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Resumo

Vários dos sistemas de informação atuais apresentam volume de dados crescente com-
binado com diversidade e mobilidade de suas aplicações. Entretanto, selecionar uma
infraestrutura computacional apropriada é ainda um grande desafio para projetistas de
tais sistemas. Esta dissertação demonstra como técnicas de avaliação de desempenho
atuais podem não ser ideais para comparar o desempenho de sistemas de bancos de
dados espaciais. Particularmente, considera-se as necessidades de usuários móveis, as
quais incluem tráfego constante de dados espaciais, tais como consulta por pontos de
interesse, visualização de mapas, zoom e caminhamento, roteamento e rastreamento
de localização. A avaliação realizada mostra que para obter uma comparação justa
é necessário utilizar cargas específicas (de dados e consultas) para cada característica
móvel - o que não é atualmente obtido através das ferramentas de benchmark presen-
tes no mercado. São também comparadas tecnologias de sistemas de dados relacionais,
orientados a documentos e baseados em grafos (NoSQL). De modo geral, este estudo
demonstra que as metodologias genéricas de benchmark não são ótimas e podem levar
a um projeto físico longe do ideal.

Palavras-chave: Análise de Desempenho, Bancos de Dados Geográficos, NoSQL, Big
Data.
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Abstract

Increasing data volume, application diversity and mobility are the foremost character-
istics of many current information systems. However, selecting the appropriate compu-
tational infrastructure is still a hard task for the designers of such systems. This work
demonstrates how current performance evaluation techniques may not be ideal when
comparing the performance of spatial database management systems. Specifically, we
consider the needs of mobile users that involve constant spatial data traffic, such as
querying for points of interest, map visualization, zooming and panning, routing and
location tracking. Our evaluation shows that a fair comparison requires specific work-
loads for each mobile feature – which is not currently achievable by the industry’s stan-
dard benchmark tools. We then compare technologies in relational (SQL), document-
oriented and graph-based DBMSs (NoSQL). Overall, this study demonstrates that the
one-size-fits-all benchmark methodologies are not optimal and may lead to a far from
an ideal system design.

Keywords: Benchmark, Spatial Databases, NoSQL, Big Data.
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Chapter 1

Introduction

The gathering and storage of spatial data regarding mineral resources, properties, wa-
ter sources and other landscape attributes were always important tasks of organized
human societies [14]. This however has changed greatly with the advance of computer
systems capable of handling such data, which was previously limited to paper-written
documents and maps. Such computer systems capable of processing and storing spatial
attributes are called Geographic Information Systems (GIS). Traditional examples of
GIS include: GRASS GIS1, QGIS2 and ArcGIS3.

Geographic information systems that provide public services often manage very
large databases with lots of user requests. Such GIS applications require continuous
availability, low response time and high throughput. Also, the underlying geographic
databases deal with spatial objects with varying complexity, for which operations are
much more expensive than in relational database management systems (RDBMS) that
manage conventional data [15, 22, 32, 49, 51].

Specifically, the demand for GIS and spatially-enhanced applications, mostly for
mobile devices, has increased alongside the user base. For example, in Brazil, the
number of mobile devices grows rapidly and, according to the Brazilian Institute of
Geography and Statistics (IBGE)4, it now reaches over 75% of the Brazilian population.
Such behavior reflects a pattern already present in the United States and Europe,
making DBMS development a continuous task in order to excel upcoming challenges5.

1GRASS GIS: http://grass.osgeo.org/
2QGIS project: http://www.qgis.org
3ArcGIS: http://www.arcgis.com/
4IBGE: http://www.ibge.gov.br/home/estatistica/pesquisas/pesquisa_resultados.php?

id_pesquisa=40
5MobiThinking Compendium of Mobile Statistics: http://mobiforge.com/research-

analysis/global-mobile-statistics-2014-home-all-latest-stats-mobile-web-apps-
marketing-advertising-subscriber

1

http://grass.osgeo.org/
http://www.qgis.org
http://www.arcgis.com/
http://www.ibge.gov.br/home/estatistica/pesquisas/pesquisa_resultados.php?id_pesquisa=40
http://www.ibge.gov.br/home/estatistica/pesquisas/pesquisa_resultados.php?id_pesquisa=40
http://mobiforge.com/research-analysis/global-mobile-statistics-2014-home-all-latest-stats-mobile-web-apps-marketing-advertising-subscriber
http://mobiforge.com/research-analysis/global-mobile-statistics-2014-home-all-latest-stats-mobile-web-apps-marketing-advertising-subscriber
http://mobiforge.com/research-analysis/global-mobile-statistics-2014-home-all-latest-stats-mobile-web-apps-marketing-advertising-subscriber
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Figure 1.1: Brazilian main highways in blue with a spatial buffer for BR-040 high-
lighted.

In this context, geographic location resources such as integrated Global Positioning
System (GPS) modules made spatially-aware applications more attractive and useful.
At the same time, such applications are more frequently used, reaching a point where
most features accessed by the user contain geographic data and metadata.

Examples of spatially enhanced applications and geographic information systems
in which geographic data is uploaded along with conventional data and metadata in-
clude Google Maps6, Foursquare7 and Waze8. The spatial abilities of those applications
make them so useful for so many people that a multi billion-dollar industry has been
formed around them. Hence, the application’s performance, reliability and scalability
play very important roles in the user’s decision to acquire and use such tools in a daily
routine.

From the perspective of design and development of the databases underlying
such applications, new requirements are becoming important. The trend towards novel
management tools and techniques that replace Relational DBMS reflects such require-
ments, particularly for big data [48]. However, it is still not clear how to select an
adequate spatial data management tool, considering the requirements of current ap-
plications, specially mobile ones. Such decision is far from simple, as current work
shows incredible differences on evaluating queries over general and spatial big data
(e.g., [21, 36, 49, 51] among many others).

6Google Maps: http://maps.google.com
7Foursquare: http://www.foursquare.com
8Waze: http://www.waze.com

http://maps.google.com
http://www.foursquare.com
http://www.waze.com
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Figure 1.2: Nearby points of interest searched by the user.

Spatial data is a multidimensional, more complex structure with slower processing
time than primitive data types, such as bit, byte, integer, float as well as string, date and
many others that are implemented in most DBMS. In a relational database, querying
for data in a single table is straightforward in terms of query planning and hardware
resource allocation. On the other hand, when performing spatial functions (mainly
spatial joins), large amounts of memory are requested by the query, much more than
the usual number/string processing, which leads to a large volume of allocated memory.
Furthermore, the density of spatial objects on the dataset, the size of each object and
even their shape can influence in the query performance.

For example, Figure 1.1 presents a map with Brazilian highways and highlights a
spatial buffer created around highways Presidente Juscelino Kubitschek and Washing-
ton Luís. These two highways form BR-040, which connects Brazil’s capital Brasília
(DF) to Rio de Janeiro (RJ), one of the heaviest traffic highways in Brazil.

The density of spatial objects also plays an important role, as the queries for the
nearby points of interest rely heavily on CPU processing power, alongside with the
efficiency of spatial indexes. Figure 1.2 illustrates the result of a query for points of
interest located near the user’s position in the center of the map.

In this dissertation, we introduce a new methodology for comparing spatial
DBMSs. Specifically, we focus on three different database models: relational,
document-oriented and graph based. We then evaluate their performance by using
one representative implementation of each model. Then, we experimentally evaluate
the performance of various DBMSs with spatial features, in order to demonstrate the
wide range of behavior of such tools under load.
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Table 1.1: Comparison between this study and previous related work.

Study SQL NoSQL Real Workload Spatial Data Big Data
Spatial Star Schema Benchmark [40] 3 ? 5 3 5
TPC-C [10] 3 5 5 5 5
BigBench [19] 3 5 5 5 3
Jackpine [43] 3 5 3 3 5
Our study 3 3 3 3 3

More over, our evaluation differs from other studies in three crucial ways. First,
we consider an interface where SQL and NoSQL data can be equally tested (even though
with different designs, features and goals). Second, we propose a new metric (vertices
per second) that is more tailored for evaluating mobile queries over spatial big data of
varying complexity. This way, we are able to measure the DBMS efficiency towards
geometric attributes, instead of only measuring how fast it processes a query. Third, we
provide means to compare graph-based features obtained from spatial data. Nowadays,
such features are very common in large systems, but they are usually treated by two
separate models (network and spatial data). Table 1.1 is a summary of the points this
study tackles compared to others.

Chapter 2 describes related work and background concepts in order to fully un-
derstand spatial features. We also provide information about big data, non-relational
models and DBMSs.

In Chapter 3, we present the spatial data mobile application scenario that is the
base for this work. We also compare the main features of the three DBMSs considered in
our evaluation. The spatial indexing features, as well as clustering and data distribution
are further detailed, as they will have great impact on the performance analysis.

Chapter 4 introduces our methodology by explaining each processing stage, the
dataset, the modeling characteristics and queries performed. Such discussion is impor-
tant in order to demonstrate how a DBMS’s performance may vary only by changing
the conceptual to logical mapping applied to its dataset. Note that current DBMS
benchmark methodologies focus on synthetic data generators and parameter variations
to simulate real world usage – as the industry’s standard TPC-H [42]. Here, the pro-
posed workloads consider queries that reflect real operations performed by users of
spatial mobile applications. We also provide alternatives to the data import tools for
two of the tested DBMS.

Chapter 5 presents the experimental evaluation with setup, implementation de-
tails, parameters and results. Specifically, we evaluate three DBMSs with spatial capa-
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bilities9: PostgreSQL10 with PostGIS11, MongoDB12, and Neo4j13 with Neo4j-Spatial14.
Our evaluation results show that performance varies greatly in terms of algorithms and
overall computational complexity due to each systems’ design. Therefore, selecting a
spatial DBMS heavily depends on how well it handles the targeted spatial data and
the most usual functions that the system is expected to perform.

Overall, by generating a workload that mimics real data, creating and experi-
mentally evaluating a set of queries based on mobile systems’ features, this dissertation
demonstrate that comparing spatial models and DBMSs requires new evaluation met-
rics and methodologies. The main outcome of this dissertation includes demonstrating
how performance evaluation should be data and system-oriented, based on the systems’
features and characteristics.

9Using other DBMS requires adapting the database model and queries employed in our method-
ology, which should be straightforward.

10PostgreSQL: http://www.postgresql.org/
11PostGIS: http://postgis.net/
12MongoDB: http://www.mongodb.org/
13Neo4j: http://www.neo4j.org/
14Neo4j-Spatial: http://www.neo4j.org/develop/spatial

http://www.postgresql.org/
http://postgis.net/
http://www.mongodb.org/
http://www.neo4j.org/
http://www.neo4j.org/develop/spatial




Chapter 2

Background and Related Work

GIS and location-aware applications are becoming more common, sophisticated and
necessary as user-based information increasingly becomes critical to all kinds of busi-
nesses. Examples include location-based advertising, customer trace data, nearby
points of interest, shortest routes and recommendation systems. Governments also
seek spatial computing to obtain information about events and natural disasters. As
an example, Figure 2.1 depicts the area affected by hurricane Katrina in 2005.

According to Shekhar et al. [48], processing spatial objects is more complex than
classical computing, as they include geometric components (points, lines, polygons and
variations) with a variable number of vertices. Moreover, the volume of data processed
by applications like Google Maps or Waze easily surpasses the previous generation
of spatial data “heavy lifters”, such as NASA’s Earth Observing System and other
satellite imagery programs. Those applications (Google Maps in particular) already
rely on NoSQL solutions to provide their users with more spatial features and faster
spatial data querying [9, 22].

Next, we explain fundamental concepts regarding both NoSQL DBMS and spatial
data. We also review previous related work, show how they implemented some features
and techniques regarding spatial data, big data, benchmarking, and emphasize points
that were not explored in comparison with our experimental evaluation.

2.1 NoSQL

NoSQL (often interpreted as Not Only SQL) is a class of database systems that are
not necessarily relational in their structure and properties. Although non relational
databases have been around since the late 1960s, only recently they have conquered
mass market attention [34]. Specifically, NoSQL emerged in the last decade as an al-

7
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Figure 2.1: Katrina’s area of effect, the size of the circle and coloration represent the
hurricane’s speed1.

ternative to horizontal and scalable data growth, aiming at improving the performance
of RDBMS. According to Cattel [8], the main characteristics of those systems include:
horizontal scaling among machine clusters, replicability and redundancy, simple in-
terfaces and access protocols, heterogeneous ACID (Atomicity, Consistency, Isolation,
Durability) controls (while some systems maintain full ACID support, others imple-
ment only durability for example), efficient index distribution and memory usage, and
dynamic attribute updates.

Over the past decade, industry has moved to a data-driven economy by requiring
alternative data processing tools, mostly because RDBMS present issues when handling
larger datasets. Large-scale systems have also moved from the relational environment
to NoSQL [8, 18, 22, 34]. Such change increases the DBMS horizontal scalability, the
ability to replicate themselves as well as index and memory efficiency. Nonetheless,
NoSQL solutions also deal with weaker concurrency models by leaving some of the

1Jackpine Presentation ICDE 2011, Ray et al. : http://csng.cs.toronto.edu/publication_
files/195/jackpine_icde2011.pdf

http://csng.cs.toronto.edu/publication_files/195/jackpine_icde2011.pdf
http://csng.cs.toronto.edu/publication_files/195/jackpine_icde2011.pdf
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Figure 2.2: OMT-G schema fragment for user position tracking.

ACID properties for the application layer to handle [26].

Furthermore, NoSQL systems rely on already consolidated simple query languages
used in other data models (such as XML2 and JSON3) as a compact and efficient
way of specifying their queries while maintaining compatibility among heterogeneous
operational and storage systems. They also benefit from performance and usability
improvements on those models and their languages [7, 20, 39, 52, 54].

Overall, NoSQL Database Management Systems are the preferred choice when
performance is a priority but consistency and concurrency restrictions are not very
relevant, as in applications that require lots of data retrieval with little or no updating.
Such choice is even more apparent as the volume of information handled by spatial
DBMSs moves towards the realm of Big Data.

Relational DBMS are challenged by two main types of NoSQL DBMS. The first
is the document-oriented model (for example, MongoDB), which has already absorbed
most data from the Web 2.0 applications, previously based in RDBMS [18]. The second
is the Business Intelligence, Digital Libraries and Analytical Systems type, in which
relational data users have moved to solutions with higher processing power, such as
those based on Apache Hadoop4.

Different NoSQL DBMS model and store data in heterogeneous ways. For exam-
ple, consider an application where the user’s location history must be stored in order
to reduce their commute time. It searches for an alternate route, in order to avoid
heavy traffic, or it suggests optimal speeds in order to avoid red traffic lights. Such an
application requires the simplest association between a user class and a location class.
Such data definition is represented by the OMT-G [6] model as designed in Figure 2.2.
Then, in order to emphasize each model’s unique features, the following figures repre-
sent the same data using other data models: Figure 2.3 for relational tables, Figure
2.4 for document-oriented model, and Figure 2.5 for a graph-oriented model. Next, we
go over some of the main features of those data models.

2eXtensible Markup Language: http://www.w3.org/TR/REC-xml/
3JavaScript Object Notation: http://json.org/
4Apache Hadoop: http://hadoop.apache.org/

http://www.w3.org/TR/REC-xml/
http://json.org/
http://hadoop.apache.org/
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Figure 2.3: User position tracking in a relational DBMS table.

Figure 2.4: User position tracking document.

• First, Codd [12] introduced the Relational Model. At the time it emerged, it
surpassed many other systems with the advantage of removing from the users
the necessity of knowing how data is stored in the machine. It presents data
as relations or collections of tables, which are based on rows and columns, and
provides operators to manipulate data stored in a tabular format. It also provides
a service based on actions such as queries and data modification operators, which
enables the user to retrieve and store data efficiently. The relational DBMS were
the most important systems since Codd’s definition, turning file systems and
other rudimentary database management systems obsolete.

• Document-Oriented DBMS are NoSQL systems designed for operating over
semi-structured data usually represented as documents. As demonstrated by
Banker [2], a document-based data model can represent rich, hierarchical data
structures often without the multi-table joins imposed by the relational models.
The data model is built for high read and write speeds. The main difference
from the relational DBMS its that a document is not bound to a specific set of
attributes (columns) as in the relational model. It is also more flexible by allow-
ing designers to arrange attributes inside one another in a hierarchical manner
and to add new attributes without changing the data schema. The documents
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Figure 2.5: User position tracking graph.

are usually represented by a language that provides either human readability or
machine attribute mapping association, or both, such as XML, JSON and YML5.

• Graph-Oriented database management systems handle graph-like structures
by associating data properties within nodes and relationships. The graph model
enables querying a database based on a relationship attribute, which requires mul-
tiple inner joins in a traditional relational DBMS. Consequently, Graph-Oriented
DBMS are usually faster for associative data, which may grow immensely larger
with the popularization of online social networks. The graph-oriented database
model, as pointed out by Gyssens et al. [24], allows the representation and ma-
nipulation of objects with a graph-based nature, which were previously modeled
as the multi-join table sequence in the relational model.

Such a variety of choices poses challenges to system architects and their ability
to stick with only one DBMS/data model. Usually one model will handle a set of
queries better than the other. Finally, each model has its own challenges, as discussed
in Section 4.3.

5YML or YAML (YAML Ain’t Markup Language): http://yaml.org/

http://yaml.org/
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Figure 2.6: Multiple raster images of North America as a background map6.

2.2 Spatial Data Models

There are four main models used to physically represent spatial data: raster, vector,
network and spatio-temporal [47, 48]. The rastermodel uses a matrix of cells organized
in rows and columns where each cell contains one or more pixels associated with an
alpha-numeric value. Raster objects usually store visual, thermal and electromagnetic
information obtained through aerial photographs, map scanning and satellite imagery.
The information obtained is digitized and processed to provide detailed information
about the targeted area. Raster data is often used as maps and map backgrounds for
other GIS services. Figure 2.6 gives an example of raster data.

The vector model represents spatial objects as lists of vertex coordinates, thus
configuring spatially-located geometric representations such as points, linestrings, poly-
gons, multi-points, multi-linestrings and multi-polygons. Vector data represents geo-
graphic features that are related with each other over space. For example, a polygon
feature may contain a point, linestring or even another polygon. Vector information
is usually more compact than raster, making it easier to store in disk and accurately
represent the shape and size of an object. However, it also loses other attributes such
as color, temperature, etc. An example of vector data is presented in Figure 2.7, along
with the list of attributes of the highlighted state of Minas Gerais.

6Natural Earth Raster Data: http://www.naturalearthdata.com

http://www.naturalearthdata.com
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Figure 2.7: Vector data of the Brazilian states with Minas Gerais highlighted.

The network model is constructed when other types of spatial data (usually
vector and spatio-temporal) are modeled in a graph-based representation. The net-
work model follows the regular graph concept including vertices and edges (which are
encoded as vectors and therefore are spatially located). For example, in routing ap-
plications, roads are represented in the database as edges and their intersection points
as vertices, providing a traversable graph in which users search for the best route or
compare possible paths in terms of both spatial (distance, number of intersections)
and non-spatial (number of traffic lights, current traffic information, local maximum
speed) attributes. Figures 2.8 and 2.9 illustrate vector data and its resulting graph
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Figure 2.8: Roads (linestrings) and intersections (points) as vector data.

Figure 2.9: The same objects from Figure 2.8 now mapped into a traversable network.

where both represent the same location in Cheney Ave, Peterborough, NH, USA. The
highlighted road intersection is also the same in both images. The node orientation in
Figure 2.9 represents the node position inside the network, as opposed to its spatial
orientation.
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Figure 2.10: Spatio-temporal raster data monitoring the deforestation process in
Itaúba, MT, Brazil, from 1990 to 20077.

Lastly, the spatio-temporal model has increasing usage in mobile devices as
more information is being collected with or without the user’s actual interaction. It is
also present in cellphones, sensors and vehicle satellite navigation systems, as GPS tra-
jectory applications are embedded in vehicles or installed on the drivers’ cellphones [29].
Spatio-temporal data is created when one of the other models are represented in a time
sequence (usually raster or vector) [22, 53]. Examples of associating with raster data
is to monitor deforestation, hurricane affected areas, storms, firestorms, blizzards as
well as many other phenomena. Figure 2.10 illustrates TM/Landsat raster images
associated with a time series. This picture exemplifies how the deforestation process
occurs, where the purple areas represent soil uncovered by vegetation and the red dots
represent heat sources, probably due to man-caused forest fires.

An example of using it associated with vector data is logging a device’s position
throughout time in order to define an itinerary, as well as visualize possible bottlenecks
and traffic jams. Figure 2.11 demonstrates spatio-temporal data with vector data. The
recorded points are connected to recreate the user’s trajectory throughout the day.
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Figure 2.11: User’s location history recorded by Google Maps.

2.3 Big Data

Considering the mobile scenario, it is important to discuss the concept of Big Data.
Big Data is a term that describes a dataset that has surpassed the traditional data

processing systems’ capabilities and present volume, velocity, variety, variability
and veracity [30]. Such massive datasets are a challenge to both software and hardware
designers, as all operations regarding Big Data require the most efficient algorithms
and machinery [21, 22, 29, 32, 50]. In 2012, 2.5 exabytes of information were created
on average per day on the Internet, and such number is doubling every 40 months [38].
Datasets usually grow continually because they are being fed with sensor data, software
logs, mobile devices and many other types of information retrieval applications.

It is hard to deal with big data within traditional RDBMS, as it requires lots of
physical space and massive parallel processing capabilities [29]. Some of the aforemen-
tioned NoSQL solutions (such as Google BigTable and Apache Hadoop) were designed
specifically to tackle Big Data.

Large datasets often help in decision making, as they contain the whole data
distribution and not a condensed abstract or average index, usually found in data
warehouses. Big Data has the potential to provide access to information previously
unknown to companies, governments, policy makers and every economy sector in a
global scale [37]. Big Data analysis techniques should allow productivity growth, real-

7DETER system 2006/2007 scientific report: http://www.obt.inpe.br/deter/index.html

http://www.obt.inpe.br/deter/index.html
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time detection of production failure, a faster response to natural phenomena and a
more accurate reading to the general public needs.

2.4 Spatial Big Data

With the widespread use of Big Data, Shekhar et al. [48] define Spatial Big Data
(SBD) for applications whose needs and spatial input surpass the ones of classical,
relational computing. Multi-dimensional objects representing the geo-physical world
are being generated by satellites and GPS-enabled devices of all kinds. From the general
public to scientific and military utilization, spatial big data is one direct consequence
of mobile systems’ services. However, benefits obtained from big data analysis do
not come cheap, as the amount of data produced and processed by those systems far
exceeds the capacity of standard GIS. For example, the Moderate Resolution Imaging
Spectroradiometer8 (MODIS) satellites Terra and Aqua register up to 36 bands of the
electromagnetic spectrum reflected over the Earth’s surface, resulting in a huge dataset
(947 megabytes every 4 days, per composite, per band9).

Shekhar et al [48] also point out that Spatial Big Data will require the develop-
ment of new database management technologies, but with such advancements, it will
also provide more research and industry opportunities. Examples include the quicker
detection of disease outbreaks, the effects of geographic attributes in social networks,
large scale collaboration studies, among others. It will also bring more responsibility,
as governments and companies with access to such massive databases will be able to
monitor everything and everyone, anywhere and everywhere on the planet, in real-time.

2.5 Discussion on Related Work

Here we discuss how different studies have contributed to the Spatial DBMS scenario,
and how they have left room for improvement. With the advent of NoSQL DBMS,
spatial data has gained lots of ground and entered the Big Data era without much
progress in both performance and features provided by their old RDBMS counterparts.

On spatial data heterogeneity, Baptista et al. [3] showed how to interoperate
spatial data in SQL and NoSQL databases by using OGC10 services. They also discuss
the importance of handling spatially-enabled social networks data. This study brings
up the importance of different storage techniques in spatial web services and how the

8MODIS: http://modis.gsfc.nasa.gov/about/
9Statistics Canada Crop Condition Assessment Program: http://www.statcan.gc.ca

10Open Geospatial Consortium: http://www.opengeospatial.org/

http://modis.gsfc.nasa.gov/about/
http://www.statcan.gc.ca
http://www.opengeospatial.org/
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NoSQL DBMS have incorporated spatial features to handle spatially-enabled social
networks data.

Likewise, Hora et al. [28] have presented a method for mapping network relation-
ships from spatial databases to the Geography Markup Language (GML) – an XML
extension for spatial data. Note that there are limitations regarding GeoJSON (a JSON
extension for handling spatial data), and their approach could point to a solution in
such front as well. Extending [28] could also potentially provide spatial networking
(urban routing, water, sewage and electric networks) features to any DBMS that uses
JSON, such as MongoDB, for example.

Regarding performance evaluation of spatial databases, recent studies on spatial
joins discuss how applications rely on fast spatial processing methods [49, 51]. They
also show that there is still much room for improvement regarding spatial queries:
performance gains are noticeable by changing the indexes’ data structure and the ac-
cess algorithms, as well as using multi-threaded implementations. Specifically, for the
mobile scenario, there are many particularities regarding data traffic, speed variations
under different areas of coverage and mobile devices. Those characteristics also influ-
ence the GIS design, as immediate, limitless data requests may not be very efficient
carrier-wise. Liu et al. [35] propose a method that compensates the lack of features
that many of those applications suffer when going offline by improving their accessi-
bility with a probabilistic query window prediction. The algorithm fetches in advance
data that may be requested by the user, maintaining a smoother user experience while
disconnected from the network.

Still regarding performance, benchmarking techniques have been around since the
first performance issues became essential when choosing a DBMS. As for spatial data
benchmarking, the Spatial Star Schema Benchmark [40] has a synthetic data generator
specific for spatial data warehouses. Its spatial geometry generator uses a recursive
partitioning of an initial envelope, dividing it in quadrants. The partition produces
a quadtree of minimum bounding rectangles that are filled with a random geometric
shape.

For big data, the benchmarking tool proposed by Ghazal et al. [19] also includes
a synthetic data generator and a data model. Likewise, Chen [10] proposed a func-
tional workload model for big data. It tries to cover some of the many problems when
benchmarking big data, as there are no standard benchmarks currently available. They
propose several business cases aiming at many industry standard scenarios already cov-
ered by previous benchmarks such as the Transaction Processing Performance Council’s
TPC-C. The TPC-C benchmark is a tool for comparing online transaction processing
(OLTP) performance on various hardware and software configurations. By extend-
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ing TPC-C and other benchmark combined features, Ghazal et al. propose several
big data benchmark characteristics, taking the TPC-C benchmark as the yardstick.
They also provide many concepts like functions of abstraction, models and map-reduce
translations of those concepts.

Even though synthetic datasets are usually favored for evaluating queries over
string and numeric attributes, the equivalent synthetic generated geometries are not
similar to real-world data. Specifically, the randomness of the generator results in
overly squared polygons and unnatural land shapes, as demonstrated by Baptista et
al. [3]. Furthermore, the mix of man-made and natural features usually found in GIS
varies according to the region and is strongly related to the application, making it
harder to accurately represent real workloads [47]. Therefore, in this work we use real
datasets, as described later.

On the relational world, Jackpine is a more generic benchmark for spatial rela-
tional databases [43]. It tests topological predicates and spatial analysis functions in
isolation, as well as six typical spatial data application scenarios. Its dataset comes
from the state of Texas, including county and municipal divisions, hydrographic and
vegetation data, roads and highways. Nonetheless Jackpine is not ideal for evaluating
spatial big data for mobile applications. First, it covers only relational databases, and
spatial Big Data applications usually employ NoSQL as well. Second, it is not appro-
priate for measuring the effects of data volume and complexity (e.g., spatially joining
regions delimited by polygons with thousands of vertices to sets of millions of points).
Third, mobile applications often need network-based attributes and functions, which
may be cumbersome (if not impossible) to implement over a relational system.

Now, considering the distributed processing of spatial data, database clusters for
relational queries face an architectural challenge on improving performance and using
all the available hardware as computer clusters became cheaper, more common and
readily available [1]. Operations that nowadays are easily handled in parallel by NoSQL
DBMS, are much harder to coordinate and distribute over RDBMS clusters. The
design scheme must consider many usage and workload variables, which lead to mixed
physical designs and different levels of parallelism, depending on the query/modification
performed.

Likewise, Le Pape et al. [33] proposed a technique to improve query performance
in database clusters through freshness control. The freshness of an object is calculated
based on the frequency in which the object is accessed and how long it has been since
that object was requested by a query. They also demonstrated how relational DBMS
had to be extensively modified in order to extract optimal performance over clusters.
Their query routing algorithm managed to improve the cluster’s throughput but it still
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does not address many big data requirements, such as constant change of the data
group being read (which goes against the freshness strategy).

Röhm [44] combined a query routing algorithm with a physical design arrange-
ment in order to increase performance over a database cluster. Such effort over a
RDBMS greatly improves its performance. The two stages could be more easily im-
plemented over NoSQL databases, as the querying algorithm and physical design can
be improved separately. Such improvement is possible as NoSQL DBMS provide a
native clustering interface, leading to an experience that is similar, if not equal, to a
single-machine system.

Cluster and cloud computing are very powerful tools when dealing with large
amounts of data. Methods to evaluate DBMSs over such structures would have to
monitor many more variables, and it would require a much more controlled environment
in order to perform a fair comparison. Therefore, this work does not consider such
multi-machine scenario.

Our evaluation, as explained previously, differs from the previous work by con-
sidering SQL and NoSQL DBMSs, proposing a new performance metric (vertices per
second) and providing ways to compare graph-based features obtained from spatial
data.
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Spatial DBMS

Spatial data extensions already appear in several DBMS. However, the programming
languages with which they are built, their design patterns and architectural charac-
teristics can weigh upon their efficiency. Also when focusing on the mobile systems
scenario, data properties and volume vary greatly from other GIS. This chapter fol-
lows with more information about the mobile systems’ features, specific architecture
information and how spatial indexing is performed among the tested DBMS.

3.1 Mobile Systems

Mobile systems work over the Internet (and its communications links) through comput-
ing devices that are around in the field. Mobile computing applications can be roughly
classified into location-based services, sensor networks, and ad hoc networking. Their
technical challenges include interaction between anonymous entities, timely decoupled
data processing, and potentially millions of mobile clients and devices. According to
Cugola and Jacobsen [13], a simple taxonomy for mobile systems classifies the nature
of the device mobility and the nature of the network infrastructure deployed as: (a.1 )
the computing devices are stationary while online, but join and leave the network
at different, physically distributed access points; (a.2 ) or the devices also move dur-
ing connection; (b.1 ) a fixed network infrastructure is deployed; (b.2 ) or no external
network infrastructure is available. The combinations of these two dimensions define
different types of mobile applications. Nonetheless, the common point is: mobile ap-
plications, services and systems collect and provide information to their users at the
same time.

Then, the technical challenges vary according to the type of mobile device and
software. Take for example Location-based Services (LBS) [45]. LBS are defined as

21
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applications that integrate geographic location (i.e., spatial coordinates or position)
with other information in order to provide valuable services to their users. Exam-
ples include car navigation systems, tourism websites, location-aware recommendation
systems, points-of-interest review systems (e.g., restaurants and stores), traffic informa-
tion services, fleet management, car and assets tracking, gaming, local advertisement,
among many others. All such services have become very popular with the development
of mobile communications and the ever growing access of Internet connected devices
(cars, cell phones, PDAs, tablets, etc).

The amount of information flowing on general mobile systems (and LBS) is huge.
The main reason is because such systems receive the user’s location and provide both
push and pull services. For example, consider the scenario of m-commerce (mobile
commerce) and advertising. Given a user’s location, a push service may send a discount
voucher from a nearby store. Likewise, in a pull service, the user may request cheap
restaurants in the local area. With such big volume of information (big data) come
many problems from not only the data per se (collecting, treating, filtering, storing,
transmitting) but also privacy, security, time performance, communication, network
infrastructure, availability, and so on [45, 48].

Such constant traffic and processing of spatial data require faster server responses.
As the number of devices (smartphones, in-vehicle navigation devices, etc) rapidly
increases, mobile applications have become one of the biggest spatial data providers
[41]. Indeed, even systems and applications that do not directly deal with spatial data
usually employ spatial metadata attributes. For example, when taking a picture on a
smartphone, geographical metadata is stored within the picture’s file, enabling to trace
the photo back to the location it was taken, as illustrated in Figure 3.1, whose data is
in Table 3.1. Other examples include instant messaging applications, which trace the
user’s location and enable the other party to view it on a map.

In this dissertation, we take the data management perspective and consider the
requirements of the broad category of mobile systems, which employ user and devices’
location as a key data. Specifically, our focus is on the challenges posed by different data
models handling the same dataset, such as: managing millions of data insertion and
queries; managing a (potentially) very large number of information providers (not only
the mobile devices but the service and application data producers); and process diverse
content formats, ranging from pure text documents to complex geometry polygons. To
deal with such challenges we trust on SQL and NoSQL DBMS with geographic features,
as explained in the next sections.
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Figure 3.1: Outskirts of Hong Kong.

Table 3.1: Spatial metadata obtained from Figure 3.1.

Attribute key Value
GPS Version ID 2.2.0.0
GPS Latitude 22.413932 degrees
GPS Longitude 114.271813 degrees
GPS Altitude Ref Above Sea Level
GPS Altitude 65 m
GPS Satellites 05
Modify Date 2010:03:04 01:05:15
Create Date 2010:03:03 16:57:47

3.2 DBMS Main Features

In this dissertation, we consider one DBMS representing each of the three models
analyzed (relational, document-oriented and graph-based). All three provide spatial
extensions and a license-free installation1. They also represent different types of file
management and query processing and optimization: PostgreSQL version 9.3.4 x64
with PostGIS 2.1.3, MongoDB 2.6.3, and Neo4j Community 2.1.4 with Neo4j Spatial
0.13. We now provide a brief description of each DBMS, and discuss their indexing,
clustering and data distribution. Table 3.2 shows a brief comparison2 between the
DBMS analyzed in this study.

The first DBMS considered in our study is the relational DBMS PostgreSQL

1Other systems may fulfill these criteria. However, we opted for choosing three representatives
based on DB-Engines ranks such as: DBMS and database model popularities.

2DB-Engines: http://db-engines.com/

http://db-engines.com/
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Table 3.2: DBMS Comparison.

PostgreSQL MongoDB Neo4j
Website www.postgresql.org www.mongodb.org neo4j.com
First release 1995 2009 2007
License Open Source (BSD) Open Source (AGPL 3) Open Source (GPL 3)
Implemented
language

C C++ Java

Database
model

Relational DBMS Document store Graph DBMS

Data scheme yes schema-free schema-free
Typing yes yes yes
Secondary
indexes

yes yes yes

SQL yes no no
APIs native C library, stream-

ing API for large ob-
jects, JDBC, ODBC

proprietary protocol us-
ing JSON

Cypher query language,
Java API, RESTful
HTTP API

Server-side
scripts

user defined functions JavaScript yes

Triggers yes no yes
Partitioning
methods

no, but can be realized
using table inheritance

Sharding Enterprise Edition only

Replication
methods

Master-slave Master-slave Master-slave

MapReduce no yes no
Consistency
concepts

Immediate Consistency Eventual Consistency
and Immediate Consis-
tency

Eventual Consistency

Foreign keys yes no yes
Transaction
concepts

ACID no ACID

Concurrency yes yes yes
Durability yes yes yes
User con-
cepts

fine grained access
rights according to
SQL-standard

Access rights for users
and roles

no

with PostGIS. PostgreSQL is an open source object-relational system first released in
1995. PostgreSQL supports all major operating systems, is ACID and ANSI-SQL:2008
compliant. PostGIS is an open source geographic extension for PostgreSQL that allows
spatial queries to run on SQL. It was first released in 2001 and supports geometry
types for points, linestrings, polygons, multipoints, multilinestrings, multipolygons and
geometry collections. PostGIS supports an R-tree-over-GiST (Generalized Search Tree)
spatial index and implements most spatial predicates and operators defined by the
OGC.

The second DBMS is the NoSQL document-oriented MongoDB. MongoDB is
an open source document DBMS that aims to provide high performance, availability
and horizontal scalability. Its data model is based on the key-value association by
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using JavaScript Object Notation (JSON). It provides a query mechanism called query
by example, where the query is an object to be compared with existing database ele-
ments, and all matching objects are returned. MongoDB’s features include flexible data
collections, sharded clusters, automatic sharding and replicated datasets. MongoDB
spatial features are based on the GeoJSON format, a JSON’s extension that specifies
geometry objects such as points, linestrings, polygons, multipoints, multilinestrings
and multipolygons. GeoJSON queries on MongoDB require an existing spatial index,
and the spatial queries have the following operators available: inclusion, intersection
and proximity.

The third DBMS is the NoSQL graph database Neo4j with Neo4j-Spatial.
Neo4j is a graph-oriented open source DBMS. Its core features include data model
flexibility based on graph elements such as nodes, edges and attributes, graph traversing
performance and scalability, supporting billions of nodes and relationships and full
ACID transactions. Neo4j Spatial is an extension that provides spatial querying over
geometry attributes stored in nodes. Furthermore, its spatial indexes are built over the
graph structure provided by Neo4j. It also implements most OGC spatial predicates
and operators.

3.3 Spatial Indexing

Spatial indexes (as any regular database index) provide faster ways to access spa-
tial data by avoiding sequential reads and usually traversing a more efficient search
structure. Regular database indexes usually rely on decomposing and serializing al-
phanumerical values in order to associate them with an index structure (a B-tree, a
hash table and others). Such approaches are not ideal when paired with spatial ob-
jects, as these objects possess multidimensional attributes (geometries) that cannot
be directly added to a B-tree, for example. The solution often is some level of data
serialization/hashing to actually fit the objects, as opposed to indexing data structures
specifically designed to handle multidimensional data (R-tree, Quadtree, etc.).

Here we describe the two strategies used by the evaluated systems, the R-tree [23]
and the combination of Geohash and a space-filling curve. The R-tree is a data struc-
ture used for optimizing spatial data access. It indexes multi-dimensional information
such as coordinates, polygons and other geographical attributes through minimum
bounding rectangles of spatial objects modeled as tree entries, where each entry is in-
serted based on the position of each rectangle. The R-tree operates similarly to the
B-tree, as both are balanced search trees organized in pages, with each page contain-
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Figure 3.2: R-tree example, minimum bounding rectangles over space and the respec-
tive tree structure.

ing a maximum number of entries. The R-tree does not ensure a good worst-case
performance, therefore variants and extensions were proposed in order to tackle such
deficiencies, for example the R* tree, R+ tree, the Hilbert R-tree and others [5, 46, 31].
Figure 3.2 illustrates an example of R-tree with the minimum bounding boxes at the
top and the respective tree at the bottom.

The second strategy is a combination between Geohash and a space-filling curve.
The Geohash is a code system based on latitude and longitude. It is a hierarchical
spatial data structure that subdivides the space into grids. Each grid represents a
square/rectangular section of the globe where a prefix is associated with that area.
The closer the prefix numbers are to each other, the closer the geographic grids are
from one another. The space-filling curves are curves that contain an entire multi-
dimensional range of values over every point of unit square. Hence, when associated
with Geohash, a curve contains every spatial grid generated by Geohash mapped into
a single-dimension attribute.

Each DBMS in this study includes different strategies and implementations of
spatial indexes. First, PostGIS uses the GiST [27] R-trees for spatial attributes. The
GiST R-tree is a generalized implementation of the traditional R-tree, using Post-
greSQL’s extensibility features and adapted to PostGIS’s spatial representation types.
The main difference between a GiST R-tree and the traditional R-tree is that GiST
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Figure 3.3: Continental USA states’ bounding boxes.

indexes are lossy, as each document is represented in the index by a fixed-length signa-
ture. In other words, each hit on the index may be a false positive, so the filtered rows
must be retrieved and evaluated to determine if their values match the query or not.
Depending on the data stored, the GiST R-tree may be slower than the R-tree by a
small factor, but it is frequently adopted because it is a common interface where mul-
tiple index types are built on. Figure 3.3 illustrates the bounding boxes that compose
the R-Tree index over the continental states of the USA.

Second, Neo4j Spatial uses an R-tree built over its graph structure, where the
tree root is a new node in the graph. Relationships connect the root to the nodes
with spatial attributes, adding them to an R-tree that uses the graph structure, called
spatial layer. Neo4j Spatial does not allow querying nodes spatially without adding
them to the spatial index/layer first. Apart from the graph-based structure, Neo4j’s
R-tree behaves as a regular R-tree.

Third, MongoDB uses a combination of a space-filling curve with Geohash, as
illustrated in Figure 3.4, then adding its values into a B-tree. As its main indexing
tool relies on a B-tree, its spatial attributes modeled as GeoJSON inherit the index
structure. However, since spatial data is multidimensional, it requires dealing with
the dimensionality problem. The solution is to adopt a space-filling curve, a contin-
uous line in a two-dimensional plane that intersects every point (MongoDB does not
natively support geometries with three or more dimensions). After the space-filling
curve, it applies geohashing to the coordinate values and inserts them in the B-tree.
This approach is not optimal when dealing with spatial data as serialization of multi-
dimensional objects degrades the performance of many spatial queries, such as looking
for the nearest neighbor. When two neighbors are spatially close, they may be widely
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Figure 3.4: Continental USA states’ Geohash space-filling curve combination.

Figure 3.5: Z curve distance example.

separated when looking at the space-filling curve. This phenomenon is exemplified in
Figure 3.5 where point A is only two tiles apart from point B, but in the curve, they
are nine tile distances apart (in terms of id sequence, not the actual distance).



Chapter 4

Comparison Methodology

Now, we present our methodology for comparing spatially-enabled DBMSs considering
four main requisites. The first one is to use real-world spatial data. We believe that as
spatial queries and indexes are usually more complex and computationally expensive,
it is imperative to consider data as close to reality as possible. The second goal is
to define a set of queries, insertions and updates that focus on mobile systems, as the
mobile applications scenario potentially uses and produces large quantities of spatial
information. The third goal is to create a methodology that offers implementable
interfaces where different spatial DBMSs may be easily added to the performance
evaluation. Such goal maintains compatibility with new software versions and database
management systems by making it easier to perform extended comparative analysis in
the future. The last is to demonstrate how performance evaluation for GIS must
be data and feature-oriented, in opposition to the current generic benchmark tools
that have wide coverage but little specificity. By comparing systems derived from
different models, strategies and implementations, we are able to compare each systems’
performances and analyze which model accommodates best the desired application.
Next, we describe our methodology’s processing stages (Section 4.1), the dataset used
as a workload (Section 4.2), the modeling and mapping strategies adopted (Section
4.3), the data loading procedure (Section 4.4), improvements implemented to speed up
the loading process (Section 4.5) and the proposed queries (Section 4.6).

4.1 Processing Stages

The comparison methodology follows five stages: data loading, workload generating,
warm-up, evaluation and shutdown. The data loading, workload generating and eval-
uation stages should be run separately from the other ones. Running any step should
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Table 4.1: DBMS Warm Up time.

DBMS Warm up time
PostgreSQL 0.083 hour
MongoDB 0.1 hour
Neo4j 2.33 hours

also trigger the shutdown stage automatically at the end of the run and any resources
allocated by the systems should be freed. Even though we measured the time spent
in both data loading and warm up stages, they are not accounted during the final
performance evaluation, as such stages are performed in much less regular basis than
querying, modifying and inserting data.

Data Loading. This stage loads shapefiles1 (a popular geospatial data format) into
the databases that are going to be analyzed. This step runs separately, as spatial big
data loading may take several hours or even days, depending on the DBMS’s importing
tools.

Workload Generation. The second stage generates the workload to be processed.
The options are: creating data tables and structures by using the input shapefiles
directly; or using a DBMS with the dataset previously loaded (at data loading). Here,
the necessary parameters (to be discussed later as shown in Table 5.2) for the evaluation
stage are also extracted from the same shapefile spatial dataset. This procedure defines
queries with the least amount of null results or sequential scans, making sure that the
DBMS uses the indexing and cache mechanisms available. The result from queries that
select random entries in the shapefiles or the DBMS with loaded data is then written
in a file to be read by the evaluation stage.

Warm-Up. This phase performs several queries to load indexes and other memory-
related attributes that affect the DBMS’s performance. When it ends, the amount of
memory consumed by the DBMS processes and its memory mappers (if that is the
case) are recorded. The warm-up phase is necessary as DBMSs in general try to avoid
disk requests by storing index references in RAM, which is also how queries will be
processed in production. The average warm up time for each DBMS is presented in
Table 4.1.

Evaluation. Now, pre-defined queries are executed over each DBMS individually by
using the parameters obtained in the second phase. Our methodology aims to evaluate
and compare the performance of DBMS to be used by mobile systems and applications.
Therefore, groups of queries were created based on such features, which include map

1ESRI Shapefile: http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
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browsing, zooming and panning, proximity searching, and urban routing (finding the
shortest path between two points).

Shutdown. The shutdown phase is where each DBMS’s connections are shutdown
to ensure data integrity, finalizing any pending transactions and releasing read and
write locks, making sure that the database is in a consistent state. It is also important
to verify if any system resources consumed by the DBMS during that session were
not freed or returned to the operating system, which may point to memory leaks and
other memory management issues. The methodology also has a shutdown hook, which
means that even if the evaluation process is manually canceled or fails, the shutdown
procedure will still be performed by a separate thread, thus guaranteeing data integrity
and that no open resources remain connected to the database systems.

4.2 Dataset

Spatial datasets are increasing in size and coverage, but only a few of them may be
classified as big data. In this study, we opted for using real-world data, with realistic
spatial distribution (i.e., a varying density of objects through space, from crowded
downtown areas to rural spaces), covering a large territory and including a variety of
representation types. Also, there should be a mix of natural (rivers, lakes, plateaus,
continents, islands, etc) and man-made objects (streets, highways, blocks, cities, states,
countries, etc) in the dataset, so that the number of vertices per object and the object
distribution along space varies widely. The TIGER/Line (Topologically Integrated
Geographic Encoding and Referencing2) dataset is public and covers all aforementioned
features.

The 2013 TIGER/Line shapefile set provided by the U.S. Census Bureau is one
of the most complete and well documented datasets regarding the USA land and over-
seas territory. The USA is one of the countries with the largest number of mobile
devices connected to the Internet3 and consequently one with the most people using
spatial-aware systems, as mentioned in Section 1. Initially a simple street centerline
database, TIGER/Line has evolved to include a number of additional features that
support Census activities in the USA. Running specific queries on the 2013 TIGER
dataset generates a workload that serves as a close-to-reality evaluator when comparing
different DBMS and analyzing how they respond to queries over spatial big data.

2TIGER/Line: https://www.census.gov/geo/maps-data/data/tiger-line.html
3Cisco Visual Networking Index: http://www.cisco.com/c/en/us/solutions/collateral/

service-provider/visual-networking-index-vni/white_paper_c11-520862.html

https://www.census.gov/geo/maps-data/data/tiger-line.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
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Figure 4.1: 2013 TIGER/Line collections AREALM, AREAWATER, ROADS, PRISE-
CROADS, PRIMARYROADS and POINTLM at the Manhattan’s Central Park.

The TIGER shapefiles contain vector geospatial data. Both shapefiles (.shp) and
database files (.dbf) are separated into census blocks by a hierarchical framework that
groups files depending on their spatial coverage, such as nation, state and county-based
files. The shapefiles include polygon boundaries of geographic areas, linear features
(roads, hydrography and others) and point features. They do not contain any sensitive
data, areas used for administering censuses, military information, surveys and other
internal processing attributes. Figure 4.1 shows a portion of the vector dataset in the
QGIS4 map viewer. The dataset classes are presented in Table 4.2.

4QGIS 2.5: http://www.qgis.org/en/site/

http://www.qgis.org/en/site/


4.2. Dataset 33

Table 4.2: 2013 TIGER/Line vector collections.

Folder Name Shapefile/Relationship File
ADDR Address Range Relationship File
ADDRFEAT Address Range Feature
ADDRFN Address Range-Feature Name Relationship File
AIANNH American Indian/Alaska Native/Native Hawaiian Areas
AITSN American Indian Tribal Subdivision National
ANRC Alaska Native Regional Corporation
AREALM Area Landmark
AREAWATER Area Hydrography
BG Block Group
CBSA Metropolitan Statistical Area / Micropolitan Statistical Area
CD Congressional District
CNECTA Combined New England City and Town Area
COASTLINE Coastline
CONCITY Consolidated City
COUNTY County
COUSUB County Subdivision
CSA Combined Statistical Area
EDGES All Lines
ELSD Elementary School District
ESTATE Estates
FACES Topological Faces (Polygons With All Geocodes)
FACESAH Topological Faces-Area Hydrography Relationship File
FACESAL Topological Faces-Area Landmark Relationship File
FACESMIL Topological Faces-Military Installation Relationship File
FEATNAMES Feature Names Relationship File
LINEARWATER Linear Hydrography
METDIV Metropolitan Division
MIL Military Installation
NECTA New England City and Town Area
NECTADIV New England City and Town Area Division
OTHERID Other Identifiers
PLACE Place
POINTLM Point Landmark
PRIMARYROADS Primary Roads
PRISECROADS Primary and Secondary Roads
PUMA Public Use Microdata Area
RAILS Rails
ROADS All Roads
SCSD Secondary School District
SLDL State Legislative District –Lower Chamber
SLDU State Legislative District –Upper Chamber
STATE State and Equivalent
SUBBARRIO SubMinor Civil Division (Subbarrios in Puerto Rico)
TABBLOCK Tabulation (Census) Block
TBG Tribal Block Group
TRACT Census Tract
TTRACT Tribal Census Tract
UAC Urban Area/Urban Cluster
UNSD Unified School District
ZCTA5 5-Digit ZIP Code Tabulation Area
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4.3 Data Modeling

Many spatial data modeling methods extend the entity-relationship model for describ-
ing geographic data. While the result of such data model extensions is usually as-
sociated with relational database management systems, other non-relational spatial
solutions are being used by very large GIS. With the NoSQL arrays taking over Big
Data, data models that easily fit relational DBMS are being translated and adapted
into other systems. However, this may not prove optimal when handling large amounts
of data, as it is not so clear how to define which mapping strategy (or even more than
one) to maintain, either on relational or non-relational DBMS. Modeling strategies
based on the system requirements and features are necessary. Nonetheless, it is also
important to evaluate how beneficial the adoption of multiple data mappings of the
same dataset can be.

When modeling spatial attributes, one must consider that the association of
primary and foreign keys applied to numbers and strings provides an easy way to
join tables, which is not possible with geospatial attributes. Spatial data is a multi-
dimensional attribute that by its nature is not a static join attribute, as the interaction
between two spatial objects may generate more than two outcomes (some of which are
not mutually exclusive) in opposition to the binary outcome of a numerical foreign key
to the targeted numerical primary key. The outcome of such spatial relationships must
be calculated dynamically as demonstrated next.

The model proposed by Clementini and Egenhofer [11, 17] became the standard
procedure to associate two geospatial objects. It translates the relationship between two
geometries into a set of outcomes based on a decision tree. An example of the outcome
matrix, called the Dimensionally Extended nine-Intersection Model (DE-9IM) can be
seen in Figure 4.2. Note that the intersection of the interiors is a two-dimensional
area, so that matrix cell’s value equals 2, indicating that the object resulting from that
operation is a two-dimension object, in other words, a polygon. When intersections are
over single lines, that matrix cell’s value equals 1, indicating that a one dimensional
object is the result. When the polygons touch over single points, that portion of the
matrix equals 0, which indicates the 0-dimensional point objects as results. When there
is no intersection between components, the respective matrix value is set to a Boolean
false.

5OpenGeo Suite: http://suite.opengeo.org/

http://suite.opengeo.org/
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Figure 4.2: DE-9IM over spatial object interactions5.

4.3.1 OMT-G

Considering that the spatial relations cannot be represented as foreign key associa-
tions, Borges et al. [6] demonstrated how spatial data characteristics make modeling
more complex and proposed the Object Modeling Technique for Geographic Applica-
tions (OMT-G). The OMT-G provides conceptual, presentation and implementation
abstraction levels and it is suitable for modeling spatial and non-spatial data in an
organized way compatible with the Unified Modeling Language (UML6).

Figure 4.3 shows the OMT-G diagram representing the 2013/TIGER Line dataset
main classes, including the generated collections for the urban network query set (Sub-
section 4.3.3). The TIGER shapefile collection duplicates data in order to provide
isolation between classes. This enables for the general public to download only the
collections they require, as for example, being able to download the PRIMARYROADS
subset without having to obtain the entire EDGES collection. This duplication of data
also increases performance, as for example, when the most used EDGES subcategories
are already in a separate table. Such design characteristic excludes the need for a
table filter based on the EDGE attributes in order to verify if that EDGE object is a
PRIMARYROAD or a LINEARWATER.

6UML: http://www.uml.org/

http://www.uml.org/
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Figure 4.3: TIGER Line OMT-G main classes diagram.

4.3.2 Mapping Spatial Objects

When mapping spatial objects into DBMS, the relational systems usually end up with
normalized tables (with some exceptions focusing on either performance or redundancy
of data) and spatial columns, which is pretty much straightforward, as demonstrated
in PostGIS. The attributes of spatial objects are translated into columns, and the
spatial feature itself is a geometry type column. Objects of the same class are stored
in their respective tables and the relationship between spatial objects is calculated
dynamically through spatial functions and operators. The same does not apply to
NoSQL DBMS, for which there might be more than one way to store multiple sets of
data with relationships between them.

Considering the example of scientific papers and authors: In a relational DBMS,
a usual mapping simply allocates one table regarding papers, another one authors
and a third junction table. This junction table columns’ are the primary keys from
both aforementioned tables in order to link the papers with their authors. When
moving to the document-oriented DBMS (such as MongoDB in our study), there is
the possibility of embedding one of the two sets of data inside the other, based on
their relationship. Such mapping results in two possible structures: one where the
author document contains every paper he has published, and the other where every
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paper contains its respective authors. It is important to notice that in both structures,
there may be data duplication as the same paper may appear in more than one author
document, as well as an author may be inserted in multiple paper objects.

Such problems led us to a common design implementation that focuses on avoid-
ing document embedding, as it makes data alteration rather slow and might increase
document size and data duplication. Specifically, the implementation allocates both
authors and papers into two separate collections, with no document embedding. This
example applies to the spatial attributes as well, in a way that it requires to dynamically
calculate the relationship between two geospatial attributes.

Now focusing on the graph-oriented DBMS, every data item must be translated
into either node or relationship attributes. Hence, every spatial object is added as
a node to the graph. Nodes are then included in the spatial index through graph
relationships. One exception regards the urban routing scenario, where spatial objects
belonging to the EDGES collection became relationships as we will explain next.

4.3.3 Graph Mapping for Urban Routing

As detailed in Section 4.6, only PostgreSQL with pgRouting and Neo4j provide graph
and network features. With that in mind, we have generated a fully traversable graph
representing the United State’s automotive network. Specifically, objects that are in
the EDGES table were filtered to produce the PATHWAY table. This data collection
represents the same spatial attributes as the table ROADS, but the latter is not a fully
traversable graph as it does not have road segments, rather full road linestrings. After
filtering those objects from the EDGES table, we perform the pgRouting function for
creating nodes based on those road segments. Those nodes translate into road inter-
sections represented by the data collection PATHWAY_VERTICES_PGR. With both
collections processed and indexed, we are able to perform graph operations, considering
target, source and length of each EDGE (road segment).

Now regarding Neo4j, the same datasets were created, but with an important
difference. The road segments are not imported as nodes into the graph, but rather
as relationships. This procedure is not directly supported by Neo4j and we performed
it with a simple script that treated those road segments as relationships between two
nodes (road intersections). Then, a graph represents the same network (as in Post-
greSQL) built over Neo4j without its spatial extensions. Chapter 5 tests all architec-
tural decisions as we evaluate each DBMS’s performance.
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4.4 Data Loading

During data loading, the dataset is read, processed and stored in disk. As mentioned
earlier, we use the TIGER/Line vector dataset, which provides a large workload similar
to many real world spatial databases, with enough data volume to represent a good
spatial big data sample. The dataset contains more than 400 million objects, which
requires efficient data loading. DBMS restoration and backup are a crucial part of any
application’s database. Object coordinates in the dataset are originally encoded using
the North American Datum of 1983 (NAD83), which we converted to the coordinates
in the World Geodetic System 1984 (WGS84), the data used by the Global Positioning
System (GPS). The conversion to both WGS84 and GeoJSON (used by MongoDB)
was performed using the Geospatial Data Abstraction Library7.

All three DBMSs provide their own import tool (shp2pgsql in PostgreSQL, mon-
goimport in MongoDB and Neo4j’s ShapeFileImporter). Shp2pgsql performed very well
right out of the box, translating shapefiles into PostgreSQL data relatively fast and
without issues. However, the import tools provided by MongoDB and Neo4j were much
slower, thus new tools were implemented to achieve a more reasonable import time.
Also, as the import procedure is not executed as frequently as regular querying, data
modification and backup routines, it is not part of the final performance evaluation.
Detailed information about the improved data loading tools are described in Section
4.5.

After completing the dataset import, spatial indexes are created for all geometry
fields. Indexes are also created for all attributes used in queries, such as road type
(rural and local roads, highways and interstates) for urban routing, and point types
for nearby points of interest. For MongoDB and Neo4j, our import tools generated the
exact same database, with the same number of objects, with varying disk usage. For
Neo4j, we were unable to compare the default import tool results, as its data importer
was too slow: we canceled it after 72 hours of processing.

The disk space used by each DBMS compared to original files (shapefile and
geojson) points out interesting behaviors. First by looking at data usage, it is clear
that storing data as tables is much less expensive than documents and graphs. This
happens because both graph and document systems store the key-value pair for each
attribute, which is not necessary on relational systems as the key (column name) is not
replicated on every object. Now regarding the disk space consumed by indexes, the
generalized search tree (GiST) used by PostgreSQL is not as efficient as Neo4j’s graph
strategy. MongoDB’s index disk consumption reflects the Geohash associated with a

7GDAL 1.11.0: http://www.gdal.org

http://www.gdal.org
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Table 4.3: Dataset disk consumption after data loading.

Storage Data Indexes Total
ShapeFile 136 GB - 136 GB
PostgreSQL 132 GB 65 GB 197 GB
GeoJSON 224 GB - 224 GB
Neo4j 271 GB 18 GB 289 GB
MongoDB 412 GB 32 GB 444 GB

Table 4.4: Dataset file import time for the original and implemented tools.

Import Tool Original Import Time New Import Time
PostgreSQL 26 hours -
MongoDB 70 hours 33 hours
Neo4j Interrupted after 72 hours 56 hours

space-filling curve, more space than Neo4j but less than PostgreSQL. The disk space
used by the dataset in each platform, as well as compacted shapefiles and structured
files, are presented in Table 4.3.

4.5 Improvements on Data Loading

As aforementioned, the default tools spent too much time on data loading. Therefore,
we have improved their performance with one solution for MongoDB’s mongoimport
and another for Neo4j’s ShapeFileImporter class, as explained next.

4.5.1 Improving Mongoimport

Mongoimport has issues regarding processing time and import speed. Its performance
is also unstable and degrades fast when large amounts of data are converted from JSON
to MongoDB’s native binary documents (BSON). The documentation8 instructs users
to run multiple mongoimport instances, as this tool is single threaded; but even then
it is not very efficient. The issue with running multiple instances of mongoimport is
that parallel insertion alters the order in which the objects are being stored. This may
influence the index structure and possibly cause collection fragmentation over multiple
data files, which is unacceptable in a performance evaluation study. Overall, the import
tools suffer from slow data serialization and processing time.

Our solution is to lift the task of document serialization from the DBMS. Instead,
we propose to perform it in a separate thread, so as to speed up the import time and
use more than one processor core. This simple strategy allows the import tool to
serialize an object while another is being inserted in the DBMS, thus providing a
pipeline that is considerably faster than the serial solution from mongoimport. Indeed,

8MongoDB Documentation: http://docs.mongodb.org/manual/

http://docs.mongodb.org/manual/
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Figure 4.4: Thread schematic comparing Mongoimport with the new proposed solution.

such solution proved to be better by importing GeoJSON documents roughly 50%
faster than mongoimport, as presented in Table 4.4. If document order is not relevant,
import speed could be improved even further by increasing the number of threads
serializing documents concurrently. In the event of a machine cluster, increasing the
number of machines would also speed up database insertion. Figure 4.4 thread diagram
represents how the new solution operates. Nevertheless, this time is still 27% slower
than shp2pgsql.

4.5.2 Improving Neo4j Load Strategy

When loading data into Neo4j, the spatial extension builds an R-Tree over the graph
structure to index spatial data. However, it is not possible to add spatial data to the
database without adding it to the spatial index first, thus making the loading process
very slow. In other words, Neo4j has to maintain most of the index in memory and
keep modifying it as new data is added.

Here, we implement a much faster batch insertion strategy. It consists of indexing
data only after the entire insertion process is complete. However, this strategy requires
that inserting formatted data into raw graph nodes and relationships happens without
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Table 4.5: The main features, the spatial data type returned and what the evaluation
measures for each query group.

Query Group Spatial Data Type Evaluation Focus
Nearby Points of Interest Vector Index efficiency and point-to-geometry processing
Map View Vector Memory management and locality of reference
Urban Routing Network Disk access strategies and raw processing power
Position Tracking Spatio-Temporal Persistence strategies and index management

Neo4j Spatial. Hence, our Neo4j import tool adds the nodes and edges to the Neo4j
standard graph structure. Later, the nodes and relationships stored in the DBMS are
added to the spatial layers (indexes), now returning to use the Neo4j Spatial Extension.
This solution is faster than Neo4j’s, as presented in Table 4.4 (even though it is still
much slower than the others).

4.6 Spatial Queries

Here, the set of queries is designed based on features from mobile GIS and spatial
applications. In other words, they are specifically based on functions commonly used
in mobile applications, such as Google Maps, Waze, Foursquare, etc. There are four
main query groups: nearby points of interest, map view, urban routing and position
tracking, as described in Table 4.5 and detailed next.

Nearby Points of Interest. This group contains two of the most common types of
queries performed by users when looking for nearby points of interest (POI). The first
is a query that searches for POIs closer than a given distance from a reference position
(usually the device’s position). One example of such a query is: “Find gas stations
closer than 5 kilometers from my workplace”. This group tests mainly the DBMS’s
index efficiency and its point-to-geometry processing power. Figure 4.5 illustrates a
POI within radius visual representation with the respective PostgreSQL query.

The second is to query for the k-nearest neighbors (k-NN): a search for one
or a group of the closest objects from a given location. Examples are: “Where is the
closest bus stop to my dentist appointment?” and “What are the two closest point
landmarks near Columbus Circle in Central Park?”. Figure 4.6 exemplifies a k-NN
visual representation with the respective PostgreSQL query.
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SELECT * FROM POINTLM plm
WHERE ST_DWithin(plm.geom,ST_GeomFromText
(’POINT (-86.7018143434 32.4798804232)’,4326),1.0 );

Figure 4.5: Example of nearby POI within radius and equivalent PostgreSQL query.

SELECT * FROM POINTLM plm
ORDER BY plm.geom <-> ST_GeomFromText
(‘POINT(-86.7018143434 32.4798804232)’, 4326) ASC LIMIT 1;

Figure 4.6: Example of nearby POI KNN and equivalent PostgreSQL query. The red
mark is the device’s position and the blue marked locations are the possible answers.

Map View. This group simulates interactive user browsing, zooming and panning.
The zoom usually ranges from a city block (150 meters wide) to hundreds or thousands
of kilometers. This group tests how well the DBMS memory manager handles the
locality of reference on its indexes. An optimized indexing and caching implementation
may perform better when loading spatial objects that are close to the previously loaded
ones. It is also important to evaluate how the DBMS handles queries in multiple
collections/tables/layers at the same time, requiring access to multiple indexes and
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SELECT * FROM FACES fcs
WHERE ST_Intersects(ST_GeomFromText(‘POLYGON
((-87.2018143434 31.9798804232, -87.2018143434 32.9798804232,
-86.2018143434 32.9798804232, -86.2018143434 31.9798804232,
-87.2018143434 31.9798804232))’, 4326), fcs.geom);

Figure 4.7: Example of map view and equivalent PostgreSQL query. The user’s position
is represented in red and the loaded results are highlighted within a rectangle for the
“Area loaded”.

database files. Figure 4.7 illustrates a visual representation of the returned objects
with the respective PostgreSQL query.

Urban Routing. This group plays a very important role nowadays, as applications
like Google Maps, Bing Maps and Waze already provide a routing function. Here, the
test queries compare the systems’ response to graph-oriented operations and determine
how well their shortest path algorithms behave. The urban routing algorithms are not
performed over long distances as there are many solutions to filter graph edges that
would not likely be traversed by the algorithm, or to avoid extensive calculations.

For example, when Google Maps queries for the shortest path between two very
distant points (e.g., Seattle and New York), it uses heuristics to focus on highways
and roads, then ignoring less important paths that are not close to both the source
and the destination. Such priority setup reduces the number of edges considered by
the shortest-path algorithms, thus making the processing time faster without altering
much the resulting path. We also use the same principle: the further the source and
destination points are, the more likely the algorithm is to avoid using local neighbor-
hood roads, city streets, secondary roads and finally primary roads. The minimum
and maximum distances provided to the routing queries are based on data from the
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SELECT seq,id1 AS node,id2 AS edge,cost,geom
FROM pgr_dijkstra
(‘SELECT r.gid AS id, r.source, r.target, st_length(r.geom)
AS cost, r.geom FROM PATHWAY r, PATH-
WAY_VERTICES_PGR v1’,
36123091,36112650, FALSE, FALSE)
AS di JOIN PATHWAY pt ON di.id2 = pt.gid

Figure 4.8: Example of calculated shortest path between points A and B and equivalent
PostgreSQL query.

National Household Travel Survey9 (NHTS) – an effort sponsored by the Bureau of
Transportation Statistics (BTS) and the Federal Highway Administration (FHWA) to
collect data on both long-distance and local travel by the American population. Fig-
ure 4.8 illustrates a calculated shortest path visual representation with the respective
PostgreSQL query.

Both PostgreSQL’s pgRouting and Neo4j provide Dijkstra’s [16] and A* [25]
algorithms to perform the search for the shortest path within a network. In this study,
we consider the Dijkstra’s algorithm in both DBMS, since it does not rely on heuristics
like the A* (i.e., it is less susceptible to variations and particular best/worst case
scenarios).

Position Tracking. This is a feature (available in many mobile devices with or
without the user’s knowledge) that constantly records the user’s position in order to
provide location-based services (such as traffic management, fleet location, logistics and
delivery optimization, remote sensors, historical location heatmaps, etc.) or simply to
deliver location-specific advertisement. Therefore, this feature requires frequent storage
of point locations. We propose a very simple but efficient way of measuring how well

9NHTS :http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/subject_areas/
national_household_travel_survey/index.html

http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/subject_areas/national_household_travel_survey/index.html
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/subject_areas/national_household_travel_survey/index.html
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INSERT INTO SPATIO_TEMPORAL(calendar,geom)
VALUES (TIMESTAMP ’2014-10-26 23:15:40.63’,
ST_GeomFromText(’POINT (-83.250147 31.818538)’, 4326));

Figure 4.9: Recorded position history on the map and equivalent position insertion in
PostgreSQL.

a system can trace its clients’ locations over time and add them to an existing data
collection. As both time and spatial attributes are indexed, index restructuring and file
management play important roles. This group of queries evaluate how fast the DBMS
can insert new data into an existing collection with previously built indexes. A visual
representation of inserted device locations with the respective PostgreSQL command
is presented in Figure 4.9.





Chapter 5

Experimental Evaluation

In this chapter, we describe the experimental setup, database configuration, index
creation, software and hardware characteristics, parameters, metrics and the perfor-
mance evaluation. Also, we detail any exceptional characteristics that excluded one
of the DBMSs from a spatial query category, including bugs, non-equivalent query
algorithms and lack of features.

5.1 Experimental Setup

The experimental evaluation was performed in an Intel Core i7 3770K with 32 GB of
non-ECC 1600MHz RAM, 120GB SSD for the operating system and DBMS binary files
and a 2TB 7200 RPM hard drive dedicated to the DBMS storage folders. The operating
system is Windows Server 2012 64 bits. Only essential tasks and services run during the
execution to avoid unwanted system hardware calls and resource concurrency. Regard-
ing DBMS tuning, Neo4j Java heap size was increased for matching the other DBMS
natural behavior of occupying all available RAM. Also, spatial indexes were created in
all spatial columns (PostgreSQL), fields (MongoDB) or attributes (Neo4j).

We have implemented all evaluation functions in a tool that avoids interfering
with the DBMS’s performance. Also, all query caching, file buffering and other strate-
gies were handled exclusively by each DBMS. As for specific setups, the Neo4j embed-
ded server runs on Java Virtual Machine (JVM) and was placed in a separate thread.
This way, it uses memory mapped buffers and avoids any memory sharing with the
evaluation tool, then putting the operating system in charge of its buffers. The drivers
utilized are: PostgreSQL 9.3-1102 JDBC driver, MongoDB 2.12.3 Java driver and Neo4j
embedded server 2.1.4.
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Table 5.1: Number of query executions per query set.

Query Set Number of single executions
Nearby POI Radius 1,000
Nearby POI k-NN 1,000
Map View 1,000
Map Zoom 1,000
Map Pan 1,000
Urban Routing 20
Position Tracking 500,000

5.2 Parameters and Pre-evaluation

In order to setup a meaningful set of queries, we have defined specific ranges that
limit the values generated for each group of queries. We also expect and reinforce
variety and quantity of the resulting sets, in order to better evaluate how each DBMS
handles its spatial indexes in both memory and disk. Each query group has a number
of executions per set, as demonstrated in Table 5.1. Also each query is started by
its own thread at a random time interval (which enables multiple queries running at
the same time). This distribution of query executions per set mimics the proportion
of procedures performed by mobile devices over these mobile systems’ servers. These
queries consider the parameter value ranges presented in Table 5.2 and explained as
follows.

• For the Nearby POI Radius-based group, the maximum radius is 1.0 de-
gree (approximately 110 kilometers) and minimum is 0.01 (approximately 1 km).
Then, each k-NN query varies between 1 and 10 nearby points. The minimum (1
km) value is less than the Americans’ average daily walking distance [4] (4.11 km),
and the maximum (110 km) is double the distance used in the Urban Routing
query group.

• For the Map View group, the query window is a 16:9 rectangle (to simulate the
mobile user’s screen format) with width and height using a minimum of 0.0013
degree (approximately 150 meters, a city block) and maximum of 1.0 degree (110
km, double the distance used in Urban Routing).

• The Urban Routing queries have limited maximum distances between origin
and destination, where the minimum distance is 10 meters (the shortest road
edge available) and the maximum is 0.5 degree. According to the NHTS, this
value is the 90th percentile of the American Commute Distance (One Way), and
corresponds to 56 kilometers or 35 miles. The distances may differ slightly as
degrees conversion into kilometers vary according to the latitude.
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Table 5.2: Evaluation parameters.

Query Group Minimum Maximum
Nearby POI Radius 0.01 degree 1.0 degree
Nearby POI k-NN 1 place 10 places
Map View 0.0013 degree 1.0 degree
Urban Routing 0.0001 degree 0.5 degree
Position Tracking 100 points 100,000 points

• During thePosition Tracing evaluation, the spatio-temporal object is composed
by the object id, its date of creation and a randomly generated point geometry
within the urban routing network. The number of insertions performed simulates
a daily journey (random routes) of an object traveling between 1 and 60 km/h,
which implies a number of points ranging from 100 to 100,000 – depending on
the distance between consecutive points. The point range is associated with the
minimum android GPS poll interval (every 15 minutes, or 96 times a day), to
a maximum 100,000 requests a day, when the device is actively using a spatial
application (i.e.: Google Maps or Waze).

Finally, for each group of queries, we performed a pre-evaluation of each DBMS
in order to verify any inconsistency towards a fair comparison. Specifically, for the
Urban Routing group, MongoDB is not considered because the evaluated version
(2.12.3) does not provide any network-related data handling. Also, given that Neo4j
is a graph oriented database, its shortest path algorithms are part of Neo4j’s core; i.e.,
it does not require a spatial extension to perform the calculation, using road segments
as edges and intersections as nodes.

Then, for the k-NN queries, Neo4j Spatial results differed greatly by returning
empty collections or incomplete result sets. Since Neo4j Spatial is open source, a code
review pointed out that its query method does not meet the standard k-NN implemen-
tations: in each query, it uses a density estimation to calculate the size of the polygon;
then a within search is performed to match elements inside the generated polygon.
Therefore, Neo4j’s k-NN does not perform the claimed query. Its results are not com-
patible with the other two DBMSs, which led to a code review in order to understand
its query behavior. The org.neo4j.gis.spatial.SpatialTopologyUtils module contains the
method createEnvelopeForGeometryDensityEstimate, whose density estimate method
is shown in Algorithm 1. After the envelope is calculated, a within polygon search is
performed as in Algorithm 2. Nonetheless, this approach does not work as a nearest
neighbor search, because there is no guarantee that the density estimation will cover
the number of objects requested. Finally, as it is performing a within polygon and not
a k-NN search, we do not consider Neo4j in the k-NN evaluation group.
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Algorithm 1 Create envelope for geometry density estimate.
procedure createEnvelopeForGDE(Layer layer, Coordinate point, int limit)

if limit < 1 then
return new Envelope(point)

end if
int count = layer.getIndex().count()
if count > limit then

return createEnvelopeForGDE(layer, point,(double) limit / (double) count)
else

return Utilities.fromNeo4jToJts
(layer.getIndex().getBoundingBox())

end if
end procedure
procedure createEnvelopeForGDE(Layer layer, Coordinate point, double fraction)

if fraction < 0.0 then
return new Envelope(point)

end if
Envelope bbox = Utilities.fromNeo4jToJts
(layer.getIndex().getBoundingBox())
double width = bbox.getWidth() * fraction
double height = bbox.getWidth() * fraction
Envelope extent = new Envelope(point)
extent.expandToInclude(point.x - width/2.0, point.y-height/2.0)
extent.expandToInclude(point.x+width/2.0, point.y+height/2.0)
return extent

end procedure

Algorithm 2 Using the generated envelope area to perform a within polygon search.
procedure startNearestNeighborSearch(Layer layer, Coordinate point, Envelope searchWindow)

return start(layer, new SearchIntersectWindow
(layer, searchWindow)).calculateDistance
(layer.getGeometryFactory().createPoint(point))

end procedure

5.3 Evaluation Metrics

Regarding evaluation metrics, we consider the query execution time and number of
vertices returned by the query. Specifically, the number of vertices is the sum of the
vertices of the polygons of all objects, documents or tuples returned by the queries.
We also propose the vertices per second (v/s) measurement as a performance indicator,
observing that spatial data is best analyzed when considering the number of points that
form a geometry. Usually query processing over a more complex geometry or spatial
object takes considerably more processing power than operations over singular points.
The metrics derived from the main attributes are the average query time and vertices
per second throughput, which is defined as follows.

Vertices Per Second: Let t be the time in seconds spent to evaluate a query, n the
number of spatial objects retrieved, and v the number of vertices of each object. The
vertices per second is the sum of all object vertices returned by the query divided by
its execution time:

V erticesPerSecond =

∑n
i vi
t

(5.1)
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5.4 Performance Evaluation

In this section, we evaluate the DBMS for spatial data. As aforementioned, the eval-
uation metrics are the number of vertices per second (v/s, the higher the better) and
execution time (the lower the better). The limits of the box represent the first quar-
tile (designated Q1) or the 25th percentile, and the third quartile (Q3) or the 75th
percentile. The ends of the whiskers represent the 5th and 95th percentiles. Detailed
percentile information about the next experiments can be found in Appendix A.

5.4.1 Nearby Points of Interest Within Radius and k-NN

We start the performance evaluation with the nearby points of interest (POI) within
a given radius and k-NN queries. Figure 5.1a shows the results for Nearby POI within
Radius with the distribution of number of vertices per second for each DBMS. Note that
PostgreSQL has the best median throughput and its standard deviation is small. Then,
MongoDB has a relative slower median than PostgreSQL, with maximum scores higher
than PostgreSQL and minimum nearly equal. Neo4j falls into another performance
level with a maximum vertices per second score very close to the other two DBMS’s
minimum, which is recurrent in other experiment categories as explained later on.

Figure 5.1b shows the vertices per second for the Nearby Points of Inter-
est k Nearest Neighbors query set (there are no results for Neo4j due to its k-NN
implementation and query results, as explained in Section 4.6). In this group, Mon-
goDB’s performance surpasses PostgreSQL by three times more vertices output. This
is because both approaches are different, as explained next.

The k-NN approaches used by all three DBMS are different. PostgreSQL searches
directly over an R-tree and uses the ‘< − >’ operator, which returns the distance
between two points (it uses the geometry centroid for polygons to speed up the calcu-
lation). Then, MongoDB searches on multiple iterations over concentrically growing
circular polygons until the last neighbor is found. Overall, even though the PostgreSQL
approach is less expensive memory-wise, MongoDB’s index for points associated with
growing concentric circles proves to be faster as there are no distance calculations to
be made between each point (except on the last concentric circle iteration). Neo4j’s
implementation is a poor approximation with bad performance and usually no objects
are retrieved in low density areas, thus being excluded from this experiment group.
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(a) Results for nearby POI within radius.

PostgreSQL MongoDB
10-1

100

101

102

103

V
e
rt

ic
e
s 

p
e
r 

se
co

n
d

Nearby points of interest k-NN

(b) Results for nearby POI k-NN.

Figure 5.1: Distribution of query execution results (v/s).

5.4.2 Urban Routing

Figure 5.2a shows the results for Urban Routing queries, where the number of vertices
per second processed by Neo4j is roughly twice those of PostGIS’ pgRouting. Such
results reveal Neo4j’s greatest comparative strength: calculating the shortest path be-
tween two points in a network, as expected for a graph-oriented database management
system. Also, such results may indicate that the performance bottleneck for other types
of queries might be caused by Neo4j’s Spatial Extension, rather than the graph engine
itself, as the shortest path query is a native feature of Neo4j and does not require an
R-tree-over-graph index structure and any other spatial extensions. Another impor-
tant fact is that urban routing queries are much slower than the other groups, thus
supporting our evaluation focus on disk access and CPU processing power required by
this query group.

5.4.3 Map View

The difference in performance is even clearer in this set of experiments. Figure 5.2b
shows the results: each DBMS is separated from the other by a factor of ten. As a
relational DBMS, PostgreSQL outperforms the other DBMSs at combining the multi-
table query results while using the spatial index. MongoDB struggles to deal with
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(b) Results for map visualization (log10).

Figure 5.2: Distribution of query execution results (v/s).

multiple collections at the same time, as its memory management strategies focus on
keeping the entire indexes on memory as much as possible. Such approach might not
be ideal when querying a collection forces another collection’s index out of the RAM.
Neo4j again performs poorly, mostly because its R-tree index implementation over
the graph structure forces the index to be completely loaded into memory as a graph
(spatial layer), which is slower.

Zooming and panning are also part of the Map View group. In a map view, our
analysis evaluates how the accessed data and indexes are used in the next queries. It
is expected that any indexes previously loaded into memory by the Map View query
will remain available for the zooming and panning. Also, if any DBMS provides object
caching, those objects will be expected to be retrieved faster. Hence, Figure 5.3a
and Figure 5.3b show a throughput increase, when compared with the Map View,
by zooming and panning a previously accessed portion of data. The results show
the performance of PostgreSQL as being constant at a rate close to 800 vertices per
second, while MongoDB reached little over 100, and Neo4j barely achieves 10 vertices
per second. It is possible to notice that the minimum score for all three DBMSs falls
greatly during panning. Such result indicates that the query selected a portion of
the dataset that was not accessed by either viewing or zooming the map, resulting in
(expensive) disk operations rather than memory accesses.
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Figure 5.3: Distribution of query execution results (v/s).

5.4.4 Position Tracking

Now, we analyze how the systems manage insertions into both spatial and data indexes.
Figure 5.4 shows the average vertices per second inserted into the database. Whereas
PostgreSQL still maintains a relatively constant insertion time, both MongoDB and
Neo4j oscillate between fast insertions and slow ones, that are almost 100 times slower
than PostgreSQL’s. As all three DBMS have different insertion strategies, the insertion
v/s results have high variability. Detailed percentile information about the distribution
can be seen in Appendix A. These results indicate that the PostgreSQL solution is
the fastest on average, and both MongoDB and Neo4j implement a delayed insertion
mechanism. Specifically, MongoDB considers replica sets and log registers for writing
operations. The first one guarantees the write operation will propagate insertions to all
replica sets (when there is any). The second one ensures durability by confirming that
any insertion operation has been logged into the on-disk log. As we are assessing single
machine performance, and MongoDB’s strategy is focused on scaling with machine
clusters, future experiments may end up with different results. On the other hand,
Neo4j uses a commit interval parameter: if the number of insertions is equal or greater
than the commit interval, all modifications are pushed to the disk and the commit
interval is set to zero again. Such strategy’s behavior can be seen in Figure 5.5, as
explained next.
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Figure 5.4: Results for average vertices inserted per second.

5.5 Relative Performance Summary

The relative performance is calculated by dividing the DBMS query execution time
by PostgreSQL’s, the oldest (and arguably more mature) of the three. PostgreSQL is
taken as a reference with normalized time of 1. Other DBMS values indicate how much
faster or slower they are in comparison. Figure 5.5 shows the normalized execution time
for samples of 20 queries per group.

According to our evaluation results, the DBMS with best overall performance
is PostgreSQL. Even though our dataset considered a sample when compared to real
big data collections, there is evidence to support that this mimics one of the clusters’
machines in terms of processor, memory and disk usage. As a more established product,
PostgreSQL with PostGIS is still the reference when handling spatial data, even if
its relational-oriented characteristics are not built for big data. Nonetheless, despite
PostgreSQL performance being consistent and superior overall, its horizontal scalability
is supposedly not as easy to achieve as the two NoSQL DBMS tested. Specifically,
PostgreSQL offers many scaling and table partition tools. However, such tools require
implementing and configuring many variables, as well as managing and tuning the
existing partitions and analyzing the gains obtained. This whole task is very time
consuming, and may not compensate the extra effort.

MongoDB manages to stay relatively close to PostgreSQL in most groups, and
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Figure 5.5: Relative performance summary.

outperforms it during the POI radius and k-NN. Such results show that its growing
concentric circles implementation can be as fast as PostgreSQL’s. Neo4j’s overall per-
formance was weaker, but being the youngest system considered and graph-oriented, it
is somehow expected not to perform well under circumstances that favor tree-indexing
and very efficient disk and memory management. Moreover, being a graph DBMS,
Neo4J has shown good performance for Urban Routing queries by outperforming Post-
GIS’s pgRouting when using its core shortest path implementation.

We now take a further look at the weaker Neo4j performance by utilizing Resource
Monitor1 and the Java VisualVM2 to investigate what may have caused such degraded
performance. Figure 5.6 depicts the time spent at several methods during Neo4j’s query
executions. While the disk used in this experiment is capable of an average reading
speed of 152 MB/s, the total disk I/O during Neo4j’s benchmark peaked at 6MB/s.
Such results indicate a large amount of seek and random accesses, even though its disk
usage was consistently near the 100% mark. The figure also points out the methods
that consume most of the CPU time, which belong to the file storage management
system and to the cache system. Thus, there is evidence to support that the DBMS,
while using its spatial extension, has an underperforming file management interface.

In summary, our results show that PostgreSQL with PostGIS is a DBMS that
works well under multiple scenarios and provides the most spatial features. MongoDB
is almost as fast as PostgreSQL in some cases, performs well in the k-NN scenario and

1Windows Server Resource Monitor: http://msdn.microsoft.com/en-us/library/ms191246.
aspx

2Java VisualVM: http://visualvm.java.net/

http://msdn.microsoft.com/en-us/library/ms191246.aspx
http://msdn.microsoft.com/en-us/library/ms191246.aspx
http://visualvm.java.net/
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Figure 5.6: Neo4j JavaVM CPU Sampling.

is easy to scale horizontally, but it lacks many spatial features, including networking.
Neo4j has a slow performance when compared with the other DBMS but it has a
very good shortest path network implementation and should be the best option when
performing routing queries.





Chapter 6

Conclusion

Evaluating and benchmarking spatial DBMS performances is not as simple as evalu-
ating relational DBMS, because spatial attributes are much more complex to handle
than strings, numbers and other relational data types. While several system’s architec-
tures provide different levels of performance and features, it is imperative to limit the
data profile in which an analysis is made. Even in a very specific scenario (i.e., mobile
applications), our evaluation achieved very heterogeneous results at both DBMS and
query group levels.

Current evaluation tools and methodologies such as the TPC-C (even though it
does not evaluate spatial attributes) and Jackpine focus on relational models, systems
and queries. Both TPC-C and Jackpine evaluate the performance based on the time
spent on each query and such data is converged into a final score composed by each
query’s specific weight. Also the queries proposed by Jackpine reflect a general use for
a GIS, rather than focused on a service. This differs greatly from the GIS that handle
spatial big data, such as Google Maps, Waze and others.

Our experimental evaluation considered 1,000 executions for each vector based
query, 20 for network and 500,000 for spatio-temporal recording. With such queries, we
simulate a typical mobile application usage throughout the day, with the routing queries
being executed less, map visualization being more frequent, and position tracking with
much more executions. This combination mimics current mobile devices that continue
to produce and upload spatial information into these systems even without the user’s
interaction. By running this query combination and allocating each one to its own
execution thread, our evaluation is able to reproduce combinations between high/low
volume and high/low frequency of insertions.

This study compares the performance of different data models, each represented
by one product. Such comparison gives evidence of which model to use based on the
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desired scenario, and from that point, choosing the best performing DBMS.

6.1 Summary of Contributions

The first contribution is the given set of parameters and metrics for selecting a spatial
DBMS based on real usage scenarios and system features. With such parameters, it is
possible to mimic the usage pattern on those systems, as for example, the parameters
are based on real statistics about daily commuting, such as the average walking distance
and maximum commute distance in a day’s interval.

Also, we demonstrate that depending on the type of service provided, a particular
data model is more adequate to a specific query, thus maximizing performance but also
implying the existence of multiple data models for the same dataset.

Our evaluation methodology was composed by five stages (from data loading to
shutdown) and performed 100 queries (20 per each of five groups) over a real geographic
dataset. It also considered two new data loading implementations. The overall results
demonstrated how a relational DBMS performs under large amounts of spatial data, a
resulting scenario that may change under heavy clustering and data distribution. Com-
paring to existing studies, ours summarized the need for more specific spatial data
evaluation methodologies and more data and service-oriented benchmarks,
as well as the proposition of a metric that translates the DBMS capabilities into an
throughput comparison, rather than just only raw response time.

The results of this dissertation were submitted as a paper to the PVLDB journal.

6.2 Future Work

Ideas for improving and extending this work include:

• Extend this study into a customizable benchmarking tool. Define a
DBMS score with variable parameters based on the users preferences and needs.
Making a benchmarking tool which provides the user the right DBMS to be used
based on their preferences instead of a standardized and generalized score.

• Inclusion of a set of queries and parameters to evaluate machine clus-
ters. Machine clusters and cloud benchmarking require much more control over
the test environment in order to provide reliable scores. By extending the tool’s
support to be able to set up multiple clusters over machines connected in a net-
work could guarantee load balance. The tool would also be required to be able
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to tune in a reasonable way each cluster in order to provide a real and fair com-
parison among many DBMS.

• Study other spatial performance metrics not evaluated. Many attributes
could be evaluated separately based on each group of queries. For example when
querying for intersecting areas and other polygon resulting queries, the area re-
covered per second could be also a metric to be used, because if the result has
many intersections and new sections of polygons created, much more processing
power and memory would be required compared to the nearest neighbor search
based on points.

• Development of a Spatial DBMS which encapsulates multiple data
models/mapping strategies. We have observed that systems that focus on
a single model, for example the network model and the urban routing category,
usually excel in that particular scenario, but lack performance on the rest. One of
the DBMS features could be the possibility of representing and storing the same
information associated with many mapping techniques, where we could access for
example, the collection of road edges and intersections independently (as JSON
documents in MongoDB or tables in PostgreSQL) or as a network (layers in
Neo4j).
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Appendix A

Detailed Experimental Evaluation

Here we show detailed information regarding the experiment evaluation (Section 5.4),
these plots contain the same data analyzed previously. For each DBMS comparison in
the performance evaluation, there is a detailed plot regarding the vertices per second
distribution for each percentile interval. This visualizations help to understand how
each DBMS behaves and which are its limits, whilst also comparing the performance
between multiple systems. As in the previous plots, we consider data between the 5th
and 95th percentiles, as well as vertices per second as our performance indicator.
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Figure A.1: Results for nearby POI within radius, percentile distribution.
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Figure A.2: Results for nearby POI k-NN, percentile distribution.
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Figure A.3: Results for map visualization, percentile distribution.
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Figure A.4: Results for map zooming, percentile distribution.
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Figure A.5: Results for map panning, percentile distribution.
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Figure A.6: Results for urban routing, percentile distribution.
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Figure A.7: Results for position tracking, percentile distribution.
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