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Resumo

Hoje em dia, o fenômeno denominado de mídia social emergiu como a forma predo-
minante de publicação de conteúdo na Internet. Devido a esse grande sucesso, um
entendimento de como os usuários criam, compartilham e disseminam conteúdo online
pode trazer informações cruciais para criadores de conteúdo, provedores de Internet,
marqueteiros online, dentre outros. Neste contexto, essa tese discute três principais
objetivos sobre como a popularidade de mídia social evolui online. Inicialmente, ap-
resentamos um estudo sobre como diferentes atributos textuais, sociais e do próprio
conteúdo se relacionam com a popularidade do conteúdo de mídia social. Este estudo
é feito com base em uma caracterização em larga escala do YouTube, a principal apli-
cação de compartilhamento de vídeos hoje em dia, como também com base em um
estudo com usuários usando a ferramenta de crowdsourcing Amazon Mechanical Turk.
No nosso segundo objetivo, propomos diferentes métodos de previsão de popularidade
com objetivos de prever tanto a evolução de popularidade (ou tendências), como tam-
bém valores futuros de popularidade do conteúdo de mídia social. Diferentemente de
outros trabalhos, levamos em conta o equilíbrio entre o interesse restante no conteúdo
após a predição e corretude das previsões, um fator negligenciado por abordagens an-
teriores de previsão. Por fim, apresentamos um estudo de como atividades dos usuários
(e.g., assistir, compartilhar, curtir etc.) se relacionam com a popularidade do conteúdo
de mídia social. Este terceiro trabalho é feito com bases de dados do YouTube, Twitter
e do Last.FM. Na nossa análise, focamos em duas características complementares do
comportamento de usuários: a revisita ao um mesmo conteúdo ao longo do tempo,
como também as mudanças de interesse em conteúdos distintos ao longo do tempo.
Os resultados dessa tese são discutidos com uma enfâse de aplicações como marketing
online, provisionamento de conteúdo e plataformas de dados analíticos.
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Abstract

Social media has emerged as the de-facto form of publishing on the Internet nowa-
days. Given the success of social media applications, understanding how users create,
share and disseminate social media content online can provide valuable insights for
content generators, online advertisers and Internet service providers (ISPs), among
others. Motivated by this great success of social media applications, the objectives of
this dissertation are threefold. Firstly, we aim at understanding how different textual,
content and social features relate to the evolution of popularity of social media content.
We achieve this based on a large scale characterization of the YouTube application,
currently the largest video sharing platform, as well as a small scale crowdsourced user
study. Secondly, we propose novel popularity prediction methods to predict not only
future popularity values, but also the popularity evolution trends that social media
content will achieve at future dates. Our proposed methods differ from previous work
in two key aspects: (1) popularity trends are exploited to build specialized models of
popularity values, and (2) our methods take into account not only the prediction accu-
racy, but also the remaining interest in the content after prediction, aiming at finding a
good tradeoff between both. Lastly, we present two novel data mining techniques to un-
derstand how user activities (e.g., viewing, liking, sharing etc.) relate to the evolution
of popularity of social media content. In this last step, we tackle two complementary
effects of user activities: the revisit behavior of users to the same content, as well as the
attention flows of users between different pieces of content. Our case studies on this
last step are three different social media applications: YouTube, Twitter and LastFM.
The three complementary studies presented in this dissertation are discussed in light
of real world applications (e.g., advertising, provisioning and analytics platforms) that
may benefit from our results.
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Chapter 1

Introduction

As we (humans) shift our content consumption and production practices to an online
space (the Internet) [83, 105, 108], massive amounts of data on human behavior and
cultural production is now readily available to aid researchers in understanding our
information consumption habits. For example, social media and user generated con-
tent (UGC)1, that is, media content which can (at least in theory) be created and/or
curated by any user, is one of the driving forces of today’s Internet. In other words,
social media has become the de-facto form of publishing on some of the most popular
Internet applications [31]. Focusing on video content, websites such as YouTube2 re-
ceive over 1 billion unique users and attracts over 1 million different advertisers each
month [151]. Even niche applications, such as Vimeo3, whose target producers are
independent filmmakers, manage to attract over 70 million unique users monthly [134].
Changing our perspective to other kinds of media, Flickr4, a popular photo sharing
application, announced in 2011 that over 6 billion photos were available in the appli-
cation [48].

Focusing on how users consume online content nowadays, popular news websites
rely not only on traditional advertising and subscriptions to drive traffic. There is also
a heavy use of social media and viral marketing [18] campaigns that lead users to this
professional content online. That is, user traffic, even to professional content nowadays
is currently highly dependent on how information is propagated through users on social
media applications as well on online and offline social networks. Another interesting

1We consider social media as a more general concept than UGC. It encompasses the technology
that allows users to create, share, discuss, and curate online information. User generated content
(UGC) the actual media content (e.g., videos) created by users and published/propagated through
social media tools (see Table 1.1).

2http://youtube.com
3http://vimeo.com
4http://flickr.com

1

http://youtube.com
http://vimeo.com
http://flickr.com


2 Chapter 1. Introduction

example is online music streaming services (OMSS) such as Spotify5 and Last.FM6,
whose revenues depends on the online consumption habits of users, or simply, online
user activities. Such websites usually rely on social networking and group geared
features to attract and maintain their target audiences.

Given the success of some of the aforementioned applications – as well as the
current large volume of online user activities in creating, curating, and consuming dif-
ferent types of content on a daily basis – understanding how users find such content
and how content popularity evolves over time provides valuable insights for content
generators, online advertisers and Internet service providers (ISPs), amongst others.
For instance, from a system perspective, understanding these properties may drive
the design of better analytic tools, a major market segment nowadays [83]. Online
advertisers may also benefit from this information to better place contextual adver-
tisements, while ISPs could exploit it to develop more cost-effective content delivery
platforms and caching systems. From a social perspective, understanding the proper-
ties of content popularity could be used to better comprehend the human dynamics
of consumption processes [34]. Also, content producers could benefit from insights on
how user collaboration and collaborative social activities on Web 2.0 applications may
impact content popularity, providing information on aspects related to their own fame
on Internet applications.

The motivating theme of this dissertation is on understanding and modeling the
popularity of online content on social media applications (e.g., UGC, as well as news
websites or mainstream songs from musical artists), while at the same time providing
valuable information to real world applications.

1.1 Motivation

In Figure 1.1 we show an example of a YouTube video, as well as the different features
– such as the textual title and content’s number of likes – as well as different user
actions (e.g., web links through which users perform some action such as sharing the
video) that surrounds the video. We define the content provided by the social media
application, a YouTube video in this case, as a social media object. There exists a wide
range of means to access an object such as the one shown in Figure 1.1. For example,
search engines typically index such objects taking into account the different features
available in the object (mostly the textual features [12]). Also, social sharing options
provide users with means to propagate objects to their online friends or followers (e.g.,

5http://spotify.com
6http://last.fm

http://spotify.com
http://last.fm
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Figure 1.1: Example of a Video’s Page on YouTube.

online social network (OSN) sharing or e-mail sharing). 7. Moreover, different websites
such as blogs or news websites can also embed online objects on their pages8. Finally,
internal browsing inside the application will also direct users to different content (as
shown in the related videos links in the figure).

The aforementioned means of accessing objects will reflect on the different tem-
poral patterns of evolution of popularity that social media content typically exhibit.
Figures 1.2(a-c) shows some example time series of the daily popularity (number of
hits/views) received by different YouTube videos. Also, Figures (d-f) shows some ex-
amples of popularity of Twitter hashtags. From the figures we can see different patterns
of temporal evolution of popularity of objects. Take for instance, Figure 1.2(a). This
example shows a YouTube music video that appears to have reached a steady state in
the number of daily visits after an initial burst in growth (from zero to roughly 10,000
views daily). In contrast, Figure 1.2(b) shows a video that undergoes a popularity
evolution consistent with a viral growth like pattern (exponential growth before the
peak and exponential decay after). The last video example, Figure 1.2(c), appears
to be composed of various viral patterns that relate to different real world events or
incoming sources/links (referrers). In this specific case, the video is a song about New

7Offline sharing is also possible, but very difficult to account for.
8With embedding external content (the object) from a different provider is shown a webpage using

specific HTML code.
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Figure 1.2: Example of Popularity Time Series for YouTube (top row) and Twitter
(bottom).

York city. Looking into the different peaks in popularity, or spikes, they occur close to
dates such as holidays and to the real world events related to the song (e.g., album re-
lease). Figures 1.2(d-f) shows examples of the popularity evolution of Twitter hashtags
focused on the 128 hours around the peak hour (most popular hour). The first exam-
ple, Figure 1.2(d), shows a hashtag whose popularity curve follows a periodic behavior.
The other two Twitter examples show that before the peak, a exponential like growth is
achieved by the hashtags. After the peak, either exponential or long-tailed decays can
be seen depending on the example. In some cases, such as in Figure 1.2(e), a smaller
cascade seems to follow up on the larger one. As shown by previous work, such cascade
patterns (exponential growth followed by an exponential or long tail decay) are usually
caused by viral like propagation [64,91].

These different patterns, shown in the examples above, are interesting because
they reveal important information on the evolution of popularity of social media ob-
jects. In this dissertation, we are specially interested in the events that cause such
trends. More importantly, we want to find evidence of correlations between the trends
above and different features of the object. In particular, we are interested in the impact
of referrers (i.e., incoming links), since they reflect the propagation of the object online,
as well as the impact of real world events, such as album releases from musical artists,
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on the popularity evolution.

Empirical Hypothesis In sum, the guiding hypothesis we evaluate
throughout this dissertation is: Given the different features which may sur-
round social media objects online – particularly the referrers (e.g., incoming
links to objects) and features related to real world events (e.g., album re-
leases) – will such features have an impact on the popularity evolution of
the social media objects?

Nevertheless, such a hypothesis is still very broad, and we now narrow it down
as a problem statement and specific research goals in the next section.

1.2 Problem Statement

In general terms, the problem we intend to address is defined as follows. Given a
collection O of social media objects, say YouTube videos, we define for each object
o 2 O a set of popularity, content, social, referrer and real world features related to
o. Popularity features account for measures of popularity, say views or comments over
time. Content features can be textual information associated with the object, such as
tags and object descriptions, or even how users perceive the quality of the content with
ratings and likes. Social features are related to the user who posted the content and her
online social network. For example, a followers or friends network in the application.
Referrer features contain information about the incoming links exploited by users to
reach object o from other websites. Finally, some features are related to external real
world events such as the dates of album releases by music artists. We call these features
real world features.

Throughout this dissertation, we shall mine evidence of how the importance of
each of these features affect the evolution of popularity of objects in different social
media applications. We are particularly interested in referrer features and external
events (e.g., album releases by artists) since they provide valuable information on how
users reach online information objects. These are two pieces of information largely
neglected by previous work. As stated, we want to make use of these features on
different data mining applications such as: (1) time series (or object) clustering and
classification; (2) popularity trend and value prediction; and (3) modeling and mining
the user activities that cause the different popularity trends. In more details, we
consider that the information related to each of these features is available only up to the
reference time t. When clustering time series, we want to make use of the information
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Table 1.1: Definitions of Social Media, User Generated Content, Online Information
and User Activities

Definition Examples
Social Media Technology that enables on-

line social behavior
Blogs, Video Blogs, Music
Sharing, Ratings, Crowd-
sourcing

User Generated Content Content generated by users YouTube Videos, Blog
posts, Microposts. Specific
case of social media objects.

Social Media Objects Memes and pieces of infor-
mation propagated through
social media

UGC, online news, online
music, as well as more
specific information such
as text quotations, video
frames

User Activities User behavior (e.g., posting,
liking, viewing, sharing etc.)
that cause the online popu-
larity of objects

Posting, sharing, comment-
ing etc.

of the features up to a reference time t
r

. In the case of popularity prediction, we aim at
exploiting features to determine the popularity of objects at a target time t

t

= t
r

+ �.

This general objective is narrowed down into three specific research goals we
aim to achieve in this dissertation. Before introducing them in the next section, we
present our definitions of social media, user generated content, user activities, and
social media objects, which will be used throughout the remainder of this dissertation.
These definitions are presented in Table 1.1. Social media is a broader concept which
defines the tools, technologies and applications that allows users to create and share
social media objects. User generated content (UGC) is the actual content, or media,
generated by users. Examples of UGC are YouTube video’s or blog posts. Online
objects defines a piece of content, for instance a piece of UGC of even a snippet of
content (e.g., a quotation), that is propagated through users online. Finally, user
activities defines the user actions which cause online popularity (e.g., viewing and
sharing content).
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1.3 Research Goals

RG1 - Understanding Feature Importance: Our first research goal focuses on:
(1) characterizing how object popularity evolves over time; (2) characterizing how
object popularity evolution correlates with the referrers that most often lead users
to objects (as well as with other content, social and popularity features); and, (3)
modeling the evolution of popularity of objects. We note that, unlike previous
work, that correlated different features of objects with final popularity [13, 139],
here we are concerned with measuring the impact of referrers on how the popu-
larity of each object evolves over time [91,139]. At the same time we exploit this
information in order to model the popularity evolution of individual objects. As
a basis for comparison, we also study: (1) popularity features, that are related
to temporal data about the evolution of popularity of individual objects; and
(2) content features, such as the category of a video. In particular, we study
how users perceive the content of social media objects and how such perception
correlates with popularity.

RG2 - Predicting Object Popularity: After data characterization and modeling,
we intend to exploit the available data to answer the following question: Is it
possible to predict how the popularity of individual objects evolves over time?
In other words, we want to know if it is possible to predict the popularity curve
(or trend) of each object. We also investigate whether more effective methods to
predict the popularity measures (e.g., views) of an object at a target date can
be devised. This is done by exploiting the developed popularity trend prediction
models (e.g., by building specialized models to pre-defined popularity trends).
Our results showed that we can indeed improve popularity prediction models
using trend prediction models. More importantly, unlike previous studies [4, 81,
110, 129, 150], we shall focus not only on predicting the popularity of a video
at time t

t

= t
r

+ �, but also on the evolution its popularity it may follow after
prediction.

RG3 - Modeling and Mining Popularity Through User Activities: In our
final research goal, we turn our focus on mining user activities on social media
websites. User activities, such as tweeting and listening to songs, are the actions
that eventually account for popularity. Thus, instead of looking at popularity
through the use of time series only (as was mostly done in RG1 and RG2),
in this third goal we change our emphasis to the user. Our first goal here is
on understanding how the repeated-consumption behavior of users, or revisits,
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Figure 1.3: Pictorial Representation of our Research Goals

impacts popularity. The revisit behavior has important implications on the social
media application as it allows us to break popularity down into audience (unique
users) and revisits (returning users). For instance, marketing services should care
most about the audience of a particular content, as opposed to its total popularity,
as each access does not necessarily represent a new exposed individual. After our
study on revisits specifically, we broaden our view to the attention flows of users.
In contrast to the “stickyness”, which is captured by revisits, attention flows also
capture how users change attention from one object to another. One interesting
research question we tackle in here is whether objects compete or collaborate
for user attention. Understanding object popularity from a competition and
collaboration perspective is a novel task [89,118,119,132], and brings important
insights on how popularity evolves online.

1.4 Contributions and Outline of this Dissertation

In Figure 1.3 we show how the research goals of this dissertation relate to each other.
We also emphasize the chapters in which each research goal is addressed. The rest
of this dissertation is organized as follows. Chapter 2 discusses our related work and
the background required for understanding the rest of the dissertation. Our main
contributions are organized in the following chapters:

Chapter 3 Chapters 3 and 4 will focus on understanding feature importance to con-
tent popularity in the UGC application YouTube. Specifically on Chapter 3, we
present a characterization of different aspects of popularity growth of YouTube
videos from a service point of view. In order to achieve this, we collected three
distinct datasets from the application and characterized different aspects of pop-
ularity growth, including: the time to achieve most of views; the fraction of views
in the popularity peaks; and finally, which incoming links (i.e, referrers) most of-
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ten lead users to such videos. Also, using clustering techniques, we extract the
most common popularity evolution trends followed by videos. We then correlated
different features from the videos with the trends and popularity values of videos.
Our results are crucial to understand feature importance. These results provides
the base knowledge needed to understand our findings in the next chapters.

Chapter 4 A study on the users’ individual perceptions of YouTube videos and how
these perceptions are connected with popularity. That is, we employ crowdsourc-
ing tools and user surveys to understanding the relationships between explicit
users’ feedback on content and content popularity. In this chapter we tackle two
simple but fundamental questions: (1) Can users reach consensus on a video they
prefer from a pair of videos? (2) If consensus is reached, is the preferred video by
the users the most popular one? Our goal on tackling these two questions is to to
shed a light on the importance of users’ perception on the popularity of objects.
The first question aims at answering if a group of users will prefer a single piece of
content (object). Whereas the second, aims at finding the relationship between
the content (preferred by users) and the popularity.

Chapter 5 On Chapter 5 we begin our study on RG2. Specifically on this chapter,
we build novel methods of popularity prediction. The case study of this chapter
on News content that is shared on social media applications. In the news setting,
there is a clear motivation to determine the future popularity (e.g., in two days)
of an object, using only the information available shortly after the upload (e.g.,
a few hours) [18]. To predict popularity, we make use of a combined learning
approach to: (1) extract popularity trends from popularity time series; and, (2)
predict the popularity values of newly uploaded objects using these trends. The
first step makes use of clustering techniques and represents each trend by a time
series centroid. Our combined approach is quite effective, as it achieves results
better than state-of-the-art baseline approaches. This prediction technique was
also the winner on two out of three tasks of the ECML/PKDD 2014 Predictive
Analytics Challenge.

Chapter 6 While news pages have a clear popularity prediction target time due to
the timely nature of the content [18] (e.g., two days after the first hour), this
target time definition is less clear in some social media settings (e.g., UGC).
One example of the complexity behind social media popularity is the YouTube
video of Henri, le Chat-Noir9. The first video of Henri was uploaded in 2007 and

9http://www.youtube.com/user/HenriLeChatNoir

http://www.youtube.com/user/HenriLeChatNoir
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remained in obscurity for years. However, in 2012 a user of the Tumblr social
network found the video and posted it online10. Currently, the video has millions
of visits from a wide range of different sources (e.g., OSNs, search engines, word-
of-mouth and so forth). Motivated by such examples, and our understanding
of UGC popularity from Chapters 3 and 4, we here create the TrendLearner
method. The goal of TrendLearner is to predict the popularity trends of UGC.
Moreover, TrendLearner aims at capturing the tradeoff between the remaining
interest in objects after prediction and the accuracy of predictions. Remaining
interest captures how many views an object will receive after prediction was
performed. In the UGC setting, capturing the remaining interest is important
since it is unclear when an object will begin to become popular and/or interesting.
This is a key contribution of our TrendLearner method.

Chapter 7 Starting from this chapter we begin our study on RG3. In this chapter
specifically, we focus on understanding the revisit behavior of users to social
media objects. Repeated consumption, or revisits, account for a large fraction
of the total popularity online [5]. Understanding how and why users evisit a
single object is crucial for accurate popularity evolution models. Based on this
characterization, we derive the Phoenix-R model. We show how this model
accurately captures the evolution of popularity of objects. An important facet
of Phoenix-R is that it also accurately models multiple bursts, or cascades,
of visits to a single objects. As we have discussed, such bursts are related to
referrers and real world events. Thus, by modelling them we take a step forwad in
understanding their impact in popularity. Finally, our Phoenix-R model is more
accurate than state-of-the art competitors and can also be used for popularity
prediction.

Chapter 8 Finally, we propose the A-Flux approach, a user attention mining method
designed to cope with the complex challenges of mining user visits to social me-
dia objects. One of the main technical contributions of A-Flux is a proba-
bilistic graphical model that captures the latent object-to-object transitions of
user attention. We employ A-Flux on large music streaming datasets, revealing
interesting and meaningful user attention flow maps and patterns.

Finally, Chapter 9 concludes this dissertation and presents a discussion on direc-
tions for future work.

10http://knowyourmeme.com/memes/henri-le-chat-noir

http://knowyourmeme.com/memes/henri-le-chat-noir
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Figure 2.1: Mind Map of the Themes Related to this Dissertation

In this chapter, we present a summary of background knowledge and related work
that is fundamental to the understanding of this dissertation. We discuss previous
efforts related to each of the three research goals presented in Chapter 1, which can
be grouped in to several topics as shown in Figure 2.1. In Section 2.1, we discuss

11
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empirical studies on popularity in general. Afterwards, in Section 2.2, we shift our
focus to studies on user generated content, the type of content that is mostly explored
in this thesis. This section is narrowed down as follows:

1. in Section 2.2.1 we discuss previous characterizations of social media objects
popularity as a single static measure;

2. previous analyzes of the temporal evolution of social media objects popularity
over time are discussed in Section 2.2.2;

3. Section 2.2.3 discusses popularity prediction models for social media;

We discuss some of the more recent approaches in understanding popularity
through user activities and social network datasets through the use of competition
and collaboration models, as well as epidemics based models, in Section 2.3. Finally,
we provide a more in-depth summary of time series statistics and data mining tech-
niques that are used by our research, or can be exploited in future developments, in
Section 2.4. We summarize this chapter in Section 2.5.

2.1 Empirical Studies on Popularity

We begin our discussion with a brief summary of previous studies of general charac-
teristics of popularity of different “quantities” of human knowledge (e.g., film revenues,
book sales, votes received by political candidates, among others). This brief intro-
duction, presented in Section 2.1.1, is useful to understand the nature of heavy-tailed
distributions, which are used to characterize different properties of popularity of on-
line information, such as the distribution of final popularity and decay in popularity
over time. This is presented in Section 2.1.1. Afterwards, in Section 2.1.2 we review
some efforts that analyzed the effects of different market and social factors that impact
popularity.

2.1.1 Probability Distributions of Popularity

In the context of popularity, heavy-tailed distributions have been commonly used to
explain different popularity phenomena. More specifically, a heavy-tailed distribution
has the tail lower bounded by an exponential distribution, that is, their probability
density function will decay slower than a exponential distribution [103]. Such distri-
butions are suitable for popularity analysis, since, among other things, they accurately
capture the behavior of most quantities having very low popularity, while very few
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contents will have very high popularity (hundreds of millions or even billions of views).
Two heavy-tailed probability distributions are often used to quantify the popularity
of different quantities are Power-law distributions [103] or the Log-normal distribu-
tion [28,126]. In general, a quantity drawn from a Power-law distribution will have the
probability density function:

p(x;C, ↵) = Cx�↵, (2.1)

with any positive ↵, but typically falling the range 2 < ↵ < 5. C is a normalization
constant. Clauset et al. and Newman provide substantial studies on the nature of such
distributions [28, 103]. In almost all of the cases the distribution above will only be
observed for values of x > x

min

[28]. A Log-normal distribution has the form:

p(x;µ, �) =
1

x�
p
2⇡

✏�(logx�µ)2/2�

2
, (2.2)

where µ and � are respectfully the mean and standard deviation of the distribution.
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Figure 2.2: Synthetic Power-law Datasets.

An example of a Power-law distribution of a generic quantity is presented Fig-
ure 2.2. On the left (a) we show the density distribution, while on the center (b) we
show the same distribution but using log scales on both axes. Notice the concentration
of the distributions on lower values of the quantity, which are more probable to occur.
Moreover, the linear behavior of the function on log scales is a simple means to find
evidence of a heavy-tailed dataset. However, notice that on the figure to the right (c),
which shows the complementary cumulative distribution function (CCDF), that both
Log-normal and Power-law distributions provide reasonable fits to the data, due to
both being heavy-tailed distributions. This confusion between different heavy-tailed
distributions has been discussed in [28], and we here prefer to take the more cautious
approach of stating that previous research found heavy-tailed distributions of popu-
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larity instead of Power-law or Log-normal specifically. We now discuss some of these
studies.

The work of Sinha and Pan [126] provided an extensive analysis of the distribu-
tions of popularity for different quantities related to human knowledge (e.g., books or
films revenues) or even ideologies (e.g., votes for political candidates). The study found
the heavy-tailed behavior in most of such quantities. Also, the same study found that
not only do final values of popularity tend to follow heavy-tailed distributions, but
also, in some cases such as film revenues, the decay over time can also be modeled as
such. However, in some cases, an exponential decay over time was also observed. This
effect heavy-tailed popularity measures, and also the heavy-tailed/exponential popu-
larity decay over time, was also verified in user generated content [22, 34, 78, 84, 133],
as further discussed in Section 2.2.1.

There are many explanations for the existence of heavy-tailed distributions of
popularity in most quantities of human knowledge. One of the most used explanations
is the rich-gets-richer phenomenon. Rich-gets-richer, also known as cumulative advan-
tage or preferential attachment, states that quantities with higher popularity will tend
attract more attention over time [41]. Other authors, have looked into the stochastic
processes based on exponential mixtures of exponential growth models [3, 67, 97, 115].
One example of such a process is the growth of cities, which has been shown is expo-
nential in nature for individual cities. At the same time cities grow exponentially, new
cities are also born with an exponential rate. These processes also cause heavy-tailed
distributions. In any case, one important take-away here is that, although the afore-
mentioned studies provide some empirical evidence of how to model popularity, little
discussion is provided on what exactly causes such distributions of popularity. For
instance, although the aforementioned models may explain the heavy-tailed behavior,
they do not take the social and market structure surrounding online information into
account. Such factors may explain the cause why some relatively unknown artists, like
Psy,1, may to rise to fame.

2.1.2 The Effects of Markets on Popularity

Motivated by the question of which factor has the most impact on popularity, quality
or social influence, Salganik et al. [122] created an artificial musical market where
users were asked to rate music based on their tastes. One set of users had knowledge
of the popularity (based on previous ratings) of songs, while the other set of users
had no such knowledge. The authors concluded that social influence leads to more

1Currently, the most viewed video on YouTube http://www.youtube.com/watch?v=9bZkp7q19f0

http://www.youtube.com/watch?v=9bZkp7q19f0
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skewed popularity distributions and, surprisingly, less predictability. Even though
this study neglects many factors of real world musical markets, it showed that social
influence makes market prediction less effective. Thus, it provides evidence that the
dynamics of popularity, even in restricted settings are difficult to account for. In
a sense, these results related to another work by the same authors that suggested
that viral like epidemics of online propagation of information (which are related to
popularity [91,126]) are caused by the aggregation of small influences of a large number
of unrelated individuals [140], which is a hard to predict phenomenon. Similarly, the
hardness of predictability of popularity due to a wide range of social phenomena and
different object features that exists in society has also been argued by the work of Lee
et al. [79]. One simple example of these factors is also detailed in the work of Lakkaraju
et al. [78]. Here, the authors showed that just the time of day and the title of a Reddit2

post have significant impact on the popularity of the post.
Another important concept is the effect of exposure on the popularity of products

or brands. A number of previous studies [37, 42, 52, 87] showed that purchase intent
and awareness of a brand are related to the exposure (e.g., number of views) to an
advertisement. This feature is usually known as promotion and is one of the causes
of popularity growth (see Chapter 3). Those studies also provide valuable insights on
how online markets behave and further motivate our work on music streaming services,
discussed in Chapter 8.

2.2 Popularity of Social Media Objects

The focus of our dissertation is on the popularity of social media objects. As de-
fined by Kaplan and Haelin [74], user generated content (UGC), online social networks
(OSNs [96]) and even massive online games (such as Second Life and World of War-
craft [93]) all belong to the broader phenomenon of social media. Figure 2.3 presents an
illustrative example of a typical social application. The picture depicts users connect-
ing to one another via an internal OSN, while other users may access public content
without being registered in the application. Note that both OSN related factors and
external users may impact content popularity, as we shall further discuss in this sec-
tion. The remainder of the section is divided as follows. We start by discussing earlier
studies of social media popularity, which focused mainly on static views of popularity
of UGC (Section 2.2.1). We then discuss some previous efforts to analyze the temporal
evolution of popularity (Section 2.2.2) and which develop popularity prediction models

2http://reddit.com

http://reddit.com
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(Section 2.2.3).

Figure 2.3: Example of Connections in a Social Media Application

2.2.1 Static Views of Popularity of Social Media Objects

Understanding the popularity of a piece of content (or object) is a subject that has
gained attention from researchers since the earliest studies of social media. Most of
these studies analyzed the total number of views measured at the time the data was
crawled, or the “final” popularity, paying little or no attention at how content popularity
evolves over time. Starting with video content, Cha et al. [22] presented an in-depth
study of two video sharing systems. The authors analyzed the popularity distribution of
objects, some few aspects on the popularity evolution, as well as content characteristics
of YouTube and of a popular Korean video sharing service. Moreover, the authors
investigated mechanisms to improve video distribution, such as caching and Peer-to-
Peer (P2P) content distribution networks (CDNs). In a similar fashion, Chatzopoulou
et al. [26] characterized the largest dataset of YouTube videos at the time, finding that,
for older videos, moderate to strong correlations exist between popularity measured in
number of views and other metrics such as number of comments and favorites. They
also found that in the case of younger videos, such correlations are weaker, indicating
that their long term popularity dynamics are not yet stable.

Wattenhofer et al. [139] analyzed the correlations between the popularity of
YouTube videos and properties of various online social networks (OSN) created among
users of the system. In particular, they found that characteristics of YouTube’s
comment-to-comment OSN (i.e., an OSN of links between users who comment each
others’ videos) are more strongly correlated with the popularity of a user’s video than
the characteristics of the subscription graph (although such correlation is still reason-
ably strong). This result indicates that active community collaboration can have a
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higher impact on the views a user receives through her videos. This study is in agree-
ment with the one by Susarla et al. [128] which showed that subscriber links play an
important role in the early popularity of videos. Another study was done by Borghol et
al. [13] which also analyzed the correlations between popularity of YouTube videos and
content factors, determined by groups of duplicate videos (or clones, as the authors call
them), finding positive correlations the clone features and popularity. In details, the
authors correlated final popularity with current popularity and clone groups. In order
to achieve this, the authors make use of a linear regression model between the loga-
rithm of past popularity plus the clone groups, the regressors or explanatory variables,
and the logarithm of current popularity, the regressand or response, that is:

log(y
current

) = �0 ⇤ log(y
past

) +

X

c2C

�
c

⇤
v2c

+ ↵ (2.3)

where y
current

is the current popularity, y
past

is the past popularity, c is a clone group
and C is the set of clone groups. Moreover, v is a video and
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is an indicator function
that takes value of 1 if v 2 c, that is, if v is part of the clone group c and 0 otherwise.
�

i

are the regression coefficients. With the model above, the authors showed that the
addition of new binary explanatory variables, captured by

P
c2C

�
c

⇤ �
v2c

, to the linear
model, improved the regression quality captured by the coefficient of determination
R2 [69]. The authors argued that this result implies that popularity is related to
content, since clone groups have the same content.

Flickr images were also the focus of attention of many early studies of UGC
popularity. Zwol [133] measured the popularity of images, finding that heavy-tailed
distributions explain both the total popularity and decay in popularity over time. It
is interesting to note that many of the early studies on Flickr focused on folksonomies
and tags [57,82,88], which are also examples of UGC. For instance, Marlow et al. [88]
found heavy-tailed popularity distributions for tag popularity, where the popularity of
a tag was measured either by number of images it annotates or number of user’s that
used the tag in their libraries. This result has also been observed when tags are used
to annotate other kinds of media, such as videos and text data [45]. On the subject
of diverse kinds of media, the work of Recuero [36] and of Leskovec et al. [84] also
found heavy-tailed patterns in the distribution of the number of blogs a given sentence
appears in.

In common, these studies provide important insights into content popularity in
video sharing services and other UGC applications. However, most of them only focus
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on either a single snapshot of the popularity of objects or on a few snapshots only [22,
54, 133]. In this sense, these studies did not analyze the long-term temporal evolution
of popularity as we do.

2.2.2 Popularity Evolution Over Time on Social Media
Applications

The popularity evolution of online content has been the target of more recent studies.
Focusing on YouTube videos, Borghol et al. [14] showed how weekly based views can be
used to model video popularity. Also, the authors developed a model to determine the
number of videos that may exceed a given popularity threshold, although such model
does not indicate which specific videos these will be [14]. More recently the work of
Islam et al. [68] showed that the weekly based modeling of video popularity in videos
is still valid even years after upload. However, the synthetic model for predicting and
generating the distribution of popularity of a group of videos, as proposed by the au-
thors [14], does not. Zhou et al. [155], showed the importance of related videos links to
popularity. Still on the subject, the importance of incoming links and content features
to the final popularity of YouTube videos has been further analyzed recently [13]. It
is important to note that some of these studies were done in parallel to ours on RG1
(which will be discussed on Chapter 3). Moreover, these studies are not focused on the
prediction of popularity of individual videos (as is one our goals).

Broxton et al. [16] analyzed the popularity patterns of viral videos. According to
the authors, a viral video is one that receives a large fraction of views from OSN appli-
cations. The authors developed a method to rank different sources of traffic to videos
according to their potential in attracting more views. Brodersen et al. [15] made use of
the same model to determine, amongst other things, if viral videos receive most views
from the same geographic region. The authors showed that, surprisingly, most viral
videos will have an initial burst in propagation in a diverse set of geographical regions,
later falling back to the region of upload. Diversity was measured by entropy [32],
which is defined as:

H(x) = �1 ⇤
X

x2X

p(x)log(p(x)) (2.4)

where x is a geographical region (city or country) and p(x) is the fraction of views such
region. However, there is a possible bias in this results since estimation of H(x) will be
biased with few observations of x (the authors did not take into account the variability
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of the entropy). For instance, notice that with few observations, the values of p(x)

will be close to a uniform distribution because of the low initial popularity. Uniform
distributions are the ones with maximum entropy [32]. Previous work also focused
on geographical propagation of Twitter data [43, 71]. Among other things, authors
find that some cities are trend-setters (sources of popular memes), while others are
trend-consumers (sinks).

Focusing on image content, Cha et al. [24] analyzed the propagation of pictures
through Flickr’s internal OSN. The authors found that popularity (measured in number
of favorite markings) of the most popular Flickr pictures exhibit close to linear growth.
The authors discussed the importance of social links in the increase in popularity of
images, showing that about 50% of favorite markings come from social cascades. That
is, user A marks a picture as favorite after her friend user B marked the same picture.
Another interesting work was done by Ratkiewicz et al. [114]. The authors investigated
how external events, captured by search volume on Google Trends3 and local browsing
(i.e., university/community traffic), affect the popularity of Wikipedia articles. More
recently, Khosla et al. [76] compared the use of image and social features for predicting
the final popularity values of images. Their results are complementary to ours, as they
focus on understanding a different social media application than the ones we study
(Flickr). More importantly, the authors do not focus the long-term popularity trends,
as we do.
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Figure 2.4: Examples of Popularity Evolution Trends on Twitter [146]

There have also been some efforts towards clustering social media objects in
terms of their popularity temporal patterns. Crane and Sornette proposed Hawkes
based models to explain how a burst in video popularity in terms of endogenous user
interactions and external events [34]. Yang and Leskovec [146] proposed a time series
clustering algorithm to identify trends on temporal patterns of popularity evolution.
The model proposed by Matsubara et al. [91] provides a unifying analytical frame-
work of the temporal patterns extracted by Crane and Sornette [34] and Yang and

3http://trends.google.com

http://trends.google.com
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Leskovec [146]. An example of such trends are depicted in Figure 2.4 for a toy dataset
of 1000 Twitter hashtags. In the y-axis each figure shows the popularity shape of the
trend, while on the x-axis is the time. The algorithm which extracts such trends [146]
will be discussed in more details in Section 2.4, here we simply note that it is focused
on the overall shape of popularity evolution and not popularity values, the reason why
we omit numbers from both axes. We employ this algorithm as a component of our
approach in dealing with popularity prediction (see Chapters 5 and 6).

Although the aforementioned efforts provide some insights into the evolution of
content popularity, there is still little knowledge about which object features (e.g.,
video, link and popularity features) and system mechanisms (e.g., search) contribute
the most to popularity growth. Thus, our analyses and findings greatly build on
previous efforts, shedding more light into the complex task of social media objects
popularity prediction. Moreover, unlike previous prediction efforts that focused on
estimating future popularity measures, one of our focus in this dissertation. More
specifically Chapter 6, is to tackle the challenge of predicting popularity trends while
at the same time maximizing remaining interest after prediction, a task which, to the
best of our knowledge, has not been studied yet.

2.2.3 Prediction of Popularity of Social Media Objects

We now focus on previous research that aimed at developing models to predict the
popularity of a piece of content at a given future date. Our goal for the moment is to
summarize the main previous efforts of the popularity prediction task. For simplicity,
we leave the mathematical treatment of the data mining and time series techniques
exploited by these efforts to be discussed in Section 2.4.

As stated by Lee et al. [79], popularity is related, in a complex way, to the social
and psychological perspective of users regarding online content. Thus, deriving effective
prediction models is not only difficult but also depends on characteristics of the target
application. The same authors made use of a survival analysis approach [33] to predict
the lifespan of online comments, that is, the probability that comments will still arrive
at a comment thread after a given time t. They also developed models to predict the
popularity of the thread at time t.

Focusing on Digg content, Lerman and Hogg [81] developed stochastic user be-
havior models to predict the popularity of Digg’s stories based on early user reactions
to new content and on aspects of the website design. The proposed model is very
specific to Digg features, such as story up votes, and is not general enough for differ-
ent kinds of social media content. Szabo and Huberman proposed a linear regression



2.2. Popularity of Social Media Objects 21

method to predict the popularity of YouTube and Digg content from early measures of
user accesses [129]. This method has been later extended and improved with the use
of multiple features [110].

In a different direction, Saez-Trumper et al. focused on the problem of identifying
trendsetters - a twitter user who adopts, spreads and influences others with new trends
before they become popular [121]. Regarding the rankings of an item (based on likes
and dislikes), Yin et al. [150] proposed a model that took into account user personalities
when casting votes, and developed a Bayesian model for ranking prediction. They
tested their model in a popular IPhone application, JokeBox. Moreover, popularity
prediction has also gained the attention in other contexts. In the particular context of
search engines, the work by Radinsky et al. [112] proposed a model to predict future
popularity, seasonality and the bursty behavior of queries.

We note that none of these prior efforts focused on the problem of predicting
popularity trends. In particular, those focused on social media popularity prediction
assume a fixed monitoring period, and do not explore the trade-off between prediction
accuracy and remaining views after prediction. Even though some authors show the
effectiveness of their methods for different monitoring periods [79, 110, 129], they did
not discuss on methods how to determine such monitoring periods for each individual
object, as we discuss in Chapter 6.

The previous efforts that are most related to ours are those reported in [107]
and [4]. The former presents a model to predict whether a tweet will become a trend-
ing topic by applying a binary classification model (trending versus non-trending),
learned from a set of objects from each class [107]. The objects are previously la-
beled by Twitter’s internal mechanisms. Our work builds upon [107] by proposing a
more general approach to detect multiple trends (classes), where trends are first auto-
matically extracted and learned from a training set. Our approach also exploits the
concept of shapelets [148] to reduce the classification time complexity, as we discuss in
Chapter 6.

Ahmed et al. [4] proposed a clustering-based model for popularity prediction. The
popularity curve is broken into multiple phases. For each phase, objects are clustered
into representative trends, and such trends are used to build a transition graph with
the probabilities of changes between trends along the popularity curve. Predictions
are made by walking on such graphs. However, once again, the authors did not tackle
the trade-off between remaining interest and prediction accuracy. In particular, as
others [91, 110, 129], they do not investigate how long an object should be monitored
before prediction, as we do here, and assume this information is given. Moreover, the
paper is not clear on how to build the transition graph in practice (e.g., there is no
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separation between training and test sets). Adapting this method to tackle the early
trend prediction problem is not straightforward, and is left for future work.

We also mention some other efforts to detect trending topics in various domains.
Vakali et al. proposed a cloud-based framework for detecting trending topics on Twit-
ter and blogging systems [131], focusing particularly on the implementation of the
framework on the cloud, which is complementary to our goal. Golbandi et al. [56] fo-
cused on detecting trending topics for search engines. Despite the similar general goal,
their solution applies to a very different domain, and thus focuses on different elements
(query terms) and exploits different techniques (language models) for prediction. Fi-
nally the work of Jiang et al. [70], exploits content and social features to predict the
day a video is going to peak. However, the authors do not provide a detailed analysis
of the importance of each feature to popularity, as we do.

In sum, to our knowledge, we are the first to tackle the inherent challenges of
producing predictions of popularity (trends and measures) as early and accurately as
possible, on a per-object basis, recognizing that different objects may require different
monitoring periods for accurate predictions. We build upon existing methods, extend-
ing them and combining them, to design novel solution to this problem.

As a summary of this whole section, we note that all of the studies that we have
discussed up to here provided us with valuable understanding of popularity of social
media objects. Nevertheless, important aspects, such as understanding the importance
of various factors on popularity, specially the referrer features, as well as how to provide
useful predictions of popularity while maintaining a reasonable amount of remaining
interest, have been neglected or have not been thoroughly investigated in depth by
these previous efforts.

2.3 Popularity Through the Lens of User Activities

In this section, we shift our focus to previous efforts on understanding popularity
through user activities or online social networks. More specifically, we discuss efforts
that emphasized studies on popularity using epidemics based models, repeated con-
sumption, as well as studies that focused on competition and collaboration models.
These papers are crucial for understanding our Phoenix-R and our A-Flux models,
that are described in Chapters 7 and 8 respectively.
Epidemics Based Models - Previous work on information propagation on (OSNs
has exploited epidemics based models [64] to explain the dynamics of the propagation
process. An epidemic model describes the transmission of a “disease" through indi-
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viduals. The simplest epidemic model is the Susceptible-Infected (SI) model. The SI
model considers a fixed population divided into S susceptible individuals and I infected
individuals. Starting with S(0) susceptible individuals and I(0) infected individuals,
at each time step �S(t � 1)I(t � 1) individuals get infected, and transition from the
S state to the I state. The product S(t � 1)I(t � 1) accounts for all the possible
connections between individuals. The parameter � is the strength of the infectivity, or
virus. The equations of the SI model are as follows:

dS

dT
= ��SI (2.5)

dI

dT
= �SI (2.6)

Cha et al. used an SI model to study how information (i.e., the “disease”) dis-
seminates through social links on Flickr [23], whereas Matsubara et al. [91] proposed
an alternative model called SpikeM. SpikeM builds on an SI model by adding, among
other things, a decaying power law infectivity per newly infected individual, which
produces a behavior that is similar to the model proposed in [34]. The SpikeM model
was used to capture the time series popularity for a single cascade. One of the reasons
why the SI model is useful to represent online cascades of information propagation is
that individuals usually do not delete their posts, tweets or favorite markings [23, 91].
Thus, once an individual is infected he/she remains infected forever (as captured by
the SI model).

Repeated Consumption Models - Weng et al. [141] proposed an Yule-Simon [19]
agent-based model to investigate the role of user activities (in special the limited at-
tention of users) in the dissemination of information on Twitter. Similarly, Anderson
et al. [5] investigated the repeated consumption of users by proposing a model (which
is also a Yule-Simon based approach) that combines recency and content quality effects
to predict the chance of a user re-consuming a given object.

Our work on the Phoenix-R model builds upon these past efforts – (epidemics
based and repeated consumption models – to create a parsimonious model of evolution
of online information. In Chapter 7 we shall describe the model and show how it
compares to state-of-the art alternatives. Finally we point out to the very recent work
of Hu et al.. Here, the authors focused on the defining longevity of social impulses,
or multiple cascades [65]. Multiple cascades are also a form a of revisits. Our models
on repeated consumption can also account for various cascades and, more importantly,
they focus on capturing the number of visits an object will receive.
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Competition and Colaboration Models - Latent Dirichlet Allocation (LDA) [10]
is currently one of the most powerful and used tools for latent analysis in large datasets.
In the context of user attention, Limited Attention LDA (LA-LDA) and Limited At-
tention Collaborative Topic Regression (LA-CTR) have extended the original LDA
approach to incorporate the limited attention of users, being effective to support the
recommendation of new content [72,73]. Myers and Leskovec [100] proposed the Clash
model to mine the competition and collaboration among online memes. However, the
Clash model has two main constraints, namely: (1) it captures competitive and collab-
orative behavior of memes by exploiting the follower links, and thus are more suited
to domains where such links are a primary means of information dissemination such as
online social networks (OSNs); and (2) the approach is based on maximum likelihood
estimates, which have limitations due to long tail effects [116].

Our work on the A-Flux model also focused on providing a latent factors ap-
proach to mining competition and collaboration. Different from the aforementioned
approaches, we do not rely on OSN link data. This is specially interesting in the music
streaming industry, our case study with A-Flux. Here, it is very difficult to pin-point
a who-exposed-whom to a piece of information, since music propagates online and of-
fline [108]. We also point out that our A-Flux model is also based on LDA. Also,
the model is similar, in terms of the probabilistic graphical structure, as other models
proposed in different settings such as text mining [61,90,137,144,149].

On a complementary effort, Ribeiro et al. modeled user activity as a commodity
on membership based websites [118,119], showing that it can be used to predict if such
sites will remain attractive over time. Finally, Matsubara et al. [89] made use of the
Voltera-Lotka equations to model co-evolving, and possibly competing, time series of
user attention to web products and services. Both of these efforts are time series based,
whereas our work is focused on user activities. It thus provides a more fine grained
view of the competition and collaboration issue.

2.4 Time Series Statistics and Data Mining

We now shift the focus, and describe some of the statistical and data mining techniques
that are used by previous work and this dissertation. Time series can be summarized
as a class of data that can be used to model a diverse set of phenomena such as
stock markets, climate changes, earthquakes and, in our case, popularity evolution
of social media objects. We note that this section is not an in-depth survey of time
series or data mining in general. We only briefly discuss some of the techniques more
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related to the context of social media and popularity prediction. For a more detailed
and comprehensive presentation, we refer to the following books [25, 125], Chapter 11
of [86] and the survey [50].

The rest of this section is divided as follows. We first discuss common represen-
tation of time series in Section 2.4.1, since this is the basis for any data mining task
with this kind of data. Afterwards, we discuss the regression models commonly used
to predict popularity of social media objects in Sections 2.4.2 and 2.4.3. We discuss
time series distance measures and machine learning approaches in Section 2.4.4.

2.4.1 Time Series Representation

In research areas such as Statistics [25, 125] and Econometrics [142]4 it is common to
represent time series using definitions from the stochastic processes literature. Since this
is a more general representation, we begin by briefly describing stochastic processes. We
then narrow this definition down to the vector representation of time series commonly
used in data mining (as well as this dissertation).

A stochastic process is denoted as:
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with c
i

2 R. We note that this definition is more commonly used in descriptive
statistics. Such a notation is useful for understanding the statistical properties of time
series. Notice that in both notations the time series are represented up to infinity, thus

4Econometrics is informally defined as the study of economics using statistics and computer sci-
ence, or simply quantitative economics.
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the notion of a never ending process. For example, a simple stochastic process is the
one bellow:

MA(q)! x
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=

qX

i=0

�
i

✏
t�i

, (2.9)

which is an example of a moving average (MA) model of level q. Here, �
i

are the
parameters and ✏

t�i

is white noise (e.g, Gaussian error) [25].
While the stochastic process based definition is more general, in practice we

observe a subsequence of the time series. That is, a vector x of observations is observed.
In this sense, a time series can be summarized simply as a sequence of data points
measured at different times steps [50]. Thus, we define a time series vector as:

x =< x
t1 , xt2 , xt3 , · · · , x

t

n

>, (2.10)

where x is an observation vector, again composed of values x
t

i

2 R. The same comment
for uniform indexes apply in this case, thus turning the definition above in the one
below:

x =< x1, x2, x3, · · · , x
n

> . (2.11)

When appropriate, we take the liberty to define a process as a time series stream, which
is:

x̂ =< x
t1 , xt2 , xt3 · · · (2.12)

This notation captures the intuition of a never ending process, but using the vector
like notation that is exploited throughout the dissertation.

We take some time to discuss how different studies on social media instantiate
x. On some applications, such as YouTube or Flickr, popularity is usually measured
at coarse granularity such as days [24, 34] or even weeks [14]. On applications with
finer time granularities of interest, such as Twitter [146], successive indexes t

i

can be
aggregated in order to capture popularity in seconds, minutes or days, depending on
how the series will be used. Due to the fact that we only observe popularity for a finite
period, we never really observe the defined stream, but in reality a sample of the time
series which we can further sub-sample. Moreover, instead of representing the time
series as absolute quantities, one can model each object as a change in quantity (the
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derivative), that is x
t

i

� x
t

i�1 or even relative changes in regard to other objects. Such
an approach has been used by Ahmed et al. [4] to cluster similar time series of social
media objects according to their change rates. Other authors [79] simply deal with
non-uniform indexes and raw quantities.

It is also important to note that most classical [25, 125] stochastic process based
time series models are unsuited for the study and prediction of popularity in time
series in social media [91]. This occurs because models based on moving averages or
auto regression (AR) assume stationarity (their multivariate analogs, such as vector
auto regressive - VAR and vector auto regressive moving average - VARMA, also have
the same assumption). Two necessary, but not sufficient, conditions for stationarity is
that the mean and the variance of the probability distribution in Eq. 2.8 have to be
independent of time t. Popularity time series will fail to meet these conditions [91]5.
Take as example the series plotted in Figure 2.4; the nature of having a significant peak
breaks both conditions. Moreover, even models which can deal with non stationarity,
such as ARIMA based models [25, 125], fail to account for the heavy-tailed decay
in popularity present in popularity time series. While stationary based models are
unsuitable for this task, linear regression [110, 129] and state space [112] models have
been applied to popularity time series with some success. We now discuss such models.

2.4.2 Linear Regression Models

Ordinary least squares (OLS) linear regression models have been adopted by previous
research [110,129] as a means build models of popularity prediction. A OLS regression
is defined as follows:

y

t+h

= X

T

t

⇥+ ✏, (2.13)

where X

t

is a matrix of multiple time series column vectors (also called the covariate
matrix), each with observations up to reference time t, y

t+h

, is the response, and ✏ is
the error of the model. The notation, XT represents a matrix transpose. Solving the
OLS equation for ⇥ will define the prediction model, that is, the parameters ⇥, that
minimizes the mean squared error6 (MSE):

5There is a nice quote which is: “Experience with real-world data, however, soon convinces one that
both stationarity and Gaussianity are fairy tales invented for the amusement of undergraduates” [130]

6For clarity, we shall drop the index t + h in the vector y

t+h
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mse(y) = n�1
nX

i=1

(y
i

� ȳ)2. (2.14)

However, if applied to heavy-tailed data this model may fail to produce accurate pre-
dictions. One of the premises for linear regression is that of independence between
the errors, ✏, and the response y

t+h

. Due to the heavy-tailed nature of popularity,
this premise is violated. For example, if we take the mse equation above and apply
it to a heavy-tailed distribution, it is better to reduce the error on the most popular
objects since any arithmetic mean is biased towards higher values. Thus, a correlation
between errors and parameters will exist in the model. To understand this, picture the
notion that mse will try to get the most popular content correct, since they have a
large impact in the mean error. Given that only a handful of these objects exist, the
model may be wrong for the majority of content.

In order to mitigate this behavior, the authors [110, 129] suggest minimizing the
mean relative squared error (MRSE) instead, that is:

mrse(y) = n�1
nX

i=1

(

y
i

� ȳ

y
i

)

2 (2.15)

In order to create such model, we can slightly change the OLS equations. That
is, the new equation will have the form:

1 = T

T

t

⇥+ ✏, (2.16)

where 1 is a vector of ones, and T

t

is a matrix composed of column vectors with the
following normalization:

t

j

=< x1/y, x2/y, · · · , x
n

/y >, (2.17)

which is the original time series vector divided by the response variable. The proof for
that this model minimizes MRSE can be found in [110].

In the social media setting, both the studies of Szabo and Huberman [129] and
the work of Pinto et al. [110] made use of the above models for prediction. The former,
uses only the sum of popularity up to a certain time t as the covariate. The latter, uses
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the multiple observations of popularity. Moreover, this latter work also discusses how
knowing trends before hand can help reduce prediction errors, by creating a specialized
model for each trend. Another important detail is that the model can also be improved
by adding new features to the covariate matrix T

t

. Such features capture the similarity
between time series using a radial basis kernel.

2.4.3 State Space Regression Models

State space models are also usually explored for popularity predictions. A state space
model can be defined as follows [25]:

y
t

= h

T

t

⇥

t

+ e (2.18)

⇥

t

= G⇥

t�1 + F✏

t

. (2.19)

It is important to note that the model is defined for a single time series y. The
popularity at time t, y

t

, is captured by the component vector h

t

(we shall detail this
shortly) and the parameter matrix ⇥

t

, with e being a Gaussian random noise. Notice
that the parameters are time dependent, and are updated according to the pre-defined
matrix G. Moreover, ✏

t

is a vector of errors also updated according to a pre-defined
matrix F.

Stationary and linear regression models can be instantiated as state space models
based on the definition of h

t

, G and F. For example, by setting h

t

to be the previous
popularity observations, G and F to be 0, we get an OLS model. Note that in this
case, ⇥

t

is no longer updated over time. For predictions considering multiple steps
ahead t + h, the values of y

t

and ⇥

t

are updated until time t + h.
The study in [112] created different state space models by setting h

t

to capture,
trend, seasonal and surprise components of the time series. The models used by the
authors are instantiations of the Holt-Winters Linear models [25]. Combinations of
these three components can be used to create distinct models that capture different
aspects of popularity. In order to define which components to use, the authors make
use of a classification model based on query features. Moreover, parameter matrices
G and F are estimated for each individual time series. Estimation by the authors was
done using gradient descent techniques, such as the Levenberg-Marquardt algorithm.
We also employ these techniques when learning our Phoenix-R model in Chapter 7.
However, due to fact that the authors use Holt-Winters Linear models, their approach
to social media time series is limited since these time series will exhibit non-linear
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trends (as we shall discuss in Chapter 7).

2.4.4 Distance Measures and Machine Learning Tasks

To finish up this section, we discuss the machine learning tasks of classification and
clustering [99] in the time series context. One of the key elements for employing such
tasks in time series is the effective definition of a distance measure [6] since a wide range
of clustering or classification techniques exploit distances (or inversely similarity). To
name a few, we can cite K-Means and Affinity Propagation for clustering tasks. We
can also cite K-nearest Neighbors and Support Vector Machines for classification tasks.
It is out of the scope of this dissertation to detail all of these techniques, and we refer
the reader to a machine learning book for a description of them [99]. We shall however
at the end of this section detail the KSC algorithm, proposed by Yang et al. [146],
which is a variation of K-Means and used in our prediction models.

As stated, one of the key tasks in mining time series is the definition of a “good”
distance measure [6]. One of the simplest definition of distances is the Euclidean one,
which is define for two vectors (x and y) as:

d
euc.

(x,y) = ||x� y||2 (2.20)

=
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2, (2.21)
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Figure 2.5: Two peak based time series and two sine based ones

where || · ||2 is the l2-norm operator. Despite simple, the euclidean distance has major
drawbacks, as pointed out by previous studies [6,146]. For example, such this measure
fails to account for the shifted behavior of time series. Take as an example the popu-
larity time series shown in Figure 2.5. On the left plot, we show two time series which
grow in popularity up to a maximum and then tend to decay over time. We call these
peak time series. On the right, we show two time series generated by a sine process,



2.4. Time Series Statistics and Data Mining 31

being thus referred to as sine. If we were to use a simple nearest neighbors clustering
algorithm with these series using euclidean distance, it would fail to distinguish the
peak time series from the two sine curves. This occurs because of two effects: (1) the
peak time series have their global maximum at different times, even though they come
from similar processes; (2) the difference in volume between the two sine time series is
very large, even though they are both sine processes. Effect 1 is related to shifts in the
index (x-axis), while effect 2 is related to differences in scale (y-axis).

In order to exemplify this in a learning context, we state that if we were to
compute the pairwise euclidean distances between these series, the distance between
Sine1 and Sine2 would be larger than the distances between Sine1 and Peak1, or
Sine2 and Peak2. Because of this, a clustering algorithm would group Sine1 with
Peak1 and Sine2 with Peak2. That is, a distance based learner to be unable to
distinguish the two processes. Different distance measures can be used to mitigate
either or both of the aforementioned effects. For example, normalizing the time series
could mitigate the scale effect, but not the shift one. A measure with is invariant to
both shifts and scale is said to be complexity invariant [6].

Yang et al. proposed a distance measure which is invariant to both shifts and
scales [146]. This measure, d

ksc

, is defined as follows:

d
ksc

(x,y) = min↵, q
||x� ↵y(q)||2

||x||2 . (2.22)

↵ is scaling parameter, and q a shift on y. For a fixed q, there exists an exact solution
for ↵ by computing the minimum on d

ksc

(i.e., setting the gradient to zero), which is:
↵ =

x

0
y

||y|| . In contrast, there is no simple way to compute shifting parameter q. Thus,
in our implementation of KSC, whenever we measure the distance between two series,
we search for the optimal value of q considering all integers in the range (�n, n)7. If
we apply this metric to the time series in Figure 2.5, it would correctly find that the
sine series are closer to each other than the peak ones (and vice-versa). Note that the
best values of both parameters are found to minimize the metric.

We choose to use d
ksc

in our dissertation since it has some desirable properties.
Not only is it complexity invariant, but it was shown to be effective on the task ex-
tracting trends from social media [146]. Moreover, it can also be correctly used in a
K-Means like clustering algorithm, which is called the KSC algorithm, which is defined
as follows:

1. The time series are uniformly distributed to k random clusters C
i

, where i =

7Shifts are performed in a rolling manner, where elements at the end of the vector return to the
beginning. This maintains the symmetric nature of d

ksc

(x,y).
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1 · · · k;

2. Cluster centroids are computed based on the members of each cluster. In K-
Means based algorithms, the objective is to find centroid c that minimizes:

c = argmin

c

X

x2C

i

d
ksc

(x, c) (2.23)

.

We refer the reader to the original KSC paper for more details on how to find
c [146];

3. Each time series vector x is assigned to the nearest centroid based on distance
metric d

ksc

;

4. Return to Step 2 until convergence, i.e., until all objects remain within the same
cluster in Step 3.

Many other distance measures for comparing time series exist in the literature.
For example, Batista et al. [6] also also focused on the task of defining a scale and
shift invariant distance measure. However, the efficacy of such a measure in extracting
popularity trends of social media objects has not yet been measured. Other previous
work also make use and extended on the notion of Dynamic Time Warp (DTW) [113,
135]. DTW is not a distance measure. It is an algorithm which finds the optimal
alignment between consecutive time series points. In essence it deals with problems
in shifts to align time series, and then computes distances using any given distance
measure. We note however that in this work we want to extract trends from popularity
time series. Not only was the KSC measure and algorithm shown to be useful in this
context, the other measures we mentioned cannot be directly employed in a K-Means
framework, thus extracting the representative centroid (or trend) would require more
complex clustering algorithms, such as Affinity Propagation. The reason such measures
cannot be directly used is the optimization objective in Eq. 2.23, since not all distance
measures have a provable centroid.

2.5 Summary and Roadmap

In this chapter we reviewed previous studies and the background knowledge required to
understand this dissertation. The structure of the rest of the dissertation is shown in
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Figure 2.6: Thesis Roadmap (Related Work)

Figure 2.6, which we now discuss. Starting from Chapter 3, we begin our studies on our
first research goal (RG1). Recall that, RG1 is focused on understanding the importance
of different in relation to social media popularity. The first chapter on RG1, Chapter 3,
focused on a characterization of YouTube videos popularity evolution. This is followed
by Chapter 4, that presents our study on user perceptions of content and how these
perceptions relate to popularity. Different from previous work (or at least previous
work before some of our studies were performed), no other provided a characterization
of video popularity focusing on novel features such as incoming links. Also, no previous
studies had been done in looking into the human perceptions of content as we do.

Regarding our second Research Goal (RG2), Chapters 5 and 6, presents novel
methods for popularity prediction on social media. Not only does the work of these
chapters improve on previous methods, but more importantly, our study explores the
trade-off between accurate and remaining interest in the content after prediction, a
problem not yet tackled by previous research. Chapter 5 presents our prediction meth-
ods for news content. Whereas, Chapter 6 presents our study on predicting social
media popularity considering the tradeoff between remaining interest and accuracy.

Finally, on Chapters 7 and 8 presents our studies on RG3. Recall that, RG3 is
focused on understanding popularity through user activities dataset. Chapter 7 present
our Phoenix-R model for understanding revisit behavior in social media. Whereas,
Chapter 8 presents our A-Flux model developed to mine user attention flows. Both
tasks complement each other and present novel insights into the popularity evolution
issue.





Chapter 3

On the Dynamics of Social Media
Popularity

Recall that our first research goal is on understanding feature importance on the pop-
ularity evolution of social media objects. In this chapter, we present our initial and
fundamental results on this topic. It is important to point out that understanding the
factors that impact the popularity dynamics of social media can drive the design of
effective information services, besides providing valuable insights to content generators
and online advertisers. Taking YouTube as case study, we analyze how video popularity
evolves since upload, extracting popularity trends that characterize groups of videos.
More importantly, we also analyze the referrers that lead users to videos, correlating
them, features of the video and early popularity measures with the popularity trend
and final observed popularity the video will experience. On the next chapter (Chap-
ter 4) we shall continue this study from a users’ perception of content context. This
will be followed by our discussion on Research Goal 2 (RG2) on Chapters 5 and 6.
Whereas RG3 will be discussed Chapters 7 and 8.

3.1 Introduction

User generated content (UGC) has emerged as the predominant form of online infor-
mation sharing nowadays. The unprecedented amount of information being produced
is one of the driving forces behind the success of the social media phenomenon [31,74].
This phenomenon is a shift from the traditional media where, instead of content be-
ing produced mostly by a few selected individuals, anyone, in theory, can produce
and share content online. However, the “information overload” that accompanies the
huge amount of social media being produced has its drawbacks. For example, it is

35
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ever-so-difficult to find and filter relevant content to oneself. Nevertheless, some pieces
of content (or objects) succeed in attracting the attention of millions of users, while
most remain obscure. This leads to the heavy tailed characteristic of content popu-
larity [28, 126], where a few objects become very popular while most of them attract
only a handful of views. What makes one particular object become hugely popular while
the majority receive very little attention? Which factors affect how the popularity of
an object will evolve over time? These are major questions in the social media context
that drive our present work.

A plethora of different factors may impact social media popularity, including the
object’s content itself, the social context in which it is inserted (e.g., characteristics of
the object’s creator and her social neighborhood or influence zone), mechanisms used
to access the content (e.g., searching, recommendation), and specific characteristics of
the application that may promote the visibility of some objects over the others. Some
of these factors contribute to the rich-gets-richer phenomenon [41], which can partially
explain the heavy-tailed nature of content popularity. Others, such as links to the
object from a popular blog and events in the real world, are external to the application
and still may impact the object’s future popularity.

Given the importance of social media on society nowadays, understanding the
extent to which these factors impact the popularity of social media and how popularity
evolves over time provides valuable insights for content generators, online advertisers
and Internet service providers (ISPs), amongst others [30, 94, 98, 111, 131]. In this
first study of our dissertation, we aim at investigating how different factors impact
popularity dynamics of social media, focusing on YouTube as case study. YouTube
is currently the most popular video sharing application, with over 100 hours of video
shared per minute1, and a total estimated number of shared videos that had surpassed
4 billion in early 20122. It is a rich application that embeds several mechanisms, such as
search, list of related videos, and top lists, that may affect how a video is disseminated,
thus impacting its popularity.

Thus, in this chapter aim at performing a deep study of the evolution of
popularity of user generated videos on YouTube. Towards our goal, we collected a
public set of statistics available in the system that provides for each video: (a) its
popularity as a function of time, and (b) a set of referrers, i.e., links used by users to
access the video, along with the number of views for which each referrer is responsible.
Given the great diversity of content on YouTube, our characterization is done on
three different datasets, namely, popular videos that appear on the world-wide top

1http://www.youtube.com/yt/press/statistics.html
2http://www.reuters.com/article/2012/01/23/us-google-youtube-idUSTRE80M0TS20120123

http://www.youtube.com/yt/press/statistics.html
http://www.reuters.com/article/2012/01/23/us-google-youtube-idUSTRE80M0TS20120123
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lists maintained by YouTube; videos that were removed from the system due to
copyright violation; and, a dataset of videos sampled according to a random procedure
(i.e., random queries). Focusing on number of views as popularity metric, our study
addresses five questions:

Q1 - How early do videos reach the majority of observed views? we intend to assess
how fast a video achieves most of its observed popularity. This is key to determine the
time period during which different information services can benefit more from a video.
For example, ad placement services will be more effective if ads are posted on videos
before most of their views are consumed. Moreover, search engines may misleadingly
use observed popularity to favor some videos in their rankings, even when videos are
no longer attractive. Our results show that some videos, such as top and copyright
protected videos, achieve most of their views very early on, whereas videos selected
from random queries tend to take longer to attract most of its observed views.

Q2 - Is popularity concentrated in bursts? We want to know whether video popularity
is concentrated on a few days or weeks. This question complements Q1, offering
valuable insights into how quickly the interest in the video raises and vanishes. More-
over, knowing the peak potential of a video (based on the most popular day/week) is
valuable for services like advertisement campaigns. We find that top and copyright
protected videos tend to experience popularity bursts, with a large fraction of their
final observed views concentrated on single week or a even single day, whereas the
popularity of videos selected from random queries tends to be less concentrated.

Q3 - Are there governing trends that characterize common groups of video popularity
evolution? We here aim at bridging Q1 and Q2 by extracting the popularity trends
of common groups of videos. To that end, we make use of a time series clustering
algorithm [146] to infer the popularity trends. Focusing on videos from top lists and
selected from random queries, we find that the same four types of popularity trends are
observed in both datasets. One trend consists of videos that tend to remain attractive
over time with an always increasing popularity. The other trends account for videos
that tend to peak in popularity for a short while, with three different popularity decay
characteristics after the peak.

Q4 - Which incoming links (or referrers) are more important for video popularity, and
how early do they occur? The previous questions focus on understanding popularity
based only on the popularity time series. Here, we want to know how users reach
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these videos. There are multiple forms through which users can reach a particular
piece of content and, thus, there are multiple driving forces that may impact the
popularity of a video. Identifying such forces is crucial for designing more cost-effective
content dissemination strategies. For instance, should a content creator invest time on
perfecting the keywords describing their videos (for better search rankings) or focus on
campaigning videos in online social networks? Our results show that internal YouTube
mechanisms, such as search engines and related videos, are the most important
mechanisms that drive users to content, implying that YouTube itself handles a great
power to drive video popularity through its internal mechanisms.

Q5 - What are the associations between features related to the video, to its early pop-
ularity measures and referrers with the popularity trend (or final observed popularity)
of the video? We aim at measuring the associations between features related to the
video (e.g., category, upload date, age), early points in the popularity time series and
referrers with the identified popularity trends (Q3) and popularity measures. We show
that videos that follow the same trend tend to also have similar content (based on
video category) and referrers. For example, music videos tend to remain popular over
time and are generally found through search engines, while videos related to news tend
to have a small but significant attention period and are found through more diverse
sources (e.g., external websites and viral propagation). Moreover, different features
are more correlated with popularity trends and measures at different moments of the
video’s lifespan, motivating the use of some of them to build popularity prediction
models.

The rest of this chapter is organized as follows. Section 3.2 discusses our data
collection methodology. Section 3.3 presents our characterization of YouTube popu-
larity curves (Q1 and Q2), while Section 3.4 shows the different popularity trends of
YouTube videos (Q3). Next, Section 3.5 characterizes the relative importance of dif-
ferent referrers (Q4), whereas Section 3.6 discusses the correlations between various
features and popularity (Q5). Finally, Section 3.7 concludes the chapter discussing the
implications of our results.

3.2 Datasets

As our case study, we analyze the following datasets, which are publicly available3:

3http://vod.dcc.ufmg.br/traces/youtime/

http://vod.dcc.ufmg.br/traces/youtime/
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Figure 3.1: YouTube’s Insight Data Example (Some Referrers Were Trimmed)

Top: 27,212 videos from top lists maintained by YouTube (e.g., most viewed videos,
most commented videos).
YouTomb: 120,862 videos with copyright protected content, identified by the the MIT
YouTomb project4. This is the first effort to characterize copyright protected videos.
Random topics: 24,482 videos collected as result of random queries submitted to
YouTube’s search API. To build such queries, we first randomly selected, according to
a uniform distribution, an entity from the Yago semantic database [75]. Yago entities
cover topics such as popular movies (e.g., Blade Runner) to common items (e.g., chair).
The (textual) name of the entity was then submitted as a query to the YouTube’s search
API, and we selected the most relevant video in the result list. We queried for 30,000
entities and discarded queries with empty results5.

For each video, we collected YouTube’s insight data associated with it, which
is publicly available on the video’s home page. This insight data consists of various
features of the video, including three time series of how the numbers of views, comments
and favorite markings of the video evolved over time, since the video was uploaded.
It also includes a set of referrers that led users to the video. The time series are
daily for videos with less than 100 days of age, while 100 evenly distributed points are
provided for videos with more than 100 days of age. Other features, such as the video
category and upload date, were also scrapped from the HTML page of each video. In
Figure 3.1 we show an example of YouTube’s insight data that was available up to
2013 (before a change in YouTube’s user interface). Currently, the referrer (discovery
events) information, comments and favorites time series are no longer provided.

We processed our collected datasets to remove: (1) videos with missing or incon-
sistent information; and (2) videos uploaded on the same day of our crawling. Table 3.1
provides a summary of each cleaned dataset, presenting the total number of videos,

4http://youtomb.mit.edu/
5We do not claim our dataset is a random sample of YouTube videos. Nevertheless, for the sake

of simplicity, we use the term Random videos to refer to videos from this dataset.

http://youtomb.mit.edu/
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Table 3.1: Crawled Datasets (after cleanup)

Video Datasets Top YouTomb Random

# of Videos 18,422 102,888 21,935
Average # of of views 1,064,264 273,696 131,473
Average video age (days) 170 750 526

Table 3.2: Distribution of Video Age

Top YouTomb Random

age (days)  7 4,303 0 109
7 < age (days)  30 6,543 0 563

30 < age (days)  365 4,627 13,379 8,159
age (days) > 365 2,949 89,509 13,104

average number of views per video, and average video age. Video age, measured in
number of days, is defined as the difference between the crawling date (or the removal
date, for videos in the YouTomb dataset) and the upload date. We note that YouTomb
videos are on average older than videos in the Top and Random datasets. Moreover,
Top videos are, as expected, more popular, on average, than YouTomb videos, which,
in turn, tend to attract more views than videos in the Random dataset (on average).

We also note that video ages vary significantly, as shown in Table 3.2. Most
videos in the YouTomb and Random datasets are over 1 year old, or have ages between
1 month and 1 year. In contrast, videos in the Top dataset tend to have a bi-modal
age range, with most being either a few days old or over 1 year. Given such variability,
we analyze popularity evolution separately for videos in each age range. However, to
avoid hurting presentation with too many graphs, we focus on results computed over
all videos in each dataset, pointing out significant differences across age ranges when
appropriate.

The features we collected, shown in Table 3.3, are grouped into three classes,
namely video, referrer, and popularity features. Video features include category, upload
date, age, and the duration of the time window w that represents a single observation
in the video’s popularity time series (see below). The video category is defined based on
the YouTube’s list of categories, which includes Autos/Vehicles, Comedy, Education,
Entertainment, Gaming, Film/Animation, Howto/Style, Music, News/Politics, Shows,
Nonprofit/Activism, People/Blogs, Pets/Animals, Travel/Events, Science/Technology,
and Sports. The referrer features include the first date and the number of views asso-
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Table 3.3: Summary of Features

Class Feature Name Type

Video Video category Categorical
Upload date Numerical
Video age Numerical
Time window size (w) Numerical

Referrer Referrer first date Numerical
Referrer # of views Numerical

Popularity

# of views Numerical
# of comments Numerical
# of favorites Numerical
change rate of views Numerical
change rate of comments Numerical
change rate of favorites Numerical
Peak fraction Numerical

ciated with each referrer category. Referrers are categorized into External, Featured,
Search, Internal, Mobile, Social and Viral. The External category represents websites
(often other OSNs and blogs) that have links to the video. The Featured category
contains referrers that come from advertises about the video in other YouTube pages
or featured videos on top lists and on the front page. The Search category includes
referrers from search engines, which comprise only Google services. Internal referrers
correspond to other YouTube mechanisms, such as the “Related Video” feature. Mobile
includes all accesses that come from mobile devices. Social referrers consist of accesses
from the page of the video owner or from users who subscribed to the owner or to some
specific topic. Finally, some other referrers are grouped into Viral. The popularity
features include the final numbers of views, comments and times the video was marked
as favorite, the trend in these measures captured by the corresponding average change
rates, and the largest fraction of all observed views that happened in a single time
window (peak fraction). Jointly, these features capture properties of the popularity
curve.

We note some limitations of the data provided by YouTube. Each popularity
curve is registered with at most 100 points, regardless of the video age. Thus, the
video’s time window w is defined as the video age divided by 100. In order to be
able to estimate video popularity on a daily basis, we performed linear interpolation
between the 100 points provided. Moreover, YouTube does not provide information on
every referrer that led users to the videos, but rather on ten important ones (according
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to YouTube). In total, the available referrers account for only 36%, 25% and 35% of
all the views of videos in the Top, YouTomb, and Random datasets, respectively.

3.3 Understanding Video Popularity Growth

Recall that we established 5 questions that our study aims to address. We start by
analyzing the popularity growth patterns of videos in our three datasets, focusing on
two aspects: (1) the time interval until a video reaches most of its observed popularity,
and (2) the bursts of popularity experienced by a video in short periods of times (e.g.,
days or weeks). We use the number of views as popularity metric because previous
studies have found large correlations between final number of comments (or favorites)
and final view count [26]. Moreover, we have also found positive correlations, ranging
from 0.18 to 0.24, for both pairs of metrics, taken at each point in time (instead of
only for the final snapshot, as previously done).

3.3.1 How Early do Videos Reach Most of their Observed
Views (Q1)?

Figure 3.2 shows the cumulative distributions of the amount of time it takes for a video
to receive at least 10%, at least 50% and at least 90% of their final (observed) views,
measured at the time our data was collected. Time is shown normalized by the age of
the video, which is here referred to as the video’s lifespan. That is, the y-axis shows
the fraction of videos that achieved at least 10%, 50%, and 90% of their final views
(considering the final views at the time we crawled the data) in a period of time that
does not exceed the value shown in the x-axis (which is normalized by the total time
since the video was uploaded).

We note that, for half of the videos (y-axis) in the Top, YouTomb and Random
datasets, it takes at most 67%, 17% and 87%, respectively, of their total lifespans
(x-axis) until they receive at least 90% of their final views. If we consider at least
50% of their final views, the fractions are 27%, 4% and 44%, respectively, following
a similar trend (as also found for the mark of 10% of the views). Conversely, around
34% of Top videos take at least 20% of their lifespans to reach at least 10% of their
observed popularity. Similarly, 19% of videos in the Random dataset experience a
similar dormant period before starting to receive most views. In contrast, only 8% of
the YouTomb videos take 20% or more of their lifespans to reach at least 10% of their
observed popularity.
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Figure 3.2: Cumulative Distributions of Time Until Video Achieves at Least 10%, 50%
and 90% of its Total Observed Popularity (time normalized by video’s lifespan).

Thus, comparing the results across datasets, YouTomb videos tend to get most of
their views earlier in their lifespans, followed by videos in Top and Random datasets.
As videos in the top lists tend to be more popular, the difference between the results
for Top and Random datasets are somewhat predictable. Possible reasons as to why
YouTomb videos tend to receive most of their views even earlier are: (1) as many of
these videos consist of popular TV shows and music trailers, a natural interest in this
content closer to when it is uploaded is expected, and (2) being aware that such videos
contain copyright protected content, users may seek them quicker after upload, before
the violation is detected and they are removed from YouTube.

We note that since lifespan is a normalized metric, these results may be impacted
by the distributions of video ages (Table 3.2). In particular, recall that such distribution
is skewed towards older videos in the YouTomb dataset: around 86% of them have at
least 1 year of age. This bias may influence the results. However, we also note that
59% of the videos in the Random dataset also fall into the same age range. Yet, in
comparison with YouTomb, videos in the Random dataset get most of their views later.

Thus, to reduce any bias caused by age differences, we repeat our analyses sepa-
rately for videos in each age range. Table 3.4 shows results for the time until a video
achieves at least 90% of its views, presenting averages and standard deviations for each
age range and dataset. Similar results occur for videos in most age ranges: YouTomb
videos reach at least 90% of their views much earlier in their lifespans than Top videos,
which are followed by videos in the Random dataset. The only exception occurs for
the youngest videos, for which there is no much difference across the datasets.
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Figure 3.3: Cumulative Distributions of the Fraction of Total Views on the First,
Second and Third Peak Days/Weeks.

3.3.2 Is Popularity Concentrated in Bursts (Q2)?

We now investigate the popularity bursts experienced by the videos. We first analyze
the distributions of the fraction of views a video receives on its most popular (i.e., peak)
day, shown in Figure 3.3 and summarized in Table 3.5 for videos falling in different
age ranges. Figure 3.3 also shows distributions for the second and third most popular
days. Each curve in a graph of Figure 3.3 shows the fraction of videos (y-axis) that
receive at most f% (shown in x-axis, as a fraction) of its final views on the given peak
day.

Figure 3.3-a) shows that Top videos experience a very distinct peak day: 50%
of them receive between 31% and 100% of their views on a single (peak) day. In
comparison, the same fraction of videos receive between 17% and 50% of their views
on the second peak day, and between 8% and 34% of their views on their third peak
day. Thus, Top videos clearly experience a burst of popularity on a single day. This
is in sharp contrast with videos in the YouTomb and Random datasets (Figures 3.3-
b and 3.3c), where the three curves are very close to each other and skewed towards
smaller fractions of views. While these results might reflect diverse popularity patterns,
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Table 3.4: Normalized Time Until at Least 90% of Total Views, Grouped by Video
Age (mean µ, and standard deviation �).

Top YouTomb Random

µ � µ � µ �

age (days)  7 .64 .10 - - .60 .16
7 < age  30 .56 .19 - - .66 .21
30 < age  365 .50 .27 .10 .13 .80 .17
age > 365 .77 .23 .26 .23 .85 .12

Table 3.5: Fraction of Views on Peak Day Grouped by Video Age (mean µ, and
standard deviation �).

Top YouTomb Random

µ � µ � µ �

age (days)  7 64% .16 - - 63% .20
7 < age  30 35% .15 - - 33% .19
30 < age  365 23% .16 21% .13 8% .11
age > 365 2% .03 20% .03 1% .02

with more videos in the Random and YouTomb datasets having multiple (smaller) daily
peaks, we note that the interpolation performed over the collected data might introduce
distortions in this analysis, particularly given the large fraction of older videos in those
two datasets.

To cope with these possible distortions, we also analyze the distributions of the
fraction of views on the first, second and third peak weeks. Figures 3.3(d-f) show
that videos in all datasets tend to exhibit some burst of popularity on a single week.
However, the general trend remains the same as the one observed for daily peaks:
the peak week tends to be more significant for Top videos, followed by videos in the
YouTomb and Random datasets.

The same general conclusions, for both weekly and daily popularity peaks, also
hold for videos falling in different age ranges, as illustrated in Table 3.5 for daily peaks.

3.3.3 Discussion

In this section we characterized content popularity growth, focusing on our first two
research questions (Q1 and Q2). In general, we note that results vary according to the
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analyzed dataset. While Top and YouTomb videos tend to be more concentrated and
receive most views earlier in their lifespans, videos in the Random dataset exhibit less
clear bursts, particularly at the daily granularity, and tend to take longer to receive
most views. These results contrast and complement previous analyses of YouTube
videos, where the authors characterized a sample of videos uploaded on a single day,
concluding that they exhibit concentrated popularity growth patterns [14]. By analyz-
ing different datasets, composed of videos with different characteristics, our study is
able to reveal different aspects of YouTube as a whole.

These results might be useful for a wide range of social media services. For
example, they raise the question of whether (and when) it is beneficial to incorporate
popularity estimates into search engine rankings. For videos that receive most of its
views in short time periods (such as videos in the Top and YouTomb datasets), adding
this information into the ranking after the period of interest has already passed might
hide other (possibly more relevant) videos (e.g., newly uploaded videos). Another
interesting argument is for advertisement services. The notion that popular content
may have a higher ad-visibility has been discussed only recently [17]. However, focusing
on the final observed popularity may be misleading, since posting ads on popular videos
does not necessarily promote a higher amount of future audience as we shall discuss in
Chapter 3.

3.4 Popularity Temporal Dynamics (Q3)

We now characterize the temporal dynamics of popularity of YouTube videos, aiming
at identifying governing popularity trends that characterize groups of videos in our
datasets. To that end, we employ the KSC algorithm [146], which is a K-Means like
clustering algorithm focused on extracting similar trends (or shapes) from time series.
KSC is based on a distance metric that captures the similarity between two time series
with scale and time shifting invariants (see our discussion on Chapter 2).

KSC requires all time series to have equal length. Thus, we focus on videos with
more than 100 days, whose popularity time series is defined by 100 evenly distributed
observations, that is, the original crawled data with no interpolation6. Each such
observation represents the popularity of the video at a time window w, whose duration
depends on the video age. We also focus on the Top and Random datasets, since
the non-interpolated data from the YouTomb dataset has all zeros after the removal
date, which leads to time series with various lengths that cannot be handled by KSC.

6The popularity curves of those videos capture longer term popularity dynamics and trends.
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Figure 3.4: Popularity Trends (Cluster Centroids) in Both Random and Top Datasets.

After such filtering, we are left with 4,527 and 19,562 videos in the Top and Random
datasets, respectively. These are the videos analyzed in this section (and in Section
3.6).

Like K-means, the KSC algorithm requires the target number of clusters k to be
given as input. We use the �

CV

heuristic [92] to define the best value of k. The �
CV

is
defined as the ratio of the coefficient of variation (CV) of the intracluster distances and
the coefficient of variation of the intercluster distances. The smallest value of k after
which the �

CV

remains roughly stable should be selected, as a stable �
CV

implies that
new splits affect only marginally the variations of intra and intercluster distances. The
values of �

CV

seem to stabilize for k=4, for both analyzed datasets. We confirmed this
choice by plotting the clustering cost, silhouette and Hartigan’s index metrics [146],
and by visually inspecting the members of each cluster. The best value of k was 4
according to all these techniques.

Figure 3.4 shows the discovered popularity trends (the centroids of the identified
clusters), which govern popularity evolution in our datasets. Each graph shows the
number of views as function of time. Note that the same four popularity trends are
present in both analyzed datasets. Moreover, Table 3.6 presents, for each cluster, the
number of videos that belong to it as well as the average number of views, the average
change rate in the number of views, and the fraction of views at the peak time window
of these videos. The average change rate is the average difference between two (non-
cumulative) measures taken in successive time windows. Thus, it captures the trend in
the number of views of the video: a positive (negative) change rate indicates an increase
(decrease) with time, whereas a change rate equal to 0 indicates stability. Table 3.6
shows the average change rate computed over the total duration of the video’s lifespan.
The peak fraction, also shown in Table 3.6, is the ratio of the maximum number of
views in a time window divided by the final number of views of the video.

As shown in Figure 3.4, cluster 0 consists of videos that remain popular over time,
attracting an increasing number of views per time window as time passes, as indicated
by the large positive change rates (Table 3.6). This behavior is specially strong in the
Top dataset, with an average change rate of 1,112 views per window, which corresponds
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Table 3.6: Summary of Popularity Trends

Top Random

C0 C1 C2 C3 C0 C1 C2 C3

Number of Videos 958 1,370 1,084 1,115 4,023 6,718 5,031 3,790
Avg. Number of Views 711,868 6,133,348 1,440,469 1,279,506 305,130 108,844 64,274 127,768
Avg. Change Rate 1112 395 51 67 47 7 4 4
Avg. Peak Fraction 0.03 0.04 0.19 0.74 0.03 0.03 0.08 0.28

to roughly a week in that dataset. The videos in cluster 0 have also no significant peaks,
as the average fractions of views in the peak windows are very small (Table 3.6). The
other three clusters are predominantly defined by a single peak in popularity followed
by a steady decline. The main difference is the rate of decline, which is much slower in
Cluster 1, somewhat faster in Cluster 2, and very sharp in Cluster 3. This difference is
more clear if we analyze the peak fractions and the average change rates in Table 3.6.

Given the popularity (i.e., scale) invariant nature of the KSC algorithm, it is
important to highlight the differences between the clusters in the Top and Random
datasets. To that end, we make use of the numbers in Table 3.6. Although very similar
clusters exist in both datasets (determined both by the shape of the centroids and the
fraction of videos in each cluster), notice that the change rates in popularity for the
videos in the Top dataset are much higher (for every cluster) than the corresponding
rates in the Random dataset. For example, videos in Cluster 0 (which remain popular
over time) in the Top dataset experience a change in number of views in consecutive
time windows of 1,112 views, on average. In contrast, videos in the Random dataset
experience a change of only 47 views, on average.

Also notice how the peak fractions in the Top dataset are higher than those in
the Random dataset (in all clusters but Cluster 0). However, the average number of
views in Cluster 0 in the Top dataset is the smallest one when compared to the other
clusters in the same dataset. For the Random dataset, this is the opposite. This is
very interesting, as it indicates that the most popular videos in the Top dataset are
in Clusters 1-3, that is, they experience clear popularity peaks, being more popular
in shorter time windows. However, given the very high change rates experienced by
videos in Cluster 0 (in Top), we might speculate that videos in this cluster will become
more popular over time, as they capture enough interest to remain receiving visitors
over time. We might also speculate that, as time passes and the Top videos in Clusters
1-3 loose their appeal to the audience, the relative distribution of popularity across
clusters in the Top dataset will be more similar to that in the Random dataset. This
is a conjecture that requires further investigation in the future.

It is also important to note that Clusters 1, 2 and 3 were previously uncovered
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in other YouTube or Twitter datasets [34, 80, 91]. Crane and Sornette [34] explained
their occurrences by a combination of endogenous user interactions and external fac-
tors. According to them, Cluster 1 consists of videos that experience word-of-mouth
popularity growth resulting from epidemic-like propagation through the social network;
Cluster 2 includes videos that experience a sudden popularity burst, due to some exter-
nal event, but continue spreading through the social network afterwards; and Cluster 3
consists of videos that experience a popularity burst for some reason (e.g., spam) but do
not spread through the social network. However, these previous studies relied mostly
on peak popularity analyses [80] and fitting power-law decays after the peak [34, 91].
Instead, we here use an unsupervised learning algorithm that makes our task of discov-
ering popularity trends more general and robust. For example, the thresholds in peak
volume that define different trends in these previous studies are not clearly defined. In
contrast, such peaks emerge clearly in our clusters (as shown in Table 3.6).

Notice however that no previous study that analyzed video popularity time series
or other UGC time series has identified a trend similar to Cluster 0, possibly because
of the models they adopted, which focus on power-law like behavior [34, 91] or due to
inherent differences in media consumption trends for different media types [146]. The
existence of Cluster 0 can be attributed to three possible reasons. Firstly, there are
certain topics that users will continue to revisit over time [5,136], and thus the content
will not follow a rise-and-fall pattern (as proposed in [91]). Secondly, the propagation
of these topics is much slower [136], being the pattern we see still part of the growth
period in interest in that particular topic. Lastly, YouTube’s own growth in popularity
over time may cause the audience of interest in some videos to increase. Intuitively, a
combination of these factors will likely be the case, and only recently researchers have
started looking into the implications of each of them [5,136].

Finally, we note that other time series clustering techniques could also be em-
ployed to extract popularity trends from our datasets. For example, one could consider
first using Symbolic Aggregate Approximation, SAX [85] to represent the time series,
and then applying traditional clustering methods (e.g., K-Means). However, SAX as-
sumes that time series values are normally distributed, which is not true for our data
(even after log and z-transformations). We argue that KSC is a suitable choice of clus-
tering algorithm to our study because it: (1) requires only the number of clusters as
input, (2) requires no data pre-processing, and (3) has well defined and interpretable
centroids, which facilitates analyzing and drawing useful insights from the results.

This section bridges our study on Q1 and Q2, and thus have similar implications
for social media services. So far we characterized video popularity focusing on popular-
ity time series only. We have yet to discuss possible reasons behind content popularity
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and popularity trends. We explore these issues in the next two sections. Throughout
the rest of the chapter, we refer to Clusters 0, 1, 2 and 3 as C0, C1, C2, and C3,
respectively.

3.5 Referrer Analysis (Q4)

The dynamics of information propagation through friends in social networks has been
studied before [21]. However, on YouTube, as on other social media applications, word-
of-mouth is not the only mechanism through which information is disseminated. We
here tackle this issue by investigating important referrers that lead users to videos
(Section 3.5.1) and their first access since video upload (Section 3.5.2). These analyses
are performed on our three original datasets (Table 3.1).

3.5.1 Which Referrers are More Important for Video
Popularity (Q4a)?

Table 3.7: Referrer Categories and Statistics (t
view

: number of views (x 10

9); f
view

: the
fraction of views; f

time

: fraction of times a referrer from the given category was the
first referrer of a video).

Top YouTomb Random

t

view

f

view

f

time

t

view

f

view

f

time

t

view

f

view

f

time

EXTERNAL 0.57 0.11 0.35 0.81 0.16 0.41 0.07 0.08 0.22

FEATURED 0.72 0.14 0.03 0.10 0.02 0.00 0.11 0.14 0.00

INTERNAL 1.50 0.29 0.67 1.85 0.36 0.65 0.14 0.18 0.34

MOBILE 0.26 0.05 0.51 0.02 0.00 0.02 0.03 0.03 0.05

SEARCH 1.05 0.20 0.36 1.80 0.35 0.52 0.29 0.37 0.41

SOCIAL 0.36 0.07 0.35 0.01 0.00 0.01 0.01 0.00 0.12

VIRAL 0.81 0.16 0.79 0.59 0.12 0.62 0.16 0.20 0.55

Recall that the referrers in our datasets were grouped into seven categories: Exter-
nal, Featured, Search, Internal, Mobile, Social, and Viral. Table 3.7 shows the number
(n

view

) and fraction (f
view

) of views for which each category is responsible. The table
shows that search and internal YouTube mechanisms are key channels through which
users reach content on the system, and we note that YouTube search is responsible
for more than 99% of all Search referrers. Oliveira et al. [109] posed the hypothesis
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that search is the main method for reaching content on video sharing websites, ver-
ifying it through questionnaires with volunteers. Whereas our results confirm their
hypothesis for videos in the Random dataset, we find that YouTube internal features
(e.g., “Related Videos") play an even more important role to content dissemination for
Top videos. For YouTomb videos, both categories are roughly equally important. In
general, we find that search is more important to Random and YouTomb videos, as
they are not systematically exposed to users as videos from top lists are. We also note
the importance of the Viral category in all datasets, particularly Random.

We further analyze the importance of each referrer category by computing the
distributions of the number of views for which each category is responsible, taking only
videos that received accesses from the given category, and computing percentages based
on the total views from referrers only (accounted views). Figures 3.5(a-c) show box
plots containing 1

st, 2nd and 3

rd quartiles, 9th and 91

th percentiles, and the mean, for
each category and each dataset7. Unlike Table 3.7, which shows aggregated results (i.e.,
results for all videos in each dataset), these plots allow us to assess the importance of
each referrer category for individual videos.

For example, Table 3.7 shows that Social referrers do not appear to be important
for YouTomb dataset as a whole. However, taking only copyright protected videos
with at least one Social referrer, Figure 3.5-b) shows that, for 25% of such videos (1st

quartile), more than 22% of the accounted views come from subscription links. Thus,
users do subscribe to other users who post copyright protected content. The Featured
category is a similar case. For Top videos, the Social, Featured and Viral categories
are responsible for more than 30%, 33% and 34%, respectively, of the accounted views
for 25% of the videos with referrers from each such category (Figure 3.5-a). Finally,
Featured referrers play a key role to attract views to Random videos: 25% of the videos
with Featured referrers received at least 30% of the accounted views from such referrers
(Figure 3.5-c).

It is hard to tell whether one referrer influences the number of views from other
referrers. For example, a Top video may experience a popularity growth from Social
and Viral referrers after being featured in the top list. Next, we study this issue by
analyzing how early in a video’s lifespan each type of referrer is used.

3.5.2 How Early do Referrers Appear (Q4b)?

We now analyze the referrers that first lead users to a video. Table 3.7 also shows the
fractions of videos that had the first referrer falling into each category (f

time

). Since
7For any given referrer category, at least 1,000 videos received views for which it is responsible.
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Figure 3.5: Fraction of Views From Each Referrer Category.

YouTube provides only the day each referrer was first used, there might be ties with
multiple categories, and the sum of f

time

may exceed 100% for a dataset.
In general, viral spreading and internal YouTube mechanisms appear as primary

forms through which users reach the content for the first time, in all three datasets. For
example, the first referrers for 79%, 67%, and 51% of the Top videos are from the Viral,
Internal, and Mobile categories, respectively. For the YouTomb dataset, Internal, Viral,
and Search contain the first referrers for 65%, 62% and 52% of the videos, respectively.
For the Random dataset, the first referrers of 55%, 41%, and 34% of the videos are from
the Viral, Search, and Internal categories, respectively. Interestingly, mobile devices
are also a relevant front door to Top videos, whereas for YouTomb and Random videos,
the YouTube search engine accounts for a large fraction of the first referrers.

Figures 3.6(a-c) show the distributions of the difference between the time of the
first referrer access and the time the video was uploaded, measured as a fraction of the
video’s lifespan. For the Top and YouTomb datasets, referrers (of any category) tend
to happen very early: for 75% of the Top and YouTomb videos, most referrer categories
have their first appearances during the first quarter of the video’s lifespan. Indeed, only
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Figure 3.6: Time Until the First Referrer Access (normalized by video’s lifespan).

9% of the Top videos have their first referrer access (of any category) after 40% of their
lifespans. The exception is the Featured category on YouTomb: those referrers tend
to take more time to appear. This suggests that YouTube may try to avoid featuring
videos that are suspicious or have potential to be copyright protected. For Random
videos, in general, Search, Internal, External, and Social referrers tend to appear earlier
than other types of referrers. Thus, users are more likely to initially find such videos
through social links, search, other YouTube mechanisms or external websites, instead
of receiving them via e-mail or viewing them on mobile devices.

3.5.3 Discussion

We here focused on identifying the most important referrers that lead users to a video
(Q4). Our results are useful to help content creators to increase their viewership. For
instance, search engines seem to attract most viewers to content, and they do so early
on the video’s lifespan (Table 3.7). However, focusing on particular videos, we find
that this may not hold for every case (Figure 3.5). One suggestion to content creators
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would thus be to provide good textual descriptions of video content, which would
likely help search engine users to find it. Afterwards, a careful monitoring of how the
video propagates on external websites and internal OSNs may be used to further boost
viewership.

3.6 Associations Between Various Features and

Popularity (Q5)

We now tie the analyses of the previous sections together by assessing how different fea-
tures are associated with the identified popularity trends, and also with final observed
popularity values. We first analyze whether videos that follow a similar popularity
trend tend to have content in the same topic and be reached through similar referrers
(Section 3.6.1). We then measure the correlations between various features (shown
in Table 3.3) and the popularity trend and observed popularity value of the videos
(Section 3.6.2). As in Section 3.4, we here focus on the Top and Random datasets.

3.6.1 What Kinds of Content and Referrers are Responsible
for Each Popularity Trend? (Q5a)

We start by analyzing whether videos that follow a similar popularity trend (same
cluster) tend to have content in the same categories. For both datasets, we found
that the distributions of the number of videos across categories in each cluster are
statistically different from the distribution computed over all videos in the dataset,
according to a Chi-Square test with p-value < 0.01. Thus, videos in different clusters
tend to be concentrated around different categories (or topics). In Figures 3.7(a-b) we
show the fractions of videos in the top 4 categories in each cluster, for each dataset.

Starting with Top videos, Figure 3.7(a) shows a clear divergence in the topics
of the videos in each cluster. Clusters C0 and C1, which consist of videos that tend
to attract viewers for longer periods, are composed mostly by videos about music,
sports, and automobiles, while journalistic videos (news), video blogs (people) and
videos related to activism (non-profit) are the most common topics in clusters C2 and
C3, which tend to have much shorter viewer retention periods. This mostly likely
occurs because such videos tend to be interesting only during short time periods. For
the Random dataset, Figure 3.7(b) shows that videos with music and entertainment
content are very frequent in all four clusters. This may occur due to a natural bias
of copyrighted content and of the queries used to build that dataset. Regardless, the
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Figure 3.7: Fractions of Videos Per Category (a,b) and Fraction of Views Per Referrer
(c,d) For Each Cluster.

frequencies of these categories tend to decrease, while news tends to become more
frequent in clusters C2 and C3.

We now turn to the referrers used to reach videos in each cluster, and analyze
the fractions of views each type of referrer is responsible for, on average8. Once again,
for both datasets, the distributions of these fractions in each cluster are statistically
different from the distribution computed for all videos in the dataset. Thus, the types of
referrers that attract the largest fractions of views do vary depending on the popularity
trend. Figures 3.7(c-d) show the results for each dataset, focusing again on the top 4
referrers per cluster. Note that the only dataset where Search is the most important
type of referrer for all trends is Random, due to the nature of its crawling process.
However, Search, Internal and Viral referrers tend to be among the top 4 referrers
in all clusters of both datasets. Moreover, Featured referrers are among the most
important ones for videos that remain attractive for some time (C0 and C1), while

8These fractions are computed based on the final number of views received through the referrers.
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External referrers play an important role for videos that experience a sudden burst of
popularity (C2 and C3).

3.6.2 What are the Correlations Between Features and
Popularity Trends and Values? (Q5b)

Finally, we measure the correlations between the features shown in Table 3.3 and the
popularity trends and the final popularity values of the videos (at the time of data
crawling). To that end, we use the maximal information coefficient, or MIC [117].
MIC results range from 0, for no correlation, to +1, for strong (positive or negative)
correlation. This novel metric captures the normalized mutual information measure
between two features. It measures correlations between different types of features
(e.g., categorical and numeric) and is able to detect non-linear and even periodic types
of relationships, a limitation of other coefficients (e.g., Pearson and Spearman). We
also used the Information Gain and the Gini coefficient [32] to measure the correlations,
obtaining qualitatively similar results.

Since the values of some referrer and popularity features vary with time, we
compute MIC results for various monitoring periods. That is, we express the monitoring
period as a fraction of the video’s lifespan, and compute feature values only for that
period. For example, the correlation between number of views and popularity trends
for a monitoring period of 10% is computed taking the number of views received during
the first ten time windows, since each time series has 100 windows. By doing so, we
can identify the most important features in different phases of the video’s lifespan.

Table 3.8 shows, for each dataset, MIC results between the features and popularity
trends, for monitoring periods equal to 1%, 5%, 50% and 100%. As the number of
features is large, we aggregate MIC results for each feature class - video, referrer,
and popularity, and present mean (µ) and maximum MIC for the features in each
class. Similarly, Table 3.9 shows the MIC results between features and final (observed)
popularity values. Since YouTube provides only the total number of views associated
with each referrer, we only consider these features for a monitoring period equal to
100%, taking only the other referrer features (e.g., date of each referrer) for shorter
periods.

We start by noting that, as the monitoring period increases, popularity features
tend to greatly surpass the others in importance for correlations with both trends and
popularity values. For trends, the popularity feature with maximum MIC is peak
fraction, whereas for popularity values, it is number of views. For both of them,
the correlations are above 0.5 for monitoring periods beyond 50%, in both datasets.
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Table 3.8: Average (µ) and Maximum (max) Maximal Information Coefficient (MIC)
Values per Feature Type for Popularity Trend.

Monitoring Phase
Dataset Feature 1% of Lifespan 5% of Lifespan 50% of Lifespan 100% of Lifespan

µ max µ max µ max µ max

Top
Popularity Features .15 .19 .15 .27 .18 .63 .26 .84
Referrer Features .11 .17 .11 .18 .12 .18 .11 .19
Video Features .02 .19 .02 .19 .02 .19 .02 .19

Random
Popularity Features .04 .07 .05 .17 .13 .52 .20 .75
Referrer Features .04 .08 .04 .08 .05 .08 .08 .15
Video Features .01 .07 .01 .07 .01 .07 .01 .07

Table 3.9: Average (µ) and Maximum (max) Maximal Information Coefficient (MIC)
Values per Feature Type for Total (Observed) Popularity Value.

Monitoring Phase
Dataset Feature 1% of Lifespan 5% of Lifespan 50% of Lifespan 100% of Lifespan

µ max µ max µ max µ max

Top
Popularity Features .31 .48 .32 .56 .41 .88 .57 1
Referrer Features .16 .27 .17 .28 .20 .31 .32 .74
Video Features .11 .31 .11 .31 .11 .31 .11 .31

Random
Popularity Features .16 .32 .22 .48 .36 .89 .51 1
Referrer Features .09 .11 .10 .13 .12 .18 .26 .68
Video Features .08 .18 .08 .18 .08 .18 .08 .18

However, for shorter periods, the other (referrer and video) features are also very
important. This is interesting for popularity prediction tasks [4, 110, 112, 129], since
popularity features computed over short monitoring periods might be very unstable,
and prediction must rely mostly on other pieces of information about the video, such
as its category and referrers. Indeed we exploit both referrer and category features
when predicting popularity in Chapter 6.

We further note that the relative average importance of each feature group is the
same for both datasets: popularity features are more important than referrer features,
which are more important than video features. The major differences between both
datasets lie in the individual features within each feature class, as we discuss below. We
now focus on the correlations computed for popularity trends (Table 3.8). Albeit not
shown in the table, for short monitoring periods (e.g., 1%), the most important video
feature is the video age (MIC of 0.19 for Top and 0.07 for Random), while the number
of views is the most important popularity feature (MIC of 0.19 for Top and 0.17 for
Random). The most important referrer feature is the date of the first Internal referrer
(MIC=0.17) for Top videos and the date of the first External referrer (MIC=0.08)
for videos in the Random dataset. As time passes, the fraction of views on the peak
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window becomes the most important feature overall. This is expected, since popularity
trends are either concentrated on peaks or exhibit linear growth (Section 3.4).

In contrast, when correlating with the final observed popularity values (Table 3.9),
the most important feature is the number of views, for all monitoring periods. At very
early points in time (1% of lifespan), the most important video and referrer features
are video age (tied with upload date with MIC = 0.31) and the date of the first Viral
referrer (MIC=0.26) for Top videos. For the Random dataset, they are video age
(again, tied with upload date with MIC=0.18) and the date of the first Search referrer
(MIC=0.1).

Thus, from the perspective of popularity prediction, having fixed the monitoring
period, the most important features to be explored depend on whether one aims at
predicting a trend or a value. For example, previous work showed that, by knowing
the trend of a video before hand, the accuracy of the prediction of popularity values
can be improved [110,145]. However, we are not aware of any previous effort to predict
the popularity trend of a video (or UGC in general) as we do in Chapters 5 and 6.

We also note that, when correlating with both trends and observed popularity val-
ues with a monitoring period of 1%, the Music category is in the top 10 most correlated
features for the Random dataset9. The News category is also in the top 10 features
when correlating with trends. This result is in agreement with Figures 3.7(a-b), which
show a more skewed concentration of categories across trends in the Random dataset.
Moreover, when correlating with both trends and observed popularity values with a
monitoring period of 100%, some referrer features, mainly the number of views from
the referrers, are in the top 10 most important features, in both datasets. We believe
that such features would also be important at shorter monitoring periods. However,
their values are not available in our dataset. Thus we cannot test this hypothesis.

3.6.3 Discussion

The correlations unveiled in this section motivate the need to explore a diverse set
of features for popularity prediction tasks. Most previous efforts explored only early
points in the popularity time series [4,110,112,129]. Our results show that they could
benefit from considering also other features. In particular, we found that while some
referrer and video features may be useful to predict, at very early stages in the video’s
lifespan, how its popularity will evolve over time (the trend), early popularity measures
are the most useful features to predict future popularity values. However, as discussed

9We represented each category by a binary feature, and computed correlations for each category
separately.
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by previous work [110,145], one task may complement the other. Also, the differences
in relative importance of individual features across datasets, particularly when consid-
ering early periods after video upload, raises a question of whether different prediction
methods (i.e., methods that exploit different sets of features) should be designed for
different groups of videos.

Other applications that may benefit from our results are recommender systems.
By exploring important features that correlate with popularity, useful recommendations
may be produced even before a video becomes popular. However, in this case a chicken-
and-egg problem arises. Will a video become popular because it is interesting or due
to the recommendation engine? Investigating causality between factors that impact
content popularity is an important open question, which we leave for future work.

3.7 Summary

In this chapter have characterized the dynamics of video popularity on the currently
most popular video sharing system, YouTube. Driven by 5 research questions, we
analyzed how the popularity of individual videos evolve since upload (Q1 and Q2), ex-
tracted common trends of popularity evolution (Q3), characterized the types of refer-
rers that lead users to videos (Q4), and correlated popularity trends and final observed
popularity values with various features (Q5). Our analyses were performed on three
YouTube datasets, providing a broad view of the popularity evolution for a diverse set
of videos.

We found that copyright protected (YouTomb) videos tend to get most of their
views much earlier in their lifespans, followed by Top videos, and then videos in the
Random dataset. We also found that Top videos tend to experience significant popular-
ity bursts, receiving a large fraction of their views on a single day (or week). YouTomb
videos also follow this pattern, and this is less of a case for Random videos. However,
using a time series clustering algorithm, we found that the same 4 popularity trends
seem to explain how video popularity evolves in both Top and Random datasets.

We also characterized the main referrers that led users to videos in each dataset.
Particularly, we showed that search and internal YouTube mechanisms, such as lists of
related videos, are key mechanisms that attract users to the videos. Whereas Search
referrers account for the largest fraction of views to videos in the Random dataset,
internal mechanisms play an even more important role to content dissemination for
Top and YouTomb datasets. Also, our correlation results show that various video
and referrer features can be explored for popularity prediction, and not only features
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extracted from early points of the popularity time series, as done by most previous
efforts.

Our main findings can be applied in several contexts, as discussed next.

Content Distribution: we found that, even after short monitoring periods, there
exists some correlations between popularity trends and the analyzed features, moti-
vating their use for predicting popularity trends. Content distribution networks could
use such predictions, together with observed popularity estimates, for load balancing,
by provisioning videos predicted to remain popular for longer (i.e., videos in C0

or C1) to more capable servers. For videos predicted to be in C2 or C3, as their
popularity growth rates decrease there is a high chance that the attention for them
will drop. Such videos should then be provisioned by less capable servers or sent
to secondary storage. Similarly, this knowledge could be used by ISPs for local caching.

Online Advertising: our results also suggest that different video categories tend
to more often follow different popularity trends (e.g., C0 and C1 are dominated
by music and sports videos, while C2 and C3 by news and non-profit ones). This
knowledge could be used by advertisers to drive the selection of the video categories
for ad placement, and by online advertising platforms to provide category-based price
differentiation for advertisers (e.g., higher prices for categories that tend to remain
popular for longer). Our results are also potentially useful for content publishers, who
may profit from ads placed on their videos. The finding that Search (and Featured)
referrers attract more views for videos that remain attractive over time (i.e., videos in
C0 and C1) suggests that content publishers could periodically refine the keywords
assigned to their videos (e.g., tags, title) to target different queries over time. For
example, after a cycle of popularity growth and decay, publishers could adjust the
video keywords and descriptions to possibly target other searchers that exploit related
terms to find the video.

Monitoring Fame and Popularity: From a social perspective, understanding con-
tent popularity could be used for monitoring fame and popularity of content produc-
ers, and analyzing how users seek-out and consume information on real world events
(e.g.,natural disasters, gossip news).

The results provided in this chapter represent a major cornerstone in the devel-
opment of the rest of this dissertation. For instance, in the next chapter we shall focus
on a complementary analysis analyzing how user preferences relate to information pop-
ularity in social media applications. Also, our findings on correlations between features
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and popularity trends/values motivated our popularity prediction methods presented
in Chapters 5 and 6. Finally, our results on the importance of referrers for popularity
were also used as motivations for our Phoenix-R and A-FLUX models, discussed in
Chapters 7 and 8.





Chapter 4

Users Perception of Content and
Popularity

In the previous chapter we presented a characterization of how different features relate
with the popularity evolution of YouTube videos. In this chapter, we seek to understand
the extent to which the content by itself determines the popularity of a YouTube
video. Using mechanical turk as experimental platform, we asked users to evaluate
pairs of videos, and compared users’ relative perception of the videos’ content against
the videos’ relative popularity as reported by YouTube. This chapter will end our
discussions on our first research goal, understanding feature importance. In this sense,
users’ perception of content is defined as a content feature of the social media objects.
After this chapter, our studies on RG2 (predicting popularity) will be discussed in
Chapters 5 and 6. Moreover, on RG3 (Chapters 7 and 8), we shall present another
user centric view on popularity, our studies on user activities.

4.1 Introduction

What drives content popularity in a social media application? Recently, this question
has attracted a lot of research attention as social media sites become increasingly
popular platforms for exchanging information. An unresolved part of this question
is about the relative roles of two primary forces that drive the popularity of a piece
of information: (i) its content, i.e., the interestingness, topicality, or quality of the
information as perceived by users, and (ii) its dissemination mechanisms, such as its
propagation by word-of-mouth, blogs or mass media channels. It stands to reason that
both factors matter, but the extent to which they impact the overall popularity of a
piece of information remains an open question.

63
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Our studies so far, as well as many previous studies on how information becomes
popular in social media sites, focused on dissemination related factors (e.g, social in-
fluence, mechanisms that expose content to users, time of upload) [13, 78, 122, 123],
ignoring the role of content itself. Other previous efforts, instead, analyzed social me-
dia content focusing on exploring content features for data mining tasks such as pop-
ularity prediction [147] and video classification [46], analyzing popularity differences
in groups of content duplicates [13], and capturing content importance as a parameter
in popularity evolution models [91]. In this chapter we take a different and comple-
mentary approach, focusing on understanding the extent to which content matters for
popularity of videos on the YouTube social media site.

Our methodology attempts to assess users’ relative perception of the contents of
pairs of videos through user surveys conducted over Amazon mechanical turk. Users
in our experiments are exposed only to the video content, and we took care to not
subject them to other factors (inherent to the YouTube environment) that may impact
user perceptions of content (e.g., user comments, social links, appearance of content in
external sites). Specifically, we present to users pairs of videos from the same major
topic and uploaded around the same date, and ask them to choose which one (none
or both): (1) they enjoyed more, (2) they would be more willing to share with friends,
and (3) they predicted would become more popular on YouTube. The first question
targets the user’s individual perception of content interestingness, the second captures
the user’s perception of the interests of her social circle (and thus the chance of the
content spreading through it), and the third captures the expectations of the user on
a global scale. Our goals are to assess, for each of these questions, whether users reach
consensus, and, when there is consensus, whether user perceptions match the relative
popularity achieved by the videos reported by YouTube.

We find that there is no consensus among participants in many evaluations, even
when the popularity (reported by YouTube) of the evaluated videos differs by orders
of magnitude. The lack of consensus is more striking when it comes to sharing and, to
a lesser extent, liking choices, and also depends on the topic of the video content. This
suggests that users’ perceptions about content are quite subjective and that content is
not the most important factor that drives popularity in many cases. Interestingly, our
results also show that, whenever participants reach consensus, their choices, particu-
larly for question (3), almost always match the video with largest popularity reported
by YouTube, suggesting that, in these cases, content has a significant impact and
predictive power on the popularity of YouTube videos.

Note that the goals of our study are complementary to those of previous work.
In particular, Salganik et al. [122] also relied on a user study to understand popularity
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dynamics. However, they focused on the impact of social influence on popularity,
whereas we focus on the role of content and rely on users to evaluate the content
in a setup that is isolated (to the extent possible) from dissemination mechanisms
that might influence popularity. To our knowledge, the human perceptions of content
and how they correlate to popularity in a social media site (YouTube) have not been
analyzed in any previous work. Accordingly, our experimental setup and findings are
very different from those in prior studies. Thus, this work is a first step towards
addressing the broad and fundamental question about the role of content in determining
popularity of a piece of information, and our proposed experimental methodology,
discussed next, a key contribution towards that goal.

In the next section we discuss our methodology. This is followed by our results
in Section 4.3. Section 4.4 concludes this chapter.

4.2 Methodology

Aiming at taking a further step towards understanding to which extent the content
itself impacts the popularity of social media, we have designed a crowd sourced based
study of YouTube videos. Our study is guided by two questions:

Q1 Given a pair of videos with similar topic, can users reach consensus on the relative
popularity of the videos?

Q2 When users do reach consensus, does the preferred video match the most popular
video on YouTube?

Question Q1 is focused on the collective notion of popularity reported by the users
in our experiment, who are subject only to the content itself. This notion relates to
whether a user likes and/or would be willing to share a video more than the other,
and also whether a user, despite personal tastes, believes one video would become
more popular than the other. Question Q2 aims at comparing this notion with the
popularity achieved by the videos on YouTube, measured by the total number of views
at the time we collected the videos, which can be affected by various factors, other
than content alone.

4.2.1 Datasets

Given our two research questions, the datasets employed on our evaluations need to
eliminate as much bias as possible. For instance, a video may be more popular than
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another simply because it is older. Thus, the datasets employed in the Chapter 3 were
shown to unsuitable for our user study. Thus, in order to identify pairs of videos with
similar topic, we used Freebase1, a collaborative semantic knowledge database that
covers over 30 million topics, ranging from sports (e.g., baseball) to individuals (e.g.,
Muhammad Ali). Specifically, we crawled YouTube for videos that are indexed under
the same Freebase topic on its API. We focused on two topics - major league baseball2

and music videos3, as they span different user interests and are neither too specific nor
too general4.

For each topic, we downloaded videos that were uploaded from the US on April
2012, considered safe by YouTube’s safe search, and could be embedded in external
sites. Videos were downloaded on August 2013. By studying videos of similar topic we
factored out the notion of popularity due to latent social, cultural and psychological
issues. For example, soccer is less popular than baseball in the US. For the same reason
we focused on videos uploaded from the same country. Moreover, by focusing on videos
uploaded around the same time, we factored out popularity variations due to first mover
advantage [13] and upload date [78]. We also limited the potential of users disliking
a video because they found it offensive by using the YouTube’s safe search. Finally,
we considered only videos that could be embedded so that user evaluations could be
done outside YouTube, and thus be unaffected by the other pieces of information (e.g.,
number of views, user comments) provided by YouTube on a video’s page.

To select videos with various YouTube popularity values, we defined three ranges:
low popularity, defined by a number of views ranging from 10 to 100, medium popular-
ity, with number of views between 1,000 and 10,000, and high popularity, with number
of views between 100,000 and 1,000,000. For each topic, we selected 3 videos of each
popularity range, with each video having between 4 and 6 minutes of duration.

4.2.2 Human Intelligence Tasks

We ran our user experiments on Amazon mechanical turk (MT). To recruit participants,
we posted the pre-requisite that only master workers (i.e., the best workers as ranked
by MT) based on the US could perform our task.

The first step was the build, for each topic, all 36 pairings for the 9 selected videos.
These pairs were assigned to 9 folds, so as to have only unique videos in each fold (4

1http://www.freebase.com
2http://www.freebase.com/m/09p14
3http://www.freebase.com/m/0mdxd
4Music in general would cover a very broad set of user interests, such as music lessons and dance

videos, whereas topics such as Muhammad Ali might be too specific even for sport fans.

http://www.freebase.com
http://www.freebase.com/m/09p14
http://www.freebase.com/m/0mdxd
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Figure 4.1: Example of a Video Pair Evaluation on YouRank

pairs per fold). We deployed these video pairs on a web application we built, called
YouRank. On YouRank, each user watches one fold of videos. Users are assigned to
folds following a round-robin schedule. YouRank shows users only the embedded video
stream, hiding any other video information kept by YouTube. Log in was based on
random ids to preserve privacy. A snapshot of the application is shown in Figure 4.1.

After logging in, each user was asked to answer the demographic survey shown
in Figure 4.2 (top). For questions 3 to 5, the possible answers were: 1) never; 2) rarely
(few times a year); 3) occasionally (few times a month); 4) often (few times a week);
and 5) very often (once or more daily).

Next, the user was asked to watch 4 pairs of videos, and, for each pair, answer
the form shown in Figure 4.2 (bottom). For each question the user had to pick one
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S1. How old are you?
S2. Are you a male or a female?
S3. How often do you watch a video on YouTube?
S4. How often do you share YouTube videos with friends or col-
leagues?
S5. How often do you share any kind of online content with friends
or colleagues?
E1. Which video did you enjoy watching more?
E2. Which video you would be most willing to share with a friend
or group of friends?
E3. Which video do you predict will be more popular on YouTube?

Figure 4.2: YouRank Forms - Demographic Survey (top); Video Evaluation Form
(bottom)

out of four options: a) Video 1 (left); b) Video 2 (right); c) Both; d) Neither. Thus,
two neutral options (c-d) were available in case the user could not decide on a single
video. An optional task of providing feedback in free text form was also available for
each pair. We asked users to refrain from visiting the video page on YouTube, and to
indicate whether they had watched any of the videos in the past. To avoid bias due to
user fatigue, the pairs of a fold were randomized whenever a new user was assigned to
the fold.

Upon task completion, we payed 4.50 US dollars to each user. Since each fold
consists of 4 pairs of videos, each one from 4 to 6 minute long, a user was expected to
work for roughly 45 minutes. Thus, our payment covers MT suggested hourly rate of
6 US dollars. In practice, the users took on average 44.8 minutes to complete the task,
although some user evaluations were disregarded, as discussed in the next section.

4.2.3 Evaluation Metrics

To tackle question Q1, we measured consensus for each pair of videos using the Fleiss’
Kappa () score of agreement [47]. This score varies from -1 to 1, while values above
.4 are often interpreted as fair to good agreements, and above 0.75 as very good agree-
ments [47]. We determine that consensus was reached if the null hypothesis of negative
or no agreement (  0) can be rejected. The same score is achieved regardless of
whether the neutral responses, i.e. options c-d, are included. Thus, we compute it
over all responses. When summarizing multiple tests, we apply Bonferroni correction
to rule out significance due to random chance [1].

To answer Q2, we focused only on pairs of videos for which consensus was reached
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and computed the fraction p̂ of those pairs for which the preferred video matches the
one with larger popularity on YouTube. We then used an exact binominal sign test
based on Clopper-Pearson confidence interval [47] to test whether p̂ is above random
chance (i.e., p̂ > 0.5)5.

4.2.4 Representativeness and Reproducibility

Representativeness is an important but very challenging question that arises in any
empirical study that tackles a broad question, as we do here. We tried to design an
experimental methodology that is as thorough as possible, given our practical con-
straints. We chose one of the most popular social media sites: YouTube. We recruited
only master MT workers, who are more expensive but are known to perform their tasks
better. This limited us in terms of number of video pairs and number of user evalu-
ations per pair, given our budget. Thus, we chose our videos carefully: we compared
videos across 3 vastly different (10 times difference) popularity levels (with multiple
videos per level). To avoid the impact of extraneous factors, we only compared videos
that belonged to the same topic (repeating it for 2 different topics), selected videos
of similar age, and only considered evaluations if the user had never seen the video
before. To ensure that our sample sizes are not too small to draw our conclusions,
we applied conservative and exact statistical tests, adequate for them, presenting re-
sults for different significance levels. Thus, we designed our experiments to yield the
most accurate and representative results, within our constraints. Moreover, in favor
of reproducibility, we make the YouRank source code and our gathered data publicly
available6.

Nevertheless, we acknowledge that it is impossible to generalize the findings to all
social media sites without future studies. Instead we aim at providing insights that are
valuable to undrstand popularity differences in one particular application – YouTube.
Moreover, we hope that this work will encourage future efforts to apply our proposed
methodology across different applications and over more content instances.

4.3 Results

We now discuss the results of two rounds of MT experiments, one for each selected
topic (major league baseball and music videos). We ran each round until 72 users
had finished their tasks. In both rounds, some users refused the task after logging in,

5This test is known for being suitable to small samples, as our case.
6http://github.com/flaviovdf/yourank

http://github.com/flaviovdf/yourank
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Table 4.1: Answers to S3, S4 and S5 in the Demographic Survey (Fig. 4.2).

Major League Baseball Music Videos
S3 S4 S5 S3 S4 S5

Never 0% 4% 1% 0% 1% 0%
Rarely 0% 18% 12.5% 0% 22% 13%
Occasionally 8% 39% 28% 21% 45% 32%
Often 48% 29% 37.5% 39.5% 28% 37%
Very Often 44% 10% 21% 39.5% 4% 18%

which caused some imbalance in the number of evaluators per fold. We also disregarded
evaluations in which the users reported they (1) were unable to watch one of the videos
(2 evaluations), and (2) had watched at least one of the videos before (5% and 8% of
the cases for the major league baseball and music video experiments, respectively).
Thus, we consider only evaluations in which users were exposed to new content so as
to minimize a possible bias due to previous knowledge. After these filters, we were left
with 6 to 10 evaluations per video pair (8 evaluations, on average).

We summarize the answers to the demographic survey next.

4.3.1 Demographic Survey

In both rounds, all users were from the US, as required by our task. They were roughly
balanced across genders: 53% and 42% of the users (of 72 per round) were males in
the baseball and music experiments, respectively. Also, in both rounds, the majority
(57%) had from 20 to 45 years of age, 5% were under 20, and the others were over 45
years old.

The answers of users regarding their viewing and sharing habits (S3-S5 in Fig-
ure 4.2) are summarized in Table 4.1. The evaluations of pairs of videos, discussed
below, should be interpreted in light of these answers. Note that participants of both
rounds of experiments are avid YouTube viewers: they watch YouTube videos at least
occasionally, and most of them do it often (39.5-48%) or very often (39.5-44%). More-
over, most users share YouTube content occasionally (39-45%), or often (28-29%),
whereas only 22% of the users in both rounds share YouTube videos only rarely or
never. Finally, in both rounds, users tend to have more active sharing patterns when
it comes to online content in general, as expected.

We now turn to the evaluation of the pairs of videos, discussing the results in
light of our two key driving questions.
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Table 4.2: Fraction of Video Pairs that Rejected the Fleiss’ Kappa Null Hypothesis of
  0. The columns correspond to the questions in Figure 4.2.

Major League Baseball Music Videos
E1 E2 E3 E1 E2 E3

p-
va

lu
e .05 25% 13% 52% 11% 2.7% 13%

.01 19% 8% 41% 8% 2.7% 11%

.001 16% 5% 36% 5% 2.7% 8%

Table 4.3: Average Values of  for Pairs that Rejected the Null Hypothesis of   0.
The columns correspond to the questions in Figure 4.2.

Major League Baseball Music Videos
E1 E2 E3 E1 E2 E3

p-
va

lu
e .05 .68 .64 .74 .63 .53 .65

.01 .75 .76 .78 .63 .53 .69

.001 .79 .76 .83 .65 .62 .86

4.3.2 Can Users Reach Consensus?

Table 4.2 shows, for both rounds of experiments, the fractions of pairs in which users
reached consensus, that is, pairs for which the null hypothesis of   0 can be rejected,
while Table 4.3 shows the average scores for pairs that passed the null hypothesis. Re-
sults are shown separately for each question in Figure 4.2, and for different significance
levels (p-values). Smaller p-values imply more confidence on results.

In general, for any considered significance level, and for both topics, the fraction
of pairs that passed the test tends to be very small (with few exceptions). The fraction
is larger when users were asked which video they predicted would be more popular
(E3). Thus, user agreement is easier when it comes to the collective knowledge of
popularity. However, this happened in at most 52% of the pairs (p-value = 0.05).
Users agreed much less often when asked which video they enjoyed the most (E1),
reflecting a natural heterogeneity of user interests. The consensus was even rarer when
users were asked which video they would share (E2), possibly reflecting also the user
heterogeneity in terms of social activities and their perceptions of the interests of their
social networks. Table 4.3 shows that, when consensus was reached, the agreements
were on average good (above 0.4) or very good (above 0.75).

These findings can be illustrated by the following feedbacks on the same music
video:

U1: “i didn’t care for either one but the girl in the second video was stunningly beautiful
so i would share that one”
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Figure 4.3: Level of Agreement  vs Popularity Gap in Pairs of Videos

U2: “Video 2 was sad and dark and I didn’t like the girl’s voice.”
U3: “I secretly like Evanescence but I would never let my friends know.”
U4: “The video on the left was much better music for my tastes”

The divergence in opinions reveals the more egocentric notions of liking and
sharing content. U2 dislikes the video because of the tone of the song, while U4 likes it
because of personal taste. U1 would share the video because of the girl in it, whereas
U3 would not share it because she does not want her friends to know she likes the
band. Also, we notice that our current results of the diverging perceptions across users
for the same video agrees with previous findings on the individuality of motivations for
online participation [59,138,154].

Recall that users evaluated pairs of videos that covered a wide range of popularity
values on YouTube. Thus, one may ask whether users could reach consensus more often
for pairs of videos with a larger gap in their relative popularity. Surprisingly, we found
no strong trend towards that, as illustrated in Figure 4.3 for E3 in the major league
baseball experiments (p-value = .05). Very low  values were obtained even for videos
with popularity gap of hundreds of thousands views.

Table 4.2 also shows that the agreements are more common for major league
baseball videos than for music videos. While this may be related to a more diverse
range of personal interests for music videos (e.g., U4’s feedback), it may also relate to
promotional campaigns for this kind of content. Such campaigns may cause videos to
be popular for a short while, regardless of user tastes. One example is a music video
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Figure 4.4: Popularity Curves Provided by YouTube for Example Videos.

Table 4.4: Fractions of Cases of Consensus that Match YouTube’s Popularity. Values
with * (**) are above random chance with p-value = 0.05 (0.01)

Major League Baseball Music Videos
E1 E2 E3 E1 E2 E3

100%** 100%* 84%** 75% 100% 100%*

(see Figure 4.4-a) that experienced a burst in popularity, possibly caused by promotion
(professional or amateur such as in a blog) but was unable to remain popular over time.

Nevertheless, there are many cases of lack of consensus even for baseball videos.
In Figure 4.4-b we show one example of a pair of videos whose popularity curves,
reported by YouTube, differ considerably. One of the videos has over 100 times more
views (in total) than the other, and remains more popular throughout the monitored
period. Yet, the users of our experiment could not reach consensus on which video they
preferred in none of the questions. Further investigating these videos, we noted that
the most popular video has a watermark that affected user opinions in our experiment,
as indicated by the feedbacks below. This suggests that other latent factors, other than
simply content, may play a role on driving the popularity of social media.

U5: “The watermark on video 2 ruins it”
U6: “The first video had an annoying watermark on the front, and pop up tabs common
on YouTube, it was very distracting", the gap towards the end was also very annoying.”

4.3.3 When There Is Consensus, Does It Match the Relative
Popularity of Videos on YouTube?

Focusing on the pairs for which consensus was reached (p-value = 0.05), we computed
the fraction of pairs in which the video preferred by MT users matches the video
with higher popularity on YouTube. The results are shown in Table 4.4. Note that,
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whenever consensus is reached, user preferences match YouTube’s popularity in almost
all cases. Note also that this result is above random chance (p-value = 0.05) in most
cases. The cases where random chance cannot be ruled out are due to small number of
pairs with consensus. Thus, if users can reach consensus on their opinions, the video
they prefer are likely to become more popular on YouTube.

4.4 Summary

In the traditional media (e.g., newspapers, TV, radio, movie), dissemination mecha-
nisms are closely tied to the content generators, who have a vested interest in promoting
the content they generate. Content is traditionally generated or selected by profession-
als (e.g., journalists, singers or actors) on behalf of organizations (e.g., newspapers,
movie studios or television networks) that have widely varying ability to promote their
content (via advertisement campaigns to their audience). Differently, social media is
dominated by content generated by ordinary users. The dissemination mechanisms are
democratized and are only loosely coupled with the content generators. As discussed
in Chapter 3, two important dissemination mechanisms in social media are (i) crowd-
endorsements: information that is “liked” by crowds is promoted in search results and
recommended to others (on home page and as personalized recommendations), and
(ii) viral propagation over a social network of users: anyone who finds the information
content interesting can “share” it with their friends and propagate it virally by the way
of the word-of-mouth. The democratization of “dissemination mechanisms” in social
media offers the hope that information popularity would be driven to a larger extent
by its content (more precisely, how users perceive or like the content) than it is in tra-
ditional media. Thus, the work presented on this chapter gives the first step towards
understanding the extent to which this is true.

To that end, we relied on user evaluations of pairs of YouTube videos of similar
topic, factoring out the dissemination related factors. We found that users’ perception
of content is very subjective, since in many cases users did not reach consensus at which
video they liked or would share more, or predicted would become more popular. This
result indicates the difficulty in determining the role of content in driving popularity,
and complements previous observations that users cannot estimate the extent of visi-
bility of their content [9]. However, whenever there was consensus, the preferred video
almost always matched the one with higher popularity on YouTube, highlighting the
key role played by content in those cases.

Our results have important implications in various contexts. For social media
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researchers, they highlight the role of content in determining the popularity of a piece
of information and the need to account for it in future studies. From a media site
operator’s or viral marketer’s perspective, our findings have implications for popularity
prediction. Our observation that when there is user consensus the video with preferred
content is always more popular can be leveraged by marketers or advertisers to compare
new videos against old ones with known popularities to quickly define which of the new
videos have more chance of attracting viewers. It also motivates future research on how
a site operator (e.g., YouTube) can design a scalable way for gathering users’ feedback
comparing newly uploaded videos with older ones to predict which of the new ones will
more likely become popular.

Up to this point in the dissertation we have looked into how different features
and user preferences correlate with content popularity in social media. As of now, our
results have presented the foundation to understand our following discussions on RG2
(popularity prediction) and RG3 (mining user activities). From this point, the reader
can follow up on RG2 or RG3 in any order. RG2 starts with the next chapter, and
ends in Chapter 6. In these two chapters, we shall build upon our characterizations so
far to develop new models to predict the popularity of social media. In Chapter 7, we
shall begin our analysis on user activities, as task that also builds upon our results on
how users preferences relate to popularity. Our work on mining user activities ends in
Chapter 8.





Chapter 5

News Content Popularity Prediction
Using Time Series Trends

In the previous chapters we analyzed the relationships between various dissemination
(e.g., referrals) and content features with content popularity, aiming at uncovering
fundamental knowledge about popularity dynamics. In this chapter, as well as in the
next one, we shift our attention to our second research goal, and apply this knowledge
in the design of popularity prediction methods.

One key aspect of the methods we propose is the use of common popularity
trends extracted from the data to build more accurate prediction models. This idea is
inspired by the results in [110] showing that the knowledge of such trends can improve
prediction by building specialized models for each trend. In that direction we propose
two sets of methods.

The first one, described in this chapter, is based on two steps. We first use
time series clustering techniques, notably the KSC algorithm [146], to extract common
temporal trends of content popularity. Next, we use linear regression models using as
input predictors both content features (e.g., numbers of visits and mentions on online
social networks) and metrics that capture the distance between the early popularity
time series observed up to prediction time and the trends extracted in the first step.

The methods proposed here assume a fixed monitoring period for all objects
during which the predictor variables are measured. Focusing on news content, the
goal is to predict news popularity, estimated by number of visits and social network
engagement, 48 hours after its upload using only information available in the first hour
of upload. We note that our proposed solution was the winner of two of the three
tasks of the European Conference on Machine Learning and Principles and Practice of

77
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Knowledge Discovery in Databases 2014 Predictive Analytics Challenge 1

In Chapter 6 we build upon the results discussed in this chapter by proposing
methods to predict the popularity trend of a piece of content. We focus then on user
generated content, notably YouTube videos. Unlike news, which typically have clear
deadlines on when the predictions should be performed [18], UGC experiences very
diverse popularity trends, with viewer ship not necessarily concentrated in sharp peaks
(as discussed in Chapter 3). In that case, different objects may require different mon-
itoring periods for accurate popularity prediction. Thus determining the monitoring
period for each individual object is a key aspect of our solutions.

5.1 Introduction

With the ever-growing production of online content, characterizing and predicting user
engagement (e.g., number of visits or social engagement such as Facebook likes) on
content may have multiple beneficial values such as: (1) understanding the human dy-
namics of information consumption; (2) supporting the decisions of content producers
and providers on different tasks (e.g., marketing and content filtering); and, (3) un-
derstanding the physical processes that govern the growth of viewership on the Web.
Several previous studies [18, 24, 129] have characterized some of the factors that cause
the popularity growth of different kinds of social media content. Complementarity,
various others [4, 107, 110, 129] have focused on the task of popularity prediction. We
focus here on the latter task, aiming at predicting the popularity of a piece of content.

Popularity prediction is a difficult and important task since it mostly translates
into income and profits for content providers, creators and consumers alike. For exam-
ple, more visitors to a news web page may lead to more ad-clicks and sales. Moreover,
content provisioning to a large amount of users may require decisions such as geograph-
ical sharding of content to servers (due to the increased traffic). Thus, if planning is
not performed correctly, longer latencies and loading times, and thus, fewer users may
be expected. Finally, accurate and early predictions can lead to better services to the
end consumer, such as search engine rankings [112].

Our model exploits the temporal features related to news web pages (e.g., past
visits and social engagement), as well as typical popularity (i.e., number of visits) time
series trends that exist in the dataset. Such trends are extracted via unsupervised
learning methods. Specifically, it combines the temporal features with features that
capture the distances between the popularity time series for each news web page and

1http://sites.google.com/site/predictivechallenge2014

http://sites.google.com/site/predictivechallenge2014
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the extracted trends. We present a data characterization that motivates the design of
our solution, and show the gains in prediction accuracy (ranging from 15% to 27%)
when it is compared to state of the art alternatives.

The rest of this chapter is organized as follows. We formally describe the pre-
diction problem in Section 5.2. In Section 5.3 we present the datasets used in the
remainder of this chapter. Moreover, Section 5.4 presents our baselines as well as our
proposed solution. Our experiments and results are presented in Section 5.5. Finally,
Section 5.6 concludes the chapter.

5.2 Problem Definition

Recall that our goal is to predict the popularity of news web pages (or simply news
pages) that are disseminated in social media applications. In this setting, we can
formalize the popularity prediction problem we tackle as follows. Let H be a set of
web hosts (e.g., nytimes.com), where a single host h 2 H is comprised of a set of
pages, P be the set of all pages, where p 2 P is a single page, and P

h

be the set of all
pages from host h. 44 Moreover, let F be a set of features associated with each page
p 2 P , where each feature value is computed up to a certain reference time t

r

(e.g.,
t
r

= 1 hour). Thus, using the set of features (F) and the set of pages (P), a matrix
X

tr

with |P| rows and |F| columns is defined for the values of features measured up to
the reference time. Moreover, a row x

p,tr

of the matrix X

tr

defines the measurements
for the given page2. Using the measurements X

tr

, our goal is to predict the user
engagement on each page up to a target time t

t

(where t
t

> t
r

).
We here focus on the following metrics of user engagement, referred to as the

response variables: number of visits v
p,tt

, number of Facebook likes f
p,tt

, and number
of Twitter mentions m

p,tt

. All of them are cumulative measures, computed from page’s
upload up until time t

t

. We can then define vectors of |P| rows for each response
variable (e.g., v

tt

), or in more general terms, we can define a matrix Y

tt

with three
columns, one for each response variable:Y

tt

= [v

tt

,f
tt

,m
tt

].

With these definitions, the prediction task can be stated as a supervised machine
learning task. Given a set of news pages for which both X

tr

and Y

tt

are available (the
training set P train), our goal is to learn a function that maps f(X

tr

) ! Y

tt

. Ideally,
such a function will generalize well for new pages not used in the training set, also
known as the test set or P test. This function is usually defined as the model. The
baseline methods, presented next, as well as our approach, introduced in Section 5.4,

2For simplicity, we shall identify rows using p.
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Table 5.1: ECML/PKDD Challenge Dataset

# of Hosts 100
# of News Pages 30,000
Total # of Tweets 432,381
Total # of Facebook Likes 6,847,457
Total # of Visits 42,986,599

explores linear regression method to learn the model. Moreover, unless otherwise noted,
we use a fixed t

r

= 1h as well as a t
t

= 48hs from now on, since these are the reference
and target times defined in the Predictive Analytics Challenge.

5.3 Datasets

Before describing our method, we present a brief characterization of the datasets we
use. Throughout this chapter, our case study is on predicting the popularity of news
pages. Thus, we employ the European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases 2014 Predictive Analytics Challenge
dataset for this task. The details of this dataset are shown in Table 5.1, which we now
discuss.

The data is composed of 30,000 news pages from 100 different hosts. Each host
has exactly 300 pages. The total number of Tweets was of 432,381, whereas the number
of Facebook likes was 6,847,457. A total of 42,986,599 visits was accounted for in the
dataset. Before detailing our method, as well as our baselines, we now present a
motivating characterization of some features in the dataset. We initially show the
correlations between the user engagement metrics measured up to the reference time t

r

and their respective values at the target time t
t

. Figure 5.1 shows these correlations for
the number of visits v

p,tr

(Figure 5.1-a), Facebook likes f
p,tr

(Figure 5.1-b) and Twitter
mentions m

p,tr

(Figure 5.1-c), using t
r

= 1 hour. Note that both axes of the graphs
are in log-scales. Also, a value of 1 was added to each measure on each page (e.g., the
axis for visits shows log(1 + v

p,tr

)).
The figure shows that a strong linear correlation in log scales (captured by

the Pearson correlation coefficient ⇢) exists for each engagement metric, as observed
in [129]. Values of ⇢ exceed 0.73 for Facebook likes, reaching 0.84 for Twitter mentions.
Such strong positive correlations motivate the use of linear regression methods to pre-
dict log-scaled engagement measures. By itself, these results serve as motivation that
the number of visits at t

r

can be used to predict future values. However, the whole
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Figure 5.1: Correlations Between the Predictors Number of Visits v
tr

, Facebook Likes
f
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and Twitter Mentions (Tweets) m
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in one hour and their respective values after
48 hours. Each variable has been incremented by one due to log transformed x and y
axes.
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(b) Facebook Likes
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(c) Twitter Mentions

Figure 5.2: Correlations Between the Predictors Number of Visits v
p,tr

, Facebook Likes
f

p,tr

and Twitter Mentions (Tweets) m
p,tr

in 5 minutes and their respective values after
48h. Each variable has been incremented by one due to log transformed x and y axis.

history of measures for each metric can also be useful to predict popularity values at
t
t

= 48 hours. This is exemplified in Figure 5.2, which shows scatter plots similar to
those in Figure 5.1, but now assuming that t

r

= 5 minutes. The figure shows that in
some cases (such as visits and Twitter mentions), moderate correlations (e.g. ⇢ = 0.46

for visits and ⇢ = 0.53 for Twitter mentions) already exist even very soon after the
page was created.

We also looked at the correlations between engagement metrics. Figure 5.3
shows that moderate correlations exist between every pair of metrics (e.g., ⇢ of at
least 0.35), which motivates our approach of multiplying different metrics to mitigate
multi-collinearity issues. More surprisingly, we find that there exists pages that have
more Facebook likes (and Twitter mentions) than actual visits (points above the 45
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(b) Visits vs Twitter Men-
tions

10�1100101102103104105106107

Likes after 1h f

p,tr

10�1

100

101

102

103

104

105

106

107

Tw
ee

ts
af

te
r

1h
m

p
,
t
r

pearson correlation � = 0.354

(c) Facebook Likes vs Twitter
Mentions

Figure 5.3: Correlations Between the Predictors Number of Visits v
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, Facebook Likes
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. Each variable has been incremented by one
due to log transformed x and y axis.

degree line in each plot). This result indicates that not every like or tweet implies in a
visit, and suggests that measuring popularity on a single online social network service
may be misleading, since people are not necessarily visiting the news pages. Finally,
this result also suggests that we may not be able to completely rely on a single metric
(e.g., Facebook likes) to predict the other (e.g., number of visits), since only moderate
correlations exist between them.

We now look into the motivation for also exploiting the host, day of the week
and time of the day as predictors. Figure 5.4 shows the correlations between number
of visits at t

r

=1 hour and at t
t

=48 hours for two hosts in our dataset. We note that
host 68 (shown in black) has, very similar values of v

p,tr

and v
p,tt

for most pages (i.e.,
most pages are on the 45 degree line). Such finding implies that most pages of this
host will not grow in views. In fact, if we train the SH model for this host only, it will
find that the parameter ✓ has a value of 1.10, that is, log(1+ v

p,tt

) = 1.10log(1+ v
p,tr

).
In contrast, host 3 shows a clear increase in popularity values for almost every page. In
fact, the SH model, trained specifically for host 3, will capture the relationship between
v

p,tr

and v
p,tt

as being log(1 + v
p,tt

) = 2.04log(1 + v
p,tr

). This difference between hosts
motivates the candidate utility of exploiting these features for prediction. As we shall
discuss, we indeed make use of them in the form of indicator variables that to boost
(positively or negatively) the general relationship that exists in the whole dataset (see
Figure 5.1) to relationships specific to the behavior of each host. Similarly, we can
correct for the behavior for different upload days and hours.

So far we have provided evidence that past popularity and future popularity of
news pages are correlated. Similar results were observed in UGC content on Chapter 3.
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Figure 5.5: Popularity Evolution of Two Selected Pages.

Also, we have motivated that using content features, such as the host id, and temporal
features, such as day of week, can also be exploited for predictions. Together with
our previous findings in Chapters 3 and 4, the knowledge produced so far will serve as
basis for our prediction methods detailed this chapter and the next chapter. However,
before continuing, we also aim at providing evidence that the different trends followed
by objects (again, see Chapter 3) can also be used to predict popularity.

In Figure 5.5 the evolution in the number of visits for two news pages, selected
from our dataset, that have similar popularity in terms of total number of visits. The
figure shows that the numbers of visits of the two pages evolve over time according to
very different processes. The news page shown in the black/solid line is steadily decreas-
ing in popularity over time, whereas the news page in the blue/dashed line experiences
a sharp increase in popularity 25 minutes after its upload. Such an example motivates
the need for the Mixed-Trend model. Indeed, in [110] the authors argued that pre-
diction accuracy could be improved by building specialized models for each popularity
trend, although no attempt to learn popularity trends and tackle such specialization
was done. By incorporating the similarity of news pages to previously identified trends,
as proposed here, we can effectively capture such differences in popularity curves, and
thus improve prediction accuracy, as we shall now discuss.
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5.4 Baseline Methods and Our Approach

Based on the characterization of the data, we now discuss how to exploit our findings
for popularity prediction. We use three previously proposed prediction methods as
baselines for comparison. These baselines were presented in Chapter 2. For the sake
of clarity, the baselines are here re-discussed with more details in order to provide a
better understanding of our results. We start this section by discussing existing state
of the art solutions used as baselines in our experimental study. We then discuss our
proposed model (Section 5.4.2). Finally, we discuss how cross-validation and parameter
tuning is performed (Section 5.4.3).

5.4.1 Baseline Methods

One of the simplest prediction models, the Szabo-Huberman (SH) model [129], defines
one single feature for each page3, which is the number of visits measured up to the
reference time t

r

. Using t
r

= 1 hour, the SH model represents a single page as x
p,1h

=<

v
p,1h

>. The SH model thus makes use of the following linear relation to provide
predictions:

log(1 + v

tt

) = log(1 +X

tr

)✓.

Using linear regression, the parameter vector ✓ (with only one cell in this case -
✓), is solved by minimizing:

min

✓

||log(1 +X

tr

)✓ � log(1 + v

tt

)||22,

where || · ||22 is the squared l2 � norm. The log transform is required given the linear
correlations between log(1 + v

tr

) and log(1 + v

tt

) unveiled by the authors. The goal of
this objective function minimizes the sum of squared errors on the log transformed data.
We shall make use of the same objective since it is the one defined in the Predictive
Analytics Challenge. However, we do note that in order to provide prediction in non-
log transformed values, the authors suggest changing the linear regression objective by
one based on the relative error, that is:

min

✓

||(X
tr

✓ � v

tt

) � v�1
tt

||22.

3The model was originally proposed for YouTube videos and Digg news.
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where the inverse of a vector is defined as the cell-wise inverse, while � is the cell-wise
product (e.g., x � y =< x1y1, ..., xn

y
n

>).

Pinto et al. [110] extended the SH model by incorporating the whole history of
the number of visits to the vector x

p,tr

. Using 5-minute time windows, the vector is
defined as:

x

p,tr

=< v
p,5min

, v
p,10min

, v
p,15min

, · · · , v
p,55min

, v
p,1h

> .

Defining v

p,tr

as the vector of visits measured in fixed length time windows (e.g.,
5 minutes)4, the model above can be re-written as: x

p,tr

= v

p,tr

.

The same authors proposed a second model, called the MRBF model, which
extends the set of features of each page by adding distance features. Such distance
features, measured using Radial Basis Functions5, are computed between the vector
v

p,tr

and a fixed number C of vectors for other pages, randomly selected from the
training set. To avoid over-fitting, the authors suggest using ridge regression on the
MRBF model. Both the ML and MRBF models were originally evaluated in terms of
the relative errors, and not in terms of the log based regression as we do here.

Our last baseline is the model proposed by Castillo et al. [18]. In a very similar
approach to the SH model, the authors also made use of a linear regression on log
scales. However, instead of using one visit feature, the authors also explored social
engagement features. Thus, a possible representation for a news page is:

x

p,1h

=< v
p,1h

, f
p,1h

, m
p,1h

> .

In addition to these features, the authors also added other features, such as the
entropy of tweets related to the news page. Since such features are unavailable in our
dataset, we leave them out of the definition of the model. Finally, to mitigate issues
of multi-collinearity, that is, correlation between predictors in the model, the authors
suggest representing each page as:

x

p,1h

=< v2
p,1h

, f 2
p,1h

, m2
p,1h

, v
p,1h

f
p,1h

, v
p,1h

m
p,1h

, f
p,1h

m
p,1h

> .

Since this model was initially proposed for news websites, we shall simply refer to it as
the News model.

4The model presented by Pinto et al. [110] defines the amount of visits on each time window (v
i

)
not as cumulative (total views up to the window) as we do here, but actually as the amount of views
gained in that window (v

i

� v

i�1 in our notation). We found that using cumulative values lead to
better results in terms of root mean squared error, thus we maintain our definition.

5
RBF (x,y) = e

||x�y

� ||22 , where � is an input parameter.
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5.4.2 Our Approach

Our approach combines the ideas described in the previous section with new features
not explored by previous work. Moreover, as a novelty aspect, we make use of trend
features extracted via clustering of visit time series. We first describe the features
we explore without considering these popularity trends (Section 5.4.2.1). Later, we
discuss how we extract popularity trends and extend our model to include the distances
between the popularity curve already observed of the page that is target of prediction
and the previously identified trends (Section 5.4.2.2).

5.4.2.1 Mixed Model

We borrow some of the ideas of the baselines by exploring the following temporal
features for each page: (1) the time series of the number of visits to a page (each
observation is recorded at each 5-minute time windows) - v

p,tr

; (2) two time series of
user engagement which measure the number of Facebook likes - f

p,tr

, and the number
of Twitter mentions - m

p,tr

; (3) a time series of the average time each user spends on
the page - a

p,tr

; (4) the weekday (e.g., Monday to Sunday) and hour (e.g., 0 to 23)
the page was created - d

p

and c
t

. Moreover, we explore a single non-temporal feature
which is the host to which each page belongs - h

p

.

We encode the weekday and hour the page was created, as well as its host in
a binarized manner. That is, each value is represented by a sparse vector, where
one cell, representing the given weekday (hour or host) has a value of one, and all
other cells are zeroes. For example, a page uploaded on a Tuesday is represented as
< 0, 1, 0, 0, 0, 0, 0 >. Thus, we represent the weekday in which a page was uploaded as
a vector d

p

, the hour as c

p

, and the host as h

p

. In this sense, each host, day of the
week, and hour of the day become an indicator variable.

With these features, one possible manner of representing each page is:

x

p,1h

=< v

p,tr

,f
p,tr

,v
p,tr

,a
p,tr

,d
p,tr

, c
p,tr

,h
p,tr

> .

However, to mitigate multi-collinearity issues and to capture the behavior of hosts with
non-linear popularity growth (discussed in the next section), we represent each page
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as:

x

p,1h

=<v

p,tr

,f
p,tr

,v
p,tr

,a
p,tr

,v
p,tr

� v
p,tr

,f
p,tr

� f
p,tr

,m
p,tr

�m
p,tr

,a
p,tr

� a
p,tr

,

v

p,tr

� f
p,tr

,v
p,tr

�m
p,tr

,v
p,tr

� a
p,tr

,f
p,tr

�m
p,tr

,

f

p,tr

� a
p,tr

,m
p,tr

� a
p,tr

,v
p,tr

� v
p,tr

� v
p,tr

,

f

p,tr

� f
p,tr

� f
p,tr

,m
p,tr

�m
p,tr

�m
p,tr

,a
p,tr

� a
p,tr

� a
p,tr

,d
p,tr

, c
p,tr

,h
p,tr

> .

We refer to this model as the Mixed model. The � multiplications capture the
same intuition as that of squaring the sum (v

i

+ f
i

+ m
i

)

2 for each time window.
Moreover, we also add the cubic terms (e.g., v3

i

) for the number of visits, Facebook
likes, Twitter mentions and active time. To learn the model parameters we solve an
linear regression task for each response variable.

5.4.2.2 Mixed-Trend Model

In order to capture the trend of each time series, we incorporate to the Mixed model
features that capture the distance of the popularity curve of the target page measured
during the reference time t

r

to given trends, which were previously identified using
an unsupervised learning method. Specifically, we experiment with K-Means cluster-
ing [62] and KSC clustering [146] to extract such trends from the training set. For
each response variable, we define a matrix T

tr

, where each row is the time series of the
response for a given page:

t

p,tr

=< �5min

, �10min

, · · · , �55min

, �1h

> .

With the reference time of 1 hour, and a window length equal to 5 minutes, this matrix
will have |P| rows and 12 columns. Each entry of the matrix, �

i

, represents the number
visits gained in that time window, i.e., �

i

= v
i

� v
i�1. We note that, using this matrix

to extract trends is a common approach in the literature [107,146].
The time series trends can be considered as the most common shapes of the

different vectors t

p,tr

. Different techniques will extract shapes in different manners
from a given training set. For example, the K-Means algorithm will group time series
into k clusters according to the squared Euclidean distance:

dist
km

(t,o)
km

= ||t� o||22.

As we have discussed in Chapter 2 and re-iterate here, the KSC algorithm groups
times series based on a distance metric that is invariant of scale in the popularity
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axis and shifts in the time axis [146]. That is, two pages that have their popularities
evolving according to similar processes (e.g., linear growth) will be assigned to the
same cluster by KSC, regardless of the popularity values. Also, two pages that have
stable popularity over time except for a peak in a single window will also be clustered
together, regardless of the time when the peak occurred and the peak value. KSC is
mostly a direct translation of the K-Means algorithm, except for the distance metric
used, which is defined as:

dist
ksc

(t,o) = min

↵,q

||t� ↵o(q)||2
||o||2 .

where o(q) is the operation of shifting vector o by q units. For a fixed q, the exact
solution for ↵, obtained by computing the minimum of dist

ksc

, is: ↵ =

t

0
o(q)

||t0||2 . The
optimal value of q is found by considering all integers in the range of the size of the
time series vectors (e.g., (-12,12)).

It is important to note that, unlike KSC, K-Means is not scale invariant. Thus,
in order to make the method invariant in terms of popularity we apply the following
transforms. Initially, we apply a log(1 + T

tr

) to the time series matrices. Secondly, we
z-normalize (zero mean normalization) each log transformed time series vector. While
this approach will keep the popularity invariance, since time series will have values in
the same range, it does not tackle the time shifting invariant, as KSC does. We also
note that both K-Means and KSC receive k, the target number of clusters, as input.

Given a new page p for which a prediction is to be made, we can compute the
distances between its popularity time series during the reference time t

r

and each
previously identified trend by simply computing the distances from t

p,tr

to each cluster
center (considering a fixed time window equal to t

r

), after clustering in the training set
is done using either K-Means or KSC. Thus, for each clustering method we can define
a vector s

p,tr

which includes the distances to the extracted trends. The Mixed-Trend
model is thus the incorporation of these distance vectors into the Mixed model.

5.4.3 Evaluation Methodology

The results discussed in this section are computed on the training set of the Predictive
Analytics Challenge dataset, which consists of 30,000 news pages from 100 different
hosts, each host with exactly 300 pages. We did not made use of the test set since the
response variables Y

tt

are not publicly available on the test set. Instead, we evaluate
our models by employing Generalized Cross Validation, as described below.

For the SH, ML, News and Mixed models, model parameters were learnt by the
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regression method, i.e., by minimizing the sum of squared errors on the log transformed
data. However, for the MRBF model, the parameter � (used by the MRBF function),
the regularization parameter of the ridge regression as well as the number C of pages
selected to build Radial Basis Functions must be determined. Similarly, the number of
clusters k must be given as input for the Mixed-Trend model.

Ideally, a temporal split of training and test sets would be performed to determine
these parameters. However, given that the upload date of each page is not provided in
the Predictive Analytics dataset, we decided to employ Generalized Cross Validation
(GCV) [62] to define the best parameter values. GCV is equivalent to leave-one-out
cross validation (LOOCV). In LOOCV, one page per time is used to evaluate a model
which is trained on the rest of the pages. Thus, for each page, we computed the squared
error between the predicted and real values. GCV computes the same squared error for
each page without the need of manually splitting the dataset into train and test sets.
Specifically, only one model is trained for the whole dataset, and the GCV computes
the LOOCV error for every page 6. When comparing different model parameters, we
measure the root mean squared error (RMSE) between the predicted and actual value
for each page. The parameters with lowest RMSE were chosen.

For the Mixed-Trend model, we searched for the best value of k (i.e., number
of clusters) in the [1, 100] range, finding it to be k=50 (for both K-Means an KSC
algorithms) in all cases. For the MRBF model, we search for values of � and of the ridge
regularization parameter considering the following options: {0.001, 0.01, 0.1, 1, 10, 100,
1000}. We also searched for the best value of C out of the options: {10, 50, 100}. The
best parameter values were adopted in each case. When performing clustering, we
make use of the entire dataset since we found that isolating a single page using the
traditional LOOCV has little to no effect on our results.

We finally note that the SH, ML and MRBF models are defined for a single
engagement measure (e.g., number of visits). In order to evaluate these models for
different engagement measures, we make the appropriate changes to the input features
(e.g., changing from v

p,tr

to f
p,tr

or m
p,tr

in SH model).

5.5 Results

We now discuss the prediction results in terms of the root mean squared error (RMSE)
when measured using generalized cross validation (GCV). The results produced by all
models, when using the best parameter values as discussed previously, are shown in

6The following website provides a good summary of GCV http://robjhyndman.com/
researchtips/crossvalidation/

http://robjhyndman.com/researchtips/crossvalidation/
http://robjhyndman.com/researchtips/crossvalidation/
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Table 5.2: Number of Features |F| and Prediction Results (Root mean squared error
- RMSE)

SH ML MRBF News Mixed Mixed-Trend Mixed-Trend Mixed-Trend
KSC K-Means K-Means on Y

tt

|F| 1 12 22 up to 112 60 347 397 397 397
Visits 1.355 1.299 1.088 1.267 1.005 0.991 0.983 0.989
Facebook Likes 1.835 1.793 1.534 1.525 1.390 1.383 1.380 1.378
Twitter Mentions 0.863 0.852 0.779 0.786 0.669 0.667 0.667 0.666

Table 5.2. On the table we also show the number of features of each model. Moreover,
in last column of the table we also show the RMSE values obtained on the challenge
server, that is, when measuring RMSE based on Y

tt

and not using GCV.
Considering only the baselines, we find that the SH model performs worse than

all other methods, whereas the MRBF model is the best baseline, except for predict-
ing Facebook likes, for which the News model is the best baseline. More importantly,
our proposed Mixed and Mixed-Trend models greatly outperform all baselines, for all
three response variables. Moreover, by exploiting the distances to previously identified
trends, the Mixed-Trend models, using either KSC or K-Means to extract the trends
from the training set, also provides improvements over the simpler Mixed model, par-
ticularly for predicting number of visits. Compared to the baselines, the improvements
of the Mixed-Trend models vary from 15% (for Twitter mentions against the MRBF
model) to 27% (for the number of visits against the SH model). Finally, we note only
marginal differences in RMSE (if any) between extracting trends using K-Means or
KSC.

Before concluding, it is important to discuss whether over-fitting is occurring in
our models. We argue that this is not the case based on three results. Initially, from
the last column of Table 5.2 we can see that the results for the Mixed-Trend K-Means
model on the evaluation server test set is very close (and sometimes even smaller)
than the one measured by GCV. Secondly, we also trained models using Ridge and
Lasso regression [62], finding no improvements over the ordinary least squares linear
regression we employ. Finally, we point out the result by Stone [127], which shows that
minimizing cross validated errors is asymptotically equivalent to minimizing Alkaike’s
Information Criterion (AIC). A similar result exists for linear models when using the
Bayesian Information Criterion [124] (BIC). In order to avoid over-fitting, both AIC and
BIC penalize more complicated models. Thus, we also compared AIC and BIC values
finding that the Mixed-Trend models always performs better than baseline approaches.
These results indicate that on the Predictive Analytics Challenge dataset no over-fitting
is occurring. However, it is impossible to generalize such a finding to any dataset.
Thus, we point out that the use of regularized regression may be necessary on different
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datasets.

5.6 Summary

We have presented a novel model that exploits popularity time series (trends) and
linear regression to predict user engagement on content. Three variations of the model
were presented — Mixed, Mixed-Trend KSC and Mixed-Trend K-Means — together
with a data characterization that motivates their design. Our results show that our
best model, the Mixed-Trend K-Means, provides gains in prediction accuracy ranging
from 15% to 27% when compared with state of the art approaches7.

In the next chapter we further explore the popularity prediction task, return-
ing our focus on user generated content. Unlike news, UGC has no clear prediction
deadlines. More importantly, UGC content can exhibit more complex growth patterns.
Such properties asks for a special treatment of the reference and target times. Thus,
our discussion on the next chapter will address the tradeoff between how early vs how
accurate can we predict the popularity of a piece of content. Our solution for this
tradeoff, called TrendLearner, builds upon our results on this chapter. That is, we
continue to explore popularity trends in order to develop accurate prediction models.

7We note that all of our source code is available at: http://github.com/flaviovdf/
ecmlpkdd-analytics-challenge-2014.

http://github.com/flaviovdf/ecmlpkdd-analytics-challenge-2014
http://github.com/flaviovdf/ecmlpkdd-analytics-challenge-2014




Chapter 6

Early Prediction of Popularity
Trends of User Generated Content

In this chapter we present our study on predicting the popularity of user generated
content (UGC). As we have motivated in Chapter 1, popularity prediction is a valuable
task to content providers, advertisers, as well as social media researchers. However,
specially in the UGC setting, it is also a challenging task due to the various factors
factors that affect content popularity in social systems. Thus, in this chapter we focus
on the problem of predicting the popularity trend of a piece of UGC (object) as early
as possible. Unlike our work on Chapter 5, we explicitly address the inherent tradeoff
between prediction accuracy and remaining interest in the object after prediction, since,
to be useful, accurate predictions should be made before interest has exhausted. This
tradeoff is inherent in the UGC setting, where, different from the news pages, a clear
definition of reference and target times are not determined by stakeholders of the
content. Moreover, given the heterogeneity in popularity dynamics across objects, this
tradeoff has to be solved on a per-object basis, making the prediction task harder. We
tackle this problem with a novel two-step learning approach in which we: (1) extract
popularity trends from previously uploaded objects, and then (2) predict trends for
newly uploaded content.

This chapter will be the last one discussing RG2, popularity prediction. Starting
from the next Chapter 7, we shall shift our focus to mining user activities and how
they relate to popularity. Nevertheless, the models we propose to model and mine
user activities can also be used for popularity prediction if need be. However, they do
not dead with the tradeoff between prediction accuracy and remaining interest in the
object as is done in this chapter.

93
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6.1 Introduction

The success of Internet applications based on user generated content (UGC)1 has mo-
tivated questions such as: How does content popularity evolve over time? What is
the potential popularity a piece of content will achieve after a given time period?
How can we predict popularity evolution of a particular piece of UGC? For example,
from a system perspective, accurate popularity predictions can be exploited to build
more cost-effective content organization and delivery platforms (e.g., caching systems,
CDNs). They can also drive the design of better analytic tools, a major segment nowa-
days [83,153], while online advertisers may benefit from them to more effectively place
contextual advertisements. From a social perspective, understanding issues related to
popularity prediction can be used to better understand the human dynamics of con-
sumption. Moreover, being able to predict popularity on an automated way is crucial
for marketing campaigns (e.g. created by activists or politicians), which increasingly
often use the Web to influence public opinion.

Challenges: However, predicting the popularity of a piece of content, an object,
in a social system is a very challenging task. This is mostly due to the various phenom-
ena affecting the popularity prediction of social media – which were observed on the
datasets we use (as well as others) [91, 152] – as well as the diminishing interesting in
objects over time, which implies that popularity predictions must be timely to capture
user interest and be useful in real work settings. Both challenges can be summarized
as follows:

1. Due to the easiness with which UGC can be created, many factors can affect an
object’s popularity. Such factors include, for instance, the object’s content, the
social context in which it is inserted (e.g., social neighborhood or influence zone of
the object’s creator), the mechanisms used to access the content (e.g., searching,
recommendation, top-lists), or even an external factor, such as a hyperlink to the
content in a popular blog or website. These factors can cause spikes in the surge
of interest in objects, as well as information propagation cascades which affect the
popularity trends of objects.

2. To be useful in a real scenario, a popularity prediction approach must identify
popularity trends before the user interest in the object has severely diminished. To
illustrate this point, Figure 6.1 shows the popularity evolution of two YouTube
videos: the video on the left receives more than 80% (shaded region) of all views
received during its lifespan in the first 300 days since upload, whereas the other
video receives only about half of its total views in the same time frame. If we were

1YouTube, Flickr, Twitter, and so forth
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Figure 6.1: Popularity Evolution of Two YouTube Videos.

to monitor each video for 300 days, most potential views of the first video would
be lost. In other words, not all objects require the same monitoring period, as
assumed by previous work, to produce accurate predictions: for some objects, the
prediction can be made earlier. Thus, the tradeoff should be solved on a per-object
basis, which implies that determining the duration of the monitoring period that
leads to a good solution of the tradeoff for each object is part of the problem.

These challenges set UGC objects apart from more traditional web content. For
instance, news media [18] tends to have clear definitions of monitoring periods, say
predicting the popularity of news after one day using information from the first hour
after upload. This is mostly due to the timely nature of the content, which is reflected
in the popularity trends usually followed by news media (see Chapter 3) – interest is
usually concentrated in a peak window (e.g., day) and dies out rather quickly. Thus,
mindful of the challenges above, we here tackle the problem of UGC popularity trend
prediction. That is, we focus on the (hard) task of predicting popularity trends. Trend
prediction can help determining, for example, if an object will follow a viral pattern
(e.g., Internet memes) or will continue to gain attention over time (e.g., music videos
for popular artists). Moreover, we shall also show that, by knowing popularity trends
beforehand, we can improve the accuracy of models for predicting popularity measures
(e.g., hits). Thus, by focusing on predicting trends, we fill a gap in current research
since no previous efforts has effectively predicted the popularity trend of UGC taking
into account challenges (1) and (2).

We should stress that one key aspect distinguishes our work from previous ef-
forts to predict popularity [4, 18, 81, 110, 129, 150] – we explicitly address the inherent
tradeoff between prediction accuracy and how early the prediction is made, assessed in
terms of the remaining interest in the content after prediction. All previous popularity
prediction efforts considered fixed monitoring periods for all objects, which is given as
input. We refer to this problem as early prediction.
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In terms of applications, knowing that an object will be popular early on can help
advertisers to plan out specific revenue models [55]. Such knowledge can also help out
on geographic content sharding [39] for better content delivery. On the other hand,
being aware that an object will not be popular at all, as early as possible, allow low
access content to be tiered down to lower latency servers/geographic regions, whereas
advertisers can use this knowledge to avoid bidding for ads in such content. Finally,
early prediction is of utmost importance to content producers – knowing whether a
piece of content will be follow a certain trend can help in their promotion strategies
and in the creation of new content.

TrendLearner: We tackle this problem with a novel two-step combined
learning approach. First, we identified popularity trends, expressed by popularity
timeseries, from previously uploaded objects. Then, we combine novel time series clas-
sification algorithms with object features for predicting the trends of new objects. This
approach is motivated by the intuition that it might be easier to identify the popularity
trend of an object if one has a set of possible trends as basis for comparison. More
important, we propose a new trend classification approach, namely TrendLearner,
that tackles the aforementioned tradeoff between prediction accuracy and remaining
interest after prediction on a per-object basis. The idea here is to monitor newly up-
loaded content on an online basis to determine, for each monitored object, the earliest
point in time when prediction confidence is deemed to be good enough (defined by
input parameters), producing, as output, the probabilities of each object belonging
to each class (trend). Moreover, unlike previous work, TrendLearner also com-
bines the results from this classifier (i.e., the probabilities) with a set of object related
features [44], such as category and incoming links, building an ensemble learner.

In sum, our main contributions include:

1. The proposal of TrendLearner, a new effective and efficient popularity trend
classification method that considers multiple classes, represented by cluster cen-
troids, and combines class probabilities with features commonly associated with
UGC objects to build a more effective trend predictor;

2. The definition of novel metrics related to prediction accuracy and how early and
biased such predictions are. TrendLearner optimizes both metrics, achieving
better results than the baselines;

3. The use of TrendLearner to improve the prediction of popularity metrics (e.g.,
number of views), with improvements over the baselines of around 33%, at least.

The rest of this chapter is organized as follows. Next section discusses related
work. We state our target problem in Section 6.2, and present our approach to solve it in
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Section 6.3. We introduce the metrics used to evaluate our approach in Section 6.4. Our
main experimental results are discussed in Section 6.5. Section 6.6 offers conclusions
and directions for future work.

6.2 Problem Statement

The early popularity trend prediction problem can be defined as follows. Given a train-
ing set of previously monitored user generated objects (e.g., YouTube videos or tweets),
Dtrain, and a test set of newly uploaded objects Dtest, do: (1) extract popularity trends
from Dtrain; and (2) predict a trend for each object in Dtest as early and accurately
as possible, particularly before user interest in such content has significantly decayed.
User interest can be expressed as the fraction of all potential views a new content
will receive until a given point in time (e.g., the day when the object was collected).
Thus, by predicting as early as possible the popularity trend of an object, we aim at
maximizing the fraction of views that still remain to be received after prediction.

Note that there is a tradeoff between prediction accuracy and the remaining frac-
tion of views: it is expected that the longer we monitor an object, the more accurately
we can predict its popularity trend; but often this would imply a reduction of the re-
maining interest in the content. Determining the earliest point in time when prediction
can be made with reasonable accuracy is an inherent challenge of the early popularity
prediction problem, given that it must be addressed on a per-object basis. In partic-
ular, we here treat it as a multi-class classification task, where the popularity trends
automatically extracted from Dtrain (step 1) represent the classes into which objects in
Dtest should be grouped.

Table 6.1 summarizes the notation used throughout the chapter. Each object d 2
Dtrain is represented by an n-dimensional time series vector s

d

=< p
d,1, pd,2, · · · , p

d,n

>,
where p

d,i

is the popularity (i.e., number of views) acquired by d during the ith time
window after its upload. Intuitively, the duration of a time window w could be a
few hours, days, weeks, or even months. Thus, vector s

d

represents a time series of
the popularity of a piece of content measured at time intervals of duration w (fixed
for each vector). New objects in Dtest are represented by streams, ŝ

d

, of potentially
infinite length (̂s

d

=< p
d,1, pd,2, · · · ). This captures the fact that our trend predic-

tion/classification method is based on monitoring each test object on an online basis,
also determining when a prediction with acceptable confidence can be made (see Sec-
tion 6.3.2). Note that a vector can be seen as a contiguous subsequence of a stream.
Note also that the complete dataset is referred to as D = Dtrain

SDtest.
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Table 6.1: Notation. Vectors (x) and matrices (X), in bold, are differentiated by
lower and upper cases. Streams (x̂) are differentiated by the hat accent (̂ ). Sets (D)
are shown in fancy letters and variables (d) are shown in regular lower case letters,
respectively.

Symbol Meaning Example

D dataset of UGC content YouTube videos
Dtrain training set -
Dtest testing set -
d a piece of content or object video
D

i

cluster/class/trend i -
cD

i

centroid of cluster/class i -
s

d

time series vector for object d s

d

=< p
d,1, · · · , p

d,n

>
ŝ

d

time series stream for object d ŝ

d

=< p
d,1, , · · ·

p
d,i

popularity of d at i-th window number of views
s

d

(i) index operator < 7, 8, 9 > (2) = 8

s

d

(i : j) slicing operator < 7, 8, 9 > (2 : 3) =< 8, 9 >
S matrix with set of time series all time series

6.3 Our Approach

We here present our solution to the early popularity trend prediction problem. We
introduce our trend extraction approach (Section 6.3.1), present our novel trend classi-
fication method, TrendLearner (Section 6.3.2), and discuss practical issues related
to the joint use of both techniques (Section 6.3.3).

6.3.1 Trend Extraction

To extract temporal patterns of popularity evolution (or trends) from objects in Dtrain,
we employed the time series clustering algorithm called K-Spectral Clustering (KSC)
as in Chapter 3. We note that the authors of the KSC algorithm [146] are focused
mainly on the time series clustering task, aiming at studying temporal patterns of online
content, and not on predicting popularity trends based on information collected during
a monitoring period. Thus, the joint use of the KSC algorithm with TrendLearner
(Section 6.3.2) to predict as early and accurately as possible popularity trends is a
novel contribution of this work. Recall from Chapter 2 that KSC is mostly a direct
translation of K-Means and that each cluster’s centroid defines the trend that objects
in the cluster (mostly) follow. Also, each cluster defines a class in our task of predicting
trends for new objects (Section 6.3.2). Thus, we refer to the discovered trends (clusters)
as classes.
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Before introducing our trend classification method, we make the following obser-
vation that is key to support the design of the proposed approach: each trend, as defined
by a centroid, is conceptually equivalent to the notion of time series shapelets [148]. A
shapelet is informally defined as a time series subsequence that is in a sense maximally
representative of a class. As argued in [148], the distance to the shapelet can be used
to classify objects with more accuracy and much faster than state-of-the-art classifiers.
Thus, by showing that a centroid is a shapelet, we choose to classify a new object based
only on the distances between the object’s popularity time series up to a monitored
time and each cluster’s centroid.

This is one of the points where our approach differs from the method proposed
in [27], which uses the complete Dtrain as reference series, classifying an object based
on the distances between its time series and all elements of each cluster. Given |Dtrain|
objects in the training set and k clusters (with k << |Dtrain|), our approach is faster
by a factor of |Dtrain|

k

.

Definition: For a given class D
i

, a shapelet cD
i

is a time series subsequence
such that: (1) dist(cD

i

, s
d

)  �, 8s
d

2 D
i

; and (2) dist(cD
i

, s
d

0
) > �, 8s

d

0 /2 D
i

, where
� is defined as an optimal distance for a given class. With this definition, a shapelet
can be shown to maximize the information gain of a given class [148], being thus the
most representative time series of that class.

We argue that, by construction, a centroid produced by KSC is a shapelet with
� being the distance from the centroid to the time series within the cluster that is
furthest away from its centroid. Otherwise, the time series that is furthest away would
belong to a different cluster, which contradicts the KSC algorithm. This is an intu-
itive observation. Note that a centroid is a shapelet only when using K-Means based
approaches, such as KSC, to define class labels. In the case of learning from already
labeled data a shapelet finding algorithms [148] should be employed.

6.3.2 Trend Prediction

Let D
i

represent class i, previously learned from Dtrain. Our task now is to create a
classifier that correctly determines the class of a new object as early as possible. We do
so by monitoring the popularity acquired by each object d (d 2 Dtest) since its upload
on successive time windows. As soon as we can state that d belongs to a class with
acceptable confidence, we stop monitoring it and report the prediction. The heart of
this approach is in detecting when such statement can be made.
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6.3.2.1 Probability of an Object Belonging to a Class

Given a monitoring period defined by t
r

time windows, our trend prediction is funda-
mentally based on the distances between the subsequence of the stream ŝ

d

representing
d’s popularity curve from its upload until t

r

, ŝ
d

(1 : t
r

), and the centroid of each class.
To respect shifting invariants, we consider all possible starting windows t

s

in each cen-
troid time series when computing distances. That is, given a centroid cD

i

, we consider
all values from 1 to |cD

i

|� t
r

, where |cD
i

| is the number of time windows in cD
i

. Specif-
ically, the probability that a new object d belongs to class D

i

, given D
i

’s centroid, the
monitoring period t

r

and a starting window t
s

, is:

p(̂s
d

2 D
i

| cD
i

; t
r

, t
s

) / exp(�dist(̂s
d

(1 : t
r

), cD
i

(t
s

: t
s

+ t
r

� 1))) (6.1)

where (x:y) (x  y) is a moving window slicing operator (see Table 6.1). As in [27,
29, 110], we assume that probabilities are inversely proportional to the exponential
function of the distance between both series, given by function dist (The KSC distance
function, see Chapter 2), normalizing them afterwards to fall in the 0 to 1 range (here
omitted for simplicity). Figure 6.2 shows an illustrative example of how both time
series would be aligned for probability computation2.

ŝd
cDi

ts
ts + tr � 1

Figure 6.2: Example of Alignment of Time Series (dashed lines) for Probability Com-
putation.

With Equation 6.1, we could build a classifier that simply picks the class with
highest probability. But this would require t

s

and t
r

to be fixed. As shown in Figure 6.1,
different time series may need different monitoring periods (different values of t

s

and
t
r

), depending on the required confidence.
Instead, our approach is to monitor an object for successive time windows (in-

creasing t
r

), computing the probability of it belonging to each class at the end of each
window. We stop when the class with maximum probability exceeds a class-specific
threshold, representing the required minimum confidence on predictions for that class.
We detail our approach next, focusing first on a single class (Algorithm 1), and then
generalizing it to multiple classes (Algorithm 2).

2In case |cDi | < |̂s
d

(1 : t

r

)|, we try all possible alignments of cDi with ŝ

d

(1 : t

r

).
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Algorithm 1 Define when to stop computing probability of object ŝ

d

belonging to
class D

i

, based on minimum confidence ✓
i

, and minimum and maximum monitoring
periods �

i

and �max.
1: function PerClassProb(̂s

d

, cD
i

, ✓

i

, �

i

, �

max)
2: p 0

3: t

r

 �

i

� 1 . Start at previous window
4: while p < ✓

i

do . Extend monitoring period
5: t

r

 t

r

+ 1 . Move to next current window
6: if t

r

> �

max

then . Monitoring period ended
7: return 0, �

max

8: end if

9: p AlignComputeProb(̂s

d

, cD
i

, ✓

i

, t

r

)

10: end while

11: return t

r

, p . Return monitoring period and probability
12: end function

13: function AlignComputeProb(̂s
d

, cD
i

, ✓

i

,t
r

)
14: t

s

 1; p 0

15: while (t
s

 |cD
i

|� t

r

) and (p < ✓

i

) do

. Iterate over possible values of t

s

, aligning both series
16: p

0 / exp(�dist(̂s

d

(1 : t

r

), cD
i

(t

s

: t

s

+ t

r

� 1)))

17: p max(p, p

0
)

18: t

s

 t

s

+ 1

19: end while

20: return p

21: end function

Algorithm 1 shows how we define when to stop computing the probability for a
given class D

i

. The algorithm takes as input the object stream ŝ

d

, the class centroid
cD

i

, the minimum confidence ✓
i

required to state that a new object belongs to D
i

, as
well as �

i

and �max, the minimum and maximum thresholds for the monitoring period.
The former is used to avoid computing distances with too few windows, which may
lead to very high (but unrealistic) probabilities. The latter is used to guarantee that
the algorithm ends. We allow different values of �

i

and ✓
i

for each class as different
popularity trends have overall different dynamics, requiring different thresholds3. The
algorithm outputs the number of monitored windows t

r

and the estimated probability
p. The loop in line 4 updates the stream with new observations (increases t

r

), and
function AlignComputeProb computes the probability for a given t

r

by trying all
possible alignments (i.e., all possible values of t

s

). For a fixed alignment (i.e., fixed t
r

and t
s

), AlignComputeProb computes the distance between both time series (line 15)
and the probability of ŝ

d

belonging to D
i

(line 16). It returns the largest probability

3Indeed, initial experiments showed that using the same values of �

i

(and ✓

i

) for all classes produces
worse results.
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Algorithm 2 Define when to stop computing probabilities for each object in Dtest,
considering the centroids of all classes (C

D

), per-class minimum confidence (✓) and
monitoring period (�), and maximum monitoring period (�max).
1: function MultiClassProbs( Dtest, C

D

, ✓, �,�max)
2: t = [0] . Per-object monitoring period vector
3: P = [[0]] . Per-object, per-class probability matrix
4: n

objs

 |Dtest| . Number of objects to be monitored
5: t

r

 min(�) . Init t

r

with minimum �

i

6: while (t

r

 �

max

) and (n

objs

> 0) do

7: for all ŝ

d

2 Dtest

do . Predict class for each object
8: for all cD

i

2 C

D

do . Get centroid of each class
9: p(i) AlignComputeProb(̂s

d

, cD
i

, ✓

i

, t

r

)
10: end for

11: maxp max(p) . Get max. probability and corresponding class for t

r

12: maxc argmax(p)

13: if (maxp > ✓(maxc)) and (t

r

� �(maxc)) then . Stop if maxp and t

r

exceeds per-class thresholds
14: t(d) t

r

. Save current t

r

15: P(d) p . Save current p in row d

16: n

objs

 n

objs

� 1

17: Dtest  Dtest � {ŝ
d

}
18: end if

19: end for

20: t

r

 t

r

+ 1

21: end while

22: return t,P . Return monitoring periods and probabilities
23: end function

representing the best alignment between ŝ

d

and cD
i

, for the given t
r

(lines 17 and
20). Both loops that iterate over t

r

(line 4) and t
s

(line 15) stop when the probability
exceeds the minimum confidence ✓

i

. The algorithm also stops when the monitoring
period t

r

exceeds �max (line 7), returning a probability equal to 0 to indicate that it
was not possible to state the ŝ

d

belongs to D
i

within the maximum monitoring period
allowed (�max).

We now extend Algorithm 1 to compute probabilities and monitoring periods for
all object streams in Dtest, considering all classes extracted from Dtrain. Algorithm
2 takes as input the test set Dtest, a matrix C

D

with the class centroids, vectors ✓

and � with per-class parameters, and �max. It outputs a vector t with the required
monitoring period for each object, and a matrix P with the probability estimates for
each object (row) and class (column), both initialized with 0 in all elements. Given a
valid monitoring period t

r

(line 6), the algorithm monitors each object d in Dtest (line
7) by first computing the probability of d belonging to each class (line 9). It then takes,
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for each object d, the largest of the computed probabilities (line 11) and the associated
class (line 12), and tests whether it is possible to state that d belongs to that class
with enough confidence at t

r

, i.e., whether: (1) the probability exceeds the minimum
confidence for the class, and (2) t

r

exceeds the per-class minimum threshold (line 13).
If the test succeeds, the algorithm stops monitoring the object (line 16), saving the
current t

r

and the per-class probabilities computed at this window in t and P (lines
14-15). After exhausting all possible monitoring periods (t

r

> �max) or whenever the
number of objects being monitored n

objs

reaches 0, the algorithm returns. At this
point, entries with 0 in P indicate objects for which no prediction was possible within
the maximum monitoring period allowed (�max).

Having P, a simple classifier can be built by choosing for each object (row) the
class (column) with maximum probability. The value in t determines how early this
classification can be done. However, we here employ a different strategy, using matrix
P as input features to another classifier, as discussed below. We compare our proposed
approach against the aforementioned simpler strategy in Section 6.5.

6.3.2.2 Probabilities as Input Features to a Classifier

Instead of directly extracting classes from P, we choose to use this matrix as input
features to another classification algorithm, motivated by previous results on the effec-
tiveness of using distances as features to learning methods [29]. Specifically, we employ
an extremely randomized trees classifier [51], as it has been shown to be effective on
different datasets [51], requiring little or no pre-processing, besides producing models
that can be more easily interpreted, compared to other techniques like Support Vec-
tor Machines4. Extremely randomized trees tackle the over fitting problem of more
common decision tree algorithms by training a large ensemble of trees. They work as
follows: 1) for each node in a tree, the algorithm selects the best features for splitting
based on a random subset of all features; 2) split values are chosen at random. The
decision of these trees are then averaged out to perform the final classification. Al-
though feature search and split values are based on randomization, tree nodes are still
chosen based on the maximization of some measure of discriminative power such as
Information Gain, with the goal of improving classification effectiveness.

We extend the set of probability features taken from P with other features asso-
ciated with the objects. The set of object features used depends on the type of UGC
under study and characteristics of the datasets (D). We here use the features shown

4We also used SVM learners, achieving similar results.
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in Table 3.3, combining them with the probabilities in P. We refer to this approach as
TrendLearner.

We note that there are alternative strategies to combine a learner based on Al-
gorithm 2 and one based on the object features. We tried Co-Training [106], which
combines learners based on different input features. However, it failed to achieve better
results than just combining the features, most likely because it depends on feature in-
dependence, which may not hold in our case. We also experimented with Stacking [40],
which yielded similar results as the proposed approach. Nevertheless, either strategy
might be more effective on different datasets or types of UGC, an analysis that we
leave for future work.

6.3.3 Putting It All Together

A key point that remains to be discussed is how to define the input parameters of the
trend extraction approach, that is, the number of clusters k, as well as the parameters
of TrendLearner, namely vectors ✓ and �, �max, and the parameters of the adopted
classifier.

We choose the number of clusters k based primarily on the �
CV

as was done
in Chapter 3. Since our case study is on the same dataset, the choice was of k =

4. Regarding the TrendLearner parameters, we here choose to constrain �max

with the maximum number of points in our time series (100 in our case, as discussed
in Chapter 3). As for vector parameters ✓ and �, a traditional cross-validation in
the training set to determine their optimal values would imply in a search over an
exponential space of values. Moreover, note that it is fairly simple to achieve best
classification results by setting ✓ to all zeros and � to large values, but this would
lead to very late predictions (and possibly low remaining interest in the content after
prediction). Instead, we suggest an alternative approach. Considering each class i

separately, we run a one-against-all classification for objects of i in Dtrain for values of
�

i

varying from 1 till �max. We select the smallest value of �
i

for which the performance
exceeds a minimum target (e.g., classification above random choice, meaning Micro-F1
greater than 0.5), and set ✓

i

to the average probability computed for all class i objects
for the selected �

i

. We repeat the same process for all classes. Depending on the
required tradeoff between prediction accuracy and remaining fraction of views, different
performance targets could be used. Finally, we use cross-validation in the training set
to choose the parameter values for the extremely randomized trees classifier, as further
discussed in Section 6.5.

We summarize our solution to the early trend prediction problem in Algorithm 3.
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Algorithm 3 Our Solution: Trend Extraction and Prediction
1: function TrendExtraction(Dtrain)
2: k  1

3: while �

CV

is not stable do

4: k  k + 1

5: C

D

 KSC(Dtrain

, k)

6: end while

7: Store centroids in C

D

8: end function

9: function TrendLearner(C
D

, Dtrain, Dtest)
10: ✓,�,P

train  LearnParams(Dtrain

,C

D

)

11: TrainERTree(Dtrain

,P

train

S
obj. feats)

12: t,P MultiClassProbs(Dtest

,C

D

,✓,�)

13: return t, P redictERTree(Dtest

,P

S
obj. feats)

14: end function

TrendExtraction
(KSC)

Pop. Time Series
(train)

LearnParams

TrainClassifier
(ERTree)

Obj. Features
(train)

MultiClass
Probs

Use Classifier
(ERTree) Obj. Features (test)

Pop. Time Streams
(test)

Prediction
Results

TrendLearner

Figure 6.3: Pictorial Representation of Our Solution

In particular, TrendLearner works by first learning the best parameter values and
the classification model from the training set (LearnParams and TrainERTrees), and
then applying the learned model to classify test objects (PredictERTrees), taking
the class membership probabilities (MultiClassProb) and other object features as
inputs. A pictorial representation is shown in Figure 6.3. Compared to previous
efforts [27], our method incorporates multiple classes, uses only cluster centroids to
compute class membership probabilities (which reduces time complexity), and combines
these probabilities with other object features as inputs to a classifier, which, as shown
in Section 6.5, leads to better results.

6.4 Evaluation Methodology

As discussed in Section 6.2, an inherent challenge of the early popularity trend predic-
tion problem is to properly address the tradeoff between prediction accuracy and how



106
Chapter 6. Early Prediction of Popularity Trends of User Generated

Content

early the prediction is made. Thus, we evaluate our method with respect to these two
aspects.

We estimate prediction accuracy using the traditional Micro and Macro F1 met-
rics, which are computed from precision and recall. The precision of class c, P (c), is the
fraction of correctly classified videos out of those assigned to c by the classifier, whereas
the recall of class c, R(c), is the fraction of correctly classified objects out of those that
actually belong to that class. The F1 of class c is given by: F1(c) = 2·P (c)·R(c)

P (c)+R(c) . Macro
F1 is the average F1 across all classes, whereas Micro F1 is computed from global
precision and recall, calculated for all classes.

We evaluate how early our correct predictions are made computing the remaining
interest (RI) in the content after prediction. The RI for an object s

d

is defined as the
fraction of all views up to a certain point in time (e.g., the day when the object was
collected) that are received after the prediction. That is, RI(s

d

, t) =

sum(s
d

(t(d)+1:n))
sum(s

d

(1:n))

where n is the number of points in d’s time series, t(d) is the prediction time (i.e.,
monitoring period) produced by our method for d, and function sum adds up the
elements of the input vector. In essence, this metric captures the future potential
audience of s

d

after prediction.
We also assess whether there is any bias in our correct predictions towards more

(less) popular objects by computing the correlation between the total popularity and
the remaining interest after prediction for each object. A low correlation implies no
bias, while a strong positive (negative) correlation implies a bias towards earlier pre-
dictions for more (less) popular objects. We argue that, if any bias exists, a bias
towards more popular objects is preferred, as it implies larger remaining interests for
those objects. We use both the Pearson linear correlation coefficient (⇢

p

) and the
Spearman’s rank correlation coefficient (⇢

s

) [69], as the latter does not assume linear
relationships, taking the logarithm of the total popularity first due to the great skew
in their distribution [22,34].

6.5 Experimental Results

In this section, we present representative results of our trend prediction approach. We
also show the applicability of our approach to improve the accuracy of state-of-the-art
popularity prediction models (Section 6.5.3). Given our focus on user generate content,
we evaluate our TrendLearner approach with the same datasets as the ones used in
Chapter 3, that is, time series of YouTube videos. Also, we use the same four clusters
extracted in that chapter (which were also extracted using the KSC algorithm) as the
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time series trends. See Section 3.4 for details. Our results were computed using 5-fold
cross validation, i.e., splitting the dataset D into 5 folds, where 4 are used as training
set Dtrain and one as test set Dtest, and rotating the folds such that each fold is used
for testing once. As discussed in Section 6.3, trends are extracted from Dtrain and
predicted for videos in Dtest.

Since we are dealing with time series, one might argue that a temporal split of
the dataset into folds would be preferred to a random split, as we do here. However,
we choose a random split because of the following. Regarding the object features used
as input to the prediction models, no temporal precedence is violated, as the features
are computed only during the monitoring period t

r

, before prediction. All remaining
features are based on the distances between the popularity curve of the object until t

r

and the cluster centroids. As we argue below, the same clusters and centroids found
in our experiments were consistently found in various subsets of each dataset, covering
various periods of time. Thus, we expect the results to remain similar if a temporal
split is done. However, a temporal split of our dataset would require interpolations
in the time series, as all of them have exactly 100 points regardless of video age.
Such interpolations, which are not required in a random split, could introduce serious
inaccuracies and compromise our analyses.

We now discuss our trend prediction results, which are averages of 5 test sets
along with corresponding 95% confidence intervals. We here refer to the clusters as
classes. We start by showing results that support our approach of computing class
membership probabilities using only centroids as opposed to all class members, as
in [27] (Section 6.5.1). We then evaluate our TrendLearner method, comparing it
with three alternative approaches (Section 6.5.2).

6.5.1 Are shapelets better than a reference dataset?

We here discuss how the use of centroids to compute class membership probabilities
(Equation 6.1) compare to using all class members [27]. For the latter, the probability
of an object belonging to a class is proportional to a summation over the exponential
of the (negative) distance between the object and every member of the given class.

An important benefit of our approach is a reduction in running time: for a given
object, it requires computing the distances to only k time series, as opposed to the
complete training set |Dtrain|, leading to a reduction in running time by a factor of
|Dtrain|

k

, as discussed in Section 6.3.1. We here focus on the classification effectiveness
of the probability matrix P produced by both approaches. To that end, we consider a
classifier that assigns the class with largest probability to each object, for both matrices.
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Table 6.2: Classification Using Centroids Only vs. Using All Class Members: Averages
and 95% Confidence Intervals.

Monitoring Centroid Whole Training Set

period t
r

Micro F1 Macro F1 Micro F1 Macro F1

1 window .24 ± .01 .09 ± .00 .29 ± .04 .11 ± .01
25 windows .56 ± .02 .52 ± .01 .53 ± .04 .44 ± .08
50 windows .67 ± .03 .65 ± .03 .64 ± .05 .57 ± .09
75 windows .70 ± .02 .68 ± .02 .69 ± .08 .61 ± .12

Table 6.2 shows Micro and Macro F1 results for both approaches, computed for
fixed monitoring periods t

r

(in number of windows) to facilitate comparison. We show
results only for the Top dataset, as they are similar for the Random dataset. Note that,
unless the monitoring period is very short (t

r

=1), both strategies produce statistically
tied results, with 95% confidence. Thus, given the reduced time complexity, using
centroids only is more cost-effective. When using a single window both approaches are
worse than random guessing (Macro F1 = 0.25), and thus are not interesting.

6.5.2 TrendLearner Results

We now compare our TrendLearner method with three other trend prediction
methods, namely: (1) P only: assigns the class with largest probability in P to an
object; (2) P + ERTree: trains an extremely randomized trees learner using P only
as features; (3) ERTree: trains an extremely randomized trees learner using only the
object features in Table 3.3. Note that TrendLearner combines ERTree and P +
ERTree. Thus, a comparison of these four methods allows us to assess the benefits of
combining both sets of features.

For all methods, when classifying a video d, we only consider features of that
video available up until t)(d), the time window when TrendLearner stopped mon-
itoring d. We also use the same best values for parameters shared by the methods,
chosen as discussed in Section 6.3.3. Both Tables 6.3 (for the Top dataset) and 6.4
(for the Random dataset), show the best values of vector parameters � and ✓, selected
considering a Macro-F1 of at least 0.5 as performance target (see Section 6.3.3). These
results are averages across all training sets, along with 95% confidence intervals. The
variability is low in most cases, particular for ✓. Recall that �max is set to 100. Re-
garding the extremely randomized trees classifier, we set the size of the ensemble to 20
trees, and the feature selection strength equal to the square root of the total number of
features, common choices for this classifier [51]. We then apply cross-validation within
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Table 6.3: Best Values for Vector Parameters � and ✓ (Averages and 95% Confidence
Intervals) for the Top Dataset

Top Dataset

D0 D1 D2 D3

✓ .250 ± .015 .257 ± .001 .272 ± .003 .303 ± .006
� 28 ± 16 89 ± 8 5 ± 0.9 3 ± 0.5

Table 6.4: Best Values for Vector Parameters � and ✓ (Averages and 95% Confidence
Intervals) for the Random Dataset

Random Dataset

D0 D1 D2 D3

✓ .250 ± .001 .251 ± .001 .269 ± 0.001 .317 ± 0.001
� 33 ± 0.6 74 ± 2 45 ± 9 17 ± 3

the training set to choose the smoothing length parameter (n
min

), considering values
equal to {1, 2, 4, 8, 16, 32}. We refer to [51] for more details on the parametrization of
extremely randomized trees.

Still analyzing Tables 6.3 and 6.4, we note that classes with smaller peaks (D0 and
D1) need longer minimum monitoring periods �

i

, likely because even small fluctuations
may be confused as peaks due to the scale invariance of the KSC distance metric used
5. However, after this period, it is somewhat easier to determine whether the object
belongs to one of those classes (smaller values of ✓

i

). In contrast, classes with higher
peaks (D2 and D3) usually require shorter monitoring periods, particularly in the Top
dataset, where videos have popularity peaks with larger fractions of views (Table 3.6).
Indeed, by cross-checking results in Tables 3.6, 6.3 and 6.4, we find that classes with
smaller fractions of videos in the peak window (D0 and D1 in Top, and D0, D1 and
D2 in Random) tend to require longer minimum monitoring periods so as to avoid
confusing small fluctuations with peaks from the other classes.

We now discuss our classification results, focusing first on the Micro and Macro
F1 results, shown in Table 6.6 and Table 6.5, for the Top and Random datasets respec-
tivelly. From both tables we can see that TrendLearner consistently outperforms all
other methods in both datasets and on both metrics, except for Macro F1 in the Ran-
dom dataset, where it is statistically tied with the second best approach (P only). In
contrast, there is no clear winner among the other three methods across both datasets.

5Indeed, most of these videos are wrongly classified into either D2 or D3 for shorter monitoring
periods.
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Table 6.5: Comparison of Trend Prediction Methods (Averages and 95% Confidence
Intervals) for the Top Dataset

Top Dataset

P only P+ERTree ERTree TrendLearner

Micro F1 .48 ± .06 .48 ± .06 .58 ± .01 .62 ± .01
Macro F1 .44 ± .06 .44 ± .06 .57 ± .01 .61 ± .01

Thus, combining probabilities and object features brings clear benefits over using ei-
ther set of features separately. For example, in the Top dataset, the gains over the
alternatives in average Macro F1 vary from 7% to 38%, whereas the average improve-
ments in Micro F1 vary from 7% to 29%. Similarly, in the Random dataset, gains
in average Micro and Macro F1 reach up to 14% and 11%, respectively. Note that
TrendLearner performs somewhat better in the Random dataset, mostly because
videos in that dataset are monitored for longer, on average (larger values of �

i

). How-
ever, this superior results comes with a reduction in remaining interest after prediction,
as we discuss below.

We note that the joint use of both probabilities and object features renders
TrendLearner more robustness to some (hard-to-predict) videos. Recall that, as
discussed in Section 6.3.2.1, Algorithm 2 may, in some cases, return a probability equal
to 0 to indicate that a prediction was not possible within the maximum monitoring
period allowed. Indeed, this happened for 1% and 10% of the videos in the Top and
Random datasets, respectively, which have popularity curves that do not closely follow
any of the extracted trends. The results for the P only and P + ERTree methods shown
in Tables 6.6 and 6.5 do not include such videos, as these methods are not able to do
predictions for them (since they rely only on the probabilities). However, both ERTree
and TrendLearner are able to perform predictions for such videos by exploiting the
object features, since at least the video category and upload date are readily available
as soon as the video is posted. Thus, the results of these two methods in Tables 6.6
and 6.5 contemplate the predictions for all videos6.

We now turn to the other side of the tradeoff and discuss how early the predictions
are made. These results are the same for all four aforementioned methods as all of them
use the prediction time returned by TrendLearner. For all correctly classified videos,
we report the remaining interest RI after prediction, as well as the Pearson (⇢

p

) and
6For the cases with probability equal to 0, the predictions of TrendLearner and ERTree were

made with t

r

=�

max, when Algorithm 2 stops. Since we set �

max=100, those predictions were made at
the last time window, using all available information to compute object features. Nevertheless, note
that, in those cases, the remaining interest (RI) after prediction is equal to 0.
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Table 6.6: Comparison of Trend Prediction Methods (averages and 95% confidence
intervals) for the Random Dataset

Random Dataset

P only P+ERTree ERTree TrendLearner

Micro F1 .67 ± .02 .62 ± .01 .65 ± .01 .71 ± .01
Macro F1 .69 ± .02 .63 ± .01 .63 ± .01 .70 ± .01
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Figure 6.4: Remaining Interest (RI) and Correlations Between Popularity and RI for
Correctly Classified Videos.

Spearman (⇢
s

) correlation coefficients between remaining interest and (logarithm of)
total popularity (i.e., total number of views), as informed in our datasets.

Figure 6.4(a) shows the complementary cumulative distribution of the fraction
of RI after prediction for both datasets, while Figures 6.4(b) and 6.4(c) (log scale on
the y-axis) show the total number of views and the RI for each video in the Top and
Random datasets, respectively. All three graphs were produced for the union of the
videos in all test sets. Note that, for 50% of the videos, our predictions are made
before at least 68% and 32% of the views are received, for Top and Random videos,
respectively. The same RI of at least 68% of views is achieved for 21% of videos in
the Random dataset. In general, for a significant number of videos in both datasets,
our correct predictions are made before a large fraction of their views are received,
particularly in the Top dataset.

We also point out a great variability in the duration of the monitoring periods
produced by our solution: while only a few windows are required for some videos, others
have to be monitored for a longer period. Indeed, the coefficients of variation of these
monitoring periods are 0.54 and 1.57 for the Random and Top datasets, respectively.
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This result emphasizes the need for choosing a monitoring period on a per-object basis,
a novel aspect of our approach, and not use the same fixed value.

Moreover, the scatter plots in Figures 6.4(b-c) show that some moderately positive
correlations exist between the total number of views and RI. Indeed, ⇢

p

and ⇢
s

are equal
to 0.42 and 0.48, respectively, in the Top dataset, while both metrics are equal to 0.39 in
the Random dataset. Such results imply that our solution is somewhat biased towards
more popular objects, although the bias is not very strong. In other words, for more
popular videos, TrendLearner is able to produce accurate predictions by potentially
observing a smaller fraction of their total views, in comparison with less popular videos.
This is a nice property, given that such predictions can drive advertisement placement
and content replication/organization decisions which are concerned mainly with the
most popular objects.

6.5.3 Applicability to Regression Models

Motivated by results in [110,145], which showed that knowing popularity trends before-
hand can improve the accuracy of regression-based popularity prediction models, we
here assess whether our trend predictions are good enough for that purpose. To that
end, we use the state-of-the-art ML and MRBF regression models proposed in [110].
The former is a multivariate linear regression model that uses the popularity acquired
by the object d on each time window up to a reference date t

r

(i.e., p
d,i

, i = 1...t
r

) to
predict its popularity at a target date t

t

= t
r

+ �. The latter extends the former by
including features based on Radial Basis Functions (RBFs) to measure the similarity
between d and specific examples, previously selected from the training set.

Our goal is to evaluate whether our trend prediction results can improve these
models. Thus, as in [110], we use the mean Relative Squared Error (mRSE) to assess
the prediction accuracy of the ML and MRBF models in two settings: (1) a general
model, trained using the whole dataset (as in [110]); (2) a specialized model, trained
for each predicted class. For the latter, we first use our solution to predict the trend
of a video. We then train ML and MRBF models considering as reference date each
value of t(d) produced by TrendLearner for each video d. Considering a prediction
lag � equal to 1, 7, and 15, we measure the mRSE of the predictions for target date
t
t

= t(d) + �.
We also compare our specialized models against the state-space models (SSMs)

proposed in [112]. These models are variations of a basic state-space model that repre-
sent query and click frequency in Web search, capturing various aspects of popularity
dynamics (e.g., periodicity, bursty behavior, increasing trend). All of them take as in-
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Table 6.7: Mean Relative Squared Error Various Prediction Models and Lags � (aver-
ages and 95% confidence intervals)

Prediction Model Top Dataset Random Dataset

� = 1 � = 7 � = 15 � = 1 � = 7 � = 15

generalML .09± .005 .42± .02 .75± .04 .01± .001 .06± .005 .11± .01
generalMRBF .08± .005 .52± .05 1.29± .17 .01± .001 .1± .01 .26± .03
best SSM .76± .01 .63± .02 .64± .03 .90± .002 .69± .005 .54± .006
specializedML .08± .005 .27± .01 .38± .02 .009± .001 .04± .0003 .06± .003
specializedMRBF .08± .005 .32± .04 .47± .08 .009± .001 .04± .0004 .06± .008

put the popularity time series during the monitoring period t
r

. Thus, though originally
proposed for the Web search domain, they can be directly applied to our context. Both
regression and state-space models are parametrized as originally proposed7.

Table 6.7 shows average mRSE for each model along with 95% confidence inter-
vals, for all datasets and prediction lags. Comparing our specialized models and the
original ones they build upon, we find that using our solution to build trend-specific
models greatly improves prediction accuracy, particularly for larger values of �. The
reductions in mRSE vary from 10% to 77% (39%, on average) in the Random dataset,
and from 11% to 64% (33%, on average) in the Top dataset8. The specialized models
also greatly outperform the state-space models: the reductions in mRSE over the best
state-space model are at least 89% and 27% in the Random and Top datasets (94%
and 59%, on average). These results offer strong indications of the usefulness of our
trend predictions for predicting popularity measures.

Finally, it is important to discuss why the state-space models did not work well
in our context. The main reason we found was that Holt-Winters based models can
only capture the linear trends in time series, that is, linear growth and decay. By
using the KSC distance function, we can identify and group UGC time series with
non-linear trends [91, 146], and create specific prediction models for these cases. Also,
these models are trained independently for each target object, using early points of the
time series. Another possible reason for the low performance in our context might be
that, unlike in [112] where the models were trained with hundreds of points of each
time series, we here use much less data (only points up to t

[d]).

7The only exception is the number of examples used to compute similarities in the MRBF model:
we used 50 examples, as opposed to the suggested 100 [110], as it led to better results in our datasets.

8The only exception is the MRBF model for �=1 in the Top dataset, where general and specialized
models produce tied results.
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6.6 Summary

In this chapter, we have identified and formalized a new research problem. To the
extent of our knowledge, we are the first work to tackle the problem of early prediction
of popularity trends in UGC. We were motivated in studying this problem based on
our previous knowledge on the complex patterns and causes of popularity in UGC [44].
Different from other kinds of content, e.g., news, which have clear definitions of moni-
toring periods, target and prediction dates for popularity, the complex nature of UGC
calls for a popularity prediction solution which is able to determine these dates auto-
matically. We here provided such a solution – TrendLearner.

We have also proposed a novel two-step learning approach for early prediction of
popularity trends of UGC. Moreover, we defined new metrics for measuring the effec-
tiveness of popularity of UGC content, the remaining interest, which is optimized by
TrendLearner as to provide not only accurate, but also timely, predictions. Thus, unlike
previous work, we addresses the tradeoff between prediction accuracy and remaining
interest in the content after prediction on a per-object basis.

We performed an extensive experimental evaluation of our method, comparing
it with state-of-the-art, representative solutions of the literature. Our experimental
results on two YouTube datasets showed that our method not only outperforms other
approaches for trend prediction (a gain of up to 38%) but also achieves such results
before 50% or 21% of videos (depending on the dataset) accumulate more than 32%
of their views, with a slight bias towards earlier predictions for more popular videos.
Moreover, when applied jointly with recently proposed regression based models to
predict the popularity of a video at a future date, our method outperforms state-of-
the-art regression and state-space based models, with gains in accuracy of at least 33%
and 59%, on average, respectively.

With this chapter we conclude our studies on predicting the popularity of social
media content. Our approaches are novel in the sense that they predict both the trend
and the number of hits a piece of content will receive, a joint-task not exploited by
any previous work. The next chapter begins our work on mining user activities (RG3).
Understanding user activities is a complementary task to the work done on popularity
prediction (RG2). Finally, it is important to point out that the data mining techniques
proposed for mining user activities (RG3) can also be used for popularity prediction.
However, our discussion on those techniques are more focused on understanding on
how user activities relate with popularity.



Chapter 7

Revisit Behavior in Social Media

How many listens will an artist receive on a online radio? How many of these visits
are new or returning users? In this chapter, we begin our study on modeling and
mining content popularity from the perception of user activities. Specifically on this
chapter, we investigate the effect of revisits (successive visits from a single user) on
content popularity. Using four datasets of user activity, with up to tens of millions
of media objects (e.g., YouTube videos, Twitter hashtags or LastFM artists), we show
the effect of revisits in the popularity evolution of such objects. Secondly, we propose
the Phoenix-R model which captures the popularity dynamics of individual objects.
Phoenix-R has the desired properties of being: (1) parsimonious, being based on the
minimum description length principle, and achieving lower root mean squared error
than state-of-the-art baselines; (2) applicable, the model is effective for predicting
future popularity values of objects.

Recall that the work presented in Chapters 3, 5, and 6 mostly made use of time
series and object features. Moreover, our work on Chapter 4 focused on user perceptions
of content. As we have shown, different features (e.g., referrer features), as well as the
user perceptions of content, are related to the evolution of popularity of social media
objects in varying degrees. However, those previous chapter did not look into user
activities as is done in this chapter and the next one. In details, the rest of this
dissertation will focus on presenting novel large scale data mining techniques that are
used to unveil how user activities relate to popularity evolution of objects. These
studies complement and extend our previous chapters as we shall now discuss.

7.1 Introduction

How do we quantify the popularity of a piece of content in social media applications?

115
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Should we consider only the audience (unique visitors) or include revisits as well? Can
the revisit activity be explored to create more realistic popularity evolution models?
These are important questions in the study of social media popularity. In this chapter,
we take the first step towards answering them based on four large traces of user activity
collected from different social media applications: Twitter, LastFM, and YouTube.

However, a key aspect that has not been explored by most previous work is
the effect of revisits on content. The distinction between audience (unique users),
revisits (returning users), and popularity (the sum of the previous two) can have large
implications for different stakeholders of these applications - from content providers
to content producers - as well as for internal and external services that rely on user
activity data. For example, marketing services should care most about the audience of a
particular content, as opposed to its total popularity, as each access does not necessarily
represent a new exposed individual. Even system level services, such as geographical
sharding [39,131], can be affected by such distinction, as a smaller audience served by
one data center does not necessarily imply that a smaller volume of activity (and thus
lower load) should be expected. As prior studies of content popularity in social media
do not clearly distinguish between unique and returning visits, the literature still lacks
fundamental knowledge about content popularity dynamics in this environment.

We here aim at investigating and modeling the effect of revisits on popularity,
thus complementing prior efforts on the field of social media popularity. Our goals are:
(1) Characterizing the revisits phenomenon and show how it affects the evolution of
popularity of different objects (videos, artists or hashtags) on social media applications;
(2) Introducing the Phoenix-R model that captures the evolution of popularity of
individual objects, while explicitly accounting for revisits. Also, we develop the model
so that it can capture multiple cascades, or outbreaks, of interest in a given object.

Our results shows that that when analyzing total popularity values, revisits ac-
count from 40% to 96% of the popularity of an object (on median), depending on
the application. Moreover, when looking at small time windows (e.g., hourly) revis-
its can be up to 14x more common than new users accessing the object. Based on
these, and other findings, we derive the Phoenix-R model. Phoenix-R explicitly ad-
dresses revisits in social media behavior and is able to automatically identify multiple
cascades [65] using only popularity time series data. The Phoenix-R model is also
scalable. Fitting is done in linear time and no parameters are required.

Figure 7.1 shows the different behaviors which can be captured by the Phoenix-R
model. Notice how the model captures a growth in the popularity of video (a), videos
which have a plateau like popularity after the upload (b), and two different single
cascade dynamics (c-d). Previous models, such as the SpikeM [91] and TemporalDy-
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(a) Rock Song (growth in popularity)
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(b) Flashdance (80’s movie) clip (revisits)
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(c) Korean Music Video (single cascade)
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(d) User Dancing Video (single cascade)

Figure 7.1: Different YouTube Videos as Captured by the Phoenix-R Model.

namics [112] are unable to capture behaviors such as the ones shown in the figure.
The SpikeM [91] approach models single cascades only, whereas the TemporalDynam-
ics [112] models, are linear in nature.

The rest of this chapter is organized as follows. Section 7.2 presents an overview
of definitions and background. This is followed by Section 7.3 which presents our
characterization. Phoenix-R is described in Section 7.4. The validation of Phoenix-
R and it’s applicability are presented in Section 7.5. Finally, we conclude the chapter
in Section 7.6.

7.2 Definitions and Background

In this section we present the definitions used throughout the chapter (Section 7.2.1).
Next, we discuss existing models of popularity dynamics of individual objects (Section
7.2.2). Some of these models were already discussed in more details on Chapter 2. We
revisit their discussion in this chapter for a clearer understanding of our Phoenix-R
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model.

7.2.1 Definitions

Recall that we defined an object as a piece of media content stored on a social media
application. Specifically for this chapter, an object on YouTube is a video, whereas,
on an online radio like LastFM, we consider (the webpage of) an artist as an object.
We also define an object on Twitter as a hashtag or a musictag1. A user activity
is the act of accessing - posting, re-posting, viewing or listening to - an object on a
social media application. The popularity of an object is the aggregate behavior of
user activities on that object. We here study popularity in terms of the most general
activities in each application: number of views for YouTube videos, number of plays for
LastFM artists, and number of tweets with a hashtag. The popularity of an object is
the sum of audience (user’s first visit) and, revisits (returning users). The evolution
of the popularity of an object over time defines a time series.

7.2.2 Existing Models of Object Popularity Dynamics

The use of epidemic models [64] have been successfully used by previous work to un-
derstand how information disseminates in social media applications. The simplest of
these models is the Susceptible-Infected (SI) model, which we have discussed in Sec-
tion 2.3. Starting with an initial population of S susceptible individuals and I infected
individuals, the evolution of the model is governed by two differential equations:

dS

dT
= ��SI (7.1)

dI

dT
= �SI. (7.2)

At ach time step, �S(t�1)I(t�1) individuals get infected, transitioning from state S to
state I. The product SI accounts for all the possible connections between individuals.
The parameter � is the strength of the infectivity, or virus.

dS

dT

= ��SI and dI

dT

= �SI. The evolution of the model is governed by the
dynamics of at each time step, �S(t� 1)I(t� 1) individuals get infected, transitioning
from state S to state I. The product SI accounts for all the possible connections
between individuals. The parameter � is the strength of the infectivity, or virus.

1Users informing their followers which artists they are listening to.
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Table 7.1: Comparison of Phoenix-R With Other Approaches

Revisits Non-Linear Forecasting Multi Cascade

SI [64] X
SpikeM [91] X X
TemporalDynamics [112] X

Phoenix-R X X X X

Cha et al. [23] modelled information propagation on the Flickr social media ap-
plication using an SI model. Moreover, Matsubara et al. [91] extended this model to
account for a power law infectivity per newly infected individual. This new model is
called SpikeM. One of the reasons why the SI model is useful to represent online cas-
cades of information propagation is that individuals usually do not delete their posts,
tweets or favorite markings [23,91]. Thus, once an individual is infected he/she remains
infected forever (as captured by the SI model). However, when considering popularity
in general, the “forever infected” assumption may be false [5, 118].

Other models that can be explored in the study of content popularity dynamics
are auto-regressive models and state space models, such as the Holt-Winters model and
its extensions [112]. However, these models are linear in nature, and thus cannot ac-
count for more complex temporal dynamics observed in online content [91]. Although,
these models have been successful in predicting normalized query behavior in search
engines [112], the descriptive power of such models is less attractive. For example,
Holt-Winters based models are very general, that is, they are used to predict time
series behavior, but will not take into account cascades, revisits or information dissem-
ination. From a descriptive point of view, these models are of little help to understand
the actual process that drives popularity evolution. Recently, the work of Hu et al.
focused on the defining longevity of social impulses, or multiple cascades [65]. However,
unlike our approach, the authors are not focused on modeling the long term popularity
of objects.

Table 7.1 summarizes the key properties of the aforementioned models as well as
of our new Phoenix-R model. In comparison these approaches, Phoenix-R explicitly
captures both revisits and multiple cascades, allows for non-linear solutions, and can
be used for accurate forecasting. The next section presents the effect of revisits in
both long and short term content popularity evolution for real world datasets. This is
followed by the definition of the Phoenix-R model.
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Table 7.2: Datasets of User Activities Mined With Phoenix-R

Application # of User Activities # of Users # of Objects

MMTweet 1,086,808 215,376 25,060
LastFM 19,150,868 992 107,428
Twitter 476,553,560 17,069,982 49,293,684
YouTube - - 2,901,605

7.3 Content Revisit Behavior in Social Media

We now analyze the revisit behavior in various social media applications. We describe
the datasets used in our analysis, and then discuss our main characterization findings.

7.3.1 Datasets

Our study is performed on four large user activity datasets, which are presented in
Table 7.2 and we now summarize:

• The Million Musical Tweets Dataset (MMTweet): consists of 1,086,808 tweets of
users about artists they are listening to at the time [63]. We focus on the artist of
each tweet as an object. A total of 25,060 artists were mentioned in tweets.

• The 2010 LastFM listening habits dataset (LastFM): consists of the whole listening
habits (until May 5th 2009) of nearly 1,000 users, with over 19 million activities
on 107,428 objects (artists) [20].

• The 476 million Twitter tweets corpus (Twitter): accounts for roughly 20% to 30%
of the tweets from June 1 2009 to December 31 2009 [146], and includes over 50
million objects (hashtags) tweeted by 17 million users.

• The YouTube dataset: Since 2013, YouTube began to provide the full daily time
series (known as insight data) of visits for videos in the page of each video. We
crawled the time series of roughly 3 million YouTube videos, as done in Chapter 3.
However, different from the previous YouTube dataset, this one contains the full
daily time series of each video. This information was unavailable at the time the
study of Chapter 3 was done.

7.3.2 Main findings

Our goal is to analyze how the popularity acquired by different objects, in the long
and short runs, is divided into audience and revisits. In particular, we aim at assessing
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to which extent the number of revisits may be larger than the size of the audience, in
which case popularity is largely a sum of repeated user activities. Since this property
may vary depending on the type of content, we perform our characterization on the
LastFM, MMTweet, and Twitter datasets. We leave the YouTube dataset out of this
analysis since, unlike the other datasets, it does not contain individual user activities,
but only popularity time series. We will make use of the YouTube dataset to fit and
evaluate our Phoenix-R model, in the next section.

We first analyze the distribution of the final values2 of popularity, audience, and
revisits across objects in each dataset. For illustration purposes, Figure 7.2 shows the
complementary cumulative distribution function of the ratio of the number of revisits
to the audience size for all datasets, computed for objects with popularity greater than
500. We filtered out very unpopular objects, which attract very little attention during
the periods of our datasets (over 6 months each). Note that the probability of an object
having more revisits than audience (ratio greater than 1) is large. Indeed, though rare,
the ratio of revisits to audience size reaches 10

2 and even 10

3.
In order to better understand these findings across all datasets, Table 7.3 shows,

for each dataset: (1) the median of the ratio of number of revisits to audience size, (2)
the median of the ratio of number of revisits to total popularity; and (3) the percentage
of objects where the revisits dominate the popularity (i.e., ratio of number of revisits
to the audience size greater than 1). Note that revisits dominate popularity in 66% of
the Twitter objects. Moreover, on median, 62% of the total popularity of these objects
is composed of revisits, which account for 1.7 times more activities than the visits by
new users (audience size). Again, for LastFM artists, revisits are over 25 times more
frequent than the visits by new users (on median), and the revisits dominate popularity
in all objects. In contrast, the ratios of number of revisits to audience size and to total
popularity are smaller for MMTweet objects, most likely because users do not tweet
about artists they are listening to all the time, but rather only when they wish to
share this activity with their followers. Yet, the revisits dominate popularity in 33%

2Values computed at the time the data was collected.
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Table 7.3: Relationships between Revisits, Audience and Popularity.

Dataset Median Median % objects with
#Revisits

Audience

#Revisits

Popularity

#Revisits

Audience

> 1

Twitter 1.70 0.62 66%
MMTweet 0.68 0.40 33%
LastFM 25.39 0.96 100%

Table 7.4: Quartiles of the Ratio #Revisits

Audience

for Various Time Windows w.

Dataset Time window (w) 25th percentile Median 75th percentile

Twitter

1 hour 1.08 3.93 12
1 day 1 2.5 6.28
1 week 0.66 1.69 4.28
1 month 0.56 1.44 3.75

MMTweet

1 hour 0.25 0.66 12.5
1 day 0.55 0.83 1.26
1 week 0.41 0.73 1.41
1 month 0.31 0.56 1.17

LastFM

1 hour 20 21 25
1 day 21 28 41
1 week 20 30.5 55.25
1 month 14 25 48

of the objects. These results provide evidence that, at least in the long run, revisits
are much more common than new users for many objects in different applications. For
microblogs, though less intense, this behavior is still non-negligible.

We further analyze the effect of revisits on popularity, focusing now in the short
term, by zooming into smaller time windows w. Specifically, we analyze the distribu-
tions of the ratios of number of revisits to audience size computed for window sizes w

equal to one hour, one day, one week, and one month. Table 7.4 shows the three distri-
bution quartiles for the various window sizes and datasets considered. These quartiles
were computed considering only window sizes during which the popularity acquired by
the object exceeds 20. We adopted this threshold to avoid biases in time windows with
very low popularity, focusing on the periods where the objects had a minimal attention
(note that 20 is still small considering that each trace has millions of activities).

Focusing first on the LastFM dataset, we note that, regardless of the time window
size, the number of revisits is at least one order of magnitude (14x) larger than the
audience size for at least 75% of the analyzed windows (25th percentile). In fact, the
ratio between the two measures exceeds 55 for 25% of the windows (75th percentile) on
the weekly case. In contrast, in the MMTweet dataset, once again, the ratios are much
smaller. Nevertheless, at least 25% of the of the windows we observe a burst of revisits
in very short time, with the ratio exceeding 12 for the hourly cases. Once again, we
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suspect that these lower ratios may simply reflect that users do not tweet about every
artist they list to. Thus, in general, we have strong evidence that, for music-related
content, popularity is mostly governed by revisits, as opposed to new users (audience).

The same is observed, though with less intensity, in the Twitter dataset. Revisits
are more common than new users in 50% of the time windows, for all sizes considered.
Indeed, considering hourly time windows, popularity is dominated by revisits for 75%
of the cases. While large ratios, such as those observed for LastFM, do not occur, the
number of revisits can still be 12 times larger than the audience size during a single
hour in 25% of the Twitter hourly windows.

Our main conclusions so far are: (1) for most objects in the Twitter and LastFM
datasets, popularity, measured both in the short (as short as 1 hour periods) and long
runs, is mostly due to revisits than to audience size; and (2) revisits are less common
on the MMTweet dataset, which we believe is due to data sparsity, but are still a
significant component of the popularity acquired by a large fraction of the objects (in
both long and short runs). These findings motivate the need for models that explicitly
account for revisits in the popularity dynamics, which we discuss next.

7.4 The Phoenix-R Model

In this section we introduce the proposed Phoenix-R model (Section 7.4.1), and dis-
cuss how we fit the model to a given popularity time series (Section 7.4.2). In the next
section we present results on the efficacy of the model on our datasets when compared
to state-of-the-art alternatives, as well as the applicability of the Phoenix-R model
on popularity prediction.

Similar to the previous chapters, we present vectors (x) in bold. Sets are shown
in non-bold calligraphy letters (X ), and variables are represented by lower case letters
or Greek symbols (x, �). Moreover, x(i) means data index i (with indexes starting
from from 1), and x(: i) means sub-vector up to i.

7.4.1 Deriving the Model

The Phoenix-R model is built based on the ‘Susceptible-Infected-Recovery’ (SIR)
compartments, extending the basic model in order to capture revisits and multiple
cascades. Specifically, Phoenix-R captures the following behavior for each individual
object:

• We assume a fixed population of individuals, where each individual can be in one
of three states: susceptible, infected and recovered.
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Figure 7.3: Individual Shocks that Account for the Phoenix-R Model.

• At any given time s
i

, an external shock i causes initial interest in the object. The
shock can be any event that draws attention to the object, such as a video being
uploaded to YouTube, a news event about a certain subject, or even a search engine
indexing a certain subject for the same time (thus making an object easier to be
found). We assume that the initial shock s1 is always caused by one individual.

• New individuals discover the object by being infected by the first one. Moreover,
after discovery, these “newly infected” ndividuals can also infect other individuals,
thus contributing to the propagation.

• Infected individuals may access (watch, play or tweet) the object. It is important
to note that being infected does not necessarily imply in an access. For example,
people may talk about a trending video before actually watching it. Each infected
individual accesses the object following a Poisson process with rate ! (! > 0)3.

• After some time, individuals lose interest in the object, which, in the model, is
captured by a recovery rate �.

• Multiple external shocks may occur for a single object.

Figure 7.3 presents the Phoenix-R model. In the figure, three compartments
are shown for each shock i, namely S

i

, I
i

, and R
i

. These compartments represent the
number of susceptible, infected and recovered individuals for the shock i, respectively.
Variable p

i

, associated with shock i, measures the popularity acquired by the object
due this shock. The total popularity of the object, i.e., the sum of the values of p

i

for
all shocks, is denoted by p̂. We first present the model for a single shock, and then
generalize the solution for multiple shocks. For the sake of simplicity, we drop the
subscripts while discussing a single shock. We present the model assuming discrete
time, referring to each time tick as a time window.

Each shock begins with a given susceptible population (S(0)) and one infected
individual (I(0) = 1). The total population is fixed and given by (N = S(0) + 1).
The R compartment captures the individuals that have already lost interest in the
object. Similarly the SI model, �SI susceptible individuals become infected in each

3Both [5, 66] show the poissonian behavior of mutiple visits from the same user.
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time window. Moreover, �I individuals loose interest in (i.e., recover from) the object
in each window. Revisits to the object are captured by the rate !. Thus ! is the
expected number of accesses of an individual up to time t. The probability of the
individual accessing the object k times during a time interval of ⌧ windows is given by:

P (v(t + ⌧)� v(t) = k) =
(!⌧)ke�!⌧

k!
. (7.3)

We assume that the shock starts at time zero, thus focusing the dynamics after
the shock. Under this assumption, the equations that govern a single shock are:

S(t) = S(t� 1)� �S(t� 1)I(t� 1) (7.4)

I(t) = I(t� 1) + �S(t� 1)I(t� 1)� �I(t� 1) (7.5)

R(t) = R(t� 1) + �I(t� 1) (7.6)

p(t) = !I(t). (7.7)

The equation p(t) = !I(t) accounts for the expected number of times infected
individuals access the object, thus capturing the popularity of the object at time t due
to the shock. We can also define the expected audience size of the object at time t due
to the shock, a(t), as:

a(t) = (1� e� !

�

)�S(t� 1)I(t� 1). (7.8)

Each newly infected individual (�S(t� 1)I(t� 1)) will stay infected for ��1 windows
(see [64]). The probability of generating at least one access while the individual is
infected is:

1� P (v(t + ��1
)� v(t) = 0) = 1� e� !

� . (7.9)

Thus, we here capture the individuals that were infected at some time and generated
at least one access.

The Phoenix-R model is thus defined as the sum of the popularity values due
to multiple shocks. We discuss how to determine the number of shocks in the next
section. Given a set of shocks S, where shock i starts at given time s

i

, the popularity
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p̂ is:

p̂(t) =
X

i,s

i

2S

p
i

(t� s
i

) [t > s
i

] (7.10)

where [t > s
i

] is an indicator function that takes value of 1 when t > s
i

, and 0
otherwise. Audience size â(t) can be similarly defined. Also, both in the single shock
and in the Phoenix-R models, the number of revisits at time t, r̂(t), can be computed
as r̂(t) = p̂(t)� â(t). The overall population that can be infected is defined by:

N =

X

i

N
i

=

X

i

S(0)
i

+ 1. (7.11)

Note that we assume that the population of different shocks do not interact,
that is, an infected individual from shock s

i

does not interact with a susceptible one
from shock s

j

, where i 6= j. While this may not hold for some objects (e.g., people
may hear about the same content from two different populations), it may be a good
approximation for objects that become popular in large scale (e.g., objects that are
propagated world wide). It also allows us to have different values of �

i

, �
i

, and !
i

for
each population. Intuitively, the use of different parameters for each shock captures the
notion that some objects may be more (or less) interesting for different populations.
For example, samba songs may attract more interest from people in Brazil.

Adding a period: In some cases, the popularity of an object may be affected
by periodical factors. For example, songs may get more plays on weekends. We add a
period to the Phoenix-R model by making ! fluctuate in a periodic manner. That is:

!
i

(t) = !
i

⇤ (1� m

2

⇤ (sin(2⇡(t + h)

e
) + 1)), (7.12)

where e is the period, and sin is a sine function. For example, for daily series we may
set e = 7 if more interest is expected on weekends. Since an object may have been
uploaded on a Wednesday, we use the shift h parameter to correct the sine wave to
peak on weekends. The amplitude m captures oscillation in visits. The same period
parameters are applied to every shock model. This approach is similar to the one
adopted in [91].

The final Phoenix-R model will have 5 parameters to be estimated from the data
for each shock, namely, S(0)

i

, �
i

, �
i

, !
i

, s
i

; plus the m and h period parameters. The
last two do not change for individual shocks. We decided to fix e in our experiments
to 7 days, when using daily time windows, and e = 24 hours when using hourly series.
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7.4.2 Fitting the Model

We now discuss how to fit the Phoenix-R parameters to real world data. Our goal
is to produce a model that delivers a good trade-off between parsimony (i.e., small
number of parameters) and accuracy. To that end, three issues must be addressed:
(1) the identification of the start time of each individual shock; (2) an estimation of
the cost of the model associated with multiple shocks; and, (3) the fitting algorithm
itself. Note that one key component of the fitting algorithm is model selection: it is
responsible for determining the number of shocks that will compose the Phoenix-R
model, choosing a value based on the cost estimate and model accuracy.

Finding the start times s
i

of the shocks: Intuitively, we expect each shock
to correspond to a peak in the time series. Indeed, previous work has looked at the
dynamics of single shock cascades, finding a single prominent peak in each cascade [7,
91]. With this in mind, instead of searching for s

i

directly, we initially attempt to
find peaks. We can achieve both tasks using a continuous wavelet transform based
peak finding algorithm [38]. We chose this algorithm since it has the following key
desirable properties. Firstly, it can find peaks regardless of the “volume” (or popularity
in the present context) in the time windows surrounding the peaks. It does so by only
considering peaks with a high signal to noise ratio in the series. Secondly, the algorithm
is fast, with complexity in the order of the length, n, of the time series (O(n)). Lastly
and more importantly, using the algorithm we can estimate both the peaks and the
start times of the shocks that caused each peak. We shall refer to the algorithm as
FindPeaks.

As stated FindPeaks makes use of a continuous wavelet transform to find the
peaks of the time series. Specifically, we apply the Mexican Hat Wavelet4 for this task.
The Mexican Hat Wavelet is parametrized by a half-width l. We use half-widths (l)
of values {1, 2, 4, 8, 16, 32, 64, 128, 256} to find the peaks. Thus, for the peak identified
at position k

i

, with wavelet determined by the parameter l
i

, we define the start point
of the shock s

i

as: s
i

= k
i

� l
i

. We found that using the algorithm with the default
parameters presented in [38], combined with our MDL fitting approach (see below),
proved accurate in modeling the popularity of objects5.

Estimating the cost of the model with multiple shocks: we estimate the
cost of a model with |S| shocks based on the minimum description length (MDL)
principle [60,102], which is largely used for problems of model selection. To apply the
MDL principle, we need a coding scheme that can be used to compress both the model

4https://en.wikipedia.org/wiki/Mexican_hat_wavelet
5We used the open source implementation available with SciPy (http://scipy.org)

https://en.wikipedia.org/wiki/Mexican_hat_wavelet
http://scipy.org
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parameters and the likelihood of the data given the model. We here provide a new
intuitive coding scheme, based on the MDL principle, for describing the Phoenix-R
model with |S| shocks, assuming a popularity time series of n elements (time windows).
As a general approach, we code natural numbers using the log⇤ function (universal code
length for integers)6 [60], and fix the cost of floating point numbers at c

f

= 64 bits.
For each shock i, the complexity of the description of the set of parameters

associated with i consists of the following terms: log

⇤
(n) for the s

i

parameter (since
the start time of i can be at any point in the time series); log⇤

(S
i

(0)) for the initial
susceptible population; and 3 ⇤ c

f

for �
i

, �
i

, and !
i

. We note that an additional cost
of log⇤

(7) + 2 ⇤ c
f

is incurred if a period is added to the model. However, we ignore
this component here since it is fixed for all models. Therefore, it does not affect model
selection. The cost associated with the set of parameters P of all |S| shocks is:

Cost(P) = |S|⇥ (log

⇤
(n) + log

⇤
(S

i

(0)) + 3 ⇤ c
f

) + log

⇤ |S|. (7.13)

Given the full parameter set P , we can encode the data using Huffman coding,
i.e., a number of bits is assigned to each value which is the logarithm of the inverse of
the probability of the values (here, we use a Gaussian distribution as suggested in [102]
for the cases when not using probabilistic models.).

Thus, the cost associated with coding of the time series given the parameters is:

Cost(t | P) = �
nX

i=1

log(p
gaussian

(t(i)�m(i);µ, �)). (7.14)

where t is the time series data and m is the time series produced by the model (i.e.,
t(i)�m(i) is the error of the model at time window i.) Here, p

gaussian

is the probability
density function of a Gaussian distribution with mean µ and standard deviation �

estimated from the model errors. We do not include the costs of encoding µ and �

because, once again, they are constant for all models. The total cost is:

Cost(t;P) = log

⇤ n + Cost(P) + Cost(t | P). (7.15)

This accounts for the parameters cost, the likelihood cost, and the cost of the data
size.

Fitting algorithm: The model fitting approach is summarized in Algorithm 4.
The algorithm receives as input a popularity time series t. It first identifies candidate
shocks using the FindPeaks method, which returns the peaks p and the start times

6
log

⇤
(x) = 1 + log

⇤
(log x) if x > 1. log

⇤
(x) = 1 otherwise. We use base-2 logarithms.
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Algorithm 4 Fitting the Phoenix-R Model. Only the time series is required as input.
1: function FitPhoenixR(t)
2: ✏ = 0.05
3: s {}
4: p, s0  FindPeaks(t)
5: s[1] = 0
6: s append(s0)
7: P  {}
8: min_cost 1
9: for i 1 to |s| do

10: F  LM(t, s(: i))
11: m PhoenixR(F)
12: mdl_cost Cost(m, t,F)
13: if mdl_cost < min_cost then

14: min_cost mdl_cost

15: P  F
16: end if

17: if mdl_cost > min_cost ⇤ (1 + ✏) then

18: break

19: end if

20: end for

21: return P
22: end function

s

0 of the corresponding shocks in decreasing order of peak volume (line 3). To account
for the upload of the object, we include one other shock starting at time s1 = 0, in case
a shock was not identified in this position. Each s

i

is stored in vector s, ordered by the
volume of the each identified peak (with the exception of s1 = 0 which is always in the
first position) (lines 4 and 5). We then fit the Phoenix-R model using the Levenberg-
Marquardt (LM) algorithm adding one shock at a time, in the order they appear in s

(loop in line 9), that is, in decreasing order of peak volume (after the initial shock).
Intuitively, shocks that lead to larger peaks account for more variance in the data. For
each new shock added, we evaluate the MDL cost (line 12). We keep adding new shocks
as long as the MDL cost decreases (line 13) or provided that an increase of at most ✏

over the best model is observed7 (line 17). We set the Levenberg-Marquardt algorithm
to evaluate the mean squared errors of the model and adopt a threshold ✏ equal to 5%.
We also note that we initialize each parameter randomly (uniform from 0 to 1), except
for S

i

(0) values. For the first shock we do test multiple initial values: S1(0) = 10

3, 104,
10

5, and 10

6. The other S
i

(0) values are initialized to the corresponding peak volume.

7.5 Experiments

In this section we discuss the experimental evaluation of the Phoenix-R model. Ini-
tially, we present results on the efficacy of the model on our datasets when compared to

7MDL based costs will decrease with some variance and then increase again. The ✏ threshold is a
guard against local minima due to small fluctuations.
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state-of-the-art alternatives (Section 7.5.1) Next, we show results on the applicability
of the model for popularity prediction (Section 7.5.2)8.

7.5.1 Is Phoenix-R Better than Alternatives?

We compare Phoenix-R with two state-of-the-art alternatives: the TemporalDynam-
ics [112], used to model query popularity; and the SpikeM model [91], which captures
single cascades. We compare these models in terms of time complexity, accuracy, es-
timated by the root mean squared errors (RMSE), and cost-benefit. For the latter,
we use the Bayesian Information Criterion (BIC) [112], which captures the tradeoff
between cost (number of parameters) and accuracy of the model.

In terms of time complexity, we note that the Phoenix-R model scales linearly
with the length of the time series n. This is shown in Figure 7.4, which presents the
number of seconds (y-axis) required to fit a time series with a given number of time
windows (x-axis). TemporalDynamics also has linear time complexity [112]. In con-
trast, the equations that govern the SpikeM model requires quadratic (O(n2)) runtime
on the time series length, making it much less scalable to large datasets.

In terms of accuracy, we make an effort to compare Phoenix-R with the alter-
natives in fair settings, with datasets with similar characteristics from those used in
the original papers. In particular, when comparing with TemporalDynamics, we run
the models proposed in [112] selecting the best one (i.e., the one with smallest root
mean squared error) for each time series. Moreover, we use long term daily time series
(over 30 days), with a total popularity of at least 1,0009. We compare Phoenix-R
and TemporalDynamics under these settings in our four datasets, including YouTube.

When comparing with SpikeM, we use Twitter hourly time series trimmed to 128
time windows around the largest peak (most popular hour). We focus on the 500 most
popular of these times series for comparison. We chose this approach since this is the
same dataset explored by the authors. Moreover, we focus on a smaller time scale
because the SpikeM model was proposed for single cascades only.

Table 7.5 shows the average RMSE (along with corresponding 95% confidence
intervals) computed over the considered time series for all models. Best results of each
comparison (including statistical ties with significance of 0.01) are shown in bold. Note
that Phoenix-R has statistically lower RMSE than TemporalDynamics in all datasets.
These improvements come particularly from the non-linear nature of Phoenix-R ,
which better fits the long term popularity dynamics of most objects. The difference

8All of our source code is provided at: http://github.com/flaviovdf/phoenix
9 Similar results were achieved using other thresholds.

http://github.com/flaviovdf/phoenix
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Figure 7.4: Scalability of Phoenix-R

Table 7.5: Comparison of Phoenix-R with TemporalDynamics [112] and SpikeM [91]:
Average RMSE values (with 95% confidence intervals in parentheses). Statistically
significant (p-value of 0.01) results (including ties) are shown in bold.

Phoenix-R vs. TemporalDynamics (daily series) Phoenix-R vs. SpikeM (hourly series)

RMSE RMSE RMSE RMSE
Phoenix-R TemporalDynamics Phoenix-R SpikeM

MMTweet 2.93 (± 0.23) 4.18 (± 0.49) - -
LastFM 7.09 (± 0.23) 8.31 (± 0.32) - -
Twitter 72.05 (± 6.08) 194.79 (± 20.49) 10.83 (± 1.61) 9.77 (± 2.24)
YouTube 280.58 (± 29.29) 3429.19 (± 577.76) - -

between the models is more striking for the YouTube dataset, where most time series
cover long periods (over 4 years in some cases). The linear nature of TemporalDynamics
largely affects its performance in those cases, as many objects do not experience a linear
popularity evolution over such longer periods of time. As result, Phoenix-R produces
reductions on average RMSE of over one order of magnitude. In contrast, the gap
between both models is smaller in the LastFM dataset, where the fraction of objects
(artists) for which a linear fit is reasonable is larger. Yet, Phoenix-R produces results
that are still statistically better, with a reduction on average RMSE of 15%.

When comparing with SpikeM, the Phoenix-R model produces results that are
statistically tied. We consider this result very positive, given that this comparison
favors SpikeM: the time series cover only 128 hours, and thus there is no much room
for improvements from capturing multiple cascades, one key feature of Phoenix-R
. Yet, we note that our model is more general and suitable to modeling popularity
dynamics in the longer run, besides being much more scalable, as discussed above.

As a final comparison, we evaluate the cost-benefit of the models using BIC, as
suggested by [112]. We found that Phoenix-R out performs TemporalDynamics in
terms of BIC on at least 80% of the objects in all datasets but LastFM. For LastFM
objects, the reasonable linear evolution of popularity of many objects, makes the cost-
benefit of TemporalDynamics superior. Yet, Phoenix-R is still the preferred option in
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30% of the objects in this dataset. Compared to SpikeM we also find that once again,
statistically equal BIC scores are achieved for both models.

7.5.2 Predicting Popularity with Phoenix-R

We here assess the efficacy of Phoenix-R for predicting the popularity of objects
a few time windows into the future, comparing it against TemporalDynamics10. To
that end, we train the Phoenix-R and TemporalDynamics models for each time series
using 5%, 25%, and 50% of the initial daily time windows. We then use the � time
windows following the training period as validation set to learn model parameters. In
each setting, we train 10 models for each time series, selecting the best one on the
validation period. We then use the selected model to estimate the popularity of the
object � windows after the validation (test period). We experiment with � equal to 1,
7 and 30 windows.

Table 7.6 shows the average RMSE of both models on the test period. Confidence
intervals are omitted for the sake of clarity, but the best results (and statistical ties) in
each setting are shown in bold. Phoenix-R produces more accurate predictions than
TemporalDynamics in practically all scenarios and datasets. Again, the improvements
are quite striking for the YouTube dataset, mainly because the time series cover long
periods (over 4 years in some cases). While the linear TemporalDynamics model fits
reasonably well the popularity dynamics of some objects, it performs very poorly on
others, thus leading to high variability in the results. In contrast, Phoenix-R is much
more robust, producing more accurate predictions for most objects, and thus being
more suitable for modeling and predicting long periods of user activity.

7.6 Summary

In this chapter we presented the Phoenix-R model for describing social media popular-
ity evolution time series. Before introducing the model, we showed the effect of revisits
on the popularity of objects on large user activity datasets. Our main contributions
are:

• Discoveries: We explicitly show the effect of revisits in social media popularity.

• Explanatory model: We introduce the Phoenix-R model, which explicitly
accounts for revisits and multiple cascades. Factors that ere not captured by
state-of-the art alternatives.

10We do not use SpikeM for this task, as it is suitable for tail forecasting only (i.e., predicting after
the peak)
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• Scalable and Parsimonious: Our fitting approach make’s use of the MDL
principle to achieve a parsimonious description of the data. We also show that
fitting the model is scalable (linear time).

• Effective: of model: We showed the effectiveness of the model not only when
describing popularity time series, but also when predicting future popularity values
for individual objects. Improvements over state-of-the art alternatives can be up
to one order of magnitude, depending on the dataset.

In the next chapter we shall present our final study on social media popularity.
More specifically, we shall now focus on the attention flows across objects (e.g., tran-
sitions between objects). More importantly, we also discuss how the competition and
collaboration for attention between objects affect popularity in social media applica-
tions. After that, Chapter 9 concludes this dissertation.



Chapter 8

Mining User Attention Flows

User attention is arguably one of the most scarce and vied for commodities of today’s
Internet economics. Selling user attention is a multi-billion dollar business that sustains
some of the most popular social media applications. Unfortunately, social media user
attention flows present a variety of complex system behaviors unfit to an analysis with
existing approaches, such as asynchronous users with mixed but similar behavior, re-
peated consumption effects, niche artist sparsity, rich-get-richer effects, and the effects
of fluctuations due to external shocks. Mindful of these challenges in this chapter we
propose A-FLUX, a user attention mining method designed to cope with the complex
challenges of attention flow mining.

With A-FLUX, we present a complementary study on the popularity of social
media objects as the one done with the Phoenix-R model. Whereas in the previous
chapter we focused only on revisit behavior, with A-FLUX we present a data mining
approach to understand attention flows across objects. One of the main technical
contributions of A-FLUX is a probabilistic graphical model that captures the latent
object-to-object transitions of user attention. We also use modulated Markov models
to capture user attention short and heavy tails observed in real-world datasets.

Our case study is on a popular social media Online Music Streaming Service
(OMSS). OMSSs are the fastest growing revenue streams of the music industry. OMSS
ad earnings are shared with record labels in proportion to their artists “air time”.
Thus, understanding this marketplace entails mapping how user attention flows be-
tween artists (objects). We employ A-FLUX on large datasets crawled from a popular
OMSS, revealing interesting and meaningful user attention flow maps and patterns.
Specifically, we observe that overall user attention seem to be elastic, as many artists
seem to cooperate for user attention, although we also find evidence of competition,
notably newcomers that steal user attention away from others.

135
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8.1 Introduction

There is no free lunch on today’s Internet. In some of the most popular social media ap-
plications, user attention is a valuable commodity that users trade for services, fueling
advertisement sales of billions of dollars. Music streaming is a particularly interesting
case study. Online Music Streaming Services (OMSSs) currently account for 40% of
all digital revenue of artists and record labels, and may soon be the dominating form
of revenue of the music industry [104]. OMSSs translate user attention in revenues
through online ads and subscription services: for each song played part of the revenue
is shared with record labels and their artists.

The first step to understand this marketplace of attention is to study how user
attention flows across different artists. While there are many reasons behind user atten-
tion flows – user musical interests, recommendation systems, and even the alphabetical
order of track, album, and artist names – the end result is a flow of user attention
between artists. Given the relevance of the problem, there is a demand for methods
that can answer the following questions:

Which artists cooperate and which compete for attention? Are OMSSs zero-
sum attention markets?

In a zero-sum attention market an artist gains attention at the expense of another
artist. Unfortunately, user attention flows in OMSSs depend on complex phenomena
that make it hard to analyze. Some of these phenomena, which were observed in our
datasets of user plays gathered from a popular OMSS, are:

a) Asynchronous users with mixed but similar behavior: Users who like similar artists
will not start their playlists at the same time (e.g., they may live in distinct time
zones) or listen to songs in the same order. Indeed, regarding the latter we observe
that 97% of the inter-artist transitions1 a ! b, a 6= b happen less than ten times
in one of our datasets with over 200 million user plays. Still, attention can flow
from artist a to artist b through artist c, a! c! b, even though there is no direct
transition a! b. Our method should be able to cope with this.

b) Repeated consumption: Users tend to listen to artists in bursts, more than what
one would expect at random in a shuffled playlist2. For instance, over 60% of all
played songs in our largest dataset are consecutive plays of the same artist, i.e.,
intra-artist attention flows are 1.5⇥ larger than inter-artist flows. But at random

1The attention of user u flows from artist a to artist b if b is the next artist u listens to after a.
This event is a transition a! b.

2This effect may be intentional or because continuously listening to the same artist is the player’s
default.
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the probability of re-consuming the same artist is only 0.2%. Our method must
cope with intra-artist attention flows overpowering the analysis of rarer inter-artist
attention flows.

c) Biased observations and small subpopulations: Data of online user behavior is
biased towards subpopulations of users interested in the website services; and
OMSSs are no exception. But we still want to be able to analyze underrepresented
subpopulations: say, the behavior of heavy metal fans in a dataset dominated by
fans of teenage pop artists. Two difficulties arise here: (c.1) the signal of the
largest subpopulation can be much stronger than that of smaller subpopulations;
and (c.2) small subpopulations show few inter-artist transitions. For instance, in
our largest dataset up to 74% of the artists see fewer than ten “plays” leading to
inter-artist transitions.

d) External shock effects: Attention paid to an artist may spike due to external shocks
such as concerts, media exposure, and album releases.

We are aware of no previous model of attention flows that cope with the afore-
mentioned effects (a-d). Most previous work focuses on modeling user attention to a
single “object” (e.g., artist) [18, 112, 129], and thus does not capture the inter-artist
attention flows that are essential to attention flows. As we show in our results, the
same issue is present in other latent factor approaches, including those that capture
limited attention [73]. Those approaches often model user-to-artist plays, rather than
explicit transitions, as we do.

The models that do focus on defining competition and collaboration through user
behavior [100] are designed for large datasets of well represented subpopulations as the
maximum likelihood point estimates used in the method cannot cope with rare tran-
sitions [116]. More importantly, such methods are applied to Online Social Networks
(OSNs), requiring social graphs to determine when users are exposed to pieces of infor-
mation. Exact times of exposure to music is largely unaccounted for in OMSSs, mostly
due to the various ways that users are exposed to new songs [108].

Our main contribution in this chapter is the new A-FLUX method (available
for download3), which accurately captures user attention flows in OMSSs taking into
account all four effects (a-d). A-FLUX includes a modulated Markov model that cap-
tures the long and short tails of repeated attention to single artists and a probabilistic
graphical model that captures the latent inter-artist transitions of user attention. We
show that A-FLUX can reveal interesting and semantically meaningful patterns of user
attention flows by employing it to our datasets. In particular, the Bayesian latent fac-

3http://github.com/flaviovdf/aflux

http://github.com/flaviovdf/aflux
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tor approach of A-FLUX enables the finding of relevant patterns, avoiding problems
associated with point estimates.

Using A-FLUX, we also take a step towards tackling our motivating questions
by finding strong evidence that OMSS attention is elastic. Specifically, we find various
cases of artists which seem to cooperate for attention, whereas some others seem to
steal attention away. Finding evidence of attention elasticity in OMSSs is a novel
application that has not been explored by previous work. Although it is not possible
to generalize our findings to different forms of music consumption (e.g., radio plays),
A-FLUX is a general method that can be readily applied to other OMSS datasets.

In the next section, we detail the datasets we gathered from a popular OMSS
and mined with A-FLUX. Afterwards, in Section 8.3 we define the A-FLUX model.
Afterwards, we present in Section 8.4 our results on applying A-FLUX to uncover
attention flow patterns from our datasets. Then, in Section 8.5 we present a comparison
of A-FLUX with other baseline approaches. Finally, Section 8.6 concludes this chapter.

8.2 OMSS Datasets

We apply A-FLUX on two datasets crawled from Last.FM4, a popular social media
application and a OMSS. Last.FM aggregates various forms of digital music consump-
tion, ranging from desktop/mobile media players to streaming services (theirs and
others)5. As stated, Last.FM also has social media features such as an OSN, allowing
the creation of user groups, as well as providing demographical data about users.

Our datasets are:

Last.FM-1k Collected using a snowball sampling [20] approach. After the snowball
sampling, 992 uniformly random users were selected. The dataset contains, for each
user, the complete listening history (all plays) from February 2005 to May 2009,
the self-declared nationality, age (at the time), and registration date [20]. This
dataset accounts for 18.5 million (user, artist, time) triples, and 107,397 unique
artists. This is the same dataset explored in Chapter 7.

Last.FM-Groups Crawled in 2014, using the user groups from Last.FM. We manu-
ally selected 17 groups: Active Users, Music Statistics, Britney Spears, The Strokes,
Arctic Monkeys, Miley Cyrus, LMFAO, Katy Perry, Jay-Z, Kanye West, Lana Del
Rey, Snoop Dogg, Madonna, Rihanna, Taylor Swift, Adelle, and The Beatles. For
each group, we crawled the listening history (from February 2005 to August 2014)

4http://last.fm
5Aggregation is done using plugins available on other OMSSs and desktop/mobile media players.

http://last.fm
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Table 8.1: Summary of our Last.FM datasets

Last.FM-1k Last.FM-Groups

# Artists 107,397 836,625
# Users 992 15,329
# Plays 18,548,702 218,377,124
Lifespan 2005 to 2009 2005 to 2014

of a subset of the users (the first users listed in the group)6. The total number
of crawled users in 15,329. The number of users per group crawled varies from
16 to 2,343 (median of 421). This dataset has 836,625 unique artists and roughly
218 million triples. While this dataset has biases towards more active users and
pop artists (given our choice of groups), it has over 10 times more users and plays
than the Last.FM-1k dataset. Morever, it allows us to analyze the behavior of fans
(based on group membership) of different artists. This is a desirable property to
mine user behavior when major music event happens (e.g., album releases). We
also crawled the age and nationality of all the users.

Table 8.1 presents the total numbers of artists, users, and music plays on each
dataset. We cross-referenced the datasets with other public music databases. That is,
we also use the Million Songs data7, containing song durations, to estimate the time
dedicated to an artist, and the MusicBrainz dataset8 to gather release dates of albums
(and singles). We collected the dates of 285 releases by 11 artists9, with at least 12
and at most 40 releases per artist.

The work of Nowak [108] discussed the social-material relations of music con-
sumption, concluding that even the same user still relies on multiple forms of music
consumption (e.g., legal and illegal downloading, streaming services, CDs, etc). Be-
cause of these various means of consumption, our music streaming case study, Last.FM,
presents itself as a good platform for studying online behavior. The service aggregates
user accesses from desktop media players (which incorporate legal and illegal down-
loads), free, and also paid streaming services. The issues of analyzing a OMSS that
does not aggregate various forms of consumption is further emphasized by [8], where
the authors showed the disagreement between web and social music services (in terms
of artist popularity).

It is important to point out that attention flows are influenced by internal mech-
anisms employed by OMSSs, such as recommendation services and user interfaces.

6We focus on the first (more active) users due to rate limits.
7http://labrosa.ee.columbia.edu/
8http://musicbrainz.org
9A subset of the artists in the user groups of Last.FM-Groups.

http://labrosa.ee.columbia.edu/
http://musicbrainz.org
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Figure 8.1: The A-FLUX Model: Data Representation by Tensor X (left), the Re-
peated Consumption Modulated Markov Model (center) and the Inter-artist Model
(right).

These are an integral part of the business model and, more importantly, our datasets
reflect a multitude of such effects since Last.FM aggregates various forms of music
consumption. Due to the role of such effects in OMSS this a desirable property when
measuring attention flows. However, A-FLUX can be used in datasets which do not
reflect these effects if necessary (e.g., when comparing recommendation engines or user
interfaces).

8.3 The A-FLUX Model

We derive A-FLUX to capture two user behaviors, namely the repeated consumption
of artists – intra-artist flows – and the inter-artist attention flows. We exploit stochastic
complementation [95] to isolate these two behaviors, and propose two complementary
markovian models, as illustrated in Figure 8.1. The fixation model consists of a mod-
ulated Markov model that accurately captures both long and short attention tails of
repeated consumption. The inter-artist attention flow model exploits a probabilistic
graphical model that captures the latent artist-to-artist transitions of user attention.
Our goal is to capture piecewise stationary processes governing user attention flows.
This way, the dataset can be analyzed on time windows where user behavior is roughly
stationary.

A naïve way to capture user attention flows between artists s (source) and d

(destination) is to build a transition probability matrix P

s,d

with the probability that
a user listens to an artist d after listening artist s. This approach has undesirable
properties [116]. Matrix P is estimated through maximum likelihood point estimates
obtained by dividing the number of transitions s! d by the total number of transitions
out of s. Unfortunately, for 74% of the artists in our largest dataset the denominator
has fewer than ten outgoing transitions. This creates two undesirable effects: (1)
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there are not enough samples to accurately estimate the transition probabilities for
most artists; and, (2) the transition probability matrix P is sparse, stating that it is
impossible to flow from an artist s to an artist d when no user has done so in the past.

In contrast, A-FLUX divides user attention between intra-artist and inter-artist
flows, and uses a latent space Bayesian approach. The intra/inter flow separation is
possible by treating attention flows as a reducible system, where we model the strong
memory of intra-artist transitions – some users continuously listen to the same artist
for hours – as only interfering with the inter-artist dynamics through limited user
attention. This creates an effective separation between the intra-artist model and the
inter-artist model. User’s limited attention is the glue that correlates intra and inter
artist plays by considering that, given a user’s limited attention, there will be only a
limited number of listened songs. This budget of songs is first spent at listening to
songs of the same artist s. One play takes us to an inter-artist transition from artist
s to artist d, s 6= d, which then again transitions to the intra-artist model of artist d.
The inter-artist attention flows are captured by a graphical model, using a Bayesian
approach to estimate inter-artist transitions, thus avoiding problems associated with
point estimates and being robust to infrequent transitions of small subpopulations of
interest. A key point to ensure this separation is modeling the intra-artist song plays
as a Makov chain that only allows entrance and exit from and to other artists at the
same state. This way, the incoming and outgoing flows to and from other artists are
independent of the intra-artist memory, achieving the desired system reducibility.

Before describing A-FLUX, we justify our design choice of not using Phoenix-
R (described in Chapter 7) as part of A-FLUX. Recall that Phoenix-R is focused
on revisits, one factor also captured by A-FLUX. However, with A-FLUX we aim
at capturing user attention flows using a Markovian system. The epidemic approach
of Phoenix-R is non-Markovian. That is, coupling Phoenix-R with the inter-artist
attention flows of A-FLUX would not lead to a Markovian and reducible system.
Nevertheless, since both models aim at analyzing complementary behaviors, the results
on this chapter are complementary to our previous studies.

8.3.1 Data Representation and Notation

Let D be a dataset consisting of (user, artist, timestamp) tuples observed over a time
window [0, T ]. Let U be the set of users and A the set of artists in D. Mining D through
its original coordinate system U ⇥A⇥ [0, T ] is problematic because of effects such as
“asynchronous users with mixed but similar behavior” – issue (a) in the introduction.

To circumvent this effect, we change the coordinate system, transforming D into
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a 3-mode tensor X over U ⇥ A ⇥ A. One mode has dimension |U| and represents
the users. The other two modes both have dimension |A| and represent sources s and
destination d artists.

More specifically, let all users (artists) to be numbered between one and |U| (|A|).
Given n

usd

, the number of times user u 2 U transitioned from s 2 A to d 2 A, we
define tensor X =

h
X1,X2, · · · ,X|U|

i
, where X

u

is:

X

u

=

2

664

n
u11 · · · n

u1|A|
... . . . ...

n
u|A|1 · · · n

u|A||A|

3

775 (8.1)

This data representation, illustrated in the left side of Figure 8.1 (left), is es-
sentially distinct from other tensor decompositions that mine D in its original “user”,
“object” and “time” coordinates as the three tensor modes [90, 143]. These techniques
are meant to capture synchronous user behavior. In our results, we show how our data
representation allows us to capture the asynchronous but similar behavior patterns
that emerge when we have a mixed population of users, spread across different time
zones and with different temporal activity patterns.

A-FLUX defines two complementary models as shown in Figure 8.1: an inter-
artist attention flow model that captures the transitions between different artists, rep-
resented by the values in matrix X

u

for s 6= d, and a fixation model, which captures
the intra-artist transitions (s = d). We describe each model next.

8.3.2 Inter-Artist Attention Flow Model

The goal of our inter-artist attention flow model is to capture the latent transitions
between different artists based on the listening habits of users. Towards that goal,
we experimented with various non-negative tensor factorization techniques, such as
PARAFAC [116]. In the end we opted for a Bayesian approach to decompose the
tensor, since, among other things, has been shown to be more scalable than tensor
factorization [90] and has a probabilistic interpretation.

In our model, the latent space Z defines a set of transitions between pairs of
artists s and d, and each latent factor z in this space defines a transition pattern
shared by a group of users. We refer to each latent factor z as a attention flow gene,
and the collection of genes as a genome. These terms are inspired by the “Music Genome
Project”, a proprietary approach that aims to capture the individual preferences of users
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Figure 8.2: The Inter-Artist Attention Flow Model.

using musical information retrieval techniques10. Also, the notion of genes determining
user behavior has been used before in the social media context [11].

In the following, we use the “·” notation to imply a sum over a given dimension
(e.g., n·sd =

P
u2U n

usd

).

8.3.2.1 Model Derivation

To model inter-artist transitions, we define X�
= X � diagonals(X ) by removing

the cases where s = d from X , since this behavior is captured by the Fixation
model. We aim at producing a decomposed view of X by estimating the tensor
P�

=

h
P

�
1 , · · · ,P�

|U|

i
, where P

�
u

is the transition matrix for user u. We then esti-
mate the inter-artist attention flow probabilities by aggregating the behavior of every
user into the transition matrix P

�. The graphical model used to define the intra-artists
model is shown in Figure 8.2. We now describe this model.

To estimate P

� we decompose X� to a latent space (or genome) Z. Parameter
k = |Z| is an input variable determining the number of genes (or latent factors) to
be estimated. The three other inputs are the hyper-parameters ↵, �

s

, and �
d

. The
outputs of our model are three matrices, ⇥, �

s

, and �

d

, as well as a vector z. ⇥

has |U| rows and |Z| columns, where each cell contains the probability of a user u

generating a given gene z, p(z|u), i.e:

p(z|u) = ⇥(u, z) = ✓
z|u(z) =

n
zu

+ ↵

n·u + |Z|↵ (8.2)

where n
zu

is the number of times the user activated a transition (s, d) because of gene
z, and is estimated from the data (see next section). Both matrices �

s

, and �

d

have
|Z| rows and |A| columns, and contain the probabilities of the source s and destination

10http://www.pandora.com/about/mgp

http://www.pandora.com/about/mgp
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d, respectively, given the gene z. That is:

p(s|z) = �

s

(z, s) = �
s|z(s) =

n
sz

+ �
s

n·z + |A|�
s

(8.3)

p(d|z) = �

d

(z, d) = �
d|z(s) =

n
dz

+ �
d

n·z + |A|�
d

. (8.4)

where, once again, n
sz

and n
dz

are estimated from the data. Finally, vector z contains
the probabilities of each gene z 2 Z, referred to as p(z), which are also estimated from
the data. When learning the model, we can define p(z) / n

z

.
Given Equations 8.2-8.4 and the graphical model in Figure 8.1, we can describe

the generative process for the tensor X� as:

1. For a given user u:

a) Sample ✓
z|u ⇠ Dirichlet(· | ↵)

2. For each (s, d):

a) Draw a latent topic from z ⇠Multinomial(✓
z|u)

b) Draw a source s from s ⇠Multinomial(�
s|z)

c) Draw a destination d from d ⇠Multinomial(�
d|z).

This process captures the notion that users trigger a given transition (s, d) when they
are interested in gene z. Iterative sampling from this process can generate an estimate
of X�. However, since we are interested in the artist-to-artist transition matrices, we
can define P

�
(s, d) as:

P

�
(s, d) =

X

z2|Z|

p(z|s)p(d|z) (8.5)

where p(z|s) / p(s|z)p(z). We can also capture the individual user transition matrices
as:

P

�
u

(s, d) =

P
z2|Z| p(z|u)p(s|z)p(d|z)
P

z2|Z| p(z|u)p(s|z)
. (8.6)

Gibbs Sampling We use a collapsed Gibbs sampler [58] to estimate matrices
⇥, �

s

,�
d

, and vector z. That is, we sample from the posterior defined by the product
✓

z|u�s|z�d|z. We fix hyper-parameters ↵ =

50
|Z| , and �

s

= �
d

= 0.001, although similar
results were produced with other values as well. We execute the sampler for 800
iterations with 300 being discarded as burn-in.
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MDL Cost As in Chapter 7, we apply the minimum description length (MDL)
principle [60] to determine the number of genes k = |Z|. As discussed, MDL captures
how good a model M (P� in our case) represents the data. This is done by taking
into account the trade-off between the “goodness” (or likelihood) and the complexity
(or generality) of the model. MDL is strongly tied to our arguments of not using
maximum likelihood estimates since we want a good, but also more general, recovery
of matrix P

�.
To apply MDL we first define the likelihood of the data given the model M.

Given n
sd

= n·sd the number of transitions from s to d by all users, the log likelihood
of matrix P

� is given by
P

s,d|s 6=d

n
sd

log(p(d|s))11. The MDL cost of model M is given
by the sum: Cost(P� | M) + Cost(M).

Cost(P� | M), defined as the negative log-likelihood, captures the likelihood of
the data given the model: lower-values imply on better (but less general) recoveries of
P

�. Cost(M) captures the complexity of the model as:

Cost(M) = log⇤
(|A|) + log⇤

(|Z|) +
X

s,d,z

[log⇤
(dp(d|z)n··e)

+ log⇤
(dp(s|z)n··e) + log⇤

(dp(z)n··e)]

where log⇤ is the universal coding cost (number of bits) for integers [60]. Cost(M)

represents the cost of coding each matrix in the model in integer representation with
precision n·· (the total number of transitions)12.

8.3.3 Fixation Model

Users’ bursty repeated consumption of artists requires modeling this behavior with a
stochastic process that has memory. Markov modulated processes are a class of models
that are particularly versatile for this task [120]. Our goal here is not only to model
user behavior but also, through the use of intuitive parameters, understand how users
repeatedly consume artists. Most importantly, we want to reproduce user attention
giving rise to both exponential and power law distributions observed in our datasets.

Our fixation model, which captures the intra-artist transitions, is a Markov mod-
ulated process where we use an infinite number of states, an approach widely used
to model systems with bursty behavior [120]. Figure 8.3 illustrates our model (only
the initial states). The “start” circle represents the initial transition from the Inter-
artist model. From state zero we are interested in how long it takes to exit from the

11The likelihood is the product of p(d|s) for all n

sd

transitions [35].
12Since we deal with counts of events, the smallest probability value is (1/n··).
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Figure 8.3: Infinite Markov modulated Attention Model Showing the Transitions Be-
tween the First Three States.

“exit” transition. Thus, circles “start” and “exit” in Figure 8.3 are not states but rather
entrance (exit) transitions from (to) the inter-artist model. The states of the model
capture the affinity of the user for the artist, that is how much the user is willing to
repeatedly listen the artist’s songs. There is a fixed residency time �t on each state.
Thus, higher states represent that the user has a higher affinity and thus dedicates
more play-time to the artist.

The model has parameters 0<r<1 and 1f<2/r13. Parameter r models the
user “rush”, capturing how users get excited as they hear their “favorite” artist song
and decide to hear more (e.g., an entire album). Parameter f models user “fixation”,
representing how long it takes for users to get over their initial impression, which is
also a function of the artist’s song inventory size. A large value of f implies that users
quickly get over their initial impression or happens because the artist has just a few
songs. For example, a one-hit wonder is expected to have large values of r and f .

We can fit the Fixation model, varying r and f , to the complementary cumu-
lative distribution function (CCDF) of the time users dedicate to an artist using the
Levenberg-Marquardt algorithm. The CCDF will define the probability of the resi-
dency time in the chain. The infinite number of states can be captured by using a
sufficient number of states (100 in our datasets). We evaluate the algorithm on the
mean squared error of the real data and the residency times generated by the model.
As we shall show empirically in our results, this model is capable of generating both
power-law and exponential residency times as also discussed in [120].

8.4 Results

In the previous section we introduced A-FLUX. In this section we focus on under-
standing the user attention flows on our datasets using A-FLUX, aiming at finding

13The limit of 2/r is required as described in the original paper of the model [120]
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evidence that can shed some light into the questions: Are OMSSs zero-sum attention
markets? Which artists cooperate and which compete for attention? However, before
delving into these questions, we present the challenges of attention flow mining and
how A-FLUX meets these challenges. We defer the validation of A-FLUX to the next
section.

8.4.1 Applying A-FLUX to the Datasets

We first separate the inter-artist tensor X from the intra-artist repeated consumption
transitions. We run the inter-artist attention flow model of A-FLUX on X�, and the
fixation model of A-FLUX on the intra-artist transitions. We focus on the artists
which had at least five plays by five users. In total, the Last.FM-Groups dataset has
over 3M plays of such artists, while Last.FM-1k has roughly 176k plays. We note that
even after filtering the data, there is still a significant number of rare transitions as
44% of the inter-artist transitions happen less than ten times.

For the inter-artist attention flow model we decide the number of genes (latent
factors) k using the MDL-based criteria described previously, searching in the range
k 2 [2, 400]14. We found that, as we increase k, the MDL cost first decreases and then
rapidly increases, reaching global minimum at k=40. Thus, we experiment with our
model using a genome with 40 genes in both datasets.

We first illustrate the power of A-FLUX by showing in Table 8.2 four different
genes (latent factors) extracted from the Last.FM-Groups dataset. For each gene, the
table shows the top 7 source s and destination d artists. We also selected the top 50
users which have attention flow transitions within each gene. The table also shows
how those users are distributed across different nationalities, considering only those
who self-declared this information in their Last.FM webpages, as well as statistics of
their ages. Discovered genes have a strong tendency to keep user attention flows within
their source and destination artists: even for the users with the most diverse musical
tastes in our largest dataset. That is, we counted the number of transitions within
the same gene by considering the transitions where the gene z has the highest value of
p(z|s) and p(d|z). We found that, 96% of all of their inter-artist transitions are within
the same gene.

We cross-referenced the top artists in each gene with the AllMusic guide15, finding
that the genes automatically discovered by the algorithm are semantically meaningful.
For example, gene z = 18 is predominately formed by female pop/rock singers as

14We searched k 2 {2, 4, 8, 10, 20, 30, 40, 50, 100, 200, 300, 400}.
15http://www.allmusic.com/

http://www.allmusic.com/
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both sources and destinations. This is not the only gene with similar pop singers, as
exemplified by gene z = 39. Yet, the presence of Brazilian pop artists (e.g., Wanessa,
Claudia Leitte, and Pitty) in gene 18 explains why the vast majority (98%) of the
top users in this gene are Brazilians (BR). Gene z = 20 in turn is mostly focused on
different sub-genres of metal (e.g., goth-metal and rap-metal). A large fraction of the
top-50 users of the “heavy metal” gene are from Germany and Poland. Finally, gene
z = 23 represents users of different nationalities (American being the most frequent
one) who like to listen to electronic dance music, often transitioning between different
artists of that genre. Note that even in a dataset mostly comprised of pop artists fans
(Last.FM-Groups), A-FLUX is able to extract the attention flows of heavy metal and
electronic music fans.

8.4.2 User Attention Evolution and Gene Persistence

As we have discussed so far, A-FLUX breaks artist and users into distinct attention
flow patterns. Anecdotally, many of us have had the experience in which we are
browsing our music collection and come upon a long forgotten track belonging to a
“class of artists” (attention gene) that we used to listen together but we have not
listened them in a while. Listening to this forgotten classic gets us hooked on those
artists again, changing our attention flow. The rediscovery of attention gene may
happen less serendipitously, through online ads, media exposure, album releases, or
even in response of recommendations by the OMSS. Yet, A-FLUX is designed to cope
with this type of rediscovery behavior by mining attention persistence in attention
genes.

To illustrate how A-FLUX captures this rediscovery and stickiness behavior of
genes, Figure 8.4 shows the time series of a user broken down into the user’s four top
attention genes. The y-axis is the cumulative sum of the attention paid to the four top
attention genes. The attention user u pays to gene g is obtained through: A(g, u, t) =
P

s

m
s

(u, t)1(g = argmax

z

p(z|s, u)), where the value m
s

(u, t) is the number of plays
of artist s by u during month t.

As shown in the figure, from 2010 until mid 2011 the user goes through a strong
Pop music phase – most representative (top) artists in the gene labeled “U.S. Pop (1)”
are Madonna, Nelly Furtado, and Alicia Keys, and top artists in the “U.S. Pop (2)” gene
are Britney Spears, Leona Lewis, and Kelly Clarkson. We also note some interest in
70-80’s Rock overtones – top artists being Queen, Michael Jackson, and The Beatles.
After mid 2011 the user moves away from Pop artists towards a “Classic Rock” gene,
with The Beatles, Pink Floyd, and Nirvana as top artists.
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Figure 8.4: Time Series of Monthly Plays of a User Broken Down by Attention Genes.
User attention is too complex for user-artist latent factor analysis.

Factor models that rely on user-artist latent factorization – such as SVD and
LDA – would consider the user illustrated in Figure 8.4 to have a diverse musical taste.
Later on, we perform a more in-depth analysis of the advantages of A-FLUX over this
user-artist factor analysis. But, based on the example in Figure 8.4, we see that the
attention flows of a user shows the user not as diverse but rather as evolving.

In fact, our data shows that intra-gene attention flows are strong. For instance,
we looked at the intra-gene attention flows – removing repeated artist consumption –
of the 15 users with the highest attention gene entropy and over 60,000 played tracks.
While these users could be thought of as having “diverse tastes”, 96% of their inter-
artist transitions are to artists within the same gene. The user shown in Figure 8.4 has
the same behavior. Given that attention flows tend to stay within the same gene, and
that A-FLUX is able to correctly capture these flows, in what follows we use A-FLUX
to find evidence of competition and collaboration effects that a new artist release has
on the attention genome.

8.4.3 Attention Elasticity and Competition

The question now to answer is whether a boost in attention of one artist means a boost
or a decrease in attention of other artists. If attention in OSMSs is inelastic, a zero-
sum, then any increase in attention of an artist necessarily means decrease in attention
of other artists. If, however, OSMS attention is elastic, an increase in attention of
an artist may also boost the attention another artists without decreasing anyone’s
attention. One of the challenges of this analysis is the existence of external attention
shocks.
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External attention shocks – such as album releases and concert tours – are one
of the main challenges to mining inter-gene and intra-genre attention flows. A sudden
increase of attention to an artist may be due to an external shock rather than attention
flows from other genes. To measure an artist’s potential influence over the attention
flows of a gene we take two precautions:

(a) We explicitly take album releases into account, looking at how an album release
of an artist affects the attention dedicated to all genes over a two-month time
window. We focus on genes rather than specific artists to avoid false correlations
and variabilities that come from analyzing two sample points.

(b) We aggregate the cumulative effects of attention over all releases of the same artist
to ensure that increases or decreases of attention of a gene are more robust to
statistical variability. More established artists often have five or more releases.
Aggregating their effects helps filtering out noise.

Our precautions are only aimed at cleaning up spurious correlation effects rather than
ascertain causation. For example, once an artist releases a new album users that have
not listened to songs of that artists in the last 60 days increase their attention to the
artist in average 1.66 hours over 60 days when compared to similar users before the
album release. For users that already listen to the releasing artist, some increase their
attention, others decrease attention. Overall the 30% of the regulars actually decrease
their attention, however the overall effect is an increase of 4 hours in average over 60
days. But despite the obvious attention increase towards the artist that releases a new
album, measuring attention flows to other artists proved to be a challenge.

Measuring Attention Elasticity and Competition.

Mindful of these challenges, we quantify the impact a source artist s on gene z at day
t over a subset of artists B ✓ A by counting the total attention given to gene z at time
t to all artists in B, weighted by the probability that s belongs to gene z:

AB(s, z, t) =
X

d2B

X

u2U

p(z|s)p(d|z)F
t

(d, u) (8.7)

where p(z|s) is the A-FLUX probability of a transition from source s to gene z, and
p(d|z) the probability of a transition from gene z to destination d. F

t

captures the
total attention (or fixation) time user u dedicates to artist d on day t. We estimate
the fixation time dedicated to an artist d by summing up the time intervals between
consecutive plays of d. To account for pauses or user logouts, we set the maximum
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playtime of a song to 6 minutes16.

The total attention dedicated exclusively to artist s on gene z at day t

is A{s}(s, z, t). The total attention dedicated to all artists other than s is
AA\{s}(s, z, t). Figure 8.5 compares the evolution of daily gene attention without an
artist AA\{s}(s, z, t) (line with squares) and with the artist AA(s, z, t) (line with circles)
for artist s 2 {Lana Del Rey, Katy Perry, Miley Cyrus}. In what follows we look into
the genes with the largest overall change in attention17 following the largest album
release (captured by the shock size) by each artist (shown as a vertical line in the
graph).

Figure 8.5(a) shows the daily attention towards gene 29 (that includes artists such
as Madonna, Avril Lavigne, and Katy Perry) before and after Miley Cyrus’s largest
album release in our dataset. We observe that the sudden spike of attention towards
Cyrus does not impact the overall attention towards other artists on gene 29. This
is an evidence of attention elasticity, where users dedicate more overall attention to
Cyrus without decreasing their overall attention to other artists on gene 29. Note that
Cyrus’s attention gap soon evaporates after artist Katy Perry releases a new album on
October 18. Figure 8.5(b) shows the evolution of the attention at gene 29 before and
after Katy Perry’s album release. Note that Perry’s new album also has little impact
on the overall attention on gene 29 except for the attention towards Miley Cyrus, which
shows a significant reduction (evidenced by the narrowing gap in Figure 8.5(a)). This
suggests that competition between Miley Cyrus and Katy Perry happens at the “elastic”
attention space.

Generally, without competing releases, attention is elastic and tends to be long
lasting. Lana Del Rey is a good example. Figure 8.5(c) shows the daily attention
towards gene 10 (that includes artists such as Lady Gaga and Britney Spears) before
and after artist Lana Del Rey’s largest album release in our dataset. Note that Del
Rey has a lasting increase in attention (comparing the steady state of the time series
before and after the release), overall slightly reducing the average attention towards
other artists on gene 10. Other pop artists such as Kanye West, Britney Spears, and
Rihanna also display similar attention elasticity, though not lasting as long.

So far we have looked at single genes and single album releases. In what follows
we look into the aggregate attention flows of all genes over all album releases.

16According to MillionMusic, only 12% of the songs have duration exceeding 6 minutes.
17We identified these artists manually, later we discuss our Equation 8.8 how to measure competition
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petition.
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Overall Attention Flows.

Next we define the aggregate the cumulative effects of attention over all releases of
the same artist to ensure that increases or decreases of attention of a gene are more
robust to statistical variability. Established artists often have five or more releases.
Aggregating their effects helps filtering out noise. Through function A we can define
the total attention change score in an interval of time of size 2� as follows. Let R

s

be
the set of all releases available in our datasets from artist s. The total attention change
score is

CnC(s, z) =
1

|R
s

|
X

r

s

2R

s

✓
t

r

s

+�X

t

0=t

r

s

AA\{s}(s, z, t)�
t

r

s

�1X

t

0=t

r

s

���1

AA\{s}(s, z, t
0
)

◆
, (8.8)

where t
r

s

is the time of release r
s

and � is an observation window before and after the
release (60 days in our analysis). AA is defined in Equation 8.7.

The CnC score captures the change in the attention flows from source s to des-
tination d in gene z (for all artists in |A|, see Equation 8.7.) after the release r

s

, with
respect to the group of users represented by z. A positive score provides evidence of a
collaboration correlation between s and the collection of artists in z. A negative score
points to a possible competition, as artist s may be stealing attention away from the
collection of artists in z. Once again, we cannot claim any causation relationship, but
rather provide evidence that such interactions might be happening.

We note however that this computation might be affected by external events, such
as two artists with releases around the same time or overall increased attention towards
a gene. In these case, a positive score could be mistakenly taken as a collaboration.
However, as a gene contains all artists with different weights, the effect of a single artist
is somewhat limited due to averaging.

We computed the average CnC over all genes z 2 Z for 11 artists with doc-
umented releases in our datasets. For conciseness we restrict our exposition to the
three artists shown in Figure 8.6. Each figure shows the CnC score (y-axis) and the
attention gene (x-axis). For some genes that experienced a large change in attention,
we also point out the (destination) artists that were most affected, weighted by their
gene weight (p(d|z)).
Evidence of Attention Collaborations: Kanye West (Figure 8.6(a)) shows elasticity in
user attention, as the artist seems to collaborate with other artists by boosting attention
of many genes, most markably gene 5. This gene is dominated by attention flows
between R&B and pop/rock artists, such as Beyonce and Michael Jackson, consisting
mostly of self-declared U.S. users.
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Figure 8.6: Evidence of competition and cooperation between attention genes.

Evidence of Attention Competitions: Of all 11 artists analyzed, Lana Del Rey (Figure
8.6(b)) is the only one that brings no attention elasticity, but rather competition with
some genes dominated by female pop singers (genes 10 and 16). Lana Del Rey is a
new female singer classified as Pop/Rock and Alternative/Pop. A possible reason for
this competition is that Lana Del Rey is the only non-established artist of all 11 artists
analyzed. Del Rey’s growth seems to come at the attention cost of similar but more
established artists.

Mixed Cooperation/Competition: Arctic Monkeys (Figure 8.6(c)) has a mixture of co-
operation with gene 24, with similar performers, and competition with gene 26, where
the most affected artists are The Strokes and The Killers.

We note that the decomposition of A-FLUX shows the same artist with distinct
attention flow patterns in distinct genes. For instance, take an international artist
like Britney Spears. Let’s define that a user belongs to gene group g if g is the user’s
strongest gene, g = argmax

g

0 p(z = g0|u), and then rank users according to p(z =

g|u). We then see that Britney Spears is the preferred artist of multiple gene groups.
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Table 8.2 shows two such user gene groups, namely 18 and 39. Note that the groups
have similar user demographics and top artists. Yet, these similarities are superficial
as A-FLUX uncovers a large difference in the attention flows of both groups. This
difference becomes apparent when we look at the increase in attention right after
Britney Spears releases an album. Despite having Britney Spears as the top artist
in the group, gene 18 sees a relatively small increase (18%) in the total attention flow
to the gene after the release, while attention flows to gene 39 sees a much larger increase
(45%).

In sum, using A-FLUX we were able to uncover evidence that user attention can
be elastic and that artists seem to compete and collaborate for user attention. Thus,
OMSSs are not necessarily zero-sum attention markets and benefit from new album
releases rather than being indifferent to album releases if attention was inelastic. Yet,
we also found evidence of specific artists that compete for user attention, as a release
by one of them steals attention of genes with similar artists.

8.5 Model Validation

In this section we validate both fixation and inter-artist attention flow models. In some
cases we restrict the presentation to only the larger Last.FM-Groups dataset, although
results are qualitatively similar on both sets of data.

8.5.1 Inter-Artist Attention Flow Model

One key aspect of our inter-artist attention flow model is the representation of data
based on a user-artist-artist tensor. Next, we compare it against alternative data
representations.

Why not decompose the time dimension?

Other tensor decompositions that take time as a tensor mode are designed to capture
synchronous behavior. Yet, we found that the average difference between the registra-
tion dates of the top 50 users in each gene is 339 days. This result serves as evidence
that even though such users have similar attention flow patterns, their overall behavior,
may not be synchronous.

To provide further evidence in support of our method, we show that unlike tem-
poral tensor approaches, our model is able to more accurately recover the musical pref-
erences of each user. Since a ground truth of user preferences is not available, we built
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Figure 8.7: Comparison With Temporal Tensors (Truth, A-FLUX, Time Decomposi-
tion).

Last.FM-Groups Last.FM-1k

A-FLUX Play Trans. A-FLUX Play Trans.
Att. Flow Count Count Att. Flow Count Count

MDL 1.6⇥ 108 2⇥ 108 3⇥ 108 6⇥ 106 9⇥ 106 15⇥ 106

DKL 2.56 4.13 3.78 1.72 3.00 2.77

Table 8.3: Comparison With Other Data Representations.

a synthetic dataset with 50 users, split into 5 homogeneous groups with pre-defined
distributions of musical preferences (artist popularity)18. For each user, we produced
a sequence of plays with exponentially distributed inter-play times. For each play, we
sampled an artist from the preference distribution of the user group with probability
0.99. We sampled it from a different distribution with probability 0.01 (to introduce
some noise). We simulated a total of 5 days, and each user performs 100 plays per day.
We simulated users joining the system at 1 or 2 days apart from each other by starting
their sequences of plays at different times.

We applied A-FLUX and a temporal decomposition model [90] on our synthetic
dataset, aiming at recovering the preference groups. Figure 8.7 plots the matrices
⇥ produced by both methods and the ground truth (i.e, user ids [0, 10) in group 0,
[10, 19) in group 1, etc.). A-FLUX (middle) is able to recover the different user groups
(blocks in the matrix), despite the asynchronous behavior of users within each group.
In contrast, the temporal decomposition (bottom) fails, as it mixes users of different
groups together.

What about other data representations?

We also compare our approach with two models based on other data representations.
In the first one, LDA is used to learn a latent space where each factor defines a topic

18We modeled the artist popularity of each group using a different Lognormal distribution.
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of artists based on the user play counts to the artist. Each user is characterized by
a set of topics (e.g., musical preferences). Making a parallel to the term-document
representation of LDA, documents are mapped to users, and terms are mapped to
artists. We then train LDA to learn the probabilities p(a|z) and p(z|u). Although
the inter-artist transition is not explicitly captured, it can be estimated as P

�
(s, d) =

p(z|a = s)p(a = d|z). We refer to this approach as Play-Count.
The second strategy consists of representing each transition between a pair of

artists separately. LDA is then used to learn a latent probability space that defines
p(x[s,d]|z), where x[s,d] is a random variable capturing the number of times a transition
between artist s and artist d occurred. To define p(s|z), we take the average of p(x[s,d]|z)
by fixing s and varying d. We use a similar heuristic to define p(d|z)19. We refer to
this strategy as Transition-Count.

We compare A-FLUX with Play-Count and Transition-Count in terms of their
ability to reconstruct transition matrix P

�. Table 8.3 shows the MDL scores and
the average Kullback-Leibler divergence20 between the rows of the original transition
matrix and the recovered one (lower is better for both metrics) for all models and
datasets. A-FLUX is superior to the two other approaches in both datasets, and in
terms of both metrics. Play-Count does not capture the inter-artist transition patterns,
while Transition-Count, unlike A-FLUX, models transitions between specific pairs of
artists separately, thus being more susceptible to sparsity issues.

8.5.2 Fixation Model

We validate our fixation model by showing how it fits the time users spend listening to
different artists on any given day (referred to as daily fixation time). Figure 8.8 shows
the fitted and empirical complementary cumulative distribution functions (CCDF) of
the daily fixation time for two particular example artists, namely Radiohead, and T.I.
feat. Justin Timberlake (a collaboration between two artists). This example was ex-
tracted from the Last.FM-Groups dataset.

The distribution for Radiohead clearly has long tails, and is similar to the distribu-
tions for most artists. In contrast, the distribution for the T.I. feat. Justin Timberlake
collaboration has a much shorter tail, approaching an exponential distribution. Unlike
for the other artists, there is only one song by this artist collaboration in our dataset,
which might explain why users tend to spend less time listening to them. Yet, our

19We tried other heuristics, such as filtering very low/high values before computing the mean, but
the results were similar.

20Kullback-Leibler for probability distributions p and q is defined as: DKL(p, q) =P
x

p(x)log(

p(x)
q(x) )
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Figure 8.9: Rush vs Fixation

fixation model provides close fittings for both distributions, capturing both long and
short tails. Interestingly, we can also use the model parameters r and f to distinguish
between these artists: compared to Radiohead, the T.I. feat. Justin Timberlake col-
laboration has a slightly higher rush parameter (r = 0.996) but a much lower fixation
parameter (f = 1.002). Despite the higher initial surge of attention, users lose interest
more quickly in them.

We fitted our model to the daily fixation times of 36,344 and 2,570 artists in
the Last.FM-Groups and Last.FM-1k datasets respectively (artists with more than 5
plays by at least 5 users). In Figure 8.9 we show a scatter plot of the fixation versus
rush scores for the Last.FM-Groups dataset. Based on these fits. We found that, the
vast majority of the artists have very high values of rush r (above 0.95) and values of
fixation f between 1.5 and 2.5. There were also two other small groups of artists with
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very low (near 1) fixation. Looking into these groups, we found many collaborations
between artists, such as the aforementioned TI feat Justin Timberlake. Also, our
fitting errors are very small in most cases. The average Mean Squared Errors (MSE)
of each fitted distribution for artists in Last.FM-Groups is only of 0.02, whereas in the
Last.FM-1k dataset it was of 0.03. The standard deviations were of 0.02 and 0.04 for
the Last.FM-Groups and Last.FM-1k datasets, respectively.

8.6 Summary

In this chapter we presented the A-FLUX model to mine user attention flows in social
media applications. A-FLUX is a detailed user model which, based on a robust data
representation, combines a modulated Markov model to capture the fixation of user
attention at particular artists, with a graphical model to represent the inter-artist
attention flows. We applied A-FLUX on real datasets, collected from a popular social
media OMSS, observing excellent fits and superior results compared to alternative
strategies.

More importantly, we used A-FLUX to uncover interesting findings from our
datasets and tackle our motivation question: Are OMSSs zero-sum user attention
markets? Our results unveil that OMSSs have elastic attention – i.e., are not zero-
sum markets – and benefit from new album releases as user attention to the OMSS
increases. This is further reflected in the various artists which we show that seem to
cooperate for user attention. Yet, we also observed evidence of competition as some
artists steal user attention from others (notably newcomers). Competition and col-
laboration impact how the popularity evolution of social media objects, artists in this
case, takes place over time. As we have shown, a shock in one artist due to a release
can reflect on similar artists.

This chapter concludes our work on mining user activities. We have developed
two different approaches, the Phoenix-R and the A-FLUX to capture both the re-
visit behavior and attention flows of users. Both of our approaches on mining user
activities were founded upon our initial studies on understanding popularity evolution
and feature importance (RG1). On those studies, we showed that social media content
follows different trends and user perceptions of content can be related to popularity
evolution. Our models in RG3 help explain why such trends occur, and how users
perceive content using our latent parameters (e.g., revisits, rush and fixation). The
next chapter concludes the dissertation.



Chapter 9

Conclusions and Future Research
Directions

In this chapter we summarize the main achievements of this dissertation. Moreover, we
also present a discussion on future research directions, as well as the list of publications
derived from this dissertation. We break down this section in one subsection for each
research goal (Sections 9.1, 9.2, and 9.3) containing: a brief summary of the goal, the
obtained results, as well as a small discussion on future work on that goal. Next, we
present a broader discussion on future research directions and open research issues.
Finally, we present the list of publication in Section 9.5.

9.1 Research Goal 1 - Understanding Feature

Importance to Popularity Evolution in Social

Media Objects

On Research Goal 1 (RG1) we focused on understanding the evolution of popularity of
UGC, how such popularity is related to different textual and incoming link features, as
well as to the users perception of content. Our current results can be summarized as:

• We showed that videos that are considered the most popular ones (i.e., the Top
dataset) achieve most of their views early on their lifespan. Moreover, a large
fraction of this popularity is concentrated on a single day or week. Moreover,
videos on the Random dataset exhibit a more linear like growth pattern.

• We showed that the top 10 referrers are responsible for a small fraction (up to
35%) of views and happen early in a videos’ lifespan. One hypothesis for this

161
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behavior is that early referrers will accumulate more views due to the rich-gets-
richer phenomenon, but the sum of all other referrers (not captured) in our dataset
exceeds the top ones.

• Using the KSC algorithm, we showed that 4 main popularity trends govern the
dynamics of YouTube videos. This result confirms previous empirical evidence of
these 4 trends [34].

• We also showed that early on a video’s lifespan static features, such as it’s category
or referrers are beneficial for popularity prediction. As time passes by, popularity
features become more important. This use of static features was shown useful in
our results in Chapters 5 and 6, where we combined static features and early
popularity features to create a novel popularity prediction methods.

• We proposed an experimental methodology on how to assess how users’ perceptions
of content relate with the popularity of social media objects.

• Our results showed that while a consensus between users on their perception of
content is somewhat rare, whenever users do agree on which content they perceive
as more interesting (i.e., the one they prefer in terms of taste, social sharing, or
global perceptions of popularity), that piece of information is usually the most
popular one. This observation provides evidence on the importance of content to
popularity evolution.

Future Work: Although focused on YouTube videos, our work in this front could
be extended to tackle other types of content. For instance, as future work we aim at
further tackling questions such as: Is the consumption of content for different kinds of
events(e.g., real world events such as holidays, or different types of referrers) largely
different? What are the most important blogs or personalities that drive attention to
different events? How does content diffusion in one service, say Twitter or Facebook,
impact the popularity of videos on YouTube? In particular, comparing how popularity
evolves across different media types and the factors that are responsible for this evolu-
tion could be used by content producers and marketeers to choose the applications on
which they should focus. Another interesting direction for future work is the study of
user popularity (as opposed to content popularity). Recent findings [128,139,141] show
that the amount of subscribers a user has plays a large role in the popularity of the
content shared by her. We intend to extend our study to investigate the factors that
impact user popularity on social media applications, as well as the inter-dependencies
that might exist between user and content popularity.
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9.2 Research Goal 2 - Predicting Object Popularity

Towards achieving RG2, we focused on developing novel methods of popularity pre-
diction. Unlike previous work, our approach focuses on predicting both trends (i.e.,
classes) and views of social media content (Chapter 5). We also focused on the natu-
ral trade-off between accurate predictions and the remaining interest after prediction
(Chapter 6). We initially made use of the KMeans and KSC algorithm [146] to extract
popularity trends of objects. Then, we then combined traditional machine learning
techniques (e.g., classification and regression models) in order to perform popularity
trend and views predictions. Features used in these tasks were defined by the distance
between popularity time series and previously extracted trends. Classification was ini-
tially performed based on early popularity time series and static features. Then, spe-
cific regression [110] models were used to predict the popularity value of social media
objects. Our current results are promising, showing significant improvements in pre-
diction accuracy when compared to baseline methods [18,110,112] before considerable
interest in the content has diminished.

Future Work: As future work, we plan to further investigate how our prediction
methods can be applied to different kinds of social media (e.g., blogs and Flickr photos).
We also intend to further work on improving TrendLearner’s accuracy, and evaluate
its effectiveness for different tasks. In details, one another important task for future
work is on outlier detection. That is, predicting that a content that has attracted little
interest will suddenly burst in popularity.

9.3 Research Goal 3 - Mining User Activities

On our third research goal, we focused on understanding how users activities shape
social media popularity. Initially, we performed a characterization of the revisit be-
havior of users to social media content. Based on this characterization, we developed
the Phoenix-R model, a novel time series model which captures the revisit behavior
of users and multiple propagation cascades to a single object. The Phoenix-R model
is a scalable approach to understand how users visit content and to predict the future
popularity of content.

Next, we shifted our attention to the competitive nature of objects. User attention
is a scarce and vied commodity of most social media applications. Using the A-Flux
model we modeled how musical artists compete and collaborate for user attention. The
Bayesian nature of A-Flux makes the model robust to biased datasets (e.g., heavy
tailed counts or crawling biases). Our results show that when major releases occur,
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user attention for music is mostly elastic. That is, users will increase the time they
spend on the application to listen to new releases. However, in some cases, such as
new artists emerging in the music scene, artist releases may prey on the user attention
of more well established previous artists. Also, A-Flux can capture the amount of
time users spend listening to artists, as well as cluster artists based on their inherent
features of attracting and keeping user attention (rush and fixation parameters).

Future Work: As future work on the Phoenix-R model we intend on extend-
ing the model to deal with: (1) interacting populations between shocks; (2) multiple
cascades from a single population; and, (3) fitting on multiple time series at once (e.g.,
audience and revisits). In the case of A-Flux, future work includes investigating
other applications of A-Flux in OMSSs (e.g., prediction) as well as in other domains.
Moreover, we are also exploiting extensions of the model to deal with four mode ten-
sors which capture: the time domain, user, source artist and destination artist. This
four mode tensor analysis will enable us to identify important cascades (e.g., album
releases that impact the application) directly from the user transitions dataset, and
not through the use of external data sources.

9.4 Future Research Direction

In addition the specific investigations proposed as future work in the previous sec-
tions, we also discuss a broader goal as a possible future research direction we plan
on pursuing. In details, we plan on studying the applicability of our results to online
advertisement. A common setting in online advertising is the pay-per-click approach.
In this setting, advertisers pay content providers per click that generates traffic to
their website [77]. Here, we plan to study if the prediction of popularity measures
(i.e., hits) and trends (evolution) can be used in conjunction with simple models of
revenue estimation [52]. In simple terms, we want to verify if, in the case where click
prices are determined by popularity predictions, these predictions are good enough in
order to generate revenue. To this end, we plan to compare if our predictions generate
revenues as good as the ones expected from the actual popularity evolution of each
video. We intend to use revenue estimation models that assume fixed revenue per click
for all videos, fixed revenue per click for each video (i.e., the revenue per click varies
with the video’s popularity) as well as models that assume revenue per click evolving
based on temporal and popularity information [52]. Our evaluation will be performed
in several synthetic (but relevant) scenarios, built from the model parameters [52]. We
are specially interested in the work of Fu et al. [49] which shows that in some kinds of
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auctions [101], revealing data, such as a popularity prediction, is always preferable to
ommiting data in order to maximize the profit of the auctioneer. Two other interesting
models are the ones by Abraham et al. [2] and Mahdian et al. [53], which consider
the case where bidders create their own private sources of information (e.g., popular-
ity prediction based on a local dataset) in order to create an asymmetric market and
maximize their revenues.

9.5 List of Publications

The results of this dissertation were published, or are being reviewed, in the following
publications:

• Figueiredo, F., Almeida, J., Benevenuto, F., Gonçalves, M. “TrendLearner: Early
Prediction of Popularity Trends of User Generated Content”, Elsevier Information
Sciences, second review round

• Figueiredo, F., Ribeiro, B., Almeida, J., Faloutsos, C. “TribeFlow: Mining & Pre-
dicting User Trajectories” In Proceedings of the ACM World Wide Web Conference
- WWW, 2016, under review

• Figueiredo, F., Ribeiro, B., Almeida, J., Faloutsos, C. “Mining User Attention
Flows in Online Music Streaming Services” In ACM Transactions on Intelligent
Systems and Technology, under review

• Figueiredo, F., Almeida, J., Benevenuto, F., Gonçalves, M. “On the Dynamics of
Social Media Popularity: A YouTube Case Study”, ACM Transaction on Internet
Technology, Vol. 14, Issue 4, December 2014.

• Figueiredo, F., Almeida, J., Gonçalves, M. “Improving the Effectiveness of Con-
tent Popularity Prediction Methods using Time Series Trends” In ECML/PKDD
Predictive Analytics Challenge, 2014.

• Figueiredo, F., Matsubara, Y., Ribeiro, B., Almeida, J., Faloutsos, C. “Revisit
Behavior in Social Media: The Phoenix-R Model and Discoveries” In European
Conference on Machine Learning and Principles and Practice of Knowledge Dis-
covery - ECML/PKDD, 2014.

• Figueiredo, F., Almeida, J., Benevenuto, F., Gummadi, K. “Does Content Deter-
mine Information Popularity in Social Media? A Case Study of YouTube Videos’
Content and their Popularity” In Proc. ACM CHI Conference on Human Factors
in Computing Systems - CHI, 2014.
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• Figueiredo, F. “On the Prediction of Popularity of Trends and Hits for User Gener-
ated Videos” In Proc. ACM Conference on Web Search and Data Mining - WSDM,
2013.

• Figueiredo, F., Benevenuto, F. and Almeida, J. “The Tube over Time: Character-
izing Popularity Growth of YouTube Videos”, In Proc. ACM Conference on Web
Search and Data Mining - WSDM, 2011.

During the course of this dissertation, the following papers were published in
collaboration with other authors.

• Gonçalves, G., Figueiredo, F., Almeida, J., Gonçalves, M. “Characterizing Scholar
Popularity: A Case Study in the Computer Science Research Community“ In
ACM/IEEE Joint Conference on Digital Libraries - JCDL, 2014.

• Figueiredo, F., Belém, F., Pinto, H., Almeida, J., Gonçalves, M., Fernandes, D. and
Moura, E. “Assessing the Quality of Textual Features in Social Media”, Information
Processing & Management, Vol. 49, pp. 222 - 247, 2013.

• Santos-Neto, E., Figueiredo, F., Almeida, J., Abilio, N., Andrade, N., and Ripeanu,
M. “Assessing the Value of Peer-Produced Information for Exploratory Search”,
Journal of Information Science, under review.

• Santos-Neto, E., Figueiredo, F., Almeida, J., Mowbray, M., Gonçalves, M. and
Ripeanu, M. “Assessing the Value of Contributions in Tagging Systems”, In Proc.
IEEE International Symposium on Social Intelligence and Networking - SIN, 2010.



Bibliography

[1] Abdi, H. The Bonferonni and Šidák Corrections for Multiple Comparisons. In
Encyclopedia of Measurement and Statistics, N. Salkind, Ed. SAGE, 2001.

[2] Abraham, I., Athey, S., Babaioff, M., and Grubb, M. Peaches, lemons,
and cookies: designing auction markets with dispersed information. In Proc. EC
(2013).

[3] Adamic, L. A. Network Dynamics: The World Wide Web. PhD thesis, 2001.

[4] Ahmed, M., Spagna, S., Huici, F., and Niccolini, S. A Peek Into the
Future: Predicting the Evolution of Popularity in User Generated Content. In
Proc. WSDM (2013).

[5] Anderson, A., Kumar, R., Tomkins, A., and Vassilvitski, S. Dynamics
of Repeat Consumption. In Proc. WWW (2014).

[6] Batista, G. E. A. P. A., Keogh, E. J., Tataw, O. M., and Souza, V.
M. A. CID: An Efficient Complexity-Invariant Distance for Time Series. Data
Mining and Knowledge Discovery (Apr. 2013).

[7] Bauckhage, C., Kersting, K., and Hadiji, F. Mathematical Models of Fads
Explain the Temporal Dynamics of Internet Memes. In Proc. ICWSM (2013).

[8] Bellogín, A., de Vries, A. P., and He, J. Artist Popularity: Do Web and
Social Music Services Agree? In Proc. ICWSM (2013).

[9] Bernstein, M. S., Bakshy, E., Burke, M., and Karrer, B. Quantifying
the invisible audience in social networks. In Proc. CHI (2013).

[10] Blei, D. M. Introduction to Probabilistic Topic Modeling. Communications of
the ACM 55 (2012), 77–84.

[11] Bogdanov, P., Busch, M., Moehlis, J., Singh, A. K., and Szymanski,
B. K. The social media genome: Modeling individual topic-specific behavior in
social media. In ASONAM (2013), IEEE.

167



168 BIBLIOGRAPHY

[12] Boll, S. MultiTube–Where Web 2.0 and Multimedia Could Meet. IEEE Mul-
timedia 14, 1 (Jan. 2007), 9–13.

[13] Borghol, Y., Ardon, S., Carlsson, N., Eager, D., and Mahanti, A.
The Untold Story of the Clones: Content-agnostic Factors that Impact YouTube
Video Popularity. In Proc. KDD (2012).

[14] Borghol, Y., Mitra, S., Ardon, S., Carlsson, N., Eager, D., and Ma-
hanti, A. Characterizing and Modeling Popularity of User-Generated Videos.
Performance Evaluation 68, 11 (Nov. 2011), 1037–1055.

[15] Brodersen, A., Scellato, S., and Wattenhofer, M. YouTube Around
the World. In Proc. WWW (2012).

[16] Broxton, T., Interian, Y., Vaver, J., and Wattenhofer, M. Catching
a Viral Video. Journal of Intelligent Information Systems (Dec. 2011), 1–19.

[17] Carrascosa, J. M., González, R., Cuevas, R., and Azcorra, A. Are
trending topics useful for marketing? In Proc. COSN. (2013).

[18] Castillo, C., El-Haddad, M., Pfeffer, J., and Stempeck, M. Charac-
terizing the life cycle of online news stories using social media reactions. In Proc.
CSCW (2014).

[19] Cattuto, C., Loreto, V., and Servedio, V. D. P. A Yule-Simon process
with memory. Europhysics Letters (EPL) 76, 2 (Oct. 2006), 208–214.

[20] Celma, O. Music Recommendation and Discovery in the Long Tail, 1 ed.
Springer, 2010.

[21] Cha, M., Benevenuto, F., Ahn, Y.-Y., and Gummadi, K. P. Delayed
information cascades in Flickr: Measurement, analysis, and modeling. Computer
Networks 56, 3 (Feb. 2012), 1066–1076.

[22] Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.-Y., and Moon, S. Analyz-
ing the Video Popularity Characteristics of Large-Scale User Generated Content
Systems. IEEE/ACM Transactions on Networking 17, 5 (Oct. 2009), 1357–1370.

[23] Cha, M., Mislove, A., Adams, B., and Gummadi, K. P. Characterizing
social cascades in flickr. In Proc. WOSP (2008).

[24] Cha, M., Mislove, A., and Gummadi, K. P. A Measurement-Driven Anal-
ysis of Information Propagation in the Flickr Social Network. In Proc. WWW
(2009).

[25] Chatfield, C. The Analysis of Time Series: An Introduction, vol. 59 of Texts
in Statistical Science. Chapman & Hall / CRC, 2004.



BIBLIOGRAPHY 169

[26] Chatzopoulou, G., Sheng, C., and Faloutsos, M. A First Step Towards
Understanding Popularity in YouTube. In Proc. Infocom Workshops. (2009).

[27] Chen, G. H., Nikolov, S., and Shah, D. A Latent Source Model for Non-
parametric Time Series Classification. In Proc. NIPS (2013).

[28] Clauset, A., Shalizi, C. R., and Newman, M. E. J. Power-Law Distribu-
tions in Empirical Data. SIAM Review 51, 4 (Nov. 2009), 661–703.

[29] Coates, A., and Ng, A. Learning Feature Representations with K-Means.
Neural Networks: Tricks of the Trade (2012), 561–580.

[30] Conover, M. D., Ferrara, E., Menczer, F., and Flammini, A. The
digital evolution of occupy wall street. PloS one 8, 5 (Jan. 2013), e64679.

[31] Cormode, G., and Krishnamurthy, B. Key Differences Between Web1.0
and Web2.0. First Monday 13, 6 (2008).

[32] Cover, T. M., and Thomas, J. A. Elements of Information Theory, vol. 6 of
Wiley Series in Telecommunications. Wiley, 1991.

[33] Cox, D. Regression Models and Life-Tables. Journal of the Royal Statistical
Society Series B Methodological 34, 2 (1972), 187–220.

[34] Crane, R., and Sornette, D. Robust Dynamic Classes Revealed by Mea-
suring the Response Function of a Social System. Proceedings of the National
Academy of Sciences 105, 41 (Oct. 2008), 15649–53.

[35] Csiszár, I., and Shields, P. C. The consistency of the bic markov order
estimator. The Annals of Statistics 28, 6 (12 2000), 1601–1619.

[36] da Cunha Recuero, R. Information Flows and Social Capital in Weblogs. In
Proc. HT (2008).

[37] Drèze, X., and Zufryden, F. Measurement of Online Visibility and Its
Impact on Internet Traffic. Journal of Interactive Marketing 18, 1 (Jan. 2004),
20–37.

[38] Du, P., Kibbe, W. A., and Lin, S. M. Improved peak detection in mass
spectrum by incorporating continuous wavelet transform-based pattern matching.
Bioinformatics 22, 17 (2006), 2059–2065.

[39] Duong, Q., Goel, S., Hofman, J., and Vassilvitskii, S. Sharding social
networks. In Proc. WSDM (2013).

[40] Džeroski, S., and Ženko, B. Is Combining Classifiers with Stacking Better
than Selecting the Best One? Machine Learning 54, 3 (Mar. 2004), 255–273.



170 BIBLIOGRAPHY

[41] Easley, D., and Kleinberg, J. Networks, Crowds, and Markets: Reasoning
About a Highly Connected World, 1 ed. Cambridge University Press, July 2010.

[42] Farahat, A., and Bailey, M. C. How Effective is Targeted Advertising? In
Proc. WWW. (2012).

[43] Ferrara, E., Varol, O., Menczer, F., and Flammini, A. Traveling trends:
social butterflies or frequent fliers? In Proc. COSN (2013).

[44] Figueiredo, F., Benevenuto, F., and Almeida, J. The Tube Over Time:
Characterizing Popularity Growth of YouTube Videos. In Proc. WSDM (2011).

[45] Figueiredo, F., Pinto, H., Belém, F., Almeida, J., Gonçalves, M.,
Fernandes, D., and Moura, E. Assessing the Quality of Textual Features in
Social Media. Information Processing & Management (Apr. 2012).

[46] Filippova, K., and Hall, K. B. Improved Video Categorization from Text
Metadata and User Comments. In Proc. SIGIR (2011).

[47] Fleiss, J. L., and Levin, B. Statistical Methods for Rates and Proportions,
3 ed. Wiley-Interscience, 2003.

[48] Flickr. Flickr: Advertising sollutions.

[49] Fu, H., Jordan, P., Mahdian, M., Nadav, U., Talgam-Cohen, I., and
Vassilvitskii, S. Algorithmic Game Theory. In Algorithmic Game Theory: Lec-
ture Notes in Computer Science, Lecture Notes in Computer Science. Springer,
2012, pp. 168–179.

[50] Fu, T.-c. A Review on Time Series Data Mining. Engineering Applications of
Artificial Intelligence 24, 1 (Feb. 2011), 164–181.

[51] Geurts, P., Ernst, D., and Wehenkel, L. Extremely Randomized Trees.
Machine Learning 63, 1 (2006), 3–42.

[52] Ghose, A., and Yang, S. An Empirical Analysis of Search Engine Advertis-
ing: Sponsored Search in Electronic Markets. INFORMS: Management Science
(2010).

[53] Ghosh, A., Mahdian, M., McAfee, R. P., and Vassilvitskii, S. To Match
or Not to Match: Economics of Cookie Matching in Online Advertising. ACM
Transactions on Economics and Computation 3, 2 (Apr. 2015).

[54] Gill, P., Arlitt, M., Li, Z., and Mahanti, A. Youtube Traffic Characteri-
zation: A View From the Edge. In Proc. IMC (2007).



BIBLIOGRAPHY 171

[55] Gill, P., Erramilli, V., Chaintreau, A., Krishnamurthy, B., Papa-
giannaki, D., and Rodriguez, P. Follow the Money: Understanding Eco-
nomics of Online Aggregation and Advertising. In Proc. IMC (2013).

[56] Golbandi, N. G., Katzir, L. K., Koren, Y. K., and Lempel, R. L.
Expediting Search Trend Detection via Prediction of Query Counts. In Proc.
WSDM (2013).

[57] Golder, S. A., and Hubberman, B. Usage Patterns of Collaborative Tagging
Systems. Journal of Information Science 32, 2 (Apr. 2006), 198–208.

[58] Griffiths, T. Gibbs sampling in the generative model of latent dirichlet allo-
cation. Tech. rep., 2002.

[59] Gulotta, R., Faste, H., and Mankoff, J. Curation, provocation, and
digital identity: risks and motivations for sharing provocative images online. In
Proc. CHI (2012).

[60] Hansen, M. H., and Yu, B. Model Selection and the Principle of Minimum
Description Length, 2001.

[61] Harvey, M., Ruthven, I., and Carman, M. J. Improving social book-
mark search using personalised latent variable language models. In Proc. WSDM
(2011).

[62] Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, vol. 27 of Springer Series in
Statistics. Springer, 2009.

[63] Hauger, D., Schedl, M., Kosir, A., and Tkalci, M. The Million Musical
Tweets Dataset: What Can we Learn from Microblogs. In Proc. ISMIR (2013).

[64] Hethcote, H. W. The Mathematics of Infectious Diseases. SIAM Review 42,
4 (2000), 599–653.

[65] Hu, Q., Wang, G., and Yu, P. S. Deriving Latent Social Impulses to Deter-
mine Longevous Videos. In Proc. WWW (2014).

[66] Huang, C., Li, J., and Ross, K. W. Can Internet Video on Demand be
Profitable? In Proc. SIGCOMM (2007).

[67] Huberman, B. A., and Adamic, L. A. Internet: Growth Dynamics of the
World-Wide Web. Nature 401, 6749 (Sept. 1999), 131–2.

[68] Islam, M. A., Eager, D., Carlsson, N., and Mahanti, A. Revisiting
Popularity Characterization and Modeling of User-generated Videos. In Proc.
Mascots (2013).



172 BIBLIOGRAPHY

[69] Jain, R. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley, 1991.

[70] Jiang, L., Miao, Y., Yang, Y., Lan, Z., and Hauptmann, A. G. Viral
Video Style: A Closer Look at Viral Videos on YouTube. In Proc. ICMR (2014).

[71] Kamath, K. Y., Caverlee, J., Lee, K., and Cheng, Z. Spatio-temporal
dynamics of online memes: a study of geo-tagged tweets. In Proc WWW. (2013).

[72] Kang, J.-H., and Lerman, K. LA-CTR: A Limited Attention Collaborative
Topic Regression for Social Media. In Proc. AAAI (2013).

[73] Kang, J.-h., Lerman, K., and Getoor, L. LA-LDA: A Limited Attention
Model for Social Recommendation. In Social Computing, Behavioral-Cultural
Modeling and Prediction (2013), Springer Berlin Heidelberg.

[74] Kaplan, A. M., and Haenlein, M. Users of the World, Unite! The Challenges
and Opportunities of Social Media. Business Horizons 53, 1 (Jan. 2010), 59–68.

[75] Kasneci, G., Ramanath, M., Suchanek, F., and Weikum, G. The YAGO-
NAGA approach to knowledge discovery. ACM SIGMOD Record 37, 4 (2009),
41.

[76] Khosla, A., Sarma, A. D., and Hamid, R. What Makes an Image Popular.
In Proc. WWW (2014).

[77] Lacerda, A., Cristo, M., Gonçalves, M. A., Fan, W., Ziviani, N., and
Ribeiro-Neto, B. Learning to Advertise. In Proc. SIGIR (2006).

[78] Lakkaraju, H., McAuley, J., and Leskovec, J. What’s in a Name? Un-
derstanding the Interplay between Titles, Content, and Communities in Social
Media. In Proc. ICWSM (2013).

[79] Lee, J. G., Moon, S., and Salamatian, K. An Approach to Model and
Predict the Popularity of Online Contents with Explanatory Factors. In Proc.
WIC (2010), vol. 1.

[80] Lehmann, J., Gonçalves, B., Ramasco, J. J., and Cattuto, C. Dynam-
ical classes of collective attention in twitter. In Proc. WWW (2012).

[81] Lerman, K., and Hogg, T. Using a Model of Social Dynamics to Predict
Popularity of News. In Proc. WWW (2010).

[82] Lerman, K., and Jones, L. Social Browsing on Flickr. In Proc. ICWSM
(2006).

[83] Leskovec, J. Social Media Analytics. In Proc. WWW (2011).



BIBLIOGRAPHY 173

[84] Leskovec, J., Backstrom, L., and Kleinberg, J. Meme-Tracking and the
Dynamics of the News Cycle. In Proc. KDD (2009).

[85] Lin, J., Keogh, E., Wei, L., and Lonardi, S. Experiencing SAX: A Novel
Symbolic representation of Time Series. Data Mining and Knowledge Discovery
15 (2007), 107–144.

[86] Mader, H. M., Coles, S. G., Connor, C. B., and Connor, L. J. Statistics
in Volcanology. Geological Society of London, 2006.

[87] Manchanda, P., Dubé, J.-P., Goh, K. Y., and Chintagunta, P. K.
The Effect of Banner Advertising on Internet Purchasing. The Effect of Banner
Advertising on Internet Purchasing 43, 1 (2006), 98–108.

[88] Marlow, C., Naaman, M., Boyd, D., and Davis, M. HT06, tagging paper,
taxonomy, Flickr, academic article, to read. In Prog. HT (2006).

[89] Matsubara, Y., Sakurai, Y., and Faloutsos, C. The Web as a Jun-
gle: Non-Linear Dynamical Systems for Co-evolving Online Activities. In Proc.
WWW (2015).

[90] Matsubara, Y., Sakurai, Y., Faloutsos, C., Iwata, T., and Yoshikawa,
M. Fast mining and forecasting of complex time-stamped events. In Proc. KDD
(2012).

[91] Matsubara, Y., Sakurai, Y., Prakash, B. A., Li, L., and Faloutsos,
C. Rise and Fall Patterns of Information Diffusion. In Proc. KDD (2012).

[92] Menascé, D., and Almeida, V. Capacity Planning for Web Services: Metrics,
Models, and Methods. Prentice Hall, 2002.

[93] Mennecke, B., Roche, E. M., Bray, D. A., Konsynski, B., Lester, J.,
Rowe, M., and Townsend, A. M. Second Life and Other Virtual Worlds: A
Roadmap for Research. In Proc. ICIS (2007).

[94] Mestyán, M., Yasseri, T., and Kertész, J. Early prediction of movie box
office success based on Wikipedia activity big data. PloS one 8, 8 (Jan. 2013),
e71226.

[95] Meyer, C. D. Stochastic complementation, uncoupling markov chains, and the
theory of nearly reducible systems. SIAM Review 31 (1989), 240–272.

[96] Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., and Bhat-
tacharjee, B. Measurement and Analysis of Online Social Networks. In Proc.
IMC (2007).



174 BIBLIOGRAPHY

[97] Mitzenmacher, M. Dynamic Models for File Sizes and Double Pareto Distri-
butions. Internet Mathematics 1, 3 (2004), 305–333.

[98] Moat, H. S., Curme, C., Avakian, A., Kenett, D. Y., Stanley, H. E.,
and Preis, T. Quantifying Wikipedia Usage Patterns Before Stock Market
Moves. Scientific Reports 3 (May 2013).

[99] Mohri, M. Foundations of Machine Learning (Adaptive Computation and Ma-
chine Learning series). MIT Press, 2012.

[100] Myers, S. A., and Leskovec, J. Clash of the Contagions: Cooperation and
Competition in Information Diffusion. In Proc. ICDM (2012), IEEE.

[101] Myerson, R. B. Optimal Auction Design. Mathematics of Operations Research
6, 1 (1981), 58–73.

[102] Nannen, V. A Short Introduction to Model Selection, Kolmogorov Complexity
and Minimum Description Length (MDL). Complexity, Mdl (2010), 20.

[103] Newman, M. W. Power laws, Pareto distributions and Zipf’s law. Contemporary
Physics 46 (Feb. 2006), 323–351.

[104] Nielsen. Nielsen Entertanment and Billboard’s 2014 Music Industry Report.
Tech. rep., 2014.

[105] Nielsen Institute. Nielsen Entertanment and Bullboard’s 2014 MID-Year
Music Industry Report. Tech. rep., 2014.

[106] Nigam, K., and Ghani, R. Analyzing the Effectiveness and Applicability of
Co-training. In Proc. CIKM (2000).

[107] Nikolov, S. Trend or No Trend: A Novel Nonparametric Method for Classifying
Time Series. PhD thesis, MIT, 2012.

[108] Nowak, R. Investigating the interactions between individuals and music tech-
nologies within contemporary modes of music consumption. First Monday 19,
10 (2014), Online.

[109] Oliveira, R. D., Cherubini, M., and Oliver, N. Looking at Near-Duplicate
Videos from a Human-Centric Perspective. ACM Transactions on Multimedia
Computing, Communications, and Applications 6, 3 (Aug. 2010), 1–22.

[110] Pinto, H., Almeida, J., and Gonçalves, M. Using Early View Patterns to
Predict the Popularity of YouTube Videos. In Proc. WSDM (2013).

[111] Preis, T., Moat, H. S., and Stanley, H. E. Quantifying trading behavior
in financial markets using Google Trends. Scientific reports 3 (Jan. 2013), 1684.



BIBLIOGRAPHY 175

[112] Radinsky, K., Svore, K., Dumais, S., Teevan, J., Bocharov, A., and
Horvitz, E. Behavioral Dynamics on the Web: Learning, Modeling, and Pre-
diction. ACM Transactions on Information Systems 32, 3 (2013), 1–37.

[113] Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover,
B., Zhu, Q., Zakaria, J., and Keogh, E. Searching and Mining Trillions of
Time Series Subsequences Under Dynamic Time Warping. In Proceedings of the
18th ACM SIGKDD international conference on Knowledge discovery and data
mining - KDD ’12 (New York, New York, USA, 2012), ACM Press.

[114] Ratkiewicz, J., Flammini, A., and Menczer, F. Traffic in social media I:
paths through information networks. In Proc. SIN (2010).

[115] Reed, W. J., and Hughes, B. D. From Gene Families and Genera to Incomes
and Internet File Sizes: Why Power Laws are so Common in Nature. Physical
review. E 66, 6 (2002).

[116] Rendle, S., Freudenthaler, C., and Schmidt-Thieme, L. Factoriz-
ing personalized Markov chains for next-basket recommendation. Proc. WWW
(2010).

[117] Reshef, D., Reshef, Y., Finucane, H. K., Sharon R. Grossman,
McVean, G., Turnbaugh, P. J., Lander, E. S., Mitzenmacher, M.,
and Sabeti, P. C. Detecting Novel Associations in Large Data Sets. Science
334, 6062 (2011), 1518–1524.

[118] Ribeiro, B. Modeling and Predicting the Growth and Death of Membership-
based Websites. In Proc. WWW (2014).

[119] Ribeiro, B., and Faloutsos, C. Modeling Website Popularity Competition
in the Attention-Activity Marketplace. In Proc. WSDM (2015).

[120] Robert, S., and Boudec, J.-Y. L. On a Markov modulated chain exhibiting
self-similarities over finite timescale. Performance Evaluation 27-28 (1996), 159–
173.

[121] Saez-Trumper, D., Comarela, G., Almeida, V., Baeza-Yates, R., and
Benevenuto, F. Finding trendsetters in information networks. In Proc. KDD
(2012).

[122] Salganik, M. J., Dodds, P. S., and Watts, D. J. Experimental Study of
Inequality and Unpredictability in an Artificial Cultural Market. Science 311,
5762 (2006), 854–856.



176 BIBLIOGRAPHY

[123] Shamma, D. A., Kennedy, L., and Churchill, E. F. Peaks and persistence:
Modeling the shape of microblog conversations. In Proc. CSCW (2011).

[124] Shao, J. Linear model selection by cross-validation. Journal of the American
Statistical Association 88, 422 (1993), pp. 486–494.

[125] Shumway, R. H., and Stoffer, D. S. Time Series Analysis and Its Ap-
plications With R Examples, vol. 102 of Springer Texts in Statistics. Springer,
2006.

[126] Sinha, S., and Pan, R. K. How a "Hit" is Born: The Emergence of Popular-
ity from the Dynamics of Collective Choice. In Econophysics and Sociophysics:
Trends and Perspectives. Wiley, 2007, p. Online.

[127] Stone, M. An asymptotic equivalence of choice of model by cross-validation and
akaike’s criterion. Journal of the Royal Statistical Society. Series B (Methodolog-
ical) 39, 1 (1977), pp. 44–47.

[128] Susarla, A., Oh, J.-H., and Tan, Y. Social Networks and the Diffusion
of User-Generated Content: Evidence from YouTube. Information Systems Re-
search 23, 1 (2011), 1–19.

[129] Szabo, G., and Huberman, B. A. Predicting the Popularity of Online Con-
tent. Communications of the ACM 53, 8 (2010), 80–88.

[130] Thomson, D. J. Jackknifing multiple-window spectra. In Proceedings of
ICASSP ’94. IEEE International Conference on Acoustics, Speech and Signal
Processing (1994), vol. vi, IEEE.

[131] Vakali, A., Giatsoglou, M., and Antaris, S. Social networking trends and
dynamics detection via a cloud-based framework design. In Proc. WWW (2012).

[132] Valera, S., Gomez-Rodriguez, M., and Gummadi, K. P. Modeling Adop-
tion of Competing Products and Conventions in Social Media. In NIPS Workshop
in Networks (2014).

[133] van Zwol, R. Flickr: Who is Looking? In Proc. WI (2007), IEEE.

[134] Vimeo. Advertise on Vimeo, 2012.

[135] Vintsyuk, T. K. Speech discrimination by dynamic programming. Cybernetics
4, 1 (1972), 52–57.

[136] Wang, C., and Huberman, B. A. Long trend dynamics in social media. EPJ
Data Science 1, 2 (2012).

[137] Wang, X., and McCallum, A. Topics over time. In Proc. KDD (2006).



BIBLIOGRAPHY 177

[138] Wang, Y.-C., Burke, M., and Kraut, R. E. Gender, topic, and audience
response: an analysis of user-generated content on facebook. In Proc. CHI (2013).

[139] Wattenhofer, M., Wattenhofer, R., and Zhu, Z. The YouTube social
network. In Proc. ICWSM (2012).

[140] Watts, D. J., and Dodds, P. S. Influentials, Networks, and Public Opinion
Formation. Journal of Consumer Research 38, 4 (2007), 441–458.

[141] Weng, L., Flammini, A., Vespignani, A., and Menczer, F. Competition
among memes in a world with limited attention. Nature Scientific reports 2 (Jan.
2012), 335.

[142] Wooldridge. Introductory Econometrics: A Modern Approach. South-
Western, 2013.

[143] Xiong, L., Chen, X., Huang, T.-K., Schneider, J., and Carbonel, J. G.
Temporal collaborative filtering with bayesian probabilistic tensor factorization.
In Proc. SDM (2010).

[144] Yan, X., Guo, J., Lan, Y., and Cheng, X. A biterm topic model for short
texts. 1445–1456.

[145] Yang, J., and Leskovec, J. Modeling Information Diffusion in Implicit Net-
works. In Proc. ICDM (2010).

[146] Yang, J., and Leskovec, J. Patterns of temporal variation in online media.
In Proc. WSDM (2011).

[147] Yano, T., and Smith, N. A. What’s Worthy of Comment? Content and
Comment Volume in Political Blogs. In Proc. ICWSM (2010).

[148] Ye, L., and Keogh, E. Time series shapelets: a novel technique that al-
lows accurate, interpretable and fast classification. Data Mining and Knowledge
Discovery 22, 1-2 (June 2011), 149–182.

[149] Yin, H., Cui, B., Chen, L., Hu, Z., and Zhang, C. Modeling Location-based
User Rating Profiles for Personalized Recommendation. ACM Transactions on
Knowledge Discovery from Data To Appear .

[150] Yin, P., Luo, P., Wang, M., and Lee, W.-C. A straw shows which way
the wind blows: Ranking Potentially Popular Items from Early Votes. In Proc.
WSDM (2012).

[151] Youtube. YouTube press statistics, 2012.



178 BIBLIOGRAPHY

[152] Yu, H., Xie, L., and Sanner, S. Exploring the Popularity Phases of YouTube
Videos: Observations, Insights, and Prediction. In Proc. ICWSM (2015).

[153] Zeng, D., Chen, H., Lusch, R., and Li, S.-H. Social Media Analytics and
Intelligence. IEEE Intelligent Systems 25, 6 (Nov. 2010), 13–16.

[154] Zhao, C., Hinds, P., and Gao, G. How and to whom people share: The role
of culture in self-disclosure online communities. In Proc. CSCW (2012).

[155] Zhou, R., Khemmarat, S., and Gao, L. The impact of YouTube Recom-
mendation System on Video Views. In Proc. IMC (2011).


	Agradecimentos
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Research Goals
	1.4 Contributions and Outline of this Dissertation

	2 Background and Related Work
	2.1 Empirical Studies on Popularity
	2.1.1 Probability Distributions of Popularity
	2.1.2 The Effects of Markets on Popularity

	2.2 Popularity of Social Media Objects
	2.2.1 Static Views of Popularity of Social Media Objects
	2.2.2 Popularity Evolution Over Time on Social Media Applications
	2.2.3 Prediction of Popularity of Social Media Objects

	2.3 Popularity Through the Lens of User Activities
	2.4 Time Series Statistics and Data Mining
	2.4.1 Time Series Representation
	2.4.2 Linear Regression Models
	2.4.3 State Space Regression Models
	2.4.4 Distance Measures and Machine Learning Tasks

	2.5 Summary and Roadmap

	3 On the Dynamics of Social Media Popularity
	3.1 Introduction
	3.2 Datasets
	3.3 Understanding Video Popularity Growth
	3.3.1 How Early do Videos Reach Most of their Observed Views (Q1)?
	3.3.2 Is Popularity Concentrated in Bursts (Q2)?
	3.3.3 Discussion

	3.4 Popularity Temporal Dynamics (Q3)
	3.5 Referrer Analysis (Q4)
	3.5.1 Which Referrers are More Important for Video Popularity (Q4a)?
	3.5.2 How Early do Referrers Appear (Q4b)?
	3.5.3 Discussion

	3.6 Associations Between Various Features and Popularity (Q5)
	3.6.1 What Kinds of Content and Referrers are Responsible for Each Popularity Trend? (Q5a)
	3.6.2 What are the Correlations Between Features and Popularity Trends and Values? (Q5b)
	3.6.3 Discussion

	3.7 Summary

	4 Users Perception of Content and Popularity
	4.1 Introduction
	4.2 Methodology
	4.2.1 Datasets
	4.2.2 Human Intelligence Tasks
	4.2.3 Evaluation Metrics
	4.2.4 Representativeness and Reproducibility

	4.3 Results
	4.3.1 Demographic Survey
	4.3.2 Can Users Reach Consensus?
	4.3.3 When There Is Consensus, Does It Match the Relative Popularity of Videos on YouTube?

	4.4 Summary

	5 News Content Popularity Prediction Using Time Series Trends
	5.1 Introduction
	5.2 Problem Definition
	5.3 Datasets
	5.4 Baseline Methods and Our Approach
	5.4.1 Baseline Methods
	5.4.2 Our Approach
	5.4.3 Evaluation Methodology

	5.5 Results
	5.6 Summary

	6 Early Prediction of Popularity Trends of User Generated Content
	6.1 Introduction
	6.2 Problem Statement
	6.3 Our Approach
	6.3.1 Trend Extraction
	6.3.2 Trend Prediction
	6.3.3 Putting It All Together

	6.4 Evaluation Methodology
	6.5 Experimental Results
	6.5.1 Are shapelets better than a reference dataset?
	6.5.2 TrendLearner Results
	6.5.3 Applicability to Regression Models

	6.6 Summary

	7 Revisit Behavior in Social Media
	7.1 Introduction
	7.2 Definitions and Background
	7.2.1 Definitions
	7.2.2 Existing Models of Object Popularity Dynamics

	7.3 Content Revisit Behavior in Social Media
	7.3.1 Datasets
	7.3.2 Main findings

	7.4 The Phoenix-R Model
	7.4.1 Deriving the Model
	7.4.2 Fitting the Model

	7.5 Experiments
	7.5.1 Is Phoenix-R Better than Alternatives?
	7.5.2 Predicting Popularity with Phoenix-R 

	7.6 Summary

	8 Mining User Attention Flows
	8.1 Introduction
	8.2 OMSS Datasets
	8.3 The A-FLUX Model
	8.3.1 Data Representation and Notation
	8.3.2 Inter-Artist Attention Flow Model
	8.3.3 Fixation Model

	8.4 Results
	8.4.1 Applying A-FLUX to the Datasets
	8.4.2  User Attention Evolution and Gene Persistence
	8.4.3 Attention Elasticity and Competition

	8.5 Model Validation
	8.5.1 Inter-Artist Attention Flow Model
	8.5.2 Fixation Model

	8.6 Summary

	9 Conclusions and Future Research Directions
	9.1 Research Goal 1 - Understanding Feature Importance to Popularity Evolution in Social Media Objects
	9.2 Research Goal 2 - Predicting Object Popularity
	9.3 Research Goal 3 - Mining User Activities
	9.4 Future Research Direction
	9.5 List of Publications

	Bibliography

