the M3CA approach,

however, the MMCA approach, without combination, was not capable to achieve accuracy

close to the M3CA method. Despite of achieving best results, the accuracy of the M3CA

are almost as good as the combinations, but with much less processing time spent, since

to get the combination, we need to get all results from each descriptor.

Table 4.4 presents some examples of annotation of our proposed M3CA and the

original annotations. First example shows a case when the algorithm could distinguish
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Figure 4.17: The results of the M3CA and the baseline for Chictopia (left) and Pose (right). We also considered
the best MMCA using SID, and the best combination algorithm for each dataset.

Table 4.4: Example of output of our proposed M3CA compared with the original annotations. In the third
image, the predicted annotations are identical to the original ones.

Images

Original
Annotation

bag, hat,
shorts, sneakers,
sweater

bag, hat, heels,
pants, shirt,
sweater

bag, skirt, shoes,
sweater

Automatic
Annotation

shorts (0.12),
sweater (0,09),
shoes (0,08)

hat (0.10),
romper (0.09)

skirt (0.11), bag
(0.09), shoes,
(0.08) sweater
(0.08)

between several garment items but could not separate the sneakers from the ground, since

both are very similar. Second example shows when the method could not distinguish the

clothes, since all the garment items have the same color. Thus, the algorithm considered

all the clothes (pants, shirt, sweater) as a single cloth, and predicted a romper. The last

case is a perfect match of the predicted labels and the original ones. This case is only

achieved when the function generated by the MDL suggested the perfect cut, predicting

only right labels.





Chapter 5

Clothing Parsing

In this chapter, we present the proposed method for clothing parsing, called Multi-

scale Convolutional Neural Network, or simply M-CNN. Section 5.1 shows the proposed

method. The experimental protocol used is introduced in Section 5.2, while the results

obtained are presented in Section 5.3.

5.1 Deep Learning Approches For Clothing Parsing

Figure 5.1 shows an overview of the proposed method, that has three levels with di�erent

network architecture in each one. These network levels process images with di�erent

dimensions, i.e., the �rst level is responsible to classify larger images while the last level

processes smaller ones. Our proposed method, based on Convolutional Neural Networks

(CNN), works using some kind of hierarchical model, that classi�es images with di�erent

sizes in di�erent levels of the hierarchy. More speci�cally, the query image is splitted

into small tiles (or patches) with �xed size, which is, in this case, 64 × 64 × 3 (this last

dimension corresponds to the format model of the image, which is RBG). These tiles are

evaluated and only the ones with signi�cant information (not background) are selected.

The �rst level network processes these tiles and, the ones considered as classi�ed (low

entropy) do not need more processing, unlike the ones with high entropy (several classes

with high probability associated). These are again splitted into smaller tiles, with size

32× 32× 3, and evaluated. The selected tiles are processed by the second level network.

Once more, tiles considered as classi�ed stop being processed after this layer and, the

unclassi�ed ones are splitted into even smaller patches, with size 16 × 16 × 3. The last

level network is responsible to �nally classify the remaining tiles. At the end, a class is

associated to each tile and a new segmented image may be recomposed.
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Figure 5.1: Overview of the M-CNN approach. The original image is splitted into little tiles that are candidates to be classi�ed in the �rst level network. The unclassi�ed
tiles are splitted again and goes for the second network. The same occurs on the last level of our architecture.
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It is important to highlight that the proposed method could have as any levels as

needed. However we used only three in this case, because the smallest clothing item

has total amount of pixels similar (248 pixels of a bracelet) to the size of the last level

capacity (16 × 16 = 256 pixels). So, based on this, an additional level would have only

parts of the items and could never receive a entire one.

A tile is selected and processed based on its signi�cant information. This is per-

formed by evaluating (using the groundtruth mask1) the number of pixels not in the

background. If the total amount of relevant pixels achieves a certain threshold (in this

case, 10% of the total size of the tile) then the tile is selected. This is done, in order to

avoid the method to classify a tile with almost no signi�cant information with a class,

just based on some pixels. To evaluate if a tile is considered classi�ed or not, the en-

tropy (Alpaydin [2010]) measure was applied. Commonly used in information theory,

this measure characterizes the (im)purity of an random collection of instances. In this

case, it denotes the purity of a single tile in relation to the number of classes associated

to it, i.e., the more classes with high probability related to the patch the higher entropy

it has (more impure). Thus, entropy helps our approach to de�ned which patches are

considered classi�ed and which ones are not. Therefore, an entropy threshold is de�ned

to categorize the tiles between classi�ed and unclassi�ed. How the output of each level

of the NN is a ranking with the classes and respective probabilities, a value of entropy

for each tile may be calculated and, if this value is higher than the threshold, the tile is

unclassi�ed, otherwise, it is classi�ed.

Before describing the architecture of each network, we must emphasize that the

recti�er function was used as activation function (so the neurons are called ReLUs) for

every processing unit, the softmax function was used as classi�cation layer in all networks,

thus the cost function is a log loss one. All details about these frameworks, as well

as the equations, are presented in Section 3.4. After modelling the networks, we used

Convolutional Architecture for Fast Feature Embedding (Ca�e) (Jia et al. [2014]), a deep

learning framework, to create and experiment them. This framework is more suitable due

to its simplicity and support to parallel programming using CUDA R©, a NVidia R© parallel

programming based on graphics processing units.

A drawback of deep learning strategy is the large number of parameters, which are,

in this case, �ve di�erent ones: (i) learning rate, a parameter that determines how much

an updating iteration in�uences the current value of the weights, (ii) weight decay, a

regularization that is an additional term in the weight update rule that penalizes large

weights to prevent over�tting, (iii) step size, which de�nes the number of iterations until

the learning is divided by a constant value (gamma) equals to 0.1, (iv) momentum, a

parameter that is used to prevent the system from converging to a local minimum or

1The groundtruth mask is an image with every pixel classi�ed with its corresponding class. Usually,

this mask is built using human e�ort.
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saddle point, and (v) maximum iterations, that represents the total number of iterations

of the neural network. Select the best value for each parameter is totally empirical in

this case. This requires a high number of experiments and a well-structured protocol.

In this case, the �nal architectures and its parameters were adjusted considering a

full set of experiments guided by Bengio [2012]. We started the setup experiments with

a small networks and, after each step 2, new layers, with di�erent number of processing

units, were being attached until a plateau was reached, i.e., until there is no change in

the loss and accuracy of the networks. At the end, initial architectures for each level

were obtained. After de�ning these architectures, the best set of parameters was selected

based on convergence velocity versus the numbers of iterations needed. During this step,

a myriad of parameters combinations, for each level, were experimented and, for the best

ones, new architectures, close to the initial one, were also experimented. The networks

with best results were used in this work and are presented next.

The �rst level network is composed of six layers. Figure 5.2 presents an overview

of the network. The �rst convolutional layer �lters the 64× 64× 3 input image with 128

processing units of size 4 × 4 × 3 with a stride3 of 2 pixels. After, a max pooling layer

with 2×2×3 window is applied followed by a LRN layer. The second convolutional layer

takes as input the output of the �rst LRN layer and �lters it with 512 processing units of

size 4× 4× 3 with a stride of 1 pixel. Another max pooling layer with 2× 2× 3 window

is applied followed by other LRN layer. The third convolutional layer �lters the output

of the second max pooling with 512 units of size 2× 2× 3 with a stride of 1 pixel. After

this layer, a max pooling with 2 × 2 × 3 window is applied, but no normalization. The

fully-connected layers have 1024 neurons each. The classi�er layer has 31 neurons that

correspond to the number of classes of this problem. After the experiments performed

to evaluated the parameters, in this level, the best values for the learning rate, weight

decay, step size, momentum and max iterations were 0.01, 0.001, 10000, 0.9 and 100000,

respectively.
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Figure 5.2: First Level Network: more robust network to classify larger tiles.

The second level network is also composed of six layers. The layers are the same of
2Experiment considering the �ve folds in each level.
3This is the distance between the centers of each window step.
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those from the �rst level network, changing only the number of neurons, the size of the

window and the stride. An overview of the second level network is presented in Figure 5.3.

The �rst convolutional layer �lters the 32× 32× 3 input image with 96 processing units

of size 4 × 4 × 3 with a stride of 1 pixels. After, a max pooling layer with 2 × 2 × 3

window is applied followed by a LRN layer. The second convolutional layer uses with

256 neurons of size 4 × 4 × 3 with a stride of 1 pixel. Another max pooling layer with

2× 2× 3 window is applied followed by other LRN layer. The third convolutional layer

uses 256 units of size 2 × 2 × 3 with a stride of 1 pixel. After this layer, a max pooling

with 2x2x3 window is applied. The fully-connected layers have 512 neurons each. As

the �rst level network, the classi�er layer has 31 neurons. In this level, the best values

for the evaluated parameters learning rate, weight decay, step size, momentum and max

iterations were 0.01, 0.0001, 50000, 0.8 and 200000, respectively.
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Figure 5.3: Second Level Network

The third and last level network is composed of only four layers. Figure 5.4 presents

an overview of the third level network. The �rst convolutional layer �lters the 16×16×3

input image with 60 processing units of size 4× 4× 3 with a stride of 2 pixels. After, a

max pooling layer with 2× 2× 3 window is applied followed by a LRN layer. The second

convolutional layer uses with 128 neurons of size 4× 4× 3 with a stride of 1 pixel. After

this layer, a max pooling with 2 × 2 × 3 window is applied. The only fully-connected

layer has 512 neurons. As the �rst and second level network, the classi�er layer has 31

neurons. After the experiments performed to evaluated the parameters, in this level, the

best values for the learning rate, weight decay, step size, momentum and max iterations

were 0.001, 0.0001, 50000, 0.8 and 300000, respectively.

5.2 Experimental Protocol

In this section, we present the experimental setup we used in the second phase of this

dissertation. Section 5.2.1 presents some statistics of the dataset used. Section 5.2.2

shows the baseline used in this work. The experimental protocol used is presented in Sec-

tion 5.2.3. Finally, Section 5.2.4 presents the measures used to evaluate the experiments.
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Figure 5.4: Third Level Network: smaller network since the tiles have only 16x16 pixels.

5.2.1 Datasets

We used a segmented dataset, created by Yamaguchi et al. [2012], to evaluate the proposed

method. This dataset, called Fashionista, is composed of images collected from the

fashion-related social network, chictopia.com, together with the related tags. Then,

685 photos with good visibility of the full body and covering a variety of clothing items

were selected to be segmented. For this carefully selected subset, two Amazon Mechanical

Turk jobs were used to gather annotations. The �rst Turk job gathered ground truth pose

annotations while the second one gathered ground truth clothing labels on super-pixel

regions. All annotations are veri�ed and corrected if necessary to obtain high quality

annotations. In this ground truth dataset, 31 di�erent clothing items were observed, of

which 24 items have at least 50 image regions. Figure 5.5 shows the frequency of each

label. As expected, some labels occur frequently (e.g., �shirt�, �jeans�, and �coat�), while

others occur only few times (e.g., �intimate�, �stockings�, and �romper�).
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5.2.2 Baseline

The proposed method was evaluated considering the pointwise approach, also proposed

in this work and described in Section 4.1.1, as baseline. In this case, �xed-size tiles from

all clothing items were extracted considering the parsed dataset. Speci�cally, 16 × 16

tiles were extracted from all parsed segments of the Fashionista dataset and delivered to

be classi�ed. Thus, there is no tile with background pixels (since only tiles completely

inside the segment are considered) so when the classi�er predicts a right label for a tile

it successful classify all pixels inside the tile.

Considering all the evaluation made in Section 4.3, we modelled this task using mid-

level representation. So, based on Section 4.3.1, this MMCA approach was created using

BoW strategy (which achieved good results just like BN one) with dictionary of K = 1024

and SIFT as the local feature extraction technique. LAC was used as the machine learning

technique with rules of size 2, which achieved best results in experiments presented in

Section 4.3.1.

5.2.3 Cross Validation

Just like the clothing annotation phase, we conducted experiments using a k-fold cross-

validation strategy. The main di�erence is the validation subset, not needed anymore.

Thus, the dataset is randomly split into k mutually exclusive subset (folds) of almost the

same size. The k− 1 subsets are chosen as training set, and the remaining one is the test

set. To work with all the dataset, the cross-validation process is repeated k times, and

each time a subset is chosen to be the test set (without repetition).

5.2.4 Evaluation Measures

We used the overall accuracy over the pixels to evaluate the proposed approach. Just

like the normal overall accuracy, presented in Section 4.2.5, this measure calculates the

proportion of cases with right classi�cation over the total population. However, in this

case, the population are pixels. This measure is commonly used when working with

segmentation problems (Yamaguchi et al. [2013, 2012]), and can be seen as the rate of

positive classi�cation of the method.

5.3 Results and Discussion

In this section, we present the experimental results to evaluate the proposed method.

All computational experiments presented were performed on a 64 bits Intel R© i7 R© 4,960X

machine with 3.6GHz of clock and 64 GB of RAMmemory. A GeForce R© GTX Titan Black

with 6GB of internal memory and 2,880 CUDA Cores was used as graphics processing
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units, under a 6.5 CUDA version. Ubuntu 14.04.1 LTS (kernel 3.13.0-39-generic) was

used as operating system.
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Figure 5.6: Entropy distribution of tiles in the �rst level of our proposed method (left) and the accuracy with
di�erent entropy threshold (right).

To evaluate the method, we need �rst to de�ne a threshold for the entropy, that

de�nes which tiles are considered classi�ed and which are not. With this threshold

de�ned, the output of the each NN, a ranking with all 31 possible classes with respective

probability, may be used to calculate the entropy value of each test tile, allowing it to

be categorized as classi�ed or not. To de�ne this threshold, we used a plot relating the

tiles of the �rst level (with size 64× 64× 3) and the number of classes (and probabilities)

of each tile. More speci�cally, all pixels from each tile are processed and separated into

a class amongst the 31 possibilities. This results in a ranking for each tile relating the

classes that composed it and the probability of each class, respectively. A plot with this

ranking can be seen in Figure 5.6. Through the image, it is possible to notice two corners

(one with entropy value equals 0.30 and another around 0.45) that symbolize points of

interest. These two corners were evaluated in our proposed method to de�ned the best

value for the entropy threshold. As presented in Figure 5.6, the entropy value 0.3 achieves

best results for our proposed method.
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Figure 5.7: The number of pixels classi�ed (left) and the accuracy over the pixels (right) for each level of the
proposed M-CNN. In green, the overall accuracy over pixels of the method.

After de�ning the entropy threshold, the proposed method can be evaluated. Fig-

ure 5.7 shows the number of classi�ed pixels, as well as the accuracy for each level and

overall accuracy of the proposed algorithm. The �rst and second layers present similar

accuracy, although they have di�erent input size (the former has 64 × 64 × 3 while the
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latter has 32× 32× 3 as input size). These similarity may also be seen when comparing

the number of pixels classi�ed. This was expected, since the networks are very similar

and tend to learning approximate features. The last level, which has very di�erent net-

work architecture, has the smallest input size, which is 16×16×3. Mandatory, this level

should classify all the remain tiles, as presented in Figure 5.1. This causes a decrease of

the accuracy when compared to the others levels, maybe because some features could not

be learned well given the small size of the dataset.

A trade-o� between the accuracy and the processing time reaches all neural network

systems (Krizhevsky et al. [2012]) and it is not di�erent in the proposed approach. The

time of the neural networks to classify the tiles varied according to the number of train

instances, as can be seen in Figure 5.8. Thus, the �rst level performed the classi�cation

in less processing time, taking around three to four hours to realize all the procedure.

The second level has more tiles and, obviously, takes more processing time than the �rst

one. It takes around ten hours to �nally classify all the tiles. The last level, the one

with the biggest amount of tiles, takes, at least, twelve hours to �nish the classi�cation

process. At the end, the total processing time to complete the whole procedure of the

proposed method turns around a day. It may look like expensive to train the proposed

method, however, it is expected when using neural network to have high processing time

(Kattan et al. [2009]).
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Table 5.1 presents the �nal results based on the overall accuracy. The pointwise

approach were trained using the parameters as described in Section 5.2.2. It is possible to

see that the pointwise approach for clothing parsing achieve better result than this same

method for clothing annotation, since for the former, there is no e�ect of the background.

However, the M-CNN approach achieved much better results than the pointwise one,

verifying that the proposed method is very promising.

Table 5.2 presents some images with the proposed segmentation and the ground

truth parsing. Figure 5.9 presents the classes associated with the colors. Through the

images is possible to see that the method is a little biased, since a lot of tiles were classi�ed
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Table 5.1: Clothing Parsing results.

Method Pixel Accuracy (%)

Pointwise+BoW+SIFT+Rule Size 2 24.45
M-CNN 40.79

Table 5.2: Example of output of our proposed M-CNN compared with the original parsing.

Images

Original Parsing

Predicted Parsing

bag

bodysuit

belt

boots

coat

pants

sweater

pumps

intimate
suit

tights

jumpsuit

jacket

shoes

glasses

sneakers

headband

sandals

socks

jewelry

dress

gloves
hat
scarf

shorts

skirt umbrellavest cape

wallet

shirt

Figure 5.9: Color and the respective class.
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as shirt (blue). Perhaps, it is motivated by the distribution of classes of the dataset, since

most images (around 550) have this speci�c garment item. To avoid this problem, a large

dataset would be useful.





Chapter 6

Final Remarks and Future Work

This work presented algorithms for clothing parsing and annotation. In the �rst phase,

we tackle the clothing annotation task, proposing a pointwise and a pairwise approach.

The �rst one, called MMCA, takes advantages from the multi-modal method resulting in

a robust multi-label classi�cation. The latter one, called M3CA, takes advantage of being

multi-instance/multi-modal resulting also in a multi-label classi�cation. It also exploits

the bene�ts from di�erent types of visual features. We also proposed two methods of

combination of the pointwise results.

The novelty of this work relies on a multi-instance method that is capable of using

the information from an image creating a sparse classi�er. The performed experiments

show the bene�t of it, since it yields good results with less processing time when compared

with a state-of-the-art algorithm (Nguyen et al. [2013]).

Considering the descriptors, the SID descriptor is the best one amongst all of them.

The BossaNova approach (using SIFT descriptor) is in second place in some cases, how-

ever, in general, mid-level approaches were not so e�ective for the realistic scenario,

di�ering from the results observed from in the ideal scenario. This can be explained by

the fact that, if the mask does not perfectly adjust, wrong codewords may be created,

interfering in the �nal result of the mid-level strategies. Because SID descriptors analyze

the image as a whole, this problem is softened.

In three cases, the best result for the investigated problem were achieved using

combinations for the output of the MMCA approach: Majority Probability yields best

results for Pose dataset in two cases, while Majority Voting achieves best results for

Chictopia in one con�guration. For the remain cases, Borda Counting (BC) achieves

the best results in the last two con�gurations of the Chictopia dataset while Condorcet

Method (CM) achieves the best results in the last case for the Pose Dataset. However, in

the cases where the proposed combination methods loses, it generally stays close to the

best results, which makes this an advantage, since they are easier to implement than the

traditional ones.

67
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Though the combination of MMCA results yields better accuracy than the M3CA

approach, the MMCA approach, without combination, was not capable to achieve accu-

racy similar to the M3CA method. Despite of achieving better results, the accuracy of

the M3CA are almost as good as the combinations, but with much less processing time

spent, since to get the combination, we need to get all results from each descriptor.

Although M3CA is designed for clothing annotation, it is possible to be applied to

others tasks. In the future, we plan to adapt the proposed M3CA for di�erent applications

and evaluate the method with other learning techniques.

In the second phase, we propose a deep learning algorithm, based on convolutional

neural networks, to solve the clothing parsing problem. After some research in the liter-

ature, we observed a lack in problems to solve the image segmentation task using NN.

So we proposed a multi-scale algorithm, called M-CNN, in a attempt to solve this task.

We model the problem as some kind of hierarchical strategy, that classify images with

di�erent sizes in di�erent levels of the hierarchy.

Speci�cally, our method has three di�erent network levels that process images with

di�erent dimensions, i.e., after every level the images are decomposed into smaller tiles,

allowing the network to capture minimal details. In the �rst level, larger images are

processed in a robust network. Some images are considered as classi�ed, depending on

the entropy value. Unclassi�ed images are splitted into smaller patches and go to the

next level. Remaining images without classi�cation in this level are again divided into

even smaller patches and, �nally, classi�ed in the third level. At the end, we have a class

associated with each patch of the image and we can recompose it.

The experiments showed that the proposed method presents exciting results, out-

performing the baseline. Although the relevant results, the method needs some improve-

ments, such as taking advantage of the contextual information which is a future work.

As introduced, the proposed method could have as many levels as needed. So,

another future work is to test the proposed method with di�erent number of levels and

maybe using di�erent methods, such as a fuzzy one, to classify the �nal tiles at the last

level (this way, the last network would not be forced to classify the remaining tiles). Use

a convolution strategy instead of a �xed-size grid when creating tiles is another suitable

strategy that should be tested, since the former is more robust and could deliver to

the learning tiles with more representativeness. We also plan to use a larger dataset

to validate and improve the results of the proposed algorithm. Compare the method

with other baselines, such as Yamaguchi et al. [2012], and adapt the algorithm for other

applications, such as general image segmentation, are other future works.
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