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Resumo

Classificação automática de documentos (CAD) é a base de muitas aplicações impor-
tantes, tais como filtragem de spam, mineração de opinião, organizadores de conteúdo e
identificação de autoria. Devido à sua simplicidade, eficiência, ausência de parâmetros
e eficácia em diversos cenários, abordagens Naive Bayes (NB) são amplamente uti-
lizadas como paradigmas de classificação. Contudo, estas abordagens não apresentam
eficácia competitiva quando comparada a outros métodos de aprendizagem estatística
modernos, como SVMs, em tarefas de CAD. Este comportamento está relacionado
com a falta de robustez do NB em abordar algumas características das coleções reais
de documentos, como desbalanceamento de classes e esparsidade dos dados. Nesta dis-
sertação, investigamos se a combinação de alguns modelos de aprendizagem NB com
diferentes propostas de ponderação de atributos pode melhorar a eficácia do NB em
tarefas CAD, considerando várias coleções de dados do mundo real. Verificamos que
uma combinação adequada destas estratégias pode produzir resultados equivalentes ou
mesmo superiores quando comparado com SVM. Além disso, investigamos o relaxam-
ento da suposição de independência dos atributos do Naive Bayes (também conhecido
como abordagens Semi-Naive Bayes) em grandes coleções textuais. Dados os elevados
custos computacionais dessas investigações, aproveitamos as arquiteturas das GPUs
para apresentarmos uma versão massivamente paralela da abordagem NB. Além disso,
com esta solução paralela, propomos quatro novas abordagens Semi-NB lazy. Em
nossos experimentos, nossas novas soluções lazy, não só são mais eficientes do que as
abordagens Semi-NB já existentes, assim como superam em termos de eficácia nossas
estratégias NB incrementadas que já tiveram um desempenho melhor do que o SVM.

Palavras-chave: Classificação Automática de Documentos, Naive Bayes, Semi-Naive
Bayes, Ponderação de Atributos, Paralelização.
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Abstract

Automatic Document Classification (ADC) is the basis of many important applications
such as spam filtering, opinion mining, content organizers and authorship identifica-
tion. Naive Bayes (NB) approaches are widely used as a classification paradigm, due to
their simplicity, efficiency, absence of parameters and effectiveness in several scenarios.
However, NB solutions do not present competitive effectiveness in ADC tasks when
compared to other modern statistical learning methods, such as SVMs. This is re-
lated to some characteristics of real document collections, such as class imbalance and
feature sparseness. In this master thesis, we investigate whether the combination of
some alternative NB learning models with different feature weighting techniques may
improve the NB effectiveness in ADC tasks, considering several standard real-world
datasets. We verify that a proper combination of these strategies may produce com-
parable or even superior results when compared to SVM. Moreover, we also present
an investigation on the relaxation of the NB attribute independence assumption (aka,
Semi-Naive approaches) in large text collections. Given the high computational costs
of these investigations, we take advantage of current manycore GPU architectures and
present a massively parallelized version of the NB approach. Moreover, supported by
the parallel implementations, we propose four novel Lazy Semi-NB approaches. In our
experiments, the new lazy solutions not only are more efficient than existing Semi-NB
approaches, but also surpassed our improved NB solutions in terms of effectiveness
that had already outperformed SVMs.

Palavras-chave: Text Classification, Naive Bayes Classifier, Semi-Naive Bayes heuris-
tics, Feature Weighting techniques, Parallelization.
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Chapter 1

Introduction

1.1 Context and Motivation

The amount of data created and shared nowadays in all types of platforms reached un-
precedented levels, making the organization and extraction of useful knowledge from
this huge amount of data one of the biggest challenges in Computer Science. Machine
learning techniques, such as Automatic Document Classification (ADC), have demon-
strated to be a viable path towards this goal. Particularly, ADC techniques aim at
building effective models capable of associating documents with well-defined semantic
categories in an automated way. ADC techniques are the core component of many
important applications such as spam filtering (Hovold [2005]), organization of topic
directories (Fahmi [2004]), identification of writing styles or authorship (Zheng et al.
[2006]), among many others.

ADC methods usually exploit a supervised learning paradigm (Sebastiani [2002]),
i.e., a classification model is first “learned” using previously labeled documents (training
set), and then used to classify unseen documents (the test set). There is a plethora of
supervised ADC algorithms available in the literature, such as Nearest-Neighbor clas-
sifiers (Yang [1999]), Support Vector Machines (Fan et al. [2008]), boosting (Schapire
and Singer [2000]) and Bayesian models (Manning et al. [2008]). In this work, we fo-
cus on the latter approach, due to its simplicity, efficiency, and effectiveness in several
scenarios. In particular, we focus on Naive Bayes approaches, the most widely used
Bayesian paradigm for text classification.

Although being a widely used classification paradigm in ADC, other statistical
learning methods, such as SVMs, have presented superior effectiveness than Naive
Bayes approaches. The lack of robustness of NB is related to some characteristics
present in real document collections, such as class imbalance and feature sparseness,

1



2 Chapter 1. Introduction

that may compromise some of the Naive Bayes premises (Rennie et al. [2003]; Kim
et al. [2006]).

1.2 Master Thesis Hypotheses

In this section, we present the fundamental hypotheses used as guide for the construc-
tion of the work:

• There is a combination of modeling and feature weighting that makes NB com-
petitive with state-of-the-art classifiers in real scenarios.

• Alleviating or removing the premise of independence among attributes may im-
prove the effectiveness of NB in real scenarios.

• Adopting new parallel techniques (e.g., GPU) may allow more efficient NB im-
plementation.

• This parallel strategy may make feasible the execution of more complex Bayesian
networks in real scenarios, since they are extremely expensive in large scenarios.

1.3 Work Description

Naive Bayes is often used as a baseline in text classification because it is fast and
easy to implement. However, some characteristics present in text collections, such as
class imbalance and feature sparseness may compromise the Naive Bayes classification
effectiveness. First, class imbalance problem (Matthijssen [2000]) happens when the
number of documents of one or few classes spams most of the documents in a dataset.
This introduces a bias in the trained classifier towards assigning most unseen documents
to the largest classes, incurring in a poor classification effectiveness in the minority
classes, the most important ones in many applications (e.g. email spam, vandalism).
Second, sparseness problem is related to the low frequency of certain features (i.e.,
terms/words) in some documents (Matthijssen [2000]). In Naive Bayes, the conditional
probability of a term aj given a class ci is estimated using all training documents from
ci in which aj occurs. Such conditional probabilities may be negatively affected if
aj occurs only in a few documents, especially in smaller classes (i.e., those with few
documents).

There are some proposals in the literature to overcome such problems, either by
proposing some changes in the construction of the Naive Bayes learning model (Zhang
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and Oles [2000]; Rennie et al. [2003]; Adewole et al. [2014]) or by means of feature
weighting strategies more adequate to ADC, in a preprocessing phase prior to the
model construction (Kim et al. [2006]; Matthijssen [2000]). Although both research
lines may produce significant improvements in the Naive Bayes effectiveness, when
compared to its original version, the resulting methods are still not capable of surpass-
ing some state-of-the-art ADC method such as SVMs. Thus, as our first contribution
we present a broad and original (never reported) study on the combination of different
Naive Bayes-based learning models with different feature weighting strategies, evaluat-
ing these combinations in several real-world datasets. Our experimental results show
that a proper combination of learning paradigms and weighting strategies may produce
results comparable or even superior to SVMs in several datasets, at a lower cost.

A third research line that has been investigated in order to improve the Naive
Bayes effectiveness are the so-called Semi-Naive Bayes methods, which relax the Naive
Bayes attribute independence assumption (Manning et al. [2008]), by reduction of
data (Chen and Wang [2012]) or, mainly, by means of extensions of the structure of
the learning model to represent feature dependencies (Friedman et al. [1997]; Keogh
and Pazzani [1999]). These strategies have produced gains when compared to NB in
small datasets, such as those related to bioinformatics. However due to their high com-
putational cost, inherent to the complexity of representing the term dependencies, they
cannot scale to large classification tasks. Thus, investigating whether the relaxation
of the Naive Bayes attribute independence assumption is effective in large ADC tasks
is still an open problem. In this context, we present our second and third contribu-
tions. The second contribution corresponds to an exclusive parallel version of the
Naive Bayes approach using graphic processing units (GPUs). This parallel version
allowed us to implement some Semi-Naive Bayes approaches, capable of running in
large text collections. Thus, our third contribution is an original study about the
impacts of the relaxation of the Naive Bayes assumption in large ADC tasks. In this
investigation, we also introduce four original parallel lazy Semi-Naive Bayes strategy
proposals which exploit the information of the document to be classified to reduce the
complexity of the Semi-Naive Bayes learned model. Our experimental results point
out that further improvements can be obtained with these models, depending on some
dataset characteristics.

In summary, the main research questions we address in this work are: (Q1)
Can a proper combination of a Naive Bayes learning paradigm with feature weighting
strategies, specially designed to deal with the ADC idiosyncrasies, be competitive of
surpass state-of-the-art classifiers such as SVMs? (Q2) Can we design an efficient Naive
Bayes implementation that allows to testing interesting, but very costly, proposals that
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relax the Naive Bayes independence assumption in large ADC tasks? and (Q3) If yes
for (Q2), are these Semi-Naive Bayes proposals capable of improving even further the
best combinations found in the answer of (Q1)?

1.4 Contributions

The main contributions of the work are:

1. a thorough study on the aforementioned combinations of Naive Bayes Strategies
and feature weighting approaches in five widely ADC datasets. More specifically,

• We review some proposals in the literature that try to overcome the ADC
idiosyncrasies, either by proposing some changes in the construction of the
Naive Bayes learning model (Rennie et al. [2003]; Zhang and Oles [2000];
Adewole et al. [2014]) or by means of feature weighting strategies more
adequate to the ADC task, in a preprocessing phase prior to the construction
of the model (Kim et al. [2006]; Matthijssen [2000]).

• We proposed a methodology that enables a deeper study of the impact of
these Naive Bayes strategies (Rennie et al. [2003]; Zhang and Oles [2000];
Adewole et al. [2014]) when combined with the feature weighting approaches
(Kim et al. [2006]; Matthijssen [2000]). We applied these combinations into
five real textual collections and compared with two ADC algorithms.

2. the proposal and implementation of a parallel version of the Naive Bayes algo-
rithm using graphic processing units (GPUs). This parallel version allowed us to
build a more complex Bayesian network, capable of running in large collections.

3. the proposal of new GPU-based lazy Semi-Naive Bayes approaches. Again, more
specifically,

• The introduced GPU-based parallel strategy of the Naive Bayes algorithm on
the previous contribution allowed us to alleviate the independence assump-
tion between the attributes, allowing us to build a more complex Bayesian
network.

• We investigate the real impact of the Naive Bayes attribute independence
assumption in real text collections and the proposed Semi-Naive Bayes ap-
proaches.
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1.5 Roadmap

The remainder of this work is organized as follows.

Chapter 2 In this chapter, we briefly describe the supervised ADC task, some evalu-
ation strategies and the GPU parallelism. We also present some of the notation
conventions adopted in this work.

Chapter 3 In this chapter, we describe related works. We start by describing some
problems found in Text Classification. Then we discuss the strategies proposed
in the literature that seek to alleviate these problems. We distinguish three
broad areas for doing so: applying feature weighting, modifying the structure
of the Naive Bayes and extending the Naive Bayes model by alleviating the
independence between attributes. Finally, also discussed the use of parallelism
through the graphics processing units in machine learning techniques.

Chapter 4 In this chapter, we describe the Naive Bayes learning paradigms and the
several weighting schemes we exploit. We provide an extensive combination of
proposed feature weighting strategies with different Naive Bayes models. We
also describes our experiments over theses approaches applied in five real textual
datasets.

Chapter 5 In this chapter, we describe our GPU-based parallel implementation of
the Naive Bayes algorithm.

Chapter 6 In this chapter, we describe and evaluate our four Semi-Naive Bayes ap-
proaches based on the several Semi-Naive Bayes we study. We start by introduc-
ing the Semi-Naive Bayes which we based and the proposing strategies. We also
describe our GPU-based parallel implementation of these Semi-Naive Bayes.

Chapter 7 Finally, in this chapter we conclude the dissertation, summarizing our
main findings and proposing some directions for further investigation.





Chapter 2

Basic Concepts and Settings

In this chapter, we briefly describe what is automatic document classification and
assessment strategies adopted throughout the work. We also present the parallelization
environment (GPU - CUDA), which was adopted to implement the strategies presented
in this master thesis.

2.1 Automated Document Classification

ADC methods usually exploit a supervised learning paradigm (Sebastiani [2002]), i.e.,
a classification model is first “learned” using previously labeled documents (training
set), and then used to classify unseen documents (the test set). Let di = (~x, ci) be
a document, where ~x denotes its vectorial (bag of words) representation and ci is a
categorical attribute from a finite set ci ∈ C indicating its class (C is a finite set
composed by all the possible classes). In a probabilistic perspective, the main goal of
ADC algorithm is to learn a discrete approximation of the class a posteriori probabil-
ity distribution P (ci|di) that underlies the relationships between documents and their
associated classes. This probability distribution is learned according to a training set
composed by already classified documents. There are two approaches for doing so,
either based on a direct estimation of P (ci|di), or based on an indirect estimation of
P (ci|di).

The first approach is called discriminative classifier and it tries to model depen-
dency on the observed data without making any assumption regarding the probability
density function for each class. It makes fewer assumptions on the distributions. On
the other hand, a generative classifier tries to learn the model by estimating the condi-
tional probability and the prior probability to estimate the class posteriori probability
distribution P (ci|di). In this case, one should assume a model for the class densi-

7



8 Chapter 2. Basic Concepts and Settings

ties P (di|ci) and its parameters are estimated from the training set. For example, a
normal distribution may be chosen, and its mean and variance parameters are esti-
mated according to the already classified data. Then the class a posteriori probability
distribution P (ci|di) is estimated according to the Bayes’ rule:

P (ci|di) =
P (ci) · P (di|ci)∑
c′∈C P (c′) · P (di|c′)

where P (c) is the prior probability and P (di|ci) is the conditional probability.
We assume c = f(~x) for some unknown function f , and the goal of learning is

to estimate the function f given a labeled training set, and then to make predictions
using ĉ = f̂(~x). The quality of such approximation is based on how well f̂ predicts the
class of unseen documents. Clearly, a function f̂ that accurately predicts all training
documents D may not be accurate to predict the classes of unseen documents. In this
case, we say f̂ is overfitted w.r.t. D. Hence, there exist a trade-off between complexity
(the more complex f̂ is, more specific patterns observed in the training set are learned)
and generalization power of f̂ (the more specific patterns observed in unseen documents
may not be observed in D).

It has been already proved that, asymptotically, discriminative classifiers are su-
perior to generative ones (Vapnik [1998]), with several reported experiments corroborat-
ing this finding (Drummond [2006]). Indeed, if there are not enough training examples,
the parametric model is deemed to overfit, decreasing its generalization power (Hastie
et al. [2001]). However, some authors claim, based on experimental evaluation, that
with realistic training set sizes, the generative classifiers may also perform as well as
or better than discriminative ones. This comes true if the assumed parametric model
used by the generative classifier is correct. In this case, the class priors become a useful
information which is ignored by the discriminative classifiers. In this work we show
that our generative classifier was able to outperform the discriminative classifiers (SVM
and KNN).

2.1.1 ADC Classifier

We selected two representative and widely used ADC algorithms as baselines in our
study. These algorithms are:

KNN: a lazy classifier that assigns to a test document ~dtest = (w1,j, w2,j, ..., wV,j), the
majority class among those of its k nearest neighbor training documents in the
vector space (where k is some user specified constant). Choosing an appropriate
k value is significant. If the k value is too small it is susceptible to overfitting.
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As well as having a k value that is too small it is important to choose a value
that isn’t too large as it can also lead to misclassification.

KNN determines the decision boundary locally, considering each training doc-
ument independently. Here, we use cosine similarity to determine the nearest
neighbors of a test document. The cosine similarity is measured by Equation 2.1.

cos(dneighborj , dtest) =
~dneighborj • ~dtest

| ~dneighborj | × |~dtest|
(2.1)

The similarity of cosine of neighbors that belong to the same class ci are grouped.
The class that express the highest similarity is the chosen one. Thus, the KNN’s
decision function is expressed by the Equation 2.2.

cmap = argmax
ci∈C

[
K∑
j=1

cos(dneighborj , dtest)× λi

]
(2.2)

where λi = 1 if dneighborj belong to ci. Otherwise, λi = 0.

Support Vector Machine (SVM): the SVM classifier aims at finding an optimal
separating hyperplane between positive and negative training documents, max-
imizing the distance (margin) to the closest points from both class. Given N

training documents represented as pairs (xi, yi), where xi is the weighted feature
vector of the ith training document and yi ∈ −1,+1 the set membership of the
document, SVM tries to maximize the margin between them on the training data,
which leads to better classification effectiveness on test data. We may state the
problem as

min
β,β0

1

2
||β||2 subject to yi(xTi β + β0) ≥ 1, (2.3)

where β is a vector normal to the hyperplane (the so-called weight vector), β0 is
its intercept, and 0 ≤ i ≤ N .

After introducing Lagrange multipliers αi (0 ≤ i ≤ N) for each inequality con-
straints in Equation 2.3, along with slack variables ξi to account for non-separable
data (a bounded tolerable training error rate), we form the following Lagrangian
(primal):
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LP =
1

2
||β||2 + C

N∑
i=1

ξi −
N∑
i=1

αi[yi(x
T
i β + β0)− (1− ξi)]−

N∑
i=1

µiξi, (2.4)

which we minimize with respect to β, β0 and ξi, where µi are Lagrange multipliers
employed to enforce ξi > 0. Setting the corresponding derivatives to zero, this
yields:

β =
N∑
i=1

αiyixi (2.5)

0 =
N∑
i=1

αiyi (2.6)

αi = C − µi, (2.7)

where αi ≥ 0, µi ≥ 0 and ξi ≥ 0, ∀i. By substitution into 2.4, we get the so-called
Lagrangian Wolfe (dual) function:

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj.

Furthermore, the solution must satisfy the Karush-Kuhn-Tucker (KKT) condi-
tions, which include, along with Equations 2.5, 2.6 and 2.7, the following ones:

αi[yi(x
T
i β + β0)− (1− ξi)] = 0

µiξi = 0

yi(x
T
i β + β0)− (1− ξi) ≥ 0,

(2.8)

where 0 ≤ i ≤ N .

Finally, the solution for β is β̂ =
∑N

i=1 α̂iyixi, with non-zero α̂i for support
points which lie in the support vectors. The solution for β0 may be devised by
Equation 2.8, normally averaging the solutions regarding the support points to
achieve numerical stability.

Thus, we can express the SVM’s decision function as:

F̂ = sign(xTβ + β0),



2.2. Evaluation Techniques 11

where the sign of the score is used to predict the example’s class. Since SVM is a
binary classifier, it should be adapted to handle multiclass classification problems.
The two most common strategies for doing so are the one-against-one and the
one-against-all (Manning et al. [2008]).

2.2 Evaluation Techniques

An important aspect to be considered is how to evaluate the effectiveness of a classifier
(that is, its accuracy in classifying unseen data or, in other words, its generalization
power), assessed by first learning a classification model based on the training set and
then applying it to classify a set of unseen documents (the test set). Some measures
of classification effectiveness are then used to assess the quality of the classification
model learned. Several measures for this purpose were proposed in the literature and
some of them are widely used by the Machine Learning community. Among the most
used measures are precision, recall and F1 measure. In order to describe each of these
measures in a binary classification, let’s consider the contingency table represented in
Table 2.1 (also known as confusion matrix), where TP, TN, FP and FN denote, respec-
tively, the number of true positives, true negatives, false positives and false negatives,
defined as:

True Positive (TP): positive test document correctly classified into the positive
class.

True Negative (TN): negative test document correctly classified into the negative
class.

False Positive (FP): negative test document incorrectly classified into the positive
class.

False Negative (FN): positive test document incorrectly classified into the negative
class.

The precision p of a performed classification denotes the fraction of all documents
assigned to the positive class ci by the classifier that really belong to ci. In terms of
the contingency table, this translates into

p =
TP

TP + FP
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Positive Ground Truth
Class = ci ci ci

Prediction ci TP FP
ci FN TN

Table 2.1: Contingency Table for Classification Effectiveness Evaluation.

The recall r of a performed classification denotes the fraction of all documents
that belong to the positive class ci that were correctly assigned to ci by the classifier.
Again, in terms of the contingency table, this can be expressed as

r =
TP

TP + FN

Finally, the F1 measure is defined as the harmonic mean of the precision and the
recall, given by

F1 =
2pr

p+ r

There are two conventional methods to evaluate classification algorithms when
applied to problems with more than two classes, namely by micro-averaging and macro-
averaging the F1 measure. The micro-averaged F1 (MicroF1) is calculated from a global
contingency table (similarly to Table 2.1), with the precision and recall being calculated
as a sum of each entry of the table:

pmicro =

∑|C|
i=1 TPi∑|C|

i=1 TPi + FPi

rmicro =

∑|C|
i=1 TPi∑|C|

i=1 TPi + FNi

In contrast, the macro-averaged F1 (MacroF1) is calculated by first calculating
the precision and recall values for each class and computing their average value:

pmacro =
1

|C|

|C|∑
i=1

TPi
TPi + FPi

rmacro =
1

|C|

|C|∑
i=1

TPi
TPi + FNi

Notice that the main difference between both strategies is that the MicroF1 is
a document pivoted measure that gives equal weights to the documents while the
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MacroF1 measure is a class pivoted measure that gives equal weights to the classes.

Since the ADC task may be seen as a stochastic process, it is fundamental to
adopt some evaluation strategies that guarantee the statistical validity of the obtained
classification results, which is achieved by replicating the experiments using different
training sets to learn a classification model. For this purpose, the cross validation
strategy has become a standard in the machine learning community. There are, at
least, two usual strategies for cross validation, the K-fold cross validation and the
repeated random sub-sampling (Kohavi [1995]).

The K-fold cross validation consists of randomly splitting the data into K inde-
pendent folds. At each iteration, one fold is retained as the test set, and the remaining
K - 1 folds are used as training set. The repeated random sup-sampling consists of
randomly selecting a fraction of documents from the dataset, without replacement, to
compose the test set, and the remaining documents retained as the training set. This is
performed for each replication. Since in the K-fold cross validation the size of the folds
are dependent of the number of iterations, it becomes more suitable to medium/large
sized datasets, while the repeated random sub-sampling is usually adopted to small
sized datasets when the number of replications is large.

For more details on ADC and evaluation strategies, we refer the reader to Baeza-
Yates and Ribeiro-Neto [2011]; Hastie et al. [2001]; Manning et al. [2008].

2.3 GPU and CUDA

General purpose parallel programming on GPUs is a relatively recent phenomenon.
GPUs were originally hardware blocks optimized for a small set of graphics operations.
As demand arose for more flexibility, GPUs became increasingly more programmable.
Early approaches for computing on GPUs cast computations into a graphics framework,
allocating buffers (arrays) and writing shaders (kernel functions). Several research
projects looked at designing languages to simplify this task. In late 2006, NVIDIA
introduced its CUDA architecture and tools to make data parallel computing on a
GPU more straightforward. Not surprisingly, the data parallel features of CUDA map
pretty well to the data parallelism available on NVIDIA GPUs.

A GPU is connected to a host (CPU) through a high speed IO bus slot, typi-
cally PCI-Express in current high performance systems. The GPU has its own device
memory, up to several gigabytes in current configurations. Data is usually transferred
between the GPU and host memories using programmed DMA, which operates con-
currently with both the host and GPU compute units, though there is some support
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for direct access to host memory from the GPU under certain restrictions. As a GPU
is designed for stream or throughput computing, it does not depend on a deep cache
memory hierarchy for memory performance. The device memory supports very high
data bandwidth using a wide data path.

In 2007, NVIDIA saw an opportunity to bring GPUs into the mainstream by
adding an easy-to-use programming interface, which it dubbed CUDA, or Compute
Unified Device Architecture. This opened up the possibility to program GPUs with-
out having to learn complex shader languages, or to think only in terms of graphics
primitives (Cook [2013]).

CUDA is an extension to the C language that allows GPU code to be written in
regular C. The code is either targeted for the host processor (the CPU) or targeted
at the device processor (the GPU). The host processor spawns multithread tasks (or
kernels as they are known in CUDA) onto the GPU device. The GPU has its own
internal scheduler that will then allocate the kernels to whatever GPU hardware is
present. We’ll cover scheduling in detail later. Provided there is enough parallelism in
the task, as the number of SMs in the GPU grows, so should the speed of the program.
CUDA, unlike its predecessors, has now actually started to gain momentum and for the
first time it looks like there will be a programming language that will emerge as the one
of choice for GPU programming. Given that the number of CUDA-enabled GPUs now
number in the millions, there is a huge market out there waiting for CUDA-enabled
applications.

In CUDA, a kernel function specifies the code to be executed by all threads during
a parallel phase. Since all these threads execute the same code, CUDA programming
is an instance of the well-known SPMD - Single Program, Multiple Data (Atallah and
Blanton [2010]) parallel programming style, a popular programming style for massively
parallel computing systems. Figure 2.11 illustrates the concept of data parallelism
with a vector addition example. In this example, each element of the sum vector C
is generated by adding an element of input vector A to an element of input vector B.
For example, C[0] is generated by adding A[0] to B[0], and C[3] is generated by adding
A[3] to B[3]. All additions can be perform in parallel.

When a host code calls or launches a kernel, it is executed a large number of
threads on a device. All threads that are generated by a kernel launch are collectively
called a grid. Each grid is organized into an array of thread blocks. All blocks of a grid
are of the same size and can contain up to 1,024 threads. The number of threads in each
thread block is specified by the host code when a kernel is launched. Unique coordinates

1Image taken from the book Programming Massively Parallel Processors
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Figure 2.1: Data Parallelism in vector addition.

(blockIdx and threadIdx ) variables allow threads of a grid to identify themselves and
their domains of data. This model of programming compels the programmer to organize
threads and their data into hierarchical and multidimensional organizations.

The GPU architecture has two levels of parallelism, wherein the first level there
are P streaming multiprocessors (SMs) and within each multiprocessor there are p
streaming processors (SPs). Thus a parallel program can be first divided into blocks of
computation that can run independently on the P SMs (fat cores), without communi-
cating with each other. These blocks, in turn, have to be further divided into smaller
tasks (threads) that execute on the SPs (thin cores), but with each thread being able
to communicate with other threads in the same block. Each of these threads has access
to a larger global memory as well as to a small but fast shared memory and registers.

The GPU supports thousands of light-weight concurrent threads and, unlike the
CPU threads, the overhead of creation and switching is negligible. To hide the high
latency of the global memory, it is important to have more threads than the number
of SPs and to have threads accessing consecutive memory addresses that can be easily
coalesced. Another important data movement channel is the PCI-Express connection,
whereby CPU and GPU can exchange data between each one’s address space but in a
much slower speed. The GPU programming model requires that part of the application
runs on the CPU while the computationally-intensive part is accelerated by the GPU.
Figure 2.2 shows the logical organization of a GPU architecture.
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Figure 2.2: Architecture of a simplified GPU.



Chapter 3

Related Work

In this chapter we present the strategies proposed in the literature to deal with the
problems discussed in the previous section. First, we present the strategies that per-
form some adjustments in the Naive Bayes model, making it more robust for text
classification. Then, we present the feature weighting approaches that are used to
weight the attributes values of each document in the training set. Then, we present
some proposals in the literature that extend the Bayesian model, alleviating the as-
sumption of independence between attributes assumed by the Naive Bayes algorithm.
These strategies are called Semi-Naive Bayes. Finally, we discuss the use of GPU-based
parallel implementations in classification algorithms. These implementations are able
to achieve high levels of parallelism and lower power consumption. A strategy that
could be exploited in the Semi-Naive Bayes strategies, since they are extremely costly
and unfeasible in terms of time execution when applied to real scenarios, such as real
textual collections.

3.1 Naive Bayes Limitations

A fundamental assumption assumed by most automatic classifiers is that the data used
to learn the classification model are random samples independently and identically
distributed (i.i.d.) of a statistical distribution that governs the data. However, this
may not be the case. Indeed, in many real scenarios the training data do not follow the
same distribution of the test data, compromising the effectiveness of the classification
algorithms.

The Naive Bayes algorithm is one of the most widely used techniques, due to
its simplicity and efficiency in several scenarios, especially when applied to scenarios
in which the attributes are independent, making their “ naive ” assumption more re-

17
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liable. Normally in text classification, its effectiveness is not as good as some other
statistical learning methods. This fact is related to some characteristics presented in
real document collections, such as unbalanced data, sparsity, among others, that may
compromise some of Naive Bayes premises.

In Rennie et al. [2003] and Kim et al. [2006], the authors described some prob-
lems faced by the Naive Bayes classifiers, when applied to real textual scenarios. The
principal factors are:

• Class imbalance

• Document length

• Feature sparseness

The unbalanced class problem (Witten and Frank [1999]) refers to scenarios where
the number of documents of one or few classes far exceeds the number of documents in
the other classes. The amount of documents in classes is an important factor, since it is
related to the amount of information used to learn the classification model (P (di|ci)).
So, if the class has sufficient samples, the classifier can learn properly to classify new
instances of that class. As for the minor classes, the lack of information inhibits the
prediction of new samples, so that the classifier tends to classify them as samples of
the majority class.

The document length is another important factor, which may affect in the ef-
fectiveness of the classification, especially when this factor is combined with the class
imbalance. Short documents are brief and the frequency of words is generally low,
thus the relevant words occur once or twice in the document. In longer documents,
words are more frequent, so relevant words usually occur more often in the document.
Thus, when a collection has long and short documents, the relevant words of the short
documents are negligible when compared with the relevant words of longer documents,
since these are more frequent. Imagine the case where minority classes have a majority
of short documents. In this case, the class has a much lower amount of information
due to infrequency of documents and attributes. Thus, the estimate P (di|ci) for a test
document for the minority class will be hidden by the estimate of the majority classes,
converging the classification of minority class documents to the majority classes.

3.2 Naive Bayes Strategies and Feature Weighting

The Naive Bayes is one of the most popular machine learning methods. Its simplicity,
combined with its efficiency, makes it a very attractive method in various classifica-
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tion scenarios. However, this simplicity in the construction of the classification models
may significantly compromise the effectiveness of NB in some scenarios, such as tex-
tual document classification. In Rennie et al. [2003], several disadvantages of the more
traditional Naive Bayes Multinomial model (Manning et al. [2008]) are presented in
real-world text collections. The authors argue that some characteristics of document
collections such as imbalance among classes and data sparsity, significantly compro-
mise the learning model proposed by the Naive Bayes method. Based on this study,
the authors proposed a simple heuristic based on data transformations and simple ad-
justments in the construction of the learning model, which was called Transformed
Weight-normalized Complement Naive Bayes (TWCNB). The main idea of this heuris-
tic is to perform a number of feature frequency transformations and adjustments in
computing probabilities to improve the Naive Bayes modeling text classification. Fol-
lowing this idea, Zhang and Oles [2000] presented another proposal for construction
of models that combine Multinomial Naive Bayes with the technique one-versus-all
(Zhang and Oles [2000]), widely used in multiclass classification scenarios. Basically
this proposal uses the one-versus-all technique to balance information among classes,
smoothing the imbalance.

A more recent study shows that smoothing Naive Bayes may improve the classi-
fication performance (Adewole et al. [2014]), since smoothing aims to adjust the prob-
ability of an unseen event, which arises due the data sparseness. According to Zhai
and Lafferty [2001] smoothing may improve the reliability of Bayesian model, by as-
signing non-zero probabilities to terms that do not occur in the document. Following
this research strategy, the authors of Adewole et al. [2014] applied the concept of linear
interpolation smoothing (Jelinek-Mercer smoothing) to Naive Bayes Spam Classifica-
tion. This combination performed well at improving spam classification, also reducing
false positives.

Another research direction proposed to make Naive Bayes algorithm more effec-
tive in ADC is the use of different feature weighting strategies. In Kim et al. [2006]
the authors proposed a per-document length normalization approach by introducing
multivariate Poisson model for Naive Bayes text classification. In addition, the au-
thors proposed a method of weighting that may improve the efficiency of the Naive
Bayes classification in rare classes. Although both research lines showed interesting
results in a isolated way, by being able to improve the effectiveness of Naive Bayes
when compared to their traditional Multinomial version, we are not aware of studies
that combine these two lines.
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3.3 Semi-Naive Bayes

As mentioned earlier, Naive Bayes is based on the premise that feature occurrences
in documents of different classes are independent (Manning et al. [2008]). The main
reason for the adoption of this premise is the time complexity, since the construction
of a complete and optimal Bayesian network is an NP-hard problem (Cooper [1988]).
Thus, a strategy that has being considered (called semi-Naive Bayes) is based on heuris-
tics that relax the assumption of independence without ensuring the optimal model.
A number of semi-Naive Bayes methods have been proposed in recent years (Fried-
man et al. [1997]; Keogh and Pazzani [1999]; Zhang et al. [2005]). They fall into two
categories: data-based and structure-based methods. Those on the first category
aim at choosing the training data such that the dependencies within the chosen data
are weaker than those in the whole dataset. The local learning methods, such as Lazy
Bayesian Rules (Zheng and Webb [2008]), accommodate violations of the independence
assumption by choosing a desired set of the training samples on which Naive Bayes is
applied. Another group of methods in the data-based category apply Naive Bayes on
a subset of attributes. This is achieved by feature selection (Zheng et al. [2004]) which
removes irrelevant and redundant attributes.

The structure-based group of Semi-Naive Bayes techniques extend the structure
of the Naive Bayes (structure extension), approximating it as much as possible to a
Bayesian network, either by some latent variables to connect correlated features, as Hid-
den Naive Bayes (Zhang et al. [2005]) or by explicitly representing feature dependencies
(Keogh and Pazzani [1999]). Interdependencies among features are also allowed, being
usually modeled by the z-dependence concept, introduced in Sahami [1996], in which
each feature is considered dependent on the class and on other z features, making possi-
ble the construction of Bayesian networks. The Naive Bayes establishes a 0-dependence
while most existing methods of this group works with a 1-dependence, such as Tree
Augmented Naive Bayes, also known as TAN (Friedman et al. [1997]). In the case
of this latter work, learning is performed using a conditional mutual information of
each pair of features, keeping the pairs that increment quality classification the most.
The Super Parent TAN (SP-TAN) is a heuristic that extends the TAN. The heuristic
is greedy and optimizes the search space by correlated features (Keogh and Pazzani
[1999]). According to experimental results conducted by the authors, the strategy is
more effective than traditional Naive Bayes. However, due to its high computational
cost, in both time and memory consumption, all these strategies have been evaluated
only in small datasets, such as small bioinformatics databases. To the best of our
knowledge, the effectiveness of suppressing this premise in large ADC tasks has not
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been evaluated yet.

3.4 GPU parallelization

A practical challenge common to all machine learning approaches is how to apply them
in real scenarios, where the volume of data is typically huge and the characteristics of
the collections vary significantly. Some of the most commonly used techniques to deal
with such issues are dimensionality reduction by feature selection (Zheng et al. [2004]),
whose goal is to keep only the features that better “define” the documents, and data
indexing (Christen [2012]; Cha and Yoon [2002]), whose goal is to represent the data
in a more direct and efficient way. Another solution that has been adopted to address
these issues is to exploit parallel computation, either by means of distributed mem-
ory strategies (Ruocco and Frieder [1997]; Kruengkrai and Jaruskulchai [2002]), or by
means of massive parallelism through graphic processors (Kumarihamy and Arundhati
[2009]; Grahn et al. [2011]; Lin and Chien [2010]; Garcia et al. [2008]; Andrade et al.
[2013]). This last group of strategies has recently demonstrated very interesting results,
since they are capable of producing parallelism levels much higher than those achieved
by CPUs, associated with a smaller energy consumption (Timm et al. [2010]).

In Kumarihamy and Arundhati [2009], the authors presented an interesting study
about how several machine learning techniques may be implemented using GPUs, more
specifically the CUDA architecture(Fatica and Luebke [2007]). Regarding ADC, the
authors of Grahn et al. [2011] presented a parallel implementation in CUDA for the
meta-learning approach Random Forest, with a significant reduction in execution time.
Parallel versions of SVM (Lin and Chien [2010]), KNN (Garcia et al. [2008]) and DB-
SCAN (Andrade et al. [2013]) algorithms are also available. More specifically, in Lin
and Chien [2010], the authors introduced several techniques to accelerate SVM in
GPUs, including a sparse matrix format to enhance performance, achieving speedups
between 55x and 134x. In Garcia et al. [2008], the authors applied a data segmenta-
tion method to distance calculations, adapted to the model of threads and hierarchy
of memories of the GPU, also achieving interesting results. Finally, in Andrade et al.
[2013] the authors adopted a simple data indexing by graphs that allows various paral-
lelization opportunities to be explored in GPU. This GPU version achieves speedups of
up to 100x. However, to the best of our knowledge, there is no GPU-based implemen-
tation of the Naive Bayes algorithm reported in the literature. Due to widely spread
use of this technique, its massive parallelization is by itself a relevant contribution.
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3.5 Chapter Summary

In this chapter we introduced the problems present in classification (especially with
the Naive Bayes algorithm) when applied in textual datasets. We also reported some
studies that seek to solve these problems through feature weighting techniques or im-
proving the structure of the Naive Bayes model. Furthermore, we discussed studies
that extends the Bayesian network, relaxing the assumption of independence between
attributes of the Naive Bayes algorithm, this strategies are called semi-Naive Bayes.
Since this Semi-Naive Bayes strategies are extremely costly and unfeasible in terms
of time execution when applied to real scenarios, such as real textual collections, we
discussed the use of GPU for parallel implementation for machine learning algorithms.



Chapter 4

Combining Learning Models and
Feature Weighting Strategies

4.1 Naive Bayes Learning Models

As previously mentioned, some premises of the traditional NB model are significantly
compromised by some characteristics of real text collections, such as the class imbalance
and the term sparseness. In this Section, besides presenting the traditional Naive Bayes,
we introduce some of the most important extensions aimed at making it more resilient
to the problems presented in Chapter 3. All the models presented in this Section are
used in our experimentation.

4.1.1 “Traditional” Naive Bayes

The Naive Bayes (Manning et al. [2008]) calculates the “score” of a class ci as the prob-
ability of a document dt being assigned to class ci. Based on this score, a class ranking
is created and NB assigns to dt the class in the top of the ranking. More formally, let
P (ci|dt) be the probability of a test document dt(a1, a2, . . . , aj) to belong to the ci class,
where (a1, a2, . . . , aj) is a feature vector (binary or weighted) representing the term set
of document dt. This probability is calculated using the Bayes Theorem. However,
the calculation of P (ci|dt) has a high computational cost, given that the number of
possible vectors dt is very high due to the potential number of term dependencies. To
attenuate this problem, the NB algorithm assumes that the occurrence of all terms is
independent from each other (the NB independence assumption), a simplification that
makes the classification problem computationally viable. Thus, P (ci|dt) is defined as:
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P (ci|dt) =
P (ci)

∏
∀j∈dt P (aj|ci)
P (dt)

(4.1)

By observing Equation 4.1, we see that the fundamental question in the P (ci|dt)
definition is how to estimate P (aj|ci). Thus, according to Manning et al. [2008], we
define:

P (aj|ci) =
Tci(aj) + α∑

v∈V Tci(v) + α · |V|

where Tci(aj) is the number of occurrences of term aj in class ci and
∑

v∈V Tci(v) is
the summation of the occurrences of all terms in documents belonging to ci. To avoid
inconsistencies (e.g., division by zero), a weighted Laplace smoothing is usually applied,
consisting of an addition of an α parameter to the numerator and as a multiplication
factor to the vocabulary size in the denominator.

In ADC, the goal is to find the “best” class for dt, usually defined as the one
with the highest conditional probability. To avoid computational precision losses (e.g.,
due to floating point underflow), it is usually more adequate to add the log of the
probabilities instead of performing the previously defined multiplication. Thus, this
maximization, in most NB implementations is defined as:

cmap = argmax
ci∈C

logP (ci) +
∑

1≤j≤|V|

logP (aj|ci)

 (4.2)

4.1.2 Interpolated Naive Bayes

The authors Rennie et al. [2003]; Kim et al. [2006] argument that the traditional NB
has a natural bias towards the largest classes, due do data imbalance issues, as dis-
cussed in Chapter 3. A solution, adopted by Adewole et al. [2014], to overcome this
problem is to add the Jelinek-Mercer smoothing method into the classification model.
This smoothing method corresponds to a linear interpolation aimed at balancing two
estimates using a lambda parameter. In our context, the estimates of the most infor-
mative terms may be overshadowed by inconsistent estimates of noisy terms, mainly
in the minority classes. The interpolation can balance the term estimates given a class
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(P (aj|ci)) along with the estimates of aj in the collection (P (aj)). Thus, the authors
substitute the original formula 4.2 by the formula 4.3.

cmap = argmax
ci∈C

[
logP (ci) +

∑
1≤j≤|V|

(
λ · logP (aj) + (1− λ) · logP (aj |ci)

)]
(4.3)

4.1.3 One versus All Naive Bayes

In Zhang and Oles [2000], the authors proposed another solution to the class imbalance
problem. This strategy consists of combining the One versus All (OVA) strategy,
commonly used in binary classifiers such as SVMs for solving multiclass classification
problems, to the traditional NB classifier. The OVA strategy reduces a multiclass
problem to a binary one, by considering one class as the positive and the union all
others as the negative one. Thus, the OVA-NB uses more information to build the
classification model for each class, favoring minority classes.

To accomplish the OVA strategy into NB, the complement of the probability
for a given class P (aj|ci), is used. More formally, to calculate the complement of the
probability of a term aj in a given class ci, we use the information contained in all
classes but ci, as follows:

P (aj|ci) =
Tci(aj) + α∑

v∈V Tci(v) + α · V

where, Tci(aj) is the number of occurrences of term aj in all classes but ci and∑
v∈V Tci(v) is the summation of the number of occurrences of all terms in the doc-

uments of all classes, but ci. To avoid inconsistencies in the probability estimates, a
Laplace weighting strategy is also adopted. Due to imbalance issues, which may be
exacerbated by the union of the “negative” classes, the apriori estimate of the class is
not used in this model. The OVA-NB classification model is summarized as:

cmap = argmax
ci∈C

 ∑
1≤j≤|V|

logP (aj|ci)− logP (aj|ci)
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4.1.4 Complement Naive Bayes

Finally, in Rennie et al. [2003], the authors proposed the Complement Naive Bayes
(CNB) learning model, exploited in the TWCNB proposal. Actually, CNB is an exten-
sion of OVA-NB in which, instead of calculating the P (dt|ci) using information from
ci, the CNB uses only the complement of the probability P (dt|ci). This complement
balances the information used in the learning model, not favoring the majority classes.

cmap = argmax
ci∈C

 ∑
1≤j≤|V|

−logP (aj|c̄i)



4.2 Feature Weighting Strategies

In this section, we present some of the main feature weighting strategies used by
Bayesian models in order to overcome problems related to the imbalance and spar-
sity of real textual collections.

4.2.1 Term Frequency

One of the main assumptions made in ADC is that, by means occurrence frequen-
cies of terms, it is possible to determine the topic of a text. A term that occurs
more frequently in a given document is more important than an infrequent term. The
term frequency (tf) measures the number of occurrences of a term in each single text
document (Matthijssen [2000]). Although it is the simplest weighting strategy, tf is
commonly used in ADC.

The theory behind this weighting strategy is that terms with high frequency
are good to represent the contents of long documents. For short documents, this
assumption is more problematic as most terms occur with low frequency. This behavior
emphasizes that the occurrence of a rare term in a short document is more significant
than the same event in a long document. In collections with documents varying widely
in length, the use of the logarithm of tf (log(tf)), instead of tf , is usually a better
option, since the logarithm smoothies the occurrence frequency of terms. We also
analyze this smoothing approach in our evaluation.
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4.2.2 Product of the term and inverse document frequency

(tf-idf)

After elimination of stopwords, a document still may contain many terms that are
poor indication of a class. Common terms tend to occur in numerous documents in a
collection and are often randomly distributed over all of them. The importance of a
term is related to the number of documents in which it occurred. The more documents
a term occurs, the less important it may be. For instance, the term “computer” is not
a discriminative term in a document collection computing, no matter what its overall
frequency.

Therefore, a commonly adopted premise is that the more rarely a term occurs in
a collection, the more discriminative a term is. Thus, the weight of the term should
be inversely related to the number of documents in which the term occurs. An inverse
document frequency (idf) factor is commonly used to represent this effect. In this case,
the logarithm smooth the effect of the inverse document frequency factor.

log

(
N

ni

)
On the other hand, the frequency of the term within the document (tf) should be

considered as measure of importance of the term in the collection. This suggests that
the relevance of a term in a document can be measured by the product of frequency of
occurrence (tf or log(tf)) of the term within the document by the inverse document
frequency factor of the term. This feature weighting method is known as tf − idf :

tfi · log
(
N

ni

)

4.2.3 Relative Frequency

Relative Frequency is a length normalization method that normalizes the term fre-
quency by dividing it by a normalization factor given by the maximum frequency of a
term occurring in any text document of the collection, as shown in Equation 4.4.

RF =
tfi
NF

(4.4)

In real text collections, the amount of infrequent terms is very high. In Kim
et al. [2006] the authors considered and evaluated this characteristic as a normalization
factor (NF), based on the unique terms in a collection. The authors designed a linearly
interpolated normalization factor (NFu) using the average document length in the
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collection, i.e., NFu = α ·avdu+(1−α) ·duj, where avdu indicates the average number
of unique terms in a document over the collection and duj means the number of tokens
and unique terms in a document dj. This linear interpolation smoothies the length of
each document using the characteristics of document collection.

RFu =
tfi
NFu

(4.5)

The Relative Frequency method based on unique terms (Equation 4.5) signifi-
cantly has increased the effectiveness of Naive Bayes algorithm (Kim et al. [2006]),
proving to be more effective than BM25 (Robertson et al. [1999]) and PLN (Singhal
et al. [1999]) methods.

4.3 Experimental Evaluation

4.3.1 Datasets

In order to evaluate the selected combinations, we consider five real-world textual
datasets, namely, 20 Newsgroups; Four Universities; Reuters; ACM Digital Library
and RCV1 datasets. We performed a traditional preprocessing task for all datasets:
we removed stopwords, using the standard SMART list, and applied a simple feature
selection by removing terms with low “document frequency (DF)”1. Next, we give a
brief description of each dataset.

4 Universities (4UNI), a.k.a, WebKB this dataset contains Web pages col-
lected from Computer Science departments of four universities by the Carnegie Mellon
University (CMU) text learning group. There is a total of 8,277 web pages, classified
into 7 categories (such as student, faculty, course and project web pages).

Reuters (REUT90) this is a classical text dataset, composed by news articles
collected and annotated by Carnegie Group, Inc. and Reuters, Ltd. We consider here
a set of 13,327 articles, classified into 90 categories.

ACM-DL (ACM) a subset of the ACM Digital Library with 24,897 documents
containing articles related to Computer Science. We considered only the first level of
the taxonomy adopted by ACM, where each document is assigned to one of 11 classes.

20 Newsgroups (20NG) this dataset containing 18,805 newsgroup documents,
partitioned almost evenly across 20 different newsgroups categories. 20NG has become
a popular dataset for experiments in text applications of machine learning techniques,
such as text classification and text clustering.

1We removed all terms with DF ≤ 2
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RCV1 Uni The Reuters Corpus Volume 1 (RCV1) is a dataset with 804,427
English language news stories. We considered the complete topics taxonomy comprised
of 103 classes. However, the original RCV1 is a multilabel dataset with the multilabel
cases needing special treatment, such as score threshold, etc. (see Lewis et al. [2004] for
details). As our current focus is on unilabel tasks, to allow a fair comparison among the
other datasets (which are also unilabel) and all baselines (which also focus on unilabel
tasks), we decided to transform all multilabel cases into unilabel ones. In order to
do this fairly, we randomly selecting, for each documents with more than one label,
a single label to be attached to that document. This procedure was applied in about
20% of the documents of RCV1 which happened to be multilabel.

Collections Distribution of the Classes Number of Number of
Classes Minor Class Median Mean Major Class Attributes Documents

4UNI 7 137 930 1.182 3.759 40.195 8.277
REUT90 90 2 29 148,1 3.964 19.590 13.327
20NG 20 628 979 940,2 999 61.050 18.805
ACM 11 63 2.041 2.263,36 6.562 56.449 24.897

RCV1 Uni 103 91.399 165.850 201.107 381.328 155.796 804.427

Table 4.1: General information of the data collections.

4.3.2 Evaluation, Algorithms and Procedures

The Naive Bayes models were compared using micro averaged F1 (MicF1) and macro
averaged F1 (MacF1), standard information retrieval measures (Lewis et al. [1996];
Yang [1999]; Yang and Pedersen [1997]). While the MicF1 measures the classification
effectiveness over all decisions (i.e., the pooled contingency tables of all classes), the
MacF1 measures the classification effectiveness for each individual class and averages
them. All experiments were executed using a 5−fold cross-validation (Breiman and
Spector [1992]) procedure. The parameters were set via cross-validation on the training
set2, and the effectiveness of the algorithms, running with distinct types of features,
were measured in the test partition. To compare the average results on our cross-
validation experiments, we assess the statistical significance of our results by means of
a paired t-test with 95% confidence. This test assures that the best results, marked in
bold, are statistically superior to others..

2In other words, a portion of the training set was separated, as a type of validation set, to be used
for parameterization.
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In order to evaluate the performance of different Naive Bayes model combined
with different feature weighting approaches, we compare then with SVM and KNN
classifiers. Regarding SVM classifier, we adopt the LIBLINEAR (Fan et al. [2008])
implementation, using a linear kernel on which the regularization parameter was chosen
among eleven values from 2−5 to 215 by using 5−fold cross-validation on each training
dataset. In the KNN classifier, the size of neighborhood was set via cross-validation in
the training set. We also tested the four described feature weighting schemes with KNN,
SVM. The best overall results for SVM and KNN were obtained using the log(TF )−
IDF weighting scheme, therefore these versions will be used as baselines.

All experiments were run on a Quad-Core Intel Xeon E5620, running at 2.4GHz,
with 16Gb RAM. The GPU experiments were run on a GeForce GTX TITAN Black,
with 6Gb RAM. The machine was reserved to execute each of the experiments indi-
vidually, to guarantee accuracy of the efficiency results for each implementation.

We would like to point out that some of the results may differ from the ones
reported in other works for the same datasets (e.g., Kim et al. [2006]; Rennie et al.
[2003]; Godbole and Sarawagi [2004]). Such discrepancies may be due to several factors
such as differences in dataset preparation3; the use of different splits of the datasets
(e.g., some datasets have “default splits” such as REUT90 and RCV14), the application
of some score threshold, such as SCUT, PCUT, etc., which, besides being an impor-
tant step for multilabel problems, also affects classification performance by minimizing
class imbalance effects, among other factors. We would like to stress that we ran all
alternatives under the same conditions in all datasets, using standardized and well ac-
cepted cross-validation procedures that optimize parameters for each alternatives, and
applying the proper statistical tools for the analysis of the results. All our datasets are
available for others to replicate our results and test different configurations.

4.3.3 Results

Table 4.2 shows the results of all selected combinations. For each dataset, we tested the
four described feature weighting strategies along with the four discussed NB variants.
The colors indicate the results for the methods as originally proposed: blue corresponds
to INB which used the TF weighting scheme, green corresponds to the original pro-
posal of the CBN using log(TF)-IDF and finally, red corresponding to OVA-NB which
originally exploited the TF scheme.

3For instance, some works do exploit complex feature weighting schemes or feature selection mech-
anisms that do favour some algorithms in detriment to others.

4Indeed, we do believe that running experiments only in the default splits is not the best experi-
mental procedure as it does not allow a proper statistical treatment of the results.
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Overall, we can observe in the Table that the combination of the INB learning
model with the RF − u weighting strategy produced the best results in all datasets.
We can also observe that the use of the RF − u strategy produced some expressive
gains over the other weighting strategies in several cases (e.g., MacF1 for OV A−NB
in RCV1 and MacF1 for NB in Reuters). It can also be observed that the use of
this same weighting strategy resulted in some gains in the best learning model INB),
such as the statistically significant gains in MacF1 and MicF1 in 4UNI over the other
strategies.

Table 4.3 presents a comparison among SVM, KNN and the best NB approach
for each collection. We can see that most of the results of Best-NB (4 out of 5) uses the
weighting strategy RF−u, three with the INB and one of the OVA-NB learning models.
Only for the ACM dataset the best results were achieved with log(TF )− IDF + INB.
But even in these cases, the combination RF − u + INB was very close to the best
results. In fact, there is a statistical tie in ACM. Notice that the best combination
for a particular dataset can be determined in the validation set. This is very feasible,
especially due to the NB efficiency.

We can see in Table 4.3 that the Best-NB combination outperforms or ties with
KNN in eight out of ten cases (six wins and two ties). When compared to SVM,
the Best-NB ties or outperforms this classifier also in eight out of ten cases (seven
wins and one tie), loosing in other two (regarding MicF1). In fact, if we look at the
MacF1 results, Best-NB outperformed or tied SVM and KNN in all five datasets. This
is consistent with the fact that most of the learning models and weighting scheme
adaptations were designed to deal with the class imbalance issue, which tends to favor
MacF1.

Thus, we conclude that, if good performance across all classes, mainly the mi-
nority ones, is the main goal for a particular application, our results demonstrate that
there is probably a combination of a NB learning model and a weighting strategy (most
probably RF − u + INB) that may deliver a top-notch performance.

4.4 Chapter Summary

In this chapter, we exploit new combinations of Naive Bayes Strategies selected in the
literature that try to overcome the ADC idiosyncrasies with feature weighting strategies
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Collections Feature NB INB CNB OVA - NB
Weighting MacF1 MicF1 MacF1 MicF1 MacF1 MicF1 MacF1 MicF1

4UNI

TF 52.57± 2.73 61.64± 1.85 54.41± 2.46 61.11± 1.82 51.1± 2.47 62.81± 1.49 54.85± 1.4 60.93± 1.83
TF-IDF 53.71± 1.6 60.3± 1.61 51.59± 0.71 61.1± 0.75 38.39± 1.55 42.36± 1.52 53.19± 1.89 60.57± 1.71

log(TF)-IDF 51.21± 1.72 57.41± 0.95 51.13± 1.25 61.13± 0.97 38.3± 1.73 43.87± 0.86 50.89± 1.6 56.68± 0.95
RF − u 55.84± 1.51 63.14± 1.37 57.57± 1.54 64.07± 1.11 51.11± 1.4 64.04± 1.7 57.25± 1.21 64.11± 1.65

REUT90

TF 16.17± 1.06 65.39± 1.09 34.64± 1.61 66.74± 0.66 27.06± 1.68 65.23± 1.08 28.58± 1.7 66.15± 0.63
TF-IDF 23.62± 0.64 65.58± 0.81 35.29± 1.69 66.12± 0.51 27.3± 1.81 63.55± 1.11 30.57± 2.57 64.56± 0.57

log(TF)-IDF 19.23± 1.44 65.61± 0.88 34.3± 1.68 66.36± 0.57 26.1± 1.66 64.01± 1.3 29.61± 1.25 64.91± 0.67
RF − u 32.64± 2.28 66.03± 0.82 36.02± 2 66.17± 0.76 27.25± 2 67.28± 1.13 32.66± 2.28 66.47± 0.77

20NG

TF 85.31± 0.81 86.0.4± 0.82 89.25± 0.59 89.67± 0.56 87.74± 0.85 88.39± 0.8 89.2± 0.77 89.54± 0.75
TF-IDF 87.04± 0.62 87.47± 0.61 89.05± 0.47 89.45± 0.5 87.32± 0.79 87.9± 0.75 88.95± 0.62 89.33± 0.63

log(TF)-IDF 87.14± 0.71 87.56± 0.66 89.23± 0.72 89.65± 0.67 87.76± 1.02 88.27± 0.94 88.78± 0.61 89.16± 0.63
RF − u 86.6± 0.65 87.05± 0.629 89.64± 0.6 90± 0.54 88.15± 0.78 88.76± 0.76 89.74± 0.75 90.07± 0.74

ACM

TF 56.43± 0.4 73.56± 0.25 62.02± 1.05 73.64± 0.49 60± 1.85 73.28± 0.73 61.04± 1.5 73.26± 0.51
TF-IDF 59.57± 0.83 73.87± 0.4 61.01± 1.66 74.31± 0.58 57.3± 0.87 70.16± 0.74 61.01± 1.42 73.35± 0.45

log(TF)-IDF 59.3± 0.36 74.28± 0.41 62.8± 1.63 73.52± 0.56 58.84± 1.25 71.72± 0.74 60.32± 0.91 74.12± 0.48
RF − u 57.49± 0.53 72.89± 0.25 61.57± 1.6 74.61± 0.5 60.02± 1.96 73.88± 0.59 60.76± 1.06 75.14± 0.4

RCV1 Uni

TF 45.48± 0.39 71.53± 0.12 50.40± 0.46 69.35± 0.07 33.4± 0.27 64.69± 0.2 44.5± 0.59 70.87± 0.14
TF-IDF 49.59± 0.49 69.53± 0.09 50.38± 0.64 68.15± 0.09 20.93± 0.13 52.38± 0.17 31.62± 0.49 60.57± 0.16

log(TF)-IDF 47.28± 0.46 69.79± 0.08 49.93± 0.64 68.03± 0.07 20.28± 0.13 52.07± 0.21 30.20± 0.38 60.56± 0.13
RF − u 51.65± 0.89 69.28± 0.07 51.68± 0.85 69.28± 0.08 19.78± 0.26 47.51± 0.17 51.18± 0.72 70.09± 0.12

Table 4.2: Feature Weighting approaches applied on Naive Bayes Models.

Collections SVM KNN Best-NB Best-NB (Source)MacF1 MicF1 MacF1 MicF1 MacF1 MicF1
4UNI 56.02± 2.02 70.91± 1.9 58.24± 2.92 73.78± 0.7 57.57± 1.54 64.07± 1.11 RF − u + INB

REUT90 30.38± 2.04 65.09± 0.21 29.95± 1.14 68.04± 0.62 36.02± 2 66.17± 0.76 RF − u + INB
20NG 84.92± 0.54 85.1± 0.6 88.41± 0.27 88.69± 0.67 89.74± 0.75 90.07± 0.74 RF − u +OV A−NB
ACM 58.00± 1.33 69.67± 0.45 59.75± 1.72 71.6± 0.46 62.8± 1.63 73.52± 0.56 log(TF )− IDF + INB

RCV1 Uni 47.05± 0.35 75.85± 0.08 46.32± 0.72 68.23± 0.16 51.68± 0.85 69.28± 0.08 RF − u + INB

Table 4.3: Best results of Naive Bayes compared with SVM classifier.

specially developed to ADC task. By means of our evaluation we are able to answer
our first research question, a proper combination of Naive Bayes with feature weighting
Strategies can outperform in most cases the strongest textual classifier known in the
datasets we experiment with: Support Vector Machines. In fact, Best-Naive Bayes
outperformed or tied SVM in all five datasets considering the MacF1 results. This is
consistent with the fact that that most of the learning models and weighting strategies
adaptations were designed to deal with the class imbalance issue, which tends to favor
MacF1. Moreover, our results demonstrate that a combination of a INB learning model
with the feature weighting RFu can deliver top-notch performance.



Chapter 5

Parallelization of Naive Bayes
Classifier Using GPU

Over the last years, the computer industry has shifted from pushing clock frequency
to parallelism. Rather than increasing the speed of its individual processor cores,
traditional CPUs have increased the number of cores (multicore processors) as the
primary basis for increasing system performance. This trend has also been followed
by many core GPU chips which have now thousands of processing cores. The general
perception is that processors are not getting faster, but instead are getting wider, and
the only way to improve performance is through the exploitation of parallelism.

CPUs are optimized for low-latency access and excel in running single-threaded
processes whereas GPUs are optimized for high throughput and can deal with mas-
sive multithreaded parallelism. GPUs can handle massive amounts of data, which is
critical for Information Retrieval (IR), however its different architecture and memory
hierarchy requires the design of novel algorithms and new implementation approaches.
This situation has hampered the exploitation of this opportunity by the IR commu-
nity. However, recent works on Database Scalability, Document Clustering, Learning
to Rank, Big Data Analytics and Interactive Visualization (Chang et al. [2012]; Teitler
et al. [2014]; Shchekalev [2014]; Netzer [2014]; Graham and Mostak [2014]) have pro-
duced some encouraging results.

The probabilistic Naive Bayes (NB) algorithm presents many opportunities for a
highly parallel GPU implementation. Since the terms of a document can be processed
independently, both the model generation and the classification task phases can take
advantage of the high computational power of GPUs. The combination between NB
models and feature weighting strategies opens up new opportunities for exploiting
parallelism in a massive multithreaded way. In this chapter we present our proposal
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of a new version of Naive Bayes parallelized using Graphics Processors Units (GPU),
which corresponds to another contribution of this master thesis. Moreover, as we will
discuss later, this parallelized version was adapted to evaluate the actual impact of NB
attribute independence assumption in real text collections.

5.1 Indexing Data

Given that document collections are usually sparse, with terms occurring only in a
few documents, we chose to represent the documents by a compact data structure,
based on inverted index. For this, we used four vectors: docIndexV ector represent-
ing the documents; docAttributeV ector that stores the attributes of each document;
docV alueV ector that stores the weights of the attributes for each document; and fi-
nally, docClass that stores the classes of all documents. At docIndexV ector the index
represents the document, and in each position of this vector we store the position
where the list of terms of the document begins in vector docAttributeV ector and the
frequency in the vector docV alueV ector. At docClass each index also represents a
document, and each position stores the respective document class.

Figure 5.1 shows an example of the data structure used. As can be seen, the
document 0 of the database, starts its list of terms at the index 0 of the vector
docAttributeV ector and has two terms (terms 0 and 1), each of which has frequency
equal to 1 as can be seen in vector docV alueV ector. In turn, the document 4 begins its
list of terms in the position 8 of the vectors docAttributeV ector and docV alueV ector
and has only the term 1, with frequency also equal to 3. The document classes are in
the vector docClass, where the documents 0 and 4 have classes 0 and 1 respectively.

Figure 5.1: Data structure to represent the documents.
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5.2 GPU-NB

Our parallelization strategy for the Naive Bayes is based on a kernel implemented using
the C language in CUDA. Kernel is the name given to the functions that run on GPU.
Thus, the kernel exploits the maximum parallelism possible, minimizing the dependence
of data among threads. It also focuses on maximizing the amount of computation
performed by each thread. Since the Naive Bayes algorithm assumes independence
among the attributes and that the classification can be done independently for each
test document, the problem can take full advantage of the GPU parallelism. We
describe below the parallelization strategy used to implement the kernel on GPU.

The proposed kernel exploits two levels of parallelism, the first associates a block
of threads to a test document and, at the second level, each of these threads is associated
with a term of the same document. Thus, each block is responsible for classifying an
specific test document while each thread of the block is responsible for calculating
the probability of an attribute for each class and thus cooperating to produce the NB
model. If the number of attributes is greater than the number of threads of a block,
the document is split into k parts, where k is the rounded up ratio between the number
of attributes of the document and the number of threads in the block. Then, each k
part is calculated one at a time, in a round robin fashion, and the results accumulated.
As for the calculation of the logarithmic summation of the classification model, we
implemented a binary tree parallel reduction using shared memory. Therefore, we
allocated an array in shared memory whose size is equal to the number of threads in
the block. Then, each thread stores the conditional probability P (aj|ci) in its respective
position in the shared memory vector. The vector is divided into two sub vectors and
then these sub-vectors are added. The process is repeated until the first position of the
vector contains the total sum of the logarithms.

All information required for the probability calculations, such as frequency of at-
tributes on classes, occurrence of classes and occurrence of attributes were pre computed
in CPU, while reading the training documents, and later transferred to the GPU mem-
ory. This was much simpler, and more efficient, than storing the training documents
in a data structure, transferring to the GPU, and then computing this information in
the GPU. The test documents are stored in the data structure and transferred to the
GPU.
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5.3 Efficiency of our proposed algorithm

Figure 5.2 illustrates the percentage of time spent in each of the main stages of the
Naive Bayes algorithm. The Reading Training step allocates and initializes variables,
besides performing the reading of the training documents. During the reading of the
documents, the frequencies are computed to calculate conditional probabilities used
to build the Naive Bayes model. The next step, to calculate the table of conditional
probabilities of the attributes for each class. In the Reading Test step, the information
of test documents are stored in the data structure shown in Figure 5.1. Finally, in
the Classifying step, the Naive Bayes model (sum of terms probabilities) is applied for
each test examples and then the quality of the prediction is measured by the evaluation
techniques.

As can be seen in Figure 5.2 the data communication time is more demanding
than the computation time. Although our GPU-based parallel implementation of Naive
Bayes has been developed bearing in mind the GPU idiosyncrasies, paying special
attention to its memory hierarchy, multiprocessor occupancy and coalesced memory
access, the time spent transferring the datasets to the GPU global memory heavily
hurt performance, resulting in speedups not greater than a few units. These data
are transferred in the Reading Test step. Thus, we can observe that the GPU-based
parallel implementation spend more time than the CPU version.

However, the relaxation of the Naive Bayes feature independence assumption,
that is the Semi-Naive approach, was able to take full advantage of the proposed parallel
implementation since these approaches require intensive computation once the dataset
has been transferred to the GPU. In addition, the use of our compact data structure
allowed us to drastically reduce memory consumption, allowing us to work with large
collections of documents, that would otherwise take too much time or require the use of
an expensive computational platform. We focus on these Semi-Naive Bayes proposals
next, putting particular emphasis in our original contributions aimed at improving
their efficiency and scalability.

5.4 Chapter Summary

In this chapter, we proposed GPU-NB, a parallel implementation of the Naive Bayes
algorithm. In our proposal, we exploit a very compact data structure to index the
documents aiming at minimizing memory consumption, as well as maximizing the op-
portunities for massive parallelization of the algorithm in GPUs. In our GPU-based
implementation we exploit the maximum parallelism possible, minimizing the depen-
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Figure 5.2: Efficiency of the steps of Naive Bayes algorithm implementation on CPU
and GPU.

dence of data among threads. It also focuses on maximizing the amount of computation
performed by each thread. However, we observed in our results that the communication
time of the Naive Bayes algorithm data is more representative than the computation
time. Although our GPU-based parallel implementation of Naive Bayes has been devel-
oped bearing in mind the GPU idiosyncrasies, the time spent transferring the datasets
to the GPU global memory heavily hurt performance, resulting in speedups not greater
than a few units. However, the relaxation of the Naive Bayes feature independence
assumption, that is the Semi-Naive approach, was able to take full advantage of the
proposed parallel implementation since these approaches require intensive computation
once the dataset has been transferred to the GPU, as we shall see later.





Chapter 6

Semi-Naive Bayes Methods

Over the years various techniques have been proposed to extend the classification model
generated by Naive Bayes. In Friedman et al. [1997], the authors compared the Naive
Bayes algorithm with Bayesian networks, which are more robust models to represent
probability dependencies, since they have no restrictions. Surprisingly in some sce-
narios, Bayesian networks degraded the quality of classification. Thus, the authors
proposed a restricted Bayesian model that combines the ability of Bayesian networks
to represent dependencies among attributes and the simplicity of Naive Bayes. This
representation, called Tree Augmented Naive Bayes (TAN), is defined by the main
constraint: attributes may depend on only one other attribute in addition to the class
(Friedman et al. [1997]). This restriction makes feasible the probabilistic calculations,
since it is computationally very costly to compute multiple dependencies for any given
attribute1.

6.1 Tree Augmented Naive Bayes

A Tree Augmented Naive Bayes model (TAN) is a technique that extends the struc-
ture of the Naive Bayes by alleviating the independence assumption among attributes,
approximating it as much as possible to a Bayesian network.

Figure 6.1 shows the TAN model for the Pima dataset, to classify if a patient
tests positive or negative for diabetes. The variables in this dataset are all derived
from patients who were women older than 21 years of age. In this dataset, the variables
Glucose and Insulin are related in determining the class variable. For example, very low
glucose level, seen independently is surprising. But given the fact that the insulin level

1We will use the terms attribute and feature interchangeably, from now on.
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is also high, then it becomes unsurprising (Friedman et al. [1997]). This correlation can
be captured in the TAN model. But, in case of Naive Bayes model, they are considered
as two separate abnormal events. Thus, Naive Bayes would over penalize the class label
(Friedman et al. [1997]).

We observe in Figure 6.1 that all the attributes, except the attribute Pregnant,
have two parents, the class and another attribute. The interactions among attributes
are shown using solid edges and the interaction between the class and an attribute is
shown using dotted edges. The attribute Pregnant is the root node of the tree and
it has only one parent, the class. This is an example of a tree structure, constructed
among attributes of the system, in a TAN model.

Figure 6.1: TAN model learned for the dataset “Pima”.

The TAN heuristic computes the conditional mutual information of all pairs of
attributes and constructs a weighted undirected graph, where the nodes of the graph are
the attributes and the edges represent the mutual information of the pair of vertexes.
Then, a maximum cost spanning tree is built. The spanning tree is transformed into
a directed tree, indicating the dependency among nodes. Finally, the class is added as
the parent of all attributes. The resulting classification model can be represented by
maximizing the Equation 6.1, where π(aj) is the parent attribute of the attribute aj.

cmap = argmax
ci

(
P (ci)

n∏
j=1

P (aj|ci, π(aj))

)
(6.1)
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Keogh and Pazzani [1999] proposed a new strategy to build a Tree Augmented
Naive Bayes using the greedy method Hill Climbing Search (HSC). The technique uses
a unique representation to improve the quality of classification, rather than trying to
directly approximate the probability distribution of the attributes. Thus, the TAN
search heuristic using HSC initially builds the Naive Bayes model and initializes a set
O of orphans, inserting in O all the attributes of the vocabulary. Then, the technique
evaluates each attribute relationship ai to aj (i 6= j, aj ∈ O). If the relation among
these attributes increases the classification quality, this relationship (dependency) is
maintained in classification model and the attribute aj is removed from the set of
orphans. The heuristic returns searching for new dependencies between attributes
until there are no more attributes in O or no more dependencies between attributes to
be evaluated. Figure 6.2 illustrates the construction of TAN model. The green node
represents the orphan attributes while the red nodes represents the attributes that have
another parent beyond the class.

Figure 6.2: Example of the construction of the TAN.

6.2 Super Parent TAN

The Super Parent TAN (SP-TAN), a variant of TAN, uses a different approach to
build dependencies among attributes (Keogh and Pazzani [1999]). It uses the same
representation as TAN, but it uses a greedy search method (Hill Climbing Search) to
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add dependencies to the Naive Bayes model. The construction of the SP-TAN network
is given by the concepts of Super Parent and Favorite Child.

• Super Parent (SP): Given a Bayesian network, if we create a dependency to an
attribute x for all the orphans attributes, it is called Super Parent. Orphans
attributes are the attributes that have only the class as a parent.

• Favorite Child (FC): If we extend a dependency of a Super Parent for each or-
phan and evaluate the quality of each dependence individually, the attribute that
improves accuracy the most is the Favorite Child.

Thus, the SPTAN search heuristic initially builds the Naive Bayes model and
initializes a set O of orphans, inserting in O all the attributes of the vocabulary. Then,
the technique evaluates each attribute as Super Parent (ASP ) and in the end, the
attribute that most increases the classification quality is selected as ASP . The next step
is to find the Favorite Child of the Super Parent attribute. Each attribute is evaluated
individually given the ASP (P (Ai|C,ASP )), and the Favorite Child is subsequently
selected as the attribute Ai that most increases the classification quality given ASP .
The process is repeated until there are no more orphans or increases in the classification
quality. The Figure 6.3 illustrates the construction of SP-TAN model. The graph (a)
represents the Naive Bayes model, the graphs in (b) and (d) the selection of a Super
Parent attribute and the graphs in (c) and (e) the choice of a Favorite Child.

The choice of Super Parents and Favorite Children attributes are conducted using
a validation set, since the heuristic uses a prediction metric for evaluating the classi-
fication quality of the networks built by each candidate as Super Parent. Thus, all
dependencies are selected by using this validation set and subsequently evaluated on
the test set. However, some of these dependencies among attributes may be specific to
the validation set. In ADC scenarios, dependencies between words may vary according
to the document set. So when the classification model is applied on the test set, the
model fails to capture certain dependencies occurring in that particular data. Fur-
thermore, the model may add dependencies that do not exist in the test set, causing
inconsistencies in the classification of the documents. In other words, the model does
not generalize to unseen documents.

SP-TAN produced some gains compared with the traditional Naive Bayes (Keogh
and Pazzani [1999]) in small datasets. However, when applied to real-world scenarios,
such as large ADC datasets, this technique tends to loose performance due to overfit-
ting issues caused by the strong dependency on the validation set. Moreover, the two
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Figure 6.3: Example of the construction of the SP-TAN.

strategies (TAN and SP-TAN) are extremely costly in terms of computation time, pre-
venting the execution of these heuristics in large datasets. Despite presenting different
approaches to find attributes dependencies, both strategies have the same time com-
plexity, O(|Dtrain| × |C| × |V3|), with |Dtrain| being the number of training documents,
|C| the number of classes, and |V| the number of attributes. Although the SP-TAN and
TAN heuristics present the same complexity in the worst case, the SP-TAN heuristic
has an average case less complex, since its complexity varies according to the number
of selected dependencies. Thus, the heuristic only reaches the same complexity of the
TAN if (|V| − 1) dependencies are found, which is actually difficult to happen, since
the SP-TAN tends to select fewer dependencies than TAN, keeping the effectiveness
(Keogh and Pazzani [1999]).

In this master thesis, we propose a heuristic, called Lazy Super Parent Tree
Augmented Naive Bayes (LSPTAN) that seeks to solve the problems discussed above,
enabling the application of a semi-Naive Bayes techniques in large ADC tasks. Thus,
we can evaluate whether the premise of independence among attributes, assumed by
Naive Bayes, impacts effectiveness in large ADC tasks, an open research problem.
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6.3 Lazy Super Parent Tree Augmented Naive

Bayes (LSPTAN)

The Lazy Super Parent TAN (LSPTAN) heuristic is a postergated version of the SP-
TAN that constructs a Tree Augmented Naive Bayes for each test example. Attributes
dependencies are generated based on information from the example that is being clas-
sified. To build a lazy version of SP-TAN we adapted the method of evaluation and
the selection of candidates for Super Parent and Favorite Children.

The SP-TAN algorithm exploits accuracy to select a candidate to Super Parent
(ASP ). In our strategy, we select the candidate ASP whose classification model gener-
ates the highest probability P (dt|ci, ASP ) for the document dt. Thus, each candidate
ASP builds its own model and classifies the document dt, returning the predicted class
ci and its respective score P (dt|ci, ASP ). Based on the best scores for each candidate
ASP , we build a prediction score rank. Thus, the heuristic selects as best ASP the
attribute that holds the first position of this rank using the information of the (test)
document being classified. This helps to reduce the number of candidates to Super
Parents and Favorite Children, scaling the overall classification process.

Building a Tree Augmented Naive Bayes for each test example is computationally
expensive. Therefore, LSPTAN builds a simpler network than the SP-TAN. We select
only the best Super Parent to a test document. But there is no limitation to the
choice of the Favorite Children. Thus, all the children attributes, which increment
the probability that the document belongs to a class, are included in the classification
model.

The LSPTAN heuristic initially builds the model based on NB and initializes a set
of orphans O, inserting into O all the attributes of the vocabulary. Then, for each test
document, the technique evaluates each attribute as a Super Parent (ASP ) and, at the
end, it selects as ASP the attribute that has the highest probability P (dt|ci, ASP ). The
next step is to find the Favorite Child of the Super Parent attribute. Each attribute is
individually evaluated given the ASP (P (Ai|C,ASP )) and subsequently selected as one
of the Favorite Children considering if the possible dependence of ASP for Ai (SP 6= i)
increases the probability of the document belonging to class ci.

We additionally propose three novel strategies that exploit different ideas for
building a LSPTAN model. These strategies are described below:

LSPTANSP The LSPTANSP is a simpler strategy that does not select the Favorite
Children, called LSPTANSP . The idea of this version is to analyze the impact of
only selecting the best candidate to Super Parent of all attributes without their
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children. This strategy has the potential to be much more efficient and scalable,
although less effective in theory, since it captures less information in the model.

LSPTANclass The LSPTANClass is very similar to the strategy presented previously.
So it uses the same method to evaluate and select candidates of the LSPTAN,
however, this strategy selects a Super Parent for each class. There is no limitation
for the number of Favorite Children selected. The idea of this strategy is to
capture the dependencies between attributes in each class. Thus, we give a
chance to other Super Parent candidates to increase their relevance when related
only to their Favorite Children.

The LSPTANclass heuristic initially builds the model based on Naive Bayes and
initializes a set of orphans O, inserting into O all the attributes of the vocabulary.
Then, for each test document, the technique evaluates each attribute as a Super
Parent (ASP ) and, at the end, for each class ci it selects as ASP the attribute
that has the highest probability P (dt|ci, ASP ) for the class ci. At the end of this
step, C Super Parents attributes will be selected. The next step is to find the
Favorite Children of each Super Parent attribute. Each attribute is individually
evaluated given the ASP (P (Aj|ci, ASP )) and subsequently selected as Favorite
Child considering if the possible dependence of ASP for Ai (SP 6= i) increases
the probability of the document belonging to class ci.

LSPTANRestricted The LSPTANRestricted is a more efficient version of LSPTAN, in
which the Super Parent candidates are evaluate along with their Favorite Chil-
dren. Thus, when we select the best Super Parent, we select the Super Parent and
its Favorite Children. In this strategy, we call Favorite Child the attribute that
has the higher conditional probability P (aj|ci, asp) than the conditional proba-
bility P (aj|ci). Therefore, the Super Parent candidates are associated with their
Favorite Children rather than being associated with all orphans attributes (set
O). So, only the attributes dependencies that increase the probability of a doc-
ument belonging to a class ci are included in the classification model.

The Super Parent candidates also have a restriction: they must exist in the test
document in order to be chosen as the best Super Parent. Thus, we limit the
search space of candidates, avoiding that a very informative candidate (probably
belonging of a majority class) is chosen.

The LSPTANRestricted heuristic initially builds the model based on Naive Bayes
and initializes a set of orphans O, inserting into O all the attributes of the vocab-
ulary. Then, for each test document, the technique evaluates each attribute which
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belongs to the test document as a Super Parent (ASP ) and, in the end, it selects
as ASP the attribute that has the highest probability P (dt|ci, ASP ) for the class
ci. The next step is to find the Favorite Children of each Super Parent attribute.
Each attribute is individually evaluated given the ASP (P (Aj|ci, ASP )) and sub-
sequently selected as Favorite Child considering if the possible dependence of ASP
for Ai (SP 6= i) respect the condition of P (Aj|ci, ASP ) > P (aj|ci).

6.4 LSPTAN GPU Implementation

Our parallelization proposal for the LSPTAN strategy is based on eight kernels imple-
mented using the C language in CUDA. Just like the GPU-NB, these kernels exploit the
maximum possible parallelism, minimizing data dependencies among threads. It also
focuses on maximizing the amount of computation performed by each thread. Since
the computation of each Super Parent and Favorite Child candidates can be done in-
dependently (as well as the actual classification) for each test document, the problem
takes full advantage of the GPU parallelism. The following describes the parallelization
strategy used to implement the eight kernels on the GPU:

1. Naive Bayes model: Given the frequencies of the terms occurred in the classes
and the test documents data, the classification of the test documents can be
performed in parallel. Thus, given a test document, each thread is responsible
for calculating the conditional probability (P (aj|ci)) of an attribute aj for each
class, cooperating to produce the NB model.

2. Cumulative frequency of the attributes give the SP candidates within
the classes: This kernel is responsible for computing the summation of occur-
rences of all terms in documents that co-occur with the respective Super Parent
candidate in each class (

∑
v∈V Tci, asp(v)). Since there is no dependency among

the Super Parent candidates, this kernel can take full advantage of the GPU par-
allelism. While reading the training documents data, each thread is responsible
for adding the occurrence of a term that occur together with the Super Parent
candidate in each class.

3. Finding the documents having SP candidates: In text collections, usually
the documents do not have all the vocabulary words. Thus, this kernel is re-
sponsible for selecting the training documents data that have the Super Parent
candidates. While reading the training documents data, each thread is respon-
sible for checking the respective term as a Super Parent candidate. If one of
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the threads finds the Super Parent candidate, the training document is tagged.
These tagged documents will be used in the next kernel.

4. Computing the frequency of attributes given the SP candidate: Once
a candidate attribute is selected as a Super Parent, this kernel computes the
frequency of the attributes given the Super Parent for each class (Tci, asp(aj)).

5. Calculation of the term probabilities in the classes given a SP: It calculates
the conditional probability of attributes given the Super Parent for each class.
Thus, each thread is responsible for computing the conditional probability of an
attribute given the Super Parent candidate for each class.

6. Construction of the classification model given the SP: Given the prob-
ability matrix built in the previous kernel for the Super Parent candidate, this
kernel works in the same way that the Naive Bayes kernel does. Thus, given
a test document each thread is responsible for calculating the conditional prob-
ability (P (aj |ci, asp)=

Tci,asp(aj)+α∑
v∈V Tci,asp(v)+α·V ) of an attribute aj for each class given

the candidate of Super Parent asp and thus cooperating to produce the LSPTAN
model.

7. Construction of the classification model given the SP and the FC: After
selecting the best Super Parent, the classification of documents for each Favorite
Child can be performed in parallel. Each thread represents a Favorite Child
candidate. Thus, each thread is responsible for classifying all test documents for
a Favorite Child for each class given the best Super Parent.

8. Updating of the classification model: After calculating the probabilities of
the Favorite Children given the best Super Parent for a test document data,
this kernel has the function of updating the model built by NB, adding the
probability of the Favorite Child given the best Super Parent that increased the
model probability. Each thread is responsible for an attribute and only the thread
corresponding to a Favorite Child adds its probability to the NB model.

Figure 6.4 shows the sequence of execution of the LSPTAN strategies through
the kernels. Thus, the LSPTANSP and LSPTANRestricted strategies are faster than the
other LSPTAN strategies because they only execute until the kernel 6.
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Figure 6.4: Execution of kernels

6.4.1 Kernel Optimization

In this section, we present the optimization applied in the kernels, in order to exploit
the maximum parallelism possible, minimizing the dependence of data among threads.
It also focuses on maximizing the amount of computation performed by each thread.

Kernels 1 and 5 exploit two levels of parallelism. In the first, it associates a block
of threads with each test document and, at the second level, each of these threads
is associated with a term of the same document. Thus, each block is responsible for
classifying a specific test document while each thread of the block is responsible for
calculating the probability of an attribute for each class, cooperating to produce the NB
model. If the number of attributes is greater than the number of threads of a block, the
document is split into k parts, where k is the rounded up ratio between the number of
attributes of the document and the number of threads in the block. Then, each k part
is calculated one at a time, in a round robin fashion, and the results are accumulated.
As for the calculation of the logarithmic summation of the classification model, we
implemented a binary tree parallel reduction using shared memory. Therefore, we
allocated an array in shared memory whose size is equal to the number of threads
in the block. Then, each thread stores the conditional probability in its respective
position in the shared memory vector. The vector is divided into two sub vectors and
then these sub-vectors are added. The process is repeated until the first position of the
vector contains the total sum of the logarithms.

Kernels 2, 3 and 4 also exploit two levels of parallelism: the first associates a block
of threads to training documents and, at the second level, each thread is associated
a term of the same document. Thus, in the second level, each kernel performs its
respective roles, as previously described. In kernel 2, as we are calculating the overall
frequency of the attributes given the super parent candidate in each class, we use the
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atomicAdd CUDA function to prevent access conflicts.

6.4.2 Analysis of Complexity for the Solution

In this section we analyze the amount of time used to learn and evaluate Super Parent
candidates, as well as the amount of time used to select the Favorite Children of the
best selected Super Parent. The first step of learning a model given the Super Parent
candidate consists in computing the attribute frequencies to build the probability table
for each class. These frequencies are obtained by kernels 2 and 4. During the execution
of these kernels, the training documents data Dtrain are read in parallel, each thread
block is responsible for a document. However, as described in section 2.3, the GPU
has only a few (P ) multiprocessors (SMs) and so there will be more thread blocks than
SMs. Although the GPU does the block scheduling automatically, the parallelism is
limited to P multiprocessors. In addition, inside each SM there are only p processors
(SPs) which again limits the second level of parallelism, inside each SM, to a total of

p processors. Therefore, the time spent in kernels 2 and 4 is given by O(
∑ |Dtrain|

P
d=1

|Vd|
p

),
where |Vd| is the document vocabulary whose terms are processed in as many steps of
p threads are needed.

After computing all the frequencies, the next step is to build the probability
table given the Super Parent candidate. This probability table is two-dimensional:
vocabulary by class (|V| × |C). The time spent to build this table is O( |V|

P×p × |C|),
because each thread is responsible for an attribute. Since we are working with real
collections, it is not feasible in terms of memory space to build a three-dimensional
table (|SP | × |V| × |C|), that stores the probability of all the Super Parent candidates.
We have a trade-off between space and time. So we have to update this probability
table and the respective attribute frequencies (kernels 2 and 4) whenever the strategy
needs to evaluate a new candidate.

The next step consists in building the classification model (Bayesian network) for
each test document given the Super Parent candidate for each class. The time spent to
build the classification model for the test documents is very similar to the time spent
to compute the attribute frequencies given the Super Parent candidate in kernels 2 and
4, because we use the same two-level parallelism strategy. However, in this case test
documents data Dtest are read (instead of training documents data) for each class. The

time2 spent in this step is O(
∑ |Dtest|

P
d=1

|Vd|
p
× |C|).

2The kernels 1 and 5 have the same complexity, because they exploit the same parallelism strategy,
the only difference lies on the probabilities used to build the learning model.
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Once all the Super Parents candidates are evaluated and the best Super Parent
is selected, the Favorite Children must be selected. For this, we must compute the
attribute frequencies and build the probability table for the best Super Parent. Then,
the classification models are built considering only the dependencies between an at-
tribute (Favorite Child candidate) and the the Super Parent. Thus the time spent
to evaluate all Favorite Children candidates is O( |V|

P×p ×
∑|Dtest|

d=1 |Vd| × |C|), with each
thread being responsible for each Favorite Child candidate. When a Favorite Child is
selected, the classification model must be updated. So the time spent to update the
model is O( |Vd|

P×p).

6.5 Efficiency of GPU LSPTAN

Table 6.1 shows the average time (seconds) to evaluate a Super Parent candidates using
our CPU and GPU implementations. Note that the evaluation of the Super Parent
candidates includes the building of the predictive model and the actual classification
of all test documents. More precisely, we measure the execution time of kernels 1 to
6, where the kernels 3 to 6 are executed for each Super Parent candidate. Since the
whole vocabulary (large number of attributes) is evaluated for finding Super Parent
candidates, we measure the time to evaluate each candidate in a test fold. Notice
that the average time to evaluate a Super Parent candidate is practically the time to
compute the attribute frequencies, build the probability table given the candidate and
classify all test examples. As can be seen in Table 6.1, our GPU implementation shows
significant Speedup3, ranging from 8.34 to 63.36 when compared to the sequential
implementation. It is not our goal to show that our GPU version is more efficient
than a CPU/multicore version, because other aspects should be considered. We chose
an optimization using CUDA/GPU because it was a relatively simple solution and
produced a substantial reduction of time, enabling the experiments. We believe that
the performance of a parallel implementation in CPU would approach the efficiency we
obtained. We rely on this hypothesis based on a recent study which shows that CPU
and GPU are much closer in performance. The large gap in performance between CPU
and GPU can be reduced using specific optimization for each architecture (Lee et al.
[2010]). However, we must consider that there is a programming effort in choosing the
parallel strategy. We believe that the cost of programming a CPU/multicore parallel
strategy is considerably greater than a GPU-based parallel version, since we explore
a SPMD (Single Program, Multiple Data) parallel paradigm, which is easily exploited

3Speedup is a metric for relative performance improvement when executing a task.
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by GPUs.

Collections CPU GPU Speedup
4UNI 0.081± 0.0019 0.0038± 0.00018 21.45

REUT90 0.96± 0.041 0.046± 0.0005 20.85
20NG 0.52± 0.025 0.0081± 0.00004 63.36
ACM 0.079± 0.0034 0.0094± 0.012 8.34

RCV1 Uni 93.82± 3.27 2.36± 0.046 39.8

Table 6.1: Efficiency of the GPU-based implementation in select the best Super Parent
- time in seconds.

6.6 Effectiveness of LSPTAN

In this section, we present the experiments performed to evaluate the effectiveness of
our Semi-Naive Bayes strategies. As mentioned before, the original SP-TAN proposal
does not scale to the size of the datasets we experiment with, therefore we can not
present results for this proposal.

Table 6.2 shows the results of our four LSPTAN strategies applied on the five
real-world textual datasets. We compare our semi-Naive Bayes strategies with Naive
Bayes, as we want to know if theses strategies are capable to extend Naive Bayes
structure, increasing its classification effectiveness. For comparison purposes, we select
the best results of Naive Bayes (Best-NB) obtained in Chapter 4. The LSPTAN
column refers to the original strategy that selects the Super Parent attribute and their
Favorite Children.

We initialize the LSPTAN network using the INB model with the RF −u feature
weighting strategy, since this model generated the best results. INB is also the simplest
model to be extended when compared to CNB and OVA NB, because it has fewer
likelihoods to calculate, besides being the closest to the Multinomial version.

We can see in Table 6.2 that the best overall strategy was LSPTANSP , tying
or improving the Best-NB results in all ten results. Indeed, some MicF1 and specially
MacF1 results for 4UNI and RCV14 are among the best results ever reported for these
datasets, with gains of up to 6.7% in MacF1 in 4UNI and 12% in MicF1 for this same
dataset. The results of LSPTANSP over LSPTAN also show that the costly process

4For RCV1 only, due to its size and high dimensionality, we reduced the training set in about 40%
and adopted a constraint applied in Webb et al. [2005], in which only features occurring in more than
30 documents are candidates for Super Parent. Even with these limitations, we were able to obtain
improvements.
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of selecting the Favorite Children is unnecessary in most cases, helping to scale the
technique. We also observe that the LSPTANClass reach the best results observed for
the REUT90 dataset, tying with the Best-NB. The best results for ACM and 20NG
were obtained with for LSPTANRestricted, also with gains over Best-NB.

Collections Best-NB LSPTAN LSPTANSP LSPTANClass LSPTANRestricted

MacF1 MicF1 MacF1 MicF1 MacF1 MicF1 MacF1 MicF1 MacF1 MicF1
4UNI 57.58± 1.54 64.07± 1.11 59.91± 1.45 67.38± 0.96 61.48± 1.68 71.99± 1.01 57.87± 1.68 64.08± 1.19 59.92± 0.89 68.14± 1.72

REUT90 36.02± 2 66.17± 0.76 31.37± 1.39 64.2± 0.77 30.86± 0.74 63.97± 0.77 36.21± 2.11 66.57± 0.57 31.41± 1.62 63.4± 0.68
20NG 89.64± 0.6 90± 0.54 89.66± 0.59 89.91± 0.58 89.01± 0.38 89.25± 0.39 88.95± 0.58 89.35± 0.5 90.24± 0.56 90.42± 0.56
ACM 61.57± 1.6 74.61± 0.5 60.28± 0.92 75.06± 0.57 58.71± 0.92 74.4± 0.57 59.91± 0.6 74.43± 0.68 63.05± 1.47 75.65± 0.33

RCV1 Uni 51.68± 0.85 69.28± 0.08 − − 55.33± 0.72 73.41± 0.14 − − 52.83± 0.61 70.16± 0.12

Table 6.2: Results of the LSPTAN strategies considering the Super Parent and Favorite
Children.

We observe by Table 6.3 that in nine out of ten cases we find a LSPTAN strat-
egy equal or better than SVM (one ties and eight wins). When compared to KNN,
the LSPTAN ties or outperforms this classifier in eight out of ten cases (one tie and
seven wins). Overall, we can conclude that taking into account “some” dependencies
(e.g., based on Super Parents and Favorite Children) may help to improve effectiveness
in (large) datasets, depending on their characteristics. However, we were not able to
choose the best LSPTAN strategy, since three of the four strategies have proven ef-
fective in different datasets. As future work, we intend to investigate how the dataset
characteristics affect the potential gains of using our lazy Semi-NB strategies.

Collections SVM KNN Best-LSPTAN Best-LSPTAN (Source)MacF1 MicF1 MacF1 MicF1 MacF1 MicF1
4UNI 56.02± 2.02 70.91± 1.9 58.24± 2.92 73.78± 0.7 61.48± 1.68 71.99± 1.01 LSPTANSP

REUT90 30.38± 2.04 65.09± 0.21 29.95± 1.14 68.04± 0.62 36.21± 2.11 66.57± 0.57 LSPTANClass

20NG 84.92± 0.54 85.1± 0.6 88.41± 0.27 88.69± 0.67 90.24± 0.56 90.42± 0.56 LSPTANRestricted

ACM 58.00± 1.33 69.67± 0.45 59.75± 1.72 71.6± 0.46 63.05± 1.47 75.65± 0.33 LSPTANRestricted

RCV1 Uni 47.05± 0.35 75.85± 0.08 46.32± 0.72 68.23± 0.16 55.33± 0.72 73.41± 0.14 LSPTANSP

Table 6.3: Best results compared with SVM and KNN.

6.7 Chapter Summary

In this chapter we conducted a study on the relaxation of the independence assump-
tion of the Naive Bayes algorithm. We presented the main semi-Naive Bayes (TAN
and SP-TAN) strategies proposed in the literature that alleviate the structure of the



6.7. Chapter Summary 53

Naive Bayes algorithm, relaxing the independence assumption. These strategies pro-
duced some gains with the Multinomial Naive Bayes in small datasets. However, when
applied to real-world scenarios, such as large ADC datasets, this technique tends to
loose performance due to overfitting. Moreover, these strategies are extremely costly
in terms of computation time, preventing the execution of these heuristics in large
datasets. Thus, we extended the SP-TAN heuristic proposing four lazy semi-Naive
Bayes strategies (LSPTAN) that seek to solve the problems discussed above, enabling
the application of a semi-Naive Bayes techniques in large ADC tasks. Furthermore,
we used our GPU-based parallel Implementation strategy to accelerate the processing
of semi-Naive Bayes models. In our efficiency result we were able to speedup the ex-
ecution in up to 63.36, when compared to our sequential implementation, answering
our second research question. We initialize the LSPTAN network using the INB model
with the RFu feature weighting strategy, since this model generated the best results
in the previous experiment. Effectiveness results showed that considering dependen-
cies between attributes may help to improve effectiveness in large datasets, but in our
evaluation we were not able to choose the best LSPTAN strategy, since three of the
four strategies have proven effective in different collections of texts. Then we leave
this question open: Which dataset characteristics (or combination of characteristics)
interfere in each LSPTAN strategy?





Chapter 7

Conclusions and Future Work

In this chapter we summarize the research contributions of this master thesis and point
out some directions for further investigation.

7.1 New Combinations for Feature Weighting and

Naive Bayes Models

In this master thesis we exploited new combinations of Naive Bayes Strategies selected
in the literature, that try to overcome the ADC idiosyncrasies, with feature weighting
strategies specially developed to ADC task, in a preprocessing phase. We demonstrated
that a proper combination may positively impact the effectiveness of the Naive Bayes
classifier in five real textual datasets. Based on our evaluation we were able to answer
our first research question: a proper combination of Naive Bayes with feature weighting
strategies may outperform in most cases the strongest textual classifier known in the
datasets we experiment with: Support Vector Machines. In fact, Best-Naive Bayes
outperformed or tied SVM in all five datasets in the MacF1 results. This is consistent
with the fact that that most of the learning models and weighting strategies adaptations
were designed to deal with the class imbalance issue, which tends to favor MacF1.
Moreover, our results demonstrate that a combination of a INB learning model with
the feature weighting RFu may deliver a top-notch performance.

7.2 GPU-based Parallel Strategy of Naive Bayes

We also proposed GPU-NB, a parallel implementation of the Naive Bayes algorithm.
In our proposal, we exploit a very compact data structure to index the documents

55
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aiming at minimizing memory consumption, as well as maximizing the opportunities
for massive parallelization of the algorithm in GPUs. In our GPU-based implementa-
tion we exploit the possible maximum parallelism, minimizing the dependence of data
between threads. It also focuses on maximizing the amount of computation performed
by each thread. However, we observed in our results that the communication time
of the Naive Bayes algorithm data is more representative than the computation time.
Although our GPU-based parallel implementation of Naive Bayes has been developed
bearing in mind the GPU idiosyncrasies, the time spent transferring the datasets to
the GPU global memory heavily hurt performance, resulting in speedups not greater
than a few units. However, the relaxation of the Naive Bayes feature independence
assumption, that is the Semi-Naive approach, was able to take full advantage of the
proposed parallel implementation since these approaches require intensive computation
once the dataset has been transferred to the GPU. In addition, the parallel strategy
opens a new perspective and encourages the GPU-based parallelism of other Semi-NB
strategies of the Structure-based group. Our GPU-based parallel strategy is generic
and can be applied into other heuristics of this group.

7.3 Lazy GPU-based Semi-Naive Bayes proposal

Finally, we conducted a study on the relaxation of the independence assumption of
the Naive Bayes algorithm. Thus, we present the main semi-Naive Bayes (TAN and
SP-TAN) strategies proposed in the literature that alleviate the structure of the Naive
Bayes algorithm, relaxing the independence assumption. These strategies produced
some gains with the Multinomial Naive Bayes in small datasets. However, when applied
to real-world scenarios, such as large ADC datasets, this technique tends to loose
performance due to overfitting. Moreover, the strategies are extremely costly in terms of
computation time, preventing the execution of these heuristics in large datasets. Thus,
we extended the SP-TAN heuristic proposing four lazy semi-Naive Bayes strategies
(LSPTAN) that seeks to solve the problems discussed above, enabling the application
of a semi-Naive Bayes techniques in large ADC tasks. Furthermore, we used our our
GPU-based parallel Implementation strategy to accelerate the processing of semi-Naive
Bayes models. In our results of efficiency we were able to speedup the execution in up
to 63.36 in relation to our sequential implementation which answers our second research
question. We initialize the LSPTAN network using the INB model with the RFu feature
weighting strategy, since this model generated the best results. In our evaluation of
the LSPTAN effectiveness we showed that dependencies between attributes can help
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to improve effectiveness in large datasets. In fact, gains of more than 18.5% (MacF1
in REUT90) can be obtained by some of our strategies. However we were not able
to choose the best LSPTAN strategy, since three of the four strategies have proven
effective in different collections of texts. Then we leave this question open: how do the
dataset’s characteristics (or combination of characteristics) interfere in each LSPTAN
strategy?

7.4 Future Work

As future work, we intend to answer the question raised in chapter 6. For this, we
will perform a characterization of datasets evaluated with the goal to find which fac-
tors reduce and increment the quality of classification of semi-Naive Bayes proposed
strategies. We believe this characterization allow us to propose new techniques, im-
provements in the model structure, or even isolate these factors, since we will have a
better knowledge of the problem. Therefore, we can also study in details the specificity
of each of these characteristics, helping to understand the impacts or justifications for
the gains and losses of each of the strategies. We also intend to perform a character-
ization of the datasets evaluated considering the efficiency of our GPU-based parallel
implementation. This characterization will help us to perform a detailed study of the
efficiency of our strategies, allowing us to exploit improvements over the data struc-
tures, and to propose new strategies for parallel implementations, such as, multi-GPU
solutions, CPU-GPU, or MAP-REDUCE.

In this master thesis, we select as Super Parent the attribute that has the highest
probability P (dt|ci, ASP ) for a given document. The same strategy is used for select-
ing the Favorite Children. We adopted this strategy to allow that dependencies among
attributes could be generated based on information from the example that is being clas-
sified, avoiding the necessity of using a validation set to select dependencies. Thus, the
search for new strategies to select candidates as Super Parent, such as techniques that
are able to capture the quality of dependencies between attributes is relevant for the
continuity of this work. One way to capture dependencies between attributes would
be through association rules, or through co-occurrence attributes, called c-features
(Figueiredo et al. [2011]). These c-features are composed of terms that co-occur in
documents without any restrictions order or the distance between terms within a doc-
ument. A second interesting way to evaluate dependencies between attributes would
be through the construction of latent variables as Super Parent attribute, i.e., to create
an “attribute” which in fact is a combination of observed influences (hypothesis) of the
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attributes present in the dataset. These will be two line of investigation for future
work.

We also limit the construction of the Bayesian network by restricting the number
of selected Super Parents. This limitation has been performed to maintain the efficiency
of strategies. We do not know if adding more dependencies can positively interfere in
the classification model. Therefore, it is important to seek new strategies that enable us
to add new dependencies without compromising the efficiency of the LSPTAN strategy.

We will also investigate new extensions of semi-Naive Bayes proposals based on
recent results. For instance, recently, some attempts have been made to relax the
independent assumption by feature weighting in a Bayesian model. In these methods
(Gärtner and Flach [2001]; Lee et al. [2011]) the posteriori probability is estimated
by P (aj|ci) =

∑V
t P (aj|ci)w(j), where w(j) denotes the weight assigned to the jth

attribute. This is an interesting line of investigation to be exploited by our LSPTAN
strategies.

We found an effective feature weighting strategy (RFu) for all evaluated real-world
collections, but we can not guarantee that this strategy will be constantly good in all
collections, because these techniques are generally designed to be applied to any type
of scenarios (i.e., they are generic). Therefore, it is extremely important to investigate
new feature weighting approaches that can explore the unique characteristic of each
collection, maintaining the efficacy. A work that can be investigated and used for such
purpose, is the method called Component Combined Approach (CCA), which uses
Genetic Programming to combine several term-weight components (i.e., term frequency,
normalization) extracted from well-known ranking functions. This strategy builds more
effective functions than the generic strategies (de Almeida et al. [2007]). We think this
is another very promising avenue for future work.
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