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Resumo

Ao analisar dados espaciais, muitas vezes há a necessidade de agregar áreas
geográficas em regiões maiores, um processo chamado de regionalização ou agru-
pamento com restrições espaciais. Este tipo de agregação pode ser útil para tornar
a análise de dados tratável, reduzir o efeito de diferentes populações levando a uma
melhormanipulação estatística dos dados ou atémesmo para facilitar a visualização.

Neste trabalho, apresentamos um novo método de regionalização que incor-
pora o conceito de árvores geradoras a um modelo estatístico, formando um novo
tipo de modelo partição produto espacial. Ao condicionar as partições em quebras
de árvores geradoras, reduz-se o espaço de busca, possibilitando a construção de um
algoritmo eficaz para amostragem da distribuição a posteriori das partições.

Nós mostramos que, ao usar um modelo estatístico Bayesiano, é possível aco-
modar melhor a variação natural dos dados e diminuir o efeito de valores extremos,
produzindo assimmelhores resultados quando comparado comas abordagens tradi-
cionais. Nós também mostramos como nosso modelo é flexível o suficiente para
acomodar dados com diferentes distribuições. Finalmente, nós avaliamos o nosso
método através de experimentos com dados simulados, bem como através de dois
estudos de caso.

Palavras-chave: classificação espacial; modelos de partição; modelos latentes; apren-
dizagem bayesiana de estrutura.
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Abstract

When performing analysis of spatial data, there is often the need to aggregate
geographical areas into larger regions, a process called regionalization or spatially
constrained clustering. This type of aggregation can be useful to make data analysis
tractable, reduce the effect of different populations for a better statistical handling of
the data or even to facilitate the visualization.

In this work we present a new regionalization method which incorporates the
concept of spanning trees into a statistical framework, forming a new type of spatial
product partition model. By conditioning the partitions to splits of spanning trees
we reduce the search space and enable the construction of an effective sampling al-
gorithm.

We show how using a Bayesian statistical framework we are able to better ac-
commodate the natural variation of the data and to diminish the effect of outliers,
producing better results when compared with the traditional approaches. We also
show how our model is flexible enough to accommodate distinct distributions of
data. Finally, we evaluate our method through experiments with simulated data as
well as with two distinct case studies.

Palavras-chave: spatial clustering; partition models; latent models; Bayesian struc-
ture learning;.
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Chapter 1

Introduction

1.1 Motivation

We collect, represent, and store data in an effort to better understand our world
and to help us make decisions. Once we have the data, the study and analysis of it
becomes a central and important activity.

Inmany situations there are spatial characteristics naturally associatedwith the
data. Human beings, for instance, are neither uniformly nor arbitrarily distributed
in space. Frequently, geographical characteristic such as topology, weather, and oth-
ers may affect the behavior and the spatial distribution of individuals. The recent
advances in science and technology have made the acquisition and usage of spatial
data not only something easier but also a more present task. Therefore, the spatial
analysis becomes a particularly important exploratory and analytical tool.

When performing spatial analysis, it is often needed to aggregate geographi-
cal areas into larger regions. This can serve a range of purposes, such as reducing
the noise introduced by outliers and inaccurate data, make data analysis tractable,
providing a better statistical handling of the data (by reducing the effect of different
populations), and even simply to facilitate the visualization and understanding of
the information [Wise et al., 1997].

There are two possible ways to carry out this aggregation. One way is through
an artificial aggregation, where the constructed regions are defined rather arbitrarily
or using official or normative designations (such as states, districts and counties).
This kind of aggregation, however, is usually the expression of political will and
may not take into account the geographical characteristics or information specific to
the domain being studied. Another way is to perform the aggregation based on the
analysis of characteristics of data which are related to the phenomena being studied.

1



2 Chapter 1. Introduction

Through the use of official or nominative regions, in many cases, the result of
statistical analysis can be affected by problems of the aggregation, such as the eco-
logical fallacy [Robinson, 1950; Openshaw, 1984a], the modifiable areal unit prob-
lem [Openshaw, 1984b], among others. Therefore, the use of analytical regions is of
particular relevance since this kind of analysis, if properly executed, may be able to
produce more helpful results in the discovery of spatial patterns than the original
data [Alvanides and Openshaw, 1999].

In spatial analysis, this type of aggregation receives the name of regionalization
or spatially constrained clustering. It is the process of aggregating small contiguous
geographical areas forming larger regions (called spatial clusters), with the purpose
of partitioning the space into spatial clusters in a form such that areas which are sim-
ilar according to some characteristics belong to the same spatial cluster. In Fig. 1.1
we show an example of an outcome of a regionalization method. The 3127 conti-
nental US counties have been aggregated into seven regions or clusters according
to their percentage of votes for George Bush in the US Presidential Election of 2004.
Neighboring counties with similar voting percentages are clustered together.

Figure 1.1: Example of regionalization as seen in Guo [2008]

Many applications benefit from the usage of regionalization. For instance, a
specific regionalization of resources for healthcare delivery has been implemented
by the Department of Veterans Affairs (VA, formerly the Veterans Administration)
in the United States. Rather than using established administrative boundaries, the
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VA regional system determined service areas boundaries taking into account the ex-
pected patterns of health service use [Ricketts, 1997]. Other examples of applications
are: sampling procedures [Martin, 1998], establishment of communication protocols
in geo-sensor networks [Reis et al., 2007], classification of areas with high incidence
of diseases [Martins-Bedé et al., 2009], and environmental planning [Bernetti et al.,
2011].

Most of the regionalization techniques consider the data as fixed, static values.
Frequently, this assumption is inappropriate, as it doesn’t allow for measurement er-
ror or uncertainty on the areas’ measures and it doesn’t allow also for the evaluation
of the uncertainty of the obtained clusters. It is valid to think of neighbouring areas
as having similar values due to an underlying process which has a regional effect. Or
to consider the collected data as only a random manifestation of some characteristic
which may vary in time.

Consider, as an example, the measured infant mortality rate of a small town in
a given year. This value should not be considered as the most representative value
for the true mortality rate. This value can be severely impacted by small differences
from one year to another, particularly if the area has a small population. The mea-
sured value can show a natural variability, expressed in this widely different infant
mortality rate variation in two successive years in small population areas, which is
not considered in the traditional regionalization techniques. Thus, using a explicitly
stochastic framework to perform the regionalization can provide better and more
helpful results. In Fig. 1.2 a regionalization produced by a non-stochastic method is
shown. This is amap ofmunicipalities in the South of Brazil partitioned according to
their value of the bladder cancer mortality rate. The regionalization technique used
is named Automated Zoning Procedure.

In this work we present a regionalization method which explores both a sta-
tistical model for the data as well as a representation of the spatial relationship of
the data through a graph. We adopt a hierarchical Bayesian model to represent the
data. Any type of distribution can be adopted for the observed data, continuous or
discrete. The clustering structure is induced by a product partition model, a statisti-
cal framework for clustered data, together with spanning trees of the spatial graph
built from the data to provide an effective algorithm to perform spatial inference and
regionalization.
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Figure 1.2: Example of a bad regionalization

1.2 Contributions

In this work we incorporate the concept of spanning trees into a hierarchical
Bayesian model, introducing a new spatial product partition model. Our model al-
lows for any type of distribution for the observed data.

By conditioning the partitions to splits of spanning trees, we substantially re-
duce the space of partitions or clusters we have to explore. The clustering struc-
ture assumes a product form, which conveniently allows for some sort of conjugacy
where the posterior distribution can be derived from the prior distribution of each
cluster. Based on this framework, we propose an efficient Gibbs sampler algorithm
to sample from the posterior distributions, specially that of the partition.

Through our newmodel, we provide a new framework to cluster data which is
flexible and can be used tomodel datawith different structures, and yet effective and
viable for inference to be made through a Gibbs sampler. Examples of application
of the proposed model and the sampling algorithm are provided for data modelled
through Normal and Poisson distributions.

1.3 Outline

The remainder of this work is organized as follows. First, Chapter 2 provides a
summary of the technical background used in our work and of the existing work re-
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lated to regionalization. Next, inChapter 3wedescribe howwe incorporate the span-
ning trees as a tool to perform sampling of partitions. In Chapter 4 we describe our
proposed model, integrating the sampling through spanning trees with the prod-
uct partition model, as well as the application of our model to Normal and Poisson
data. Chapter 5 presents our attempt to construct a more complex model, based on a
MarkovRandomField. This provided uswith useful insights and better understand-
ing of the problem. However, this promising model did not perform as well as our
final model. In Chapter 6, we present our experimental evaluation of the proposed
model. We discuss the datasets considered in the studies and the results obtained
with our algorithm. We also provide a comparison with alternative techniques. Fi-
nally, Chapter 7 concludes this thesis with a review of our main contributions and
the discussion of the results obtained through the experimental evaluation.





Chapter 2

Background and Theoretical
Framework

The goal of this chapter is to introduce the elements needed to understand both
the problem we have at hand as well as the proposed solution. We also take a mo-
ment to reviewprevious literature that is related to the problem and themain current
solutions to it.

Throughout this text, we attempt tomaintain a consistent notation. Weuse bold
font to denote vectors of random variables and Greek letters to denote parameters
in a model. We denote the data vector by Y = (Y1, · · · , Yn). Hyperparameters and
indices are denoted by lower case letters. A partition of a set of indices is denoted by
the Greek letter π and T represents a spanning tree. Gk denotes the k-th cluster (or
the subgraph induced by the nodes in the group Gk when talking about graphs). We
use f (·) and f (· | ·) to denote marginal and conditional probability density function
as well as probability mass function when in the continuous and discrete random
vector case, respectively.

We start with Section 2.1, in which we give a textual description of the prob-
lem and the task we seek to solve in this work. This description builds upon what
was already stated in the introduction and forms the base for the model we describe
next. In Section 2.2, a formulation of the problem in terms of a graph is given. Such
a modeling is helpful to understand the nature of the data and is an opportunity to
define and explain in more detail the elements involved in both the problem as well
as the proposed solutions. Next, in Section 2.3, a brief overview of some Markov
Chain Monte Carlo (MCMC) sampling techniques is presented, to help those unfa-
miliar with such tools to follow the next chapters. Finally, in Section 2.5 we provide
a review of the literature and the work that are related with our problem.

7



8 Chapter 2. Background and Theoretical Framework

2.1 A description of the problem

2.1.1 Clustering

Cluster analysis (or simply clustering) is one of the main tasks in unsupervised
machine learning. The goal of clustering is to partition a set of objects into groups
(called clusters) in such a way that the objects of a given cluster are similar to each
other and differ from the objects of other clusters.

Tasks or problems involving clustering are not recent, with examples that go
back decades in disciplines as psychology, geology, marketing, andmany other fields
[Zubin, 1938; Tryon, 1939; Cattell, 1943]. The problem is also generic enough, with so
many different assumptions and constraints, that several different approaches have
emerged over the years.

Generally, the process of clustering consists of partitioning a set of n objects,
each object with k features (or attributes). To define the clusters, a similarity measure is
usually necessary, to indicate how similar are two objects. Frequently, this measure
is some kind of distance measure between the objects, such as the Euclidean distance
between numeric vector objects.

There are many variations on the clustering problem, due to the varied num-
ber of assumptions and constraints that take place. As a result, many algorithms
with different approaches have been developed over the years. These different ap-
proaches can usually be divided into two categories: hierarchical and partitional
methods. The hierarchical methods generate a nested series of partitions, while the
partitional methods generate only one. This taxonomy can be further extended with
descriptions such as: connectivity based (builds on the idea that objects are more
similar to nearby objects than to farther objects), centroid based (represent the clus-
ters through centroids - a mean vector), density based (define cluster by the density
of the data nearby each object), graph based (work upon connectivity definitions in
graphs), fuzzy clustering (each object belongs to each cluster to a certain degree),
distribution models (model the clusters with statistical distributions), among others.

Another important type of clustering is the constrained clustering, which is di-
rectly connected to the problem which is the main focus of this work. In this kind
of clustering constraints are imposed on how the objects can or cannot be grouped
together. Usually these constraints impose that two objects must (or cannot) be in
the same group. An example is the constrained k-means clustering [Wagstaff et al.,
2001].

A survey on data clustering can be found in Jain et al. [1999], where not only
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the different types of clustering techniques are discussed but also other related top-
ics such as pattern representation, feature selection, similarity measures and appli-
cations.

2.1.2 Spatially Constrained Clustering

A particular type of clustering is the spatially constrained clustering, also known
as regionalization. In this problem, not only the similarity between the objects is taken
into consideration, but also their spatial organization plays an important role on how
the clustering process is done.

A typical scenario for this problem is when the data being clustered has its spa-
tial characteristic derived from geographic properties. An example is a map divided
into small areas. In this case, the goal is to group these small areas into larger regions,
according to their similarity.

The main difference with respect to the usual clustering problem is that there
is an additional constraint: while the objects are still clustered based on the simi-
larity between themselves, the clusters formed must be spatially contiguous. The
contiguity, in our example, is defined by the geographic neighbourhood.

It is important to highlight that with spatially constrained clustering we have
two distinct spaces. There is a feature space, defined by the values and characteristics
associatedwith the data, which are used to determine the similarity between objects.
There is also the constraint space, defined by the spatial relationship present in the
data, which restricts how the objects can be grouped together but is not directly used
to compute similarity between them. This distinction is important because two very
similar objects according to the feature spacewould be assigned to the same cluster in
traditional clusteringmethods, but may end up in different clusters when the spatial
constrain is taken into consideration.

A review of this problem can be found in the survey from Duque et al. [2007].
In this survey, the authors discuss many contributions to the area in the past decades
and also provide a taxonomyofmethods for solving regionalization problems. There
are twomain categories of methods: those that treat the spatial constraints implicitly
and those which explicitly incorporate the constraints.

The first category includes traditional clustering methods as an initial step and
only afterwards enforces the spatial constraints. This approach was initially pro-
posed by Openshaw [1973]. However, in such techniques, the shape of the resulting
clusters is highly dependent of the technique chosen to perform the initial cluster-
ing. Alternatives have been proposed with the objective of creating more compact



10 Chapter 2. Background and Theoretical Framework

regions, still without taking into account the spatial constraints. Weaver and Hess
[1963] published one of the pioneer works in this subject, which proposes a proce-
dure to generate political districts. Hess et al. [1965] formally presented this method.

In the second category, the methods explicitly consider the spatial constraints
and usually model this problem as optimization problems, such as integer program-
ming. Search for an exact answer to regionalization through an optimization prob-
lem is not computationally feasible [Altman, 1998]. Many attempts were made with
different formulations of the problem as an optimization problem [Macmillan and
Pierce, 1994; Garfinkel and Nemhauser, 1970; Mehrotra et al., 1998; Zoltners, 1979].

Since obtaining the exact solution is unfeasible, different heuristics were pro-
posed such as starting regions from a (seed) area and grow them by adding neigh-
bouring areas [Vickrey, 1961; Taylor, 1973; Openshaw, 1977a,b; Rossiter and John-
ston, 1981] or start from an initially feasible solution and search for improve-
ments [Nagel, 1965; Openshaw, 1977a, 1978; Browdy, 1990].

2.2 A graph representation

The modeling in terms of a graph becomes quite natural to handle this prob-
lem. There is a collection of objects which we want to cluster. There is one or more
attributes associated with each of these objects. They also relate to each other in
terms of a neighbourhood structure, which gives a constraint on how these objects
can be grouped with each other. Our goal is to cluster the objects into groups such
that the objects in a group are similar to each other whereas objects from different
groups are dissimilar to each other.

The spatial constraint comes into play as we might have two objects which are
very similar to each other, but are located on widely separated regions on the map
and as such must not be grouped together in the same cluster.

2.2.1 Basic definitions

In this document, we define a graph as an ordered pair G = (V, E) comprising
a set V of vertices or nodes together with a set E ⊆ V × V of edges (i.e. the edges
are pairs of vertices). An edge e = (vi, vj) between the vertices vi and vj means that
those vertices are adjacent to each other, or neighbours. An undirected graph is a graph
in which the edges are an unordered pair of vertices. That is, the relation between
two vertices doesn’t depend on the direction or order of the vertices - if u is adjacent
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(c) A tree

Figure 2.1: Illustration of different graph types

to v, then v is also adjacent to u. Since the graphs we use in this documents are all
undirected, wewill refer to them simply as graphs, without using theword undirected.

A path in a graph is an alternating sequence of vertices and edges, beginning
and ending with a vertex, such that all edges and vertices are distinct (with the pos-
sible exception of the first and last vertices) and each edge is incident with both the
vertex immediately preceding it as well as the vertex immediately following it. A
cycle is a closed path, i.e. a path whose first vertex is the same as the last. We say
that two vertices are connected if there is a path between them. A graph is connected
if every pair of vertices of this graph is connected.

A tree is a undirected connected graph without cycles. In a tree, any two ver-
tices can be connected by a unique path. In Fig. 2.1 these different types of graph are
illustrated.

A connected component (or just component) of an undirected graph G is a
connected subgraph of G which is not contained in any connected subgraph of G
with more vertices or edges than it has. In other words, if we grow the subgraph
by adding vertices or edges of G that are not currently in it, the subgraph becomes
disconnected. There is no vertex outside of the subgraph that can be connected to a
vertex of the subgraph;

It is also possible for each edge of a graph to have a weight wij associated with
it, in which case we call the graph a weighted graph. The number of nodes is given by
|V| = n and we denote by u ∼ v the adjacency relation between vertices u and v.

A spanning tree of a graph G is a tree that spans G. That is, it is a tree that has
all the nodes of G and some of the edges of G. In other words, a spanning tree of
G = (V, E) is a subgraph T = (V, E′), with E′ ⊆ E in such a way that T is a tree.

The tree in Fig. 2.1c is a spanning tree of the graph in Fig. 2.1b. If the original
graph G was not connected, the analogous of the spanning tree would be a spanning
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forest - a set of trees, each of them a spanning tree for one of the components of the
graph.

2.2.2 The modeling of the data using graphs

The data is modeled in the following way: the objects (which represent ran-
dom variables, random vectors or other data associated with each location) are rep-
resented by vertices, so for each object we have a vertex. The neighbourhood struc-
ture is modeled through the edges. That is, each edge (u, v) represents that nodes u
and v are adjacent. This model is quite natural and is basically a translation of the
data into a graph. The geographical neighbourhood structure in the data is mapped
to the neighborhood in the graph.

As an example, in Fig. 2.2 we show themap of Belo Horizonte city, divided into
its administrative regions. The resulting graph built from this map is superimposed
in the figure.

Formally, we describe the model such as:

• The graph G = (V, E) is built with V being the set of nodes vi where each vi

represents an object (data point).

• The edge set E = {(u, v) ∈ V ×V | adj(u, v)} where each edge represents the
adjacency between two objects.

• Each vertex has a set of (one or more) attributes, which are the data associated
with each object in the dataset. Thus, for each vertex vi, we represent its at-
tributes as Yi. These attributes can be a vector of attributes, a single attribute
or can even be a set of features and a response variable.

2.2.3 The task in terms of the modeling

Considering the model we described, the task at our hands of clustering the
data into groups where the spatial constraint is respected (i.e. groups where each
object is adjacent to another object of the group) can be translated into the task of
partitioning the graph.

In a more formal way, what we want is to partition the set of vertices V into c
distinct groups, Gk, k = 1, · · · , c, such that V =

⋃c
k=1 Gk and Gi ∩ Gj = ∅, ∀ i 6= j.

To ensure the spatial constraint, we also assume that

|Gk| > 1 =⇒ ∀ vi, vj ∈ Gk | vi 6= vj ∃ path(u, v).
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Figure 2.2: Example of the model as a graph for the administrative regions of Belo
Horizonte

Another way to describe this constraint is to say that each group Gk is a con-
nected subgraph. If we remove from the original graph all the edges connecting
nodes from different groups, the resulting graph will be a disconnected graph and
for each of its connected components, the set of its nodes is exactly one of the groups
defined by the partitioning.

This partitioning of the graph must not only respect the spatial constraint as
it must be done in some way the vertices in a given group have similar attributes
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whereas vertices from different groups have dissimilar attributes.
The definition ofwhat ismeant by similar and dissimilar is not given here and it

is usually one of the points where the algorithms to solve this problem differ. When
we discuss the modeling of our proposed solutions (and the related works) this con-
cept of similarity will become more clear.

2.3 Markov Chain Monte Carlo Methods

One important class of tools used in our solutions is the Markov Chain Monte
Carlo (MCMC) methods. These algorithms for sampling from a probability distri-
bution are based on the construction of an appropriate Markov chain.

The general idea behind MCMC methods is that we want to sample from a
given probability distribution f (x)which is complex and fromwhichwe don’t know
how to sample directly. The way these methods work is by constructing a Markov
chain in a specific way such that the stationary distribution of the chain is the desired
probability f (x) from which we want to sample. The samples are taken, therefore,
by carrying out a random walk on the constructed chain.

In this section we briefly describe the two main MCMC methods, namely the
Metropolis-Hastings algorithm and the Gibbs sampler, which we used in our work.
More information about these methods can be found in various sources, such as in
the introductory paper by Andrieu et al. [2003] or in the book by Murphy [2012].

2.3.1 Metropolis-Hastings algorithm

This algorithm, initially proposed byMetropolis et al. [1953] and later extended
to a more general case by Hastings [1970] presents a way of sampling from a target
distribution P(x) (possibly multivariate) from which we can’t directly sample. This
distribution might be too complex, or it may be even not completely specified (i.e. it
can be specified up to a normalizing constant).

The way the algorithm works is by using a different distribution Q(x), called
a proposal distribution from which sampling is easy. The algorithm generates a se-
quence of samples where each new value is dependent only on the current sampled
value (thus making it a Markov chain). At each iteration a candidate value is sampled
from the proposal distribution given the current value. This new candidate is then
accepted or rejected, according to an acceptance rule. If it is accepted, the candidate
becomes the new sample value. If it is rejected, the candidate is discarded and the
current value is reused in the next iteration.
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As it was said, the algorithm is based on the construction of a Markov chain in
such a way that the stationary distribution is exactly the target distribution P(x). To
achieve such a distribution, some conditions must be met. The chain must be ergodic
(i.e. irreducible, aperiodic and positive recurrent) to guarantee the uniqueness of the
stationary distribution. The detailed balance is used as sufficient condition to make
sure such stationary distribution will exist. The acceptance rule mentioned in the
previous paragraph is defined to ensure these conditions are attained. The accep-
tance ratio, which is used to determine if the new candidate x′ should be accepted
or rejected in the Metropolis-Hasting algorithm, is given by

A(x(t−1) → x′) = min

(
1,

P(x′)
P(x(t−1))

Q(x′ → x(t−1))

Q(x(t−1) → x′)

)
, (2.3.1)

where Q(x → y) denotes the probability of the proposal distribution, that is, the
probability of proposing the state y given the state x.

At each step of the process, a new candidate is sampled. Then, this acceptance
ratio is computed. Finally, a uniform value between 0 and 1 is sampled and com-
pared with the acceptance ratio to decide if the new candidate should be accepted
or rejected. In Algorithm 1, the pseudo code for the Metropolis-Hastings algorithm
can be seen.

Algorithm 1 The Metropolis-Hastings algorithm
1: procedure Metropolis-Hastings
2: x(0) ← random initial value
3: for t← 1, N do
4: x′ ← sample from Q(x|x(t−1))

5: A(x(t−1) → x′) = min
(

1, P(x′)
P(x(t−1))

Q(x′→x(t−1))

Q(x(t−1)→x′)

)
6: u← U(0, 1)
7: if u ≤ A(x(t−1) → x′) then
8: x(t) ← x′

9: else
10: x(t) ← x(t−1)

11: end if
12: end for
13: end procedure

The selected proposal distribution should be, ideally, as similar as possible to
the target distribution in order to avoid a frequent rejection of candidates, which
would slow down the convergence of the chain. It is also important to highlight
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that, in the acceptance ratio, both directions in the proposal distribution are needed
(i.e. we need both Q(x′ → x(t−1)) and Q(x(t−1) → x′)). It is also worth to note
that in the case of these two values being the same (i.e. the distribution is symmet-
ric), the algorithm becomes the simpler Metropolis algorithm, where the proposal
distribution density is not needed to compute the acceptance ratio.

2.3.2 Gibbs sampler

Gibbs sampler (or Gibbs sampling) was introduced by Geman and Geman
[1984] and named after the physicist Josiah Willard Gibbs, in reference to an anal-
ogy between the sampling algorithm and statistical physics. It is a special case, in its
basic incarnation, of the Metropolis-Hastings algorithm.

The Gibbs sampler is particularly useful when the probability from which we
want to sample is multivariate and it is unknown or difficult to sample from it,
whereas the full conditional distribution of each variable is known and easy to sam-
ple from.

The Gibbs sampler provides a way for sampling from the distribution P(x) by
sampling each of its components xi at a time, from the full conditional distribution.

Suppose we want to obtain a sample from a joint distribution f (x1, · · · , xn).
The i-th sample is denoted by X(i) = (x(i)1 , · · · , x(i)n ). The algorithm proceeds as
follows:

• Start with some initial state X(0).

• For the i-th sample, sample each dimension j = i, · · · , n from the full condi-
tional distribution:

P(xj | x(i)1 , · · · , x(i)j−1, x(i−1)
j+1 , · · · , x(i−1)

n ). (2.3.2)

It is important to note that we always use the most recently sampled value for
each variable and update the value of a variable as soon as a new value is sampled.

The Gibbs sampler is a special case of theMetropolis-Hastings algorithm. Take
the proposal distribution as that in Eq. (2.3.2). Then, the Metropolis-Hastings ratio
in Eq. (2.3.1) is equal to 1 and the acceptance rate is also 1. That is, every sample is
accepted.

It is also noteworthy that a single step of the Metropolis-Hastings algorithm
can be used for variables fromwhich the full conditional distributions are not easy to
sample. There are other extensions for the Gibbs sampler. One of them is the blocked
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Gibbs sampler, in which two or more variables are grouped together and sampled
from their joint distribution conditioned on all other variables. Another one is the
collapsed Gibbs samplerwhich integrates out (marginalizes over) one ormore variables
when sampling for some other variable.

2.4 Product Partition Model

In this section we review the product partition model (PPM), introduced by
Barry and Hartigan [1992], which is a convenient framework to model data that fol-
low different regimes.

In the PPM, it is assumed that observations in different components of a ran-
dom data partition are independent and those inside a component are independent
and identically distributed (iid). Moreover, the probability distribution for the ran-
dom partition assumes a product form.

Let Y = (Y1, · · · , Yn) be a set of observed data. Consider a random partition
π = {(Y1,1, · · · , Y1,n1), · · · , (Yc,1, · · · , Yc,nc)} of this data into c groups of contiguous
objects where the k-th group has nk observations. Denote by YGk = (Yk,1, · · · , Yk,nk

)

the observations in the k-th group.
We say that the random quantity (Y , π) follows a PPM, denoted by (Y ; π) ∼

PPM if the following two conditions are met:

(i) The prior distribution of partitionπ into c blocks is given by the following prod-
uct distribution:

P(π) = L
c

∏
k=1

c(Gk), (2.4.1)

where c(Gk) is a nonnegative numberwhich expresses the similarity among the
observations belonging to group k, and L is a constant chosen so that the sum
of P(π) over all possible partitions is unity. The component c(Gk) is named
prior cohesion of group k and is a subjective choice.

(ii) Conditionally on the partition π, the sequence Y = (Y1, · · · , Yn) has the joint
density given by:

f (Y | π) =
c

∏
k=1

fGk(YGk), (2.4.2)
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where fGk(YGk) is the joint density of the random vector YGk = (Yk,1, · · · , Yk,nk
),

called data factor. That is the block of nk observations belonging to the k-th
group.

Amore interesting type of product partition model, which is considered in our
work, is a model in which a set of parameters θ1, · · · , θn is partitioned into c groups,
inducing a partition in the dataset. Given a partition, there are common parameters
θG1 , · · · , θGk of each group that are assumed to be independent. The joint distribution
of the parameters, the data and the partition is a product partition model. The joint
distribution of the parameters and the data, given a partition can be expressed as:

f (Y , θ | π) =
c

∏
k=1

f (YGk |θGk) f (θGk),

where

f (YGk | θGk) = ∏
i∈Gk

f (Yi | θGk).

Thus, the joint distribution of the random variables in cluster Gk, that is, the
data factor, becomes:

f (YGk) =
∫

Θ

[
∏
i∈Gk

f (Yi|θGk)

]
f (θGk) dθGk ,

the posterior by cluster of θGk , given YGk , is

f (θGk | YGk) =

[
∏i∈Gk

f (Yi | θGk)
]

f (θGk)

f (YGk)

and consequently, the marginal posterior of each individual parameter θi becomes

P(θi | Y) = ∑ P(θGk | YGk)P(Gk ∈ π | Y),

where the sum is over all possible partitions and Gk is the group that contain i. The
posterior distribution for the partition assumes the form

P(π | Y) ∝
c

∏
k=1

c(Gk) · f (YGk)
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and, finally, the posterior distribution for the number of clusters is given by

P(C = c | Y) = ∑ I[π, c]P(π | Y)

where the sum is over all possible partitions and I[π, c] is an indicator function as-
suming 1 if the partition π is composed of c clusters and zero otherwise.

The PPM thus offers a convenient framework to do inference on clustered pa-
rameters, since it implies some sort of conjugacy on the model. We explore this in
order to perform the inference on both the parameters θi as well as in the partitions
of the observations.

2.5 Related Work

Many different methods and improvements have been proposed to deal with
the problem of regionalization. Openshaw andWymer [1995] proposed a simulated
annealing variant of the k-means with a posterior step to enforce the spatial con-
straint. Variants of the Automatic Zoning Procedure (AZP) were proposed using dif-
ferent search procedures such as simulated annealing, and tabu search [Openshaw and
Rao, 1995]. These methods work as an optimization problem and the number of
regions to be constructed must be informed.

A modification of the AZP with tabu search was proposed by Duque and
Church [2004] and is named Automatic Regionalization with Initial Seed Location
(ARiSeL). Under this method, the construction of an initial feasible solution is re-
peated several times before running the tabu search. The author argue that con-
structing initial solutions is less expensive than performing a local search.

Kohonen [1990] proposed an algorithm called Self Organizing Maps (SOM), an
unsupervised neural network which adjust its weights to represent a data set distri-
bution on a regular lattice. This method has been used to perform regionalization.
However, it doesn’t guarantee the spatial contiguity. A variant of this method is
proposed in Bação et al. [2004] with a different procedure to explore the neighbour-
hood. The same authors proposed a method which uses genetic algorithm to define
the center of the regions [Bação et al., 2005].

Another heuristic is devised by Aldstadt and Getis [2006], called AMOEBA (A
Multidirectional Optimum Ecotope-Based Algorithm). It starts with an initial area and
grows it by adding neighbouring areas until a local spatial autocorrelation statistic
fails to increase. This process is repeated to all areas and afinal step resolves overlaps.
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Another technique, calledMax-p-regionsworks by constructing an initial feasi-
ble solution and performing local improvement. It clusters the areas into the max-
imum number of homogeneous regions such that the value of a spatially extensive
regional attribute is above a predefined threshold value [Duque et al., 2012].

Assunção et al. [2006] proposed Spatial ’K’luster Analysis by Tree Edge Removal
(SKATER), a graph based method that uses a minimal spanning tree to reduce the
search space. The regions are then defined by the removal of edges from the span-
ning tree. The removed edges are chosen to minimize a dissimilarity measure.

Inspired by SKATER, Guo [2008] proposed REDCAP (Regionalization with dy-
namically constrained agglomerative clustering and partitioning) with six methods ex-
ploring different connection strategies using the underlying graph structure.

There are several statistical methods related to regionalization. In diseasemap-
ping, Knorr-Held and Raßer [2000] presented a Bayesian approach to the spatial
partition of small areas into contiguous regions. They assume that each area has
a random disease count yi with Poisson distribution with unknown relative risks θi.
They also assume these relative risks can be grouped into g spatial clusters where the
θi’s have the same value within a cluster. The number g of clusters is unknown and
hence the unknown parameter vector is composed of g plus the distinct elements in
the vector θ and some additional hyperparameters. Since the parameter vector has a
variable dimension, they use reversible jumpMarkov chainMonte Carlo (MCMC) to
obtain a sample from the posterior distribution [Green, 1995; Richardson and Green,
1997].

In the same year, Gangnon and Clayton [2000] proposed a different Bayesian
approach for this problem. Let r = (r1, r2, . . . , rn) be a specific cluster labelling func-
tion with c clusters. That is, ri labels the cluster to which area i belongs so ri = j
where j = 1, . . . , c. They adopt a prior distribution P(c) ∝ exp(−∑j Sj) where Sj is
a known function of the j-th cluster’s geometry, Sj = α + f (size) + g(shape), which
penalizes clusters with large size or convoluted shapes. To make inference on the
space of spatial clusters, they propose an algorithm to calculate an approximation to
the posterior. This algorithm has two components. The first is a window of plausi-
bility, an adaptation of the Occam’s window approach to model selection [Madigan
and Raftery, 1994]. In the second, given awindow of plausibility, they use a random-
ized search algorithm similar to backwards elimination methods used for variable
selection in regression problems.

Denison and Holmes [2001] also considered this problem. They use a Voronoi
tesselation T with m centers (tiles or regions) to define a partition into spatial clus-
ters. The possible centers of the tesselation are the n areas’ centroids and hence the
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search space of the centers is drastically reduced. As inKnorr-Held andRaßer [2000],
they also assume that all areas within a tesselation tile have the same distribution de-
pending on an unknown θ. They assume a priori that the probability of a tessellation
with M centers depends only on the number of centers.

Lu and Carlin [2005] and Banerjee and Gelfand [2006] have worked on a dual
problem: rather than aggregating similar areas into homogeneous regions, they aim
to identify sharp boundaries between pairs of areas. Homogeneous regions can be
obtained as a byproduct of their procedures. They call their methods boundary (or
wombling) analysis.

Hegarty and Barry [2008] proposed a model based on a PPM with cohesions
built in such a way as to take the spatial information into account. While it is an in-
teresting Bayesian method, the sampling of the partitions is not simple and a param-
eter that indicates whether there will be few or many clusters in the partition must
be explicitly and carefully determined since giving it a prior distribution makes the
calculations needed for the sampling of the partitions difficult.

Another interesting Bayesianmethod is proposed byWakefield andKim [2013].
In the proposed method, the maximum number of clusters has to be specified, the
clusters found tend to have a circular shape and the model focus on defining only
the clusters which have a "higher" or "lower" value. What means to have a higher or
lower value has to be carefully specified through the prior distributions attributed
to these two types of clusters.

Recently, Anderson et al. [2014] proposed a Bayesian regionalization method
which takes two steps. In the first step, a hierarchical clustering method is used to
define a set of possible partitions. In the second step the best partition is chosen by
fitting a Bayesian model for each of the partition and evaluating them according to
DIC, a criterion of model selection.





Chapter 3

Sampling partitions using Spanning
Trees

One of the contributions and main point of this work is the use of a spanning
tree as a tool to explore the space of partitions on which we have interest. We start
by showing how we can use a spanning tree to simplify the search space of possible
partitions. Then, we showhowwe sample from this space (both trees and partitions).
Finally, we describe how this trick is used together with a PPM tomake it an effective
tool for analysing spatial data.

3.1 Using a spanning tree to explore the partitions

Amajor problem faced when dealing with partitioning of a dataset or a graph
is the huge number of possible partitions that compose the search space. In this
section we show howwe can use a spanning tree as a tool to tackle this problem and
make the exploration of this space of possible partitions something feasible. Back in
Chapter 2 we showed a graph built for the administrative regions of Belo Horizonte
(Fig. 2.2). For that graph, a possible spanning tree is portrayed in Fig. 3.1.

The basic idea behind using a spanning tree to generate partitions is that it
provides a simple way to get a partition of the dataset conforming to the spatial
constraint of having spatially coherent groups.

In a spanning tree, we have a set of n − 1 edges which connect the nodes of
the graph. To generate a partition of c spatially connected groups, the only thing we
have to do is to remove c− 1 edges from this spanning tree. Each edge we remove
disconnects a part of the graph, creating a new component (a new group). In Fig. 3.2

23
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Figure 3.1: Spanning tree built for the Belo Horizonte data

we show a spanning tree with 5 groups defined by the removal of 4 edges (displayed
in bold).

The great advantage we get from using the spanning tree and the edge removal
is the reduction of the search space. Originally, we would have to navigate through
a huge space of all the possible partitions of the dataset (having also to discard those
that do not respect the spatial constraint). By using the spanning tree, we have now
a simpler way of exploring the space. Moreover, all the partitions generated in this
way will, by definition, respect the spatial constraint. After all, the spanning tree is
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built from the neighbourhood structure and, therefore, the groups formed will be
spatially connected.

Figure 3.2: The groups generated by a spanning tree edge removal and the removed
edges

3.2 Sampling partitions and tree

In this section we will discuss how to sample partitions of a given graph using
spanning trees. We talk here about sampling on a generic context. We assume we
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have a connected graph G and we want to sample partitions for this graph.

3.2.1 Generic model for sampling partitions

A simple model for such a situation would be to consider all possible trees and
partitions equally probable, that is, the distribution of spanning trees is uniform and
the distribution of the partitions, given a specific tree T , is also uniform. So we have
the following hierarchical model:

P(T ) ∝ 1

P(π | T ) ∝

1 if π ≺ T

0 otherwise,

(3.2.1)

where π ≺ T means that π is compatible with T , that is, the partition π can be
achieved by removing edges from the tree T .

An improvement to this model can bemade by changing the distribution of the
partitions given a tree. Instead of considering all partitions equally probable, we can
model them giving larger probability to those partitions that have a certain amount
of groups.

One way of doing that is adding a parameter ρ, which models the probability
of removing an edge from the tree. In this model, it is as if, for each edge, a coin is
tossed, individually, to decide if the edge should be removed or not. The probability
of success of this coin is ρ. It can be defined as a fixed value or it can be given a prior
probability distributions, such as a Beta distribution. This new model becomes:

P(T ) ∝ 1

P(π | T ) ∝

ρ(c−1)(1− ρ)(n−c) if π ≺ T

0 otherwise.

(3.2.2)

An immediate consequence is that the prior number of clusters is given by nρ. The
first model can be seen as a particular case of this new model, where the probability
ρ = 0.5.

Even though sampling a partition given a tree, from this simple model, is a
trivial task, it is usually a harder task when the model is more complex and involves
more parameters and data. For this reason, we describe next a Gibbs sampler ap-
proach for the problem, which will be the basis of the sampling we do when dealing
with a more complex model.
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3.2.2 Gibbs sampler for the partition

The Gibbs sampler we describe here is inspired by the transformation sug-
gested by Barry and Hartigan [1993]. A partition π of the graph can be transformed
into a vector U of n − 1 binary variables, given a compatible spanning tree, where
each variable Ui represents one of the edges of the spanning tree and its value is 0 if
the edge must be removed from the tree to form π and 1 otherwise.

With this transformation we can map a partition (given a compatible tree) to
a vector U and back in a unique way. All possible partitions represent all possible
configurations of this vector. And now,we have amultidimensional randomvariable
which can be sampled with Gibbs sampler. For that purpose, we must be able to
specify the full conditional probability P(Ui | U−i, T), where we denote by U−i the
set of all Uj where j 6= i, that is, U−i = {U1, · · · , Ui−1, Ui+1, · · · , Un−1}. What is
needed, then, is to decide, for each edge in the tree, given all the other edges, if it
should be removed or not. In a general case, it may be hard to specify the exact value
of this probability, but since the variable can assume only one of two values, it is
sufficient to know the ratio between the P(Ui = 1 | U−i, T) and P(Ui = 0 | U−i, T).
We can further develop this

P(Ui = u | U−i, T) =
P(U, T)

P(U−i, T)

=
P(Ui = u, U−i | T)P(T)

P(U−i, T)
.

so the ratio becomes:

Ri =
P(Ui = 1 | U−i, T)
P(Ui = 0 | U−i, T)

=
P(Ui = 1, U−i | T)���

P(T)������
P(U−i, T)

P(Ui = 0, U−i | T)���
P(T)������

P(U−i, T)

Ri =
P(π(1) | T)
P(π(0) | T)

,

where π(1) is the partition with the edge Ui and π(0) is the partition without that
edge.

Thus, we can sample from the distribution of Ui simply by sampling a uniform
value u ∼ Uniform(0, 1) and using the following accept/reject criterion:
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Ui =

1 if Ri ≥ u
1−u

0 otherwise
(3.2.3)

In the case of the simple models described above in Eq. (3.2.1) and Eq. (3.2.2),
this process is simpler and amounts to comparing the uniform value u to the proba-
bility ρ and remove the edge if u ≤ ρ or leave it in the tree otherwise.

In amore complexmodel, involving not only the tree and the partition, but also
data and parameters, the sampling process is similar. The difference will be seen in
the ratio Ri, which must be derived from the model. In this case, the sampling is
done following Eq. (3.2.3).

3.2.3 Sampling the tree

Since we are using a Gibbs sampler, we must also be able to sample a new tree
given a partition. The first step for that is to compute the full conditional distribution
for the tree, which is given in Eq. (3.2.4).

P(T | π = (U1, · · · , Un−1)) ∝

1 if π ≺ T

0 otherwise.
(3.2.4)

From that equation, we can notice that the only possible trees to be sampled are
those compatible with the current partition - that is, trees fromwhichwe can remove
edges and get the current partition. These valid trees are uniformly distributed over
the subset of trees compatible with the partition.

One way of sampling these trees is by following a hierarchical procedure. First
we consider the subgraphs of each group. For each group, we take the subgraph
induced by its vertices and sample a uniform spanning tree over this subgraph.

Now that we have a subtree for each group (uniformly generated), the next step
is to connect the subtrees to form the final tree. This can be done by constructing a
new graph where we add a vertex for each group and all the edges between two
groups. That is, we have c vertices (one representing each group) and, for each orig-
inal edge (u, v) where u ∈ Gi and v ∈ Cj 6= Ci, we add an edge in the new graph,
connecting the vertices i and j. If there are multiple edges connecting two distinct
groups in the original graph, they will be present as multiple distinct edges between
the two vertices on the new graph, so that all possibilities are kept in the process.
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Once the new (multi)graph is constructed, we sample a uniform spanning tree
for this new graph. The edges selected in this spanning tree are included, together
with the spanning trees constructed for each group, in the final spanning tree, which
will then be the uniformly selected spanning tree, compatible with the current par-
tition.

This procedure can be seen in Algorithm 2. The generation of uniformly dis-
tributed spanning trees is a subject of study since 1989 [Broder, 1989]. The main
algorithm in the literature (Wilson’s algorithm [Wilson, 1996]) is based on a random
walk on the graph.

Algorithm 2 Sampling a uniform tree given a partition
1: procedure Sample-Tree( π, G )
2: G′ ← ∅
3: for k← 1, c do
4: Ti ← UniformSpanningTree(Gk)
5: G′ ← Vertex(Gk)
6: end for
7: for (u, v) ∈ E do
8: if π(u) 6= π(v) then
9: G′ ← Edge(u, v)

10: end if
11: end for
12: Tg ← UniformSpanningTree(G′)
13: return T = Tg ∪ T1 ∪ · · · ∪ Tc
14: end procedure

We use, however, a different approach. Instead of using this procedure with
Wilson’s algorithm, we employ another procedure to sample the tree which uses a
minimum spanning tree (MST) algorithm. This procedure gives good approximated
result and is much simpler to understand and implement.

To sample a new tree, we first assign weights to the edges in the graph. The
edges that connect vertices belonging to the same group receive a low weight, ob-
tained from a uniform distribution which generates low values (e.g. between 0 and
1). The edges that connect vertices belonging to different groups receive a high
weight, obtained from a uniformdistributionwhich generates higher values (e.g. be-
tween 10 and 20). These values are arbitrary. What is necessary is that theweights for
the edges connecting vertices from different groups must be higher than the weights
of the other edges. Once the weights are assigned, the minimum spanning tree is
obtained and it is the new sampled tree, compatible with the current partition.
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The reason for using these two sets of values is that the algorithm computes the
spanning tree with minimal sum of weights. When we use weights in this way, we
ensure that the treewill be compatible with the partition, since the edgeswith higher
weights are added to the tree only when all possible connections through edges with
a lower weight are already explored. This way, it only adds a connection between
clusters when all the possible connections inside a cluster have been visited.

This procedure is illustrated in Algorithm 3.

Algorithm 3 Sampling the tree using MST algorithm
1: procedure Sample-Tree-MST(π, G)
2: for (u, v) ∈ E do
3: if π(u) = π(v) then
4: w(u, v)← Uniform(0, 1)
5: else
6: w(u, v)← Uniform(10, 20)
7: end if
8: end for
9: T ← MinimumSpanningTree(G)
10: return T
11: end procedure

This algorithm works because the MST algorithm (either by the Prim’s algo-
rithm or by the Kruskal’s algorithm) selects the edges according to their weights.
Since all edges separating groups have higher weights, they are only selected after
the lower edges, which connect vertices inside a group. The random attribution of
weights ensures that the treewill respect the partition and, sincewe randomly assign
weights each timewe sample a tree, we get a random tree, even though the algorithm
is deterministic.



Chapter 4

Spatial PPM induced by spanning
trees

In this chapter we introduce the Spatial Product Partition Model, a variation
of the PPM adapted for spatial data. A spatial PPM was previously introduced by
Hegarty and Barry [2008]where the prior cohesionswere built in order to include the
spatial associations among the neighbour areas. Our approach differs from this pre-
vious one because we join two main components: the traditional PPM (section 2.4)
and the use of spanning trees (chapter 3). The use of the spanning tree imposes a
kind of ordering in the spatial partition space which makes the sampling feasible for
this spatial PPM.

We start in section 4.1 describing themodel and howwe adapted the traditional
PPM to the spatial case, by using the spanning tree. Then, we describe the Gibbs
sampler for this model, in section 4.2.

4.1 Proposed model

The Spatial Product PartitionModel (SPPM) is built upon the simplifiedmodel
presented in chapter 3, adding to it a model for the data based on its partitioning.
As before, we use a spanning tree as a modeling tool which allows us to explore the
space of possible partitions in a feasible way.

Let Y = (Y1, . . . , Yn) be the observation set and θ = (θ1, . . . , θn) be the vector
of parameters such that, given θ, Y1, . . . , Yn are independent and

Yi | θi ∼ f (Yi | θi), i = 1, . . . , n.
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Assume that (Y1, θ1), . . . , (Yn, θn) are nodes of a graph whose edges are defined by
their spatial neighbour structure on the map. Let I = {1, . . . , n} be the set of indices
of the nodes.

To introduce the cluster structure, let us assume that T is a spanning tree as-
sociated with that graph. Denote by π a partition of I compatible with T satisfy-
ing the conditions given in Section 2.2.3. Assume also that, given T and a partition
π = {G1, . . . ,Gc}, there are common parameters θGk , k = 1, . . . , c, such that, for all
nodes whose indices belong to Gk, we have that

θi = θGk , i ∈ Gk.

As before, let us denote by YGk the set of observations associated with the nodes in
Gk.

We define a spatial PPM induced by the spanning trees as the joint distribution
of (Y , θ, π), given T and π ≺ T , denoted by (Y , θ, π | T ) ∼ SPPM, that satisfy the
following conditions.

(i) Given T and π = {G1, . . . ,Gc}, π ≺ T , the common parameters θG1 , . . . , θGc

are independent with joint distribution given by

θG1 , . . . , θGc | π, T ∼
c

∏
k=1

f (θGk);

(ii) Given T , π = {G1, . . . ,Gc} with π ≺ T , and θG1 , . . . , θGc , the sets of observa-
tions YG1 , . . . , YGc are independent and such that

Yi | θGk

ind∼ f (Yi | θGk), ∀ i ∈ Gk

(iii) Given T , the prior distribution of π, π ≺ T is a product distribution given by

P(π = {G1, . . . ,Gc} | T ) =
∏c

k=1 c(Gk)

∑C ∏c
k=1 c(Gk)

where c(Gk) ≥ 0 denotes the prior cohesion associated to the subgraph Gk and
represents the similarity among the vertices in Gk.

To complete the model specification we must elicit a prior distribution for T .
We assume that T has a uniform distribution on the space of spanning trees of the
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original graph G, that is,

P(T ) ∝ 1.

By considering this structure of spanning tree, we simplify the original graph
structure in a way which makes it easy to form partitions by simply removing edges
of this tree. Thus, the prior cohesion can be built as a function ofweights of the edges,
which can represent the probability of removing the edge. For instance, assume that
all edges have equal weight ρ, that is, ρ is the probability of removing each edge.

c(Gk) =

(1− ρ)nGk
−1ρ if k < c

(1− ρ)nGk
−1 if k = c,

where nGk is the number of edges in Gk not removed. Consequently, the prior distri-
bution of π = {G1, . . . ,Gc}, given T and ρ is

P(π | T , ρ) =

ρ(c−1)(1− ρ)(n−c) if π ≺ T

0 otherwise.

If we also assume that, a priori,

ρ ∼ Beta(r, s),

the distribution for the partition π given the tree T takes a form that resembles the
binomial distribution with a parameter ρ. Since the parameter ρ can be interpreted
as the probability of removing each edge from the spanning tree, a bigger value for
this parameter would indicate that we expect a high number of groups and a lower
value has the opposite meaning.

Under the proposed model, we have that the posterior distribution of the par-
tition, given T and ρ is

P(π = {G1, . . . ,Gc} | Y , T , ρ) ∝

[
c

∏
k=1

f (YGk)

]
ρc−1(1− ρ)n−c.

The joint posterior distribution of the common parameters θG1 , . . . , θGc , given π and
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T , is given by

P(θ | π = {G1, . . . ,Gc}, T , Y , ρ)∼
c

∏
k=1

f (θGk | YGk)

which establishes a posterior conditional independence among them.

Under the structure of our Spatial PPM, the posterior distribution of θi, given
T , is

P(θi | T , Y)∼∑ P(θi | YG∗)P(π = {G1, . . . ,Gc} | Y)

where G∗ denotes the group containing i and the summation is over all partitions.

The posterior distribution for the number of groups conditionally in T is given
by

P(C = c | T , Y) = ∑
π

I[π, c]P(π | Y , T , ρ).

where I[π, c] is an indicator function assuming 1 if the partition π has c clusters and
0 otherwise.

Next we describe how to sample from the posterior distribution in this model
and how the model of the data and the parameters change the Gibbs sampler we
presented in chapter 3.

4.2 Gibbs sampler for the SPPM

The sampling for the SPPM is quite similar to what we have already described
in the chapter 3. What is different is that now the model is expanded to include not
only the tree and the partition, but the data and the parameters as well.

Our goal is to sample (π, T , ρ, θ) given Y . For that we will construct a sam-
pling scheme that takes advantage of the proposed SPPM and uses a Gibbs sampler
scheme very similar to the one we described earlier.

We begin by describing how to sample (π, T | Y). To do this, we use a Gibbs
sampler. We need then, to be able to sample from the full conditional probabilities,
that is, we need to be able to sample (T | π, Y) and (π | T , Y). From our model, we
have that:
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P(T | π, Y) ∝

1 if π ≺ T

0 otherwise.

This result is the samewe found on chapter 3, and as such, we can sample from
it as we have already described. Next, we have the full conditional distribution of
the partition. Since our model is a PPM, we have that

P(π | Y , T , ρ) ∝

[
c

∏
k=1

f (YGk)

]
ρc−1(1− ρ)n−c. (4.2.1)

From Eq. (4.2.1), if we integrate out the ρ parameter, we obtain that

P(π | Y , T ) =
∫

P
P(π | Y , T , ρ)P(ρ) dρ (4.2.2)

= f (Y)
Γ (r + s) Γ (s + n− c) Γ (r + c− 1)

Γ (r + s + n− 1) Γ (r) Γ (s)

where, for each partition, the factor f (Y) can be obtained by marginalizing the dis-
tribution of the data over the parameters as follows:

f (Y) =
c

∏
k=1

∫
Θ

f (YGk | θGk) f (θGk) dθGk .

This factor is an important part of the Gibbs sampler we constructed and the
marginalization of the parameter θGk is one of the reasons we could achieve a Gibbs
sampler which converges fast, is simple and needs noMetropolis step. Having a con-
jugate distribution for θGk can be very helpful since the computation of this integral
may become easier. We will provide two distinct models for Y and θ which further
exemplify this.

Oncewe have the formula forP(π | T , Y), the sampling of the partition follows
the same scheme we described before on chapter 3. Following this scheme, we need
to compute, for each edge of the tree, the ratio between the probabilities of keeping
or removing the edge. For the SPPM, this ratio then becomes:
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Ri =
f (1)

(
YGk

)
f (0)

(
Y (L)
Gk

)
f (0)

(
Y (R)
Gk

) (r + c− 2)
(s + n− c)

where Ri is the ratio we compute for the i-th edge of the tree, f (1)
(
YGk

)
the prior

predictive of the group formed when the edge i is present, whereas f (0)
(

Y (L)
Gk

)
and

f (0)
(

Y (R)
Gk

)
are predictive of the two groups formedwhen the edge i is removed from

the tree.

Thus, we have a Gibbs sampler we can use to sample from the distribution of
(π, T | Y). Once we have that, we can sample from (θ | π, T , Y) and (ρ | θ, π, T , Y)
obtaining samples from the full set of parameters (θ, ρ, T , π) a posteriori.

When sampling ρ, we have only to sample from the conjugate beta distribution:

ρ | θ, π, T , Y ∼ Beta(r + c− 1, s + n− c)

The sampling of θ will depend on how the data is modeled. But a good charac-
teristic of the PPM is that the groups are independent from each other and, usually,
the sampling of these parameters will be simple and will depend only on the data of
each group.

4.3 SPPM for Normal data

In this sectionwe showan implementation of the SPPM for datamodeledwith a
normal distribution. Here we instantiate the general frameworkwe presented before
to show how it can be applied to a specific case.

The bulk of the model remains the same as we showed before. What changes is
the specification of a particular distribution for θ and Y . For this model, we assume
that the data are a random sample of a normal distribution with mean µ and preci-
sion τ. We also assume that, a priori, themean µ and the precision τ have their behav-
ior jointly modeled by a Normal-gamma distribution. The parameters are clustered,
which means, in this case, that we have distinct mean and precision for the normal
distributions in the distinct groups.

Consequently, we have that
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Yi | µGk , τGk

iid∼Normal
(

µGk ,
1

τGk

)
, ∀ i ∈ Gk

θGk = (µGk , τGk) ∼ Normal-Gamma(m, v, a, b).

To use the Gibbs sampler we presented before, we need the prior predictive
distribution by clusters, which is given by

f (YGk) =
∫∫

ΘGk

f (YGk | µGk , τGk) f (µGk , τGk)dµGkdτGk

=
Γ
(
a + n

2

)
ba

Γ (a) (b + v
2 +

1
2 ∑i∈Gk

Y2
i )

a+ n
2

√
v(2π)n+2

(n + v)
exp

{
−v + n

2

(
∑i∈Gk

Yi + vm
n + v

)2
}

.

The distribution of θGk = (µGk , τGk) given the observations in the cluster Gk, is
the updated Normal-gamma distribution

θGk = (µGk , τGk) | YGk ∼ Normal-Gamma (m∗, v∗, a∗, b∗) ,

that is hierarchically given by:

µGk | τGk , YGk ∼ Normal
(

m∗,
1

v∗τGk

)
τGk | YGk ∼ Gamma (a∗, b∗) ,

where m∗ =
vm+nkYGk

v+nk
, v∗ = v + nk, a∗ = a + nk

2 , b∗ = b + 1
2 ∑i∈YGk

(Yi − YGk)
2 +

vnk
v+nk

(YGk
−m)2

2 , nk is the number of observations in the group Gk and YGk denotes the
average of the observations belonging to cluster Gk.

4.4 SPPM for Poisson data

Another very popular and intensively used model in the literature is a Poisson
distribution. This model assumes that the data follow a Poisson distribution and
that the common parameter within a cluster has a Gamma distribution. That is, each
group has a distinct parameter φGk , and we assume that the data belonging to group
Gk are independent with a Poisson distribution, with parameter λi = EiφGk , where
Ei is a value known a priori for each i.
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Under these assumptions, we have an expected value for each point (the Ei

parameter) calculated under the assumption that there is no spatial variation in risk
in the map. We assume that a given group will have an influence on how the actual
data deviates from the expected value under no spatial risk variation. The group
as a whole have values higher (or lower) than the expected. Therefore, this group
deviation is what explicits the partitioning of the data. Formally, we assume that,

Yi | φGk

ind∼ Poisson
(
Ei · φGk

)
φGk ∼ Gamma(a, b).

For this model to be usedwith the Gibbs sampler we presented before, we need
the prior predictive distribution for the observations YGk , which is given by

f (YGk) =

∞∫
0

[
∏
i∈Gk

f (Yi | φGk)

]
f (φGk)dφGk

=

[
∏
i∈Gk

EYi
i

Yi!

]
Γ (a + ∑ yiba)

Γ (a) (b + ∑ Yi)(a+∑ Yi)
.

The distribution of φGk given the data information YGk in the cluster Gk is the
updated Gamma distribution given by:

φGk | YGk ∼ Gamma (a∗, b∗) ,

where a∗ = a + ∑i∈Gk
Yi and b∗ = b + ∑i∈Gk

Ei.
In this model, as well as in the one we presented earlier, we have a single set of

parameters for each group. More complex models can be built where, for instance,
there is a parameter for each observation, instead of a unique set for thewhole group.
But in such models, computing the integral in 4.2.2 becomes more difficult and if it
cannot be easily calculated, we have to sample the partition through a Metropolis
step. As we show next, in such scenario different challenges take place.
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MRF-SPPM

In this chapter we describe a more complex variation on our model which uses
a Markov Random Field in order to more explicitly incorporate the spatial influence
on the data and allows for individual parameters instead of the single common pa-
rameter for the cluster.

AMarkov Random Field (MRF) is a graphical model which consists of an undi-
rected graph in which the nodes represent random variables and the edges encode
the conditional independence among the variables. In a MRF, a random variable is
independent from all the other variables, given its neighbours in the graph. Given its
structure, a MRF is a useful model for spatial statistics, thanks to its ability to encode
the cyclic dependence between the variables, according to their spatial structure. For
more information on this type of model and its application in spatial statistics, we
refer to Rue and Held [2005].

This model still uses the same SPPM framework we presented earlier, with the
main difference that the parameters associated to the clusters are, in fact, Markov
Random Fields within each clusters, constructed from the same graph we use to
define the spanning trees, which carries the spatial information of the data.

In the following sections we describe this model and the modifications we in-
troduced to overcome the difficulty encountered to sample from it. We also present
some arguments on the shortcomings of this more complex model and why they are
arise in comparison to the simpler models we presented earlier.

5.1 The model

This model is an attempt to join the idea of having spanning trees as a tool to
traverse the space of partitions with a model for the data in the form of Markov Ran-

39
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dom Fields, which bring the benefits of a Bayesian modelling but without the strong
assumption that the observations within a given cluster are identically distributed
or have their distribution dependent on set of parameters which is shared for all the
observations in the cluster.

The motivation behind using Markov Random Fields to model the data is that
these fields incorporate the spatial influence on the areas, since they are structured
according to the spatial relationship present in the data.

In this model, we describe the data Yi as coming from independent normal
distributions, each of them with a distinct mean µi but with a shared precision τy:

Yi | µi, τy ∼ Normal
(

µi,
1
τy

)
.

The precision parameter is assumed to have a Gamma distribution:

τy ∼ Gamma(a1, b1).

The collection of all the µi forms a MRF. This field is further defined by the
partition π, the tree T , and another precision parameter τµ.

P(µ | π, T , τµ) ∝ τ
(n−c)

2
µ exp

(
−

τµ

2 ∑
i∼j

δij(µi − µj)
2

)
.

The idea behind the prior for µ is based on the conditional autoregressivemodel
introduced by Besag et al. [1991]. For a thorough review of this kind of probability
distribution, see Rue and Held [2005]. The less familiar n− c in the exponent of τµ

is due to the improper character of this prior distribution, and the definition of this
prior is can be an arbitrary choice. For more discussion about it, we refer to Knorr-
Held [2003], Hodges et al. [2003] and Lavine and Hodges [2012]. In this priori, c
is the number of Markov connected component fields [Møller and Waagepetersen,
1998].

According to the partition, each cluster present on the data will be separated
from the others. Thus, the interactions on the field are only between those adjacent
areas which belong to the same cluster. The term δij is an indicator which assumes
the value of 1 when the areas i and j are spatially related (i.e. are adjacent in the tree)
and belong to the same cluster, and 0 otherwise.
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The precision parameter τµ controls how similar should be the means inside a
cluster and is also modelled from a Gamma distribution:

τµ ∼ Gamma(a2, b2).

For the partition π, any partition compatible with the tree (i.e. any partition
that can be obtained by removing edges from the tree) are given an equal probability,
thus, having the following distribution:

P(π | T ) ∝

1 if π ≺ T

0 otherwise

The trees are, also, uniformly distributed in the space of all spanning trees of
the underlying graph.

P(T ) ∝ 1

Combined, thesemake the vector of parameters, θ = (µ, π, T , τy, τµ). The sam-
pling of these parameters is made through the Metropolis-Hastings MCMC sam-
pling technique. The posteriori distribution is given by:

P(θ | Y) ∝

[
n

∏
i=1

P(Yi | µi, τy)

]
P(µ | τµ, T, π)P(π | T)P(T )P(τµ)P(τy) (5.1.1)
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from which we derive the full conditional distributions of the parameters:

(µi | µ−i, τµ, τy, T , π, Y) ∼ Normal
(

τµ ∑j δijµj + τyYi

τy + τµ ∑j δij
,

1
τy + τµ ∑j δij

)

(τy | µ, τµ, T , π, Y) ∼ Gamma
(

a1 +
n
2

, b1 +
1
2 ∑

i
(yi − µi)

2

)

(τµ | µ, τy, T , π, Y) ∼ Gamma
(

a2 +
n− c

2
, b2 +

1
2 ∑

i∼j
δij(µi − µj)

2

)

P(π | µ, τµ, τy, T , Y) ∝ τ
n−c

2
µ exp

(
−

τµ

2 ∑
i∼j

δij(µi − µj)
2

)

P(T | µ, τµ, τy, π, Y) ∝ exp

(
−

τµ

2 ∑
i∼j

δij(µi − µj)
2

)

The parameters τy, τµ and µ can be directly sampled. On the other hand, the
partition π and the tree T don’t have a knowndistribution and aMetropolis-Hasting
sampling is needed.

For the tree T , we sample a tree in the same manner we described in chapter 3.
This new tree is used as our proposal, which is then accepted or rejected according
to the acceptance rate given by:

A(T → T ′ | · · · ) = exp

{
−

τµ

2 ∑
i∼j

(δ′ij − δij)(µi − µj)
2

}

For the partition π, the proposed distribution consist in sampling a new parti-
tion by taking a step further from the current partition. First, it is decided if we are
sampling a new partition with one more cluster or one less cluster. So, with proba-
bility ps, we split one of the existing clusters, creating a new partition with one more
cluster. Conversely, with probability 1− ps we, instead, merge two existing clusters,
creating a newpartitionwith one less cluster. The resulting partition is then accepted
or rejected according with the following acceptance rate:

A =

τ
−1
2

µ exp
{
− τµ

2 ∑i∼j(δ
′
ij − δij)(µi − µj)

2
}

(1−ps)(n−c)
c·ps

if split

τ
1
2

µ exp
{
− τµ

2 ∑i∼j(δ
′
ij − δij)(µi − µj)

2
}

ps(c−1)
(1−ps)(n−c−1) if merge

Here we see an important difference from the simpler model. While with a
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shared cluster parameter we have a direct sampling method for the partition, here
wemust use aMetropolis-Hasting sampling. That is because it is very hard to derive
a Gibbs sampling for this model as we did on the other model. Before, we had for
each group, a single set of variables to describe the whole group, with this model,
there is a variable for each node in the group. The integral we need to compute to
marginalize the parameters becomes intractable, both because the number of vari-
ables is much higher, but also because the number of areas in the groups change
from iteration to iteration.

5.2 Proposed modifications

In this section we describe the collection of modifications we did on this model
while trying to overcome some of its limitations and get better results. Proposing
these modifications and seeing their effect played an important role on better under-
standing the problem and the shortcomings of this model.

The first modification is to change the prior distribution for the partition. An
uniform distribution for it is a generic assumption. But in this sort of problem, the
number of clusters we expect to find is small if compared to the number of areas, so
we choose a distribution which can better incorporate this idea. We introduced the
following model for the partition probability:

P(π | T ) =

ρ(c−1)(1− ρ)(n−c) if π ≺ T

0 otherwise

with the introduction of a new parameter, ρ, modelled as a Beta variable:

ρ ∼ Beta(r, s).

The reasoning for this distribution is the same we described in section 3.2.
While the uniform distribution would have an expected number of cluster of n

2 , with
this new distribution we can change ρ to push the expected number of clusters to-
wards a more reasonable value.

The second modification we proposed is in how we sampled the partition. In
the initial model, to generate a candidate partition, we chose to split or merge cluster
with a fixed probability, regardless of the current partition or how many clusters we
expect to find.
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To change this, we made the probability of choosing to split a cluster a value
derived from the current partitions and the expected number of clusters. Consider-
ing that, with the newmodel for the partition, we expect to find Ec = ρn clusters, we
used a logistic function to compute the probability of splitting a cluster:

ps(c) = 1− 1
1 + e−k(c−Ec)

This function transitions from 0 to 1, with the transition point centered on Ec,
the expected number of clusters. The parameter k controls the steepness of the curve.
Thus, this function gives a high probability of splitting when we have fewer clusters
than expected and a low probability when we have more clusters than expected.

The last modification is also in the way we sampled the partition. In the initial
model, once defined if we are splitting or merging clusters, we proceed by choosing
an edge to either remove or reintroduce to the graph, respectively. This edge was
being chosen uniformly amongst all the viable edges.

In this modification, we changed that to choose the edge to be removed or rein-
troduced by means of weighted sampling. We give each edge ei a weight wi com-
puted by some measurement of similarity between the two areas it connect. Then,
we sample the edges with each edge having the probability wi

∑j wj
of being chosen.

With this newmethod, we take into consideration the value (Y) of the nodes as
an indicative of similarity between the areas. The result is that the candidate parti-
tions we generate tend to split on points where there is a dissimilarity in the tree and
merge where there are similar areas.

5.3 Shortcomings of the model

Despite the modifications we discussed above, the result obtained with this
model, even on clearly separated simulated data, was far from what we desired. In
the results, the boundary between groups was respected (meaning that the sampled
partitions separate nodes from distinct groups). But the model was overestimating
the number of clusters.

What we noticed was that, despite all the changes we made, the real groups
were subdivided in many smaller groups by the method. And what is worse, these
groups would frequently be similar to each other, indicating that they should actu-
ally be joined, instead of separated. Whenwe tried to understand the reasons for this
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poor performance, we noticed a few issues that can be used to explain the behavior
we found.

The first problem we noticed is in the prior probability for µ. In this improper
probability, the partition plays a strong role on how the actual values of µ are taken
into consideration. The highest possible probability occurs when the partition sep-
arates all areas (creating n clusters). In this case, the values of µ aren’t even taken
into consideration (any value is equally probable). This has a huge impact on the
posterior probability of the partitions. As can be seen in the acceptance rate for the
sampling of the partition and in the posterior probability of the partition, whenever
we propose a new partition, derived by splitting a group, we have a higher probabil-
ity and bigger acceptance rate than when we have the converse (i.e. a new partition
by merging two groups). For this reason, it is easier to accept a partition when split
than when we merge. Specially because in a split, we remove a pair of vertices from
the sum, while in a merge we take into account one more pair of vertices (possibly
quite different).

Another problemwe noticed is how the current partition π andmeans µ shape
the sampling of each other. When we are sampling the µ, since τµ is generally higher
than τy (as wewant homogeneous groups), the value of the means of the neighbours
of an area plays a bigger role than the value of the data Yi we have for that area. And
because the neighbours are defined by the partition, there is a tendency to fit the
means to the current partition, even if such a partition is a bad one.

This kind of problem is avoided in our previous models, because we marginal-
ize out the parameters, removing their influence from the sampling of the tree. In
this model, however, it is unfeasible to do such a thing and the sampling of the par-
tition depends directly only on the value of µ and not the data Y . The influence of
the data on the partition is indirect, through the means µ. But as we saw, we have
a bigger influence of the means of the neighbours of the node on the sampling of µi

then of the data Yi associated with it.





Chapter 6

Experimental evaluation

In this chapterwe analyze some simulated data sets considering ourmodel. We
start comparing the proposed model to some competing regionalization techniques
well discussed in the literature. We also present two case studies in order to illustrate
the practical use of the model developed in Chapter 4.

6.1 Simulations

For the simulations, different datasets were created. To define the spatial struc-
ture of the data (coordinates, shapes and spatial adjacency)we used the geographical
neighbourhood of municipalities of Brazil. Assuming this spatial structure, the ob-
servations were generated with different scenarios. To generate the clusters and the
observations we were inspired by the applications we present in Section 6.2.

There are six datasets which can be divided into three categories, according to
the distribution used to generate the observations. The first category generates the
observations according to a normal distribution. For the other two categories, the
distribution used is a Poisson distribution. For each of the categories, two distinct
methods were used to generate the data, one using distinct parameters for each ob-
servation and other using a common cluster parameter for all observations within a
cluster.

Inspired by the applications we present in Section 6.2, the two Poisson cate-
gories adopt a model frequently used in epidemiology studies. What distinguishes
the two categories is thatwhile one uses a Poisson distributionwith a parameterwith
a larger value, the other uses a Poisson distribution with a small value parameter, as
it is the case when studying the incidence cases of a more frequent or a more rare
disease.

47
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Normal data: The datasets with normal data are composed of 853 areas, which
we divided into three clusters: two big clusters covering almost all data and a third
small (10 areas) cluster islanded in the middle of one of the two other clusters, with
its value being strongly different from the surrounding areas. The observations were
sampled from Normal distributions:

Yi ∼ Normal(µi, σ2
i ).

In the first dataset, all observations within a cluster are iid from a single normal
distribution, thus, the parameters µi and σ2

i are the same for all observations in the
same cluster:

(µj, σ2
j ) = (µk, σ2

k ) ∀j ∈ Gk.

The observations range from 0.5 to 0.8, with standard deviation of about 0.03 within
each group.

For the second dataset, each area is independently distributed. The spatial
structure is the same, with the same three clusters. In this dataset, however, the
mean and precision used in each cluster was distinct, but yet very similar within the
observations of each cluster. The observations range again from 0.5 to 0.8, with the
standard deviations around 0.045 and the means ranging around 0.78, 0.7 and 0.63,
with a smooth variation between the areas in the same group.

Poisson data with high rate: For this category, the data comprises a total 1188
areas with their neighbourhood structure derived from the spatial structure of the
municipalities in the south region of Brazil. The observations are generated from a
Poisson distribution with the parameters inspired by the models used in epidemi-
ology studies and the model we used in the applications in Section 6.2. Each obser-
vation mimics a disease count (such as deaths counts by a specific cancer type) and
they come from a Poisson distribution:

Yi ∼ Poisson(Ei · φi).

The factor Ei is the expected count (distinct for each area), while the factor φi

represents a relative risk associated with the cluster, which offsets the values of the
cluster from their expected value. In the first dataset in this category, all the obser-
vations within a cluster Gk share the same relative risk (i.e. φj = φk, ∀j ∈ Gk). The
dataset was divided into 10 clusters, with the relative risks ranging from 1.45 to 1.40.
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The second dataset has, once again, a distinct parameter for each area. Instead
of all the observations within a cluster having the same relative risk, they have each a
distinct value for the parameter, although they are quite similar for the observations
within a cluster. That is, instead of a common shared parameter, each observation
has its own parameter, and they all vary, albeit smoothly, for the observations of a
given cluster. The spatial structure is the same and the relative risks range from 0.75
to 1.45.

Poisson data with low rate: The datasets built in this category are generated in the
same way as the previous one, except that the value used for the expected value of
each area Ei is considerably lower than the ones used before. The same spatial neigh-
bourhood is used, but this time the data is divided into 13 clusters. The procedures
used to generate the two datasets in this category is the same as we described for the
previous category. The dataset with the common parameter within the cluster has
the values of the relative risk varying from 0.45 to 1.4, while the second dataset, with
a distinct parameter for each area, has the relative risks varying from 0.45 to 1.75.

The two Poisson categories are very similar. The only difference between them
(besides the partition of the data) is the expected value used for each area, which
yields observations with different values. While the relative risks fall in the same
range, the actual observations in the high rate Poisson are, in average, 8 times larger
than those for the low rate Poisson.

6.1.1 Evaluation metrics

The evaluation of the cluster analysis results is not a simple task. Some usual
metrics evaluate internal characteristics of the clusters such as the dissimilarity be-
tween the observations belonging to it. However, such approaches may not properly
reflect the quality of the results. The validity of the metric used depends on both
the assumptions of the structure of the dataset and the metric. For some datasets,
the fact that the data within a cluster are dissimilar, to a certain degree, does not
necessarily indicates a poor quality of the clustering.

The benefit of using simulated data is that we have the ground truth which
we can use to evaluate the results, since we know the actual parameters and the true
cluster structure used to generate the data. Themetrics we use to evaluate the results
are based on this information.

The first group of metrics we use are based on the estimation error of the pa-
rameters used to generate the data. We call θi the true parameter used to generate the
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data (the mean µi in the case of normal data and the relative risk φi on the Poisson
data. We call θ̂i the estimated parameter. Under the usual regionalization methods,
in the case of normal data, θ̂i is obtained by the averaging the observations Yi in a
cluster:

θ̂i =
1
nk

∑
j∈Gk

Yj ∀i ∈ Gk.

For the Poisson data, θ̂i is the ratio between the sum of the observations Yi and the
sum of the expected number of cases Ei for the areas within a cluster:

θ̂i =
∑j∈Gk

Yj

∑j∈Gk
Ej
∀i ∈ Gk.

Under the SPPM we obtain a sample of the posterior distributions of these param-
eters. We used the average of these samples as the estimation θ̂i for the parameter
θi.

The metrics based on the estimation of the parameter are as follows.

Mean Absolute Error (MAE): This metric measures the absolute difference be-
tween the real parameter used to generate the data and the estimation of this param-
eter according to the resulting partitioning. It is given by:

MAE =
1
n

n

∑
i=1
| θi − θ̂i | .

Mean Relative Error (MRE): Thismetricmeasures the relative difference between
the real parameter used to generate the data and the estimation of this parameter
according to the resulting partitioning. It is given by:

MRE =
1
n

n

∑
i=1

| θi − θ̂i |
θi

.

Mean Squared Error (MSE): This metric measures the squared difference be-
tween the real parameter used to generate the data and the estimation of this pa-
rameter according to the resulting partitioning. It is given by:

MSE =
1
n

n

∑
i=1

(θi − θ̂i)
2.
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The other set of metrics are based on the difference between the real clusters
used to generate the data and the clusters obtained by the different methods. We
used an adaption of some traditional evaluation metrics used in classification tasks.
In these metrics we consider every pair of data points. Each pair is classified as
positive if they are in the same cluster and as negative if they are in different clusters.
We define as true positives (TP) the number of such pairs which are in the same
cluster both in the true partition as well as in the estimated one. False positives (FP)
are the number of such pairswhichwere assigned to distinct clusters in the result but
were actually in the same cluster in the true partition. True negatives (TN) are the
number of pairswhichwere correctly assigned to distinct clusters and false negatives
(FN) is the number of pairs which are incorrectly assigned to distinct clusters.

With this definitions, we obtained the following traditional metrics:

Rand measure: This measure can be viewed as the percentage of corrected assign-
ments made by the algorithm and is given by

RI =
TP + TN

TP + FP + FN + TN
.

F1 score: This score tries to balance the contribution of false negatives. We define
precision as

P =
TP

TP + FP
,

and recall as

R =
TP

TP + FN
.

The F1 score is, then, the harmonic mean of these values, given by

F1 = 2 · P · R
P + R

.

Jaccard index: This metric quantifies the similarity between the assignments. It is
given by

J I =
TP

TP + FP + FN
.
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Fowlkes-Mallows index: This index is the geometric mean of the precision and
recall (as defined in the F1 score), that is

FM =
√

P · R.

6.1.2 Methods used in the comparison

In this simulation we evaluate the performance of our method and compare it
to 8 different methods. The algorithms we use are: SKATER, through its implemen-
tation on the spdep R package1, the original Automatic Zoning Procedure (AZP),
and its variations with Simulated Annealing (AZP_SA), Tabu (AZP_TABU), Reac-
tive tabu (AZP_RTABU), the Automatic Regionalization with Initial Seed Location
(ARISEL), the Max-p-regions Tabu model (MAXP) and the "A Multidirectional Op-
timum Ecotope-Base Algorithm" (AMOEBA), all implemented in the Python Clus-
terPy2 library [Duque et al., 2011]. A brief description of thesemethods can be found
in Section 2.5. Most of these methods require as an input the predefinition of the
number of regions to be generated. In all cases, we use three different values: the
true number c of clusters, 3 less clusters and 3 more clusters than the true number.

Since our method generate a sample of the posterior distribution of the ran-
dom partition instead of a single partition of the dataset, to evaluate the metrics that
compare the cluster structure, we used a form of a summarization of this sample
of partitions. This summarization is constructed as follows: we take the underly-
ing graph of the spatial structure of the data and, for each edge (thus for each pair of
neighbouring areas), we compute howoften theywere in the same cluster in the sam-
pled partitions. This percentage is assigned to each edge. Then, we trim the edges by
removing all those which are below a certain threshold. Once the infrequent edges
are removed, the remaining components of the graph define the clusters. The rea-
soning is that the removed edges are exactly those which are frequently crossing the
borders between clusters in the sampled partitions and, by removing them, the bulk
of the clusters frequently present in the sampled partitions remain connected by the
graph.

6.1.3 Results

Tables 6.1 to 6.6 show the model fit measures for the proposed model and the
eight competitor methods previously mentioned for normal data (Tables 6.1 and 6.2)

1http://cran.r-project.org/package=spdep
2http://www.rise-group.org/
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and Poisson data (Tables 6.3 to 6.6).
In Tables 6.1, 6.3 and 6.5 data are generated from the same distribution and in

Tables 6.2, 6.4 and 6.6 we assume different parameters in each area. In Tables 6.5
and 6.6 we evaluate the methods in a scenario which simulates rare diseases situa-
tions.

For the SPPM,we ran theMCMC for 5000 iterations, skipping the first 500 sam-
ples as a burn-in period and thinning the result by taking only every 5th value. For
the normal datasets, we used as the prior distribution a Normal-Gamma distribu-
tion with parameters m = 0.65, v = 1, a = 400 and b = 1. With this distribution,
the standard deviation of the clusters concentrates around 0.05 and the means range
from 0.55 to 0.75. With this, we can capture the range of the observations and the ex-
pected variation of the observations in the clusters. For the Poisson datasets, we used
as the prior distribution the Gamma with parameters a = 2 and b = 2, which con-
centrates its mass around 1, as we would expect the relative risk to be. Furthermore,
the Gamma(2, 2) distribution has 90% of its probability mass concentrated between
0.18 and 2.37, which is a huge range for the relative risk of common human diseases.

In all the simulated datasets our model outperformed all the other methods.
The only scenarios where ourmethod had inferior results were in the normal dataset
with common parameter, where the MAE for the SPPM was the second best and
the Poisson dataset with low rate and common parameter where SKATER had the
lowest MRE. However, in both cases, the SPPM had better performance according to
all other metrics we consider to evaluate the models.

In all datasets, particularly in the Poisson datasets, the error metrics (MAE,
MSE, MRE) for our method was from 1.5 to 5 times smaller than the other meth-
ods. In the other metrics our method achieved drastically better results as well.
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Normal data with common parameter
Method Parameter MAE MSE MREL RAND F1 JI FM

SPPM
70%

0.00466 0.00010 0.00701
96.50 96.51 93.26 96.51

80% 96.30 96.26 92.79 96.27
90% 94.74 94.58 89.72 94.65

SKATER
c− 3 0.00745 0.00024 0.01132 92.08 92.22 85.56 92.22

c 0.00503 0.00016 0.00771 94.10 94.08 88.82 94.09
c + 3 0.00909 0.00027 0.01389 89.24 88.56 79.47 88.79

AZP
c− 3 0.03526 0.00125 0.05304 50.34 66.92 50.28 70.87

c 0.00488 0.00017 0.00751 92.52 92.34 85.77 92.39
c + 3 0.01158 0.00035 0.01799 84.98 83.11 71.10 83.85

AZP_SA
c− 3 0.00488 0.00015 0.00751 96.03 96.07 92.44 96.07

c 0.01902 0.00071 0.02865 67.15 62.10 45.04 62.93
c + 3 0.00849 0.00028 0.01304 81.07 77.92 63.82 79.14

AZP_TABU
c− 3 0.02972 0.00104 0.04536 60.17 67.43 50.86 68.50

c 0.00702 0.00021 0.01093 87.63 86.55 76.29 86.95
c + 3 0.01171 0.00037 0.01805 86.35 84.84 73.67 85.45

AZP_RTABU
c− 3 0.02680 0.00108 0.03943 60.49 63.33 46.34 63.47

c 0.00683 0.00023 0.01056 93.50 93.59 87.96 93.60
c + 3 0.00530 0.00022 0.00807 92.39 92.17 85.49 92.23

ARISEL
c− 3 0.00456 0.00015 0.00701 96.02 96.07 92.43 96.07

c 0.00945 0.00024 0.01481 88.77 87.92 78.45 88.23
c + 3 0.00542 0.00025 0.00824 86.91 85.72 75.01 86.14

AMOEBA — 0.02497 0.00074 0.03770 70.89 64.90 48.04 66.45

MAXP 10 0.01243 0.00036 0.01879 51.45 7.89 4.10 19.15
100 0.01551 0.00058 0.02317 65.74 55.54 38.44 58.36

Table 6.1: Model Fit, Normal data with common parameters

Normal data with distinct parameter
Method Parameter MAE MSE MREL RAND F1 JI FM

SPPM
70%

0.00705 0.00015 0.01065
50.37 66.58 49.90 70.32

80% 90.97 90.84 83.22 90.86
90% 90.33 89.63 81.21 89.92

SKATER
c− 3 0.01086 0.00037 0.01624 87.45 87.55 77.85 87.55

c 0.01131 0.00039 0.01702 86.06 85.93 75.33 85.94
c + 3 0.01263 0.00041 0.01927 82.92 81.75 69.14 81.99

AZP
c− 3 0.01213 0.00046 0.01822 85.08 85.40 74.51 85.40

c 0.03308 0.00130 0.04894 52.96 59.88 42.74 60.49
c + 3 0.01162 0.00043 0.01741 86.41 86.51 76.23 86.51

AZP_SA
c− 3 0.01102 0.00037 0.01651 87.88 88.07 78.69 88.08

c 0.01256 0.00049 0.01891 73.41 69.46 53.21 70.33
c + 3 0.01281 0.00053 0.01931 76.11 74.31 59.12 74.57

AZP_TABU
c− 3 0.02277 0.00113 0.03506 65.63 69.11 52.80 69.42

c 0.01512 0.00066 0.02280 78.56 78.98 65.27 78.99
c + 3 0.01566 0.00055 0.02374 73.43 68.39 51.96 69.77

AZP_RTABU
c− 3 0.01386 0.00054 0.02068 83.51 83.73 72.02 83.73

c 0.01317 0.00050 0.01978 84.15 84.15 72.63 84.15
c + 3 0.01394 0.00051 0.02076 79.09 77.26 62.95 77.61

ARISEL
c− 3 0.01206 0.00044 0.01808 85.87 86.12 75.62 86.12

c 0.01149 0.00040 0.01722 87.01 87.17 77.26 87.17
c + 3 0.01477 0.00047 0.02199 77.31 73.55 58.16 74.69

AMOEBA None 0.03450 0.00144 0.05156 61.44 52.00 35.14 53.76

MAXP 10 0.01180 0.00034 0.01751 51.58 8.63 4.51 19.86
100 0.01774 0.00053 0.02647 60.15 43.46 27.76 48.12

Table 6.2: Model Fit, Normal data with distinct parameters
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Poisson data with high rate and common parameter
Method Parameter MAE MSE MREL RAND F1 JI FM

SPPM
70%

0.03054 0.00422 0.03797
49.14 42.08 26.65 51.24

80% 76.54 59.65 42.50 63.71
90% 90.59 74.28 59.09 74.32

SKATER
c− 3 0.11544 0.02046 0.12527 74.76 54.92 37.86 58.11

c 0.12579 0.03044 0.13527 75.50 54.12 37.10 56.62
c + 3 0.12618 0.03409 0.12778 77.03 54.06 37.04 55.77

AZP
c− 3 0.14481 0.03003 0.15500 69.35 43.77 28.01 46.01

c 0.10819 0.02484 0.11362 74.69 57.25 40.11 61.45
c + 3 0.13351 0.02751 0.14128 79.76 51.97 35.11 52.26

AZP_SA
c− 3 0.17650 0.04653 0.21710 51.07 42.05 26.62 50.49

c 0.07600 0.01620 0.08459 76.36 51.36 34.55 52.70
c + 3 0.11834 0.03139 0.12526 74.29 47.72 31.34 49.07

AZP_TABU
c− 3 0.19176 0.06519 0.23379 49.84 36.52 22.34 42.84

c 0.10617 0.02122 0.11570 73.60 51.01 34.23 53.47
c + 3 0.13359 0.02907 0.14364 81.11 48.89 32.35 48.90

AZP_RTABU
c− 3 0.18137 0.05388 0.22075 53.29 41.53 26.20 48.90

c 0.10348 0.02615 0.11161 78.00 47.37 31.03 47.60
c + 3 0.13224 0.03324 0.14001 78.60 50.97 34.20 51.45

ARISEL
c− 3 0.13210 0.02655 0.14694 66.90 47.90 31.49 52.43

c 0.10389 0.02524 0.11519 73.19 55.76 38.66 60.23
c + 3 0.12787 0.03623 0.13810 77.63 46.42 30.22 46.64

AMOEBA None 0.16781 0.06013 0.18080 69.82 37.53 23.10 38.48

MAXP 10 0.08963 0.01851 0.10448 81.91 10.06 5.30 20.76
100 0.12921 0.02821 0.15403 82.93 46.76 30.52 47.50

Table 6.3: Model Fit, Poisson data with high rate and common parameters

Poisson data with high rate and distinct parameter
Method Parameter MAE MSE MREL RAND F1 JI FM

SPPM
70%

0.04759 0.00544 0.05465
51.13 42.04 26.62 50.46

80% 89.02 70.40 54.32 70.41
90% 88.95 65.78 49.01 66.73

SKATER
c− 3 0.09821 0.02133 0.10367 82.90 62.00 44.93 62.83

c 0.10061 0.02474 0.10698 84.04 61.96 44.89 62.28
c + 3 0.10650 0.02619 0.11220 85.39 62.13 45.06 62.15

AZP
c− 3 0.11725 0.02275 0.12573 72.38 46.57 30.35 48.37

c 0.09930 0.01941 0.10935 71.55 50.88 34.12 54.29
c + 3 0.11223 0.02456 0.12804 74.61 43.48 27.78 44.05

AZP_SA
c− 3 0.12101 0.02373 0.14110 70.97 39.75 24.81 40.73

c 0.09564 0.01968 0.10301 76.76 56.78 39.65 59.50
c + 3 0.07958 0.01855 0.08658 83.88 56.34 39.22 56.35

AZP_TABU
c− 3 0.10113 0.01917 0.11041 69.77 50.18 33.49 54.22

c 0.14293 0.03248 0.17143 64.21 36.72 22.49 38.95
c + 3 0.09638 0.01827 0.10530 76.34 46.68 30.45 47.22

AZP_RTABU
c− 3 0.11068 0.01971 0.12723 67.98 48.34 31.87 52.53

c 0.10050 0.02104 0.11083 68.54 49.37 32.78 53.70
c + 3 0.12937 0.02724 0.14326 78.26 44.22 28.39 44.25

ARISEL
c− 3 0.09152 0.01625 0.09966 76.59 48.94 32.40 49.74

c 0.11073 0.02656 0.11981 79.64 51.77 34.93 52.07
c + 3 0.09866 0.02000 0.10814 76.19 51.87 35.01 53.40

AMOEBA None 0.17683 0.05720 0.19835 67.94 35.11 21.29 36.13

MAXP 10 0.09528 0.01730 0.10998 81.93 10.68 5.64 21.19
100 0.13384 0.02775 0.16170 80.19 41.26 26.00 41.56

Table 6.4: Model Fit, Poisson data with high rate and distinct parameters
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Poisson data with low rate and common parameter
Method Parameter MAE MSE MREL RAND F1 JI FM

SPPM
70%

0.07669 0.01905 0.49370
65.43 78.99 65.27 80.78

80% 65.98 79.17 65.52 80.87
90% 79.50 82.46 70.16 82.99

SKATER
c− 3 0.22172 0.12678 0.36023 49.73 52.20 35.32 53.72

c 0.26417 0.16666 0.41019 46.72 47.16 30.85 49.27
c + 3 0.29476 0.23519 0.44595 45.43 44.73 28.81 47.16

AZP
c− 3 0.24460 0.14382 0.74205 44.84 47.85 31.45 49.16

c 0.23630 0.15310 0.60011 56.83 58.58 41.42 60.46
c + 3 0.27275 0.21656 0.78907 43.98 43.27 27.61 45.62

AZP_SA
c− 3 0.22391 0.11542 0.74414 45.51 47.05 30.76 48.77

c 0.18481 0.14430 0.66085 49.64 55.47 38.38 56.10
c + 3 0.17373 0.14279 0.67033 44.04 41.78 26.40 44.65

AZP_TABU
c− 3 0.18362 0.12962 0.63674 51.98 60.42 43.29 60.58

c 0.30429 0.18741 0.46918 45.31 38.46 23.81 43.40
c + 3 0.27051 0.19779 0.85028 47.51 45.23 29.23 48.42

AZP_RTABU
c− 3 0.27233 0.17007 0.78498 44.19 44.95 28.99 46.86

c 0.30857 0.20849 0.81854 43.09 43.67 27.93 45.59
c + 3 0.30699 0.21135 0.86227 43.84 35.09 21.28 40.60

ARISEL
c− 3 0.29914 0.19268 0.81843 43.80 43.72 27.97 45.86

c 0.28959 0.18852 0.43265 45.82 43.18 27.53 46.35
c + 3 0.30599 0.22116 0.88723 41.76 33.93 20.43 38.56

AMOEBA None 0.53662 0.56779 0.66286 42.83 33.89 20.40 39.23

MAXP 10 0.16617 0.05139 0.60488 36.08 3.69 1.88 13.04
100 0.12539 0.03611 0.68845 39.68 20.78 11.59 29.41

Table 6.5: Model Fit, Poisson data with low rate and common parameters

Poisson data with low rate and distinct parameter
Method Parameter MAE MSE MREL RAND F1 JI FM

SPPM
70%

0.05172 0.00532 0.05553
65.02 78.80 65.02 80.63

80% 71.80 81.23 68.39 81.97
90% 82.34 84.77 73.57 85.40

SKATER
c− 3 0.17415 0.14741 0.19465 58.07 72.63 57.02 73.47

c 0.21371 0.17941 0.24005 53.24 67.56 51.02 67.89
c + 3 0.24092 0.24516 0.27006 49.64 63.36 46.37 63.45

AZP
c− 3 0.23537 0.14779 0.26733 43.52 53.24 36.28 53.39

c 0.24854 0.17059 0.28081 42.97 38.19 23.60 41.85
c + 3 0.18657 0.19945 0.20594 48.30 51.36 34.56 52.69

AZP_SA
c− 3 0.19384 0.11809 0.21444 45.09 38.37 23.74 43.20

c 0.14145 0.11201 0.15493 48.34 59.72 42.57 59.72
c + 3 0.22061 0.22617 0.24595 39.32 29.60 17.37 34.37

AZP_TABU
c− 3 0.20738 0.16752 0.22732 46.57 48.66 32.16 50.25

c 0.21042 0.21353 0.22851 54.15 57.56 40.41 58.79
c + 3 0.30981 0.25766 0.34688 40.37 30.94 18.30 35.87

AZP_RTABU
c− 3 0.24173 0.11225 0.26920 49.53 57.09 39.95 57.41

c 0.26007 0.22601 0.29338 41.96 40.90 25.71 43.23
c + 3 0.28364 0.24032 0.32242 42.29 51.31 34.51 51.56

ARISEL
c− 3 0.26916 0.18284 0.30273 42.89 46.43 30.23 47.59

c 0.26754 0.19789 0.30433 40.72 48.16 31.72 48.62
c + 3 0.30933 0.26337 0.34726 42.22 37.86 23.35 41.28

AMOEBA None 0.50147 0.55240 0.56333 42.28 34.78 21.05 39.38

MAXP 10 0.14022 0.03872 0.15519 35.97 3.46 1.76 12.44
100 0.08065 0.01122 0.08758 40.55 23.89 13.57 31.97

Table 6.6: Model Fit, Poisson data with low rate and distinct parameters
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6.2 Applications

In this section we show the results of applying our method to two case studies.
The first application is the regionalization of the municipalities of Brazil according
to their Human Development Index (HDI). The second application is the region-
alization of the municipalities of the south of Brazil according to cancer mortality.
These two applications exemplify the usage of the two different models introduced
in Chapter 4.

6.2.1 Normal data: HDI

The first application we explore is the regionalization of a map of the Human
Development Index (HDI) of municipalities in Brazil. The HDI is a statistic of life
expectancy, education and income indices used to rank countries. The index used
in this work is an adaption of the global HDI to the reality of the municipalities in
Brazil. It was developed by the United Nations Development Programme (UNDP)
in Brazil, joint with Instituto de Pesquisa Econômica Aplicada (IPEA) and Fundação João
Pinheiro and uses data from the demographic census conducted by Instituto Brasileiro
de Geografia e Estatística (IBGE).

The data is composed of the HDI of 5564 municipalities of Brazil. We consider
the neighbourhood structure computed through the geographic adjacency to build
the graph used in our algorithm. We assume for this data the model described in
section 4.3, with the HDI of each municipality as the random vector Y . In Figure 6.1
we show the data in form of a map.

For this experiment, we ran the MCMC for 10000 iterations, skipping the first
1000 samples as a burn-in period and thinning the result by taking only every 10th
value. As the prior distribution of the parameters of each cluster, we use theNormal-
Gamma with parameters m = 0.65, v = 0.04, a = 100 and b = 1. With this distribu-
tion, we concentrate the mass for the precision around 100, which yields a standard
deviation of about 0.1 for the observations of the clusters. This distribution also fa-
vors the means for each cluster centered around 0.65, with a deviation of 0.5, which
spans most of the range the HDI can take (which is from 0.0 to 1.0). This way, we
expect that for each cluster, the observations fall in a range of 0.2 around its mean.

In Figure 6.2a we display a summary of the sampled partitions. This map
was constructed taking into consideration the neighbouring municipalities which
belonged to the same cluster in at least 80% of the sampled partitions.

Another visualization is present in Fig. 6.2b where each area is colored with
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Figure 6.1: Map of municipalities of Brazil with HDI data

(a) Summary of the sampled partitions
for Brazilian municipalities (HDI data)

(b) Average group size for each municipality
in the sampled partitions

Figure 6.2: Regionalization of Brazilian municipalities according to their HDI

the average size of the cluster to which it belongs throughout the sample.
Through Figs. 6.2a and 6.2b we can see that the algorithm is able to group the

data as we expected, and the groups are consistent through all the sampled parti-
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tions. These summary images show a partition which indicates three large groups
with a number of smaller groups in the frontiers. Although themain groups arewell
defined, these images show that the separation between the clusters is not clearly de-
fined, causing a certain level of noise. This may seem as some kind of problem of the
algorithm but, in fact, this shows a natural characteristic of this kind of area where
there is a transition between two distinct groups and frontiers are not really well
defined.

In Figure 6.3 we show a sample of partitions generated by our algorithm. As
it can be noticed, the main difference between samples is in general on the frontier
between the clusters, which, as expected, is hard to be defined, since it is a transition
area.

Figure 6.3: Some of the sampled partitions (HDI data)

Another interesting result is related to some tiny clusters present in the shore
linewhich can be seen in both Figs. 6.2a and 6.2b. We checked the sampled partitions
to find the areas which are frequently assigned to small clusters, that is, areas which
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are in clusters whose size is within 9000 squared kilometers in at least 90% of the
sampled partitions. The interesting result is that those areas are the capital of states
in northeast and their neighbouring cities. The northeast is a regionwhere theHDI is
generally lower, as can be seen in Fig. 6.1. The capital cities and their surroundings
are regions where the HDI tends to be higher since they are the main economical
region of the states as well as important tourism destinations.

6.2.2 Poisson data: Cancer deaths

The second application we studied is the regionalization of a map of deaths
by cancer, in the south region of Brazil. In fact, two distinct regionalizations were
performed. For the first, the data analyzed refers to deaths by lung cancer, while the
second analyzed deaths by bladder cancer. These two types of cancers were selected
duo to their different incidence. While both are common types of cancer, bladder
cancer is almost an order of magnitude rarer than lung cancer. Due to this, the in-
cidence rate for bladder cancer is more affected by small variations, which forms a
scenario where the benefits of using a stochastic method instead of traditional ap-
proaches may be more easily seen.

For both datasets, we obtained the number of fatalities by age group and gen-
der, for each municipality, of the years 2008 - 2012 through DATASUS 3, the Depart-
ment of Informatics of SUS (Sistema Único de Saúde), Brazil’s publicly funded health
care system. We also obtained demographic information of the same years, for the
same age groups and gender, from the IBGE.

For each area we computed the expected number Ei of deaths, taking into con-
sideration the demographics of eachmunicipality and the number of deaths for each
age group and gender. This value, together with the actual number of deaths in each
area Yi were used to perform the regionalization.

In Fig. 6.4 we show the ratio between the observed and the expected number
of deaths by cancer. The reasoning behind the model is that the relative risk is the
same within a cluster, that is, within a cluster the offset of the expected number of
deaths is given by this common relative risk.

For this experiment, we ran the MCMC for 10000 iterations, skipping the first
1000 samples as a burn-in period and thinning the result by taking only every 10th
value. For the distribution a priori of the parameters of each cluster, we use aGamma
with parameters a = 1.1, and b = 1.1. This distribution concentrates its mass around
1.1, with a variance of 0.91, so the relative risk is concentrated in values mostly be-

3http://datasus.saude.gov.br/
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(a) Lung cancer (b) Bladder cancer

Figure 6.4: Ratio between the actual and expected number of deaths by cancer

tween 0 and 2. This seems reasonable, as we expect that in a region the incidence
rate deviates from the expected value by a factor of no more than 2.

In Fig. 6.5 we display a summary of the sampled partitions. This map was con-
structed taking into consideration the neighbouring municipalities which belonged
to the same cluster in at least 85% of the sampled partitions.

(a) Lung cancer (b) Bladder cancer

Figure 6.5: Summary of the regionalization (Cancer deaths)

We also show the results of applying two other regionalization techniques to
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the datasets. In Fig. 6.6 we show the resulting map produced by the ARiSEL and
SKATER techniques in the lung cancer map. The same is shown in Fig. 6.7 for the
bladder cancer map. In all these images the methods were issued to compute 4
groups.

For the lung cancer, since the incidence is higher, the rates tend to bemore stable
than they are with the rarer bladder cancer. It is interesting to note how the SKATER
method was still able to separate the top from the bottom of the map, where in the
ARISEL, only the southern boundary was detected, yet with a more jagged line.

(a) ARiSEL (b) SKATER

Figure 6.6: Other regionalization methods results for the lung cancer map

For the bladder cancer, however, neither method was able to detect the region
in the northeast of the map. They seemed to be more sensitive to local variations in
the rate. This is the practical exemplification of what we expected given that these
methods don’t use a statistical model and are more susceptible to this kind of prob-
lem where the population or the incidence rate is lower.

In Figure 6.8 we plot a mapwith the color of each area representing the average
of area of the group to which it belongs throughout the sampled partitions.

In Fig. 6.9 we show some of the actual partitions sampled in our algorithm for
the lung cancer dataset. In Fig. 6.10 we show the same for the bladder cancer dataset.

In Fig. 6.5a we can notice how the SPPM separates the north and south groups
as well as the portion on the right in the middle region of the map. Lung cancer is
linked to smoking and the rate increases going south, which could be related to the
colder climate. Also, it is interesting to note that the other methods either separates
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(a) ARiSEL (b) SKATER

Figure 6.7: Other regionalization methods results for the bladder cancer map

(a) Lung cancer (b) Bladder cancer

Figure 6.8: Average size of the clusters for each area

only the south or fail to identify the right portion of the middle region of the map,
which is where a few of the larger cities of the region are located, and presents a
lower ratio than its western counterpart.

Amore visible difference is in Fig. 6.5b, where we can notice how SPPM identi-
fied a cluster in the northeast of the map, which is precisely where Curitiba (capital
of Parana state) and the most populated cities of the state of Santa Catarina are lo-
cated. All the other methods failed to find this cluster and instead identified noisy
small regions, which is a demonstration of how these methods are sensitive to the
variations of the data.
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Figure 6.9: Some of the sampled partitions (lung cancer)

Figure 6.10: Some of the sampled partitions (bladder cancer)



Chapter 7

Conclusion

In this work we dealt with the problem of regionalization, an important type
of clustering problemwhich arises in many areas. We reviewed the main techniques
used to tackle this problem and how they fail to handle different characteristics of
the problem.

We proposed a representation of the problem in terms of a graph and proposed
a new stochastic model based on this representation. Our proposed model builds
upon the well known Product Partition Model and we use a spanning tree as a tool
to reduce the search space of the partitions of the data. With this, we presented a
sampling algorithm for our proposed model, which is flexible enough to be adapted
for variations of ourmodel where different probability distributions are assumed for
the data. Next, we introduced two specific versions of our model, one assuming a
normal distribution for the data and the other assuming a Poisson distribution.

A third model was provided as an example of how a more complex model of
the data can be assumed, but which presents also more challenges in terms of the
sampling procedure. This promisingmodel did not have as good performance as our
product partition model and we did not present any results related to it. It remains
as a promising proposal if one could overcome its deficiencies.

Finally, we presented an evaluation of our method both in a simulated study
as well as through its application to real datasets. In the simulated study we com-
pared our algorithm to available implementations of traditional algorithms used in
the problem and showed how our results were consistently superior, particularly
within the Poisson datasets, where a proper stochastic model presents a valuable
gain in terms of the quality of the results. Then we applied our technique to perform
the regionalizations of municipalities of Brazil based on a socio-economic index and
of the municipalities of the south region of Brazil based on cancer mortality data.

65
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We discussed how the results we obtained were suitable for the domain subjects and
how, particularly with the Poisson model, by using a stochastic model rather than
the raw data to drive the clustering process, we were able to obtain better and more
meaningful results.

In conclusion, we proposed a stochastic model for the problem of regionaliza-
tion that captures much of the prior reasoning one could have for its formation. We
introduce the use of spanning trees to provide an effective sampling algorithm. Our
model is flexible enough to accommodate different types of data and provided good
results.
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