
X-RA: UMA ANÁLISE DE INTERVALOS PARA PROGRAMAS

EM REDE

LUIZ FELIPE ZAFRA SAGGIORO

X-RA: UMA ANÁLISE DE INTERVALOS PARA PROGRAMAS

EM REDE

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

ORIENTADOR: LEONARDO BARBOSA E OLIVEIRA

COORIENTADOR: FERNANDO MAGNO QUINTÃO PEREIRA

Belo Horizonte

Agosto de 2015

LUIZ FELIPE ZAFRA SAGGIORO

X-RA: A RANGE ANALYSIS FOR NETWORKED SYSTEMS

Dissertation presented to the Graduate Pro-
gram in Computer Science of the Federal
University of Minas Gerais in partial fulfill-
ment of the requirements for the degree of
Master in Computer Science.

ADVISOR: LEONARDO BARBOSA E OLIVEIRA

CO-ADVISOR: FERNANDO MAGNO QUINTÃO PEREIRA

Belo Horizonte

August 2015

© 2015, Luiz Felipe Zafra Saggioro.
Todos os direitos reservados.

Saggioro, Luiz Felipe Zafra

S129x X-RA: a range analysis for networked systems / Luiz
Felipe Zafra Saggioro. — Belo Horizonte, 2015

xxi, 34 f. : il. ; 29cm

Dissertação (mestrado) — Universidade Federal de
Minas Gerais — Departamento de Ciência da Computação

Orientador: Leonardo Barbosa e Oliveira
Coorientador: Fernando Magno Quintão Pereira

1. Computação - Teses. 2. Sistemas distribuídos
(Computadores) – Teses 3. Compiladores (Programas de
computador) -Teses. I. Orientador. II Coorientador. III.
Título.

CDU 519.6*34(043)

ix

Acknowledgments

I am thankful to ..

My family for supporting me on this stage of my life. To my parents José Henrique

and Lucia, that understood the reasons I could not visit them for several months and still

supported me on my decisions.

My advisor Leonardo for keeping me on the right path, for coming up with construc-

tive discussions and for trusting on me to during the execution of this work.

My co-advisor Fernando for the help, for the ideas in every discussion and for help-

ing me better understand the world of compilers.

My fellows for the funny moments at the laboratory and to Fernando Teixeira for the

great help.

My girlfriend Ana Paula, my partner for every moment, for the love and support

during the hard times and for the awesome and philosophical conversations.

The Computer Science Department for the available infrastructure that allowed me

to execute this project.

CAPES for the scholarship.

Intel for the funding of this project.

xi

“The quieter you become, the more you can hear.”

(Ram Dass)

xiii

Abstract

New technologies such as Cloud Computing and the Internet of Things are increasing

the importance of techniques to analyze and understand distributed systems. One such

technique is range analysis: a compiler-oriented way to infer the lower and upper limits

of the integer variables used in programs. Range analysis is useful to secure and optimize

distributed code. However, the very distributed nature of such systems reduces the pre-

cision of range analysis. Imprecisions arise due to a simple observation: in the absence

of a holistic view of the distributed system, the compiler must assume imprecise bounds

for every value that a module receives from its peers. This work presents a solution to this

problem. The solution was designed, tested and implemented, resulting in a range analy-

sis algorithm that preserves information exchanged across the modules that constitute a

distributed application. The goal is achieved by combining into a single framework three

previous algorithms: classic range analysis, points-to analysis and communication links

inference. To glue these technologies into a useful tool, this work introduces two novel

techniques: message segmentation and array content inference. To validate our ideas,

the proposed strategy was implemented in the LLVM compiler. When applied onto own

crafted benchmarks, the distributed range analysis can be from 12% to 39% more precise

than its original version.

xv

List of Figures

2.1 Program Client and Program Server. 5

2.2 Variables a and b are aliases, while b and c are not aliases. 8

2.3 Communication Links Inference by (52) . 10

3.1 X-RA overview. 12

3.2 Visual representation of message segmentation. 13

3.3 Array Content Inference on the running example (Fig. 2.1). 14

3.4 Communication links by using the technique of Teixeira et al. (52). 15

3.5 Network Range Propagation on the running example (Fig. 2.1). 16

4.1 Number of narrowed intervals on tailor-made programs. 18

4.2 Ratio of narrowed intervals from conventional and distributed range analysis

on tailor-made programs. 18

4.3 Code snippet of the distributed version of Bubble-sort algorithm. 19

4.4 Number of narrowed intervals on Talk. 21

4.5 Ratio of narrowed intervals from conventional and distributed range analysis

on Talk. 21

xvii

List of Tables

3.1 Result of range analysis on the Client-Server example (Fig. 2.1). 12

4.1 Data from the intermediate steps on tailor-made programs. 19

4.2 RA vs. X-RA: Time and memory used analyzing tailor-made programs. 20

4.3 Data from the intermediate steps on Talk. 20

4.4 RA vs. X-RA: Time and memory used analyzing Talk. 21

xix

Contents

Acknowledgments xi

Abstract xv

List of Figures xvii

List of Tables xix

1 Introduction 3

2 Background 5

2.1 Terminology . 6

2.2 Integer Range Analysis . 6

2.3 Points-to Analysis . 7

2.4 Communication Links Inference . 8

3 Distributed Range Analysis 11

3.1 Local Range Analysis . 12

3.2 Message Segmentation . 12

3.3 Array Content Inference . 13

3.4 Communication Links Inference . 14

3.5 Network Range Propagation . 14

4 Results 17

5 Related work 23

6 Conclusion 27

Bibliography 29

xxi

Organization

This document is organized as follows. Chapter 1 quickly introduces the problem and

approaches the motivation of this work. Chapter 2 describes the fundamental concepts of

the used analyses. Chapter 3 presents the solution, which is later evaluated in Chapter 4.

Related work is discussed in Chapter 5. The final remarks are presented in Chapter 6.

1

Chapter 1

Introduction

Since its early days, the analysis of distributed systems has been always an important

problem in computer science (10). Recently, the emergence of cloud computing, smart-

phones and internet of things has increased the importance of such analyses (18). Among

several different techniques to analyze distributed systems, one particular approach

stands out: range analysis, or range inference, as it is also called. This compiler-based

analysis estimates the lowest and the highest values that each integer variable can as-

sume throughout the execution of a program (12). Range analysis has several different

purposes. From a software security standpoint, it helps in the detection of buffer overflow

and integer overflow vulnerabilities. From an optimization perspective, it gives compilers

the chance to eliminate dead code, to improve register allocation and to perform static

branch prediction. Given all these usages, it comes as no surprise that nowadays we have

several different algorithms to implement range analysis.

Nevertheless, none of these algorithms has been designed to work specifically with

distributed systems, even though they are applied onto them (41). The present work

claims that such a shortcoming severely limits the capacity of a range analysis algorithm

to provide useful information. When applying range inference onto a distributed system,

developers usually perform range inference for each program independently. This modus

operandi forces the static analysis tool to rely on assumptions that compromise its pre-

cision. In particular, every information that is received from the network is assumed to

have very imprecise ranges, e.g., [−∞,+∞]. This restriction is unfortunate, because key

information that a program manipulates comes indeed from its distributed peers. In this

work we deal with this limitation.

The goal of this work is to describe a range analysis that has been customized to

the distributed environment. To achieve this end, this novel range analysis algorithm was

designed, implemented and tested. This algorithm combines into a common framework

3

4 CHAPTER 1. INTRODUCTION

three different techniques which are already part of the programming languages litera-

ture: classic range analysis on the interval lattice, points-to analysis and communication

links inference. To glue these technologies together, two new procedures were created,

which shall be called message segmentation and array content inference. These two static

analyses allows the discovery of contents of messages that are exchanged between mod-

ules that constitute a distributed system. In this way, when analyzing two modules that

may exchange messages, information that is discovered in one program can be reused

on its counter-part. This form of propagating information across different instances of a

static analysis has not been described in previous literature, and is the key contribution

of this work.

To validate the ideas, the proposed strategy have been implemented in the LLVM

compiler (26). Section 4 shows that this new way to perform range analysis is substan-

tially more precise than the classic methodology. Moreover, this technique improves the

precision of range analysis by up to 38% in simple benchmarks. This strategy was also

applied on a distributed application, e.g. Talk. In both cases, the new static analysis is

able to augment classic range analysis with non-trivial information. As a result, 13% more

bounds in Talk are inferred.

The remainder of this document is organized as follows: Chapter 2 discusses about

the techniques used on this work; Chapter 3 shows with an example how X-RA works;

Chapter 4 shows the results obtained through the X-RA analysis; Chapter 5 approaches

some previous works related to the techniques used by this work; and Chapter 6 presents

the final considerations.

Chapter 2

Background

A pair of programs that exchange messages is shown in Fig. 2.1. Conventional range anal-

ysis goes over each of these programs, without taking the other into consideration. As a

result, when analyzing line 5 of the Server, a traditional implementation must assume that

t can have any known range, e.g., t can assume any value within [−∞,+∞]. However, it

is possible to see that the Client fills the first 10 positions of buf with values from 0 to 9.

With this knowledge, one can see that the contents of t exists within [0,9]. The analysis

described in this work produces such information.

Client Server

1 int8_t buf[50];

2 int32_t i, j;

3 for(i=0; i<10; i++)

4 buf[i] = i;

5 for(j=10; j<50; j++)

6 buf[j] = j;

7 send(buf);

8 return 0;

1 int8_t buf[50];

2 int8_t data[45];

3 int32_t t;

4 fill_array(data);

5 recv(buf);

6 t = buf[0] * 2;

7 printf("%d\n", data[t]);

8 return 0;

Figure 2.1: Program Client and Program Server.

This work combines three previous results into one technique that increases the in-

formation of ranges that integer variables can assume during the execution of a program.

These previous techniques are: (i) range analysis; (ii) points-to analysis; and (iii) commu-

nication links inference. The first technique, range analysis, has two purposes. First, it

allows the estimation of values that integer variables may assume throughout the execu-

tion of a program. Second, when combined with points-to analysis, range analysis gives

the chance to separate messages exchanged between processes into segments. Messages

5

6 CHAPTER 2. BACKGROUND

and segments are described in Section 2.4. Finally, communication links inference helps

the task of finding in which parts of a program messages are produced and consumed.

The rest of this section briefly discusses each one of these techniques.

2.1 Terminology

Throughout this paper, the term s y stem is used to denote a Di str i buted Sy stem;

pr og r am to denote the various modules that comprises a system; l i nk to denote a pair

of SEND and RECV.

2.2 Integer Range Analysis

As mentioned before, range analysis is a compiler-related technique used to estimate the

minimum and the maximum values that integer variables may assume during the execu-

tion of a program. The result of a range analysis is a function I , that maps variable names

to integer intervals. Integer intervals are elements [l ,u] defined over the product lattice

Z 2, where Z = Z∪ {−∞,+∞}. We have the following ordering between elements of Z :

−∞ < . . . < −2 < −1 < 0 < 1 < 2 < . . .+∞. For any x > −∞ the following properties are

defined:
x +∞=∞, x 6= −∞ x −∞=−∞, x 6= +∞
x ×∞=∞ if x > 0 x ×∞=−∞ if x < 0

0×∞= 0 (−∞)×∞= not defined

From the lattice Z the product lattice Z 2 is defined, which is partially ordered by

the subset relation v. Z 2 is defined as follows:

Z 2 =;∪ {[z1, z2]| z1, z2 ∈Z , z1 ≤ z2, −∞< z2}

The result of the range analysis classifies each variable into one of the three follow-

ing categories: Defined, where both lower and upper values are determined. For example,

[0, 10]; Semi-defined, where either the lower or the upper values could not be determined.

For example, [0, ∞] or [−∞, 2]; Undefined, where neither the lower nor the upper val-

ues could be determined. For example, [-∞, ∞]. These categories are mutually exclusive

since a variable cannot be, for example, defined and semi-defined at the same time. Al-

though, for the matter of simplicity, the term narrowed interval is used when it was pos-

sible to increase the precision e.g. from Undefined to Semi-defined or Defined and from

Semi-defined to Defined.

2.3. POINTS-TO ANALYSIS 7

As an example, a conventional range analysis would return that I (t) = [−∞,+∞] in

the Ser ver process of Figure 2.1. This analysis would also return that I (i) = [0,9] and

I (j) = [10,49] in the program C l i ent of the same figure.

The range analysis of integers on the interval lattice, as defined in this section, is one

of the oldest problems in programming languages research. It was first proposed by (12).

There are several different algorithms to solve range analysis. They differ on precision and

efficiency. Usually the most efficient algorithms are also the less precise. This work uses

the range analysis proposed by (40). (Other approaches to resolve this problem are cited

on Section 5.)

2.3 Points-to Analysis

Points-to analysis is the problem of finding, for each pointer p in a program, the set of

memory locations that can be addressed by p. The solution of a points-to analysis is

a function P that maps pointer variables to a set formed by memory locations in the

program heap, plus other variable names. Points-to analysis is usually more expensive

than range analysis. To solve it, a number of constraints are extracted from the program

text. These constraints exist in four varieties:

v = &u {u} ⊆ P (v)

v = u P (u) ⊆ P (v)

v = *u ∀t ∈ P (u),P (t) ⊆ P (v)

*v = u ∀t ∈ P (v),P (u) ⊆ P (t)

While iterating these equations, it is guaranteed that a fixed point is reached. This

fixed point is a solution to points-to analysis. One shortcoming of traditional points-to

analysis is its inability to separate an array into smaller chunks. For instance, in Fig. 2.2,

variables a and b. However, b and c are not since b can point to the 20 first positions of a

but c can only point to the 20 last positions of a. Nevertheless, typical implementations

of range analysis, such as those present in mainstream compilers like gcc or LLVM, are

not able to get this result.

Imprecision happens because points-to analysis does not use range information. In

the example above, if one could associate the range [0,19] with pointer b, and the range

[20,39] with pointer c, then it would be able to tell that these two pointers will never point

to the same memory location (disambiguate the two pointers). By combining range anal-

ysis with points-to analysis in this work, it is possible to achieve this result.

8 CHAPTER 2. BACKGROUND

1 int *a = (int*) malloc(40);

2 int *b, *c;

3 for (b = a; b < a + 20; b++) {

4 putc(*b);

5 }

6 for (c = a + 20; c < a + 40; c++) {

7 putc(*c);

8 }

Figure 2.2: Variables a and b are aliases, while b and c are not aliases.

Solving Points-to Analysis The problem of conservatively estimating the points-to

relations in a C-like program has been exhaustively studied in the compiler literature (1;

20; 39; 47). For this work, points-to analysis available in LLVM was used to find an initial

mapping P of pointers to locations. Then, this result was expanded using range analysis,

as will be explained in Section 3. LLVM uses a suite of points-to analysis, listed below.

The precision of queries is cumulative: if any of these four implementations is able to

disambiguate two pointers, than they are marked as no aliases.

• type-based: C and C++ forbid aliasing between pointers of different types since

C89/C++98. Thus, this analysis flags as no-alias pointers of different types;

• global-refs-based: relies on the fact that globals that do not have their address taken

cannot alias anything;

• basic: uses a suite of heuristics, i.e. the stack does not alias the heap or globals, for

instance;

• scalar-evolution-based: which tries to place bounds on arrays, and based on these

bounds determine if they may overlap each other or not.

• Dyck-CFL-based: implements a context-free language (CFL) based context-

insensitive alias analysis. This algorithm is implemented after Zheng et al. (62) and

Zhang et al. (61).

2.4 Communication Links Inference

Communication Links Inference is the problem of determining communication links be-

tween distributed programs. In this context, the communication links inference problem

receives two inputs: the text of two programs, P1 and P2, that communicate. A solution to

2.4. COMMUNICATION LINKS INFERENCE 9

this problem consists of a set of pairs C that relates to special nodes present in P1 and P2.

These special nodes are called senders and receivers. Nodes in the former category emit

messages, whereas nodes in the latter consume them. If C contains a pair (s,r), then it is

known that sender s may issue a message that r consumes. However, if such a pair is not

present in C , then the algorithm know, for sure, that s cannot send a message directly to

r . Algorithm 1 describes the algorithm introduced by the work of (52).

Algorithm 1: Elevator from (52)

Input: CFGs {C1,C2}, Send-Graphs {S1,S2} and Receive-Graphs {R1,R2}.
Output: a DCFG D

B Set the SEND and RECV levels
foreach Gi ∈ {S1,S2}∪ {R1,R2} do

n ← 0
LGi ,n ← {r oot }
B While the new generated set LGi ,n is unique
while LGi ,n 6= LGi ,0..n−1 do

foreach vertex v in LGi ,n do
Ssuccs ← successors of v
LGi ,n+1 ← LGi ,n+1 ∪Ssuccs

n ← n +1

B Link SENDs and RECVs of the same level
D←C1 ∪C2

for k ← 1 to n do
foreach vs ∈ LS1,k and vr ∈ LR2,k do

add an edge from vs to vr in D

foreach vs ∈ LS2,k and vr ∈ LR1,k do
add an edge from vs to vr in D

Algorithm 1 takes as input the Control Flow Graph – CFG – of 2 programs and out-

puts a Distributed Control Flow Graph – DCFG. A CFG is a directed graph where each

vertex is a instruction on the program and each edge represents a dependency between

two instructions. The CFG represents the control flow of the program. The DCFG intro-

duces edges between network functions that may interact, so the two previously CFGs

become a single CFG that represents both programs (52).

Fig. 2.3 shows a solution of communication links inference. Each dotted line is a

possible communication link, as inferred by the analysis.

This work adopts the method recently proposed by (52), which estimates commu-

nication links between programs by assigning “levels" to senders and receivers. Nodes of

similar levels are paired up in a link. (See other approaches to resolve this problem on

Section 5.)

10 CHAPTER 2. BACKGROUND

1 send(1);
2 ack = recv();
3 if (ack == 13){
4 N = getc();
5 send(N);
6 i = 0;
7 while (i < N) {
8 s = getc();
9 send(s);

10 ack = recv();
11 if (ack != 17) {
12 break;
13 } else {
14 s = getc();
15 i++;
16 }
17 }
18 send(s);
19 }

1 msg = recv();
2 if (msg == 1){
3 send(13);
4 size = recv();
5 j = 0;
6 buf = malloc(size);
7 while (true) {
8 c = recv();
9 if (msg != ’\0’){

10 send(17);
11 buf[j] = c;
12 j++;
13 } else {
14 break;
15 }
16 }
17 } else {
18 send(0);
19 }

1

Figure 2.3: Communication Links Inference by (52)

Chapter 3

Distributed Range Analysis

The proposed solution aims at filling the gap between classic range analysis, performed

over an isolated program, and a typical distributed system scenario in which programs

are connected among themselves by means of message-exchange. During the initial re-

search, no other work that explores such an ubiquitous characteristic of network software

components were found.

To achieve this goal, this work relies on recently published works and combines their

capabilities in a novel way that allows to derive a foundation for distributed range anal-

ysis. In particular, the single-program range analysis implementation from (40) and the

distributed communication links inference implementation from (52) was used. Both of

them are open-source and built on top of LLVM.

The steps of the proposed solution are demonstrated through the pair of programs

in Fig. 2.1. The C l i ent program defines an 8-bit buffer bu f with 50 positions and two

32-bit integer variables i and j . Later on, two consecutive f or statements fill different

portions of the buffer and eventually its content is sent over the network. Likewise, the

Ser ver program defines two 8-bit buffers, bu f and d at a, with 50 and 45 positions, re-

spectively. It also defines a 32-bit integer variable t which is used to store the content of

the buffer’s first position, filled by the double of a value received over the network. After-

wards, the value of d at a[t] is printed to the standard output.

Throughout the discussion, the reader is presented to the intermediate stages of the

analysis and the important details are highlighted. Eventually, by the end of the chapter,

it is expected to have made it clear how the data captured by the distributed range anal-

ysis enriches the information that would be obtained if programs were only analyzed in

isolation. The Fig. 3.1 provides an overview of the analysis.

11

12 CHAPTER 3. DISTRIBUTED RANGE ANALYSIS

Local Range

Analysis

Message

Segmentation

Array Content

Inference

Communication

Link Inference

Network Range

Propagation

Figure 3.1: X-RA overview.

3.1 Local Range Analysis

The procedure starts by applying traditional range analysis to both programs. The values

shown in table 3.1 will be used for Points-to Analysis, Array Content Inference, and Com-

munication Links Inference stages. The notation R(i) indicates the inclusive range of vari-

able i within the program as a whole, while R(ii nsi de) indicates its range in the scope of

the f or statement. The reason for separately categorising these values is because only the

ones used inside the loop will compose the actual range that is sent over the network. For

instance, the last value assume for variable i , 10 in this case, does not influence further

analyses. Similar reasoning and notation applies to variable j .

Client Server
R(i) [0,10] R(t) [−∞,∞]
R(ii nsi de) [0,9]
R(j) [10,50]
R(ji nsi de) [10,49]

Table 3.1: Result of range analysis on the Client-Server example (Fig. 2.1).

Regarding the Ser ver program, the analyzed range of t , which is [−∞,∞], is im-

portant to notice. Although correct, this result does not take advantage of the fact that it

might be possible to deduce the values which will eventually be received by the Ser ver ,

when paired with a particular client program for which range information is available.

3.2 Message Segmentation

This stage combines two techniques: points-to analysis and range analysis. First, points-

to analysis will create alias sets, sets of pointers to the same underlying location. The goal

is to identify as many no alias memory regions as possible. The larger is the evaluated

memory region, the greater is the chance to having multiple pointers pointing to the same

underlying storage. It is therefore essential to target the smallest memory regions to which

is possible to obtain the least number of aliased pointers. At this point, range analysis

3.3. ARRAY CONTENT INFERENCE 13

becomes handy, since it produces information about the ranges, thus, allowing the fine-

grained memory segmentation needed in order to match the content of the buffers.

The message segmentation results for the C l i ent and Ser ver programs can be seen

in Fig. 3.2.

Client
{buf, buf_i}

{buf_i}

{buf_j}

0

1

9
10

49

Server
{buf}

{}

0

1

49

Figure 3.2: Visual representation of message segmentation.

On the C l i ent side, the memory have been segmented into three regions. The first

region is related to the base−poi nter bu f and always has the offset 0. The second region

has an offset range of [1,9] and has the pointer bu f _i . The analogous reasoning applies

to the third region. Regarding the Ser ver side, the memory has been segmented into two

regions. In this case, only the first region has a pointer – bu f – pointing to it. This is

because only the first position of bu f has been accessed.

Limitations. Although this technique is used to improve the granularity of messages,

there are some cases in which the points-to analysis has precision loss. A typical case

happens when the same buffer is used as source of data in a SEND and the destination of

data in a RECV. This is explained because sometimes there is no information about the

data being received simply due to absence of information on the originating program.

There are representations such as Static Single Assignment form – SSA form (14) – that,

for every assignment made to a variable, creates a new variable. However, this is not the

case for points-to analysis.

3.3 Array Content Inference

Once memory is segmented into fine-grained regions and the pointer sets are known, it

is possible to draw conclusion about the array contents. Specifically, the main interest

14 CHAPTER 3. DISTRIBUTED RANGE ANALYSIS

lays on a pragmatic interpretation of a l oad instruction. At this point, it is fundamen-

tally a matter of joining the results from the previous stages in order to tell which buffer

indexes contain values from which range. For instance, the assignment inside the first

f or statement of the C l i ent program comes from expression i , which has R(i) = [0,9]

and consequently delimits the content of the first ten positions of buffer bu f . On the

other hand, there is no information about the contents of the Ser ver ’s buffer, except for

its first position, since the remaining ones are associated with an empty set of pointers.

The overall result for the C l i ent and Ser ver programs is illustrated in Fig. 3.3.

Client
{buf, buf_i}

{buf_i}

{buf_j}

0

1

9
10

49

[0, 9]

[0, 9]

[10, 49]

Server
{buf}

{}

0

1

49

[-∞, ∞]

[-∞, ∞]

Figure 3.3: Array Content Inference on the running example (Fig. 2.1).

3.4 Communication Links Inference

This step is where the work of (52) comes into play. It takes two programs that communi-

cate with each other using message exchanges and creates a link between SENDs and RECVs

that may communicate based on the Elevator technique (Algorithm 1).

With this technique on hand, it is possible to infer the communication links on the

running example, which can be seen on Fig. 3.4.

The technique is able to infer the only communication link between the programs,

thus enabling the next phase of the analysis, described on the following section.

3.5 Network Range Propagation

At this stage, the novel concept of Network Range Propagation is introduced, which takes

the communication links between two programs and associates their range information.

3.5. NETWORK RANGE PROPAGATION 15

1 int8_t buf[50];
2 int32_t i, j;
3 for (i = 0; i < 10; i++)
4 buf[i] = i;
5 for (j = 10; j < 50; j++)
6 buf[j] = j;
7 ...
8 send(buf);

1 int8_t buf[50];
2 int8_t data[45];
3 int32_t t;
4 ...
5 recv(buf);
6 t = b[0] * 2;
7 printf("%c\n", data[t]);

1

Figure 3.4: Communication links by using the technique of Teixeira et al. (52).

This is the key insight of this work, which opens new opportunities for a variety of dis-

tributed analysis, in particular for the integer range of variables from connecting pro-

grams.

The ultimate goal is to identify the memory regions whose values can be sent over

the network. More precisely, looking into the available alias sets and checking whether

there is a buffer that is used as argument of a "send" function. On the other end, the

reverse step is performed: for any buffer being used as argument of a "receive" function, a

map of the alias sets is created to which it belongs to the range information available from

the client side. This procedure will typically fill a gap of previously undefined ranges in

the Ser ver , given that an isolated analysis would not be able to infer the content of such

a buffer. The final result is a comprehensive view of how values flow from one program to

another in a distributed environment.

Back to the C l i ent and Ser ver programs, the only message-exchanging place is

matched, in which the "send" function is SEND and the "receive" function is RECV. (This

is done using the analysis proposed in (52) and can be seen in Fig. 3.4.) The variables

of interest are bu f from the C l i ent program, with range [0,9] and bu f from the Ser ver

program, which up to this point have undefined range. Both situations can be seen in

Fig. 3.3. The later observation is exactly what the distributed range analysis will fix: one

can see that in this particular case, the content of the Ser ver ’s bu f will exactly mirror the

one from the C l i ent , with range [0,9]. This is shown in Fig. 3.5.

It is worth to notice that the Ser ver program only accesses b[0], whose value is

assigned to t . Nevertheless, the information provided by X-RA is enough to cover all po-

tential use of a particular memory region. In this case, the program use a single variable

in order to keep the example simple and tangible.

16 CHAPTER 3. DISTRIBUTED RANGE ANALYSIS

Client
{buf, buf_i}

{buf_i}

{buf_j}

0

1

9
10

49

[0, 9]

[0, 9]

[10, 49]

Server
{buf, buf_i}

{buf_i}

{buf_j}

0

1

9
10

49

[0, 9]

[0, 9]

[10, 49]

Figure 3.5: Network Range Propagation on the running example (Fig. 2.1).

Chapter 4

Results

In order to evaluate the solution, both tailor-made and real-world programs were used.

The primary metric of interest is how the integer range values obtained from traditional

range analysis are improved by the network range propagation technique. It is expected

that certain variables will migrate from the undefined group to the defined one. The larger

the number of such variables, the better is the result, as it indicates that the analysis gen-

erated information that was previously not available.

In addition to the aforementioned results, data regarding to memory usage and ex-

ecution time of X-RA was collected. X-RA is implemented on top of LLVM and the tests

were performed under the following scenario: Notebook Intel i7 and 8GB of RAM.

Tailor-made programs In this test set, four programs were used, properly adapted

to exchange results of intermediate steps through the network: Bubble Sort, Quick sort,

Matrix Multiplication and Selection Sort. Figure 4.1 shows the number of variables whose

intervals were narrowed. Figure 4.2 shows the ratio of the number of defined variables

obtained by the proposed analysis (X-RA) and the number obtained by the conventional

analysis (RA).

The conservative nature of the whole analysis is worth noticing. This means that

in certain cases in which the technique is able to gather range information for variables

which are not actually used in the paired program – for instance, one that would corre-

spond to a buffer index which is never accessed. These cases are not quantified. Nev-

ertheless, they can be considered as potential gain, since programs frequently go under

maintenance and a subsequent run of the analysis could eventually discover those values.

To evaluate the solution, distributed versions of four classic algorithms were cre-

ated: Bubble Sort, Quick sort, Matrix Multiplication and Selection Sort. Each one of these

new versions contains a server and a client. The server sends data to the client. The client

17

18 CHAPTER 4. RESULTS

57

45

79
76

64

51

102
106

0

20

40

60

80

100

120

Selection-sort Bubble-sort Matrix-multi Quick-sort

In
te

r
v

a
ls

 N
a

r
r
o

w
e

d

RA X-RA

Figure 4.1: Number of narrowed intervals on tailor-made programs.

1.12 1.13

1.29

1.39

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

Selection-sort Bubble-sort Matrix-multi Quick-sort

R
a
t
io

Figure 4.2: Ratio of narrowed intervals from conventional and distributed range analysis
on tailor-made programs.

process these data, and sends it back to the server. For instance, to multiply a matrix, the

server sends each line of each term matrix to the client, which, on its turn, performs the

multiplication, sending the results back to the server.

Table 4.1 shows the results of intermediate steps of X-RA. Seg ment s means the

number of memory regions the analysis discovered whose offset is well-defined e.g.

Fig. 3.2. Column Seg ment s wi th de f i ned content shows how many of the discovered

regions have a range whose bounds were discovered e.g. Fig. 3.3 on the C l i ent ; yet on

Fig. 3.3, the segments of the Ser ver would not be counted since the contents are unde-

fined. Finally, the last column, Communi cati on l i nks is related to the number of links

discovered by the work of (52). The data on table 4.1 show that only about 10% of the seg-

19

ments have defined content but still it cause an improvement at the end of the proposed

analysis.

Application Segments
Segments with

defined content
Communication

links
Quick-sort 77 7 8
Matrix-multi 58 4 10
Bubble-sort 46 6 2
Selection-sort 53 6 2

Table 4.1: Data from the intermediate steps on tailor-made programs.

In order to make the understanding more tangible, a code snippet of both client and

server of Bubble-sort can be seen on Fig.4.3.

1 int array_s[500], data_s[2], d;
2 int sock, val, c, n = 500;
3 for(c=0; c<n; c++) {
4 val = c * 2;
5 array_s[c] = val;
6 }
7 sock = sockfd(argv[1]);
8 for (c=0; c<(n-1); c++){
9 for (d=0; d<n-c-1; d++){

10 data_s[0] = array_s[d];
11 data_s[1] = array_s[d+1];
12 write(sock, &data_s,
13 2*sizeof(int));
14 ...
15 }
16 }
17 ...

1 int buf[2];
2 int v1, v2;
3 int sock = sockfd();
4 while(1){
5 read(sock, &buf,
6 2*sizeof(int));
7 v1 = buf[0];
8 v2 = buf[1];
9 ...

10 }
11 ...

1

[0, 998]

1
Figure 4.3: Code snippet of the distributed version of Bubble-sort algorithm.

The WRITE on line 12 communicates with READ on line 5. The data inside the memory

region pointer by data_s is sent and then stored inside the memory region pointed by

buf. Since data_s is filled with the contents of array_s, filled on the for loop (lines

3 – 6), the data acquired on this loop can be propagated along the network. The improve-

ment of this approach is that bothv1 andv2will have its contents laying within the range

[0,998].

Although the implementation does not seem to cause any extra overhead, its mem-

ory usage and execution time numbers can be seen in table 4.2.

The measurement of memory was done using the memory profiler toolValgrind1

and the execution time was obtained by the linux command namedtime2. Regarding the
1http://valgrind.org/
2http://man7.org/linux/man-pages/man1/time.1.html

20 CHAPTER 4. RESULTS

RA X-RA
Application Instructions Time (s) Memory (MB) Time (s) Memory (MB)
Quick-sort 281 0.013 51.12 0.182 54.76
Matrix-multi 313 0.022 50.98 0.033 53.48
Bubble-sort 168 0.010 50.85 0.028 53.08
Selection-sort 177 0.012 51.12 0.021 53.10

Table 4.2: RA vs. X-RA: Time and memory used analyzing tailor-made programs.

latter, only the sys and user numbers were considered since they reflect the actual time

used by the process.

Case study In order to validate the analysis on real-world programs, the program

Talk, a messaging service commonly used in UNIX systems, was selected. The programs

t alk and t alkd , client and server, respectively, were compiled under LLVM 3.3. Com-

bined, they have 2810 instructions, 4 SENDs and 6 RECVs. Table 4.3 shows the results of the

analysis on Talk application.

Application Segments
Segments with

defined content
SENDs RECVs

talkd 401 13 5 3
talk 444 26 1 1

Table 4.3: Data from the intermediate steps on Talk.

One can see that segments with defined content represents less than 5% of the total

of segments. This happens because the analysis rely on the programs themselves to pro-

vide information about how the buffers are filled. Another characteristic of the analysis

is related to the Array Content Inference. If the programs do not use the same pointer for

multiple purposes, e.g. SEND and RECV with the same pointer, the Array Content Inference

is able to better delimit the range of values that can be stored in a given segment.

Figure 4.4 shows the number of intervals narrowed using RA and the proposed anal-

ysis (X-RA). Combined, X-RA narrowed 50 more intervals than the conventional approach.

Figure 4.5 shows the ratio of gain compared to the baseline. Regarding t alk, the novel

approach obtained about 16% more narrowed intervals than the baseline. On the other

hand, 8% more intervals on t alkd were narrowed using X-RA.

In order to estimate the resources used while analyzing a real-world program, time

and memory consumption were measured, and can be seen in table 4.4.

The increase of 0.52 seconds and 11.73 megabytes when adopting X-RA is negligible

since it is not performed on the target platform.

21

232

167

269

180

0

50

100

150

200

250

300

talk talkd

In
te

r
v

a
ls

 N
a

r
r
o

w
e

d

RA X-RA

Figure 4.4: Number of narrowed intervals on Talk.

1.16

1.08

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

talk talkd

R
a
t
io

Figure 4.5: Ratio of narrowed intervals from conventional and distributed range analysis
on Talk.

RA X-RA
Application Instructions Time (s) Memory (MB) Time (s) Memory (MB)
Talk 2810 1.36 54.24 1.88 65.97

Table 4.4: RA vs. X-RA: Time and memory used analyzing Talk.

Chapter 5

Related work

Range Analysis The range analysis of integers on the interval lattice was first pro-

posed by (12). There are several different algorithms to solve range analysis. They differ

on precision and efficiency. Usually the most efficient algorithms are also the less precise.

Among the alternatives, there are the faster algorithms, such as Gawlitza’s (17) or Su’s (49).

However, these algorithms are unable to handle comparisons between variables. In other

words, they do not use the results of operations such as x < y to narrow down the range

of neither x nor y .

The most expensive algorithms (13; 32) are based on relational analysis which asso-

ciate information not with a single variable name, but with sets of variables. The approach

of Miné (32), for instance, finds, for each pair of variables, x and y , a constant c, such that

x − y < c. This algorithm is quadratic on the number of variables. There are even more

expensive approaches, such as Cousot’s (13), which related not pairs, but general sets of

variables. Since it is desired to provide a practical solution to the analysis of distributed

programs, the solution design settled for an algorithm that is linear on the number of

variables in the program text (40).

(40) present an algorithm that uses static range analysis to avoid Integer Overflow

instrumentation whenever possible. Their range analysis contains novel techniques, such

as prediction bounds to handle comparisons between variables. However, they do not

handle the network interactions, and assume that the range of data coming from the net-

work can not be inferred. The technique here presented shows that the range analysis

precision can be improved analyzing a distributed system as whole because the informa-

tion present in the messages exchanging over network can be seen.

The distributed range analysis proposed in this paper can be used of example to im-

plement an efficient solution to counter Integer Overflow attacks in the Internet of Things.

The literature has a good number of solutions to perform Integer Overflow detections in

23

24 CHAPTER 5. RELATED WORK

standalone programs (e.g. (60), (57) and (15)). Zhang et al. (60) have used static analy-

sis to instrument integer operations in paths from a source to a sink to sanitize programs

against integer overflow based vulnerabilities. However, they do not use any form of range

analysis to limit the number of checks inserted in the transformed code. IntScope pro-

posed by Wang et al. (57) combines symbolic execution and tainted flow analysis to detect

integer overflow vulnerabilities. The authors have been able to use this tool to successfully

identify many vulnerabilities in industrial quality software. Dietz et al. (15) have imple-

mented a tool, IOC, that instruments the source code of C/C++ programs to detect integer

overflows. The authors have used IOC to carry out a study about the occurrences of over-

flows in real-world programs, and have found that these events are very common. This

work differs from these existing solutions since it targets distributed applications. In other

words, none of these works is concerned about drawing information from the network’s

communication structure.

Analysis of Distributed Systems In order to statically analyze a system as whole, it is

necessary to infer the communication links between programs. The literature describes a

few works whose goal is to infer communication links between different processes. These

techniques resort to different approaches to estimate links between programs. Some of

them require the user to annotate code (38), others are fully automatic (8; 19; 52). Pas-

cual and Hascoët (38) have defined a system of annotations which the user can employ to

point out to the compiler implicit communication links in a distributed system. (8) finds

a matching between sends and receives in an MPI program. It executes the program sym-

bolically, separating processes by their IDs. His analysis is precise but the link inference

may take too long to converge, as loops, for instance, may lead to the generation of many

different symbolic sets. The technique shown in the work of (52) can identify the implicit

links of interconnected programs. Such implicit links are discovered through the analysis

of the network commands (e.g. SENDs and RECVs) present in the source code of programs.

They show that is possible to reduce the number of Array Bound Checks against buffer

overflow using the holistic view of system instead of analyzing the programs separately.

They implement the solution into LLVM and tested Contiki OS applications. However,

they do not handle the layout of the message exchanges in the network.

There are several proposals that analyze codes of distributed systems using sym-

bolic execution, as (45), (28), (25) and (22). The symbolic execution of a program, allows

the discovery of problems and automatic exploitation of execution paths. When an asser-

tion fails, the test case can be stored so that it can be repeated. Both in (45) and (28), the

developer must mark variables as symbolic and must create assertions about the system

state. In these cases, the user must inform the static analyzer how messages are formed.

25

This makes necessary some knowledge of the logic of the program and its data structures.

In this work, however, this task is more automatic, because the programmer indicates

only which functions are involved in network communication and the proposed static

analyzer learns how messages are formed without programmer intervention.

In order to turn more automatically the analysis and test of distributed protocol im-

plementation, some recent works (e.g. (25) and (22)) have combined different techniques

to analyze the distributed system as whole and interpret messages exchanging. The goal

is to find bugs in protocol implementations that can be used to attack the network, for

example. (25) propose a method to discover manipulation attacks in protocol imple-

mentations. The method propose combines static analysis, symbolic execution, dynamic

analysis and concrete execution to find vulnerable code paths and emulate adversary’s

actions.(22) propose an automated adversarial testing of real-world implementations of

wireless routing protocols. They extend the Turret (27) platform to differentiate the rout-

ing messages from data messages in order to detect bugs and attacks. This work proposes

the analysis of the content of buffers used in message exchanging in a general way instead

of a focus on a specific attack or bug. In this way, the techniques proposed in this work can

be used to improve the precision or performance of protocol implementation analysis as

proposed by (25) and (22).

Chapter 6

Conclusion

This work has presented a way to improve range analysis precision in distributed systems,

which can be used to implement an efficient solution to counter Integer Overflow attacks

in the Internet of Things. The key insight is to look at a distributed system as a single

entity, rather than as multiple separate message-exchanging programs. With this holistic

view, one can crosscheck integer information between different programs that converse

through a network.

The novel techniques presented in this work are: (i) message segmentation, that

joins points-to analysis and range analysis to segment fields in messages and (ii) network

range propagation, that propagates the discovered integer ranges through the commu-

nication links between programs. The use of message exchange as source of new infor-

mation allows a range analysis with more information about the ranges of integer vari-

ables. The combination of message exchange with network range propagation enables

the static analyzer to be less conservative by providing more information, that further

analyses could also benefit from.

To validate this claim, the solution was implemented on top of LLVM compiler (26)

and evaluated using 4 tailor-made programs and a real-world program. The results show

that X-RA is able to discover more information in comparison to the baseline algorithm,

producing between 12% and 39% more narrowed intervals than the solution provided

by (40). Although this work has presented a new way to perform range analysis on dis-

tributed systems, there are some limitations that reduce its precision.

From this work, two papers were published: (i) “Prevenção de Ataques em Sistemas

Distribuídos via Análise de Intervalos ??” has been published on the proceedings of XIV

Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais (2014) –

SBSeg and (ii)“Crosschecking Distributed Data to Detect Integer Overflow” (44) has been

published on Latin America Transactions, IEEE. The next steps of this work are to obtain

27

28 CHAPTER 6. CONCLUSION

more real-world benchmarks and the submission of another paper gathering the most

recent results obtained with X-RA.

Bibliography

[1] Andersen, L. O. (1994). Program Analysis and Specialization for the C Programming

Language. PhD thesis, DIKU, University of Copenhagen.

[2] Aranha, D. F., Karam, M. M., Miranda, A., and Scarel, F. (2012). Software vulnerabilities

in the Brazilian voting machine. Tech Report.

[3] Ashton, K. (2009). That ‘Internet of Things’ Thing. RFiD Journal, 22:97--114.

[4] Atzori, L., Iera, A., and Morabito, G. (2010). The Internet of Things: A survey. Computer

Networks, 54(15):2787--2805.

[5] Babar, S., Mahalle, P., Stango, A., Prasad, N., and Prasad, R. (2010). Proposed secu-

rity model and threat taxonomy for the Internet of Things (IoT). In Recent Trends in

Network Security and Applications. Springer.

[6] Bandyopadhyay, D. and Sen, J. (2011). Internet of things: Applications and challenges

in technology and standardization. Wireless Personal Communications, 58(1):49--69.

[7] Bell, T. (1999). The concept of dynamic analysis. SIGSOFT Softw. Eng. Notes, 24(6):216-

-234. ISSN 0163-5948.

[8] Bronevetsky, G. (2009). Communication-sensitive static dataflow for parallel message

passing applications. In International Symposium on Code Generation and Optimiza-

tion (CGO). IEEE.

[9] Brumley, D., Song, D. X., cker Chiueh, T., Johnson, R., and Lin, H. (2007). RICH: Auto-

matically protecting against integer-based vulnerabilities. In Network and Distributed

System Security Symposium (NDSS). USENIX.

[10] Chandy, K. M. and Lamport, L. (1985). Distributed snapshots: Determining global

states of distributed systems. ACM Trans. Comput. Syst., 3(1):63--75.

29

30 BIBLIOGRAPHY

[11] Chess, B. and West, J. (2007). Secure Programming with Static Analysis. Addison-

Wesley Professional, first edition. ISBN 9780321424778.

[12] Cousot, P. and Cousot, R. (1977). Abstract interpretation: a unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Sympo-

sium on Principles of Programming Languages (POPL), pages 238--252. ACM.

[13] Cousot, P. and Halbwachs, N. (1978). Automatic discovery of linear restraints among

variables of a program. In Symposium on Principles of Programming Languages (POPL),

pages 84--96. ACM.

[14] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. (1991). Ef-

ficiently computing static single assignment form and the control dependence graph.

ACM Transactions on Programming Languages and Systems (TOPLAS), 13(4):451--490.

[15] Dietz, W., Li, P., Regehr, J., and Adve, V. (2012). Understanding integer overflow in

c/c++. In ICSE, pages 760--770. IEEE.

[16] Ernst, M. D. (2003). Static and dynamic analysis: Synergy and duality. In WODA

2003: ICSE Workshop on Dynamic Analysis, pages 24--27. Citeseer.

[17] Gawlitza, T., Leroux, J., Reineke, J., Seidl, H., Sutre, G., and Wilhelm, R. (2009). Poly-

nomial precise interval analysis revisited. Efficient Algorithms, 1:422 -- 437.

[18] Ghosh, S. (2014). Distributed Systems: An Algorithmic Approach. Chapman and Hall.

ISBN 978-1466552975.

[19] Gopalakrishnan, G., Kirby, R. M., Siegel, S. F., Thakur, R., Gropp, W., Lusk, E. L.,

de Supinski, B. R., Schulz, M., and Bronevetsky, G. (2011). Formal analysis of mpi-based

parallel programs. Commun. ACM, 54(12):82--91.

[20] Hardekopf, B. and Lin, C. (2007). The ant and the grasshopper: fast and accurate

pointer analysis for millions of lines of code. In Programming Language Design and

Implementation (PLDI), pages 290–299. ACM.

[21] Heer, T., Garcia-Morchon, O., Hummen, R., Keoh, S. L., Kumar, S. S., and Wehrle,

K. (2011). Security challenges in the IP-based Internet of Things. Springer Wireless

Personal Communications, 61(3):527--542.

[22] Hoque, M. E., Lee, H., Potharaju, R., Killian, C. E., and Nita-Rotaru, C. (2013). Ad-

versarial testing of wireless routing implementations. In Proceedings of the sixth ACM

conference on Security and privacy in wireless and mobile networks, pages 143--148.

ACM.

BIBLIOGRAPHY 31

[23] Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H., Lee, D.-T., and Kuo, S.-Y. (2004). Securing

web application code by static analysis and runtime protection. In Proceedings of the

13th International Conference on World Wide Web, WWW ’04, pages 40--52, New York,

NY, USA. ACM.

[24] Jones, J. R. (2007). Estimating software vulnerabilities. Security & Privacy, IEEE,

5(4):28--32.

[25] Kothari, N., Mahajan, R., Millstein, T., Govindan, R., and Musuvathi, M. (2011). Find-

ing protocol manipulation attacks. In ACM SIGCOMM Computer Communication Re-

view, volume 41, pages 26--37. ACM.

[26] Lattner, C. and Adve, V. S. (2004). LLVM: A compilation framework for lifelong pro-

gram analysis & transformation. In International Symposium on Code Generation and

Optimization (CGO). IEEE.

[27] Lee, H., Seibert, J., Killian, C. E., and Nita-Rotaru, C. (2012). Gatling: Automatic at-

tack discovery in large-scale distributed systems. In Network and Distributed System

Security Symposium (NDSS).

[28] Li, P. and Regehr, J. (2010). T-check: bug finding for sensor networks. In Proceed-

ings of the 9th ACM/IEEE International Conference on Information Processing in Sensor

Networks, pages 174--185. ACM.

[29] Louridas, P. (2006). Static code analysis. Software, IEEE, 23(4):58--61.

[30] Mahlke, S., Ravindran, R., Schlansker, M., Schreiber, R., and Sherwood, T. (2001).

Bitwidth cognizant architecture synthesis of custom hardware accelerators. Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 20(11):1355--

1371.

[31] McGraw, G. (2006). Software security: building security in, volume 1. Addison-Wesley

Professional.

[32] Miné, A. (2006). The octagon abstract domain. Higher Order Symbol. Comput., 19:31-

-100. ISSN 1388-3690.

[33] Misra, D. K. (1987). A quasi-static analysis of open-ended coaxial lines (short paper).

Microwave Theory and Techniques, IEEE Transactions on, 35(10):925--928.

[34] Mock, M. (2003). Dynamic analysis from the bottom up. In WODA 2003 ICSE Work-

shop on Dynamic Analysis, page 13. Citeseer.

32 BIBLIOGRAPHY

[35] Molnar, D., Li, X. C., and Wagner, D. A. (2009). Dynamic test generation to find integer

bugs in x86 binary linux programs. In Proceedings of the 18th conference on USENIX

security symposium, pages 67--82.

[36] Nethercote, N. (2004). Dynamic binary analysis and instrumentation. PhD thesis,

PhD thesis, University of Cambridge.

[Paisante et al.] Paisante, V. M., Saggioro, L. F. Z., Rodrigues, R. E., Oliveira, L. B., and

Pereira, F. M. Q. Prevenç ao de ataques em sistemas distribuıdos via análise de in-

tervalos.

[38] Pascual, V. and Hascoët, L. (2012). Native handling of message-passing communica-

tion in data-flow analysis. In Recent Advances in Algorithmic Differentiation, volume 87

of LNCSE, pages 83–92. Springer Berlin Heidelberg.

[39] Pereira, F. M. Q. and Berlin, D. (2009). Wave propagation and deep propagation for

pointer analysis. In International Symposium on Code Generation and Optimization

(CGO), pages 126–135. IEEE.

[40] Rodrigues, R. E., Campos, V. H. S., and Pereira, F. M. Q. (2013). A fast and low overhead

technique to secure programs against integer overflows. In International Symposium

on Code Generation and Optimization (CGO), pages 1–11. ACM.

[41] Rugina, R. and Rinard, M. C. (2003). Pointer analysis for structured parallel programs.

TOPLAS, 25(1):70--116.

[42] Rus, S., Rauchwerger, L., and Hoeflinger, J. (2003). Hybrid analysis: Static & dynamic

memory reference analysis. International Journal of Parallel Programming, 31(4):251-

-283.

[43] Russo, A. and Sabelfeld, A. (2010). Dynamic vs. static flow-sensitive security analysis.

In CSF, pages 186--199. IEEE Computer Society.

[44] Saggioro, L. F. Z., Paisante, V. M., Rodrigues, R. E., Oliveira, L. B., and Pereira, F. M. Q.

(2015). Crosschecking distributed data to detect integer overflow. Latin America Trans-

actions, IEEE (Revista IEEE America Latina), 13(4):1083--1089.

[45] Sasnauskas, R., Landsiedel, O., Alizai, M. H., Weise, C., Kowalewski, S., and Wehrle,

K. (2010). Kleenet: discovering insidious interaction bugs in wireless sensor networks

before deployment. In Proceedings of the 9th ACM/IEEE International Conference on

Information Processing in Sensor Networks, pages 186--196. ACM.

BIBLIOGRAPHY 33

[46] Serebryany, K., Bruening, D., Potapenko, A., and Vyukov, D. (2012). Addresssanitizer:

A fast address sanity checker. In USENIX ATC, volume 12.

[47] Steensgaard, B. (1996). Points-to analysis in almost linear time. In Symposium on

Principles of Programming Languages (POPL), pages 32–41.

[48] Stephenson, M., Babb, J., and Amarasinghe, S. (2000). Bidwidth analysis with appli-

cation to silicon compilation. In ACM SIGPLAN Notices, volume 35, pages 108--120.

ACM.

[49] Su, Z. and Wagner, D. (2005). A class of polynomially solvable range constraints for

interval analysis without widenings. Theoretical Computeter Science, 345(1):122--138.

[50] Tan, L. and Wang, N. (2010). Future internet: The internet of things. In Advanced

Computer Theory and Engineering (ICACTE), 2010 3rd International Conference on, vol-

ume 5, pages V5--376. IEEE.

[51] Tanenbaum, A. and Van Steen, M. (2007). Distributed systems. Pearson Prentice Hall.

[52] Teixeira, F. A., Machado, G. V., Pereira, F. M., Wong, H. C., Nogueira, J., and Oliveira,

L. B. (2015). Siot: securing the internet of things through distributed system analysis.

In Proceedings of the 14th International Conference on Information Processing in Sensor

Networks, pages 310--321. ACM.

[53] Teixeira, F. A., Pereira, F., Vieira, G., Marcondes, P., Wong, H. C., Nogueira, J. M. S.,

and Oliveira, L. B. (2014). Siot–defendendo a internet das coisas contra exploits. XXXII

Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos.

[54] Toth, T. and Kruegel, C. (2002). Accurate buffer overflow detection via abstract pay

load execution. In Recent Advances in Intrusion Detection, pages 274--291. Springer.

[55] Wagner, D. and Dean, R. (2001). Intrusion detection via static analysis. In Security

and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on, pages 156--168.

IEEE.

[56] Wagner, D., Foster, J. S., Brewer, E. A., and Aiken, A. (2000). A first step towards auto-

mated detection of buffer overrun vulnerabilities. In Network and Distributed System

Security Symposium (NDSS), pages 2000--02.

[57] Wang, T., Wei, T., Lin, Z., and Zou, W. (2009). Intscope: Automatically detecting in-

teger overflow vulnerability in x86 binary using symbolic execution. In Network and

Distributed System Security Symposium (NDSS). Citeseer.

34 BIBLIOGRAPHY

[58] Wang, X., Pan, C.-C., Liu, P., and Zhu, S. (2010). Sigfree: A signature-free buffer over-

flow attack blocker. Dependable and Secure Computing, IEEE Transactions on, 7(1):65-

-79.

[59] Warren, H. S. (2002). Hacker’s Delight. Addison-Wesley Longman Publishing Co., Inc.

[60] Zhang, C., Wang, T., Wei, T., Chen, Y., and Zou, W. (2010). Intpatch: Automati-

cally fix integer-overflow-to-buffer-overflow vulnerability at compile-time. In Com-

puter Security–ESORICS 2010, pages 71--86. Springer.

[61] Zhang, Q., Lyu, M. R., Yuan, H., and Su, Z. (2013). Fast algorithms for dyck-cfl-

reachability with applications to alias analysis. In Programming Language Design and

Implementation (PLDI), pages 435--446. ACM.

[62] Zheng, X. and Rugina, R. (2008). Demand-driven alias analysis for c. In Symposium

on Principles of Programming Languages (POPL), pages 197--208. ACM.

[63] Zoumboulakis, M. and Roussos, G. (2009). Efficient pattern detection in extremely

resource-constrained devices. In Sensor, Mesh and Ad Hoc Communications and Net-

works, 2009. SECON’09. 6th Annual IEEE Communications Society Conference on, pages

1--9. IEEE.

