
MOCHA: UM FRAMEWORK PARA

CARACTERIZAR E COMPARAR TRACES DE

MOBILIDADE

JAVIER JESUS MEDINA DIAZ

MOCHA: UM FRAMEWORK PARA

CARACTERIZAR E COMPARAR TRACES DE

MOBILIDADE

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Pedro Olmo Stancioli Vaz de Melo
Coorientador: Antonio Alfredo Ferreira Loureiro

Belo Horizonte

Março de 2015

JAVIER JESUS MEDINA DIAZ

MOCHA: A FRAMEWORK TO CHARACTERIZE

AND COMPARE MOBILITY TRACES

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Pedro Olmo Stancioli Vaz de Melo
Co-Advisor: Antonio Alfredo Ferreira Loureiro

Belo Horizonte

March 2015

© 2015, Javier Jesus Medina Diaz.
				Todos os direitos reservados

Ficha catalográfica elaborada pela Biblioteca do ICEx - UFMG

Medina Diaz, Javier Jesus.

M491m MOCHA: a framework to characterize and compare mobility

 traces / Javier Jesus Medina Diaz. — Belo Horizonte, 2015.
 xxv, 63 f. : il. ; 29cm.

 Dissertação (Mestrado) - Universidade Federal de Minas Gerais
 Departamento de Ciência da Computação.

 Orientador: Pedro Olmo Stancioli Vaz de Melo
 Coorientador: Antônio Alfredo Ferreira Loureiro.

 1. Computação - Teses. 2. Redes de computadores - Teses. 3.
 Roteamento (Administração de redes de computadores) – Teses. I.
 Orientador. II. Coorientador. III. Título.
 519.6*22(043)

Para meu pai, Gustavo Medina, por ser meu maior exemplo de vida; para minha
mãe, Maira Diaz de Medina, que sempre sabe as palavras perfeitas para cada situação;
e para as minhas irmãs, Mariana e Andreina, por serem fontes constantes de amor e
alegria na minha vida.

ix

Agradecimentos

Primeiramente gostaria de agradecer a Deus, por todas as graças, dons e virtudes
concedidas ao longo desta jornada e da minha vida.

Ao meu pai, Gustavo, por todos os conselhos e debates que contribuíram para a
minha formação e a deste trabalho. Obrigado por me mostrar através do teu exemplo
que nenhuma carga é pesada quando acreditamos no propósito daquilo que estamos
fazendo. À minha mãe, Maira, pelo apoio incondicional em todas as minhas decisões e
pelo conforto nos momentos mais difíceis. Agradeço também às minhas irmãs, Mariana
e Andreina, e a toda à minha família que, mesmo na distância, se fez presente a todo
momento.

Obrigado à minha amiga Sthéfanni, por todas as conversas, risadas e situações
inusitadas que a nossa amizade nos proporcionou durante esta etapa da minha vida.
Ao meu amigo Khalil, pela confiança, pelo constante apoio e por todos os momentos
resultantes da nossa convivência diária em Belo Horizonte. À Jocelyn, por sempre estar
disposta a ouvir as minhas mais loucas teorias e principalmente por incentivá-las. Aos
meus amigos Lucas e Diego por apoiar constantemente meu trabalho e me manterem
sempre motivado.

Quero agradecer a todas as pessoas que me acolheram em Belo Horizonte e me
fizeram sentir em casa desde o momento em que cheguei, especialmente ao Daniel,
à Isadora, sua família e ao Marcos Martins. Agradeço também aos meus colegas de
mestrado, Alessandro e Rodrigo Borges, pelos conselhos e pelo apoio em todos os
momentos que precisei. Agradeço ao Rodrigo Maués, por me mostrar a resiliência de
uma amizade e como o trabalho em equipe sempre pode nos levar mais longe.

Muito obrigado ao Pedro Olmo, meu orientador, pela paciência, contribuições e
constantes direcionamentos durante o meu trabalho. Agradeço também ao meu co-
orientador, Antonio Loureiro, por apoiar as minhas decisões ao longo desta jornada,
por se mostrar compreensivo e zelar sempre pela qualidade da minha pesquisa.

xi

“You can’t connect the dots looking forward; you can only connect them looking
backwards. So you have to trust that the dots will somehow connect in your future.”

(Jobs, Steve)

xiii

Resumo

A avaliação de algoritmos em MANETs utilizando simulação é fortemente dependente
da representação precisa do cenário de mobilidade, ou seja, o modelo de mobilidade
e/ou os traces utilizados na simulação devem refletir a realidade da forma mais fiel
possível. Existem inúmeros traces na literatura que são utilizados como benchmark
para validar modelos de mobilidade, geradores e soluções para redes sem fio. Além
disso, considerando a heterogeneidade dos datasets reais de mobilidade que estão pub-
licamente disponíveis é crucial, se não necessário, entender as diferenças e semelhanças
entre eles e as suas características. Este trabalho propõe o MOCHA (MObility CHarac-
terization Framework), um framework que extrai, classifica e compara propriedades de
mobilidade baseado na suas distribuições marginais. Estas propriedades contemplam
diferentes aspectos da mobilidade humana e são divididas em três categorias: sociais,
espaciais e temporais. MOCHA é composto por três módulos: um parser, um extrator
e um classificador. O parser é responsável por converter qualquer trace de mobilidade
em um formato padrão que possa ser interpretador pelo MOCHA. O extrator é respon-
sável por extrair até 11 propriedades de mobilidade do trace no formato padrão. Por
último, o classificador analisa a distribuição marginal de cada propriedade, as separa
em cabeça e cauda, e as classifica de acordo com a cauda. Uma vez que o MOCHA ex-
traiu e classificou cada propriedade, é possível observar as semelhanças entre diferentes
datasets utilizando um algoritmo k-means e fazendo uma Análise de Componentes
Principais (PCA). MOCHA foi validado utilizando 13 traces reais que são conhecidos
na literatura. Além disso, a validação contou com 18 traces sintéticos gerados com
ferramentas conhecidas na literatura. Ao comparar traces reais e sintéticos mostrou-se
como os geradores de mobilidade considerados falham em reproduzir cenários realistas
e como a metodologia utilizada pelo MOCHA é mais elegante que a dos seus predeces-
sores e mais completa, pois considera todos os passos desde a conversão de um trace
de mobilidade, até a classificação das propriedades de mobilidade.

Palavras-chave: mobilidade social, classificação, mocha.

xv

Abstract

The evaluation of mobile network algorithms via simulation is strongly dependent of
the accurate representation of the mobility scenario. i.e., the mobility models and/or
traces used in simulation should reflect reality as much as possible. There are numerous
traces in the literature that are commonly used as benchmark to validate mobility mod-
els, generators and wireless networking solutions. Thus, considering the heterogeneity
of the real mobility datasets that are publicly available, it is crucial, if not necessary,
to understand the differences and similarities among them and also their characteris-
tics. In this work we propose MOCHA, a MObility CHaracterization Framework that
extract, classify and compare mobility properties, based on their marginal statistical
distribution. These properties cover different aspects of human mobility and can be
divided into three categories: social, spatial and temporal. MOCHA is composed by
three different modules: a parser, a property extractor and a classifier. The parser
is responsible for converting any mobility dataset into a standard form that can be
understood by MOCHA. The extractor is responsible for extracting up to 11 mobility
properties from the parsed dataset. Finally, the classifier analyzes the marginal statis-
tical distribution of each mobility property, splits them into head and tails, and classify
them according to the tails. Once that MOCHA extract and classify each property,
it is possible to visualize the similarities among different datasets by using a k-means
algorithm and the Principal Component Analysis method. We validate our proposed
framework with 13 real mobility traces that are frequently used as benchmark, in addi-
tion to 18 synthetic traces generated by different and well known mobility models. By
comparing real and synthetic datasets, our results show how the considered mobility
generation tools fail to reproduce realistic scenarios. We also show how MOCHA’s
methodology is more elegant than their predecessors and more complete, for consid-
ering all the steps from the original trace parsing process to the mobility properties
classification.

Palavras-chave: mobility properties, social mobility, classification, mocha.

xvii

List of Figures

3.1 All Dartmouth mobility properties analyzed by MOCHA 17
3.2 Empirical distributions for graphical comparison 18

4.1 MOCHA structure . 26

5.1 Classification of all properties according to MOCHA 46
5.2 Dartmouth INCO fitting and AIC error . 48
5.3 SLAW5 INCO fitting and AIC error . 49
5.4 k-means (k = 2) clustering of all evaluated datasets according to MOCHA

using all available properties from all datasets 51
5.5 k-means (k = 4) clustering of all evaluated datasets according to MOCHA

using only social properties from all datasets 52
5.6 k-means (k = 2) clustering of all evaluated datasets according to MOCHA

using only social properties from all datasets 53

xix

List of Tables

2.1 Mobility traces of real scenarios . 14
2.2 Mobility traces of synthetic scenarios . 14

xxi

Contents

Agradecimentos xi

Resumo xv

Abstract xvii

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 Problem . 1
1.2 Motivation . 2
1.3 Objectives . 3
1.4 Contributions . 4
1.5 Work organization . 4

2 Related Work 5
2.1 Mobility traces . 5

2.1.1 Campus scenario . 5
2.1.2 Vehicular scenario . 6
2.1.3 Conference scenario . 7

2.2 Synthetic mobility generators . 8
2.2.1 SWIM . 8
2.2.2 SLAW . 8
2.2.3 Working Day Model . 9

2.3 Comparing Mobility Traces . 10
2.4 Mobility-based networking solutions . 11
2.5 Overview . 12

xxiii

2.6 Datasets . 13

3 Mobility Properties 15
3.1 Discussion . 16
3.2 Social properties . 16

3.2.1 Inter-contact time (INCO) . 18
3.2.2 Contact duration (CODU) . 19
3.2.3 Maximum contacts per hour (MAXCON) 19
3.2.4 Encounter regularity (EDGEP) 20
3.2.5 Topological overlap (TOPO) . 20

3.3 Spatial properties . 21
3.3.1 Radius of gyration (RADG) . 21
3.3.2 Travel distance (TRVD) . 22

3.4 Temporal properties . 22
3.4.1 Visit time (VIST) . 22
3.4.2 Travel time (TRVT) . 23
3.4.3 Entropy (ENTROPY) . 23

4 MOCHA: MObility CHaracterization Framework 25
4.1 Overview . 25
4.2 The parser . 27

4.2.1 Normalization . 28
4.2.2 Raw mobility trace . 29
4.2.3 Check-in traces . 31
4.2.4 Contact traces . 33

4.3 The extractor . 34
4.3.1 Social properties . 34
4.3.2 Spatial properties . 38
4.3.3 Temporal properties . 40

4.4 The classifier . 42

5 Results 45
5.1 Analysis . 45
5.2 Sanity Check . 47
5.3 Classification of traces . 50

6 Conclusions and Future Work 55
6.1 Conclusions . 55

xxiv

6.2 Future Work . 56

Bibliography 59

xxv

Chapter 1

Introduction

1.1 Problem

Mobility traces are receiving considerable attention by researchers in the last years due
to the popularization of particular networks such as opportunistic, vehicular and social
networks. These traces are mainly used in simulations to reproduce realistic scenarios
in which the mobility plays a crucial role in the process of validating an algorithm,
technique or protocol [Aschenbruck et al., 2011; Karamshuk et al., 2011; Treurniet,
2014].

A mobility trace is a collection of movements performed by autonomous agents,
such as people, animals, vehicles, among others, containing information about this
agent. An important class of trace is the one that contains the time and duration of an
encounter between two agents, and sometimes their location. Moreover, the traces can
describe very large scenarios, such as taxis in a city [Piorkowski et al., 2009], or smaller
ones, such as attendees of a conference [Scott et al., 2006], Also, the amount of agents
in a trace and the duration of their encounters can also vary significantly, going from
dozens of nodes or hours to thousands of nodes and several weeks. Therefore, a key step
is to thoroughly understand the properties of such traces to make sure they accurately
represent the scenarios targeted by the given algorithm, technique or protocol.

The first modern attempts to understand mobile scenarios were through the anal-
ysis of real mobility datasets. Such datasets include, for instance, the Dartmouth
trace [Henderson et al., 2004], the USC trace [jen Hsu and Helmy, 2008], the Infocom
trace [Scott et al., 2006], among others [Aschenbruck et al., 2011; Karamshuk et al.,
2011; Treurniet, 2014]. These traces are commonly used as benchmark to validate net-
work protocols [Aschenbruck et al., 2011; Karamshuk et al., 2011; Treurniet, 2014] and
also synthetic mobility generation tools that came after them [Kosta et al., 2014; Lee

1

2 Chapter 1. Introduction

et al., 2012; Vastardis and Yang, 2014; Karamshuk et al., 2014; Ekman et al., 2008].
The fact is that mobility traces are the basis of every networking solution based on
human mobility.

1.2 Motivation

Mobility can be characterized by several properties [Karamshuk et al., 2011], but most
of the generation tools tend to simplify the comparison between generated traces and
real traces to a few statistical (and sometimes visual) properties, what harms the
process of validating the generative model. Even in the studies that compare mobility
traces, there is no standard methodology to perform this comparison. Different types
of frameworks have been proposed in the literature without any relation whatsoever
among themselves, making difficult to perform a benchmark with tools and datasets
that are not considered by the authors.

Bai et al. [2003] use mobility, connectivity and communication performance met-
rics to compare traces. Thakur and Helmy [2013] propose a mobility model and a
comparison framework with some mobility properties as well as network metrics. Un-
fortunately, both studies rely on visual comparison and do not consider how to quan-
titatively characterize the scenarios.

On the other hand, some studies [Munjal et al., 2010; Bezerra et al., 2009] use
a quantitative approach to analyze mobility models by focusing on statistical curves
and parameter fitting. Munjal et al. [2010] propose a model to construct MANET
scenarios by defining values for three specific parameters. However, the meaning of
each parameter and how to replicate a specific real scenario are questions not answered
in that work. Bezerra et al. [2009] propose a methodology to help fitting simulation
parameters to desired scenarios, but once again the work fails to explain the nature of
each scenario and how to explain why there are similarities between different datasets.

Several studies, such as Aschenbruck et al. [2011], describe the characteristics
of both real and synthetic traces. Karamshuk et al. [2011] classify those characteris-
tics into three categories: temporal, spatial and social. The characterization of such
properties is usually done by the analysis of the probability distribution of the desired
property. However, usually this analysis is simply a visual comparison between empir-
ical distributions, neglecting any sort of quantitative comparison [Kosta et al., 2014;
Lee et al., 2012].

Another relevant point regarding those characteristics, which we will refer for
now on as mobility properties, is that even different studies use the same properties to

1.3. Objectives 3

compare different scenarios. Furthermore, there is no formal methodology regarding
how they should be extracted from each mobility trace. At first sight, this does not
look like a real problem because each property has a formal definition, giving us an
insight about how to extract it. However, when analyzing real and synthetic datasets,
we find several corner cases needing to be considered to guarantee a fair and standard
comparison among datasets.

Finally, it is also important to highlight that in the literature each work compares
datasets using a specific set of mobility properties, but never all the well-documented
properties. By comparing a limited set of properties, it is hard to benchmark datasets
between different studies, creating difficulties in determining whether there are actual
similarities between scenarios in a standardized and reliable way or not.

1.3 Objectives

The motivation of this work is the establishment of a comparison methodology between
mobility scenarios and datasets. Considering this, we propose a MObility CHaracteri-
zation Framework (MOCHA) that extracts and compares several mobility properties.

First, we propose a taxonomy to classify the different types of mobility traces
found in the literature. It is very important to do this because, given the nature of
each trace, we need to translate them to a common form in order to guarantee they can
be evaluated and compared. Moreover, given a common form, it is possible to extract
and compare mobility properties. This will be important for our next goal.

Once we have the entry trace in a parsed form, we use an algorithm to analyze
and extract all the considered mobility properties present in it. More specifically, after
setting up MOCHA parameters properly, we want to extract quantitative properties
from each trace and classify them according to different categories previously identified.
The extracted properties represents different aspects of human mobility (such as social
ties and regularity [Karamshuk et al., 2011]) and can be used to propose network
solutions, especially in ad hoc scenarios.

MOCHA classifies each property into three different categories regarding their
marginal statistical distribution and flag all the properties that cannot be extracted
from a specific trace. By doing so, we ensure that properties that are equally classified
represent similar behavior on their respective traces. There is only one property not
evaluated using its marginal distribution. In that case, MOCHA uses a temporal
correlation instead.

We validate our framework with 31 different mobility traces, 18 containing move-

4 Chapter 1. Introduction

ments of real scenarios, and 13 generated synthetically by well-known models. Our
last goal is to categorize these traces using Principal Component Analysis (PCA) to
determine whether different traces can be considered similar in nature.

1.4 Contributions

This work proposes MOCHA, a complete framework to extract, analyze and compare
mobility properties available in mobility traces. By doing so, this is the starting point
to allow a fair comparison between mobility scenarios in order to help us understand
their real similarities and differences. With MOCHA, we offer a detailed comparison
between traces, improving our understanding on the similarities and differences among
mobility scenarios.

By using PCA to several well-known mobility traces used in literature, we present
a simple but yet practical form to visualize the similarity of different traces using a
quantifiable method instead of a visual comparison between arbitrarily selected mobil-
ity properties. Some of the traces used in our evaluation are Dartmouth [Henderson
et al., 2004], Infocom and Cambridge [Scott et al., 2006], San Francisco [Piorkowski
et al., 2009] and synthetic traces generated by popular tools such as SWIM [Kosta
et al., 2014], SLAW [Lee et al., 2012] and Working Day Model [Ekman et al., 2008].

1.5 Work organization

The rest of this work is organized as follows. In Chapter 2, we describe the related
work and present an overview about mobility traces, synthetic mobility generators and
some insights about trace comparison and applications. Then, in Chapter 3, we explain
the mobility properties that can be found in mobility traces. In Chapter 4, we propose
MOCHA, our MObility CHAracterization Framework, and, in Chapter 5, we discuss
the results obtained when comparing different synthetic and real traces. Finally, in
Chapter 6, we conclude our work explaining the challenges, applications and some
possible improvements to our work.

Chapter 2

Related Work

2.1 Mobility traces

There are several traces commonly seen as benchmark among human mobility models.
They can be divided into different categories: campus, urban pedestrian, vehicular and
conference. The difference between these categories is not only the geographic scenario
itself, but also the methods used to collect the data and the behavior of the agents in
each case. In the next sections, we describe each of these categories in details.

2.1.1 Campus scenario

In the campus category, agents are usually students or professors and their movement
is restricted to campus locations. Traces such as Dartmouth [Henderson et al., 2004],
USC [jen Hsu and Helmy, 2008], SASSY [Bigwood et al., 2011], UPB [Ciobanu and
Dobre, 2012] and Cambridge [Scott et al., 2006] are the most known and used in the
literature and commonly used to validate networking solutions [Vaz de Melo et al., 2013;
Thakur and Helmy, 2013; Alshanyour and Baroudi, 2008] and generative models [Kosta
et al., 2014; Lee et al., 2012; Ekman et al., 2008].

Regarding the agents’ behavior in this type of scenario, we notice that they tend
to have constant velocity when moving with low acceleration (most of the agents walk
instead of running). Usually the agents do not have predefined paths or directions
restricting their movement but there are paths that are more used than others in
specific times of the day. The social network of a campus can be very well defined
considering the nature of the scenario itself: students encounter with their colleagues
in a daily or weekly basis for months or years, have the same instructors, have lunch
at the same restaurant, etc.

5

6 Chapter 2. Related Work

Finally, the data collection method used in a campus scenario is usually an asso-
ciation/disassociation method with the Wi-Fi routers of the campus itself. Every time
an agent connects or disconnects to a router, a log entry is generated with the time of
the event, the agent ID and the router ID. However, some traces such as Sassy [Bigwood
et al., 2011] and [Ciobanu and Dobre, 2012] use Bluetooth instead of Wi-Fi, increasing
the precision but limiting the amount of nodes.

This type of data collection method has as main drawback the problem of con-
secutive handovers between nearby routers generating, sometimes, noise in the trace.
When analyzed, the trace might pass the idea that an agent is constantly moving be-
tween locations when it is actually in a handover zone. Another problem this type
of data collection emerges is that the geographical coordinates of each router are not
always available to the public, making impossible to estimate the actual distances that
a node traveled during the trace collection.

2.1.2 Vehicular scenario

There are also vehicular traces, where the agents are vehicles and streets with specific
directions and speed restrictions guide their movement. As examples, we can cite San
Francisco Cabs [Piorkowski et al., 2009] and Cologne [Uppoor and Fiore, 2012] traces as
the most commonly used [Aschenbruck et al., 2011; Karamshuk et al., 2011; Treurniet,
2014].

In this type of scenario, the velocity and acceleration of the agents is more variable
than in a pedestrian scenario [Ekman et al., 2008]. Also, it is important to highlight
that the paths used by the agents in a vehicular scenario usually have velocity and
direction constraints, which are explored by data dissemination protocols and oppor-
tunistic networks [Bai et al., 2003].

The social network of a vehicular scenario usually has a random behavior [Vaz de
Melo et al., 2013]. Even when the same agents use the same constrained path between
two points, it is highly unlikely that they do that at the same time every day. This
type of behavior makes more difficult to encounter the same pair of nodes near each
other with a certain regularity, giving the social network of a mobility scenario a more
random structure.

GPS is the most used technology to collect data in vehicular scenarios. By having
a GPS device at each agent (generally a vehicle), it is possible to track the position
of each node with high granularity, knowing it exact position at every moment of the
trace. Besides, if we know the city (or road) where the agent is moving, it is possible
to use a map to tune the path in order to match the actual road.

2.1. Mobility traces 7

The GPS technology has a major drawback when regarding mobility in urban
scenarios despite allowing a constant track of each agent. GPS only works well with
a clear line of sight between the device and the GPS satellites. In that case, in a city
with high buildings, the precision of a GPS can be compromised and the position of a
node can be misplaced to a different road or street than the one that is being actually
used. This type of behavior might present itself as noise in the mobility trace.

2.1.3 Conference scenario

Conference scenarios are a specific type of what we can call an indoor scenario. In the
conference category, agents are usually students, professors and other kind of partici-
pants of the conference, but the same behavior can be compared to hospitals, schools
and other indoor scenarios. The Infocom [Scott et al., 2006] and other traces related to
hospital and high school [Isella et al., 2011; Vanhems et al., 2013; Fournet and Barrat,
2014] are examples of such traces.

In conference scenarios, the agents move in a similar way of a campus scenario.
However, the duration of the trace and the area where the agents move is usually
smaller than in a campus trace. Moreover, there are usually no paths, velocity and
direction constraints, meaning that the agents move according to a social and not
geographic pattern.

The social network of this type of scenarios strongly depends on the scenario
itself. A school, for example, will have a very well defined social network, given that
students share a lot of time together and have common friends. However, in the case
of an hospital, the social network might be represented mostly by the hospital staff,
when the patients will configure a random social network between themselves and the
staff [Isella et al., 2011].

The data collection method used in indoor scenarios might vary from Wi-Fi as-
sociation/disassociation, as in a campus scenario, to the use of proximity devices to
determine when an encounter between two nodes actually occurred. When using prox-
imity devices, each agent has a unique radio device representing him/her. Once two
devices are within each other range, a log entry is generated with each node ID and the
time of the beginning of the contact. The same procedure is repeated once the nodes
lost communication with each other.

The main drawback of collecting mobility data using proximity devices is the lack
of geographic information. Most of the time, the encounter coordinates are not available
for logging, making impossible to determine the most popular locations present in the
trace.

8 Chapter 2. Related Work

2.2 Synthetic mobility generators

Considering the problem of generating mobility traces, the fundamental step is to
observe the characteristics of real scenarios, usually done by extracting their statistical
properties and represent them as a probability distribution. Previous analysis, as the
ones presented by Chaintreau et al. [2007], Song and Kotz [2007] and Helgason et al.
[2014a], also show that the behavior of some statistical properties is common to human
mobility independently of the environment [Karagiannis et al., 2010]. Based on such
analysis, several tools have been proposed to synthetically generate human mobility,
some of them discussed below.

However, here we focus on only three: SWIM, SLAW and WDM. We consider
those three tools because they are publicly available and are easy to set up and install,
making possible to anyone to reproduce the results presented in this work. Moreover,
these generators are very popular and constantly used by researchers to validate net-
working solutions [Munjal et al., 2010; Sandulescu et al., 2013; Batabyal and Bhaumik,
2014].

2.2.1 SWIM

Kosta et al. [2014] propose a generator called SWIM (Small World In Motion) to
generate synthetic small world scenarios. In SWIM, each node receives a home location
and moves around cells, calculating each cell popularity according to the number of
nodes present at each location. Until a cell is visited, its popularity to the node is
defined as zero. The intuition behind SWIM is that nodes visit with higher probability
nearby or popular cells.

SWIM assumes that the time spent between two locations by any node will be
always the same. This is based on the fact that agents tend to accomplish short distance
jumps on foot and long distance jumps by car or plane. Later in this work, it will be
shown when this assumption is in fact valid and in which cases are not.

According to [Kosta et al., 2014], SWIM can successfully reproduce real traces be-
havior such as the Cambridge mobility traces [Scott et al., 2006] and Dartmouth [Hen-
derson et al., 2004] by comparing three different mobility properties: inter-contact time,
contact duration and contacts per node. However, as we show in this work, SWIM fails
to model the social regularity present in real traces.

2.2.2 SLAW

Lee et al. [2012] propose SLAW, a model based on four basic premises: truncated

2.2. Synthetic mobility generators 9

power-law flights and pause times, heterogeneously bounded mobility areas, truncated
power-law inter-contact times and fractal waypoints. They show these premises are
intrinsically related, since the validation of one of them tends to generate the behavior
expected in some of the others.

Lee et al. [2012] also show that their model successfully fits power-law distribution
in properties such as inter-contact time and flight distances using the Akaike test.
However, their comparison is performed with traces collected by themselves and are
not publicly available. This creates obvious difficulties to benchmark their tool with
other real datasets.

The decision algorithm of SLAW agents is strongly based on what they call as
Leas action trip planning, or LAPT. LAPT states that every time agents need to visit
more than one location, they choose their next destination primarily based on the
shortest distance. Only when all the possible locations are within a specific radius (say
30 meters) the decision criteria is not the distance but the importance of the location
itself.

2.2.3 Working Day Model

Finally, Ekman et al. [2008] propose a mobility model called Working Day Model
(WDM), which has the purpose of modeling realistically daily routines. To accomplish
such modeling, they created separated sub-models to represent the different parts of
human routine: home sub-model, office sub-model and evening activity sub-model.

They also model different types of mobility such as walking, bus and cars. By
assigning to each node a home location and a work location, WDM sets the mobility of
each agent according to the time of the day and its specific parameters (e.g., working
hours and how often each agent uses a car or a public transportation). For example,
by the morning each node goes from home to work using its preferred transportation
method (e.g., foot, car or bus) and spends all their working hours moving according to
an office mobility pattern.

Once the working hours finish, each agent decides with a given probability
whether it will go back home or to a social meeting with friends using an evening
activity mobility model. In the evening activity model, each agent is assigned to a
meeting location and, once it arrives, it waits until all friends arrive, too. Then, the
whole group start visiting night locations until certain time, when everyone goes back
home.

When compared with known traces such as Dartmouth [Henderson et al., 2004]
and Cambridge [Scott et al., 2006], WDM seems to successfully reproduce some real

10 Chapter 2. Related Work

datasets properties. Yet, WDM does not clearly evaluate all the statistical mobility
properties that can be extracted from generated mobility traces.

2.3 Comparing Mobility Traces

In order to determine whether two or more scenarios are similar, a comparison is
needed. This comparison is usually done by extracting properties from each trace
and comparing the statistical distribution of their values [Thakur and Helmy, 2013;
Bezerra et al., 2009; Bai et al., 2003]. Another common approach is to use network
protocols and evaluate the underlying network using metrics such as delay, throughput
and overhead to determine if the protocol exhibits a similar performance in both sce-
narios [Meghanathan and Milton, 2009; Boldrini et al., 2007]. Several studies compare
mobility traces by creating different scenarios in NS-2 [Mccanne et al., 2007] consid-
ering parameters such as simulation time, area, number of nodes, transmission range,
pause time, traffic rate, etc [Meghanathan and Milton, 2009; Boldrini et al., 2007; Bai
et al., 2003].

The compared properties of each study are usually different. However, even when
considering different comparison parameters and methodologies, most of those studies
conclude that mobility affect the performance of opportunistic networks and there are
underlying social properties that need to be considered in order to better understand
their results.

Munjal et al. [2010] propose a methodology to construct synthetic mobility sce-
narios using SLAW [Lee et al., 2012]. By studying carefully the impact of all the
configuration parameters of SLAW, they provide models to construct realistic mobility
scenarios. However, they do not consider any mobility property during their evaluation
such as inter-contact time or contact duration. Thus, they only use network metrics
to evaluate their results.

Bezerra et al. [2009] propose a framework to compare mobility models by using
mobility properties instead of network metrics. By extracting properties, such as agent
speed, acceleration and pause time, they use a fitting method to determine how to
set the mobility models parameters in order to imitate real data. They conclude that
some mobility models, such as Levy-walk, MMIG and Smooth, have too many param-
eters, making very hard to determine in which intervals these parameters can actually
generate mobility that resembles real scenarios.

While some studies use only realistic mobility models to evaluate their results,
other studies, such as [Thakur and Helmy, 2013], actually compare their results with

2.4. Mobility-based networking solutions 11

well-known real datasets, such as the ones presented in Section 2.1. Thakur and Helmy
[2013] propose COBRA, a mobility model based on communal behavior, and bench-
mark it with real datasets using an analysis framework. COBRA compares mobility
properties, such as inter-contact times and contact duration, besides network metrics.
However, they do not explain how the mobility properties are extracted from each
trace. They validate the extracted data through a visual graphical comparison, but
neglect any quantitative analysis.

Helgason et al. [2014b] compare pedestrian scenarios generated by Legion Stu-
dio [Helgason et al., 2010] using mobility properties, such as inter-contact times, contact
duration and path duration. Once the properties are extracted, they compare differ-
ent scenarios by fitting statistical curves using Kolmogorov-Smirnov method. They
conclude that the considered properties are not enough to understand exactly why
the compared traces are different and state the need of an extensive suit of bench-
mark traces for evaluating mobility in different environments rather than attempting
to derive a one-size-fits-all analytical model for pedestrian mobility.

By proposing MOCHA, our work presents a benchmark framework with 18 well-
known real mobility datasets, using more than 10 mobility properties to compare and
classify them. Considering its structure, MOCHA focus on understanding the mobility
characteristics of each scenario, rather than creating a generic mobility model that
suits all scenarios.

2.4 Mobility-based networking solutions

While the previously described studies focus on understanding mobility models and
compare them to validate their findings, another line of research focus on developing
networking solutions based on mobility analysis. Vaz de Melo et al. [2013] propose
RECAST, a strategy used to classify interactions among wireless users based on social
regularity and similarity. They also apply their strategy to well-known real datasets
and use network metrics to validate it.

Foroozani et al. [2014] use real mobility collected data to propose a mobility
model. They benchmark it with some other real scenarios mobility properties, such as
flight length and flight time. They consider four types of mobility properties: spatial,
temporal, connectivity properties and geographical properties. However, they do not
detail how to extract these properties and their property comparison is qualitative
(visual) instead of quantitative.

Similarly to [Foroozani et al., 2014], Shah and Rathod [2014] use mobility prop-

12 Chapter 2. Related Work

erties such as flight time and pause time to propose a novel scheduling algorithm for
opportunistic networks. They use mobility scenarios generated only from theoretical
models, neglecting real mobility traces. Moreover, they validate their results using
only network metrics. In the same direction, Alshanyour and Baroudi [2008] evaluate
AODV protocol performance.

Finally, mobility-based networking solutions directed to opportunistic scenar-
ios [Fischer et al., 2010] and disaster scenarios [Aschenbruck et al., 2004] can be found
in the literature. However, most of the previously described studies fail to provide a
detailed framework that allows a standard comparison among different mobility models
or traces. While the authors continue to extract mobility properties in an arbitrary
way, it will not be possible to properly benchmark different solutions and reach a com-
mon understanding of how social mobility truly affects protocols and other networking
solutions.

2.5 Overview

One of the main purposes of mobility traces is to test and validate applications to
be used in real scenarios. However, since it is not possible to collect real data from
all possible scenarios, simulators are used to approximate the results according to
the specific situations where the applications will be implemented. When regarding
human mobility, several mobility properties have been studied in order to enable their
synthetic reproduction using simulators. However, considering that real scenarios are
very heterogeneous, it is really hard to reproduce each possible scenario using only a
few parameters.

Simulators like SWIM bet on their simplicity to enable an intuitive form of mobil-
ity generation, but they do not consider the fact that human mobility is more complex
than the probability of moving far away from home or to a popular location. Consider-
ing that, SLAW tries to capture the social behavior within the mobility by introducing
more parameters and by using the locations (or fractal points) as points of social con-
vergence, making possible to the agents to imitate social bounds by meeting large
amounts of nodes (and even the same nodes sometimes) at high entropy locations.
However, as we show later in this work, SLAW fails to reproduce the social regularity
that exists in real datasets.

Finally, WDM relies on the routines of agents to recreate the social behavior.
With an impressive amount of parameters, WDM gives the possibility to recreate
whatever scenario suiting our needs at the cost of its complexity. However, is it possible

2.6. Datasets 13

to reproduce a scenario that we do not fully understand? Even with a high set of
tunable parameters, how much can we approximate a real scenario with synthetic data
if we only rely on a few properties to compare? Moreover, given that the parameter
space is very large, it is likely that we generate scenarios with very distinct properties.
Thus, a tool to provide a reliable comparison of mobility traces is required.

In summary, the main problem about realistic traces is that they are very het-
erogeneous, even when they are collected in similar scenarios such as campus, city and
conferences. The mobility nature of the nodes might be different at each case, making
difficult to create a mobility model based on them [Song et al., 2010]. In the next chap-
ters, we will explain the known mobility properties used in the literature. Moreover, we
present MOCHA, a framework that allows us to compare different scenarios, helping
us to understand how exactly two scenarios can be considered similar or different.

2.6 Datasets

In this work, we analyze several real and synthetic datasets. Each trace has unique
mobility properties, but all of them are composed of a set of agents moving around
a limited area. The amount of information collected at each case is related to the
duration of each trace. While some of them present data collected during a couple of
days, some of them were collected for periods longer than 60 days.

It is not the purpose of this work to give all the technical details of each mobility
trace. However, in Table 2.1 we present the basic information of all the real mobility
traces used in this work. From now on, we will refer to each one of those traces using
their name according to Table 2.1. We also present in Table 2.2 the same information
regarding all the synthetic traces generated to compare with the real datasets.

14 Chapter 2. Related Work

Name Agents Duration Reference
Dartmouth 1156 60 days Henderson et al. [2004]
Cambridge 12 6 days Scott et al. [2006]
Sassy 27 79 days Bigwood et al. [2011]
USC 4558 60 days jen Hsu and Helmy [2008]
UPB 35 4 days Ciobanu and Dobre [2012]
Infocom 41 3 days Scott et al. [2006]
Hypertext 113 1 day Isella et al. [2011]
Hospital 75 4 days Vanhems et al. [2013]
Highschool 2011 126 7 days Fournet and Barrat [2014]
Highschool 2012 126 7 days Fournet and Barrat [2014]
Infectious 416 1 day Isella et al. [2011]
San Francisco 551 30 days Piorkowski et al. [2009]
Cologne 700.000 car trips 24 hours Uppoor and Fiore [2012]

Table 2.1. Mobility traces of real scenarios

Trace Agents Duration Reference
Working day model (WDM) 100 agents 15 days Ekman et al. [2008]
SLAW 5 100 agents 15 days Lee et al. [2012]
SLAW 35 100 agents 15 days Lee et al. [2012]
Ostermalm 90 1000 agents 7 days Kouyoumdjieva et al. [2014]
Ostermalm 70 1000 agents 7 days Kouyoumdjieva et al. [2014]
Ostermalm 50 1000 agents 7 days Kouyoumdjieva et al. [2014]
Ostermalm 40 1000 agents 7 days Kouyoumdjieva et al. [2014]
Ostermalm 30 1000 agents 7 days Kouyoumdjieva et al. [2014]
SWIM 88 100 agents 7 days Kosta et al. [2014]
SWIM 85 100 agents 7 days Kosta et al. [2014]
SWIM 83 100 agents 1 day Kosta et al. [2014]
SWIM 58 100 agents 30 days Kosta et al. [2014]
SWIM 55 100 agents 24 hours Kosta et al. [2014]
SWIM 53 100 agents 15 days Kosta et al. [2014]
SWIM 38 100 agents 15 days Kosta et al. [2014]
SWIM 35 100 agents 15 days Kosta et al. [2014]
SWIM 33 100 agents 15 days Kosta et al. [2014]

Table 2.2. Mobility traces of synthetic scenarios

Chapter 3

Mobility Properties

As previously described in Karamshuk et al. [2011], the statistical properties extracted
from mobility traces can be categorized in: social, spatial and temporal properties. De-
spite all mobility properties being intrinsically related, we can divide them in categories
according to their application regarding networking solutions and social mobility.

Social properties, such as inter-contact time and contact duration, can be directly
related to connectivity. These properties help us to explain how agents connect
among themselves, how long they stay within each other range, how they relate to each
other and, consequently, how we can explore these properties to benefit our delivery
ratio or delivery throughput in a real network scenario. It is very useful to understand
how long agents interacts with each other, when developing applications that require
data transmission or mobility analysis.

Spatial properties, such as radius of gyration and travel distances, are related to
movement, giving us some insights about distances covered by each agent and its
relation to locations. Intuitively, we can affirm that people prefer to go to the bakery
nearby their home instead of going to a distant bakery, unless, for instance, the distant
one is really popular or has been recommended by a friend. Simulators like SLAW [Lee
et al., 2012] exploit this kind of intuition by generating mobility using fractal points,
as previously described.

Finally, temporal properties, such as visit time, travel time and location entropy,
represent regularity. This regularity reflects the circadian rhythm defining each
person’s routine. The temporal properties help us to understand how long the agents
are moving from one location to another, how long they stay at each place and how
agents choose between going to one place or another one. It is important to highlight
that, to the best of our knowledge, this work covers the most used mobility properties
present in the literature until so far.

15

16 Chapter 3. Mobility Properties

3.1 Discussion

Mobility properties give us insights about how agents behave in different scenarios.
This information can be used to reproduce real datasets with synthetic generators. As
previously explained in Sections 3.2, 3.3 and 3.4, most of the properties can be modeled
as statistical curves and most of them are represented by heavy-tailed distributions.
Here, we plot all the statistical distributions using their complementary cumulative
distribution function, or CCDF.

In Figure 3.1, we see all the extracted mobility properties from the Dartmouth
dataset. We use this dataset as reference because it is one of the most famous dataset
and is commonly used as a benchmark in the literature [Vaz de Melo et al., 2013; Zyba
et al., 2011]. We can also observe in Figures 3.2(a), 3.2(b) and 3.2(c) three empirical
distributions considered by MOCHA: exponential, pareto and lognormal.

As previously described in Section 1.2, most of the current studies regarding
mobility properties rely on a visual comparison of statistical distributions to validate if
different datasets are somehow similar or equivalent. Later in this work, we will show
how this visual comparison can be tricky and misleading sometimes, showing why it is
important to use a quantitative comparison method instead of a visual matching. Note
that several plots in Figure 3.1 seem to be heavy-tailed. However, as we show later,
some of the distributions are best fitted by a pareto curve while other are best fitted
by a lognormal one. This shows, again, how important it is to perform a quantitative
analysis when comparing different mobility scenarios.

3.2 Social properties

In the following, we consider a set of m agents {N1, N2, · · · , Nm

}, each one having a
position N

i

(t) = (x, y), i = 1 . . .m, as the position (x, y) in the cartesian plane at time
t � 0. Each scenario has several encounters between different pairs of nodes. For GPS
traces, an encounter between N

i

and N
j

occurs whenever dist(i, j) R, where dist(i, j)
is the Euclidean distance between N

i

and N
j

and R is the communication radius of
each agent. For traces collected with router association/disassociation, an encounter
happens when N

i

and N
j

are connected to the same access point at the same time. In
this case, the encounter begins at the moment and ends when one of them disconnects.

Thus, each scenario is composed of an ordered set of encounters E =

{e1, e2, · · · , en}, where each encounter ek = {N
i

, N
j

, t
ini

, t
fin

} is composed of the
two agents N

i

and N
j

, the initial time of the encounter t
i

ni, and the final time
t
fin

. The set E is ordered by the initial time of each encounter. Finally, we define

3.2. Social properties 17

10
0

10
5

10
−5

10
0

P
(X

 >
 t

)

(a) Inter-contact time (b) Contact duration

0 48 96 144
0

2

4

6
x 10

4

Hour of simulation (x)

M
A

X
C

O
N

(c) Max contacts per hour

10
−1

10
0

P
(X

 >
 t

)

(d) Topological overlap

10
−1

10
0

P
(X

 >
 t

)

(e) Edge persistence

10
−10

10
−5

10
0

P
(X

 >
 t

)

(f) Radius of gyration

10
0

10
5

10
−5

10
0

P
(X

 >
 t

)

(g) Travel distance

10
0

10
2

10
−5

10
0

P
(X

 >
 t

)

(h) Travel time

(i) Visit time

10
5

10
−2

10
0

P
(X

 >
 t

)

(j) Location entropy

Figure 3.1. All Dartmouth mobility properties analyzed by MOCHA

18 Chapter 3. Mobility Properties

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

Exponential CCDF

P
(X

 >
 t

)

(a) Random exponential

10
−8

10
−6

10
−4

10
−2

10
0

10
−3

10
−2

10
−1

10
0

Pareto CCDF

P
(X

 >
 t

)
(b) Random pareto

10
−2

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Lognormal CCDF

P
(X

 >
 t

)

(c) Random lognormal

Figure 3.2. Empirical distributions for graphical comparison

E
i,j

= (N
i

, N
j

, t
i

, t
f

) 2 E as the set of all the consecutive encounters between N
i

and
N

j

.

3.2.1 Inter-contact time (INCO)

Inter-contact time can be defined as the time interval between consecutive encounters
of a pair of nodes [Kosta et al., 2014]. While inter-contact time is represented by
the time between consecutive contacts of the same pair of agents, some authors, such
as Helgason et al. [2010], prefer to use a more generic definition called inter-any-contact
time, which considers consecutive contacts between any pair of agents. To the purpose
of this work, we will use the first definition because it is more popular in the literature.
Thus, for a given ordered set E

i,j

= {e1
i,j

, e2
i,j

, · · ·} of encounters between agents N
i

and
N

j

, we compute the inter-contact time between two encounters ek
i,j

and ek+1
i,j

as:

INCOk

i,j

= tk+1
ini

� tk
fin

.

When considering the statistical representation of this property, we usually obtain
a heavy-tailed distribution (such as power-law) [Helgason et al., 2014b]. This intuitively
explains that, independently of the encounters duration, most of the nodes do not
encounter with each other very frequently [Kosta et al., 2014]. For legibility purposes,
we will refer the property as INCO and will use the acronym INCO-D when referring
to its statistical behavior (i.e., distribution). We will use this notation for all properties
in this work.

INCO is very useful when considering opportunistic scenarios because it gives us
insights about how often each pair of agents encounter, representing the opportunity
to deliver a message [Song and Kotz, 2007]. In Figure 3.1(a), we show INCO-D for
the Dartmouth scenario. As we can see, there are INCO entries of different orders of

3.2. Social properties 19

magnitude, indicating that despite some pairs of agents encountering with each other
very frequently, most of them pass long periods without meeting.

3.2.2 Contact duration (CODU)

The definition of the contact duration property is very straightforward. It is the
amount of time a pair of agents is located within each other’s communication range
without leaving it. In other words, we can define the CODU of an encounter
ek = {N

i

, N
j

, t
ini

, t
fin

} as:

CODUk

i,j

= tk
fin

� tk
ini

.

This behavior can be observed in Figure 3.1(b).
In an analogous way to INCO, CODU also represents an opportunity to deliver

a message in an opportunistic network. However, if INCO gives us an insight about
how frequently a message can be delivery, CODU helps us to understand for how long
an encounter takes places, i.e., how much data can be transferred during an encounter.
The understanding of this property is directly related to the possible output that each
agent can transmit while in contact with another agent.

3.2.3 Maximum contacts per hour (MAXCON)

As explained by Song and Kotz [2007] and Ekman et al. [2008], the maximum contacts
per hour is the total amount of contacts that occurred at each hour of the considered
dataset. Formally, we define MAXCON as:

MAXCON
h

= Eh

= {e = (N
i

, N
j

, t
ini

, t
fin

)|(t
ini

> h ^ t
fin

< h+ 1) _ (t
ini

<=

h ^ t
fin

>= h)},

where Eh is the subset of all encounters between every pair (N
i

, N
j

) that occurred
during the hour h, and |E

h

| is the sum of those encounters. The set of all the encounters
occurring during a scenario evaluation can be defined as H = {|E1|, |E2|, · · ·}.

Regarding the statistical behavior of H, we can describe it as a curve with high
autocorrelation in 24 h periods [Song and Kotz, 2007; Karamshuk et al., 2014]. The au-
tocorrelation can be explained by the daily routine behavior occurring in any scenario
in which agents are humans. The statistical representation of H will be described as
MAXCON-D and its autocorrelation as MAXCON-C

w

where w is the time window con-
sidered to calculate the autocorrelation (e.g., 12 h, 24 h, 48 h and 72 h). In Figure 3.1(c),
we observe MAXCON-D for the first week of observations in the Dartmouth dataset.

20 Chapter 3. Mobility Properties

MAXCON is a property that helps us to understand how many contacts occurred
during a specific hour. Considering it is a connectivity property, we observe that it gives
us insights about how many different opportunities of sending a message an agent has
during each hour of the day and, in which parts of the day, the agent has more (or
less) interactions with other agents (e.g., the number of social contacts during the day
is usually higher than during the night).

3.2.4 Encounter regularity (EDGEP)

Edge persistence is a complex network metric that maps the regularity of a social
relationship [Vaz de Melo et al., 2013]. By considering a set of encounters E

i,j

=

(N
i

, N
j

, t
i

, t
f

) 2 E EDGEP
i,j

measures the times the encounter e
k

= {N
i

, N
j

, t
ini

, t
fin

}
occurred from t0 to t, where 0 t t

max

. Formally, we have:

EDGEP
i,j

=

1
t

P
t

k=1 I[(i,j)2"k],

where I[(i,j)2"k] is an indicator function that assumes the value 1 if the encounter e
k

=

{N
i

, N
j

, t
ini

, t
fin

} occurred in "
k

at time k, and 0 otherwise. For example, if Bob and
Patrick met each other twice during a week their edge persistence will be equal to the
number of times they encountered, i.e., 2 divided by the total number of time steps,
i.e., 7.

According to [Vaz de Melo et al., 2013], we can expect a heavy tailed distribution
when considering the statistical behavior of EDGEP-D. By observing Figure 3.1(e), we
observe that there are many EDGEP with low values (i.e., pairs of nodes encountering
sporadically) and few high EDGEP values, which represent the most strong social ties.

Intuitively we can affirm that an agent tends to encounter more frequently with
its friends or acquaintances while random encounters rarely repeat [Vaz de Melo et al.,
2013]. The more each pair of nodes encounters in a specific time window, the more
probable is to consider a social tie between those nodes. When considering oppor-
tunistic scenarios, EDGEP represents how often it will be possible to deliver a message
between a specific pair of nodes.

3.2.5 Topological overlap (TOPO)

Another property that gives us insights about the social network of each scenario is the
topological overlap. TOPO represents the social overlap existing between each pair
of nodes when considering all the encounters in which they participated. First, we
consider as NG

i

or neighbors
i

the set of nodes {N1, N2, · · · , Nm

} encountering at least
once with N

i

. Formally, we define TOPO
i,j

as:

3.3. Spatial properties 21

TOPO
i,j

=

|NG
i

\NG
j

|
|NG

i

[NG
j

| .

Analogous to EDGEP-D, TOPO-D also presents a heavy-tailed behavior accord-
ing to [Vaz de Melo et al., 2013], as observed in Figure 3.1(d). TOPO-D gives us
insights about the social structure of each scenario by quantifying the similarities be-
tween agents.

By considering each pair of agents, we observe in Figure 3.1(d) that most of them
have few, or even none, common friends, indicating that there is no social tie between
them. On other hand, nodes presenting a high TOPO value are more likely to belong
to the same communities and have a higher amount of common friends.

When regarding network applications, TOPO is helpful to determine opportuni-
ties to deliver messages within communities. Intuitively it is easier to deliver a message
to a member of the same social community than to a complete stranger.

3.3 Spatial properties

3.3.1 Radius of gyration (RADG)

In social mobility, it is common to assume that each agent has a location called home.
citeswim defines home as a randomly and uniformly chosen point over the network area.
Ekman et al. [2008] consider it as the starting point of each agent’s daily activities.
To the purpose of this work, we will consider home as the most visited place at each
agent’s routine and where normally the agent returns at the end of the day.

It is plausible to assume that an agent tends to move to other locations nearby its
home in order to attend commitments, buy food, visit friends, etc. There is a mobility
property measuring the distance an agent “orbits” around its home and is called radius
of gyration. We consider a time-ordered set L

i

= {l1, l2, · · · , ln} of locations visited by
N

i

and H
i

as its home. Formally,

RADG
k,i

= dist(l
k

, H
i

),

where dist(l
k

)

i

represents the Euclidean distance between location l
k

2 L
i

and N
i

home H
i

. When considering all locations L
i

, we obtain RADG-D. As observed in
Figure 3.1(f), the agents of the Dartmouth trace tend to visit more often locations
near their home’s vicinity instead of making long journeys.

22 Chapter 3. Mobility Properties

3.3.2 Travel distance (TRVD)

When an agent moves from a location to another one, we usually describe that action
as a travel, jump or flight [Karamshuk et al., 2011; Ekman et al., 2008]. The travel
distance definition is very straightforward. It is the distance traveled between two
consecutive locations [Ekman et al., 2008]. Formally, by considering a time-ordered set
L
i

= {l1, l2, · · · , ln} of locations visited by N
i

we have:

TRVD
k,k+1 = dist(l

k

, l
k+1),

where dist(l
k

, l
k+1) is the Euclidean distance between l

k

and l
k�1. When considering

all the travels performed by an agent, we obtain TRVD-D. As can be observed in Fig-
ure 3.1(g), TRVD-D presents a heavy-tailed behavior. This behavior indicates that
agents perform short distance jumps more often than long distance ones. This obser-
vation is according to the least action principle of Maupertuis [1744], and used by Lee
et al. [2012] to model SLAW.

TRVD is very related to RADG and the main difference between them is that
RADG considers the travel distance according to the nodes’ home, and not the dis-
tance between consecutive visited locations. The analysis of these properties helps us to
understand how agents move from a place to another one. This information can be ex-
ploited, for instance, to improve message dissemination in vehicular and opportunistic
networks.

3.4 Temporal properties

3.4.1 Visit time (VIST)

Visit time can be defined as the time spent at each location visited by an
agent [Karamshuk et al., 2011]. Considering a time-ordered set V

i

= {v1, v2, · · · , vn} of
visits v

k

= (l
k

, t
ini

, t
fin

), l
k

being the location visited at moment k, we have:

VIST
k

= t
fin

� t
ini

.

Usually, agents tend to stop their movement at specific locations in order to
accomplish some task (to buy groceries, for example). While most of the visits are
short, sometimes agents stay more than the usual in a specific location. This behavior
is represented by VIST-D and can be observed in Figure 3.1(i).

3.4. Temporal properties 23

3.4.2 Travel time (TRVT)

In an analogous form to the travel distance, we define the travel time TRVT as the
time an agent spends moving from one location to the consecutive one. Considering a
time-ordered set V

i

= {v1, v2, · · · , vn} of visits v
k

= (l
k

, t
ini

, t
fin

), v
k

being the location
visited at moment k, we have:

TRVT
k,k+1 = t

ini

k+1 � t
fin

k.

Considering all the agent’s visits, we plot TRVT-D in Figure 3.1(h). When com-
pared to the travel distance property (described in Section 3.3.1), the statistical be-
havior matches the idea that long trips are less frequent, but demand more time to
be completed, while short travels are faster and common, i.e., leading to a heavy tail
distribution.

3.4.3 Entropy (ENTROPY)

It is known that in mobility scenarios agents develop social ties between themselves
and those ties influence the way agents move from one place to another one [Shah and
Rathod, 2014; Foroozani et al., 2014; Helgason et al., 2014a]. However, it is possible to
state that agents also develop social ties with locations. In real scenarios, people tend
to visit more often places that are somehow familiar to them or are visited by their
family, friends or acquaintances.

In this work, we define an entropy property, which quantifies the amount of
visits each location receives in a specific scenario. By considering a set of locations
L = {l1, l2, · · ·} we define:

ENTROPY
k

=

P
i = 1

n

P
k = 1

m�(i, k),

where �(i, k) is a function representing the number of times agent N
i

visited location
loc

k

, n is the total of agents and m the total of considered locations.
Intuitively, considering human mobility patterns, only few locations receive a

high amount of visits (e.g., malls, subway stations and parks), while a large number of
locations receive few visits (each home, for example). As shown in Song et al. [2010],
ENTROPY-D is usually represented by a power-law distribution, a behavior observed
in Figure 3.1(j) for the Dartmouth trace.

Chapter 4

MOCHA: MObility
CHaracterization Framework

The purpose of this work is to design a framework to extract, analyze and compare
mobility properties of different mobility scenarios. To the best of our knowledge, there
is no study that analyzes, compares and classifies mobility scenarios in a detailed and
broad way as we do in this work.

MOCHA encompasses the most commonly used mobility properties, dividing
them into three groups as proposed by Karamshuk et al. [2011]: social, spatial and
temporal.

The social properties considered in this framework are: inter-contact time
(INCO), contact duration time (CODU), maximum contacts per hour (MAXCON),
topological overlap (TOPO), edge persistence (EDGEP) and the social correlation
(SOCOR). The spatial properties are: the travel distance (TRVD) and radius of gy-
ration (RADG). Finally, the temporal properties are: visit time (VIST), travel time
(TRVT) and the locations entropy (ENTROPY). All these properties, but SOCOR
were described previously in Chapter 3.

4.1 Overview

MOCHA is composed of three modules: parser, extractor and classifier. The parser
is responsible for parsing datasets to MOCHA input form. The extractor analyzes the
input trace and extracts all the considered properties. Finally, the classifier evaluates
the properties related to statistical distributions and classifies them according to the
defined taxonomy. Figure 4.1 shows how MOCHA is structured and the information
from between modules.

25

26 Chapter 4. MOCHA: MObility CHaracterization Framework

Figure 4.1. MOCHA structure

4.2. The parser 27

The initial MOCHA entry is a mobility trace collected from a real environment
or generated by a synthetic tool. Although these traces may contain any type of
information, only a few are mandatory for MOCHA. Thus, the first step is to parse
the trace into MOCHA’s format. Once the mobility trace is parsed, we obtain a new
trace in a defined form to be analyzed by MOCHA.

After that, the parsed mobility trace is used as input to the extractor. MOCHA’s
extractor generates a file for each considered property with all the extracted entries.
Most of the properties are independent of each other and MOCHA allows the extraction
of each property individually.

Finally, after all the mobility properties are extracted, MOCHA’s classifier ana-
lyzes the data and generates a classification report with the category of each property.
MOCHA can also generate graphics for each property according to its type. The graph-
ics that MOCHA can generate are: complementary cumulative distribution function
(CCDF), cumulative distribution function (CDF) and histogram.

The following sections will explain in detail how each MOCHA module works and
which considerations were made along its design in order to be able to consider and
analyze different scenarios.

4.2 The parser

In the design of MOCHA, we have to consider the heterogeneous nature of the traces
found in the literature [Aschenbruck et al., 2011] and the different forms of data col-
lection used regarding human mobility [Aschenbruck et al., 2011; Karamshuk et al.,
2011; Treurniet, 2014]. In that direction, the first module of the framework is a parser,
responsible for converting any trace to a common (internal) form with all the data
needed to extract the statistical properties described in Chapter 3.

This step is important to ensure generality and extensibility of the framework.
By using a standard input form, we allow anyone to evaluate a mobility trace with all
the benchmarks.

In order to better explain how the parser works, we need to understand which
types of mobility traces we can find in the literature and how we convert them to
our standard form. To define our trace classification, we have analyzed 13 different
real datasets publicly available. Darmouth, USC, UPB, Sassy and Cambridge are
traces collected in different campi. Hospital, High school 2011, High school 2012 and
Infectious are indoor traces of different natures, and Infocom and Hypertext are indoor
traces collected in conferences. The number of agents and the total duration of each

28 Chapter 4. MOCHA: MObility CHaracterization Framework

dataset are described in Table 2.1.
Finally, San Francisco and Cologne are vehicular traces. These traces are pre-

sented in different forms related to the way they were collected. Some of them were
collected using WLAN connection logs and others by using GPS or iMotes or other
proximity detection devices. The differences between these traces are explained in
Chapter 2.

Given these traces, we divided them into three categories: raw mobility traces,
check-in traces and encounter traces. It is important to highlight that there might be
other kinds of traces available, but we have chosen this three types because they are
the most popular and almost every other kind of trace can be easily converted to one
of them.

Each trace is composed of different entries representing a travel or an encounter
that occurred in the considered scenario. By considering these three main types of
mobility traces, we propose the utilization of the following common form for the entries
in any dataset evaluated by MOCHA in order to maintain the homogeneity of our
framework:

N
i

N
j

t
fin

t
ini

�t x
i

y
i

x
j

y
j

,

where N
i

and N
j

are two distinct agents, t
ini

is the initial time of the encounter, t
fin

is the final time of the encounter, �t is the encounter duration and (x, y)
i

and (x, y)
j

are N
i

and N
j

coordinates at the beginning of the encounter.
Our format is based on encounters because they can summarize a wide variety

of statistical properties without the need to use too much memory or processing, sim-
plifying the framework and the evaluation process. Considering that, we leave to the
parser the responsibility to digest the input data that will be analyzed by the next
modules.

4.2.1 Normalization

Before we can explain how the mobility properties are extracted and classified, we
need to define the methodology used to convert any mobility trace into MOCHA’s
common form. This explanation is important to ensure reproducibility and, thus, the
homogeneity of the evaluation. First, it is important to normalize the trace. The
trace normalization will ensure the correct evaluation of each dataset and will avoid
calculation errors.

There are three pieces of information that must be normalized: time, agent’s IDs
and geographic coordinates. To normalize time entries, we simply need to discover

4.2. The parser 29

what is the earliest time entry present in the trace and subtract it from all of the
time values. To normalize the IDs we create a dictionary and map all the agents to a
new ID value between 0 and n, where n is the total amount of distinct nodes minus
one. The normalization of the coordinates is similar to the time normalization with
one difference: it can only be done when the coordinates used on the trace are planar,
not geographical. In traces that use GPS coordinates, it is not recommended to do a
normalization considering that geographical coordinates are not linear. We will address
this scenario later in this work.

Finally, all trace entries must be ordered by time. This ordering is necessary
because some mobility properties to be extracted are time-dependent and it is easier
to analyze them in an ordered way.

4.2.2 Raw mobility trace

The raw mobility trace is the most generic type of trace that can be found in the
literature. It basically informs us the position of each agent in a specific time, but gives
us no information about visited locations and social encounters. The most important
aspect of this type of trace is the granularity of the time window, since it affects the
precision of extracted properties. For example, a 1-second time window will give us
a better information about social encounters than a 1-hour or even half-hour time
window. However, the smaller the time window is, the more complex the entry process
will be. Sometimes, an agent can move very short distances or even stay at the same
place for several hours, making unnecessary to constantly track its behavior.

Raw traces are very popular among vehicular traces and even in some synthetic
mobility generators such as NS-2 [Mccanne et al., 2007]. The main drawback of this
type of trace, besides the difficulty of its processing, it is that we need to infer which
locations are visited by each agent. Because raw mobility traces often give us specific
coordinates, we need to infer where the social locations are, such as malls, train stations
and schools. Considering that our framework is oriented to social mobility, there is no
much we can obtain by evaluating the raw mobility only, so we need to use the mobility
information to generate encounters and geographic locations instead of only individual
coordinates.

The method to extract encounters from raw mobility traces, explained next, rep-
resents the steps and decisions we did to do the conversion between the raw mobility
form and our common form. First, we use as starting point a trace T in which each
line represents an event of a node and has the following format:

N
i

x
i

y
i

t,

30 Chapter 4. MOCHA: MObility CHaracterization Framework

where N
i

is the agent’s ID, (x, y)
i

are the coordinates where the event occurred and t

is the time of the event. It is important to point out that other data might be found
in raw mobility traces, such as nodes’ speed, for example, but we will focus on the
information used by our method to generate our common trace form.

Assuming that T is the time ordered according to the preprocessing, we will
analyze entry-by-entry using a graph G and a matrix M to support the encounter
generation. We also define an encounter criterion stating that an encounter between
two nodes occurs every time the Euclidean distance between them is equal or inferior to
a threshold R. This assumption is valid according to how encounters happen in mobile
network, where R is the radius of communication of each device [Helgason et al., 2014a].
The Euclidean distance d(p, q) is defined as follows:

d(p,q) = d(q,p) =
q
(q1 � p1)2 + (q2 � p2)2 + ...+ (q

n

� p
n

)

2
=

qP
n

i=1(qi � p
i

)

2,

where p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) are two points in the Euclidean n-
space. For notation purposes, we define max

x

and max
y

as the maximum X and Y

values encountered in the preprocessing step. In order to assist us in the encounter
calculation, we have created a grid M of the size of the trace scenario using max

x

and max
y

in a way that each cell has a diagonal equal to R. By doing that, we
guarantee that all nodes present at each cell are within the encounter range of each
other. Formally, we define M as:

M =

⇢
c
k,l

|
✓
0 k max

x

R

◆
^

✓
0 l max

y

R

◆�
,

where c
k,l

represents a cell in M . After creating the grid, we are ready to process the
trace T . In this stage, we create a new node N

i

in G to every node found in T that
has not being already created, and we store the node coordinates at the time of its
creation. Considering the coordinates (x, y)

i

registered at the trace entry, we allocate
N

i

in its respective cell c
k,l

where k =

x
i

R
and l =

y
i

R
.

Once N
i

its allocated to c
k,l

, we retrieve all nodes N
j

present in the range c
k�1,l�1

to c
k+1,l+1 to verify if the Euclidean distance between N

i

and N
j

is equal or inferior
to R. If so, we create an edge E(i,j) in G between N

i

and N
j

, with a value equal to
the time t present in the current evaluated entry of T . We also consider as neighbors,
or NG

i

, all nodes N
j

discovered in this step. If the evaluated entry in the previous
step represents the first occurrence of node N

i

in the trace, we consider that NG
i

is
empty. However, if there is a previous entry with N

i

, it is probable that NG
i

is not
empty. Therefore, we need to evaluate if all the previously existent nodes in NG

i

are
still within the range of N

i

. To do that, every time that entry is evaluated, we compare

4.2. The parser 31

the current set of neighbors with the previous one and compute all nodes that are not
neighbors anymore.

Once we identify that a node N
k

is not a neighbor of N
i

anymore, we search
for the edge E(i,k), whose value is equal to the time t

p

when the encounter between i

and k began, and register a new entry in our log according to the standard proposed
previously:

N
i

N
k

t
c

t
p

(t
c

� t
p

) x
i

y
i

x
k

y
k

,

where N
i

and N
k

are the nodes IDs, t
c

is the current entry time, t
p

is the time when the
edge between i and k was created, (x

i

, y
i

) are the current N
i

coordinates and (x
k

, y
k

) are
the N

k

coordinates when the encounter began. By repeating the described procedure
for every entry in T , we can successfully parse a raw mobility trace to our common
form. This process is fully described in Algorithm 4.1.

Algorithm 4.1. Raw mobility trace parser algorithm

entry = Ni x i y i t i
f o r entry in T:

i f G. has_node (Ni) :
f o r Nk in ne ighbors (Ni) :

i f not euc l i d ean (Ni ,Nk) :
generate_entry (Ni , Nk , t i , G[Ni] [Nj [time] ,

(t i -G[Ni] [Nj [time]) , xi , yi , xk , yk)
G. remove_edge (Ni ,Nk)

e l s e :
G. add_node (Ni)
f o r Nj in ne ighbors (Ni) :

i f euc l i d ean (Ni , Nj) :
G. add_edge (Ni , Nj , time = tc)

4.2.3 Check-in traces

The check-in trace is a type of trace that can be easily extracted from social networks,
such as Foursquare, Twitter, Facebook or even Instagram. However, other situations
can generate check-in traces, such as the associations in all the access points of a
university campus, association of communication tower in telephonic networks and
even dollar bill tracking. This type of trace is much simpler to parse, but it is by
nature a very poor trace. If we only consider the arrival moment at a specific location,

32 Chapter 4. MOCHA: MObility CHaracterization Framework

check-in traces give us no information about how long the node stayed there and which
locations the node might have visited between consecutive check-ins.

Because of the information gap check-in traces have, we need to infer how the
social encounters happen in every location, how long each node stayed in the location,
how long they took to travel from a location to another and so on. The usual format
of this type of trace is:

N
i

l
i

t,

where N
i

is the agent’s ID, l
i

is the location’s ID and t is the time of the check-in. It
is important to point out that most of the times there are no geographical coordinates
available and only the arrival time is informed. Later on, we will explain how this
lack of information affects the property extraction, but, for now, we will focus on the
parsing.

Assuming that T is time ordered according to the preprocessing, we will analyze
entry-by-entry using a graph G and a dictionary L indexed by the location IDs. First,
we create a dictionary of locations. For each entry in T we include N

i

in the location L
i

once a check-in occurs. At the check-in moment, we create an edge E(i,j) in G between
N

i

and all nodes present in L
i

.
Considering that the checkout time is not provided, we define the values max

t

as
the longest duration each node can stay in a specific location and mov

t

as the average
movement time between two locations. If the same node N

i

happens to check-in in
another location before the expiration of max

t

, we create a new log entry for all edges
E

i,j

with the following format:

N
i

N
j

(t
c

�mov
t

) t
p

(t
c

� t
p

) 0 0 0 0,

where N
i

and N
j

are the nodes IDs, t
c

is the current entry time minus mov
t

, t
p

is
the time when the edge between i and j was created and the zeros represent the lack
of information regarding the coordinates of the locations. If the coordinates of the
location L

i

happen to be available, the zeros can be replaced with L
x

, L
y

, L
x

, L
y

,
respectively. Otherwise, if max

t

is reached before N
i

performs another check-in, the
checkout from L

i

will be automatically executed creating a new log entry for all edges
E

i,j

with the same format but the value of t
c

will be equal to (t
p

+ max
t

) instead of
(t

c

�mov
t

). This process is fully described in Algorithm 4.2.

Algorithm 4.2. Check-in mobility trace parser algorithm

entry = Ni L t i

4.2. The parser 33

f o r entry in T:
i f L . has_node (Ni) :

i f t i > (L(Ni , t) + max_t) :
f o r Nj in L . nodes :

generate_entry (Ni , Nj , (t i - movt) , G[Ni] [Nj] [time] ,
(t i -G[Ni] [Nj] [time]) , 0 , 0 , 0 , 0)

G. remove_edge (Ni , Nj)
L . remove_node (Ni)

e l s e :
L . add_node (Ni , t i)
f o r Nj in L . nodes :

G. add_edge (Ni , Nj , time = t i)

4.2.4 Contact traces

A contact trace, which we will interchangeably call encounter trace, can be considered
the simplest to analyze and the richest trace because it gives us the core information
about a mobility scenario: the social interactions. Usually, encounter traces have the
initial and the final time of each encounter between every pair of nodes and, some-
times, they offer us the position where each encounter happened. However, only the
coordinates are not enough to know the location where the encounter occurred, i.e.,
a mall or a bakery, for instance. Considering that, we also require some inferring to
extract all the evaluated properties, but usually we do not require extensive parsing to
convert them to the common form used by the framework.

By presenting two different nodes IDs, such as N
i

and N
j

, the initial time of the
contact and its duration, contact traces require no more than a value rearrangement
to be represented according to MOCHA requirements. For example, some contact
traces present the positions of the initial and final times swapped and some of them
do not have the duration of the encounter previously calculated, making necessary to
run over all the entries to add that specific field to them. This procedure is described
in Algorithm 4.3.

Algorithm 4.3. Contact mobility trace parser algorithm

entry = Ni Nj x i x j y i y j t i t f
f o r entry in T:

generate_entry (Ni , Nj , t f , t i , (t f - t i) , xi , yi , xj , y j)

34 Chapter 4. MOCHA: MObility CHaracterization Framework

4.3 The extractor

Once we generate a new trace in MOCHA common format, we can proceed to extract
the desired properties. The goal of the extractor is to extract from the trace all the
mobility properties described in Chapter 3. After the extraction, we will be able to
analyze the statistical curve generated by the aggregation of all the occurrences of each
property. For example, we need to compute all the contacts between each pair of nodes
and their duration to be able to analyze CODU-D.

However, before we describe the extraction process itself, it is important to high-
light some assumptions that we need to consider. First, not all traces analyzed by
MOCHA have all properties available for extraction. For example, a check-in trace
without venues’ coordinates makes it impossible to calculate properties such as TRVD
or TRVT, and a contact trace without coordinates give us only the information needed
to calculate the social properties, but none of the spatial nor the temporal properties.
However, it is always possible to extract all the social properties. Considering that, all
methods described below can only be used if the entry trace meets the requirements
associated to each property extraction.

In addition, there are some properties whose extraction relies on some parameters
configured according to the needs of the experiment. For example, all contacts are
evaluated based on a contact radius of 50 meters, but this parameter can be tuned to 5
or even 500 meters, if necessary. The value of 50 meters is considered as default because
well-known traces, such as Dartmouth, are based on proximity with Wi-Fi routers and
a contact occurs whenever two different users are connected to the same router. It
is common in the literature to define the radius of a Wi-Fi network to 50 meters or
so [Dimatteo et al., 2011].

Finally, by considering that the extraction step is executed only for MOCHA
parsed traces, all traces should be ordered by time and each entry be in the format
described in Section 4.2. Those are some of the general assumptions considered by
MOCHA. Any other assumption related to a specific property will be described during
the extraction process itself.

4.3.1 Social properties

4.3.1.1 Inter-contact time (INCO)

The INCO property is extracted by registering the time between two consecutive con-
tacts regarding each specific pair of nodes, as previously explained in Section 3.2.1. We
define T as a time-ordered parsed trace and create a graph G in which we insert all nodes

4.3. The extractor 35

present in T with no edges between themselves. Once G is created, MOCHA evaluates
all the encounters in T and for each encounter e

i,j

= {N
i

, N
j

, t
f

, t
i

, �t, x
i

, y
i

, x
j

, y
j

} two
different cases might occur:

1. Encounter beginning: There is no edge E
i,j

in G, indicating N
i

and N
j

have
never encountered before. In that case, an edge E

i,j

is created with a value equal
to t

f

, registering the last moment of the contact between N
i

and N
j

.

2. Encounter end: There is an edge E
ij

in G, which indicates that N
i

and N
j

already encountered before. In that case, an INCO entry is generated by sub-
tracting the current entry t

i

with the value registered in E
ij

, the previous edge
is removed and a new one is created with the current entry t

f

value. In Algo-
rithm 4.4, we describe the INCO extraction process with a generic algorithm.

Algorithm 4.4. INCO algorithm

entry = Ni Nj x i x j y i y j t i t f (t f - t i)
f o r entry in T:

i f G. has_edge (Ni , Nj) :
generate_entry (t i - G[Ni] [Nj] [time]))
G[Ni] [Nj] [time] = t f

e l s e :
G. add_edge (Ni , Nj , time = t f)

4.3.1.2 Contact duration (CODU)

The CODU property is extracted by registering the duration of each contact between
any pair of nodes. For example, if nodes A and B encountered from time t

i

to t
f

, a
CODU entry will be generated with the value t

f

� t
i

. However, by considering the
common trace format used by MOCHA, we only need to get the encounter duration
(�t) value from all entries in T to register the CODU distribution. This process can be
observed in Algorithm 4.5.

Algorithm 4.5. CODU algorithm

entry = Ni Nj t f t i (t f - t i) x i x j y i y j
f o r entry in T:

generate_entry (t f - t i)

36 Chapter 4. MOCHA: MObility CHaracterization Framework

4.3.1.3 Maximum contacts per hour (MAXCON)

The MAXCON property is extracted by registering the number of contacts that oc-
curred during each hour of the trace T duration. In order to compute it, MOCHA
first determines the duration of T . Giving that all entries are registered in seconds,
MOCHA converts the total of seconds of the simulation to hours and creates an array
H with a size equivalent to the number of hours present in T . Once H is created,
MOCHA analyzes each entry and increases a counter for each slot in H regarding the
hour that every contact begins.

It is important to highlight that a single encounter can start at a specific hour
and extend for more than one hour, making necessary to increase different slots in
H. However, considering that the MAXCON purpose is to represent social regularity
among the days, we decided to increase only the counter associated to the hour of the
beginning of each contact. By considering the nature of the real datasets used in this
work, we realize that most of the time, the beginning of the contact is more significant
that its end. For example, check-in traces always have the initial time of the check-in
but very rarely they present the check-out time. The complete MAXCON extraction
process can be observed in Algorithm 4.6.

Algorithm 4.6. MAXCON algorithm

entry = Ni Nj x i x j y i y j t i t f (t f - t i)
H. s i z e = total_time /3600 # t o t a l o f hours
f o r entry in T:

h = convert_to_hour (t i)
H. at (h) = H. at (h) + 1

f o r hour in H. s i z e :
generate_entry (hour)

4.3.1.4 Encounter regularity (EDGEP)

The EDGEP property is extracted by calculating the persistence of the encounters
between each pair of nodes during the trace time. In order to do so, we define a time
window W that is the maximum time a pair of nodes can encounter with each other.
For example, if the evaluated trace considers 15 days of encounters and we want to
calculate a daily EDGEP, then W = 15. If instead of days we want to consider an
hourly EDGEP, then W = 15⇥24 = 360.

MOCHA standard configuration uses a daily window and calculates the W value
automatically by using the maximum t value encountered during the preprocessing

4.3. The extractor 37

stage. We evaluate all entries in T and create an edge E
i,j

every time a pair of nodes
encounters for the first time. The initial value of each edge is always 1.

Considering w0, w1, w2, ..., wn

where w0 is the first time window of the trace (e.g.,
a day) and w

n

is the last time window, we increment the edge E
i,j

once for each day
for the nodes N

i

and N
j

. Even when both nodes encounter more than once a day, we
can only increase the edge value by 1 for each day.

Once we evaluate all the entries in T , we will have a graph G in which edges
have the maximum number of days that each pair of nodes encountered with each
other. Finally, we evaluate each edge e in G and divide its value by w

n

to obtain the
final EDGEP value for each pair of nodes. In Algorithm 4.7, we observe the detailed
description for the EDGEP extraction process.

Algorithm 4.7. EDGEP algorithm

entry = Ni Nj x i x j y i y j t i t f (t f - t i)
f o r entry in T:

enc_day = encounter_day (entry)
i f G. has_edge (Ni , Nj) and G[Ni] [Nj] [day] != enc_day :

G[Ni] [Nj] [per] = G[Ni] [Nj] [per] + 1
G[Ni] [Nj] [day] = enc_day

e l s e :
G. add_edge (Ni , Nj , day = enc_day , per = 1)

f o r edge in G. edges () :
generate_entry (edge [per])

4.3.1.5 Topological overlap (TOPO)

The TOPO property is extracted by calculating the social overlap of each agent’s
neighbors in G. To do so, we evaluate all entries in T and create an edge E

i,j

for all
nodes encountering at least once. Once we evaluate all entries in T , we iterate within
all edges E

i,j

of G calculating the intersection of the neighbors of N
i

and N
j

. We
observe the TOPO extraction algorithm in Algorithm 4.8.

Algorithm 4.8. TOPO algorithm

entry = Ni Nj x i x j y i y j t i t f (t f - t i)
f o r entry in T:

G. add_edge (Ni , Nj)
f o r edge in G. edges () :

topo = find_common(ne ighbors (Ni) , ne ighbors (Nj))

38 Chapter 4. MOCHA: MObility CHaracterization Framework

generate_entry (topo)

4.3.1.6 Social correlation (SOCOR)

The calculation of the SOCOR value is trivial considering that it only consists in
calculating the Pearson’s correlation coefficient between the TOPO and the EDGEP
values. As we are going to see below in this work, SOCOR presents high values in
almost all real traces (over 0.8) and low values in synthetic traces.

4.3.2 Spatial properties

As previously described, not all traces have geographical information available, mak-
ing impossible to extract any spatial or even temporal properties (all the temporal
properties are related to space and time while spatial properties are only related to
space). However, even traces having explicit coordinates for each encounter rarely
have information about the venue where the encounter occurred.

In that case, before we consider properties like RADG or TRVD, we need to
define how to find locations in a trace, given that geographical information consists
in consecutive coordinates instead of venues. Check-in traces, on other side, give us
information about the venues themselves but rarely present geographical coordinates,
making impossible to calculate travel distances, for example.

Therefore, each input trace needs to be properly analyzed to determine which
properties can or cannot be extracted from it. For this topic, we will assume a mobility
trace with geographical coordinates of each encounter. In addition, we present an
algorithm to estimate locations, which will be used as reference to extract all the
spatial and temporal properties.

4.3.2.1 Finding locations

Let us assume a trace T in which every entry has the geographical coordinates of the
encounter. In order to estimate the locations of T , MOCHA uses a Voronoi algorithm to
group all the T coordinates in n different centroids, which will be used as the locations
(or venues) of the trace. The value of n can be defined according to the user’s needs via
MOCHA configuration file. We suggest that n be a value related to the total area of
the evaluated scenario, for example, n = (max

x

⇥max⇥y)/R2, where R is the agent’s
communication radius.

Once the venues are calculated, T is analyzed once more to include the venue in
which each point “checked-in”. To do so, each coordinate is analyzed to determine to

4.3. The extractor 39

which venue it belongs to and, then, a new log entry is generated in a new trace V

with the agent ID and its current venue. A new entry will be generated only when the
node leaves the last venue to a new one. This process is described in Algorithm 4.9.

Algorithm 4.9. Finding locations algorithm

entry = Ni Nj x i x j y i y j t i t f (t f - t i)
n = max_venues
f o r entry in T:

l o c a t i o n s . add (xi , y i)
l o c a t i o n s . add (xj , y j)

venues = vorono i (l o c a t i on s , n)
the f o l l ow i n g f o r statement i s repeated f o r Ni and Nj e n t r i e s

where N i s presented
f o r entry in T:

v = closer_venue (venues ,N, x , y)
i f not (N[last_venue]) :

N[last_venue] = v
N[time] = t

i f (N[last_venue] != v) :
generate_entry (N, v , (t f - N[time]))

Once we have all venues visited in T , we can use V to extract our spatial properties
using the processes described in Sections 4.3.2.2 and 4.3.2.3.

4.3.2.2 Radius of gyration (RADG)

The RADG property is extracted using a two-step algorithm, where the first one con-
sists in determining each agent’s “home”, and the second step consists in calculating
the distance between each visited location and the agent’s “home”. In a real scenario,
each agent would indeed have a house that could be used to calculate this property.
However, considering that none of the real traces used in this study actually present
the house’s coordinates of each node, we consider the “house” as the most visited venue
by each node.

To do that, we create a vector A with a size equal to the number of agents present
in T . Inside each position of A, we store a vector L with all locations present in V .
Once we do that, we analyze V to compute all the venues v visited by each node N

i

and increment the respective position vi in L
i

according to the trace entry.
Once we compute all the visits in A, we will have the amount of visits that each

agent did to every venue and, consequently, we can determine its home h by looking up

40 Chapter 4. MOCHA: MObility CHaracterization Framework

for the most visited venue. Finally, after determining h, we iterate over L calculating
the distance between h and all venues, and registering that value as a RADG entry.
Algorithm 4.10 describes the RADG extraction process.

Algorithm 4.10. RADG algorithm

entry = N x y t f t i t f - t i v
f o r entry in V:

A[N] [v] = A[N] [v] + 1
f o r entry in V:

home = most_vis i ted (A[N])
i f home != v :

radg = euc l i d ean (home , v)
generate_entry (rad)

4.3.2.3 Travel distance (TRVD)

The TRVD extraction is very similar to the RADG one. However, when calculating
RADG, we register the distance between all visited locations and the agent’s home,
whereas TRVD extractions consist in calculating the distance between consecutive
visited locations.

To do so, we use a vector A where we register the last venue visited by each
agent and start iterating trough V . Once we find a venue v for agent N , we register
that venue into A

n

, if there was no previous venue registered. In case a previous venue
exists in A

n

, we calculate the distance between the current venue and the new one and
register a TRVD entry. Algorithm 4.11 details this process.

Algorithm 4.11. TRVD algorithm

entry = N x y t f t i t f - t i v
f o r entry in V:

i f A[N] :
generate_entry (euc l i d ean (A[N] , v))

A[N] = v

4.3.3 Temporal properties

The last group of properties that can be extracted from mobility traces are the temporal
properties. It is important to highlight that all the temporal properties are related not

4.3. The extractor 41

only to time but also to space. Considering that, the following properties require the
venues to log V , which was described in Section 4.3.2.

4.3.3.1 Visit time (VIST)

The VIST property is extracted by registering the time that each agent spent at each
location. Once we generate the trace locations using the method described in Sec-
tion 4.3.2, the VIST entries are automatically calculated and saved in V . To put the
VIST entries into a separated log, all we have to do is to iterate through V and register
the t value of each entry, as described in Algorithm 4.12.

Algorithm 4.12. VIST algorithm

entry = N x y t f t i t f - t i v
f o r entry in V:

generate_entry (t f - t i)

4.3.3.2 Travel time (TRVT)

The TRVT property is extracted by registering the difference between an agent’s de-
parture time at a location and the arrival time at a consecutive one. This extraction
process is done in an analogous way to TRVD, but instead of registering the venue
position we register the departure time, i.e., t

f

. This process is described in Algo-
rithm 4.13.

Algorithm 4.13. TRVT algorithm

entry = N x y t f t i t f - t i v
f o r entry in V:

i f A[N] :
generate_entry (t i - A[N])

A[N] = t f

4.3.3.3 Entropy (ENTROPY)

The ENTROPY property is extracted by calculating the amount of visits that each
location received and dividing it by the total of visits that all locations received. To do
so, we iterate trough V and create a vector L with all locations present in V . During
the iteration, we increase L

v

by one every time a new visit occurs in v and increment
our total counter c by one to compute the total amount of visits. Once we analyze all

42 Chapter 4. MOCHA: MObility CHaracterization Framework

entries in V , we have to divide all the values in L by c and register all the ENTROPY
entries. Algorithm ?? describes the ENTROPY extraction process in details.

Algorithm 4.14. ENTROPY algorithm

entry = N x y t f t i t f - t i v
f o r entry in V:

L [v] = L [v] + 1
c = c + 1

f o r l in L :
generate_entry (l /c)

4.4 The classifier

As previously described, most of the synthetic trace generators validate their models by
comparing generated traces with real ones. This evaluation is usually done by a visual
graphical comparison or a comparison of network metrics, as described in Section ??.
In addition, each study compares only a limited set of mobility properties. Considering
the nature of different datasets and the variety of mobility properties, we propose a
methodology that can be generalized to different types of mobility traces and consider
all the mobility properties described in Chapter 3.

To quantitatively compare these properties, we propose the use of the Akaike’s
Information Criterion (AIC). The AIC is based on the Maximum Likelihood Estimation
(MLE) to determine the type of curve that best fits each property distribution followed
by a categorization of each distribution.

A distribution can be separated into two parts: head and tail. In the case of a
heavy-tailed distribution, the tail is the part that contains most of the values. However,
in this work, we will consider the tail of the distribution all values beyond the median
of the distribution. MOCHA uses the tail of the distribution to classify the mobility
properties.

The technique of maximum likelihood is the core of parameter estimation in AIC.
Maximum likelihood is used to estimate the parameters of a model, given observations
of the variables in the model [Stigler, 2007]. Once we have the best estimate for the
model parameters, we can verify which model provides the best fit to the empirical
data.

Several methods are commonly used for comparing models. If two models have
the same set of parameters, the most suitable one is simply the one that has the

4.4. The classifier 43

higher likelihood between the two. However, if two models have different numbers of
parameters, then they may be compared using Akaike information criterion (AIC):

AIC ⌘ �2 log(L) + 2(p+ 1),

where L is the likelihood and p is the number of parameters of the model. The best
model has the lowest AIC [Hilborn and Mangel, 1997].

The use of MLE and the Akaike’s information criterion (AIC) to determine the
type of each distribution is the basis of our proposed framework MOCHA. In this way,
we can formally and quantitatively say if a given property distribution has, for instance,
a heavy-tail or not. This is necessary because a comparison based on visualization can
be misleading, since sometimes distributions can look as a power-law but, however, can
be better fitted by an exponential curve (or vice-versa) [Clauset et al., 2009]. With the
Akaike’s information criterion (AIC), we dismiss any doubt about the best fit for any
distribution that can be extracted from both real and synthetic traces. We try to fit
any presented distribution with several different known distributions: gamma, weibull,
exponential, normal, lognormal, pareto and loglogistic.

Once that we fit a distribution, we classify them according to three different
categories regarding the tail of the distribution: pareto tail (or heavy tail) as PAR,
exponential tail as EXP and lognormal tail as LOG. Gamma, Weibull, exponential and
normal curves are categorized as EXP; lognormal curves are categorized as LOG; and
Pareto and log logistic curves are categorized as PAR [Nair et al., 2013]. Whenever a
distribution could not be extracted we categorize it as NVA (no values found).

At the end of the comparison, MOCHA generates a report with the classification
of each property, the MAXCON correlation value and the SOCOR value too. Besides
the comparison itself, MOCHA’s classifier is also responsible for generating all the
graphics regarding the statistical distributions discussed in this work. It was using
MOCHA itself that all the curves of this work were generated.

Chapter 5

Results

In this chapter we present the results obtained with MOCHA by analyzing all the
traces described in Tables 2.1 and 2.2. We extract all the possible mobility properties
from each trace, according to the restrictions described in the previous chapters. After
the properties extraction, we classify them according to their statistical distribution.
By performing a sanity check, we show how the results obtained by MOCHA match
previous studies. Finally, we use k-means algorithm and Principal Component Analysis
to cluster all the used datasets according to their similarities regarding the classification
performed by MOCHA.

5.1 Analysis

Figure 5.1 compares all the selected traces, where the top segment represents the real
datasets and the bottom represents the synthetic ones. By using the taxonomy pro-
posed in Chapter 3, we divide all statistical distributions in four different categories:
EXP (exponential tail), PAR (pareto tail), LOG (lognormal tail) and NVA. This last
classification is used in the cases when a particular trace does not have the data needed
to extract the given property. Only MAXCON and SOCOR are represented by numer-
ical values, i.e., the Pearson’s correlation coefficient

As previously defined in Section 3.2.3, MAXCON is directly related to social
regularity. However, when we compare the values presented in Figure 5.1, we observe
that, while real traces have significant MAXCON values, synthetic traces have values
close to 0. In real traces MAXCON’s average is around 0.4, while on synthetic traces
the average drops to 0.07. This is an important observation to highlight the fact that
even if synthetic traces can reproduce social interactions at some level, most of them

45

46 Chapter 5. Results

Figure 5.1. Classification of all properties according to MOCHA

TRACE

IN
CO

CO
DU

M
AX

CO
N

TO
PO

ED
GE

P

SO
CO

R

RA
DG

TR
VD

TR
VT

VI
ST

EN
TR

O
PY

TY
PE

DARTMOUTH PAR LOG 0.73 EXP PAR 0.98 PAR PAR LOG EXP PAR CAMPUS
CAMBRIDGE PAR PAR 0.09 LOG LOG 0.97 NVA NVA NVA NVA NVA CAMPUS

SASSY PAR PAR 0.01 LOG LOG 0.87 NVA NVA NVA NVA NVA CAMPUS
USC LOG PAR 0.82 LOG PAR 0.80 NVA NVA NVA NVA NVA CAMPUS
UPB LOG LOG 0.01 LOG PAR 0.74 NVA NVA NVA NVA NVA CAMPUS

INFOCOM LOG PAR 0.24 LOG PAR 0.94 NVA NVA NVA NVA NVA CONFERENCE
HYPERTEXT PAR LOG 0.50 PAR PAR 0.87 NVA NVA NVA NVA NVA CONFERENCE
HOSPITAL PAR LOG 0.65 LOG PAR 0.95 NVA NVA NVA NVA NVA INDOOR

HIGHASCHOOLA11 PAR LOG 0.47 LOG PAR 0.90 NVA NVA NVA NVA NVA INDOOR
HIGHASCHOOLA12 PAR LOG 0.43 LOG PAR 0.91 NVA NVA NVA NVA NVA INDOOR

INFECTIOUS LOG LOG 0.51 LOG PAR 0.84 NVA NVA NVA NVA NVA INDOOR
SANAFRANCISCO PAR PAR 0.78 EXP PAR 0.93 LOG PAR EXP PAR LOG VEHICULAR

COLOGNE LOG EXP 0.00 PAR PAR 0.00 NVA NVA NVA NVA NVA VEHICULAR

WDM LOG PAR 0.95 LOG PAR 0.89 LOG LOG EXP PAR PAR URBAN
SLAWA5 LOG LOG 0.01 PAR PAR 0.48 PAR PAR EXP LOG PAR C
SLAWA35 LOG LOG 0.05 PAR PAR 0.43 PAR LOG EXP PAR LOG C
SUBWAY LOG PAR 0.00 LOG PAR 0.66 PAR LOG LOG PAR PAR PEDESTRIAN
OSTERA90 LOG PAR 0.00 PAR PAR 0.66 PAR LOG LOG PAR PAR PEDESTRIAN
OSTERA70 LOG PAR 0.00 PAR PAR 0.74 PAR LOG LOG PAR LOG PEDESTRIAN
OSTERA50 LOG PAR 0.00 PAR PAR 0.73 PAR LOG EXP PAR LOG PEDESTRIAN
OSTERA40 EXP PAR 0.00 PAR PAR 0.73 PAR LOG LOG PAR PAR PEDESTRIAN
OSTERA30 EXP PAR 0.00 PAR PAR 0.78 PAR LOG EXP PAR LOG PEDESTRIAN
SWIMA88 LOG PAR 0.03 LOG PAR 0.0 LOG PAR EXP EXP PAR C
SWIMA85 LOG PAR 0.04 LOG PAR 0.0 LOG PAR EXP LOG PAR C
SWIMA83 LOG PAR 0.11 LOG PAR 0.0 LOG PAR EXP PAR PAR C
SWIMA58 LOG PAR 0.03 LOG PAR 0.0 LOG PAR EXP PAR PAR C
SWIMA55 LOG PAR 0.02 LOG PAR 0.0 LOG PAR EXP EXP LOG C
SWIMA53 LOG PAR 0.00 LOG PAR 0.0 PAR PAR EXP PAR LOG C
SWIMA38 LOG PAR 0.01 EXP PAR 0.84 PAR PAR EXP PAR LOG C
SWIMA35 LOG PAR 0.02 EXP PAR 0.78 LOG PAR EXP PAR LOG C
SWIMA33 LOG PAR 0.07 EXP PAR 0.45 LOG PAR EXP EXP LOG C

fail to reproduce the regularity present in a daily routine. The reason why WDM does
not fail to reproduce regularity is because WDM is a routine-based mobility model.

Most of the mobility generators and mobility models described in Chapter 2 were
validated through a graphical comparisonof the mobility properties of the synthetic
traces generated by them. By observing INCO and CODU columns in Figure 5.1, we
realize that synthetic and real scenarios have similar results for both columns. In some
cases, such as USC and any SWIM dataset, we could even affirm that those scenarios
are equivalent. However, by observing INCO and CODU in addition to MAXCON
column, we realize that even the statistical distribution of properties, such as INCO
and CODU, can be similar between real and synthetic scenarios, but only in real
scenarios the agents move according to a routine.

In an analogous way to INCO, CODU and MAXCON, we observe EDGEP, TOPO
and SOCOR. There are real and synthetic traces with the same classification results
for EDGEP and TOPO, such as Infocom and SWIM88. However, while in Infocom
those results are highly correlated, i.e., 0.94, in SWIM 88 there is no correlation at

5.2. Sanity Check 47

all. Also, in real traces MAXCON’s average is around 0.82, while on synthetic traces
the average drops to 0.45. These observations match with the fact that, even when
mobility generators can reproduce statistical distributions, they fail to reproduce the
underlying social relations that rule human mobility.

Regarding temporal and spatial properties, we observe that most of the real
datasets have several properties classified as NVA. This happens because those traces
have no information available about the coordinates of each encounter, making im-
possible to calculate any position-related property. However, when considering all the
properties, obtained through analysis of available data, most of the statistical distribu-
tions are heavy-tailed distributions, such as PAR and LOG. This observation validates
MOCHA when considering previous studies showing that all the mobility properties
considered in this work are represented by heavy-tailed distributions, as discussed in
Chapters 2 and 3.

5.2 Sanity Check

Before we start discussing the results described in the previous section, let us take a
look at Figure 3.1 where we can see three different distributions generated with random
variables: exponential 3.2(a), pareto 3.2(b) and lognormal 3.2(c). As we can see, the
distributions are visually similar, but when we try to fit them with our framework the
results are EXP, PAR and LOG respectively.

In Figures 3.1(a) and 3.1(b) we observe INCO and CODU distributions for Dart-
mouth, a real dataset widely used for comparison and validation of mobility generation
tools. If we try to visually fit those distributions to our categories, we might conclude
that the contact duration distribution is more likely a LOG fit but it is not completely
clear if the inter-contact time is better fitted by an exponentially tailed distribution or
a pareto tailed distribution. When looking at Figure 5.1, we know that the best fit is
actually PAR.

Unlike previous studies, MOCHA does not rely on visual comparison to classify
mobility properties. In Figure 5.2, we observe the curve fitting to determine in which
category the INCO property from Dartmouth dataset is classified. By looking at the
first graphic, we observe how misleading and confusing a visual comparison between
different curves can be. Despite the generalized pareto to appears closer to Dartmouth
data, there is no warranty that it is in fact a loglogistic or even a lognormal. Only
when we look at the second figure we can have a clearer view that the cumulative
error is actually lower for a generalized pareto than to other distributions. The visual

48 Chapter 5. Results

comparison, however, can become more tricky in cases such as the one presented in
Figure 5.3, where it is not possible to visually determine whether the SLAW5 data
better fits a loglogistic curve or a lognormal. Once again, by observing the cumulative
error, it is clear which distribution best fit the data.

Figure 5.2. Dartmouth INCO fitting and AIC error

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

0.2

0.4

0.6

0.8

1

Value

C
u

m
u

la
tiv

e
 P

ro
b

a
b

ili
ty

Cumulative Distribution Function

dartmouth
generalized pareto
lognormal
loglogistic
weibull

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Value

E
rr

o
r

CDF Error

generalized pareto
lognormal
loglogistic
weibull

Another important result is related to the methodology used to extract mobility
properties. Lee et al. [2012] perform an experiment using the INCO property and
the AIC test to classify and compare mobility datasets. Moreover, their results do
not match the ones presented in this work. While they classified INCO with PAR,
we classified it as LOG. One possible reason to that difference could be the set of
parameters used to generate mobility data. However, they also evaluate the Dartmouth
dataset and classify its INCO property with EXP, while we obtained PAR. Considering
that we both used the same dataset, the most probable cause for this different might
be related to the extraction process of the mobility properties. By using MOCHA, this
problem will no longer exist because all the datasets can be evaluated using the same

5.2. Sanity Check 49

Figure 5.3. SLAW5 INCO fitting and AIC error

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Value

C
u
m

u
la

tiv
e
 P

ro
b
a
b
ili

ty

Cumulative Distribution Function

empirical
lognormal
loglogistic
generalized pareto
weibull

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Value

E
rr

o
r

CDF Error

lognormal
loglogistic
generalized pareto
weibull

methodology.

Despite some of the results obtained with MOCHA do not match previous stud-
ies, some of the premises considered by most of the previous proposals regarding the
mobility generation can be validated by MOCHA. When considering the synthetic
traces presented in Figure 5.1, we observe that all the datasets generated by SWIM,
SLAW and WDM models respect the power-law distributions in properties such as
inter-contact time, contact duration, travel distance, radius of gyration and entropy,
as defined by Lee et al. [2012]. Also, SWIM [Kosta et al., 2014] proposes its model by
assuming that the travel time between consecutive locations is always the same. This
consideration is based on the premise that we tend to perform short trips by foot and
longer trips using different types of transportation (e.g., bike, car, plane and boat).
The SWIM premises regarding these properties are revealed in Figure 5.1, where all
the generated traces have exponentially bounded tails (EXP) in the TRVT column.
However, this same type of behavior can be observed in traces generated by SLAW,
Legion Studio, Working Day Model and in the San Francisco vehicular trace. Also,

50 Chapter 5. Results

when considering the property radius of gyration, SWIM also gives each node a home
and generates travels to another locations by using power-law distribution, a behavior
observed by MOCHA in the analysis of the distributions presented in Figure 5.1.

Considering the mobility scenario, some traces, such as Cambridge and Sassy,
have very similar results to all the evaluated properties and both represent campi
scenarios. However, Dartmouth, USC and UPB also represent campi scenarios but the
distributions found by MOCHA do not match among themselves. This observation is
important to show how even related scenarios might present different characteristics.
This finding matches the observations made in Vaz de Melo et al. [2013]. Both PAR
and LOG represent heavy tailed distributions, the difference between between them
indicates that their agent’s behaviors are not equivalent. This work does not consider
the implications of this specific difference and future research will be needed to answer
this question.

Regarding the INCO and CODU columns, which are the most used properties to
benchmark mobility models, we can observe that indeed most of the synthetic traces
present a heavy tailed behavior. However, if the real purpose of synthetic models is to
imitate reality, Figure 5.1 shows us that it is naive to compare two scenarios by only
considering a limited set of properties. If that is the case, we could choose whatever
properties we find suitable to state the similarity of different models and scenarios
when their real differences rely on the overall picture.

While observing the TRVD and TRVT properties, despite being very related
properties (intuitively travel distance should be somehow connected to the travel time),
these properties only present an equal behavior in some of the pedestrian traces gener-
ated by Legion Studio. It is important to highlight that all results for the spatial and
temporal properties can be also related to the location extraction algorithm that was
presented in Section 4.3

5.3 Classification of traces

In Figure 5.1, we have datasets from different campi, conferences and indoor envi-
ronments. We could expected that campi traces were similar all the time, but our
evaluation shows that this premise is not necessarily valid all the time. By using a
clustering algorithm, we will show how traces can be grouped by their similarities ac-
cording to the results observed in Table 5.1. However, to use the k-means algorithm,
we need first to define which value of k best attends our purpose. To do so, we use the
gap statistic method [Tibshirani et al., 2000] and obtained k = 4. By using Principal

5.3. Classification of traces 51

Component Analysis (PCA), we display our clusters in a bi-dimensional space, in order
to better visualize our results.

In Figure 5.4, we show the k-mean clustering for all the evaluated traces, to better
understand which similarities are present between them. To generate this graphic, we
considered all the values present in Figure 5.1, including the NVAs and all the datasets.
As we can observe, most of the synthetic traces are grouped in the black cluster while
the real datasets are divided among the other three clusters. The only cluster with
both synthetic and real datasets is the green one, presenting three SWIM scenarios.
Besides the real/synthetic division that is observable in Figure 5.4, there is no other
group such as campus, indoor, conference or vehicular that is clearly clustered with
its most similar scenario. When comparing Figure 5.4 with Figure 5.1, we observe
that only Dartmouth and San Francisco have a classification value for all the mobility
properties, while the other real datasets present only social properties.

Figure 5.4. k-means (k = 2) clustering of all evaluated datasets according to
MOCHA using all available properties from all datasets

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Hospital

Highschool 11
Highschool 12

Infectious

USC

Infocom

UPB

Cologne

Cambridge

Sassy

Hypertext

SWIM 35
SWIM 33SWIM 38

WDM

Dartmouth

San Francisco

SUBWAY

OSTER 70
OSTER 90

SLAW 5

OSTER 40
SLAW 35

OSTER 30

SWIM 53
SWIM 58

SWIM 83
SWIM 85

SWIM 88 SWIM 55

1st Principal Component (61.31%)

2
st

 P
ri
n

ci
p

a
l C

o
m

p
o

n
e

n
t

(1
3

.0
5

%
)

In Figure 5.5, we observe a new k-means clustering but that considers only social
properties. As we can observe, the clustering changes. In Figure 5.5, all the SWIM
datasets are clustered together and none of them is in the same cluster of Dartmouth
or San Francisco, which remained clustered together.

We also observe that all traces generated by Legion Studio (i.e., the OSTER
traces) are grouped together. The same occurs with both SLAW scenarios. When
considering only social properties, we observe a more logical clustering of the datasets.
Almost all campi are clustered together and each generation tool, except SWIM, is

52 Chapter 5. Results

Figure 5.5. k-means (k = 4) clustering of all evaluated datasets according to
MOCHA using only social properties from all datasets

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

SWIM 53
SWIM 55

SWIM 85
SWIM 83

SWIM 38
SWIM 35

SWIM 33

USC WDM

Infectious

Highschool 11
Highschool 12

Hospital

Sassy
Cambridge

Hypertext

Dartmouth

San Francisco

UPB

SLAW 35
SLAW 5

Cologne

OSTER 70
OSTER 90

OSTER 30

OSTER 40

SUBWAY
Infocom

1st Principal Component (40.83%)

2
st

 P
ri
n

ci
p

a
l C

o
m

p
o

n
e

n
t

(1
8

.5
9

%
)

associated with a different set of real scenarios. These results indicates that, by con-
sidering only social properties, the division between synthetic and real datasets is very
clear. If we run our k-means algorithm again using k = 2, we will obtain two clusters
in which one of them is composed by 70% of all the real datasets. This observation
is presented in Figure 5.6 and indicates how far away mobility generators are from
generate realistic mobility data.

5.3. Classification of traces 53

Figure 5.6. k-means (k = 2) clustering of all evaluated datasets according to
MOCHA using only social properties from all datasets

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Cologne

OSTER 40

OSTER 30

SLAW 35

SLAW 5

OSTER 90
OSTERL 50

OSTER 70

UPB

SUBWAY

SWIM 53
SWIM 85

SWIM 88

SWIM 83

Infocom

Infectious

USC WDM

Highschool 11
Highschool 12

Hospital

Sassy
Cambridge

Hypertext

Dartmouth

San Francisco

SWIM 38

SWIM 35

SWIM 33

1st Principal Component (41%)

2
st

 P
ri
n

ci
p

a
l C

o
m

p
o

n
e

n
t

(1
9

%
)

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this work, we presented MOCHA, a practical framework that performs comparison
between mobility traces in a very simple and elegant way. By proposing a standard
mathematical methodology to compare distributions and mobility properties, we cre-
ate the possibility to quantify the differences among them and to better understand
whether the lack of information can compromise the utilization of a specific dataset for
a specific application.

By using MOCHA, we observe that the considered mobility properties affect the
clustering results, causing the impression that two datasets can be related, when in fact
they are very different. As we could see, there are some studies comparing mobility
models by choosing an arbitrary set of mobility properties and concluding that they are
equivalent or similar. MOCHA showed the importance of considering all the possible
mobility properties to validate the similarity between mobility scenarios.

Our framework presents a solution for all the stages after the data collection until
its analysis. By presenting a taxonomy and definition for the different types of mobility
traces found in the literature, MOCHA’s parser defines a methodology that enables
the translation of any mobility trace to a common form. This form is based on a social
encounter approach and can be analyzed to extract mobility properties. By extract-
ing 11 different mobility properties, MOCHA covers the most used mobility properties
present in the literature to validate and compare different scenarios. Notice that most
of these properties were already used somehow in previous studies, but MOCHA is the
first framework that actually put them all together to enable a fair and complete com-
parison. Finally, MOCHA’s classifier analyzes the extracted properties individually
and classifies them according to their statistical distributions. This methodology is

55

56 Chapter 6. Conclusions and Future Work

well known in the literature and is vastly used to analyze and understand the behavior
of a specific parameter to enable a deeper comparison. MOCHA can also generate the
related graphics of each scenario.

By implementing and validating MOCHA, we showed how apparently similar sce-
narios can represent completely different realities according to the nature of each trace.
We also set an enhanced point of view to the human mobility research field. MOCHA
is validated by some known premises found in the literature regarding mobility prop-
erties. However, MOCHA also presents new insights towards new the directions that
can be taken to better understand the real differences between each mobility scenario.
By using a quantitative approach, MOCHA shows how graphical comparison using
statistical curves can be misleading and cannot be considered a reliable methodol-
ogy to compare mobility properties. Besides the mobility properties extraction and
classification, MOCHA also proposes a clustering methodology that can be used to de-
termine similarities among different datasets and to benchmark synthetic models with
real mobility scenarios.

6.2 Future Work

As future work, it is important to try to understand what is the real impact of each
property classification in the whole scenario. MOCHA shows how mobility properties
can be classified into three different categories but it lacks to explain what is the
meaning of each property classification. For example, what is the difference between
an exponentially bounded inter-contact time and a pareto bounded one? Does it mean
that there are no real social ties in the dataset or is it just a difference caused by
the type of scenario (e.g., vehicular versus campus)? One way to start exploiting
these differences is to use network metrics to help the understanding of how a different
statistical distribution might (or not) affect the network performance.

It is also important to start exploiting new mobility properties that can be found
in all mobility traces to increase the relationship between datasets based on their
properties. By understanding them, it would be interesting to develop a tool able to
generate specific scenarios such as campus, vehicular, indoor and urban.

Besides, MOCHA can also improve in terms of its own algorithms, specifically
the one used to infer venues in mobility traces. One important question that should
be answered in the future is how to tune MOCHA parameters to extract the most
accurate information of each trace (e.g., communication radius and number of venues).

Another interesting developing for this work is to be able to understand which pa-

6.2. Future Work 57

rameters determine the difference between similar scenarios. Intuitively, we understand
that different campi have different dynamics (the same applies for different conferences,
cities and others). However, it will be useful to determine which properties or parame-
ters are specifically responsible for these differences to be able to model and reproduce
them.

Bibliography

Alshanyour, A. and Baroudi, U. (2008). Random and realistic mobility models impact
on the performance of bypass-aodv routing protocol. In Wireless Days, 2008. WD
’08. 1st IFIP, pages 1–5.

Aschenbruck, N., Frank, M., Martini, P., and Tolle, J. (2004). Human mobility in manet
disaster area simulation - a realistic approach. In Local Computer Networks, 2004.
29th Annual IEEE International Conference on, pages 668–675. ISSN 0742-1303.

Aschenbruck, N., Munjal, A., and Camp, T. (2011). Trace-based mobility modeling
for multi-hop wireless networks. Computer Communications, 34(6):704 – 714. ISSN
0140-3664.

Bai, F., Sadagopan, N., and Helmy, A. (2003). Important: a framework to system-
atically analyze the impact of mobility on performance of routing protocols for ad-
hoc networks. In INFOCOM 2003. Twenty-Second Annual Joint Conference of the
IEEE Computer and Communications. IEEE Societies, volume 2, pages 825–835
vol.2. ISSN 0743-166X.

Batabyal, S. and Bhaumik, P. (2014). Delay-overhead trade-offs in mobile opportunistic
network using ttl based restricted flooding. In Applications and Innovations in Mobile
Computing (AIMoC), 2014, pages 9–14.

Bezerra, R. L., Campos, C. A. V., and Moraes, L. F. M. d. (2009). Uma proposta de
tecnica para o ajuste de modelos de mobilidade em redes ad hoc e questionamentos
sobre a adequacao dos parametros envolvidos com base em dados reais. In Simposio
Brasileiro de Redes de Computadores, 2009.

Bigwood, G., Rehunathan, D., Bateman, M., and Bhatti, S. (2011). CRAW-
DAD data set st_andrews/sassy (v. 2011-06-03). Downloaded from
http://crawdad.org/st_andrews/sassy/.

59

60 Bibliography

Boldrini, C., Conti, M., and Passarella, A. (2007). Impact of social mobility on routing
protocols for opportunistic networks. In World of Wireless, Mobile and Multimedia
Networks, 2007. WoWMoM 2007. IEEE International Symposium on a, pages 1–6.

Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., and Scott, J. (2007). Impact
of human mobility on opportunistic forwarding algorithms. Mobile Computing, IEEE
Transactions on, 6(6):606–620. ISSN 1536-1233.

Ciobanu, R. I. and Dobre, C. (2012). CRAWDAD data set upb/mobility2011 (v. 2012-
06-18). Downloaded from http://crawdad.org/upb/mobility2011/.

Clauset, A., Shalizi, C. R., and Newman, M. E. J. (2009). Power-Law Distributions in
Empirical Data. SIAM Review, 51(4):661--703. ISSN 0036-1445.

Dimatteo, S., Hui, P., Han, B., and Li, V. (2011). Cellular traffic offloading through
wifi networks. In Mobile Adhoc and Sensor Systems (MASS), 2011 IEEE 8th Inter-
national Conference on, pages 192–201. ISSN 2155-6806.

Ekman, F., Keränen, A., Karvo, J., and Ott, J. (2008). Working day movement
model. In Proceedings of the 1st ACM SIGMOBILE Workshop on Mobility Models,
MobilityModels ’08, pages 33--40, New York, NY, USA. ACM.

Fischer, D., Herrmann, K., and Rothermel, K. (2010). Gesomo x2014; a general social
mobility model for delay tolerant networks. In Mobile Adhoc and Sensor Systems
(MASS), 2010 IEEE 7th International Conference on, pages 99–108. ISSN 2155-
6806.

Foroozani, A., Gharib, M., Hemmatyar, A., and Movaghar, A. (2014). A novel human
mobility model for manets based on real data. In Computer Communication and
Networks (ICCCN), 2014 23rd International Conference on, pages 1–7.

Fournet, J. and Barrat, A. (2014). Contact patterns among high school students. PLoS
ONE, 9(9):e107878.

Helgason, O., Kouyoumdjieva, S., and Karlsson, G. (2010). Does mobility matter? In
Wireless On-demand Network Systems and Services (WONS), 2010 Seventh Inter-
national Conference on, pages 9–16.

Helgason, O., Kouyoumdjieva, S., and Karlsson, G. (2014a). Opportunistic communi-
cation and human mobility. Mobile Computing, IEEE Transactions on, 13(7):1597–
1610. ISSN 1536-1233.

Bibliography 61

Helgason, O., Kouyoumdjieva, S., and Karlsson, G. (2014b). Opportunistic communi-
cation and human mobility. Mobile Computing, IEEE Transactions on, 13(7):1597–
1610. ISSN 1536-1233.

Henderson, T., Kotz, D., and Abyzov, I. (2004). The changing usage of a mature
campus-wide wireless network. In Proceedings of the 10th Annual International Con-
ference on Mobile Computing and Networking, MobiCom ’04, pages 187--201, New
York, NY, USA. ACM.

Hilborn, R. and Mangel, M. (1997). The Ecological Detective: Confronting Models
with Data. Monographs in population biology. Princeton University Press. ISBN
9780691034973.

Isella, L., Stehle, J., Barrat, A., Cattuto, C., Pinton, J., and Van den Broeck, W.
(2011). What’s in a crowd? analysis of face-to-face behavioral networks. Journal of
Theoretical Biology, 271(1):166--180. ISSN 0022-5193.

jen Hsu, W. and Helmy, A. (2008). CRAWDAD data set usc/mobilib (v. 2008-07-24).
Downloaded from http://crawdad.org/usc/mobilib/.

Karagiannis, T., Le Boudec, J.-Y., and Vojnovi?, M. (2010). Power law and exponen-
tial decay of intercontact times between mobile devices. Mobile Computing, IEEE
Transactions on, 9(10):1377–1390. ISSN 1536-1233.

Karamshuk, D., Boldrini, C., Conti, M., and Passarella, A. (2011). Human mobility
models for opportunistic networks. Communications Magazine, IEEE, 49(12):157–
165. ISSN 0163-6804.

Karamshuk, D., Boldrini, C., Conti, M., and Passarella, A. (2014). Spot: Representing
the social, spatial, and temporal dimensions of human mobility with a unifying
framework. Pervasive and Mobile Computing, 11(0):19 – 40. ISSN 1574-1192.

Kosta, S., Mei, A., and Stefa, J. (2014). Large-scale synthetic social mobile networks
with swim. Mobile Computing, IEEE Transactions on, 13(1):116–129. ISSN 1536-
1233.

Kouyoumdjieva, S. T., Ólafur Ragnar Helgason, and Karlsson, G. (2014).
CRAWDAD data set kth/walkers (v. 2014-05-05). Downloaded from
http://crawdad.org/kth/walkers/.

62 Bibliography

Lee, K., Hong, S., Kim, S. J., Rhee, I., and Chong, S. (2012). Slaw: Self-similar least-
action human walk. Networking, IEEE/ACM Transactions on, 20(2):515–529. ISSN
1063-6692.

Maupertuis, P. L. M. (1744). Accord des differentes lois de la nature qui avaient jusquíci
paru incompatibles. Memoires de lÁcademie des Sciences, page 417.

Mccanne, S., Floyd, S., and Fall, K. (2007). ns2 (network simulator 2). http://www-
nrg.ee.lbl.gov/ns/.

Meghanathan, N. and Milton, L. (2009). A simulation based performance comparison
study of stability-based routing, power-aware routing and load-balancing on-demand
routing protocols for mobile ad hoc networks. In Wireless On-Demand Network
Systems and Services, 2009. WONS 2009. Sixth International Conference on, pages
3–10.

Munjal, A., Camp, T., and Navidi, W. (2010). Constructing rigorous manet simulation
scenarios with realistic mobility. In Wireless Conference (EW), 2010 European, pages
817–824.

Nair, J., Wierman, A., and Zwart, B. (2013). The fundamentals of heavy-tails: Prop-
erties, emergence, and identification. SIGMETRICS Perform. Eval. Rev., 41(1):387-
-388. ISSN 0163-5999.

Piorkowski, M., Sarafijanovic-Djukic, N., and Grossglauser, M. (2009).
CRAWDAD data set epfl/mobility (v. 2009-02-24). Downloaded from
http://crawdad.org/epfl/mobility/.

Sandulescu, G., Niruntasukrat, A., and Charnsripinyo, C. (2013). Resource-aware
capacity evaluation for heterogeneous, disruption-tolerant networks. In Proceedings
of the 9th Asian Internet Engineering Conference, AINTEC ’13, pages 57--64, New
York, NY, USA. ACM.

Scott, J., Gass, R., Crowcroft, J., Hui, P., Diot, C., and Chaintreau, A.
(2006). CRAWDAD data set cambridge/haggle (v. 2006-01-31). Downloaded from
http://crawdad.org/cambridge/haggle/.

Shah, M. and Rathod, J. (2014). Efficient scheduling algorithm for query processing in
opportunistic sensor network under human mobility model. In Confluence The Next
Generation Information Technology Summit (Confluence), 2014 5th International
Conference -, pages 401–405.

Bibliography 63

Song, C., Koren, T., Wang, P., and Barabasi, A.-L. (2010). Modelling the scaling
properties of human mobility. Nat Phys, 6(10):818--823.

Song, L. and Kotz, D. F. (2007). I. In Proceedings of the Second ACM Workshop on
Challenged Networks, CHANTS ’07, pages 35--42, New York, NY, USA. ACM.

Stigler, S. M. (2007). The Epic Story of Maximum Likelihood. Statistical Science,
22(4):598--620. ISSN 0883-4237.

Thakur, G. and Helmy, A. (2013). Cobra: A framework for the analysis of realistic
mobility models. In Computer Communications Workshops (INFOCOM WKSHPS),
2013 IEEE Conference on, pages 145–150.

Tibshirani, R., Walther, G., and Hastie, T. (2000). Estimating the number of clusters
in a dataset via the gap statistic. 63:411--423.

Treurniet, J. (2014). A taxonomy and survey of microscopic mobility models from the
mobile networking domain. ACM Comput. Surv., 47(1):14:1--14:32. ISSN 0360-0300.

Uppoor, S. and Fiore, M. (2012). Mobicom 2011 poster: Vehicular mobility in large-
scale urban environments? SIGMOBILE Mob. Comput. Commun. Rev., 15(4):55--
57. ISSN 1559-1662.

Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., RÃ c�gis, C., Kim,
B.-a., Comte, B., and Voirin, N. (2013). Estimating potential infection transmission
routes in hospital wards using wearable proximity sensors. PLoS ONE, 8(9):e73970.

Vastardis, N. and Yang, K. (2014). An enhanced community-based mobility model for
distributed mobile social networks. Journal of Ambient Intelligence and Humanized
Computing, 5(1):65–75. ISSN 1868-5137.

Vaz de Melo, P. O., Viana, A. C., Fiore, M., Jaffrès-Runser, K., Le Mouel, F., and
Loureiro, A. A. (2013). Recast: Telling apart social and random relationships in
dynamic networks. In Proceedings of the 16th ACM International Conference on
Modeling, Analysis & Simulation of Wireless and Mobile Systems, MSWiM ’13,
pages 327--334, New York, NY, USA. ACM.

Zyba, G., Voelker, G., Ioannidis, S., and Diot, C. (2011). Dissemination in oppor-
tunistic mobile ad-hoc networks: The power of the crowd. In INFOCOM, 2011
Proceedings IEEE, pages 1179–1187. ISSN 0743-166X.

	Agradecimentos
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem
	1.2 Motivation
	1.3 Objectives
	1.4 Contributions
	1.5 Work organization

	2 Related Work
	2.1 Mobility traces
	2.1.1 Campus scenario
	2.1.2 Vehicular scenario
	2.1.3 Conference scenario

	2.2 Synthetic mobility generators
	2.2.1 SWIM
	2.2.2 SLAW
	2.2.3 Working Day Model

	2.3 Comparing Mobility Traces
	2.4 Mobility-based networking solutions
	2.5 Overview
	2.6 Datasets

	3 Mobility Properties
	3.1 Discussion
	3.2 Social properties
	3.2.1 Inter-contact time (INCO)
	3.2.2 Contact duration (CODU)
	3.2.3 Maximum contacts per hour (MAXCON)
	3.2.4 Encounter regularity (EDGEP)
	3.2.5 Topological overlap (TOPO)

	3.3 Spatial properties
	3.3.1 Radius of gyration (RADG)
	3.3.2 Travel distance (TRVD)

	3.4 Temporal properties
	3.4.1 Visit time (VIST)
	3.4.2 Travel time (TRVT)
	3.4.3 Entropy (ENTROPY)

	4 MOCHA: MObility CHaracterization Framework
	4.1 Overview
	4.2 The parser
	4.2.1 Normalization
	4.2.2 Raw mobility trace
	4.2.3 Check-in traces
	4.2.4 Contact traces

	4.3 The extractor
	4.3.1 Social properties
	4.3.2 Spatial properties
	4.3.3 Temporal properties

	4.4 The classifier

	5 Results
	5.1 Analysis
	5.2 Sanity Check
	5.3 Classification of traces

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Bibliography

