
ALIAS: ABSTRAÇÃO DE CIRCUITOS

ANALÓGICOS PARA VERIFICAÇÃO DE

SISTEMAS DIGITAIS

ABNER LUÍS PANHO MARCIANO

ALIAS: ABSTRAÇÃO DE CIRCUITOS

ANALÓGICOS PARA VERIFICAÇÃO DE

SISTEMAS DIGITAIS

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Antônio Otávio Fernandes

Coorientador: Claudionor José Nunes Coelho Júnior

Belo Horizonte

Março de 2015

ABNER LUÍS PANHO MARCIANO

ALIAS: ANALOG CIRCUIT ABSTRACTIONS FOR

DIGITAL SYSTEMS VERIFICATION

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
ful�llment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Antônio Otávio Fernandes

Co-Advisor: Claudionor José Nunes Coelho Júnior

Belo Horizonte

March 2015

c© 2015, Abner Luís Panho Marciano.
Todos os direitos reservados.

Marciano, Abner Luís Panho

M319a ALIAS: Abstração de Circuitos Analógicos para
Veri�cação de Sistemas Digitais / Abner Luís Panho
Marciano. � Belo Horizonte, 2015

xxii, 62 f. : il. ; 29cm

Dissertação (mestrado) � Universidade Federal de
Minas Gerais � Departamento de Ciência da
Computação

Orientador: Antônio Otávio Fernandes
Coorientador: Claudionor José Nunes Coelho Júnior

1. Computação - Teses. 2. Circuitos Integrados -
Teses. 3. Sistemas Eletrônicos - Teses.
4. Reconhecimento de padrões - Teses. I. Orientador.
II. Coorientador. III. Título.

519.6*17(043)

UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIENCIAS EXA T AS

PROGRAMA DE POS-GRADUA<::AO EM CIENCIA DA COMPUTA<::AO

FOLHA DE APROV A<;AO

ALIAS: analog circuits abstraction for digital systems verification

ABNER LUIS PANHO MARCIANO

Disserta~ao defendida e aprovada pela banca examinadora constitufda pelos Senhores:

/(d~
PROF. ANTONIO OTA V~~NANDES - Orientador

Depar~dO'O~ ; , ~ ~~puta,ao- UFMG

PROF. CLAUDIONOR J;S~HO JUNIOR- Coorientador
Departamento de Ciencia da Computa~ao - UFMG

~~-==~
~~~~ARRO 

De artamento 1e ~GS 

DRA. NDRE IABRUDITAVARES 
Cadence Design Systems 

Belo Horizonte, 10 de abril de 2015. 





Acknowledgments

First, I would like to thank my advisors, Professor Antônio Otávio Fernandes and

Professor Claudionor Nunes Coelho. Without their guidance and patience, this disser-

tation would have been impossible. To Professor Antônio, I would like to thank him

for all the support and mentorship throughout my whole academic life. Without him

I would never have entered the world of digital hardware. To Professor Claudionor, I

thank him for his great teaching, the ideas that drove this work, the discussions, as

well as his sharpness, enthusiasm, attention and encouragement.

I'm deeply thankful to all my colleagues and friends at UFMG and Cadence.

Among these places I learned with only the best. To Andrea Iabrudi and Professor

José Augusto Nacif, my deepest gratitude for their advice, patience and teaching.

Furthermore, to my great friends Caio Campos and Tiago Valadares for their support

during my time at UFMG.

I cannot overstate how grateful I am to my family and friends. Only they know

how much e�ort I've put into this work. Moreover, for never giving up on me.

Finally, and foremost, I would like to thank Bárbara for always bringing me light

and joy. Your care and help when I needed the most will never be forgotten.

I wouldn't have done this if it wasn't for all you. For that, I'm eternally grateful.

ix





�I am always doing that which I cannot do, in order that I may learn how to do it.�

(Pablo Picasso)

xi





Resumo

A crescente demanda por e�ciência em área, consumo de energia e desempenho na in-

dústria de circuitos integrados (CI) alinhada à crescente integração em CIs modernos,

está tornando a tarefa de veri�cação cada vez mais complexa e demorada, consumindo

até 70% do tempo de desenvolvimento de um CI. Dado que em níveis mais altos de

abstração a velocidade de veri�cação é maior, tal esforço tende a se concentrar nos

estágios digitais do �uxo de projeto, onde a maioria das falhas de um CI pode ser

encontrada. Contudo, ao se veri�car CIs em níveis digitais, componentes analógicos

importantes são geralmente ignorados ou vagamente descritos de maneira discreta,

comprometendo, assim, a qualidade do processo de validação. Quando tais compo-

nentes analógicos são incluídos na análise, eles são integrados no processo de veri�cação

através de ambientes híbridos, os quais são lentos e ine�cientes. Sendo assim, dadas

as restrições de tempo usuais de um projeto de CI, a validação usando tal abordagem

híbrida tende a cobrir menos estados do circuito que uma simulação puramente digital.

Dessa forma, visando manter o comportamento de circuitos analógicos no ambiente

de veri�cação, porém, sem o custo de uma veri�cação híbrida, nós apresentamos uma

nova ferramenta, denominada ALIAS (analog logical-intent abstraction synthesizer),

bem como uma nova metodologia para a criação de abstrações puramente digitais de

circuitos analógicos. Para criar tais abstrações, a metologia apresentada descreve uma

série de passos, desde a aquisição de dados e seu processamento até a geração do modelo

digital �nal. Para isso, abordagens já existentes se valem do uso intensivo de métodos

matemáticos e simulações analógicas. Dado que circuitos analógicos a serem integrados

em CIs são geralmente veri�cados de maneira extensiva por pro�ssionais em circuitos

analógicos, nós propomos a reutilização de dados provenientes de tais processos. Além

de delinear o comportamento de um circuito analógico através de uma perspectiva digi-

tal, o ALIAS permite a geração de abstrações com a menor quantidade de intervenção

possível por parte do usuário. Como resultado, utilizando vários circuitos analógicos

comuns, abstrações sintetizadas com ALIAS demonstraram um ganho considerável em

desempenho, bem como um alto nível de precisão. Mais do que isso, as abstrações

xiii



criadas com ALIAS escalaram de maneira linear com o crescimento do tamanho da si-

mulação, enquanto simulações analógicas exibiram uma explosão exponencial no tempo

de execução.

Palavras-chave: Validação de circuitos, Abstração de circuitos analógicos, Veri�cação

de circuitos.

xiv



Abstract

The growing demand for e�ciency in area, energy and high-performance in the in-

tegrated circuit (IC) industry aligned with the crescent integration of modern ICs is

turning the veri�cation process into an even more complex and time-consuming task,

taking up to 70% of the IC development time. Provided the faster validation speeds

of higher abstraction levels, this e�ort tends to be concentrated at the digital stages of

the design �ow, where most IC bugs can be found. Nonetheless, when verifying ICs at

digital levels, important analog components are usually left out or poorly described in

a discrete way, thus compromising validation process quality. Today, when such analog

components are taken into consideration, they are integrated in the veri�cation pro-

cess through slow and ine�cient hybrid veri�cation environments. Therefore, given the

usual IC project time constraints, the validation process using such hybrid approach

tends to cover fewer circuit states than an entirely digital veri�cation. Therein, aiming

to keep analog circuits behavior in the veri�cation environment, but without the cost

of a hybrid setting, we present a novel tool, named ALIAS, short for analog logical-

intent abstraction synthesizer, along with a new methodology for the creation of purely

digital approximations for analog circuits. In order to create such abstractions, the pre-

sented methodology describes a series of steps, from data acquisition and processing

to the generation of the �nal digital model. To do so, existing approaches employ in-

tensive mathematical methods and/or analog simulations. Given that analog circuits

being integrated into ICs are usually intensively veri�ed by analog experts, we propose

reusing simulation data coming from such processes. Aside from outlining the analog

circuit behavior from a digital point of view, ALIAS allows the creation of abstractions

with as little user intervention as possible. As a result, using various common analog

circuits, abstractions synthesized using ALIAS demonstrated signi�cant performance

gains as well as a high level of accuracy. Moreover, ALIAS abstractions scaled linearly

as simulation sizes grew, while analog simulations displayed an exponential blow up in

execution time.

xv



Palavras-chave: Circuit validation, Analog circuit abstraction, Circuit veri�cation.

xvi



List of Figures

1.1 IC Validation abstraction levels and speed1. . . . . . . . . . . . . . . . . . 2

1.2 A high-level view of ALIAS goal of converting an analog circuit X into a

digitized abstraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 A resistor with a resistance of RΩ. . . . . . . . . . . . . . . . . . . . . . . 8

2.2 A capacitor with a capacitance of CF . . . . . . . . . . . . . . . . . . . . . 9

2.3 A simple circuit showing branches (the elements), and its nodes (the inter-

connections), in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 A RC circuit (a) and the equivalent circuit after the switch is closed (b). . 11

3.1 Kurshan and McMillan [1991] state transition diagram model. . . . . . . . 18

3.2 ABCD-NL digital model example for a circuit with 4 DC states. . . . . . 20

4.1 An example of a typical ALIAS use �ow. Dashed lines indicates optional

parts of the �ow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 System modules data �ow. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 An example of space/time discretization of an analog trace, resulting on the

sequence 0, 0, 1, X, 2 for some net p. . . . . . . . . . . . . . . . . . . . . . 23

4.4 An example of sampling analog samples. td is the digital time-step and ta

the analog time-step. On the example, td = 4 ∗ ta. . . . . . . . . . . . . . 24

4.5 RC delay line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.6 RC delay line SPICE simulation trace showing sampled data (a) and de-

tailed sampling sections at 20ns (b) and 40ns (c). . . . . . . . . . . . . . . 25

4.7 RC delay line samples (a) in the format (din, dout) and digitized trace (b)

from Figure 4.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.8 DTDF storage organization scheme. On the �gure, 1 ≤ k ≤ i ≤ j ≤ n. . . 28

4.9 A simple trace as list of state tuples. . . . . . . . . . . . . . . . . . . . . . 29

4.10 RC delay line Example 4.3.1. . . . . . . . . . . . . . . . . . . . . . . . . . 32

xvii



4.11 RC delay line samples (a) in the format (din, dout) and labeled digitized trace

(b) from Example 4.3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.12 Con�guration of simple automata2As. . . . . . . . . . . . . . . . . . . . . 34

4.13 Simple automaton model for Example 4.5.5 language L′. . . . . . . . . . . 34

4.14 Con�guration of automaton in parallel3Ap. . . . . . . . . . . . . . . . . . 36

4.15 Parallel automaton model for Example 4.5.5 language L′. . . . . . . . . . . 36

4.16 DOT diagrams for (a) Example 4.6.1 and (b) Example 4.6.2 automaton.

Di�erent edges and nodes between representations in red. . . . . . . . . . 40

5.1 RC delay line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 RC repeating L tests speed (a) plain and (b) logarithmic scale charts,

demonstrating analog simulations exponential trend and the linear behavior

of digital only simulations using ALIAS abstractions (simple and parallel). 46

5.3 RC random tests speed (a) plain and (b) logarithmic scale charts, demon-

strating analog simulations exponential trend and the linear behavior of

digital only simulations using ALIAS abstractions (simple and parallel). . 47

5.4 Analog integrator circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5 Integrator SPICE simple simulation trace. . . . . . . . . . . . . . . . . . . 48

5.6 Integrator SPICE simple simulation trace showing sampled data. . . . . . 49

5.7 Integrator repeating L tests speed (a) plain and (b) logarithmic scale charts,

demonstrating analog simulations exponential trend and the linear behavior

of digital only simulations using ALIAS abstractions (simple and parallel). 50

5.8 Integrator random tests comparing ALIAS abstractions (simple and paral-

lel) quality with the amount of scenarios used to create the abstractions for

simulations of 1000L sampling points. . . . . . . . . . . . . . . . . . . . . 51

5.9 Typical analog comparator topology. . . . . . . . . . . . . . . . . . . . . . 52

5.10 Typical PLL-based synchronizer topology. . . . . . . . . . . . . . . . . . . 53

5.11 DAC and ADC (a) typical topology and (b) topology used for tests. . . . 54

xviii



List of Tables

3.1 Comparison of AMS abstraction approaches . . . . . . . . . . . . . . . . . 20

5.1 RC repeating L tests speed comparison between an analog simulation and

digital only simulation using ALIAS abstractions (simple and parallel). . . 45

5.2 Quality ratios for RC repeating L tests over ALIAS abstractions (simple

and parallel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 RC random tests speed comparison between an analog simulation and digi-

tal only simulation using ALIAS abstractions (simple and parallel). . . . . 47

5.4 Quality ratios for RC random tests over ALIAS abstractions (simple and

parallel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5 Integrator repeating L tests speed comparison between an analog simulation

and digital only simulation using ALIAS abstractions (simple and parallel). 50

5.6 Integrator random tests comparing ALIAS abstractions (simple and paral-

lel) quality with the amount of scenarios used to create the abstractions for

simulations of 1000L sampling points. . . . . . . . . . . . . . . . . . . . . 52

5.7 PLL synchronizer basic 103 periods simulations speed comparison between

an analog simulation and digital only simulation using ALIAS abstractions

(simple and parallel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.8 Quality ratios for PLL synchronizer 103 periods simulation tests over ALIAS

abstractions (simple and parallel). . . . . . . . . . . . . . . . . . . . . . . 54

xix





Contents

Acknowledgments ix

Resumo xiii

Abstract xv

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Text Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7

2.1 Electronic circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Circuit elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Circuit networks . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Circuit dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Discrete Math Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Formal languages . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Related Work 17

4 System Architecture 21

4.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 A walkthrough of ALIAS . . . . . . . . . . . . . . . . . . . . . . . . . . 22

xxi



4.3 Frontend: Analog Waveform Trace Processor (AWTP) . . . . . . . . . 23

4.4 Discrete Trace Database (DTD) . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Synthesis Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.6 Backend: Model compiler . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6.1 Automaton models . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6.2 DOT diagrams compilation . . . . . . . . . . . . . . . . . . . . 38

4.6.3 Verilog models compilation . . . . . . . . . . . . . . . . . . . . . 38

5 Case studies 43

5.1 RC delay line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Analog comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 DAC and ADC converters . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Conclusions 57

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.1 Automata history and transition improvements mechanisms . . 58

6.2.2 Segment Boundary Inference . . . . . . . . . . . . . . . . . . . . 58

6.2.3 Recognition of Common Data Patterns . . . . . . . . . . . . . . 58

6.2.4 Data and control signals handling . . . . . . . . . . . . . . . . . 58

6.2.5 Formal veri�cation . . . . . . . . . . . . . . . . . . . . . . . . . 58

Bibliography 59

xxii



Chapter 1

Introduction

The growing demand for e�ciency in area, energy and high-performance on the in-

tegrated circuit (IC) industry lead to the integration of several circuits in fewer or,

ideally, a single chip [Jaeger, 1987]. Following this trend, real modern application ICs

are usually composed by several analog and digital sub-circuits, for what they are

denominated mixed-signal systems (MSS).

As the circuit complexity escalates, IC veri�cation is getting more and more

complex, and can take up to 70% of the development time [Barke et al., 2009]. The

main established techniques for verifying circuits are divided among emulation, formal

veri�cation and simulation based methods, from which simulation is still the main

motor and standard in IC veri�cation [Stroud et al., 2009].

As depicted by Figure 1.1, IC veri�cation can be performed at several levels of

abstraction, ranging from high-level models to low-level models. Taking simulation as

basis, the more abstract, the faster the circuit under test can be veri�ed, as shown in

Figure 1.1. On this line of thinking, although less precise, as most bugs can be found

at higher abstraction levels [Kularatna and Kyung, 2008], veri�cation tends to be more

concentrated at the digital stages of the design �ow, going from higher abstraction

levels to lower ones.

Validation of digital circuits has several advantages over analog or mixed-signal

(AMS) circuits, such as faster veri�cation environments, including powerful ASIC emu-

lation and prototyping platforms, and, more importantly, all advantages of the discrete

domain. Aligned to highly automated digital design �ows, and the less sensitivity to

electrical noise, modern ICs are composed by from 50% to 90% of digital blocks [Chen

et al., 2012]. Taking up to half of a modern IC, AMS sub-circuits are one of the most

problematic blocks [Liberali et al., 2002], which justi�es the actively growing literature

1Based on [Rashinkar et al., 2000].

1



2 Chapter 1. Introduction

System Level
(HDL, C++, C)

Register Transfer 
Level (RTL)

Gate Level

Analog Level 
(Switch/Transistor) 

Digital Design

Behavioral Level
(Analog HDL)

Analog Design

Functional Level

Primitive Level

+

-

Level of
Abstraction

+

-

Speed

Figure 1.1: IC Validation abstraction levels and speed1.

[Karthik et al., 2014; Karthik and Roychowdhury, 2013; Aadithya and Roychowdhury,

2012; Steinhorst and Hedrich, 2008; Hartong et al., 2002; Asarin et al., 2001; Silva and

Krogh, 2000; Henzinger et al., 1997; Kurshan and McMillan, 1991] on the �eld. How-

ever, little has been done to aid digital circuit engineers on verifying the integration of

their digital blocks with AMS ones. The problem deepens with common factors on the

IC industry, ranging from enormous AMS netlists to poor block descriptions. It gets

even more problematic as usually both analog and digital parts are intensively veri�ed

on completely di�erent abstraction levels.

As veri�cation is focused on higher levels of abstraction for digital circuits, to

verify such digital components, the interface of AMS circuits is treated as digital. For

that, either slow and complex hybrid simulation techniques [Ghasemi and Navabi, 2005;

Rashinkar et al., 2000; El Tahawy et al., 1993], which simulates both digital and analog

circuits at the same time, or digital simpli�cations of the AMS sub-circuit are employed.

As digital simpli�cations tends to be far faster than also simulating an analog circuit,

to create such simpli�cation one should analyze the analog circuit. As digital engineers

are usually specialized in the digital domain, most have few or no knowledge in analog

design, thus, it is common to have poor simpli�cations, omitting several details that

should have been taken into account in a digital environment [Semiconductor Research



1.1. Goals 3

Corporation, 2008].

Most digital circuits are synchronous, that is, they depend on periodic clock

signals to coordinate its actions. Nevertheless, digital circuits still need to synchronize

with the outside world, which is inherently analog. To perform this bridge between

digital portions of an IC and the outside world, analog circuits are employed. Analog

circuits are dynamic systems that update its outputs upon changes on its input signals

and internal components behavior. Therein, the core idea of this work is to create

synchronous digital simpli�cations of analog circuits, allowing such abstractions to be

paired with any digital interfacing block.

Instead of creating models directly from di�erential equations, as in [Kurshan

and McMillan, 1991; Hartong et al., 2002; Steinhorst and Hedrich, 2008; Karthik and

Roychowdhury, 2013], we propose a simulation based approach, as done by [Aadithya

and Roychowdhury, 2012; Karthik et al., 2014]. Moreover, as analog blocks are inten-

sively veri�ed at an analog level [Rashinkar et al., 2000], an analog engineer perform

several tests, being analog simulations one of the main techniques and products of

that work. Thus, as a circuit's most relevant behaviors are usually exercised during

analog veri�cation and aiming to reuse these results, di�erently from [Aadithya and

Roychowdhury, 2012; Karthik et al., 2014], and to avoid extra computational time, we

propose the creation of such abstractions based on preexisting analog simulations.

1.1 Goals

With this work we aim to create a new methodology for verifying digital circuits in the

presence of the nearest approximation possible to an analog circuit, targeting perfor-

mance as well as a reasonable level of accuracy. In essence, this methodology consists

on a series of steps to bring the analog behavior of a circuit into the digital world, which

can be used from a system-level model to the gate-level phase of the IC development

�ow.

Using the proposed methodology, analog circuits interfacing with a digital circuit

under test are replaced by automated digital simpli�cations created with as little as

possible user intervention. To further enable this project, we design and implement

a system, called ALIAS, short for analog logical-intent abstraction synthesizer, that,

as illustrated by Figure 1.2, allow the creation of such abstractions and, on the other

hand, also enables the user to understand the underlying analog circuit behavior, from

a digital perspective. Finally, we target to verify the proposed solution against the

metrics of speed, complexity and quality.



4 Chapter 1. Introduction

+
-

Inputs Outputs

Analog Circuit

Inputs Outputs

Digitized Circuit

+

ALIAS

Analog
Circuit

X

Digital
Circuit
B

Digital
Circuit
A

Analog
Digitized
Circuit

X

Digital
Circuit
B

Digital
Circuit
A

Figure 1.2: A high-level view of ALIAS goal of converting an analog circuit X into a
digitized abstraction.

To complement that, we pursue the following secondary objectives:

• Implement an algorithm to extract an automata that mimics the behavior of an

analog system based on its observed behavior;

• Convert the created automata into HDL language models;

• Create a testbench of common analog designs and possible digital counter-parts.

1.2 Contributions

With this work we add a powerful methodology and tool to aid digital engineers on

testing digital systems along with analog ones. By outlining an analog circuit behavior

from a digital perspective, digital engineers can better understand a block and focus

their tests. Also, this will further enable digital engineers on �nding bugs earlier in the

IC development �ow, reducing the costs of the project and time-to-market.

Aside from demanding little user intervention, ALIAS doesn't require running any

new analog simulations by reusing already existing tests performed by analog engineers.

More importantly, the abstractions synthesized presented signi�cant performance gains

as well as a reasonable level of accuracy on several scenarios and circuit types, specially

when compared to an analog simulator.



1.3. Text Organization 5

1.3 Text Organization

This dissertation is organized as follows: Chapter 2 presents a brief description of the

theory behind analog circuits as well as key discrete math concepts used throughout

this work.

Chapter 3 presents the state-of-art of AMS circuit abstraction and validation,

summarizing their di�erences against this work's proposed approach.

Chapter 4 starts by showing an overview of the proposed methodology as a sys-

tem. Next, each module composing the system is detailed and exempli�ed.

Then, experimental results are presented on Chapter 5 comparing speed, com-

plexity and quality of the produced models for several circuit types.

Finally, conclusions, limitations and future work are discussed and detailed at

Chapter 6.





Chapter 2

Background

2.1 Electronic circuits

As de�ned by Alexander and Sadiku [2008], an electric circuit is an interconnection

of electrical elements through conducting wires. These elements includes capacitors,

inductors, resistors, voltage supplies, current supplies, transistors, diodes and so on.

To understand the electrical phenomena, we start with some basic concepts, in-

cluding charge, current and voltage. We then introduce some basic circuit elements

as well as further laws and concepts required to understand the analyzed circuits'

dynamics.

For the sake of brevity, this chapter aims to cover just the required theory to

understand examples used throughout this text. Thus, we only focus on electrical

circuits that can be directly modeled into linear time-invariant (LTI) systems1, as

de�ned in De�nition 2.1.1. The interested reader should refer to [Horowitz and Hill,

2006], as a electronic design reference, [Alexander and Sadiku, 2008] for circuit analysis

and dynamics, and [Friedland, 2012] for linear and time-invariant systems modeling.

De�nition 2.1.1. Let x be an electric circuit signal and its value over time t, de�ned

by a function x(t). Therein, a system is then classi�ed as linear if given any two input

signals x1(t) and x2(t) producing, respectively, outputs y1(t) and y2(t), for any constant

γ then the input signal γx1(t) + γx2(t) generates γy1(t) + γy2(t). A system is said to

be time-invariant if for any δ ∈ R, the time-shifted input x(t− δ) produces the output
y(t − δ). A system that is both linear and time-invariant is denominated as a linear

time-invariant (LTI) system.

1Elements such as capacitors, inductors, resistors, voltage and current supplies are LTI, and circuits
formed with just these elements are LTI systems as well. However, components like transistors and
diodes are non-LTI, as systems using such elements.

7



8 Chapter 2. Background

2.1.1 Basic concepts

The electric charge is one of the most basic properties of matter. In a simple way, the

electric charge measures in a quantized way the extent to which an object has more or

fewer protons than electrons. Measured by the International System of Units (SI) in

Coulombs (C), an electron, is known the have a negative charge of e = −1.602 ∗ 10−19,

and a proton, a positive charge to the same amount as the electron of p = 1.602∗10−19.

The �ow of electric charges in an object, or the charge change rate over time,

is known as electric current. The relation between the electric current i, measured in

amperes (A) in the SI, charge q and time t (in seconds), can be expressed as:

i =
dq

dt
(2.1)

Thus, it gets evident that:

1A = 1
C

s

However, for a electron to move it needs energy, in the form of work. The work

w, measured in Joules (J), done per unit of charge to move it from a point a to a

point b is known as voltage. Measured in volts (V ) on the SI, it can be mathematically

expressed as:

vab =
dw

dq
(2.2)

It is also clear that:

1V = 1
J

C

2.1.2 Circuit elements

There are two types of elements in an electric circuit. The �rst, know as active ele-

ments, are capable of generating energy, such as a battery. On the other hand, passive

elements, like resistors, capacitors and inductors, are not.

R

Figure 2.1: A resistor with a resistance of RΩ.

Resistors, as shown in 2.1, are elements able to resist the �ow of electric current.

Per Ohm's law [Alexander and Sadiku, 2008], in the presence of such elements, the



2.1. Electronic circuits 9

voltage v is directly proportional to the electric current �ow i, being the constant of

proportionality, the resistance, R, measured in ohms (Ω). Mathematically speaking:

v = iR⇒ R = vi (2.3)

Thereafter,

1Ω = 1
V

A

C

Figure 2.2: A capacitor with a capacitance of CF .

A capacitor, shown in Figure 2.2, according to Alexander and Sadiku [2008], is

a passive element designed to store energy using an electric �eld. For that, two con-

ducting plates separated by an insulator. When a voltage v is applied to the capacitor

plates, a positive charge q is deposited in one place and −q in the other plate. The

amount of charge stored q is directly proportional to the applied voltage v, being the

constant of proportionality, the capacitance, C, measured in farads (F ). Thus, we

have:

q = Cv (2.4)

Thereafter,

1F = 1
C

V

Di�erentiating both sides of Equation 2.4 with regard to t, we have:

dq

qt
= C

dv

dt
⇒ i = C

dv

dt
(2.5)

2.1.3 Circuit networks

As introduced circuit is an interconnection of elements, forming networks. An electrical

element, such as a resistor or voltage supply, de�nes a branch, while the connections

between branches, de�nes a node.

Although key, Ohm's law it not su�cient to work on complex circuit network

topologies. Thus, two laws play an important role when analyzing such networks:

Kirchho�'s current law (KCL) and Kirchho�'s voltage law (KVL).



10 Chapter 2. Background

Nodes+
-

Voltage 
supply

Figure 2.3: A simple circuit showing branches (the elements), and its nodes (the inter-
connections), in blue.

KCL bases on the charge conservation on a electrical system, and states that

the algebraic sum of currents I entering (or leaving) a node is zero. Thus, given the

number M of branches and that im is the mth current reaching that node, we have:

I =
M∑

m=1

im = 0 (2.6)

The last law, KVL, states that given a path in a circuit that starts at a node and

ends up on the same node without repeating any node in the path, the algebraic sum

V of all voltages in that path is zero. With vn the nth voltage from in the path, N the

amount of branches in the path, we have:

V =
N∑

n=1

vn = 0 (2.7)

2.1.4 Circuit dynamics

Over-time, it is possible to describe a circuit's behavior per its current or voltage,

depending on the analysis point of view. For that end, the system elements intercon-

nection points, known as nodes, are taken as basis and its behavior describing equations

combined, forming a system of di�erential equations, which usually can be converted

to a system of simpler di�erential equations, known as ordinary di�erential equations

(ODEs).

Example 2.1.1. In the circuit example from Figure 2.3, a switch is closed at t = 0, after

which the circuit capacitor starts charging.



2.1. Electronic circuits 11

+
-

t = 0

Vs

(a)

+
-

V  s u(t)  

(b)

Figure 2.4: A RC circuit (a) and the equivalent circuit after the switch is closed (b).

The switch behavior can be modeled with the step function2:

u(t) =

{
0 if t < 0

1 if t > 0
(2.8)

Assuming an initial voltage V0 on the capacitor, since the capacitor cannot charge immediately,

right after the switch is closed the voltage on the capacitor will still be V0. Per KCL, the sum

of currents leaving the system top node is 0, therefore:

iC + iR = 0 (2.9)

Thus,

C
dv

dt
+
v − Vsu(t)

R
= 0

dv

dt
+

v

RC
=

Vs
RC

u(t) (2.10)

2For more on step functions, refer to Alexander and Sadiku [2008].



12 Chapter 2. Background

With v being the voltage across the capacitor. For t > 0 we have:

dv

dt
+

v

RC
=

Vs
RC

dv

dt
= −v − Vs

RC

dv

v − Vs
= − dt

RC
(2.11)

Integrating on both sides,

ln(v − Vs)
∣∣∣∣v(t)

V0

= − t

RC

∣∣∣∣t
0

ln(v − Vs)− ln(V0 − Vs) = − t

RC
+ 0

ln
v − Vs
V0 − Vs

= − t

RC
(2.12)

Taking the exponential on both sides,

v − Vs
V0 − Vs

= e−
t

RC

v − Vs = (V0 − Vs)e−
t

RC (2.13)

And, as by v we mean v(t),

v(t) = Vs + (V0 − Vs)e−
t

RC , t > 0 (2.14)

Finally,

v(t) =

{
V0 if t < 0

Vs + (V0 − Vs)e−
t

RC if t > 0
(2.15)

This equation, known as a �rst-order di�erential equation, a form of an ordinary di�erential

equation (ODE), describes the circuit behavior with regard to the voltage change rate over

time.



2.2. Discrete Math Concepts 13

2.2 Discrete Math Concepts

The sole purpose of this section is to introduce the reader to some basic discrete math

concepts, from the de�nition of an element to collections of elements and operations

and properties of these collections. Finally, using the concepts already presented, we

de�ne a formal language.

2.2.1 Fundamentals

Let us start with a standard de�nition of an element, which can be understood as an

arbitrary unit of data, such as numbers, words, texts, and images.

Example 2.2.1. The word �earth�, the number 7, the phrase �this is a phrase�, all numbers

in C, the formula �e = mc2�, the random arrangement of characters �Barbara Marques� are

all valid examples of elements.

To represent a collection of elements, we de�ne its elementar containers � tuple,

list and set � and the operations to be used over them.

De�nition 2.2.1. Let T = (e1, · · · , en) denote a tuple, an immutable �nite group com-

posed by n elements, which, for any two tuples A = (a1, · · · , an) and B = (b1, · · · , bm):

• Ai refers to the i-th element from A, that is Ai = ai;

• |A| denote the number elements in A;

• the order that elements are layed out matters, that is, a tuple A is equal to a

tuple B, as long as |A| = |B| and Ai = Bi, 1 ≤ i ≤ |A|.

Example 2.2.2. Given the tuples A = (1, �abc�, 3.0), B = (3.0, �abc�, 1), C = (1, �abc�, 3.0)

and D = ((3.0, �abc�, 1), 1), we have:

• |A| = 3, |B| = 3, |C| = 3 and |D| = 2.

• A1 = 1, B2 = �abc�, D1 = (3.0, �abc�, 1);

• As D1 is also a tuple, |D1| = 3;

• A = C and B = D1

• A 6= B, A 6= D, B 6= C, B 6= D and C 6= D;

• For E = D1, E1 = 3.0.



14 Chapter 2. Background

De�nition 2.2.2. Let L = [e1, · · · , en] denote a list, a mutable �nite sequence of n

elements. For any two lists A = [a1, · · · , an] and B = [b1, · · · , bm]:

• Ai refers to the i-th element from A, that is Ai = ai;

• |A| denote the number elements in A;

• the order elements are layed out matters, that is, a list A is equal to a list B, as

long as |A| = |B| and Ai = Bi, 1 ≤ i ≤ |A|;

• the concatenation of A and B as C = AB = [A1, · · · , An, B1, · · · , Bn];

Example 2.2.3. Given the lists A = [1, (�abc�, 3.0), 2i], B = [2i, (�abc�, 3.0), 1], C =

[1, 2i, (�abc�, 3.0)] and D = [[(2i, �abc�, 3.0), 1], 1], we have:

• |A| = 2, |B| = 2, |C| = 2 and |D| = 2;

• A1 = 1, B1 = 2i, C3 = (�abc�, 3.0) and D1 = [(2i, �abc�, 3.0), 1];

• As D1 is also a list, |D1| = 2;

• A 6= B, A = C, A 6= D, A 6= D1, B 6= C, B 6= D, B = D1, C 6= D and C 6= D1;

• For E = D1, E1 = (2i, �abc�, 3.0);

• AC = [1, (�abc�, 3.0), 2i, 1, 2i, (�abc�, 3.0)], CD1 = [1, 2i, (�abc�, 3.0), 2i, (�abc�, 3.0), 1].

De�nition 2.2.3. Let L = {e1, · · · , en} denote a set, a mutable unordered �nite group
of n elements, which, for any two sets A = {a1, · · · , an} and B = {b1, · · · , bm}:

• |A| denote the number elements in A;

• the order elements are layed out does not matter, that is, a set A is equal to a

set B, as long as both sets contains the same elements, that is, A ∩B = A = B;

• a set A can only equal to a set B if |A| = |B| and ∀a ∈ A, a ∈ B and ∀b ∈ B, b ∈
A, meaning that the order is not relevant when comparing two sets;

• C = A ∩B = {e | e ∈ A and e ∈ B};

• C = A ∪B = {e | e ∈ A or e ∈ B}.

Example 2.2.4. Given the sets A = {(1.0,−1.0), [�abc�, 3.0], 2i}, B =

{2i, [�abc�, 3.0], (1.0,−1.0)}, C = {(1.0,−1.0), 2i, [�abc�, 3.0]} and D =

{{(�abc�, 3.0), (1.0,−1.0), 2i}, 1}, we have:

• |A| = 3, |B| = 3, |C| = 3 and |D| = 2;



2.2. Discrete Math Concepts 15

• A = B, A = C, A 6= D, B = C, B 6= D and C 6= D;

• A ∪ C = {(1.0,−1.0), [�abc�, 3.0], 2i},
C ∪D = {2i, [�abc�, 3.0], (1.0,−1.0), {(�abc�, 3.0), (1.0,−1.0), 2i}};

• A ∩ C = {(1.0,−1.0), [�abc�, 3.0], 2i},
C ∩D = {}.

2.2.2 Formal languages

We de�ne a language as follows:

De�nition 2.2.4. Let L = (Σ, λ,Γ,Ψ) be a standard de�nition of a language and its

algebra:

• A symbol is an arbitrary item, named after a glyph, such as a letter or a number;

• An alphabet Σ is a non-empty collection of symbols;

• A string is an arbitrary �nite concatenation of symbols from Σ;

• A language L is a set of strings over an alphabet Σ;

• The empty string, denoted by λ, is a string containing zero symbols (|λ| = 0);

• The set of all strings over Σ is Σ∗, thus, for any language L over Σ, L ⊆ Σ∗;

• Γ is the set of string operators, which, for any two strings x and y, is:

� The concatenation of two strings x = x1 · · · xm and y = y1 · · · yn is de�ned

by xy = x1 · · ·xmy1 · · · yn;

� The repetition of a string x for n times as w = xn =

n times︷ ︸︸ ︷
xx · · · xx, with x0 = λ.

• Ψ the set of language operators, which, for any two languages L1 over Σ1 and L2

over Σ2, is:

� L = L1 ∪ L2 a language over Σ1 ∪ Σ2 composed by strings in L1 or L2;

� L = L1 ∩ L2 a language over Σ1 ∩ Σ2 composed by strings in L1 and L2;

� L = L1 − L2 a language over Σ1 composed by strings in L1 and not in L2;

� The concatenation of two languages, as L = L1L2 = {xy | x ∈ L1, y ∈ L2};

� The consecutive concatenation of a language L for n times as Ln =
n times︷ ︸︸ ︷

LL · · ·LL, with L0 = {λ};



16 Chapter 2. Background

� The Kleene closure over L as L∗ =
⋃
n∈N

Ln;

� The positive Kleene closure over L as L+ = L∗ − {λ}.

Example 2.2.5. After De�nition 2.2.4, let the symbols a, b, c, d, e, f , g, h form the alphabets

Σ1 = {a, b, e, f} and Σ2 = {c, d, e, g, h}. Thus, aba, fae, bf and ee are strings over Σ1 and

cd, chdg, ee and λ strings over Σ2. From these strings, L1 = {aba, fae, bf, ee} is a language

over Σ1 and L2 = {cd, chdg, ee, λ} a language over Σ2.

Thus, for the language operations Ψ we would have:

• L3 = L1 ∪ L2 = {aba, fae, bf, cd, chdg, ee, λ} over Σ3 = Σ1 ∪ Σ2 = {a, b, c, d, e, f, g, h};

• L4 = L1 ∩ L2 = {ee} over Σ4 = Σ1 ∩ Σ2 = {e};

• L5 = L1 − L2 = {aba, fae, bf} over Σ1, and L6 = L2 − L1 = {cd, chdg, λ} over Σ2;

• L7 = L4L5 = {eeaba, eefae, eebf} over Σ5 = {a, b, e, f}, and L8 = L6L4 =

{cdee, chdgee, ee} over Σ6 = {c, d, e, g, h};

• L9 = L4
0 = {λ},

L10 = L4
1 = {ee},

L11 = L4
2 = {eeee}

L12 = L4
3 = {eeeeee}

L13 = L4
4 = {eeeeeeee}

and L4
5 = {eeeeeeeeee}, all over Σ2;

• L14 = L4
∗ = {λ, ee, eeee, eeeeee, eeeeeeee, · · · } over Σ2;

• L15 = L4
+ = {ee, eeee, eeeeee, eeeeeeee, · · · } over Σ2.



Chapter 3

Related Work

Dominated by digital logic, the increasing complexity of modern ICs fostered the cre-

ation of new and faster methods on verifying a circuit, including, but not limited to,

formal veri�cation methods, equivalence checking, and emulation and co-simulation

environments [Stroud et al., 2009; Rashinkar et al., 2000]. Aside from enhancing the

veri�cation environment itself, automatic ways on detecting and synthesizing high-

level models for digital circuits based on pre-existing simulation data have been pro-

posed. Inferno [Isaksen and Bertacco, 2006] generates high-level transition models and

SystemVerilog Assertions (SVA) [IEEE, 2013] properties by detecting transactions on

digital simulation waveforms. Also using digital simulation data, newer tools, like Gold-

Mine [Vasudevan et al., 2010], employs data mining and pattern matching algorithms

to synthesize SVA properties.

In spite of all new methods and improvements in the analog world, the speed gap

between analog and digital veri�cation is still signi�cant, driving the research for new

ways on creating high-level models of analog circuits.

Kurshan and McMillan [1991] proposed a semi-algorithmic way of constructing

high-level state machines that preserves the analog behavior of an analog circuit. For

that, the system is initially modeled after a network of voltage-variant current and volt-

age sources and capacitances. The circuit state is a vector of voltages x = {x0, · · · , xn}
describing the voltage of each node in the nework, with the exception of circuit inputs

and nodes controlled by independent voltage sources, which are grouped in a vector

y = {y1, · · · , ym}. The system dynamics over time (t) is then modelled after ordi-

nary di�erential equations (ODEs). As all systems taken into consideration by the

author only handles currents in each element of the system that are either monotonic

non-increasing or monotonic non-decreasing, given upper and lower bound values for

y elements, one can calculate upper and lower bound values for x by solving the sys-

17



18 Chapter 3. Related Work

tem ODEs. Given a ∆(t) small enough to capture the system dynamics and value

bounds/ranges for mapping xi ∈ x into an alphabet Σ = {0, 1, X}, with X represent-

ing an error/illegal state, it is possible to create a discrete automata that describes the

circuit behavior, as depicted by Figure 3.1, in the form of a n-dimention space state

transition diagram. With this model, the high-level system can be veri�ed against a

set of properties, which are encoded as automatas that recognizes the analog discrete

model alphabet Σ.

5ΔV

4ΔV

3ΔV

2ΔV

1ΔV

0
5ΔV4ΔV3ΔV2ΔV1ΔV

x1

x2

Figure 3.1: Kurshan and McMillan [1991] state transition diagram model.

Although promising, this method have a limitation on the circuit elements electri-

cal current behavior, which limits the amount of circuits that the system can support.

Also, it demands a high level of user intervention, as one needs to set and de�ne the

bounds of all x and y elements, as well as solving the system ODEs.

On a di�erent approach from Kurshan and McMillan [1991] and similar ap-

proaches [Steinhorst and Hedrich, 2008; Hartong et al., 2002], Aadithya and Roy-

chowdhury [2012] introduced DAE2FSM, an incremental learning technique, based on

the L* algorithm [Angluin, 1987], to create FSMs for analog circuits based on the ex-

ecution of SPICE [Nagel and Pederson, 1973] simulations. The algorithm is composed

by two main modules, the learner and the teacher, both con�gured with the same

input and output alphabets. The learner module is purely discrete, while the teacher

has access to the analog circuit SPICE netlist, a SPICE simulator and rules to convert

from analog sequences to output symbols, and from input symbols to analog sequences.

The learner holds a table T describing system transitions based on the input/output

alphabets. To populate it, the learner asks the teacher for the output symbols for a

given input sequence. As T is populated by the learner, T is veri�ed for inconsistencies.

Once an inconsistency is found, the table grows multiplicatively in regard to the input

alphabet size, and the remaining new entries gets populated, when T will be checked



19

again for inconsistencies. If no inconsistencies are found, it will check with the teacher

if T is correct, which then execute SPICE simulations to verify it. If T is not sane,

T grows proportionally to the number of wrong entries. Aside from the fact that the

teacher is a SPICE simulation intensive module, the main downside of this technique

is that it is exponential in size and space, as at each inconsistency found, T grows at

a multiplicative rate.

To avoid DAE2FSM's explicit state-enumetation, Karthik and Roychowdhury

[2013] presented a tool, named ABCD-L, to create digital models of linear-only analog

circuits based on the circuit netlist alone. For that, the system is speci�ed or converted

to an ODE, which is then converted to a form where it can be solved analytically. The

key idea behind this technique is to express the analytical solution to such equations

through digital logic. The �rst composing elements of these equations, the state of

the circuit nodes, are modeled into selectable precision (in number of bits) logic units

(LUs), which contains only counters and registers to evaluate its correspondent ODE

equation in its analytical form. The system then combines the LU's results in a purely

combinational manner, yielding in the circuit outputs.

While ABCD-L handles well linear systems, ignoring the intensive use of mathe-

matical methods to model the system as an ODE and convert the ODEs into boolean

models, ABCD-L still lacked support to non-linear systems, which is the case of many

common AMS circuits. To �ll this gap, Karthik et al. [2014] introduced ABCD-NL,

which has all the bene�ts of the digital models of ABCD-L and can handle several non-

linear systems. As in ABCD-L, ABCD-NL digital model represents the circuit's input

and outputs using a �nite number of bits. The model core states, named DC states,

are associated with all circuit inputs discretized combinations. To capture the ana-

log circuit transient behavior, the system executes SPICE simulations for each pair of

DC states, which are then analyzed to create additional states, called transient states,

that model the circuit transient behavior, as illustrated by Figure 3.2. The number

of such states will depend on how long the model takes to transition from one DC

point to another and in the number of non-input and non-output signals taken into

account by the system. After this base model is created, all state transitions related

to DC nodes are de�ned, and the system can now determine the remaining arcs for

transient states based on a interpolation-based heuristic. At mere 2x speedups against

a high-performance industrial analog simulator, the generated model performance is

still far from digital simulation performance, as it is exponential in size with regard to

the number of inputs and outputs of the system.

Given an arbitrary circuit, with x being the set of circuit element states, y the

set of circuit inputs, Table 3.1 presents a comparison between the presented art and



20 Chapter 3. Related Work

Figure 3.2: ABCD-NL digital model example for a circuit with 4 DC states.

Approach Model Size Circuit compatibility
Synthesis
Method

Kurshan and
McMillan [1991]

O(∆V |x|)
Linear and non-linear
systems1

Mathematical

DAE2FSM Exponential Digitized analog2
On-demand SPICE
simulations

ABCD-L O(∆V ∗ |x|) Linear systems Mathematical

ABCD-NL Ω(∆V |y|)
Linear and non-linear
systems

On-demand SPICE
simulations

ALIAS
O(K ∗∆V ∗ |y|),
constant3 K

Linear and non-linear
systems

Pre-existing SPICE
simulations

1 Monotonic increasing/decreasing only ODEs.
2 Tested only against analog circuits with near digital behavior.
3 K is the largest string size from an automata, as detailed on Chapter 4.

Table 3.1: Comparison of AMS abstraction approaches

this work's proposed approach. As summarized by Table 3.1, although much research

has been done on the �eld, most current approaches still lack on either performance

or circuit compatibility. More, little concern has been directed towards the model

synthesis speed, relying on heavy mathematical computations or intensive SPICE sim-

ulations. Our approach adresses these problems, as from the premisse that

the analog circuit designer employed a reasonable amount of e�ort during

veri�cation, we can then assume that the existing simulation data already

covers a portion of circuit states that allows the creation of a high qual-

ity approximation, thus providing a compatible, fast, convenient and yet accurate

methodology.



Chapter 4

System Architecture

4.1 System Overview

As previously exposed, we propose a SPICE simulation based approach for building

digital simpli�cations of analog circuits. For that, we aiming to avoid extra computa-

tional time, we reuse SPICE simulation data produced during the veri�cation phase of

the targeted analog circuit.

The core idea of the system on creating abstractions comes from the observation

that some electronic systems usually start at an idle state, until they are signaled to

perform an action, to then perform it and settle back in an idle state. On digital

circuits this is usually the case for transaction-based systems, as shown in [Isaksen

and Bertacco, 2006], which presents a way of detecting transactions based on this

characteristic. This same pattern can also be observed in several analog circuits used in

ICs, from delay chains to PLLs. We thus map Isaksen and Bertacco [2006] transaction

extraction ideas as a way of capturing and reproducing the behavior of analog circuits.

SPICE 
Netlist

Simulation
Vectors

SPICE
Simulator ALIAS

A/D 
conversion 

rules

Abstract 
Model

Simulation 
Traces

Figure 4.1: An example of a typical ALIAS use �ow. Dashed lines indicates optional
parts of the �ow.

21



22 Chapter 4. System Architecture

As depicted by Figure 4.1, a typical use-�ow of the presented technique would

start with ALIAS (analog logical-intent abstraction synthesizer) reading in simulation

results (waveforms) and a set of user-speci�ed rules to discretize the waveforms, process

them and result on an abstract model in the form of a Verilog or a DOT format �le.

Optionally, if analog waveforms are not available, then this set of steps would be

preceded by SPICE simulations of the analog block to be abstracted against a set of

input stimuli.

4.2 A walkthrough of ALIAS

A/D 
conversion 

rules

ALIAS

Frontend Compressed 
Digitized Traces

Database

Synthesis 
Engine

Abstract 
Model Backend

Verilog
Model

Simulation 
Traces

DOT
Diagram

Figure 4.2: System modules data �ow.

Architecturally speaking, the system is divided into four main components: Fron-

tend, Discrete Trace Database, Synthesis Engine and Backend. The data �ow

among these components is illustrated by Figure 4.2.

Starting at the Frontend, or Analog Waveform Trace Processor (AWTP), a set of

analog waveforms is input to the system along with a speci�cation on how to discretize

in space and time analog data.

As digital data is produced by the AWTP, the Discrete Trace Database (DTD),

streams this data in and stores it along a description of all nets in the digital samples

for current and later executions of ALIAS.

Next, on the Synthesis Engine, the system proceeds on processing digital data

coming from the DTD, by detecting repeating patterns, to then create an abstract

model of the discretized traces.

Finally, this abstract model proceeds to the Backend, named Model Compiler,

which, based on the created abstract model, will produce a Verilog model, to be used on

any digital veri�cation environment and DOT models, providing a high-level diagram

view of the analog circuit behavior from a digital stand point.



4.3. Frontend: Analog Waveform Trace Processor (AWTP) 23

4.3 Frontend: Analog Waveform Trace Processor

(AWTP)

The AWTP is in charge of reading analog waveforms and discretizing continuous

space/time data based on a parsing speci�cation. This speci�cation informs the parser

a time step t, which determines the sampling interval, an o�set o, which tells the parser

at which point it should start to sample, and a set of rules Φ to convert analog voltage

ranges into discrete data. Figure 4.3 exempli�es the parsing process.

offset
(o)

Discrete 
ranges

5V

Time steps 
(t)

0

net p

Sampled 
values

0

Voltage 

X
1
X
2

Unknown (X) 
ranges

Figure 4.3: An example of space/time discretization of an analog trace, resulting on
the sequence 0, 0, 1, X, 2 for some net p.

To de�ne the time-step to be used, we borrow the frequency de�nition of the

digital circuit the targeted analog circuit is going to be veri�ed with.

To sample data, the parser selects the data point nearest to the current time-

step. Although simple, this works for all simulations for analog circuits tested to be

paired with a digital circuit working at a speci�c frequency. If that is not the case, per

Nyquist-Shannon theorem [Shannon, 1998], the SPICE simulation data points should

be at a time-step ta that is at least half the time-step td of the interfacing digital

block, that is ta ≤ td/2. Figure 4.4 illustrates the sampling process on a scenario which

td = 4 ∗ ta.

Each group Gp of rules de�nes all digitally known/stable values for a net p given

an analog/continuous value, through a mapping R→ Z. Therefore, if any analog value
input to the parser matches a given range, the corresponding output integer value will

be output. Otherwise, a symbol X, representing an unknown state will be reported.

Therefore, given an analog value ap of an arbitrary net p, for si, ei ∈ R, zi ∈ Z and



24 Chapter 4. System Architecture

offset
(o)

5V

t

0

Voltage 

t

d

a

Unsampled analog data

Sampled analog data

Figure 4.4: An example of sampling analog samples. td is the digital time-step and ta
the analog time-step. On the example, td = 4 ∗ ta.

n = |Gp|, its discretized value dp is de�ned by:

dp =



z1 if s1 ≤ ap ≤ e1

...

zi if si ≤ ap ≤ ei
...

zn if sn ≤ ap ≤ sn


Gp

X otherwise

(4.1)

This way, Φ can be de�ned as the set of all groups of rules de�ned for all nets N

under analysis. In short:

Φ = {Gp ∀p ∈ N} (4.2)

As data is sampled on steps, each data point can be seen as a snapshot of the

circuit state at a given step under a digital perspective. Following this reasoning, a

snapshot is, in essence, a tuple with discrete values for all circuit nets under analysis.

Example 4.3.1. On analog/digital interfaces, a common element is the delay line, which is

a way of delaying the propagation of a signal. One model of delay line, is a resistor-capacitor

(RC) based delay, as depicted by Figure 4.5, which receives a signal in and produces a delayed

output at out.

in out

Figure 4.5: RC delay line.



4.4. Discrete Trace Database (DTD) 25

 0

 1

 4

 5

 0  20  40  60  80  100  120  140  160  180  200  220  240  260

0

X

1

V
o
lt

a
g
e
 (

V
)

D
is

cr
e
te

 v
a
lu

e

Time (ns)

in (sampled)
in

out (sampled)
out

(a)

 0

 1

 4

 5

 20

0

X

1

V
o
lt

a
g
e
 (

V
)

D
is

cr
e
te

 v
a
lu

e

Time (ns)

in (sampled)
in

out (sampled)
out

(b)

 0

 1

 4

 5

 40

0

X

1

V
o
lt

a
g
e
 (

V
)

D
is

cr
e
te

 v
a
lu

e

Time (ns)

in (sampled)
in

out (sampled)
out

(c)

Figure 4.6: RC delay line SPICE simulation trace showing sampled data (a) and de-
tailed sampling sections at 20ns (b) and 40ns (c).

With ∆V = 5.0v between in and ground, the resitance R = 1.0Ω, and the capacitor

valued at C = 0.01µF , within 20ns (2RC) the capacitor would reach 86% of charge, reaching

about 4.32V , or about 8% above 4.0V , which we intend to use as threshold for a logic 1. With

this setting, for a digital system working at 50MHz, that is, a clock cycle period of 20ns, out

would be noticed with a delay of one clock cycle in relation to in. Figure 4.6 exercises this

delay behavior.

Aligned with the digital system frequency, in has a rise/fall time of 0.1ns, as shown

in Figure 4.6b and 4.6c, allowing the time-step t to be de�ned to exacly 20ns and the o�set

o = 0. Given these settings and the rules:

Φ = {Gin, Gout} =

{{
0 if 0.0 ≤ in ≤ 1.0

1 if 4.0 ≤ in ≤ 5.0

}
,

{
0 if 0.0 ≤ out ≤ 1.0

1 if 4.0 ≤ out ≤ 5.0

}}
(4.3)

The resulting samples, demonstrating the delay behavior, in the format (din, dout), are

illustrated in Figure 4.7a, and these same samples as a digital trace in Figure 4.7b.

4.4 Discrete Trace Database (DTD)

The DTD is a drop-in structured storage module, which streams in and handles the

persistence of data coming from the Frontend. As state tuples (snapshots) are fed to the

DTD, it stores the sequential data as a trace on special entities, called databases. As in

traditional database systems schemas, the proposed module de�nes for each collection

of traces a relation, ie. a formal description of its attributes (a circuit's nets).



26 Chapter 4. System Architecture

[(0, 0), (1, 0), (0, 1), (1, 0), (0, 1), (0, 0), (1, 0), (1, 1), (0, 1), (0, 0), (1, 0), (0, 1), (0, 0), (0, 0)]

(a)

in

0 1 0 1 0 0 1 1 0 0 1 0 0 0

out

0 0 1 0 1 0 0 1 1 0 0 1 0 0

(b)

Figure 4.7: RC delay line samples (a) in the format (din, dout) and digitized trace (b)
from Figure 4.6.

The main reason behind this module is to avoid re-parsing analog simulation

traces, which are usually big1, every time one would try to create or enhance a model

with more or less data, thus enabling faster incremental work�ows.

In general, analog simulators export traces in text or binary format [Nenzi and

Vogt, 2014; Waller, 2010; Tuinenga, 1995], including all information of each simulation

point in time, containing the current simulation time as well as the real value of all

simulated variables. Although human readable, text-based formats tend to consume

more space than binary formats, which, in a general way, are simulator speci�c and

doesn't have any public documentation on how to read them.

On the digital world, one of the most popular formats for exporting waveform data

include the Value Change Dump (VCD) [IEEE, 2001] and the Fast Signal Database

(FSDB) [Synopsys Inc., 2013] format. On the opposite direction to analog simulators,

instead of capturing all data at each simulation step, the VCD format captures only

changes made to variables values. To save space, each variable is identi�ed with an

arbitrary set of characters, thus, when reporting a change in a point in time, the

identi�er is used along with its corresponding value.

Even with the technique of reporting just changes over time, the text-based format

often results in large �les for long and high activity simulation traces. In face of this

facts, formats like the binary FSBD gained a lot of popularity, reaching up to 50x

[Synopsys Inc., 2013] less space than a VCD �le.

Inspired on the VCD format pattern of reporting just changes and on the binary

1As a reference, at a 1s/1ps, on the worst case scenario, one can get up to 1012 R data points for
a single variable, which means that for a 1s simulation you would have around 7.5GB of raw data.



4.4. Discrete Trace Database (DTD) 27

approach of the FSDB format, we present a binary structured format, called Digitized

Trace Database Format (DTDF). Example 4.4.1 illustrates the concept of just reporting

changes in a trace.

Example 4.4.1. A traditional way of reporting a simulation step values is:

(step, (v1, d1), · · · , (vi, di), · · · , (vn, dn))

With vi being a variable and di its value on the given step. Thus, a valid example of a trace

composed by two signals a and b following this step format could be:

T = [(1, (a, 0), (b, 0)) , (2, (a, 0), (b, 1)) , (3, (a, 0), (b, 0)) , (4, (a, 0), (b, 0)) , (5, (a, 1), (b, 0))]

However, if just changes in variables values are to be reported, this same trace can be

reduced down to:

T = [(1, (a, 0), (b, 0)) , (2, (b, 1)) , (4, (b, 0)) , (5, (a, 1))]

To understand the resulting trace, one can observe that between steps 1 and 2 only b

changes its value, thus, the second step can be resumed down to (2, (b, 1)). Next, as on step

3 no changes are observed on the variables values, that step can simply be removed from the

trace. Finally, for steps 4 and 5, the same pattern of step 2 is applied.

A DTDF base is composed by two �les, the �rst storing the base schema, and

the second is a binary �le, containing the traces stored. The schema �le is a text �le,

and states each variable's name, size (in bits) and direction (input, output or both).

The binary database �le, described in Figure 4.8, is informing the number T of

traces as well as the number of bytes Si consumed by each one of the traces. The

second part holds all the trace data in blocks, one for each trace.

At each trace block, as shown in Figure 4.8, each non-empty step is represented as

a payload containing a header, stating the step/cycle number Ci and how many changes

(w) the xth step contains. After this header, given the inherently irregular nature of

a change-based trace, to store just observed changes within the xth step/cycle Cx, as

shown in Example 4.4.1, it is necessary to identify the ith variable vi being changed

along with its value di. Thereafter, a tuple in the format (i, di) is stored for each

variable value changed. By default, the �rst step will always contain the values for all

variables in the trace.

Space-wise, if all variables stored in the binary database �le have the same size,

then all tuples (i, di) will consume the same space s. Moreover, if the average change



28 Chapter 4. System Architecture

ratio per cycle is r and the set of all variables vi within the trace is V , the space

consumed by each trace within a DTDF �le is E∆BIN = O(r ∗ |V | ∗ s), highlighting
that the consumed space is directly tied to the number of changes at each cycle.

header
{

T S1 . . . ST

trace 1


1 w1 1 d1 . . . i di . . . n dn

...
C1 wC1 k dk . . . i di . . . j dj

...

trace T


1 w1 1 d1 . . . i di . . . n dn

...
CT wCT

k dk . . . i di . . . j dj

Figure 4.8: DTDF storage organization scheme. On the �gure, 1 ≤ k ≤ i ≤ j ≤ n.

4.5 Synthesis Engine

To recall our progress so far, the system's frontend (AWTP) discretized an analog

waveform and stored it into a DTD trace set. Thereon, the core component of the

system, the Synthesis Engine, will act on.

The general idea of the synthesis engine module is to try to identify a repeating

behavior in a trace coming from DTD. Based on Isaksen and Bertacco [2006] work for

identifying transactions in digital systems only, we broaden the scope to AMS circuits,

as many of such circuits also have a repeating behavior, and use a similar algorithm

for detecting such patterns.

More formally, given the language L of a digitized trace, this component aims

to identify a language L′ such that, as introduced in De�nition 2.2.4 on Chapter 2,

L ⊆ L′∗.

For the sake of simplicity, given the concept of an alphabet, all trace unique state

tuples are labeled against an unique symbol, composing an alphabet Σ. Thus, each

trace can be seen as a language L composed by one single long string. Example 4.5.1

demonstrates this procedure.

Example 4.5.1. From Figure 4.9 trace, the list of unique state tuples are U =

[(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0)]. There, the system will create an alphabet Σ

with |U | = |Σ| composed by arbitrary symbols.



4.5. Synthesis Engine 29

[(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)(2, 0), (1, 1), (2, 1), (1, 0), (0, 1), (3, 0)]

Figure 4.9: A simple trace as list of state tuples.

If Σ = {a, b, c, d, e, f, g}, a valid mapping for each tuple in U to a symbol in Σ would

be:
a : (0, 0)

b : (0, 1)

c : (1, 0)

d : (1, 1)

e : (2, 0)

f : (2, 1)

g : (3, 0)

Thus, resulting labeled trace string will be abcdefedfcbg, and, as a result, the trace language

L = {abcdefedfcbg}.

Given L, the goal of the core algorithm of this module is to generate a language

L′ that generalizes L. In order to do so, L′ is built so that each string identi�es one

repeating behavior in L. More formally, given all strings a circuit can produce in the

form of a language LC , and one simulate the circuit to a set of stimuli that yields in

L ⊂ LC , the goal is to have:

1. L ⊆ L′∗, or ideally, L ⊆
⋃
i∈K

L′i with the set of integers K as small as possible;

2. More importantly, L′∗ as close as possible to LC .

In order to generalize, the algorithm tries to recognize partition points, denoting

settling states, within the trace string, referred to as boundaries. Once these boundaries

are de�ned or recognized, the trace is cut into smaller sub-strings. These are then

further reduced by folding repeating sequences with the string operator (.)n. Then, if

a substring a is found to be a su�x of a bigger string b, thus converging to the same

settling state, b can be further divided, as before a happening in b, b converged �rst to

another settling state. This process is repeated until no new boundaries are found and

no further optimizations can be performed over the set of substrings. Example 4.5.2

provides an overall view of the process.

Example 4.5.2. Given a language L = {dabbcdbcd} from a trace, if d is selected as boundary,

we would initially get the set of strings {abbcd, bcd}. As b repeats twice in abbcd, it can be

compressed down to ab2cd. As bcd is a su�x of a(b)2cd, a can be taken as boundary, which will



30 Chapter 4. System Architecture

then produce two new strings from a(b)2cd: a and (b)2cd. By taking strings without its loops

annotations, we can detect that (b)2cd and bcd are equal from that perspective. From that

standpoint, we create a new string (b)1,2cd, to replace both, thus yielding in L′ = {a, (b)1,2cd}.
As one can verify, L ⊂ L′3.

Besides manual selection, there are several ways to automatically identify the

�rst boundary to be used to partition the trace. Aiming to allow a better automation

at larger scales, we select two simple techniques: selecting the symbol that repeats

�rst; and �nding the symbol which repeats with the largest interval. The main reason

behind the �rst method is its simplicity and the fact that this is the strategy adopted

by [Isaksen and Bertacco, 2006]. As for the second, we aim to capture and create large

strings on a �rst pass. Both techniques are exempli�ed in Example 4.5.3.

Example 4.5.3. From a string adadababcda, the symbol that repeats �rst is a. Using a as

a cut-point, the resulting strings would be {da, ba, bcda}. However, by using the symbol that

repeats with the largest interval, d would be the resulting partition point, and the resulting

substrings {ad, ababcd, a}.

The algorithm, presented in Algorithm 1, starts by labeling (line 1) all state

tuples in the digitized trace to a set of symbols in Σ for each unique state tuple. Next,

two sets of boundaries are de�ned, BS and NBS (lines 2-3), with BS initialized with

the �rst boundary to be used to partition the trace. After that, the trace will be cut

using such boundary set elements (line 7). Each resulting string will then be simpli�ed

by folding loops within the transaction (lines 8-10). As loops are fold, the algorithm

will also merge compatible strings, that is, strings that share the same structure (same

loop locations) or have no loop at a region where another string to be merged has.

Finally, the algorithm tries to �nd strings that are contained inside others2 and, if

found, it will add to the set of new boundaries the last data point before the smaller

string matches the bigger one (lines 11-15). The main loop (line 5-16) will repeat until

no other distinct transaction is found within another one.

The loop folding algorithm (called from line 9) employs a non-recursive folding ap-

proach, using a simple two-step folding strategy. On the �rst phase, the algorithm tries

to �nd the largest subsequent repeating sub-string s, and folds it in half, thus, from a

string with the sequence · · ·xssy · · · , the resulting folded string would be · · ·x(s)2y · · · .
After folding, the algorithm never revisits a folded string section again, and will keep

2If a string is found inside another but the point of cut is within a loop, the algorithm will ignore
that string unless the given symbol inside the loop is its last. The reason for that is that loops often
can mean the number of states until a certain settling state can be reached. Also, by splitting a loop
open, we are prone to generating more states and having a large |K| before L can be matched. Thus,
we opt to not cut on loops.



4.5. Synthesis Engine 31

Algorithm 1 SynthesizeModel

Require: Digital trace data Traw
1: T ← label Traw against Σ

# BS and NBS stores current and new boundary sets
2: BS ← extract initial boundary from T
3: NBS ← ∅

# S is the set of strings
4: S ← T string # Start with T 's single string
5: while BS 6= NBS do
6: NBS ← BS
7: partition S at BS
8: for s ∈ S do
9: fold s loops

10: end for
11: for (i, j) ∈ S, i 6= j do
12: if j is su�x of i then
13: NBS ← NBS ∪ {(i− j) last state tuple}
14: end if
15: end for
16: end while
17: return S

on searching for loops on the string remainder portions. This way, after all repeti-

tions are found, the algorithm checks if the folded strings are in fact repetitions of a

smaller pattern. Thus, given a folded loop sub-string s, if a pattern p repeats from

the �rst symbol of s until its end, s will be further reduced and the loop number of

repetitions multiplied by |s||p| . The main reason behind this strategy is to avoid spending

time on folding intricate loops, and thus, yield on simpler substrings. Example 4.5.4

demonstrates this approach and compares it against a recursive complete approach.

Example 4.5.4. For a string abbcdabbcdeffffffff , our proposed approach would start

by folding the largest repeating sub-strings, thus yielding in (abbccd)2e(ffff)2. Then, it

would identify that (ffff)2 is composed by a smaller repeating pattern, on this case a single

symbol, �f �, thus resulting in the compressed loop (f)8. Thereafter, the �nal compressed

string would be (abbccd)2e(f)8. On the other hand, a recursive full height approach would

produce (a(b)2(c)2d)2e(f)8, at the cost of recursively folding already fold strings.

Example 4.5.5. On Example 4.3.1 from an analog delay circuit based on a simple resistor-

capacitor circuit, depicted in Figure 4.10, the resulting digitized trace and samples are pre-

sented back in Figure 4.11.

Given that the trace has only 4 di�erent state tuples � namely (0, 0), (0, 1), (1, 0) and

(1, 1) � line 1 of Algorithm 1 will label with 4 di�erent symbols. For simplicity reasons,



32 Chapter 4. System Architecture

in out

Figure 4.10: RC delay line Example 4.3.1.

[(0, 0), (1, 0), (0, 1), (1, 0), (0, 1), (0, 0), (1, 0), (1, 1), (0, 1), (0, 0), (1, 0), (0, 1), (0, 0), (0, 0)]

(a)

a a a a ab b b bc c c cd

in

0 1 0 1 0 0 1 1 0 0 1 0 0 0

out

0 0 1 0 1 0 0 1 1 0 0 1 0 0

(b)

Figure 4.11: RC delay line samples (a) in the format (din, dout) and labeled digitized
trace (b) from Example 4.3.1.

consider that the selected symbols were a, b, c and d, mapping to:

a : (0, 0)

b : (0, 1)

c : (1, 0)

d : (1, 1)

Thus, the resulting alphabet would be Σ = {a, b, c, d}. Using the presented mapping,

based on the trace data, the resulting string will be acbcbacdbacbaa, as depicted in Figure

4.11b. Thus, the trace language is de�ned as L = {acbcbacdbacbaa}. Using the symbol that

repeats with the largest interval (a) as boundary (line 2), would result in the substrings:

{cbcba, cdba, cba, a} (line 7). Taking all strings individually, the loop folding (line 9) outcome

would be (cb)2a, cdba, cba, a. As each string is compressed by the loop folding algorithm

(lines 8-10), compatible strings are merged, (cb)2a and cba will be combined into (cb)1,2a.

Therefore, we now have the strings {(cb)1,2a, cdba, a}. When reaching lines 11-15, as a is a

viable su�x of (cb)(1,2)a and cdba, b will be a new boundary. After partitioning again, the



4.6. Backend: Model compiler 33

resulting segments will be {(cb)1,2, cdb, a}. As no new boundaries are detected, the algorithm

�nishes with L′ = {(cb)1,2, cdb, a}, and L ⊂ L′3.

4.6 Backend: Model compiler

Once the synthesis engine has produced a language L′ that generalizes a language L,

the model compiler will then create a semantic model for L′∗. Based on this model, the

compiler will then output it to either a Verilog �le, to be used on simulation and formal

veri�cation environments, or a DOT diagram/graph, to allow a better understanding

of the abstracted system's states and transitions.

4.6.1 Automaton models

As each string in L′ is, in essence, a chain of circuit states, to create L′∗ we need a way

to go through strings in L′ in a repeating manner. For that, we present two automaton

models, the �rst named simple and, the second, parallel automaton model.

4.6.1.1 Simple automata

The �rst automaton, models an automaton As with each string as clustered a chain of

nodes connected to each other. Within a cluster, each node ni corresponds to a symbol

si at the position i of a string. Besides nodes coming from strings, one extra node,

called start, is added, corresponding to the automaton initial state. This node has an

edge for each string in L′, and for each string in L′ an edge back to the initial state.

For each string node, an error edge going back to the node itself, is created. Besides

these edges, each node has an edge pointing to the next symbol in its string and, at the

last symbol within a loop, an edge back to the loop's start node. Figure 4.12 illustrates

this con�guration.

As the abstracted circuit is composed by inputs and outputs, each string symbol

is composed by an ingoing and an outgoing part. Therefore, a symbol's ingoing portion

is matched against the circuit's inputs, the automaton will proceed to that state and

emit the outgoing part of the symbol to the circuit's outputs. However, if no next

symbol ingoing part is matched, the automaton will remain on the current state until

the symbol ingoing part is matched. Moreover, as strings can contain loops that can

repeat at di�erent amounts, and as from the start condition it is possible to go to any

string initial symbol, As is a non-deterministic �nite automaton (NFA).

3For the sake of simplicity, loops and error edges were not included.



34 Chapter 4. System Architecture

start

string a ∈ L’

a0 a1 . . . an-1 an

string z ∈ L’

z0 z1 . . . zn-1 zn

. . . L’

Figure 4.12: Con�guration of simple automata3As.

From As, we can infer three properties:

1. if an oracle always chooses the correct next state, if an invalid string s is input,

s /∈ L′∗;

2. every path in As is a string in L
′∗ as long as an error edge is never taken;

3. if a set S containing all paths in As exists not taking error edges, S = L′∗.

Example 4.6.1. Taking back Example 4.5.5, the synthesis algorithm produced L′ =

{a, (cb)1,2, cdb}. Thus, the simple automaton As for L
′ is:

start L’

c
[1,0]

d
[1,1]

b
[0,1]

c
[1,0]

b
[0,1]

a
[0,0]

1,2
Loop: can go 

through cb
1 or 2 times

Figure 4.13: Simple automaton model for Example 4.5.5 language L′.



4.6. Backend: Model compiler 35

4.6.1.2 Parallel automata

As the simple automaton, a parallel automaton Ap also models each string from L′ as

a clustered chain of nodes interconnected with edges, with each node ni mapping to

the symbol ith symbol from its corresponding string. The key di�erence is that each

string is seen as an individual automaton, referred to as sub-automaton, executing in

parallel and all clusters outputs combined and output by an arbiter (an oracle). Also,

the initial state for each sub-automaton is its �rst symbol, therefore, the last node has

an additional edge going back to that state. Identical to the simple model, the last

symbol on a loop, has an edge back to the loop's �rst node. Di�erently from the last

model, each node has an error edge, which return to the node cluster �rst node. At the

cost of being more complex, this organization can be compared with a more compact

way of multiplying the number of states of the simple automaton model.

After the simple model, for sub-automaton to transition between states, the in-

going part of a symbol (the node) must match the circuit's inputs. When this ingoing

portion is not matched, the error edge is taken, and the given automaton returns to

its initial state.

The main component of this model is the arbiter, or oracle, which is responsible

for orchestrating outputs coming from the underlying string automaton. The arbiter

starts by �rst selecting a valid string to execute, that is, a node cluster which its

initial node symbol matches the circuit input. If no valid string is available, the arbiter

waits until one becomes valid. Once a string is selected, the arbiter emits the outputs

coming from the selected string until either the current string has been completed (the

automaton returned with no errors to the initial state) or an error on that string is

detected. If an error is detected, the arbiter will then return to its initial state, selecting

another valid string to pick its output from. Figure 4.14 exempli�es this organization.

By enabling the oracle to change its decision after a string has already been

selected as the current string, we aim to approximate to a NFA with an oracle that

tries to always select the best string to emit output symbols from.

Example 4.6.2. Taking back Example 4.5.5, the synthesis algorithm produced L′ =

{a, (cb)1,2, cdb}. Thus, the parallel automaton Ap for L
′ is:

Similar to As, from Ap, we can infer three properties:

1. if the arbiter always chooses the correct string and an oracle always chooses the

right next state within a string, if an invalid string s is input, s /∈ L′∗;
4For the sake of simplicity, loops and error edges were not included.



36 Chapter 4. System Architecture

string a ∈ L’

a0 a1 . . . an-1 an

string z ∈ L’

z0 z1 . . . zn-1 zn

. . .Inputs

Intermediate outputs

Arbiter Outputs

L’

Figure 4.14: Con�guration of automaton in parallel4Ap.

L’

c
[1,0]

d
[1,1]

b
[0,1]

c
[1,0]

b
[0,1]

a
[0,0]

1,2 Loop: can go 
through cb
1 or 2 times
before done

Inputs Arbiter

Intermediate outputs

Outputs

Figure 4.15: Parallel automaton model for Example 4.5.5 language L′.

2. if an error edge is never taken, every path in Ap is a string in L
′∗;

3. if a set S containing all paths in Ap not taking error edges exists, S = L′∗.

4.6.1.3 Model compatibility and comparison

Given an oracle that always makes the right choices for As and Ap, as previously

exposed, both models are compatible with L′∗, thus, are also compatible with the

language L the model is based on, and languages like nL, as nL ∈ L′∗.
Considering a standard simulation environment, the automaton cannot know fu-

ture steps, thus, it can only make its decisions based on either present or past data.



4.6. Backend: Model compiler 37

As it happens, a wrong decision can have a considerable impact on the automaton

accuracy.

To cope with that, the simple automaton model, in face of an unexpected input,

will remain on the current state, while continuing to issue the current symbol outgoing

part as output, until a match with the circuit input value happens. With the upside

of being simple and not requiring any additional logic or signal to represent the error

edge being taken, once an invalid input signal is perceived, it means that the wrong

string (a node cluster) was picked for execution, if the input language is compatible

with L′∗. If so, several other valid input sequences that would match other strings cold

be passing by the automaton, meaning that the automaton would be stalled until a

sequence with a match on the current symbol reaches the automaton.

The parallel model, however, given an input that is not recognized by any of its

sub-automaton, will, as on the simple model, repeat the current node symbol outgoing

part as output. As in this case all sub-automaton will go back to their initial states, the

arbiter will exit this generalized error state once any valid incoming substring starts to

be recognized by any of its sub-automaton. On the upside of this approach, even if the

wrong node cluster is selected for execution, as all sub-automaton execute in parallel,

a not failing one will be picked as soon as the current fails. Thus, when compared to

the previous approach, this model has more chances of resuming a non-error operation

faster.

Aside from aiding the automaton to recover from an error state, these approaches

aim to allow the automaton to accommodate small variations on the input language,

which can exercise behaviors not covered on the language the automaton was built

upon.

One important turning point between the proposed models in simulation environ-

ments is the amount of non-determinism. On the simple model, when a node cluster

has �nished its execution, the automaton has to choose between all strings a single

string for it to start traversing. As the size of the model grows, this non-determinism

can have a deep impact on the model accuracy. On the other hand, the parallel model

does not face this same problem, as all strings execute in parallel and a bad choice has

a greater probability of being rapidly recti�ed.

The disadvantage of the parallel approach when compared to the simple one is its

bigger footprint, as it will need the number of strings in L′ times the number of state

tracking control bits in the simple model. More, as on formal veri�cation environments

is possible to enforce the model to never take an error edge on the model, the fewer

the bits on the model, the faster formal engines will be able to handle the model.

As it is not the intent to generate an output formed by invalid substrings, using



38 Chapter 4. System Architecture

the parallel model on formal engines would inevitably generate an invalid output. This

happens as the oracle logic would allow the engine to change between substrings be-

tween the execution of a single substring. With a lower amount of non-determinism of

the simple automaton, a formal engine would be able to form a valid sequence formed

only by valid substrings. Another important factor when dealing with formal engines

is that the parallel model requires a larger amount of bits to track the state of each

automaton. Given that formal engines targets is usually modeled in a bitwise fashion,

a larger amount of bits can mean the non-convergence of a formal task.

With the presented information it is clear that the simple model is the best

choice for formal veri�cation environments, whereas the parallel model is better suited

for simulation environments.

4.6.2 DOT diagrams compilation

On both cases as the automaton A is a (directed) graph, generating a DOT model

is a straightforward direct conversion task, as all the DOT language requires is the

declaration of the graph nodes and their connections. As our goal here is to just

present the strings node clusters and non-error edges for both automata models, the

DOT representation can be generated by a single algorithm.

Algorithm 2, the algorithm iterates over the node clusters (strings) in A (lines

3-19) and �rst declare that a cluster is being created (line 4). Right after, all nodes in

the current cluster c that are not part of a loop are declared (lines 5-9). Next, for each

loop, the algorithm will create a subcluster along with the statement of its composing

nodes and how many times it can be executed (lines 10-17). Then, the algorithm will

close the current cluster (line 18) and proceed to the next cluster. After iterating over

all clusters, all edges will declared (lines 20-22) and the algorithm terminates.

Example 4.6.3. For the automaton As and Ap from Example 4.6.1 and Example 4.6.2,

respectively, Algorithm 2 would generate Figure 4.16 graphs.

4.6.3 Verilog models compilation

Encoding an NFA as a digital system hardware implies that the automaton will be

clocked by a clocking signal and will also have a reset condition, into which all relevant

registers will be set to an initial state.

To compile both automaton models into Verilog code, the compiler will �rst start

by de�ning the automaton module interface and signals. Then, it proceeds on encoding

the core logic of the automaton.



4.6. Backend: Model compiler 39

Algorithm 2 GenerateDOTDiagram

Require: Automaton A
# O stores the DOT �le being generated

1: O ← ∅
2: O+ = declare start state
3: for cluster c ∈ A do
4: O+ = declare cluster start
5: for node n ∈ c do
6: if n is not at loop then
7: O+ = declare node n
8: end if
9: end for

10: for loop l ∈ c do
11: O+ = declare cluster start
12: O+ = declare loop repetitions
13: for node n ∈ l do
14: O+ = declare node n
15: end for
16: O+ = declare cluster end
17: end for
18: O+ = declare cluster end
19: end for
20: for edge e ∈ A do
21: O+ = declare e
22: end for
23: return O

4.6.3.1 Simple automata

The simple automaton model has three main registers: sid, nid, start, error. The

�rst register, sid, tracks the current string (cluster) being traversed in the automaton,

whereas the second, nid, tracks into which state inside the current string the automaton

is. The last two registers tracks if the automaton is either on the start state or on the

error state, respectively. A signal, named state, keeps the current symbol value based

on nid.

When the circuit is reset, start will be set to 1 and error to 0. After reset, as

the clock ticks, the �rst check the automaton will do is to see if the current string is

start, if so, it will assign sid to a random string and set start to 0.

On the same clock event, independently from sid value, the automaton will check

if the symbol pointed by nid matches the circuit's input signals. If so, the automaton

will update nid, re�ecting the changes on the signal state accordingly. Otherwise, the

automaton will set error to 1.



40 Chapter 4. System Architecture

string #0
string #1

loop (1,2)

string #2

start

b
[1,0]

b
[1,0]

a
[0,0]

d
[1,1]

c
[0,1]

c
[0,1]

(a)

string #0
string #1

loop (1,2)

string #2

b
[1,0]

d
[1,1]

c
[0,1]

b
[1,0]

c
[0,1]

a
[0,0]

(b)

Figure 4.16: DOT diagrams for (a) Example 4.6.1 and (b) Example 4.6.2 automaton.
Di�erent edges and nodes between representations in red.

To update nid within a string, when not in a loop, the current state will simply

pick the next state. To deal with loops, two extra registers are de�ned, namely c and

cmax. The �rst tracks how many times a loop has been executed, while the second

stores the maximum number of times the loop will be executed. To cope with these

two registers, when sid is start, the automaton will set c = 0 and randomly assign a

value to cmax based on the possible repetition amounts of the �rst loop in the string.

If when on a loop's the last state, c = cmax, nid will point to the next state in the

current string, c will be set to 0 and cmax randomly assigned to the repetition amounts

of the next loop in the current string. However, if c < cmax, nid will be set to the state

matching the loop �rst state and c incremented by 1.

4.6.3.2 Parallel automata

As in the simple model, all sub-automaton has registers to track its state. These

registers are ni
id, error

i and donei. The �rst register ni
id holds which state inside

the current string the automaton is. The following register, named statei, keeps the

current symbol value. The remaining registers, donei and errori, tracks, respectively,

if the sub-automaton has completed its execution or failed to recognize the current

circuit input being passed to the automaton.

After the simple model, all sub-automaton employ the same loop handling mech-

anism, having the registers ci and cimax tracking the loop count and the maximum

repetition amount, respectively.



4.6. Backend: Model compiler 41

Algorithm 3 GenerateSimpleVerilogModel

Require: Automaton As

# O stores the Verilog �le being generated
1: O ← ∅
2: O+ = declare module interface
3: O+ = declare signals # signals = registers and wires
4: O+ = map output signals to state
5: O+ = declare clocked block start

# Circuit reset block
6: O+ = declare reset block start

7: O+ = declare sid ← start

8: O+ = declare nid ← 0
9: O+ = declare reset block end

# Circuit non-reset block
10: O+ = declare non-reset block start

11: O+ = create start state block
12: for cluster c ∈ As do
13: O+ = create c block
14: end for
15: O+ = declare non-reset block end

16: O+ = declare clocked block end

17: return O

For the arbiter, two main registers are created. The �rst, named sid, tracks which

sub-automaton output is being emitted as the abstraction output. The second, last

holds the last state outgoing symbol part. Aside from registers, most of the arbiter

logic is combinational. Thus, several auxiliary combinational signals, were used. The

�rst, scid, tells the arbiter the �rst sub-automaton that is not failing if the one pointed

by sid is. This allow the arbiter to rapidly switch from an error state on the current

sub-automaton to the �rst non failing one. Another key signal is state, which tracks

the overall automaton current symbol based on sid and n
i
id information.

When the circuit is reset, all sub-automaton will set its current state as the string

�rst symbol. Also, a random string will be assigned to sid. After reset, as the clock

ticks, the �rst check the arbiter will do is to see if the current string, that is, the one

being pointed by sid has not reached an error condition (error
i = 0). If the current sub-

automaton is not failing, then the arbiter will continue emitting the output coming from

that sub-automaton. However, if errori = 1, the arbiter will automatically pick the

�rst sub-automaton that is not emitting an error, and, with the signal scid update sid

with a non-failing sub-automaton identi�er. If all sub-automaton are failing, than the

arbiter will continue with the same sid, and emit last as output until a sub-automaton



42 Chapter 4. System Architecture

Algorithm 4 GenerateParallelVerilogModel

Require: Automaton Ap

# O stores the Verilog �le being generated
1: O ← ∅
2: O+ = declare module interface
3: O+ = declare signals # signals = registers and wires
4: O+ = map output signals to state
5: O+ = declare clocked block start

# Circuit reset block
6: O+ = declare reset block start

7: O+ = declare sid ← random sub-automaton id ∈ Ap

8: for cluster c ∈ Ap do
9: O+ = declare nc

id ← 0
10: end for
11: O+ = declare reset block end

# Circuit non-reset block
12: O+ = declare non-reset block start

13: O+ = create start state block
14: for cluster c ∈ Ap do
15: O+ = create c sub-automata
16: end for
17: O+ = declare non-reset block end

18: O+ = declare clocked block end

19: return O

starts to recognize incoming stimuli again.

For any given sub-automaton to evaluate errori, the arbiter will check if the

symbol pointed by ni
id matches the circuit's input signals. If so, the automaton will

update ni
id with the next symbol's position. Otherwise, the automaton will set errori

to 1 and set ni
id to 0.



Chapter 5

Case studies

As previously exposed, following the increasing IC complexity, time spent on veri�ca-

tion during the execution of an IC project is overcoming development time. Thereon,

veri�cation engineers are in constant need of reliable methodologies to bring the circuit

being veri�ed into higher (and faster) abstraction levels.

Thus, to verify our proposed solution, we compared the generated simpli�cations,

in terms of quality and speed when compared to a setup using an analog SPICE sim-

ulator. We tested our solution against common analog mixed-signal (AMS) circuits.

Those being a simple resistor-capacitor (RC) delay line, an integrator and a phase-

locked loop (PLL). For every inspected instance, we demonstrate that even being ab-

stract, the generated models were reasonably accurate and far faster than running an

analog simulation.

To compare performance, we run an analog simulation over the real analog inter-

facing circuit; and a purely digital simulation using an ALIAS abstraction instead of

the analog circuit.

At each case study, �rst, a base simulation, producing a language L is performed,

from which ALIAS abstractions (simple and parallel models) will be created.

On elaborating the base simulation, we de�ne a metric of scenarios, which mea-

sures how many di�erent situations the targeted analog circuit has been exercised

between rest states. This metric has a direct relation with how many strings the

automata will contain.

Given the input stimuli from each case study test benches, we measure perfor-

mance by simulating the digital abstractions and analog circuit against this sequence

of stimuli. On this same line of thought, to measure the quality of abstractions gen-

erated by ALIAS, we compare the generated abstraction outputs against the expected

outputs for each case. Given this methodology of measuring quality, we compare the

43



44 Chapter 5. Case studies

results for each kind of boundary technique selection adopted.

The tests were conducted on a Intel R© Core
TM

i7-2600 @3.4GHz with 8GB of

main memory. To perform the tests, two third-party softwares were used, namely the

proprietary simulator LTSpiceIV R© 4.22r [Linear Technology, 2015] was used for analog

simulations and the open-source simulator Icarus R© Verilog 0.9.7 [Williams, 2015], for

digital simulations.

5.1 RC delay line

As presented on previous sections, in Example 4.3.1 and Example 4.5.5, a RC delay

line, as show in Figure 5.1, is an analog element designed to delay the propagation of

the observed value of a given signal.

in out

Figure 5.1: RC delay line.

The �rst set of tests is created after a base simulation. For that, although not

covering the entire state space of the given circuit, the analog simulation from Example

4.3.1 was selected, as it covers key characteristics of the delay element operation behav-

ior. Then, using the basic test bench described in the previous section, for simulations

of size 100L (1400 steps), we analyze the impact on quality for the proposed boundary

selection techniques as well as the symbol which we considered to be the circuit resting

(idle) state.

As one can check from the resulting string1 for the selected trace, as shown in

Example 4.5.5, using the �rst repeated symbol as boundary, which did not match the

actual circuit resting state (both input and output at zero), the simple model achieved

a quality ratio of just 72.79%, while the parallel model got 96.43%. The symbol that

repeats with the largest interval, however, which matches the circuit resting state,

reached 82.93% of quality in the simple automaton and 100% in the parallel automaton.

As for the automata performance, based the �rst test bench still, as shown on

Table 5.1 and Figure 5.2, the digital simulation using ALIAS abstractions clearly out-

paced analog simulations in terms of speed. To further highlight this, at simulations of

1As shown in Example 4.5.5, a possible string for the example’s digitized trace is acbcbacdbacbaa.



5.1. RC delay line 45

size 106L (14 million steps), the speedup using ALIAS abstractions (both simple and

parallel), is on order of magnitude of 103 faster than analog simulations.

As the abstraction quality is key, the simple model reached a quality of nearly2

80%, the parallel model reached 100% of quality, at all tests, as presented on Table

5.2. As the same sequence of strings, and stimuli, is repeated over and over, due to

the simple model non-determinism on the transitions between the start node and the

�rst node of each node cluster, it doesn't always select the right next string to execute,

thus erring out until the incoming input signal is recognized. Due the small output

state space (just two symbols, 0 and 1), repeating the current state until the automaton

leaves the error condition is a reasonable approach. The parallel model, however, never

has all its sub-automata failing at the same moment, as each part of the input stimuli

is part of L′ and each element in L′ has its own sub-automaton executing in parallel.

Furthermore, if high quality is not of interest, the simple model is the best ab-

straction candidate, as it is twice as fast the parallel model on bigger cases. However,

if quality is key, even with the additional overhead, the parallel model still have a lin-

ear complexity, thus scaling to far bigger circuits and simulation traces, which analog

simulations wouldn't.

Test size (steps)
Time (s)

SPICE Digital (simple) Digital (parallel)

14 0.004 0.004 0.004
140 0.006 0.006 0.008
1400 0.037 0.011 0.021
14000 0.439 0.065 0.126
140000 10.539 0.603 1.179
1400000 1117.513 6.101 12.157
14000000 111552.266 58.826 121.800

Table 5.1: RC repeating L tests speed comparison between an analog simulation and
digital only simulation using ALIAS abstractions (simple and parallel).

Instead of repeating the stimuli that generated L, the second test �avor is based

on the generation of random stimuli, from which traces still with sizes based on L are

simulated. Aiming on a greater variety of traces, for each targeted trace size, 5 sets

of random input stimuli were generated, which were used as the circuit input in both

analog and digital simulations. Finally, the average from the results of each targeted

trace size along a con�dence interval of 95% are presented.

2Geometric average of quality ratios for the simple model abstraction.



46 Chapter 5. Case studies

100

104

104

104

104

105

105

0.0*100 2.0*106 4.0*106 6.0*106 8.0*106 1.0*107 1.2*107 1.4*107

Ti
m

e 
(s

)

Simulation size (steps)

SPICE
Digital (simple)

Digital (parallel)

(a)

10-3

10-2

10-1

100

101

102

103

104

105

106

102 103 104 105 106 107

Ti
m

e 
(s

)

Simulation size (steps)

SPICE
Digital (simple)

Digital (parallel)

(b)

Figure 5.2: RC repeating L tests speed (a) plain and (b) logarithmic scale charts,
demonstrating analog simulations exponential trend and the linear behavior of digital
only simulations using ALIAS abstractions (simple and parallel).

Test size (steps)
Quality

Digital (simple) Digital (parallel)

14 71.43% 100.00%
140 82.86% 100.00%
1400 83.71% 100.00%
14000 83.14% 100.00%
140000 81.96% 100.00%
1400000 81.06% 100.00%
14000000 81.04% 100.00%

Table 5.2: Quality ratios for RC repeating L tests over ALIAS abstractions (simple
and parallel).

As presented in Table 5.3 and Figure 5.3, the random stimuli tests demonstrated

a very similar performance when compared to the repeating L tests. As di�erent

patterns, like longer repetitions of 0's and 1's, were exercised, in terms of quality, the

results were slightly di�erent.

From Table 5.4, the simple automata performed better when compared to the

previous set of tests, averaging (geometric mean) nearly 87% in quality. As the simple

automaton randomly selects strings (node clusters) for it to execute, on the �rst set of

tests, the chances of always choosing the same strings in the same order, as in the input

pattern, decreases considerably as the number of automaton strings grows. Thus, ran-

dom stimuli experimentally had a better match with the inherently non-deterministic

automaton behavior on selecting strings to traverse. The parallel automaton, on the

other hand, had its quality decreased, averaging (geometric mean) 99.70% of quality.

The main reason behind this fact is that the input pattern is no longer based on L′,



5.2. Integrator 47

thus, on some occasions none of the automata will recognize the incoming pattern,

which, as a reference, happened at an average of 0.81% ±0.06% of the simulation time

with a con�dence interval of 95% for a 1000L simulation.

Test size (steps)
Time (s)

SPICE Digital (simple) Digital (parallel)

14 0.004 ± 0.002 0.004 ± 0.001 0.005 ± 0
140 0.007 ± 0.001 0.006 ± 0 0.008 ± 0.001
1400 0.037 ± 0.002 0.014 ± 0.002 0.024 ± 0.003
14000 0.347 ± 0.003 0.086 ± 0.001 0.150 ± 0.002
140000 8.501 ± 0.02 0.819 ± 0.007 1.443 ± 0.011
1400000 956.451 ± 0.847 8.098 ± 0.046 14.837 ± 0.064

Table 5.3: RC random tests speed comparison between an analog simulation and digital
only simulation using ALIAS abstractions (simple and parallel).

100

102

102

102

102

102

102

102

102

102

103

0.0*100 2.0*105 4.0*105 6.0*105 8.0*105 1.0*106 1.2*106 1.4*106

Ti
m

e 
(s

)

Simulation size (steps)

SPICE
Digital (simple)

Digital (parallel)

(a)

10-3

10-2

10-1

100

101

102

103

101 102 103 104 105 106 107

Ti
m

e 
(s

)

Simulation size (steps)

SPICE
Digital (simple)

Digital (parallel)

(b)

Figure 5.3: RC random tests speed (a) plain and (b) logarithmic scale charts, demon-
strating analog simulations exponential trend and the linear behavior of digital only
simulations using ALIAS abstractions (simple and parallel).

5.2 Integrator

On this case study we analyze an analog integrator, a component widely used on

analog-to-digital/digital-to-analog (AD/DA) converters. The integrator is a circuit

that performs the mathematical operation of integration through time with respect to

an input voltage. For this case study we analyze an operational ampli�er3 (op-amp)

based integrator, taking an input with a polarity p, and outputting the integrated

signal with a polarity −p.
3The more interested reader should refer to Alexander and Sadiku [2008].



48 Chapter 5. Case studies

Test size (steps)
Quality

Digital (simple) Digital (parallel)

14 91.43% ± 5.24% 100.00% ± 0%
140 87.86% ± 3.76% 99.71% ± 0.56%
1400 85.74% ± 1.43% 99.67% ± 0.56%
14000 86.36% ± 0.52% 99.58% ± 0.03%
140000 85.87% ± 0.12% 99.60% ± 0.01%
1400000 85.73% ± 0.05% 99.60% ± 0.01%

Table 5.4: Quality ratios for RC random tests over ALIAS abstractions (simple and
parallel).

in

reset

out

Figure 5.4: Analog integrator circuit.

As shown in Figure 5.4, the analyzed circuit has three main interfacing signals.

The �rst is the signal being integrated, named in, the second, out, the current integra-

tion result, and the last, reset, resets the integration result to 0V . Figure 5.5 illustrates

a typical operation of an integrator with in at a constant −1V , depicting the circuit

output summing up to 10V , when reset acts and sets out back to 0V .

-1
0

5

10

 0  20  40  60  80  100  120  140  160  180  200  220

Vo
lta

ge
 (V

)

Time (ns)

in
out

reset

Figure 5.5: Integrator SPICE simple simulation trace.



5.2. Integrator 49

-1.5

-0.5

 0.5

 1.5

1

0

2

in (sampled)
in

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

0
1
2
3
4
5
6
7
8
9

Vo
lta

ge
 (V

)

D
is

cr
et

e 
va

lu
e

out (sampled)
out

 0
 1

 4
 5

5 25 45 65 85 105 125 145 165 185 205 225

0

X

1

Time (ns)

reset (sampled)
reset

Figure 5.6: Integrator SPICE simple simulation trace showing sampled data.

With this case study we aim to show how important it is to have a good base

simulation. We start by creating our �rst abstractions using the simulation presented on

Figure 5.5, exercising just one scenario of behavior (integrating up to 10V and reseting

at the end). As the targeted analog circuit is sampled at each 10ns by a digital circuit,

we sample the analog trace at each 10ns. Figure 5.6 depicts the extracted samples as

well as the rules Φ used to convert analog data into discrete values.

As both techniques of boundary selection will end up with the same tuple of

values, (din, dout, dreset) = (1, 0, 1), and this tuple is indeed the system's rest (idle)

state, we proceed on analyzing the quality of the generated abstractions. For the sake

of brevity, we attain to this boundary for the remainder of this section.

Starting with the base test bench � created by repeating the input stimuli from

which the abstractions were created � from Table 5.5 and Figure 5.7, we observe the

same performance trend as in the RC tests, with ALIAS abstractions scaling linearly

while SPICE simulations blow exponentially in time complexity.

As the base simulation used to create the abstractions just covered one scenario

between rest states, the generated automata had just one string. As there are no loops

within the given trace, and as expected, both automata achieved 100% of quality on

all sizes. However, when exposed to larger simulations (1000L) that applies random

stimuli over the signal reset, exercising uncovered scenarios, as expected, the quality

for this speci�c case was poor, reaching just 10.49% using the simple automaton and



50 Chapter 5. Case studies

Test size (steps)
Time (s)

SPICE Digital (simple) Digital (parallel)

11 0.003 0.005 0.005
110 0.008 0.005 0.005
1100 0.069 0.015 0.014
11000 0.657 0.054 0.063
110000 7.577 0.446 0.574
1100000 273.977 4.461 6.111
11000000 22277.405 44.602 60.746

Table 5.5: Integrator repeating L tests speed comparison between an analog simulation
and digital only simulation using ALIAS abstractions (simple and parallel).

100

103

104

104

104

104

0.0*100 2.0*106 4.0*106 6.0*106 8.0*106 1.0*107 1.2*107

Ti
m

e 
(s

)

Simulation size (steps)

SPICE
Digital (simple)

Digital (parallel)

(a)

10-3

10-2

10-1

100

101

102

103

104

105

101 102 103 104 105 106 107 108

Ti
m

e 
(s

)

Simulation size (steps)

SPICE
Digital (simple)

Digital (parallel)

(b)

Figure 5.7: Integrator repeating L tests speed (a) plain and (b) logarithmic scale charts,
demonstrating analog simulations exponential trend and the linear behavior of digital
only simulations using ALIAS abstractions (simple and parallel).

64.60% using the parallel automaton.

Given random simulations constructed to exercise integration scenarios from an

interval of 0 to 1V up to intervals of 0 to 11V over the signal out, we de�ne 14 scenarios.

To create such scenarios, in the opposite direction of the simulation example presented

in Figure 5.6 we exercise ranges of voltages over out by enabling and dislabing the

reset signal. By doing so, we aim to cover voltage integration operations ranging from

0 to 1V up to intervals from 0V to 11V , supplying in fact more scenarios than the ones

present in the targeted random simulations. As shown in Table 5.6 and Figure 5.8, by

increasing the number of scenarios covered in the base simulation, both abstractions

shows a gain in quality when compared to the simulation with just one scenario. In the

simple automaton, the quality reaches up to 25% with 10 scenarios in place. However,

from the eleventh scenario on, the increased non-determinism causes its quality to fall

to 19.91% at 14 simulation scenarios used. On the other hand, the parallel automaton,



5.3. Analog comparator 51

demonstrates an increasing quality as each scenario is added, reaching up to 88.2%

with 11 scenarios and stabilizing at that number. As we only are looking at a single

input value (the reset signal) as a condition to transition in the automaton, on some

occasions smaller sub-automata that just erred out or completed its execution may

start to recognize a sequence belonging to another longer sub-automata �rst, and get

selected by the arbiter, as the arbiter always selects sub-automata in the same order.

As it happens, this is the cause of why a greater level of quality was not achieved on

these tests for the parallel automaton.

 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14

 25.28

 88.2

Q
ua

lit
y 

(%
)

Number of scenarios

Digital (simple)
Digital (parallel)

Figure 5.8: Integrator random tests comparing ALIAS abstractions (simple and paral-
lel) quality with the amount of scenarios used to create the abstractions for simulations
of 1000L sampling points.

5.3 Analog comparator

One of the most popular uses of an analog comparator is to simply compare if the

voltage from a source a is lower than another b. Thereon, based on the Linear Tech-

nology LT1011 analog comparator [Linear Technology, 1991] the circuit on Figure 5.9

was used. For this circuit, we created an abstraction using a base simulation covering

all cases from 0 to 5V with 5 levels, rendering 25 scenarios.

Performance-wise, for a 100000 steps random simulation, the analog SPICE simu-

lation took 696.619s to execute, while the digital simulation using ALIAS abstractions

took 0.807s, for the simple automata, and 3.544s, for the parallel model, a speedup of

O(102) in both cases. Moreover, the quality of the simple automata-based abstraction

reached 84.78% while the parallel one, 100%. The high quality achieved on the simple

automata (which has 25 possible transitions from the initial state) can be explained due

to the fact that even without any reasoning over the states, one has 50% of answering



52 Chapter 5. Case studies

Number of scenarios
Quality

Digital (simple) Digital (parallel)

1 14.60% 64.60%
2 14.84% 64.65%
3 15.74% 64.80%
4 16.75% 65.00%
5 17.46% 65.98%
6 18.57% 67.47%
7 19.45% 70.79%
8 21.19% 76.32%
9 22.80% 87.24%
10 25.28% 87.27%
11 22.51% 88.20%
12 21.70% 88.20%
13 20.19% 88.20%
14 18.91% 88.20%

Table 5.6: Integrator random tests comparing ALIAS abstractions (simple and parallel)
quality with the amount of scenarios used to create the abstractions for simulations of
1000L sampling points.

LT1011

-V
+V

a

b

s

out

Figure 5.9: Typical analog comparator topology.

the question whether a < b, and, as con�rmed in simulations, in many situations, this

was the case. However, the parallel automata got an exact match on all comparisons.

5.4 PLL

Phase-locked-loops (PLLs) is one of the most essential components on modern ICs and

is used on a variety of timing related functions, such as demodulation, clock recovery

and clock de-skewing. A PLL, as illustrated in Figure 5.10, is a system that generates



5.5. DAC and ADC converters 53

an output signal based on the phase of an input signal. For that, the phase of the

output signal is continuously adjusted based on the phase di�erence between the input

and the generated output signal. The main goal of this feedback system is to lock the

output phase to a speci�c relation with regard to the input phase. On synchronization

systems, this point can be seen as when both input and output phases are locked in.

Reference OutputCD4046

Figure 5.10: Typical PLL-based synchronizer topology.

The PLL circuit selected for analysis is based on the CD4046 [Fairchild Semi-

conductor, 2003] data-sheet and implements a simple clock synchronizer. For this case

study, we take a PLL with a reference clock of 0.2MHz as the system input, that is,

with this circuit we aim to regenerate a clock signal based on the system input over

the output signal. Based on the used PLL speci�cation, we created 18 scenarios for the

base simulation, covering an out-of-sync output clock being locked in with the reference

one. More importantly, the synchronization behavior was captured using just two of

the PLL signals, the reference clock and the circuit output (which was taken as both

input and output of the created abstraction). As a basic set of tests, we compare run-

ning the analog simulation against an already synchronized output clock and a digital

simulation over ALIAS abstractions. Next, we analyze the abstractions behavior over

an out-of-sync output clock simulation. As with this test we only aim to verify the

ability of the system to synchronize over an external signal, we measure the simulation

in terms of the reference clock periods. The results, for 1000 periods simulations are

presented in Table 5.7 and Table 5.8. For the �rst set of tests, the simple automata

reached nearly 85% of quality with at 103 order speedup. The parallel model, reached

100% of quality with the same speedup order of magnitude. As for the second set of

tests, the simple automata reached just had just 32.93% of quality, while the parallel

model, reached 99.29%.

5.5 DAC and ADC converters

On this last case study we analyze two blocks, a 5-bit digital-to-analog converter (DAC)

built using a resistor ladder and a 5-bit �ash analog-to-digital converter (ADC). The

key functionalities of these elements is to interact with the inherently analog external



54 Chapter 5. Case studies

Test case
Time (s)

SPICE Digital (simple) Digital (parallel)

Synced reference 34.761 0.019 0.026
Out-of-sync reference 33.189 0.016 0.021

Table 5.7: PLL synchronizer basic 103 periods simulations speed comparison between
an analog simulation and digital only simulation using ALIAS abstractions (simple and
parallel).

Test case
Quality

Digital (simple) Digital (parallel)

Synced reference 84.78% 100.00%
Out-of-sync reference 32.93% 99.29%

Table 5.8: Quality ratios for PLL synchronizer 103 periods simulation tests over ALIAS
abstractions (simple and parallel).

world. While the DAC outputs stimuli data to such environment, the ADC and reads-

in stimuli coming from that source. Figure 5.11a illustrates a such typical topology.

DAC
Digital
Circuit
B

Digital
Circuit
A

External
World ADC

(a)

DAC
Digital
Circuit
B

Digital
Circuit
A

ADC

(b)

Figure 5.11: DAC and ADC (a) typical topology and (b) topology used for tests.

Thus, to test the behavior of such components from a digital perspective, we built

an abstraction for each one of these blocks and then connected the DAC's outputs into

the ADC's inputs, as shown in Figure 5.11b, covering all 5-bit conversion scenarios

for each component. Both digital circuits at the layout ends (A and B) are simple

interfaces, emitting stimuli that should be matched at the conversion end. With this

topology in place, an analog simulation took 740.292s for a simple 1000 steps sim-

ulation, while the parallel abstracted ALIAS model powered one took with 100% of

quality just 0.160s, an O(103) speedup. Due to the simple model non-determinism

dominance, it only reached 3.71% of quality, running within 0.020s. Di�erently from



5.5. DAC and ADC converters 55

the analog converter, into which the component operation could yield in just two pos-

sible outcomes, here we have 32 possible di�erent results. Therein quality ratio for the

simple model falls within the same ratio of a completely random system.





Chapter 6

Conclusions

We've developed and demonstrated ALIAS, a new tool for producing high quality

abstract models from analog circuits based on existing data. As a result, digital engi-

neers can now convert analog circuits into discrete models that scales linearly with the

size of the simulation, in place of exponential analog simulations. Moreover, the ab-

stractions can be created with adjustable settings for higher or lower precision marks,

being synthesized with low user intervention and without the need of intensive SPICE

simulations or complex mathematical methods, as present in current approaches.

6.1 Contributions

As a result of this work, digital engineers have a new tool for abstracting analog

circuits into discrete models, which can be leveraged in the digital domain, providing

abstractions that scales linearly with the size of the simulation, in place of exponential

analog simulations. More, the abstractions can be created with adjustable settings for

higher or lower precision settings.

For analog engineers, such abstractions can be used to prone for illegal behaviors

spotted at higher levels, which could go unnoticed during the analog veri�cation of

a circuit, given the more complex nature of analog circuits. In addition, as digital

engineers identify points which needs more coverage by the abstraction in the digital

domain, analog engineers can further improve their tests, enabling a viable channel for

testing not just the integration, but both analog and digital systems in a better way.

57



58 Chapter 6. Conclusions

6.2 Limitations and Future Work

6.2.1 Automata history and transition improvements

mechanisms

We aim to explore automata that takes into consideration the simulation history, thus

avoiding past wrong choices and privileging the ones which did not lead the abstraction

into error states. For this end, hardware prediction units, inspired in the concepts of

branch prediction of modern processors [Hennessy and Patterson, 2011], can be used.

6.2.2 Segment Boundary Inference

Given the proposed mechanisms of selecting boundaries, we also target to explore bet-

ter ways to infer the best candidate for boundary in a circuit. For that, we propose

analyzing large trace collections and build a statistical pro�le of possible boundaries,

reporting data such as how many occurrences and common strings within each bound-

ary markers. After that, the user can either select the candidates that most looks like

the actual resting state or opt for automated inference.

6.2.3 Recognition of Common Data Patterns

During our tests we often detected patterns on data signals that could be encoded and

compressed down with smarter structures, such as counters, as is the case of the signal

out of the integrator case study from Section 5.2. Therein, we expect to explore this

�eld and employ established and or novel techniques on recognizing such patterns.

6.2.4 Data and control signals handling

We also plan to study a way of properly handling data and control signals going/coming

from the analog domain, which could allow the construction of more compact and yet

more precise abstractions. This idea can be applied to construct far more precise

automata. As an example, veri�ed with prototypes, the integrator from Section 5.2

reached 100% of quality.

6.2.5 Formal veri�cation

Although we did not performed any tests with formal veri�cation tools, which for

RTL-based models there is still no free viable alternatives, all abstractions produced

by ALIAS can be used on such systems.



Bibliography

Aadithya, K. and Roychowdhury, J. (2012). Dae2fsm: Automatic generation of ac-

curate discrete-time logical abstractions for continuous-time circuit dynamics. In

Design Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE, pages 311�

316. ISSN 0738-100X.

Alexander, C. and Sadiku, M. (2008). Fundamentals of Electric Circuits. McGraw Hill

Higher Education, 4th edition. ISBN 9780071284417.

Angluin, D. (1987). Learning regular sets from queries and counterexamples. Inf.

Comput., 75(2):87--106. ISSN 0890-5401.

Asarin, E., Dang, T., and Maler, O. (2001). d/dt: a veri�cation tool for hybrid

systems. In Decision and Control, 2001. Proceedings of the 40th IEEE Conference

on, volume 3, pages 2893�2898 vol.3.

Barke, E., Grabowski, D., Graeb, H., Hedrich, L., Heinen, S., Popp, R., Steinhorst, S.,

and Wang, Y. (2009). Formal approaches to analog circuit veri�cation. In Proceedings

of the Conference on Design, Automation and Test in Europe, DATE '09, pages 724--

729, 3001 Leuven, Belgium, Belgium. European Design and Automation Association.

Chen, J., Henrie, M., Mar, M., and Nizic, M. (2012). Mixed-Signal Methodology Guide.

Cadence Design Systems, Incorporated. ISBN 9781300035206.

El Tahawy, H., Rodriguez, D., Garcia-sabiro, S., and Mayol, J.-J. (1993). Vhdeldo: A

new mixed mode simulation. In Design Automation Conference, 1993, with EURO-

VHDL '93. Proceedings EURO-DAC '93., European, pages 546�551.

Fairchild Semiconductor (2003). Mm74hc4046.

Friedland, B. (2012). Control System Design: An Introduction to State-Space Methods.

Dover Books on Electrical Engineering. Dover Publications. ISBN 9780486135113.

59



60 Bibliography

Ghasemi, H. and Navabi, Z. (2005). An e�ective vhdl-ams simulation algorithm with

event. In VLSI Design, 2005. 18th International Conference on, pages 762�767.

ISSN 1063-9667.

Hartong, W., Hedrich, L., and Barke, E. (2002). Model checking algorithms for analog

veri�cation. In Design Automation Conference, 2002. Proceedings. 39th, pages 542�

547. ISSN 0738-100X.

Hennessy, J. L. and Patterson, D. A. (2011). Computer Architecture, Fifth Edition:

A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 5th edition. ISBN 012383872X, 9780123838728.

Henzinger, T. A., Ho, P.-H., and Wong-Toi, H. (1997). Hytech: A model checker for

hybrid systems. In Proceedings of the 9th International Conference on Computer

Aided Veri�cation, CAV '97, pages 460--463, London, UK, UK. Springer-Verlag.

Horowitz, P. and Hill, W. (2006). The Art of Electronics. Cambridge University Press.

ISBN 9780521422284.

IEEE (2001). IEEE Standard Verilog Hardware Description Language. IEEE Std

1364-2001, pages 324�343.

IEEE (2013). Ieee standard for systemverilog�uni�ed hardware design, speci�cation,

and veri�cation language. pages 1�1315.

Isaksen, B. and Bertacco, V. (2006). Veri�cation through the principle of least aston-

ishment. In Computer-Aided Design, 2006. ICCAD '06. IEEE/ACM International

Conference on, pages 860�867. ISSN 1092-3152.

Jaeger, R. C. (1987). Introduction to Microelectronic Fabrication. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA. ISBN 0-201-14695-9.

Karthik, A., Ray, S., Nuzzo, P., Mishchenko, A., Brayton, R., and Roychowdhury,

J. (2014). Abcd-nl: Approximating continuous non-linear dynamical systems using

purely boolean models for analog/mixed-signal veri�cation. In Design Automation

Conference (ASP-DAC), 2014 19th Asia and South Paci�c, pages 250�255.

Karthik, A. and Roychowdhury, J. (2013). Abcd-l: Approximating continuous linear

systems using boolean models. In Design Automation Conference (DAC), 2013 50th

ACM / EDAC / IEEE, pages 1�9. ISSN 0738-100X.



Bibliography 61

Kularatna, N. and Kyung, C.-M. (2008). Electronic circuit design: from concept to

implementation. Taylor & Francis, Hoboken, NJ.

Kurshan, R. and McMillan, K. (1991). Analysis of digital circuits through symbolic

reduction. Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-

actions on, 10(11):1356�1371. ISSN 0278-0070.

Liberali, V., Pettazzi, S., Ross, R., and Torelli, G. (2002). Challenges in mixed-signal

integrated system design for industrial applications. In Industrial Electronics, 2002.

ISIE 2002. Proceedings of the 2002 IEEE International Symposium on, volume 4,

pages 1335�1340 vol.4.

Linear Technology (1991). LT1011/LT1011A voltage comparator datasheet.

Linear Technology (2015). Ltspice iv.

Nagel, L. W. and Pederson, D. (1973). Spice (simulation program with integrated

circuit emphasis). Technical report UCB/ERL M382, EECS Department, University

of California, Berkeley.

Nenzi, P. and Vogt, H. (2014). Ngspice Users Manual Version 26.

Rashinkar, P., Paterson, P., and Singh, L. (2000). System-on-a-chip Veri�cation:

Methodology and Techniques. Kluwer Academic Publishers, Norwell, MA, USA. ISBN

0-7923-7279-4.

Semiconductor Research Corporation (2008). SRC Research Needs in Computer-Aided

Design and Test. Technical report.

Shannon, C. (1998). Communication in the presence of noise. Proceedings of the IEEE,

86(2):447�457. ISSN 0018-9219.

Silva, B. and Krogh, B. (2000). Formal veri�cation of hybrid systems using check-

mate: a case study. In American Control Conference, 2000. Proceedings of the 2000,

volume 3, pages 1679�1683 vol.3. ISSN 0743-1619.

Steinhorst, S. and Hedrich, L. (2008). Model checking of analog systems using an

analog speci�cation language. In Design, Automation and Test in Europe, 2008.

DATE '08, pages 324�329.

Stroud, C. E., Wang, L.-T. L.-T., and Chang, Y.-W. (2009). Chapter 1 Introduction.

In Wang, L.-T., Chang, Y.-W., and Cheng, K.-T. T., editors, Electronic Design



62 Bibliography

Automation: Synthesis, Veri�cation, and Test (Systems on Silicon), chapter 1 -

Introduction, pages 1--38. Morgan Kaufmann, Boston.

Synopsys Inc. (2013). Verdi3 NPI Training � FSDB Model.

Tuinenga, P. W. (1995). SPICE (3rd Ed.): A Guide to Circuit Simulation and Analysis

Using PSpice. Prentice-Hall, Inc., Upper Saddle River, NJ, USA. ISBN 0-13-158775-

7.

Vasudevan, S., Sheridan, D., Patel, S., Tcheng, D., Tuohy, B., and Johnson, D. (2010).

Goldmine: Automatic assertion generation using data mining and static analysis.

In Design, Automation Test in Europe Conference Exhibition (DATE), 2010, pages

626�629. ISSN 1530-1591.

Waller, M. (2010). PSpice A/D Tips & Tricks and PSpice AA. FlowCAD Application

Note.

Williams, S. (2015). Icarus verilog.


	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Goals
	1.2 Contributions
	1.3 Text Organization

	2 Background
	2.1 Electronic circuits
	2.1.1 Basic concepts
	2.1.2 Circuit elements
	2.1.3 Circuit networks
	2.1.4 Circuit dynamics

	2.2 Discrete Math Concepts
	2.2.1 Fundamentals
	2.2.2 Formal languages


	3 Related Work
	4 System Architecture
	4.1 System Overview
	4.2 A walkthrough of ALIAS
	4.3 Frontend: Analog Waveform Trace Processor (AWTP)
	4.4 Discrete Trace Database (DTD)
	4.5 Synthesis Engine
	4.6 Backend: Model compiler
	4.6.1 Automaton models
	4.6.2 DOT diagrams compilation
	4.6.3 Verilog models compilation


	5 Case studies
	5.1 RC delay line
	5.2 Integrator
	5.3 Analog comparator
	5.4 PLL
	5.5 DAC and ADC converters

	6 Conclusions
	6.1 Contributions
	6.2 Limitations and Future Work
	6.2.1 Automata history and transition improvements mechanisms
	6.2.2 Segment Boundary Inference
	6.2.3 Recognition of Common Data Patterns
	6.2.4 Data and control signals handling
	6.2.5 Formal verification


	Bibliography

