
UNDERSTANDING THE SHAPE OF FEATURE

CODE

RODRIGO BARBOSA QUEIROZ

UNDERSTANDING THE SHAPE OF FEATURE

CODE

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais – Departa-
mento de Ciência da Computação
como requisito parcial para a obtenção do
grau de Mestre em Ciência da Computação.

Orientador: Marco Túlio de Oliveira Valente

Belo Horizonte

Julho de 2015

RODRIGO BARBOSA QUEIROZ

UNDERSTANDING THE SHAPE OF FEATURE

CODE

Dissertation presented to the Graduate
Program in Ciência da Computação of the
Universidade Federal de Minas Gerais – De-
partamento de Ciência da Computação
in partial fulfillment of the requirements for
the degree of Master in Ciência da Com-
putação.

Advisor: Marco Túlio de Oliveira Valente

Belo Horizonte

July 2015

©!2015,!Rodrigo!Barbosa!Queiroz
""""Todos os direitos reservados

Ficha catalográfica elaborada pela Biblioteca do ICEx - UFMG
!

Queiroz,!Rodrigo!Barbosa.!

Q3u Understanding!the!shape!of!feature!code /!!Rodrigo!!!!!
 Barbosa!!Queiroz!!!—!!Belo Horizonte, 2015.

 xix,!82f.!:!il.!;!29cm.!

 Dissertação (Mestrado) - Universidade Federal de
 Minas Gerais – Departamento de Ciência da
 Computação

 Orientador: Marco Túlio de Oliveira Valente

 1. Computação - Teses. 2. Engenharia de linha de
 produto de software - Teses. 3. Software - Reutilização
 - Teses. I. Orientador. II. Título.
 519.6*32(043)

Resumo

Feature annotations (por exemplo, diretivas do preprocessador C, na forma de #ifdefs)
são usadas para controlar extensões de código relacionadas a uma feature. Por muito
tempo, tais anotações têm sido consideradas indesejáveis. Seu uso excessivo pode au-
mentar o risco de ripple effects, desorganizar o código e dificultar sua compreensão e
manutenção. Para prevenir esses problemas, desenvolvedores devem monitorar o uso de
feature annotations, por exemplo, estabelecendo thresholds (valores de referência). No
entando, pouco se sabe sobre como extrair thresholds na prática, ou quais valores são
representativos para métricas relacionadas a features. Para contribuir com uma solução
para esse problema, nós analizamos a distribuição estatística de métricas relacionadas a
feature annotations, extraídas de um corpus de 20 sistemas baseados no preprocessador
C, amplamente conhecidos, com longo histórico de evolução e que abrangem diferentes
domínios de função. O estudo considera 3 métricas: scattering degree (espalhamento
de feature constants), tangling degree (entrelaçamento de feature expressions) e nest-
ing depth (profundidade das anotações). Os resultados mostram que feature scattering
possui uma distribuição com elevada assimetria. Em 14 sistemas (70 %), a distribuição
de scattering degree segue uma distribuição power-law, tornando medidas de média e
desvio padrão não confiáveis para estabelecer limites. Em relação a tangling e nesting,
os valores tendem a seguir uma distribuição uniforme. Embora existam outliers, eles
pouco impactam a média, sugerindo que medidas de tendência central podem gerar
thresholds confiáveis. Com base nestes resultados, nós propomos thresholds gerados a
partir de nosso benchmark como base para trabalhos futuros. Adicionalmente, nós re-
alizamos uma revisão sistemática da literatura para identificar descobertas e suposições
reportadas na literatura sobre o uso de ifdefs. Os resultados mostram que os estudos
disponíveis não realizam análise estatística de métricas relacionadas a features, e nem
propõem thresholds.

Palavras-chave: Linhas de Produto de Software, features, variabilidade, cpp, ifdef.

ix

Abstract

Feature annotations (e.g., code fragments guarded by ifdef C-preprocessor directives)
are widely used to control code extensions related to features. Feature annotations
have long been said to be undesirable. When maintaining features guarded by anno-
tations, there is a high risk of ripple effects. Also, excessive use of feature annotations
may lead to code clutter, hinder program comprehension and harden maintenance. To
prevent such problems, developers should monitor the use of feature annotations, for
example, by setting acceptable thresholds. Interestingly, little is known about how to
extract thresholds in practice, and which values are representative for feature-related
metrics. To address this issue, in this master dissertation we analyze the statistical
distribution of three feature-related metrics collected from a corpus of 20 well-known
and long-lived C-preprocessor-based systems from different domains. We consider three
metrics: scattering degree of feature constants, tangling degree of feature expressions,
and nesting depth of preprocessor annotations. Our findings show that feature scatte-
ring is highly skewed; in 14 systems (70%), the scattering distributions match a power
law, making averages and standard deviations unreliable limits. Regarding tangling
and nesting, the values tend to follow a uniform distribution; although outliers exist,
they have little impact on the mean, suggesting that central statistics measures are
reliable thresholds for tangling and nesting. Following our findings, we then propose
thresholds from our benchmark data, as a basis for further investigations. We also
report in this work the result of a systematic literature review, conducted to identify
empirical findings and assumptions on the usage of ifdefs as reported in the literature.
The inspection of the assumptions and findings shows that studies do not investigate
the statistical distributions that better describe feature-related metric values, and also
do not propose thresholds for such metrics.

Keywords: Software Product Lines, features, variability, cpp, ifdef.

xi

List of Figures

1.1 Histogram of Scattering Degree (SD), Tangling Degree (TD), and Nesting
Depth (ND) in php . 4

1.2 Empirical CDF of the Scattering Degree (SD) in php and the fitted power-
law function in red, both in logarithmic scale. 4

2.1 Feature implementation example using ifdefs (mmapmodule.c file from the
Python interpreter) . 11

2.2 Tangled feature implementation example using ifdefs (fileio.c from the
Python interpreter) . 11

2.3 Histogram of the population of US cities with population of 10 000 or more
(data from the 2000 US Census) . 14

2.4 Empirical Cumulative Density Function of the population of US cities
(points) and the fitted power-law function in red, both in logarithmic scale
(data from the 2000 US Census) . 15

3.1 Bipartite graph connecting selected studies and their findings (e.g., finding
F1 is reported in studies S25 and S35; study S29 reports findings F2, F3
and F4) . 22

3.2 Selected studies over the years . 23
3.3 Distribution of assumptions degree (a) and findings degree (b) 24

4.1 Example of code, as considered by fscat (a) and after the transformations
performed by cppstats (b) . 32

4.2 Main steps of our methodology . 35
4.3 Histograms of scattering degrees (SD) . 37
4.4 Empirical CDFs of the scattering degrees (points) and the fitted power law

(red line), both in logarithmic scale . 38
4.5 Histogram of tangling degrees (TD) . 41
4.6 Histogram of Nesting Depth (ND) . 43

xiii

4.7 ComplianceRate and CompliancePenalty functions [Oliveira et al., 2014b] . 45
4.8 Percentile plots of scattering degrees (SD) 46
4.9 Histogram of Scattering Degree (SD), Tangling Degree (TD), and Nesting

Depth (ND) in xterm . 49
4.10 Implementing ifdefs with different programming styles 50

xiv

List of Tables

3.1 Number of articles resulting from the search process. The first column lists
the search results from the digital libraries; the second column lists the
number of papers resulting from the SQL filter. 19

3.2 Number of articles resulting from the selection process after inspection and
consensus by two researchers. 20

3.3 Ranking of findings extracted from selected studies. The number of studies
reporting the finding is used as a ranking criteria 23

4.1 Subject systems . 30
4.2 Scattering degree (SD) descriptive measures (NOFC: Number of Feature

Constants) . 36
4.3 Power-law best-fit analysis for scattering degree (SD). Significant results

(p-value > 0.1) are bold. 39
4.4 Tangling degree (TD) descriptive measures (NOFE: Number of Feature Ex-

pressions) . 40
4.5 Nesting Depth (ND) descriptive measures (NOTLB: Number of Top-Level

Branches) . 42

B.1 Full list of selected studies . 71
B.2 Conference and Journal Acronyms . 74

C.1 Ranking of Assumptions. The column Pos indicates the position in our
ranking; the column Degree indicates the number of studies reporting the
assumption; and the column Studies lists the related studies. The details
of each study can be found in Table B.1 75

C.2 Ranking of Findings. The column Pos indicates the position in our ranking;
the column Degree indicates the number of studies reporting the finding;
and the column Studies lists the related studies. The details of each study
can be found in Table B.1 . 80

xv

Contents

Resumo ix

Abstract xi

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation . 1
1.2 An Overview of the Study . 2
1.3 Outline of the Dissertation . 5
1.4 Publications . 6

2 Background 7

2.1 Software Product Lines . 7
2.1.1 Features . 8
2.1.2 Implementation Approaches . 9

2.2 C Preprocessor . 10
2.3 Software Metrics . 12
2.4 Power-law Distributions . 13
2.5 Final Remarks . 15

3 Findings and Assumptions on the Usage of ifdefs 17

3.1 Study Design . 17
3.1.1 Search Strategy . 17
3.1.2 Study Selection . 19
3.1.3 Data Extraction . 20
3.1.4 Data Classification and Ranking 21

xvii

3.2 Results . 23
3.2.1 Overview . 23
3.2.2 Best Ranked Assumptions . 24
3.2.3 Best Ranked Findings . 26

3.3 Final Remarks . 28

4 The Shape of Feature Code 29

4.1 Methodology . 29
4.1.1 Selection of Subject Systems . 30
4.1.2 Data Collection and Metrics . 31
4.1.3 Statistical Analysis . 33
4.1.4 Threshold Extraction . 34

4.2 Results . 35
4.2.1 Scattering Degree . 35
4.2.2 Tangling Degree . 39
4.2.3 Nesting Depth . 40

4.3 Thresholds for Feature-Related Metrics 44
4.3.1 Relative Thresholds . 44
4.3.2 Thresholds for Scattering Degree 45
4.3.3 Thresholds for Tangling Degree 47
4.3.4 Thresholds for Nesting Depth 47
4.3.5 Discussion . 48

4.4 Threats to Validity . 49
4.5 Final Remarks . 50

5 Conclusion 53

5.1 Overview . 53
5.2 Contributions . 54
5.3 Related Work . 54

5.3.1 Metrics for C-preprocessor Annotations 54
5.3.2 Characterization of Software Metrics Distribution 55

5.4 Future Work . 56

Bibliography 59

Appendix A Search Strings and Filters 67

A.1 ACM Digital Library . 67
A.2 IEEEXplore . 68

xviii

A.3 ScienceDirect . 68
A.4 Ei Compendex and Inspec . 69
A.5 SpringerLink . 69
A.6 Scopus . 70

Appendix B Selected Studies 71

C Ranking 75

xix

Chapter 1

Introduction

In this chapter, we state the problem and present this dissertation’s motivation (Section
1.1). We then provide an overview of our study (Section 1.2). Finally, we present the
outline of the dissertation (Section 1.3) and our publications (Section 1.4).

1.1 Motivation

Feature annotations, such as ifdefs (#ifdef, #ifndef, #elif, and #if C-preprocessor
directives), are long said to be undesirable in source code [Favre, 1996; Krone, 1994;
Spencer and Collyer, 1992]. Since annotations are often spread across the entire code
base, they clutter source code, hinder program comprehension, and, consequently, com-
plicate maintenance. These annotations are used to relate code fragments to corre-
sponding features. When maintaining the features of the system, each related exten-
sion is a potential code fragment that has to be maintained, increasing the likelihood
of ripple effects.

Despite these drawbacks, feature annotations are widely used in practice [Apel
et al., 2008a, 2013a; Favre, 1996; Kiczales et al., 1997; Krone, 1994; Liebig et al., 2010,
2011; Spencer and Collyer, 1992], mainly, due to limitations of existing programming
languages (e.g., see the tyranny of the dominant decomposition [Sullivan et al., 2005;
Kästner et al., 2011]). In any case, annotations provide a simple way to include new
features into the code base, avoiding the upfront investment on creating modules and
interfaces [Kästner et al., 2008]. Still, to prevent an excessive use of feature annotations,
developers should monitor their use, for example, by setting thresholds (a typical limit).

To reveal how feature annotations are used in source code, metrics quantifying
properties, such as scattering, tangling, or nesting, have been proposed in the litera-
ture [Liebig et al., 2010]. However, different from other standard code metrics (e.g.,

1

2 Chapter 1. Introduction

size, complexity, coupling) [Alves et al., 2010; Oliveira et al., 2014b], these feature-
annotation metrics have never been studied using rigorous statistical methods. At
best, researchers report averages and standard deviations over large sets of system, as
done by Liebig et al. [2010]. Central tendency and dispersion measures (e.g., mean and
standard deviation), however, might not result in representative values.

Recent work [Baxter et al., 2006; Louridas et al., 2008; Wheeldon and Counsell,
2003; Ferreira et al., 2012; Filó et al., 2014], suggests that some code metrics follow
heavy-tailed distributions, often matching a power-law distribution. In such distribu-
tions, the probability that an entity measure deviates from a typical value (e.g., arith-
metic mean) is not negligible. That is, a significant fraction of code entities do not
follow typical metric values, making centrality and dispersion statistics unreliable.

The central goal of this master dissertation is to understand how feature code
is implemented in practice. To achieve this goal, we initially search for studies in
the literature regarding the usage of ifdefs. Next, we investigate twenty well-known
C-preprocessor-based open-source software systems regarding the distribution of three
metrics. We analyze the distribution of feature scattering degree (SD), tangling degree
(TD) and the nesting depth (ND) of ifdef annotations in these systems. These metrics
are based on metrics proposed by Liebig et al. [2010]: SD counts the number of ifdefs
that refer to a given feature; TD counts the number of features that occur in a given
feature expression; ND is the depth of the tree of nested ifdefs.

We found that feature scattering has highly skewed distributions, and that re-
porting metrics in terms of averages and standard deviations is unreliable, although
commonly done so. Hence, we raise awareness that feature scattering thresholds based
on central measures are not reliable in practice. However, regarding tangling degree
and nesting depth, the extracted metric values tend to follow a uniform distribution in
all systems, with most values equal to one. Although outliers exist, these distributions
are not as skewed as the ones seen in the scattering degree metric. This result suggests
that mean values for tangling degree and nesting depth are in fact robust. Based on
our analysis, we propose thresholds for the metrics we studied, which are derived such
that they respect the statistical distributions we have observed.

1.2 An Overview of the Study

In the first part of this study, we conducted a systematic literature review based on the
Kitchenham and Charters [2007] guidelines to search for studies containing assumptions
and findings regarding the usage of ifdefs. The first goal was to strength our knowledge

1.2. An Overview of the Study 3

of the literature about ifdef usage. We performed an automatic search from 12/10/2014
to 12/11/2014 in the most relevant digital libraries and inspected the results to select
studies that have at least one finding or assumption about the use of ifdefs. Next,
we extracted findings and assumptions directly from the papers, classified them, and
merged the similar ones (whenever possible), keeping the mapping with their studies.
We then prioritized them in a ranking system to identify the most common assumptions
and findings regarding the usage of ifdefs, as reported in the literature.

The inspection of the assumptions and findings shows that there are few studies
that rely on metrics to reason about preprocessor-based systems. Specifically, they
do not investigate the statistical distributions that better describe preprocessor-based
metric values and also do not propose thresholds for such metrics.

In the second part of the study, we performed an analysis of twenty C-
preprocessor-based software systems (e.g.,Git, php, MySQL, Linux kernel). To
select the subjects, we aimed at covering multiple application domains, and therefore,
avoiding bias toward an specific domain. Each system has substantial history of devel-
opment and use. We used a custom-made tool (fscat) to parse the source code and
to compute three metrics: scattering degree (SD) of feature constants, tangling degree
(TD) of feature expressions, and nesting depth (ND) of preprocessor annotations. The
proposed metrics are based on the metrics of Liebig et al. [2010] and can be used to
evaluate complex usages of ifdefs in source-code.

After collecting the metrics, we performed the statistical analysis, inspecting the
distributions of SD, TD, and ND for each of our 20 subject systems. We inspected the
histograms, standard descriptive statistics, and also the Gini coefficient [Gini, 1921] to
measure the degree of concentration of the metric values inside each distribution. In this
initial analysis step, we check whether the collected distributions have characteristics
of a power-law distribution. Then, we proceed with a rigorous test of the power-law
hypothesis following Clauset et al. [2009].

Our analysis revealed that feature scattering, as measured by the SD metric,
follows a heavy-tailed distribution in all subject systems. In 14 systems (70%), these
heavy-tailed distributions matched a power law. Regarding tangling and nesting de-
grees, the metric values in all systems tend to a uniform distribution, with most values
equal to one for both metrics and a few occurrences of slighter higher values. As an ex-
ample of the results, Figure 1.1 shows the histograms for SD, TD and ND distributions
in php, one of our subject systems. The histograms suggest a highly skewed distribu-
tion and a high level of inequality for SD. Figure 1.2 shows the Empirical Cumulative
Density Function (CDF) of SD in php and the fitted power-law function in the red line
(a power-law function appears as a decreasing line when plotted on a logarithmic scale

4 Chapter 1. Introduction

in both axes). The plot reveals that the points approximate the line, strengthening our
understanding that feature scattering indeed follows a power-law distribution.

0

500

1000

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(a) SD histogram

0

2000

4000

6000

8000

0 10 20 30

TD

Fr
eq
ue
nc
y

(b) TD histogram

0

2000

4000

6000

0 10 20 30

ND

Fr
eq
ue
nc
y

(c) ND histogram

Figure 1.1: Histogram of Scattering Degree (SD), Tangling Degree (TD), and Nesting
Depth (ND) in php

●

●

●

●

●

●

●
●
●
●
●
●
●●●●●●●●●●●

●
●●●●●●●●●●

●●●
●●●●●

●●●
●●
●●
●●

●
●
●

●
●
●
●

●

●

●

●

SD
1 2 5 10 20 50 100 200 500

0.
00
05

0.
00
50

0.
05
00

0.
50
00

C
D
F

Figure 1.2: Empirical CDF of the Scattering Degree (SD) in php and the fitted power-
law function in red, both in logarithmic scale.

Based on our analysis, we proposed thresholds for the metrics we studied, which
are derived such that they respect the statistical distributions we have observed. We
followed a technique proposed by Oliveira et al. [2014b] to extract thresholds from a

1.3. Outline of the Dissertation 5

set of subject systems for metrics that follow heavy-tailed distributions. Taking data
skew into account we used Oliveira et al. [2014a] functions to extract thresholds for
Scattering Degree (SD). Tangling degree (TD) and Nesting Depth (ND) approximate
an uniform distribution, allowing to directly define thresholds from the mode and its
relative frequency (%).

Finally, to illustrate how the proposed thresholds can be used to check whether a
system implementation includes a complex usage of ifdefs we applied them on xterm

3.1.8. Existing research [Liebig et al., 2010] shows that xterm makes a heavy and com-
plex usage of ifdefs. In our evaluation, showed in Section 4.3.5, the derived thresholds
indeed indicate that xterm has a complex usage of ifdefs.

1.3 Outline of the Dissertation

We organized the remainder of this work as follows:

• Chapter 2 covers central concepts related to this master dissertation, including
a discussion on the following concepts and tools: Software Product Lines, C
Preprocessor, Software Metrics, and Power-Law Distributions.

• Chapter 3 presents a Systematic Literature Review (SLR) conducted to identify
empirical findings and assumptions on the usage of ifdefs to implement variabil-
ity. We detail the protocol that guided our search strategy, the study selection,
the data extraction process, and how we organized and classified the findings
and assumptions extracted from the literature on ifdefs. Finally, we discuss our
findings.

• Chapter 4 presents a study analyzing twenty well-know C-preprocessor-based
open-source software systems to reveal how feature annotations are used in source
code, and how to extract thresholds to monitor and prevent excessive usage. In
this study we analyzed the statistical distribution of scattering degree, tangling
degree, and nesting depth. Finally, we propose relative thresholds for the metrics
we studied.

• Chapter 5 presents the final considerations of this dissertation, including related
work, a summary of our contributions, and suggestions of future work.

6 Chapter 1. Introduction

1.4 Publications

This master dissertation generated the following publications and therefore contains
material from them:

• Rodrigo Queiroz; Leonardo Passos; Marco Tulio Valente; Claus Hunsen; Sven
Apel; Krzysztof Czarnecki. The Shape of Feature Code: An Analysis of Twenty
C-Preprocessor-Based Systems. Journal on Software and Systems Modeling,
pages 1–29, 2015. Qualis B1. JCR 2015 = 1 408.

• Rodrigo Queiroz, Leonardo Passos, Marco Tulio Valente, Sven Apel, and
Krzysztof Czarnecki. Does Feature Scattering Follow Power-Law Distributions?
An Investigation of Five Pre-Processor-Based Systems. In 6th International
Workshop on Feature-Oriented Software Development (FOSD), pages 1–7, 2014.

Chapter 2

Background

In this chapter, we provide the background for understanding this master dissertation.
We discuss the following concepts and tool: Software Product Lines (Section 2.1), C
Preprocessor (Section 2.2), Software Metrics (Section 2.3), and Power-Law Distribu-
tions (Section 2.4).

2.1 Software Product Lines

A Software Product Line (SPL) is a family of related program variations that are gen-
erated from a common code base [Czarnecki and Eisenecker, 2000; Liebig et al., 2010;
Apel et al., 2013b]. The aim of SPL engineering is to facilitate the reuse of common
software artifacts in different variants. Software Product Lines introduce the possibility
to incorporate individual requirements on the software production such as functional-
ity, target platforms, performance, and energy consumption, but with the benefits of
mass production. For example, the Linux kernel runs on a wide variety of different
platforms (embed devices, desktops, large scale servers, etc.) and supports different
application domains (office software, high performance computing, server software, and
many others) [Apel et al., 2013b].

Apel et al. [2013b] highlight the most important promised benefits of Software
Product Lines:

• Tailor-made: SPL-based software development approaches facilitate tailoring
products to individual customers instead of providing a standardized product
or a small set of preconfigured products.

• Reduced costs: instead of paying the costs of designing and developing each
product from scratch, product-line vendors develop reusable parts that can be

7

8 Chapter 2. Background

combined in different ways. The required upfront investment is larger than devel-
oping a single software product, but the approach pays off specially when multiple
tailored products are requested.

• Improved quality: SPLs are constructed from standardized parts. Compared
with software developed from scratch, these standardized parts are systematically
checked and tested in many products. Parts that are used in multiple products
can lead to more stable and reliable products.

• Time to market: software vendors can quickly produce a software product by
assembling existing parts. Building a product on top of existing well-designed
reusable parts is much faster than developing it from scratch.

However, the benefits of a product-line approach come at a price: it raises the
complexity of development, requiring a variability management and a significant up-
front investment [Apel et al., 2013b].

2.1.1 Features

The concept of feature is very important to SPL engineering. In their seminal work,
Kang et al. [1990] introduce FODA (Feature-oriented domain analysis), a SPL approach
based on feature diagrams, and the notion of feature as “a prominent or distinctive user-
visible aspect, quality, or characteristic of a software system or systems”. However,
this concept is inherently hard to define, and consequently there are many definitions.
On the one hand, some definitions capture the intentions of stakeholders (end users,
managers, programmers, etc.) of a product-line. On the other hand, some definitions
capture implementation-level concepts used to structure and reuse software artifacts.
Some of the more common definitions are listed below:

“a prominent or distinctive user-visible aspect, quality, or characteristic of
a software system or systems” [Kang et al., 1990]

“a distinguishable characteristic of a concept (e.g., system, component, and
so on) that is relevant to some stakeholder” [Czarnecki and Eisenecker, 2000]

“an optional or incremental unit of functionality” [Zave, 2003]

“a structure that extends and modifies the structure of a given program in
order to satisfy a stakeholder’s requirement, to implement a design decision,
and to offer a configuration option” [Apel et al., 2008b]

2.1. Software Product Lines 9

The combination of features generates distinguished programs, called variants
[Liebig et al., 2010; Kästner et al., 2009]. However, not every feature combination
is meaningful. For example, some features are mutual exclusive. A feature model
[Kästner et al., 2009; Apel et al., 2013b] documents the features of a product line and
their relationships, defining which combinations are valid. In practice, a feature model
contains hundreds or thousands of features, and the number of potential variants can
grow exponentially. The idea of feature orientation is to organize and structure all
software artifacts in terms of features. It makes a feature explicit in the entire life
cycle: requirements, design, coding, and testing [Apel et al., 2013b].

2.1.2 Implementation Approaches

Software Product Lines can be implemented in two different ways: the compositional
approach and the annotative approach [Kästner et al., 2008]. With the compositional
approach, features are implemented as distinct modules, and a set of modules is com-
posed to generate a product. A classic example is a framework that can be extended
with plug-ins (ideally one plug-in per feature). There are several examples of com-
positional techniques using specialized architectures and languages like Mixin Layers
[Smaragdakis and Batory, 2002], AHEAD [Batory et al., 2003], and Aspects [Kiczales
et al., 1997].

With the annotative approach, features are implemented with explicit or implicit
annotations of the source code. A typical example for annotative approach is the use of
#ifdef directives of the C preprocessor (Section 2.2). Other examples include Gears,
XVCL, and CIDE [Kästner et al., 2008]. Depending on how they are used, some
approaches like Aspects can be included in both groups. However, approaches based
on tool support like Generative Programming [Czarnecki and Eisenecker, 2000] do not
fit into either group.

Compositional approaches typically support coarse-grained extensions (e.g.,
adding new methods or classes, extending explicit extension points). In contrast, fine-
grained extensions (e.g., adding new statements on existing methods, extending expres-
sions, extending a method signature) are better supported by annotative approaches
because they can mark arbitrary code fragments. However, these annotations provide
no perceptible form of modularity. Instead, they obfuscate and raise complexity of the
source code [Kästner et al., 2008].

10 Chapter 2. Background

2.2 C Preprocessor

The C preprocessor (CPP) enriches the C language with simple meta-programming
facilities, supporting the implementation of software families [Liebig et al., 2010; Apel
et al., 2013a; Passos et al., 2013]. In particular, CPP introduces three capabilities: file
inclusion (#include directive), macro definition (#define directive) and expansion,
and conditional compilation (#ifdef directive). Here, we concentrate on conditional
compilation to support variability in source code and on problems related to this ca-
pability.

The conditional-compilation mechanisms of the C preprocessor provide an easy
approach to implement variability in software product-lines. The concept is very sim-
ple: features are denoted by macro names, which in turn are referenced by different
compilation-guard conditions annotated in code fragments. Depending on the feature
selection, the preprocessor removes annotated code fragments before the compilation.
There are different types of guard conditions: #ifdef, #ifndef, #elif, and #if. For
brevity, we refer to all these constructs as ifdefs.

In Figure 2.1, we exemplify a preprocessor-based implementation taken from
the python interpreter source code, with fragments of code framed with #ifdef
and #endif directives. In file mmapmodule.c, developers introduce some extensions
conditionally, depending on the choice of the target operating system. This condi-
tional code is controlled by the presence or absence of certain features. Lines 438–
449, for instance, depend on the presence of feature MS_WINDOWS, while lines
453–464 depend on the presence of feature UNIX. Nested in the code of UNIX fea-
ture, there is further variability that is related to the support of large files. Fea-
ture HAVE_LARGEFILE_SUPPORT implements this nested variable behavior at
line 460. In Figure 2.2, there is another use of feature MS_WINDOWS, also taken
from the python interpreter source code. In this case, the presence of either
MS_WINDOWS or __CYGWIN__ enables the compilation of the guarded code at
line 428.

The C preprocessor is widely used in projects written in C and C++, and some
other language like FORTRAN. Many well-known systems like Apache, MySQL,
Python, and Linux heavily rely on the C preprocessor to implement variability in
source code. In any case, annotations provide a simple way to include new features
into the code base, avoiding the upfront investment on creating modules and interfaces
[Kästner et al., 2008].

2.2. C Preprocessor 11

434 mmap_size_method(mmap_object *self, PyObject *unused)
435 {
436 CHECK_VALID(NULL);
437 #ifdef MS_WINDOWS
438 if (self ->file_handle != INVALID_HANDLE_VALUE) {
439 DWORD low,high;
440 PY_LONG_LONG size;
441 low = GetFileSize(self ->file_handle , &high);
442 (...)
443 if (!high && low < LONG_MAX)
444 return PyLong_FromLong((long)low);
445 size = (((PY_LONG_LONG)high)<<32) + low;
446 return PyLong_FromLongLong(size);
447 } else {
448 return PyLong_FromSsize_t(self->size);
449 }
450 #endif /* MS_WINDOWS */
451
452 #ifdef UNIX
453 {
454 struct stat buf;
455 if (-1 == fstat(self ->fd, &buf)) {
456 PyErr_SetFromErrno(PyExc_OSError);
457 return NULL;
458 }
459 #ifdef HAVE_LARGEFILE_SUPPORT
460 return PyLong_FromLongLong(buf.st_size);
461 #else
462 return PyLong_FromLong(buf.st_size);
463 #endif
464 }
465 #endif /* UNIX */
466 }

Figure 2.1: Feature implementation example using ifdefs (mmapmodule.c file from
the Python interpreter)

427 #if defined(MS_WINDOWS) || defined(__CYGWIN__)
428 _setmode(self->fd, O_BINARY);
429 #endif
430 (...)

Figure 2.2: Tangled feature implementation example using ifdefs (fileio.c from the
Python interpreter)

However, preprocessors such as CPP are heavily criticized in the literature. Most
of the criticism around CPP claim that it is error-prone, lacks modularity, obfuscates
the code and hardens maintenance [Spencer and Collyer, 1992; Kästner et al., 2008,
2009]. In fact, the flexibility of the C preprocessor allows programmers to make all

12 Chapter 2. Background

kinds of annotations, including individual tokens such as a closing bracket, leading
to hard-to-find syntax errors. Annotations that do not align with the syntactic code
structure, (e.g., with entire statements, functions, and type declarations) are called
undisciplined annotations [Liebig et al., 2011]. The presence of preprocessor directives
also hinders the use of supporting tools and creates a great challenge for refactoring
[Medeiros et al., 2014; Overbey et al., 2014; Kästner et al., 2009; Garrido and Johnson,
2013]. As Adams et al. [2008] state, “cpp is a necessary evil for every C programmer
and maintainer”.

2.3 Software Metrics

According to Fenton and Pfleeger [1998], “Measurement is the process by which numbers
or symbols are assigned to attributes of entities in the real world in such a way as to
describe them according to clearly defined rules”. A software can be measured using
software metrics, a quantitative measure of the degree to which a system, component,
or process possess a given attribute [IEEE, 1990].

Software metrics can be divided into three categories [Fenton and Pfleeger, 1998]:

• Process metrics: measure attributes of a development process itself.

• Product metrics: measure documents and software artifacts that were produced
as part of the software development process.

• Resource metrics: measure resources used as part of a process.

They can also be divided into metrics that measure internal or external attributes.
A metric can measure an internal attribute by observing only the process or product
itself, or an external attribute related to the behavior of the software. In this work we
focus on internal product metrics that measure source code properties.

Over decades, hundreds of source code metrics have been proposed by researchers
and practitioners, in both theoretical and empirical studies. Well-known source code
metrics include cyclomatic complexity, number of attributes (NOA), number of meth-
ods (NOM), response for a class (RFC), number of references to a class (FAN-IN),
number of other classes referenced by a class (FAN-OUT), and weighted method count
(WMC) [Chidamber and Kemerer, 1994; Brito e Abreu and Carapuca, 1994; Lanza
and Marinescu, 2010].

However, metrics are rarely used to control in an effective way the quality of
software products [Fenton and Neil, 2000]. To use software metrics as an effective

2.4. Power-law Distributions 13

measurement instrument, developers should define meaningful thresholds. In this way,
software engineers can rely on metrics, for example, to monitor the evolution of com-
ponents or the quality degradation.

In general, a threshold defines an upper bound. Values greater than a threshold
value are considered to be problematic, and the values lower are considered to be
acceptable. Most metric thresholds proposed in literature are based on the experience
of software experts on what constitutes desirable software properties [Caltech, 2010].
Other thresholds are computed using a more transparent method, for example, from
benchmark data [Alves et al., 2010; Oliveira et al., 2014b].

2.4 Power-law Distributions

Many empirical quantities cluster around a typical value. For example, the heights of
human beings, the speeds of cars on a highway, air pressure. Even with some variations,
their distributions place a negligible amount of probability far from the typical value.
However, not all distributions fit this pattern. Among such distributions, power-law
distributions widely appear in a diverse range of natural and man-made phenomena.
Examples include the intensity of earthquakes, solar flares, moon craters, and people’s
personal fortunes [Clauset et al., 2009; Newman, 2005].

Studies around the power law as a descriptive device has been around for more
than a century and have appeared in various contexts [Louridas et al., 2008]:

• 1897: The Italian economist Vilfredo Pareto described a power law distribution
in the 19th century.

• 1925: G. Udny Yule observed the power law model in his study on the creation
of biological species.

• 1935: George Kingsley Zipf observed the frequency of the most common words
in natural language.

• 1951: Benoit Mandelbrot came upon power laws in a theory of word frequencies.

A distribution is said to be a power-law when the probability of measuring a par-
ticular value varies inversely as a power of that value [Newman, 2005]. The population
of towns and cities is a classic example of this type of distribution. Figure 2.3 shows
a histogram with the distribution of the US city populations, extracted from the 2000
census,1 as analyzed by Clauset et al. [2009] and Newman [2005]. The histogram is

1Data available at http://tuvalu.santafe.edu/~aaronc/powerlaws/data.htm

http://tuvalu.santafe.edu/~aaronc/powerlaws/data.htm

14 Chapter 2. Background

highly right-skewed: while the bulk of the distribution refers to small-sized cities, a
small number of very large cities produces the heavy-tail to the right of the histogram.
Another important characteristic of a power-law distribution concerns its visualization:
when plotted on a logarithmic scale in both axes, a power-law function appears as a
decreasing line, as shown in Figure 2.4.

0

100

200

300

400

0 100000 200000 300000 400000 500000
Population of US cities

Fr
eq

ue
nc

y

Figure 2.3: Histogram of the population of US cities with population of 10 000 or more
(data from the 2000 US Census)

In formal terms, a discrete power-law distribution (which we refer henceforth as
power-law) is a distribution in which the probability that a discrete random variable
X assumes a value x is proportional to x raised to the negative power of a positive
constant k:

P (X = x) / cx

�k where c > 0, k > 0 (2.1)

A power law, as given by this equation, diverges when x = 0. In fact, it requires
a lower-bound value x

min

> 0 to define a cut-off value as starting point (x > x

min

)

from which a power-law behavior occurs [Clauset et al., 2009]. As we shall see later
in Chapter 4, the parameters k and x

min

play an important role when performing a
goodness-of-fit analysis.

From a software engineering point of view, different researchers examined the
distribution of different source-code metrics and network relationships among software
components. The conclusions from these studies is that power-laws appear to be quite
common [Baxter et al., 2006; Louridas et al., 2008; Oliveira et al., 2014b; Wheeldon and
Counsell, 2003; Ferreira et al., 2012]. However, to the best of our knowledge, it has not

2.5. Final Remarks 15

●●●
●
●

●
●
●
●

●

●

●

●

●

Population of US cities

10000 50000 500000 5000000

0.
00

05
0.

00
50

0.
05

00
0.

50
00

C
D

F

Figure 2.4: Empirical Cumulative Density Function of the population of US cities
(points) and the fitted power-law function in red, both in logarithmic scale (data from
the 2000 US Census)

been investigated whether the same holds for feature-related metrics. Understanding
the distribution of these metrics affects our understanding of how Software Product
Lines implemented with CPP are built in practice, and how we can extract thresholds
from real software systems. For example, if they do follow a power-law distribution,
the central limit theorem does not apply, and the sample mean and variance can not
be used as estimators of the population mean and variance [Baxter et al., 2006].

2.5 Final Remarks

This chapter presented essential concepts for understanding this master dissertation.
Initially, we discussed the main concepts of Software Product Lines, Features and Im-
plementation Approaches. Next, we presented the C Preprocessor as a simple and flex-
ible method to implement variability in SPL with some examples from a real software
system (Python Interpreter). Finally, we presented the concept of Power-Law
distributions, and how they are common in a diverse range of phenomena, including
software-related metrics and relationships between software artifacts.

Chapter 3

Findings and Assumptions on the

Usage of ifdefs

In this chapter, we present a systematic literature review conducted to identify empiri-
cal findings and assumptions on the usage of ifdefs. We start by detailing the protocol
that guided our search strategy, the study selection, the data extraction process, and
how we organized and classified the findings and assumptions extracted from the liter-
ature on ifdefs (Section 3.1). Finally, Section 3.2 discusses our findings.

3.1 Study Design

To identify empirical findings and assumptions on the usage of ifdefs to implement
variability in practice, we follow a Systematic Literature Review (SLR) protocol based
on the Kitchenham and Charters [2007] guidelines. This SLR aims to address the
following research questions:

RQ #1 : What are the most common findings related to the use of ifdefs?
RQ #2 : What are the most common assumptions related to the use of ifdefs?

3.1.1 Search Strategy

We performed an automatic search in the most relevant digital libraries for potentially
relevant studies without restriction on the year of publication to increase the coverage
of the review [Brereton et al., 2007; Kitchenham and Charters, 2007]. The selected
libraries are as follows:

17

18 Chapter 3. Findings and Assumptions on the Usage of ifdefs

• ACM Digital Library (http://dl.acm.org)

• Ei Compendex and Inspec (www.engineeringvillage.com)

• IEEEXplore (http://ieeexplore.ieee.org)

• ScienceDirect (http://www.sciencedirect.com)

• Scopus (http://www.scopus.com)

• SpringerLink (http://link.springer.com)

The search was based on the keywords "c preprocessor" and "ifdef", including
the variations found in a pilot search. The general search string is given as follows:

"c preprocessor" OR "c pre processor" OR "c++ preprocessor" OR "c++
pre processor" OR "preprocessor for c" OR "pre processor for c" OR ("cpp
AND preprocessor") OR ("cpp AND pre processor") OR "ifdef"".

The search was performed within titles or abstracts, following conventional prac-
tices [Brereton et al., 2007; Kitchenham and Charters, 2007]. When the library does
not provide an option to limit the search within titles or abstracts, the search was per-
formed within the full-text. Moreover, the search string was adapted to suit specific
requirements or limitations of the different libraries. For example, the filters that can
be included in the search string may differ. The corresponding strings used for each
library are given in Appendix A.

We conducted the search from 12/10/2014 to 12/11/2014 and collected the results
in a spreadsheet recording title, authors, journal/conference name, year of publication,
abstract, and the library in which the article was found. This search resulted in 396
articles, of which 245 were distinct. We converted the spreadsheet into a PostgreSQL
database and performed a query according to the search string, applied to specific
fields (title and abstract). This search aims to make the selection process uniform,
independent from which library a paper came from (e.g., Spring does not support
searching for the contents of the abstract; rather, it also returns occurrences of the
search string in the whole text—see Appendix A). We also used the query to find
and eliminate redundant papers inside the same library results (e.g., the same paper
published in a conference proceeding and in a journal). This process resulted in 116
potentially relevant papers, as presented in Table 3.1. This table shows the number of
articles resulting from each step of the process, from each Library, including overlapping
and distinct results.

http://dl.acm.org
www.engineeringvillage.com
http://ieeexplore.ieee.org
http://www.sciencedirect.com
http://www.scopus.com
http://link.springer.com

3.1. Study Design 19

Digital Library Library search SQL Query

ACM 30 30
Ei Compendex and Inspec 127 103
IEEEXplore 27 26
ScienceDirect 5 4
Scopus 78 73
SpringerLink 129 2

Total 396 238
Distinct 245 116

Table 3.1: Number of articles resulting from the search process. The first column lists
the search results from the digital libraries; the second column lists the number of
papers resulting from the SQL filter.

3.1.2 Study Selection

To select studies from the potentially relevant papers, we applied the following inclusion
criteria: (i) studies published in peer-reviewed journals or conference proceedings; (ii)
studies in English; (iii) studies that have at least one finding or assumption about the
use of ifdefs. All the inclusion criteria had to be satisfied to ensure that the selected
study was within our targeted area of research. Some digital libraries provide filtering
mechanisms that can be used to restrict the search to the inclusion criteria (i) and (ii)
(details of each filter are listed in Appendix A).

To evaluate the inclusion criterion (iii), we manually inspected the 116 poten-
tially relevant papers, as follows. Two researchers read the following sections of each
paper: Introduction, Conclusion, and any section that reports findings and/or dis-
cusses them. They kept track of papers that claim at least one finding concerning
ifdef usage, or that make at least one assumption about this usage. We considered
as finding any statement about the usage of ifdefs that is based on the results of the
study reported in the paper (e.g., Liebig et al. [2010] reports that “programmers use
fine-grained extensions infrequently” based on their analysis of 40 preprocessor-based
systems). Statements on the usage of ifdefs that are explicitly declared using refer-
ences to other papers (e.g., Kenner et al. [2010] reports that “a majority of industrial
software product lines are implemented with the C preprocessor” based on the studies
from Pearse and Oman [1997]), or as common knowledge (e.g., Feigenspan et al. [2013]
reports that “Preprocessor directives are easy to use”) are considered as assumptions.
Papers that do not report any finding, nor make explicit assumptions were excluded.

Both researchers agreed to include 41 papers, and they disagreed regarding 16
papers. The final decision about the 16 cases of disagreements was made during a
consensus meeting. A consensus was reached and the two researchers decided to include

20 Chapter 3. Findings and Assumptions on the Usage of ifdefs

14 articles, resulting in 55 selected studies (see Appendix B). The distribution of the
resulting articles among the digital libraries with overlapping and distinct results is
given in Table 3.2.

Digital Library Selected Studies

ACM 24
Ei Compendex and Inspec 47
IEEEXplore 19
ScienceDirect 0
Scopus 47
SpringerLink 1

Total 138
Distinct 55

Table 3.2: Number of articles resulting from the selection process after inspection and
consensus by two researchers.

3.1.3 Data Extraction

As the first step of the extraction, the author of this master dissertation read the
selected papers entirely, keeping record of all the findings and assumptions regarding
the use of ifdefs, as originally stated in the paper. In a second step, he rewrote the
findings to eliminate redundant results in the same paper and to break different findings
or assumptions from a single statement. An example is given as follows:

• Saebjoernsen et al. originally state that “C preprocessor (CPP) is generally con-
sidered a source of difficulty for understanding and maintaining C/C++ pro-
grams”. [Saebjoernsen et al., 2009]

This assumption regards two different problems: maintainability and understand-
ability. We then split it into two different assumptions:

• “CPP is a source of difficulty for understanding C/C++ programs”

• “CPP is a source of difficulty for maintaining C/C++ programs”

This was necessary to allow direct comparison between statements from different
studies. We collected the results in a spreadsheet, keeping the mapping between papers
and their findings/assumptions.

3.1. Study Design 21

3.1.4 Data Classification and Ranking

With all the results in a spreadsheet, we identified 17 groups of findings/assumptions.
Each finding or assumption could be classified in one or more group (when applicable).
These groups with examples of findings or assumptions are listed next:

• Code comprehension (e.g., “Extensive use of the CPP across the code causes
adverse consequences for code comprehension”, S44)

• Maintainability (e.g., “CPP leads to source code that is hard to maintain”, S37)
• Error-proneness (e.g., “CPP eases the introduction of subtle syntax errors”, S48)
• Testing (e.g., “As the number of variant features grows, programs become difficult

to test”, S24)
• Feature scattering (e.g., “Feature scattering often occurs in practice”, S53)
• Tangling (e.g., “CPP leads to extremely tangled preprocessor code”, S18)
• Nesting (e.g., “Code with nested ifdef directives are hard to identify”, S45)
• Discipline (e.g., “Most of the #ifdefs are disciplined”, S35)
• Granularity (e.g., “Most extensions occur at a high level of granularity, such as

if-statements or for-loops)”, S29)
• Performance (e.g., “CPP is often used to tune performance using in-line code”,

S22)
• Code replication (e.g., “A minor fraction of all code clones occur within #ifdef”,

S36)
• Portability/reuse (e.g., “Portability accounts for almost half of conditional com-

pilation directives”, S11)
• Tooling (e.g., “There are no refactoring tools that can completely and safely trans-

form C code because of the CPP”, S47)
• Variability model (e.g., “Inconsistencies between feature models and feature im-

plementations in CPP are common”, S30)
• Coding guidelines (e.g., “Many programmers follow conventions on the use of

cpp”, S25)
• CPP alternatives (e.g., “Applicability of alternative mechanisms such as aspects

is hard to envision”, S44)
• Miscellaneous (e.g., “For reverse engineers, the connection between the

preprocessor input and output is hard to precisely understand”, S12)

From each group, we tried to merge, whenever possible, similar assumptions or
similar findings, updating the mapping accordingly. For example, consider the following
three assumptions from the group Code comprehension:

22 Chapter 3. Findings and Assumptions on the Usage of ifdefs

• “CPP files can be very difficult to understand” (S07)
• “CPP usage impairs readability of the base system” (S15)
• “CPP mechanisms are known to challenge code comprehension” (S38)

These three assumptions were merged in a single assumption:

• “CPP has a negative effect on code readability and comprehension” (S07, S15, S38)

From the mapping between findings/assumptions and their papers, we created a
bipartite graph1, where papers denote nodes on the left of the graph, and assumptions
or findings denote nodes on the right of the graph. The lists of assumptions and
findings were prioritized according to the number of its incoming edges as a ranking
criteria. As an example, Figure 3.1 shows a graph including only four findings from
four studies: S25 [Padioleau, 2009], S29 [Liebig et al., 2010], S35 [Liebig et al., 2011],
and S44 [Jbara and Feitelson, 2013]—see Appendix B. The number of incoming edges
is used as a ranking criteria, prioritizing the findings mentioned by more studies (e.g.,
finding F1 and finding F4 are both mentioned by two studies). The resulting ranking
of this graph is given in Table 3.3. A similar procedure was performed for the list of
assumptions. The final ranking including all findings and assumptions is discussed in
Section 3.2.

Figure 3.1: Bipartite graph connecting selected studies and their findings (e.g., finding
F1 is reported in studies S25 and S35; study S29 reports findings F2, F3 and F4)

1A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V, such
that every edge connects a vertex in U to one in V.

3.2. Results 23

Table 3.3: Ranking of findings extracted from selected studies. The number of studies
reporting the finding is used as a ranking criteria

Pos ID Finding Degree Studies

1 F1 Most of the #ifdefs are disciplined 2 S25, S35
1 F4 Nested #ifdefs are used moderately 2 S29, S44
2 F2 Few #ifdef extensions would benefit from alternatives like

aspects
1 S29

2 F3 Variability management with cpp does not cause excessive
code degradation

1 S29

3.2 Results

3.2.1 Overview

The search and selection processes resulted in 55 studies, which are listed in Ap-
pendix B. Figure 3.2 shows the distribution of selected studies over the years. The
first study we considered appeared in 1990 and the last one appeared in 2014. As
the figure shows, empirical studies regarding the use of the C-preprocessor started to
attract more research attention after 2009 (65% of the selected studies were published
after 2009), which indicates that this area of research is currently highly active.

0

1

2

3

4

5

6

7

8

9

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

publication year

nu
m

be
r o

f p
ap

er
s

Figure 3.2: Selected studies over the years

The data extraction from these studies resulted in a list of 89 findings and 345
assumptions, from which we performed the classification and ranking process detailed
in Section 3.1. Appendix C shows both rankings, with 131 distinct assumptions and
58 distinct findings that resulted from the unification process. Figure 3.3 shows the

24 Chapter 3. Findings and Assumptions on the Usage of ifdefs

distribution of assumptions and findings degrees. While 79 assumptions (60%) have
degree=1 (i.e, they are cited by only one study), 52 assumptions (40%) are cited by, at
least, two different studies. Most of the findings (46, 79%) are cited by only one study
(degree=1). This was expected, since many results are very specific. However, we did
find similar results regarding 12 findings (21%).

Interestingly, the most common assumptions identified in our study (assump-
tions with degree>10) are confirmed or strengthened by some of the most common
findings. The best ranked assumptions, findings, and their correlations are discussed
in Sections 3.2.2 and 3.2.3.

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
degree (number of studies)

fre
qu

en
cy

(a) assumptions

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6
degree (number of studies)

fre
qu

en
cy

(b) findings

Figure 3.3: Distribution of assumptions degree (a) and findings degree (b)

3.2.2 Best Ranked Assumptions

The most common assumptions of our study are as follows:

Assumption A001: “CPP is heavily used to implement variability” (Studies S06,
S07, S09, S15, S17, S18, S21, S23, S24, S25, S28, S29, S30, S32, S33, S34, S38, S39,
S41, S42, S45, S46, S47, S48, S49, S52, S55)

This assumption has degree 27 and is shared by almost half of our studies (49%),
which are distributed over a wide range of years, from 1996 (S06) to 2014 (S55). All
the studies are based on the general assumption that CPP is heavily used and is the
first choice to implement variability in the source code of variable systems. As an
example, a recent study (S55) states that “preprocessor directives are still widely used
as no real size program with configurations exists without them”.

3.2. Results 25

Assumption A002: “CPP has a negative effect on code readability and comprehen-
sion” (Studies S01, S02, S06, S07, S10, S11, S12, S15, S21, S22, S23, S27, S28, S33,
S34, S36, S37, S38, S44, S45, S46, S47, S48, S55)

The second ranked assumption (A002) has degree=24 and is also shared by
almost half of our studies (44%). These studies are distributed over an even wider
range of years, from 1990 (S01) to 2014 (S55). This assumption concerns a recurrent
problem on CPP usage: code comprehension. While some studies (S34, S36, S44)
consider that CPP reduces readability or comprehensibility, other studies consider that
preprocessor directives can be very hard or impossible to understand. For example,
Study S06 states that “the presence of numerous #if directives makes the structure
almost impossible to follow. Human readers are not able to take into account all the
variants at a time”.

Assumption A003: “CPP impairs maintainability of code” (Studies S02, S06,
S07, S08, S11, S12, S17, S21, S23, S27, S28, S29, S34, S36, S37, S49, S54)

The third ranked assumption (A003) has degree=17 and is also distributed over
a wide range of years, from 1992 (S02) to 2014 (S54). This assumption is related to
assumption A002, and highlights the lack of maintainability as a consequence of many
problems caused by CPP directives in source code. As an example, S02 states that
“preprocessor commands can obfuscate the program’s mechanics and, consequently,
maintainability”. S06 states that “maintenance of complex preprocessor files is a
nightmare”.

Assumption A004: “CPP is error-prone” (Studies S09, S13, S14, S21, S28, S29,
S36, S38, S41, S43, S48, S49, S55)

The fourth ranked assumption (A004) has degree=13 and ranges from 2000
(S09) to 2014 (S55). Many studies state that the preprocessor can introduce subtle
syntax errors in the host language, making variability implementation error-prone.

Assumption A005: “CPP is often used to achieve portability” (Studies S02,
S03, S08, S16, S17, S18, S22, S27, S41, S51, S52)

26 Chapter 3. Findings and Assumptions on the Usage of ifdefs

The fifth ranked assumption (A005) has degree=11 and ranges from 1992 (S02) to
2014 (S52). As the studies suggest, portability has traditionally been obtained with
ifdefs. S16 suggests that C/C++ programs invariably achieve portability using the
C-preprocessor: “in C and C++ programs portability is invariably managed using the
CPP”.

3.2.3 Best Ranked Findings

The most common findings of our study are given as follows:

Finding F01: “CPP is heavily used to implement variability” (Studies S11, S22, S29,
S38, S44, S52)

The first ranked finding (F01) is also the most common assumption A001, and
is supported by six studies (degree=6). All these studies evaluate the preprocessor
usage in real systems. Combined, they analyzed the preprocessor usage in more
than 100 systems and packages, including implementations in C and FORTRAN,
from different functional domains. The results confirm that despite all the criticism,
the C preprocessor and its conditional compilation mechanisms are widely used to
implement variability in program families, supporting assumption A001.

Finding F02: “Alternative mechanisms to cpp such as aspects are hard to envision”
(Studies S18, S29, S44)

The second ranked finding F02 has degree=3. Although the benefits of migrating
to more modern implementation techniques for Software Product Lines are well
known, theses studies found that this can be hard to envision for all ifdef extensions
and usage patterns. Study S18 explored the process of mining and extracting
aspects from preprocessor-driven systems, Study S29 investigated two alternative
SPL implementation techniques: aspects and feature modules, and finally Study S44
performed a detailed analysis on the CPP usage of the Linux kernel. All three studies
have similar results, indicating that the interaction, nesting and fine-grainedness of
preprocessor directives complicate the identification of separable concerns and their
extraction to aspects.

3.2. Results 27

Finding F03: “CPP introduces errors to code” (Studies S13, S48, S49)

The second ranked finding F03 also has degree=3 and is similar to the as-
sumption A004. Study S48 performs an empirical study in 41 program family
releases, and more than 51 thousand commits of 8 program families. They found
20 preprocessor-based syntax errors in commits, and 7 in releases. Study S49
analyzes releases of 12 C program families and found that incomplete annotations can
cause semantic errors and also memory leaks. These findings confirm assumption A004.

Finding F04: “Most of the #ifdefs are disciplined” (Studies S25, S35, S52)

The second ranked finding F04 has degree=3. Although preprocessors are
frequently criticized for their undisciplined usage, these findings reveal that most
of the ifdefs are in disciplined form. These findings confirm assumption A012—“In
practice most annotations are already in a disciplined form” (S28, S20, S32, S46, S49).

The following findings have degree=2, but are related to the high ranked
assumptions A002, A003 and A005:

Finding F05: “CPP annotations complicate program comprehension” (Studies S44,
S46)

Finding F05 confirms assumptions A002 and A003. Ranked in the third
position, this finding is shared by two studies. Study S44 performs an analysis of the
Linux kernel, including the configurability model and the source code. They found
nearly 5000 real config options, suggesting extensive use of the CPP across the code.
Study S46 is a controlled experiment with human subjects. They measured program
comprehension evaluating the performance of the subjects regarding correctness and re-
sponse time for solving tasks in annotated code. The experiment confirms that finding
errors in the presence of preprocessor annotations is a tedious and time-consuming task.

Finding F10: “Portability accounts for a great part of #ifdef usage” (Studies S11,
S32)

28 Chapter 3. Findings and Assumptions on the Usage of ifdefs

The third ranked finding F10 confirms assumption A005. Study S11 analyzes 26
packages comprising 1.4 million lines of source code to evaluate C-preprocessor
usage. The study reveals that portability accounts for 37% of conditional compilation
directives (e.g., ifdefs used to enclose specific capabilities of the target machine or
operating system). Study S32 evaluate an open-source web server with a type-checking
tool (TypeChef). They found ifdefs implementing variability that can be both
considered a feature in the sense of a product line and low-level portability. These
findings confirm assumption A005.

3.3 Final Remarks

In the systematic literature review reported in this chapter, we searched and selected
studies containing assumptions and findings regarding the usage of ifdefs. The high
number of studies found in recent years reveals how ifdefs are attracting more research
attention. Based on data extracted from these studies, we ranked the results to identify
the most common assumptions and findings reported in the literature. The results
reveal how the most common assumptions identified in our study are confirmed or
strengthened by some of the most common findings.

The inspection of the assumptions and findings shows that there are few stud-
ies that rely on metrics to reason about preprocessor-based systems. Specifically, the
existing studies do not investigate the statistical distributions that better describe
preprocessor-based metric values. They also do not propose thresholds for such met-
rics, to better assess for example when ifdef directives in fact hamper readability and
comprehensibility (A002) or impair maintainability (A003). In the following chapter,
we therefore report a study conducted to fill this gap detected in the literature.

Chapter 4

The Shape of Feature Code

To reveal how feature annotations are used in source code, and how to extract thresh-
olds to monitor and prevent excessive usage, we performed a study analyzing twenty
C-preprocessor-based open-source software systems. In this study we analyzed the sta-
tistical distribution of scattering, tangling, and nesting degrees and propose thresholds
for the metrics we studied, which are derived such that they respect the statistical
distributions we have observed.

In this chapter, we start by presenting the methodology to perform our study,
including the subject systems, the process and tools we used to compute the feature-
related metrics, and the procedure we followed in the statistical analysis of the collected
data (Section 4.1). Next, Section 4.2 presents our results for the collected metrics,
including a discussion on the statistical distributions that best describe our data. Sec-
tion 4.3 discusses implications of our findings, in particular, regarding the extraction of
thresholds for feature-related metrics. Section 4.4 reports threats to validity. Finally,
Section 4.5 summarizes our findings and states our final remarks.

The study presented in this chapter has been preliminary published at a workshop
[Queiroz et al., 2014] and later extended to a journal [Queiroz et al., 2015].

4.1 Methodology

In this section, we discuss the selection of subject systems (Section 4.1.1), the process
and tools to compute feature-related metrics (Section 4.1.2), the statistical analysis
of the data we collect (Section 4.1.3), and the method we use to propose thresholds
(Section 4.1.4).

29

30 Chapter 4. The Shape of Feature Code

Table 4.1: Subject systems

System Version Year Since Domain SLOC

vi

2 50325 2005 2000 Text editor 22 275
lighttpd 1.4.35 2014 2003 Web server 39 991
xfig 3.2.5c 2013 1985 Graphics editor 74 713
sendmail 8.14.9 2014 1983 Network service 92 204
sylpheed 3.4.2 2014 2000 E-mail client 116 454
git 2.1.0 2014 2005 Version control 152 018
apache 2.4.10 2014 1995 Web server 155 846
libxml2 2.9.1 2014 1999 Programming library 222 009
emacs 24.3 2013 1985 Text editor 249 932
openldap 2.4.39 2014 1998 Network service 291 781
subversion 1.8.10 2014 2000 Version control 328 878
imagemagick 6.8.9-7 2014 1987 Image editor 333 048
python 3.4.1 2014 1989 Program interpreter 353 485
php 5.6.0 2014 1985 Program interpreter 664 259
postgresql 9.3.5 2014 1995 Database system 676 435
gimp 2.8.14 2014 1996 Image editor 703 435
glibc 2.20 2014 1987 Programming library 826 502
mysql 5.6.19 2014 1995 Database system 1 577 874
gcc 4.9.0 2014 1987 Compiler framework 3 209 684
linux kernel 3.15 2014 1991 Operating system 11 964 075

4.1.1 Selection of Subject Systems

To analyze the statistical distributions describing feature-related metrics, we selected
20 open-source software systems that use C preprocessor directives to annotate feature
code; Table 4.1 provides information on all subject systems.

Three criteria guided the selection of our subjects: First, we aimed at covering
multiple application domains, therefore avoiding bias toward an specific domain. In
Table 4.1, the 20 systems are distributed across 12 different domains. Second, each
system has substantial history of development and use, as given by columns Year (the
year of the release of the system under analysis) and Since (the year of the first release).
The rationale is that mature systems are more likely to have found a practical balance
to when and how much to scatter, tangle, and nest preprocessor annotations than
immature systems. Third, the selection includes systems of different sizes, to avoid
bias toward a particular system size. We measured size using Source Lines of Code
(SLOC), which is the total number of source lines of code of a given system. These
numbers excludes blank lines and comments. Moreover, sequences of multilines (lines
ending with a backslash) are counted as a single line.1

1Multilines are convenient when spanning a long line across multiple ones; during compilation,
sequences of multilines are taken as a single line.

2The vi system we use is a port of the original vi (late 1970’s) to modern Unix systems.

4.1. Methodology 31

As shown in Table 4.1, our set of subjects includes four small systems (< 100
KSLOC), nine medium sized systems (100 to 400 KSLOC), and seven large software
systems (> 400 KSLOC).

4.1.2 Data Collection and Metrics

To extract feature-related metric values, we first parse the source files (C implemen-
tation and header files) of each subject system. Parsing is performed using the tool
src2srcml,3 which creates an XML representation of the code. The resulting XML
files preserve all the code, including preprocessor annotations (src2srcml does not
perform any preprocessing). With all annotations in place, we run a custom-made
tool (fscat4) to process the XML files produced by src2srcml and to compute the
following system-level metrics:

1. Number of Feature Constants (NOFC): The total number of macro names that
are referred in, at least, one ifdef.

2. Number of Feature Expressions (NOFE): The total number of conditional ex-
pressions used in ifdef directives to control the inclusion or exclusion of variable
code.

3. Number of Top-level Branches (NOTLB): The total number of top-level ifdef
branches, including #else preprocessor directives. An ifdef branch is a block of
code that is delimited by #ifdef, #ifndef, #if, or #else and closed by its #endif
or followed by a #else or #elif (when applicable). A top-level ifdef branch is
an ifdef or #else that is not inside an enclosing ifdef branch.

In addition, fscat also computes metrics for each feature constant, feature ex-
pression, and top-level ifdef branch of the system under analysis, as follows:

1. Scattering Degree (SD): This degree is calculated per feature constant of a system.
It counts the number of ifdefs that refer to a given feature constant. For example,
considering the examples in Figure 2.1 and Figure 2.2, the scattering degree of
MS_WINDOWS is 2.

2. Tangling Degree (TD): This degree is calculated per feature expression of a sys-
tem. It counts the number of feature constants that occur in a given feature
expression. For example, in Figure 2.2, the tangling degree of the feature expres-
sion in Line 427 is 2.

3http://www.srcml.org
4https://bitbucket.org/lpassos/fscat

http://www.srcml.org
https://bitbucket.org/lpassos/fscat

32 Chapter 4. The Shape of Feature Code

3. Nesting Depth (ND): This metric is defined for each top-level ifdef branch in a
system. ND is the depth of the tree of nested annotations in a given top-level
ifdef branch. In this tree, the nodes are ifdefs and #else annotations, while the
edges represent nested relations between such nodes. The root node is a top-level
ifdef or #else, and the children of a node are the annotations it directly encloses.
The depth of a node is the depth of its parent plus 1. By definition, the depth
of the root node is one. The depth of the tree is the depth of its node with the
maximal depth. For example, in Figure 2.1, the ND of the top-level #ifdef in
Line 437 is 1, and the ND of the top-level #ifdef in Line 452 is 2.

The proposed metrics are based on the metrics of Liebig et al. [2010]. SD is based
on the number of maintenance program locations that one potentially has to consider to
maintain a feature and has been already used in other studies [Hunsen et al., 2015; Jbara
and Feitelson, 2013; Liebig et al., 2010; Passos et al., 2015]. Likewise, our definition of
TD is also based on Liebig et al. However, the tool used by Liebig et al. for computing
SD and TD (cppstats) applies transformations on the annotations of the code (e.g., by
propagating the condition of outer ifdefs to inner ones and conjoining each #elif/#else
condition with the condition of preceding branches). These transformations influence
the scattering and tangling values, causing higher values. In contrast, the tooling
we use when collecting these metrics (fscat) does not perform any transformation on
annotations, taking them as explicitly defined in the source code. As an example,
Figure 4.1 shows two fragments of the same code. In the original code (a), as computed
by fscat, FEATURE_A has SD=1 and the feature expression at line 3 has TD=1. In
the fragment (b), we show the code after the transformations performed by cppstats.
In this case, cppstats returns that FEATURE_A has SD=3, and that the feature
expression at line 3 has TD=2.

1 #ifdef FEATURE_A
2 (...)
3 #ifdef FEATURE_B
4 (...)
5 #endif
6 #elif FEATURE_C
7 (...)
8 #endif

(a) original code

1 #ifdef FEATURE_A
2 (...)
3 #ifdef FEATURE_A && FEATURE_B
4 (...)
5 #endif
6 #elif !FEATURE_A && FEATURE_C
7 (...)
8 #endif

(b) code with transformations

Figure 4.1: Example of code, as considered by fscat (a) and after the transformations
performed by cppstats (b)

4.1. Methodology 33

The third metric, however, differs from the ones proposed by Liebig et al. Orig-
inally, Liebig et al. define the Average Nesting Depth (AND) as the average depth of
nested ifdefs. Instead, we propose the metric Nesting Depth (ND) representing the
depth of each top-level ifdef branch. We argue that ND is more robust than AND,
because it is not based on averages. Furthermore, while performing maintenance tasks,
a programmer has to be aware of inner ifdefs when reasoning about the code. ND sup-
ports the developer to estimate the complexity of the code fragment inside a top-level
branch. The AND metric, however, gives only a rough estimation of the complexity of
the whole file. As an example, in Figure 4.1, AND is the average nesting depth of each
ifdef block in this file (AND = (1 + 2)/2 = 1.5). In contrast, ND captures the nesting
of each top-level branch, e.g., ND of the top-level ifdef branch at lines 1–5 is 2, and
the ND of the top-level ifdef branch at lines 6–8 is 1.

Liebig et al. also use the Granularity and Type metrics to reveal the number of
extensions in a software system by the level of granularity e.g., 6% of extensions in
lighttpd are fine-grained) and type (e.g., 36 extensions in openldap are homoge-
neous, i.e., they use duplicated code). However, both metrics are computed at a system
level, and therefore do not generate a distribution of metric values for each system.

4.1.3 Statistical Analysis

After collecting the metrics, we inspect the histograms and standard descriptive statis-
tics describing the distributions of SD, TD, and ND for each of our 20 subject systems.
In addition, we computed the Gini coefficient [Gini, 1921] to measure the degree of con-
centration of the metric values inside each distribution. The Gini coefficient has been
proposed as an economic indicator to measure and compare income distributions, but
can be adapted to the distribution of software metrics, providing an aggregated metric
that is system-size independent [Vasa et al., 2009; Serebrenik and van den Brand, 2010;
Vasilescu et al., 2011].

In this initial analysis step, we check whether the collected distributions have
characteristics of a power-law distribution. Then, we proceed with a rigorous test of
the power-law hypothesis. To decide whether the metric values follow a power-law
distribution we used the poweRlaw package [Gillespie, 2014a] from the R statistical
environment.5 First, we define the two parameters k and x

min

of the best-fit power law
(P0) that approximates as close as possible the empirical CDF (cumulative distribution
function) of the distribution (P) of a system under analysis. When searching for P0,
we rely on the maximum-likelihood estimator method (MLE), while choosing x

min

as
5http://www.r-project.org/

http://www.r-project.org/

34 Chapter 4. The Shape of Feature Code

the value minimizing the Kolmogorov-Statistic (KS). The KS is given by the maximum
distance |P0(x) � P(x)|, for all x > x

min

. For further details, the reader is referred to
elsewhere [Clauset et al., 2009; Gillespie, 2014b,a].

Once we estimated k and x

min

, we perform a hypothesis test to verify whether
a power-law distribution is a plausible model for the behavior of each empirical CDF.
Following Clauset et al. [2009], we perform a goodness-of-fit test via a bootstrap proce-
dure following the algorithms and steps outlined by Gillespie [2014b]. Simply put, we
generate 2 500 datasets from the P0 model and then try to re-infer a new best-fit power
law for each generated dataset. The p-value of the simulation process corresponds to
the fraction of times in which the KS of the best-fit model of the generated dataset is
higher than the one obtained for P. Our hypotheses are the following:

• Null hypothesis: P0 is a plausible fit for P

• Alternative hypothesis: P0 is not a plausible fit for P

As Clauset et al. argue, if the test reports a p-value larger than 0.1, one shall accept the
null hypothesis. Otherwise, it should be rejected in favor of the alternative hypothesis.
In the latter case, P is unlikely to conform to a power-law distribution; rather, the
empirical CDF function better fits another model, and may or may not be heavy-
tailed.

For each metric of each subject system, the fit is initially done based on the whole
set of metric data. However, when we do not have strong evidence that the data fit
a power law (p-value < 0.1), we verify whether it is possible to fit, at least, part of
the data, which is valid as we want to prove that the distribution follows a power law,
asymptotically. To this end, we iteratively crop single data points from the right of the
tail, removing at each step the highest metric value. The iteration continues until we
find a fit up to a certain value x

max

. The procedure stops if we remove 1% of the data
points and we still do not find strong evidence for a power law. A similar procedure
has been reported by Baxter et al. [2006], when analyzing standard metrics for Java
software.

4.1.4 Threshold Extraction

Based on our statistical analysis, we derive thresholds for feature scattering, tangling,
and nesting in a way that respects the distributions found in our study. Taking data
skew into account, we rely on the notion of relative thresholds and on the functions
introduced by Oliveira et al. [2014b] to calculate thresholds for our metrics with heavy-
tailed distribution. We also illustrate how the proposed thresholds can be used to

4.2. Results 35

check whether a system implementation includes a complex usage of ifdefs. Figure 4.2
summarizes the main steps of the methodology of this study.

Figure 4.2: Main steps of our methodology

4.2 Results

In this section, we describe the results of our distribution fitting analysis for the three
metrics: Scattering Degree (Section 4.2.1), Tangling Degree (Section 4.2.2), and Nest-
ing Depth (Section 4.2.3).

4.2.1 Scattering Degree

To assess the distribution of the feature-scattering degrees, we initially plotted the
histograms of the extracted SD values for each system, shown in (Figure 4.3). We can
observe that all histograms are right-skewed, meaning that, while most SD values are
small (equal to one, in most cases), we also observe high and very high SD values,
suggesting a heavy-tailed—possibly a power-law—distribution. Table 4.2 shows the
collected measures for SD per system, including the number of feature constants, the
mean, median, 95th percentile, maximum value, mode, the percentage of entities fol-
lowing the mode, and also the Gini coefficient. The scattering degree reaches extreme
values in gcc (max SD=1 867, for the feature __cplusplus) and in the linux kernel

(max SD=2 698, for the feature __BIG_ENDIAN_BITFIELD), while other systems
have lower degrees, for example, vi (max SD=53, for the feature BIT8) and lighttpd

(max SD=48, for the feature USE_OPENSSL). Furthermore, the mean SD value is,
in all cases, too far apart from the values in the last 5% of the features. For instance,
in the linux kernel, the mean SD is 5.40, and the 95th percentile of SD is 14. This
nicely illustrates that the mean should not be used as a reference or centrality mea-
sure when analyzing SD. For instance, in the linux kernel, the mean is not only
very different from the small SD values (equal to 1) that represent the bulk of the
distribution, but it also does not represent the high SD values in the right part of the
histogram (� 5.4). Therefore, it is fundamental to know the statistical distribution
describing the collected SD data, before investigating reference values, thresholds, and
similar quantitative guidelines for this metric.

36 Chapter 4. The Shape of Feature Code

Finally, as presented in Table 4.2, the SD distribution’s Gini coefficients range
from 0.56 (git) to 0.77 (sylpheed), which suggests a high level of inequality inside
each distribution. All aforementioned characteristics are necessary, yet not sufficient,
to claim that feature scattering follows a power-law distribution.

Table 4.2: Scattering degree (SD) descriptive measures (NOFC: Number of Feature
Constants)

System NOFC Mean Median 95th Max Mode Mode % Gini

vi 118 4.72 1 27.45 53 1 58.4 0.66
lighttpd 179 4.20 2 14.00 48 1 40.7 0.57
xfig 110 3.87 1 14.10 83 1 54.5 0.64
sendmail 905 3.91 2 11.00 204 1 45.0 0.59
sylpheed 121 8.90 2 35.00 242 1 47.1 0.77
git 383 2.62 1 7.90 92 1 71.2 0.56
apache 606 3.30 1 12.00 114 1 57.2 0.58
libxml2 2 095 4.14 1 13.00 379 1 86.0 0.73
emacs 1 970 3.50 1 9.00 211 1 66.8 0.64
openldap 784 4.10 1 14.00 85 1 50.6 0.62
subversion 217 5.63 1 11.00 339 1 53.4 0.72
imagemagick 636 5.46 1 13.00 429 1 53.9 0.72
python 2 849 2.71 1 7.00 322 1 69.5 0.56
php 2 502 4.37 1 12.00 674 1 56.9 0.67
postgresql 1 264 4.49 1 13.85 569 1 62.7 0.70
gimp 557 4.66 1 18.00 156 1 56.7 0.66
glibc 3 370 4.94 1 14.00 662 1 56.5 0.71
mysql 1 990 6.93 2 18.00 652 1 47.9 0.75
gcc 8 898 4.38 1 13.00 1 867 1 57.1 0.68
linux kernel 12 661 5.40 1 14.00 2 698 1 52.1 0.71

Following the methodology described in Section 4.1.3, as a next step we estimate
the parameters of the power-law model (k and x

min

) that best fit our empirical CDF.
In Figure 4.4, we plot the empirical CDF and the fitted power law in logarithmic
scale, of which the latter appears as a red decreasing line in each graph of figure. As
we stated in Section 2.4, the resulting line is a distinct characteristic of power-law
distributions. The resulting plot reveals that the points approximate the line of the
power law, strengthening our understanding that feature scattering indeed follows a
power-law distribution.

To statistically check whether the fitted power laws are plausible models (null
hypothesis), we perform a bootstrapping hypothesis test, following the methodology
described in Section 4.1.3. Table 4.3 shows the p-values obtained for each test. In the
case of 14 systems, we found statistically significant models (p-value > 0.1), leading us
to accept the null hypothesis—the power-law model is a plausible explanation model.
Similar to the estimation of x

min

, in the case of three systems (subversion, gimp,

4.2. Results 37

0

20

40

60

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(a) vi

0

20

40

60

0 10 20 30 40

SD
Fr
eq
ue
nc
y

(b) lighttpd

0

20

40

60

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(c) xfig

0

100

200

300

400

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(d) sendmail

0

20

40

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(e) sylpheed

0

100

200

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(f) git

0

100

200

300

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(g) apache

0

500

1000

1500

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(h) libxml2

0

500

1000

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(i) emacs

0

100

200

300

400

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(j) openldap

0

30

60

90

120

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(k) subversion

0

100

200

300

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(l) imagemagick

0

500

1000

1500

2000

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(m) python

0

500

1000

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(n) php

0

200

400

600

800

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(o) postgresql

0

100

200

300

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(p) gimp

0

500

1000

1500

2000

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(q) glibc

0

250

500

750

1000

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(r) mysql

0

1000

2000

3000

4000

5000

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(s) gcc

0

2000

4000

6000

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(t) linux kernel

Figure 4.3: Histograms of scattering degrees (SD)

38 Chapter 4. The Shape of Feature Code

●

●

●

● ●
●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

SD
1 2 5 10 20 50

0.
01

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

C
D
F

(a) vi

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

SD
1 2 5 10 20 50

0.
00
5

0.
01
0

0.
02
0

0.
05
0

0.
10
0

0.
20
0

0.
50
0

1.
00
0

C
D
F

(b) lighttpd

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

SD
1 2 5 10 20 50

0.
01

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

C
D
F

(c) xfig

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●●
●
●●●●●●

●
●●
●
●
●

●
●
●
●

●

●

●

●

●

SD
1 2 5 10 20 50 100 200

0.
00
1

0.
00
5

0.
05
0

0.
50
0

C
D
F

(d) sendmail

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

SD
1 2 5 10 20 50 100 200

0.
01

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

C
D
F

(e) sylpheed

●

●

●

●

●
●

●
● ●

●
●
●
●

●
●

●
●

●
●

●

●

●

●

SD
1 2 5 10 20 50 100

0.
00
5

0.
02
0

0.
05
0

0.
20
0

0.
50
0

C
D
F

(f) git

●

●

●

●

●

●

●

●
● ●

●●
●

●
●
●

●
●
●

●

●

●
●

●

●

●

●

●

SD
1 2 5 10 20 50 100

0.
00
2

0.
00
5

0.
02
0

0.
05
0

0.
20
0

0.
50
0

C
D
F

(g) apache

●

●

●
●

●
●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●● ●●
●
●
●
●
●
●

●
●

●

●

●

●

SD
1 2 5 10 20 50 100 200

0.
00
05

0.
00
50

0.
05
00

0.
50
00

C
D
F

(h) libxml2

●

●

●

●

●
●

●
●

●
●

●
●●●●●

●
●
●

●●●●● ●
●

●
● ● ●●●●● ● ●

●
●

●
●
●
●
●
●

●

●

●

●

SD
1 2 5 10 20 50 100 200

0.
00
05

0.
00
50

0.
05
00

0.
50
00

C
D
F

(i) emacs

●

●

●

●

●

●
●

●

●
●

●

●
●●

●
●●

● ●
●●●● ●●●●

●
●
●

●
●

●
●
●

●

●

●

●

●

SD
1 2 5 10 20 50 100

0.
00
1

0.
00
5

0.
05
0

0.
50
0

C
D
F

(j) openldap

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

SD
1 2 5 10 20 50 100

0.
00
5

0.
01
0

0.
02
0

0.
05
0

0.
10
0

0.
20
0

0.
50
0

1.
00
0

C
D
F

(k) subversion

●

●

●

●

●
●

●
●
●
●●

●
●

●●
●
●
●
●●●●●

●
●
●
●

●
●
●
●

●

●

●

●

●

SD
1 2 5 10 20 50 100 200 500

0.
00
2

0.
00
5

0.
02
0

0.
05
0

0.
20
0

0.
50
0

C
D
F

(l) imagemagick

●

●

●

●

●

●

●
●

●
●
●●

●
●●

●●●●●●
●
●●
●●●

●●
●●
●●●●

●
●
●
●
●
●
●
●

●

●

●

●

SD
1 2 5 10 20 50 100 200

0.
00
05

0.
00
50

0.
05
00

0.
50
00

C
D
F

(m) python

●

●

●

●

●

●

●
●
●
●
●
●
●●●●●●●●●●●

●
●●●●●●●●●●

●●●
●●●●●

●●●
●●
●●
●●

●
●
●

●
●
●
●

●

●

●

●

SD
1 2 5 10 20 50 100 200 500

0.
00
05

0.
00
50

0.
05
00

0.
50
00

C
D
F

(n) php

●

●

●

●
●

●
●

●

●●●
●●●

●●

●
●●

●●●●●●●
●●●
●●●●●●●●

●
●
●
●
●

●
●

●

●

●

●

●

SD
1 2 5 10 20 50 100 200 500

0.
00
1

0.
00
5

0.
05
0

0.
50
0

C
D
F

(o) postgresql

●

●

●

●

●

●

●

●

● ●
●

●●
●●

●●
● ●

●
●●●●

●
●

●
●
●

●
●

●

●

●

●

●

●

SD
1 2 5 10 20 50

0.
00
2

0.
00
5

0.
02
0

0.
05
0

0.
20
0

0.
50
0

C
D
F

(p) gimp

●

●

●

●
●

●
●

●
●
●
●
●
●
●●●●

●●●
●●

●
●
●
●
●
●
●

●

●

●

●

SD
1 2 5 10 20 50 100 200 500

0.
00
05

0.
00
50

0.
05
00

0.
50
00

C
D
F

(q) glibc

●

●

●

●

●
●

●
●
●
●●●

●
●●●●●

●●●●
●●●●

●●●●●●●●
●●●●● ●●

●● ●●●●●●●●●●●●●●●
●

●
●
●
●

●
●
●

●

●

●

●

SD
1 2 5 10 20 50 100 200 500

0.
00
05

0.
00
50

0.
05
00

0.
50
00

C
D
F

(r) mysql

●

●

●

●
●

●
●
●
●
●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ●●
●
●
●
●
●
●

●

●

●

●

SD
1 5 10 50 100 500 1000

0.
00
01

0.
00
10

0.
01
00

0.
10
00

1.
00
00

C
D
F

(s) gcc

●

●

●

●
●

●
●
●
●
●
●
●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●
●
●
●
●

●
●

●

●

●

SD
1 5 10 50 100 500 1000

0.
00
01

0.
00
10

0.
01
00

0.
10
00

1.
00
00

C
D
F

(t) linux kernel

Figure 4.4: Empirical CDFs of the scattering degrees (points) and the fitted power law
(red line), both in logarithmic scale

4.2. Results 39

Table 4.3: Power-law best-fit analysis for scattering degree (SD). Significant results
(p-value > 0.1) are bold.

System k x

min

x

max

% crop p-value

vi 1.8542 1 53 0 0.2692
lighttpd 2.2239 3 48 0 0.7928
xfig 1.9645 1 83 0 0.1388
sendmail 2.3729 5 204 0 0.7392
sylpheed 1.7286 1 242 0 0.1728
git 2.3003 1 92 0 0.1592
apache 1.9704 1 114 0 0.0632
libxml2 1.9535 14 379 0 0.1880
emacs 2.1288 1 211 0 0.0020
openldap 2.0032 2 85 0 0.0392
subversion 2.4064 4 146 0.46 0.4984
imagemagick 1.8915 1 429 0 0.0220
python 2.2993 4 322 0 0.7960
php 2.1652 4 674 0 0.9636
postgresql 2.0145 1 569 0 0.0292
gimp 2.1997 5 76 0.35 0.1272
glibc 2.0358 7 662 0 0.7840
mysql 2.0255 8 528 0.05 0.1128
gcc 2.0146 2 1867 0 0.0000
linux kernel 2.2216 8 2698 0 0.5516

and mysql), the best fit to a power law requires an upper bound value (x
max

). This
cropping of a small number of features (less than 0.5%) in the end of the distribution
is necessary when the power-law behavior seems to fit most of the distribution, but
does not hold for some few higher values. For the remaining six systems, we reject
the null hypothesis in favor of the alternative hypothesis (the power-law model is not
a plausible explanation model). Note that this is not the same as concluding that
the scattering distribution of these six systems is not heavy-tailed. In fact, Figure 4.4
suggests a heavy-tailed distribution for all 20 systems, some of which possibly follow
an alternative distribution (e.g., stretched exponential or log-normal).

4.2.2 Tangling Degree

To analyze the distribution of tangling degrees, we also plotted the histograms of the
extracted TD values for each system, as shown in Figure 4.5. We observe that the
histograms follow a different pattern from the ones for scattering (Figure 4.3). In
particular, most TD values are equal to one, and we have very few feature expressions
with higher TD values. Table 4.4 shows the collected measures for TD per system,
including the number of feature expressions (NOFE), as well as the mean, median,

40 Chapter 4. The Shape of Feature Code

Table 4.4: Tangling degree (TD) descriptive measures (NOFE: Number of Feature
Expressions)

System NOFE Mean Median 95th Max Mode Mode % Gini

vi 554 1.00 1 1 2 1 99.2 0.01
lighttpd 686 1.09 1 2 7 1 93.5 0.08
xfig 378 1.12 1 2 7 1 94.4 0.10
sendmail 3 176 1.11 1 2 7 1 90.5 0.09
sylpheed 986 1.09 1 1 6 1 95.1 0.08
git 885 1.13 1 2 10 1 91.0 0.11
apache 1 788 1.12 1 2 7 1 93.3 0.10
libxml2 8 127 1.06 1 2 8 1 94.8 0.06
emacs 5 565 1.23 1 2 12 1 82.2 0.16
openldap 2 930 1.09 1 2 8 1 91.7 0.08
subversion 1 113 1.09 1 2 6 1 92.5 0.08
imagemagick 2 732 1.27 1 2 5 1 76.3 0.16
python 6 969 1.11 1 2 7 1 91.5 0.09
php 9 373 1.16 1 2 8 1 87.5 0.12
postgresql 4 717 1.20 1 2 11 1 88.5 0.15
gimp 2 118 1.22 1 2 6 1 83.8 0.16
glibc 13 345 1.24 1 2 14 1 80.6 0.16
mysql 12 359 1.11 1 2 8 1 91.0 0.09
gcc 29 842 1.30 1 3 21 1 82.1 0.20
linux kernel 63 482 1.07 1 2 12 1 93.5 0.06

95th percentile, maximum value, mode, and the percentage of entities following the
mode. The table also provides the Gini coefficients computed over the TD values of a
system. First of all, we can observe that, in all systems, the mean is close to one and
both the median and the mode are equal to one. Second, the 95th percentile is less or
equal to two in 19 systems (only in gcc it is equal to three). In 13 systems, the mode
represents, at least, 90% of the measured values. For example, 99.2% of the feature
expressions in vi have a TD value equal to one. imagemagick is the system with the
lowest frequency of TD values that are equal to one (76.3%).

Finally, the Gini coefficients for TD—across all subjects—are less than 0.21, which
shows that tangled degree is nearly equally distributed. For all systems, we found that
a power-law distribution is not a plausible model for the reported TD values. Although
it is possible to fit a power law to the tail of each TD distribution, the number of data
points in the right of the tail is too small to claim statistical power.

4.2.3 Nesting Depth

As shown in Figure 4.6, the histograms of the ND values for each system are similar
to the ones for tangling: most ND values are equal to one, and we have very few

4.2. Results 41

0

200

400

0 10 20 30

TD

Fr
eq
ue
nc
y

(a) vi

0

200

400

600

0 10 20 30

TD
Fr
eq
ue
nc
y

(b) lighttpd

0

100

200

300

0 10 20 30

TD

Fr
eq
ue
nc
y

(c) xfig

0

1000

2000

3000

0 10 20 30

TD

Fr
eq
ue
nc
y

(d) sendmail

0

250

500

750

0 10 20 30

TD

Fr
eq
ue
nc
y

(e) sylpheed

0

200

400

600

800

0 10 20 30

TD

Fr
eq
ue
nc
y

(f) git

0

500

1000

1500

0 10 20 30

TD

Fr
eq
ue
nc
y

(g) apache

0

2000

4000

6000

8000

0 10 20 30

TD

Fr
eq
ue
nc
y

(h) libxml2

0

1000

2000

3000

4000

0 10 20 30

TD

Fr
eq
ue
nc
y

(i) rmacs

0

1000

2000

0 10 20 30

TD

Fr
eq
ue
nc
y

(j) openldap

0

250

500

750

1000

0 10 20 30

TD

Fr
eq
ue
nc
y

(k) subversion

0

500

1000

1500

2000

0 10 20 30

TD

Fr
eq
ue
nc
y

(l) imagemagick

0

2000

4000

6000

0 10 20 30

TD

Fr
eq
ue
nc
y

(m) python

0

2000

4000

6000

8000

0 10 20 30

TD

Fr
eq
ue
nc
y

(n) php

0

1000

2000

3000

4000

0 10 20 30

TD

Fr
eq
ue
nc
y

(o) postgresql

0

500

1000

1500

0 10 20 30

TD

Fr
eq
ue
nc
y

(p) gimp

0

3000

6000

9000

0 10 20 30

TD

Fr
eq
ue
nc
y

(q) glibc

0

3000

6000

9000

0 10 20 30

TD

Fr
eq
ue
nc
y

(r) mysql

0

5000

10000

15000

20000

25000

0 10 20 30

TD

Fr
eq
ue
nc
y

(s) gcc

0

20000

40000

60000

0 10 20 30

TD

Fr
eq
ue
nc
y

(t) linux kernel

Figure 4.5: Histogram of tangling degrees (TD)

42 Chapter 4. The Shape of Feature Code

branches with nested ifdefs and #else annotations. Table 4.5 shows the number of
top-level branches (NOTLB) in the subject systems, as well as the mean, median,
95th percentile, maximum value, mode, the percentage of entities following the mode,
and also the Gini coefficients computed over the ND values extracted for each system.
Similarly to TD, the mode is one in all systems and it represents, at least, 86% of the
measured ND values. For example, 94.7% of the ifdef branches in apache have ND
values equal to one, and git is the system with the lowest number of branches without
nested ifdefs (86.2%).

Much like for TD, the Gini coefficients are quite low, less than 0.15, suggesting a
uniform distribution, even more than the ones observed for tangling. As a consequence,
we found that a power-law distribution is not a plausible model for the reported ND
values. As we concluded for TD, although it is possible to fit a power law to the tail
of each ND distribution, the number of data points in the right of the tail is too small
to claim statistical power.

Table 4.5: Nesting Depth (ND) descriptive measures (NOTLB: Number of Top-Level
Branches)

System NOTLB Mean Median 95th Max Mode Mode % Gini

vi 551 1.14 1 2 5 1 86.9 0.10
lighttpd 780 1.08 1 2 5 1 92.1 0.07
xfig 398 1.09 1 2 7 1 93.4 0.08
sendmail 2 290 1.17 1 2 5 1 86.2 0.13
sylpheed 1 197 1.06 1 2 6 1 94.4 0.05
git 809 1.17 1 2 9 1 86.2 0.12
apache 1 799 1.05 1 2 6 1 94.7 0.05
libxml2 2 585 1.14 1 2 7 1 88.8 0.11
emacs 3 106 1.18 1 2 15 1 87.3 0.14
openldap 2 626 1.12 1 2 5 1 89.5 0.09
subversion 1 277 1.04 1 1 4 1 95.7 0.04
imagemagick 2 139 1.09 1 2 5 1 93.0 0.08
python 6 416 1.12 1 2 9 1 89.8 0.09
php 7 868 1.10 1 2 6 1 90.8 0.09
postgresql 4 044 1.11 1 2 6 1 91.8 0.09
gimp 2 216 1.09 1 2 6 1 92.8 0.08
glibc 12 062 1.14 1 2 6 1 88.0 0.11
mysql 11 850 1.08 1 2 6 1 92.8 0.07
gcc 26 888 1.11 1 2 24 1 90.6 0.09
linux kernel 71 591 1.05 1 2 5 1 94.6 0.05

4.2. Results 43

0

100

200

300

400

500

0 10 20 30

ND

Fr
eq
ue
nc
y

(a) vi

0

200

400

600

0 10 20 30

ND
Fr
eq
ue
nc
y

(b) lighttpd

0

100

200

300

0 10 20 30

ND

Fr
eq
ue
nc
y

(c) xfig

0

500

1000

1500

2000

0 10 20 30

ND

Fr
eq
ue
nc
y

(d) sendmail

0

300

600

900

0 10 20 30

ND

Fr
eq
ue
nc
y

(e) sylpheed

0

200

400

600

0 10 20 30

ND

Fr
eq
ue
nc
y

(f) git

0

500

1000

1500

0 10 20 30

ND

Fr
eq
ue
nc
y

(g) apache

0

500

1000

1500

2000

0 10 20 30

ND

Fr
eq
ue
nc
y

(h) libxml2

0

1000

2000

0 10 20 30

ND

Fr
eq
ue
nc
y

(i) emacs

0

500

1000

1500

2000

0 10 20 30

ND

Fr
eq
ue
nc
y

(j) openldap

0

250

500

750

1000

1250

0 10 20 30

ND

Fr
eq
ue
nc
y

(k) subversion

0

500

1000

1500

2000

0 10 20 30

ND

Fr
eq
ue
nc
y

(l) imagemagick

0

2000

4000

6000

0 10 20 30

ND

Fr
eq
ue
nc
y

(m) python

0

2000

4000

6000

0 10 20 30

ND

Fr
eq
ue
nc
y

(n) php

0

1000

2000

3000

0 10 20 30

ND

Fr
eq
ue
nc
y

(o) postgressql

0

500

1000

1500

2000

0 10 20 30

ND

Fr
eq
ue
nc
y

(p) gimp

0

3000

6000

9000

0 10 20 30

ND

Fr
eq
ue
nc
y

(q) glibc

0

3000

6000

9000

0 10 20 30

ND

Fr
eq
ue
nc
y

(r) mysql

0

5000

10000

15000

20000

25000

0 10 20 30

ND

Fr
eq
ue
nc
y

(s) gcc

0

20000

40000

60000

0 10 20 30

ND

Fr
eq
ue
nc
y

(t) linux kernel

Figure 4.6: Histogram of Nesting Depth (ND)

44 Chapter 4. The Shape of Feature Code

4.3 Thresholds for Feature-Related Metrics

Our empirical study shows that feature scattering is highly skewed. In fact, 14 out
of 20 systems show strong evidence that feature scattering is heavy-tailed, and the
underlying distributions follow a power-law. Tangling and nesting have a more uniform
distribution for all subject systems, with most values equal to one. These findings
are of great relevance for the extraction of thresholds for the studied metrics. Most
importantly, feature-scattering thresholds should not be based on centrality statistic
measures (e.g., mean and standard deviation). In contrast, tangling and nesting have
only a small number of outliers, which are not too far apart from the most typical
values of these two metrics. Thus, mean values are robust thresholds for the tangling
and nesting metrics.

Based on our statistical analysis, we derive thresholds for feature scattering, tan-
gling, and nesting in a way that respects the distributions found in our study. Taking
data skew into account, we rely on the notion of relative thresholds, which we explain
next.

4.3.1 Relative Thresholds

Several code metrics, measuring properties such as size, coupling, and cohesion, are
well known following heavy-tailed distributions [Baxter et al., 2006; Louridas et al.,
2008; Wheeldon and Counsell, 2003; Ferreira et al., 2012; Filó et al., 2014]. For this
reason, previous work proposed techniques to extract thresholds that do not rely on
the mean or the standard deviation. For example, Oliveira et al. [2014b] proposed the
notion of relative thresholds for evaluating heavy-tailed metric values, along with a
set of functions that obtain such thresholds from a set of subject systems (Corpus).
Relative thresholds have the following format:

at least p% of the entities should have M k

where M is a metric calculated for a given source code entity, k is an upper limit, and p

is the minimal percentage of entities that should be below this upper limit. The goal is
to establish upper limits for metric values that should be followed by most entities, not
necessarily all, though. The reason is that, in heavy-tailed distributions, the high metric
values of the distribution make it challenging to define thresholds for all entities. Thus,
relative thresholds attempt to balance two forces: (i) on one hand, relative thresholds
should reflect real design rules, followed by most subjects in the target system; (ii) on
the other hand, the prescribed thresholds should not be based on lenient upper limits.

4.3. Thresholds for Feature-Related Metrics 45

ComplianceRate[p, k] =
| { S 2 Corpus | p% of the entities in S have M k} |

| Corpus |

penalty1[p, k] =

8
<

:

90� ComplianceRate[p, k]
90

if ComplianceRate[p, k] < 90

0 otherwise

penalty2[k] =

8
<

:

k � Median90
Median90

if k > Median90

0 otherwise

CompliancePenalty[p, k] = penalty1[p, k] + penalty2[k]

Figure 4.7: ComplianceRate and CompliancePenalty functions [Oliveira et al., 2014b]

For example, a threshold stating that “95% of the feature constants in a system should
have a scattering degree less than 3K” is probably satisfied by most systems.

Figure 4.7 presents the functions introduced by Oliveira et al. to calculate the
parameters p and k that define the relative threshold for a given metric M . First,
function ComplianceRate[p, k] returns the percentage of systems in the Corpus that
follows the relative threshold defined by the pair [p, k]. To determine the best p and
k, ComplianceRate is maximized, while accounting for a minimal CompliancePenalty.
The latter is the sum of penalties introduced by two functions:

• penalty1[p, k]: a ComplianceRate[p, k] less than 90% receives a penalty propor-
tional to its distance to 90%. This penalty fosters thresholds followed by, at
least, 90% of the systems in the Corpus.

• penalty2[k]: a ComplianceRate[p, k] receives the second penalty proportional to
the distance between k and the median of the 90th percentiles of the values of
M in each system in the Corpus, denoted by Median90.

4.3.2 Thresholds for Scattering Degree

As we found that feature scattering degrees follow a heavy-tailed distribution, we
computed relative thresholds for this metric, using our sample of 20 systems and the
compliance functions described in Section 4.3.1, obtaining the following result:

at least, 85% of the feature constants in a system should have SD 6

In fact, this threshold holds for all systems in our corpus except vi and sylpheed,
which exceed the threshold only marginally. In vi, we observe that 83% of the feature

46 Chapter 4. The Shape of Feature Code

constants have a SD 6 and, in sylpheed, this percentage is 82%. However, the pro-
posed relative threshold holds for large and complex systems, with thousands of ifdefs,
such as the linux kernel, gcc, and mysql. Figure 4.8 shows the percentile func-
tions for the SD values of each subject system. The x-axis represents the percentiles,
and the y-axis represents the upper SD values of the feature constants matching the
percentile. The plot nicely illustrates that SD values are heavy-tailed, as already con-
cluded in Section 4.2.1 . However, there are two systems whose SD values begin to
grow earlier, around the 85th percentile, which are exactly vi and sylpheed.

Percentiles (% of features)

Sc
at

te
rin

g
D

eg
re

e
(S

D
)

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

0

100

200

300

vi

sylpheed

Figure 4.8: Percentile plots of scattering degrees (SD)

These results suggest that, the proposed relative threshold reflects the most com-
mon scattering distributions found in our corpus. Another corpus, however, may yield
a different threshold (e.g., a corpus with systems of a particular domain). However,
assuming that we selected a representative sample of C-preprocessor-based systems,
including small, medium, and large systems, we expect that different corpora would
not produce radically different thresholds. In other words, not following the thresholds
by a small margin—like in vi and sylpheed—does not necessarily mean a serious de-
sign flaw. However, if only 50% of the feature constants in a system have SD 6, this
would certainly raise more serious concerns on the quality of the feature-implementation
structure. For example, Spencer and Collyer [Spencer and Collyer, 1992] claim that
ifdef-based implementation should follow basic principles of software engineering, in-
cluding clean interfaces and information hiding. More specifically, ifdefs should be

4.3. Thresholds for Feature-Related Metrics 47

hidden behind interfaces, making it possible to implement the bulk of the software as
a single version using these interfaces. Code that do not follow the proposed thresh-
olds for scattering degree might, for example, have many ifdefs that do not follow this
general principle.

4.3.3 Thresholds for Tangling Degree

Tangling degrees approximate an uniform distribution, allowing to directly define
thresholds. After inspecting the results in Table 4.4, specifically the mode and its
relative frequency (%), we propose the following threshold:

at least, 80% of the feature expressions in a system should have TD = 1

To define this threshold we assume that the mode of the TD distributions (which
is equal to one in all systems) should correspond to, at least, 80% of the feature
expressions in each system. We propose this threshold based on the percentage of
feature expressions that follow the mode in most subjects, minimizing the number of
outliers. In other words, we assume that systems where the mode corresponds to less
than 80% of the feature expressions deviate from an uniform distribution and therefore
are outliers. All systems in our sample follow this threshold, except imagemagick.

4.3.4 Thresholds for Nesting Depth

After inspecting the measures of Table 5, specially the mode and its frequency, we
propose the following threshold:

at least, 85% of the top-level branches in a system should have ND = 1

To define this threshold we followed the assumptions of the TD threshold, based
on the percentage of entities that follow the mode in most subjects. However, in this
case we are requiring the mode of the ND distribution (ND=1) to correspond to, at
least, 85% of the top-level ifdef branches (and not 80%, as in the TD threshold). The
reason is that in our sample the mode of ND corresponds to, at least, 86.2% of the
top-level ifdef branches in each system. Therefore, this threshold is followed by all
systems in our sample. The absence of systems not following the proposed threshold
is explained by the fact that the ND distributions are quite similar across all subject
systems.

48 Chapter 4. The Shape of Feature Code

4.3.5 Discussion

The proposed thresholds can be used to check whether a system implementation in-
cludes a complex usage of ifdefs, at least when compared with other relevant systems
(i.e., the systems considered in our Corpus). To illustrate this usage, we applied our
thresholds on xterm (version 3.1.8), the standard terminal emulator for the XWin-
dow system. Existing research shows that xterm makes a heavy and complex usage
of ifdefs. For example, Liebig et al. show that almost 40% of xterm’s lines of code are
enclosed by ifdefs Liebig et al. [2010]. Moreover, almost 10% of the ifdefs in xterm are
undisciplined annotations, i.e., they delimit tokens that do not align with the syntactic
code structure, e.g., with entire statements, functions, and type declarations [Liebig
et al., 2011]. Furthermore, we inspected the description of 318 patches of xterm,
from 1996 to 2015.6 We found that 82 patches (26%) included 110 changes in ifdefs,
to correct bugs, to implement new features, or due to refactorings. We provide three
examples of such changes:

• Patch #315: “fix an ifdef ’ing problem, where –disable-dec-locator would turn off
logic needed for DECIC and DECDC.”

• Patch #275: “adjust ifdef ’s for putenv and unsetenv in case only one of those is
provided on a given platform.”

• Patch #216: “ifdef ’d Sun function-key feature to make it optional, like HP and
SCO.”

Therefore, we hypothesize that xterm should be classified as an outlier system,
according to the thresholds for SD, TD, or ND derived in the previous sections. To
check this hypothesis, we used fscat to compute the distribution of the SD, TD, and
ND values in xterm. These distributions are presented in Figure 4.9.

We then checked whether xterm follows the proposed thresholds, with the fol-
lowing results:

• The threshold derived for SD states that a system should have, at least, 85%
of the ifdefs with SD 6. However, in xterm, only 79% of the ifdefs have
SD 6. Therefore, xterm is indeed an outlier regarding SD.

• The threshold for TD states that a system should have, at least, 80% of the ifdefs
with TD=1. Indeed, xterm has 91% of the ifdefs with TD=1. Therefore, it is
not an outlier for TD.

6
xterm change log is available at http://invisible-island.net/xterm/xterm.log.html

http://invisible-island.net/xterm/xterm.log.html

4.4. Threats to Validity 49

0

100

200

0 10 20 30 40

SD

Fr
eq
ue
nc
y

(a) SD

0

500

1000

1500

2000

0 10 20 30

TD

Fr
eq
ue
nc
y

(b) TD

0

500

1000

1500

0 10 20 30

ND

Fr
eq
ue
nc
y

(c) ND

Figure 4.9: Histogram of Scattering Degree (SD), Tangling Degree (TD), and Nesting
Depth (ND) in xterm

• The threshold for ND states that a system should have, at least, 85% of the ifdefs
with ND=1. Indeed, xterm has 89% of the ifdefs with ND=1. Therefore, it is
not an outlier for ND.

To conclude, the derived thresholds indeed indicate that xterm has a complex usage
of ifdefs, which manifests in scattering. Regarding tangling and nesting, xterm is not
different from the systems in our corpus.

4.4 Threats to Validity

A threat to external validity of our conclusions is the selection of the subject systems.
We acknowledge that the current selection does not support us to conclude that our
findings are applicable to every C-preprocessor-based system. Specially, the proposed
thresholds for SD, TD, and ND should be used with caution, as they heavily depend
on context, as usual with software metrics [Zhang et al., 2013; Souza and Maia, 2013].
However, we attempted to increase external validity by carefully selecting mature sys-
tems of different sizes from different application domains.

The mechanisms in which features are implemented also pose threat to external
validity. Since features may be implemented in different ways depending on the pro-
gramming language, scattering, tangling, and nesting may not have the same behavior
as observed in C-preprocessor-based systems.

Different programming styles used by developers to write ifdefs may affect the
measured degrees, a threat to construct validity. As an example, Listing 4.10 shows
two fragments of ifdef code, with exactly the same behavior. However, since they
have different ifdef structures, the measured metric values are different (in Style 1,
FEATURE_A has SD=1, but in Style 2, FEATURE_A has SD=2). We attempt to

50 Chapter 4. The Shape of Feature Code

1 //Style 1:
2
3 #ifdef FEATURE_A
4 //code a
5 #elif FEATURE_B
6 //code b
7 #endif
8
9 //Style 2:

10
11 #ifdef FEATURE_A
12 //code a
13 #endif
14 #if !defined(FEATURE_A) && defined (FEATURE_B)
15 // code b
16 #endif

Figure 4.10: Implementing ifdefs with different programming styles

mitigate this threat to validity by analyzing different systems, from different application
domains. This way, we are not favouring one style over the other.

Another threat to internal validity arises when computing the three metrics we
considered. When using fscat, we consider all the C source code of each system,
and we do not distinguish files that are automatically generated (e.g., those produced
by parser generators) from those that are not. We also do not discard unit test files.
Thus, our results are, to some extent, subject to the influence of the file type. We
argue, however, that the majority of the files we take for analysis are not automatically
generated. We performed a manual inspection on random files, and also on the files
containing feature expressions with higher values of tangling and nesting degree to
ensure they are automatically generated code. Last, but not least, our results indicate
that feature scattering follows a power-law distribution in 14 out of 20 of our subjects.
However, it might be the case that other distributions different from power laws are
in fact a better fit (e.g., log-normal or stretched exponential). Even if that turns out
to be true, conclusions will be the same (i.e., scattering will still be a heavy-tailed
distribution).

4.5 Final Remarks

In the empirical study reported in this chapter, we analyzed the statistical distribution
of the scattering, tangling, and nesting degrees in 20 open-source C preprocessor-based
systems. Our study revealed that feature scattering, as measured by the SD metric,

4.5. Final Remarks 51

follows a heavy-tailed distribution in all subject systems. In 14 systems (70%), these
heavy-tailed distributions matched a power law. Regarding tangling and nesting de-
grees, the metric values in all systems tend to a uniform distribution, with most values
equal to one for both metrics and a few occurrences of slighter higher values. Based
on these findings, we proposed thresholds for all three metrics.

All datasets, R scripts, and associated tooling used in this study are publicly
available in a website.7

7http://rodrigoqueiroz.bitbucket.org/sosym2015.html

http://rodrigoqueiroz.bitbucket.org/sosym2015.html

Chapter 5

Conclusion

We organized this chapter as follows. First, Section 5.1 provides a brief description
of the study. Second, Section 5.2 reviews the contributions of our research. Next,
Section 5.3 discuss related work. Finally, Section 5.4 suggests further work.

5.1 Overview

In the first part of this master dissertation, we conducted a systematic literature review
to search for studies containing assumptions and findings regarding the usage of ifdefs.
The first goal was to strength our knowledge about ifdef usage. Our results show that
there are few studies that rely on metrics to reason about preprocessor-based systems.
Moreover, the existing studies do not investigate the statistical distributions that better
describe preprocessor-based metric values and also do not propose thresholds for such
metrics.

In the second part of the study, we performed an analysis of twenty C-
preprocessor-based software systems. We extracted and inspected the statistical dis-
tribution of three metrics: scattering degree (SD) of feature constants, tangling degree
(TD) of feature expressions, and nesting depth (ND) of preprocessor annotations. Our
study revealed that feature scattering follows a heavy-tailed distribution in all subject
systems, and 14 (70%) of them matched a power-law distribution. Regarding tangling
and nesting degrees, the metric values in all systems tend to a uniform distribution,
with most values equal to one for both metrics. Based on these findings, we proposed
thresholds for all three metrics.

As a practical consequence, our work suggests that scattering, tangling and nest-
ing must be controlled in order to avoid impact on quality and maintainability. How-
ever, although high values must be avoided, they should be expected in real software

53

54 Chapter 5. Conclusion

systems. Particularly, high and very high values of scattering can be impracticable to
eliminate entirely. The proposed thresholds reveal how preprocessor-based annotations
are used in source code and reflect design practices that are common in our subject
systems. They can be used to control and monitor the evolution of a system, and raise
quality alerts when a system reaches a dangerous level if the proposed thresholds are
violated.

5.2 Contributions

The contributions of this master dissertation are as follows:

• The ranking of common assumptions and findings reported in the literature and
related to the usage of ifdefs.

• An empirical study with long-lived open-source and mature systems that revealed
how feature annotations are implemented in practice and the characterization of
three metrics considered in the study: Scattering Degree (SD), Tangling Degree
(TD), and Nesting Depth (ND).

• A publicly available dataset with three metrics considered in this study and
extracted from 20 open-source systems.

• The thresholds proposed for the three metrics considered in the study, which can
help practitioners to better understand and evaluate the shape of their feature
code.

5.3 Related Work

5.3.1 Metrics for C-preprocessor Annotations

Liebig et al. [2010] analyzed 40 systems written in C showing how developers use
the C preprocessor when implementing features and their associated ifdefs in source
code. The authors consider not only scattering, tangling, and nesting, but also met-
rics measuring the granularity of annotations (the syntactic location where an ifdef
occurs—e.g., at a global level, inside a function, and inside a block) and the type of
annotated code (homogeneous, meaning that a verbatim copy of the annotated block
also appears in other annotated code; heterogeneous, with distinct extensions; or a mix
of the two). The authors report their results using centrality and dispersion statistics,

5.3. Related Work 55

including mean and standard deviations. However, the properties of the underlying
distributions have not been analyzed (e.g., whether they are symmetric, as in Gaussian
distributions, or whether they are heavy-tailed, as in power-law distributions), which
may turn results not representative of true typical values.

Hunsen et al. [2015] used the same metrics and tools, including the transforma-
tions on the ifdef conditions, as Liebig et al. to compare metric values for open-source
and industrial systems. While the authors report the metrics for the individual systems
using centrality and dispersion statistics, they used distribution-independent statistical
tests (i.e., the Mann-Whitney U test) to check their hypotheses regarding the difference
between open-source and closed-source systems.

Couto et al. [2011] extracted a software product line from the ArgoUML tool,
using ifdefs to annotate feature code. As part of their study, the authors report similar
metrics to the ones used by Liebig et al., including the scattering and tangling degree.
With the observed scattering values, the authors link the corresponding features to
specific patterns reported by Figueiredo et al. [Figueiredo et al., 2009]. These patterns
formalize rules on how to identify specific kinds of scattered features.

Eaddy et al. [2008] investigated the relation between scattering and bugs, but do
not prescribe a threshold limiting the degree of scattering. Nonetheless, they provide
evidence that simple metrics, such as the scattering degree (a.k.a. concern diffusion
metric), correlate with the number of bugs in a system, independent of its size.

Passos et al. [2015] conducted a longitudinal case study of scattered features in the
Linux kernel focusing on driver features. They analyze their evolution by considering
scattering thresholds, linking findings to the kernel architectural decomposition, and
studying how scattered driver features differ from non-scattered ones.

5.3.2 Characterization of Software Metrics Distribution

Beyond the feature-oriented and product-line communities, there are different pieces
of work checking the characteristic distribution of size, coupling, and cohesion-related
metrics. Louridas et al. [2008] studied the existence of power-law distributions in dif-
ferent kinds of software components, including Java classes, Perl packages, shared Unix
Libraries, and Windows dynamic linked libraries (DLLs). The authors conclude that
heavy-tailed distributions, usually power laws, appear at various levels of abstraction,
in many domains, operating systems, and languages.

Concas et al. [2007] studied ten different properties related to classes and methods
of a large Smalltalk system, consistently finding non-Gaussian distributions of these

56 Chapter 5. Conclusion

properties. The authors then conclude that “the usual evaluation of systems based on
mean and standard deviation of metrics can be misleading”.

Baxter et al. [2006] reported that some structural properties of Java software
follow power-law distributions, while others do not. They conjecture that metrics
measuring local properties that programmers are inherently aware about (e.g., out-
degree distributions or number of method parameters) tend to follow distributions
that are not power laws. In fact, this is the case for tangling (TD) and nesting (ND)
considered here.

Taube-Schock et al. [2011] studied connectivity in 97 open-source software sys-
tems, and they found that all these systems exhibit a similar scale-free dependency
structure, with regard to both the overall connectivity and between-modules connectiv-
ity. For this reason, they concluded that high coupling can never be entirely eliminated
from software design and that, in fact, some degree of high coupling might be quite
reasonable. A similar conclusion appears to apply to scattering in C preprocessor-based
systems.

Ferreira et al. [2012] studied the structure of 40 open-source software systems
developed in Java, including tools, libraries, and frameworks. They proposed thresholds
for six object-oriented software metrics: COF, LCOM, DIT, afferent couplings, number
of public methods, and number of public fields. The study concluded that values of
those metrics, except DIT, follow a heavy-tailed distribution.

5.4 Future Work

This master dissertation work can be complemented with the following future work:

• We can extend our analysis to a larger set of systems, covering more functional
domains, and investigating how a subset of a particular size or specific functional
domain affect the proposed thresholds.

• We can assess feature-related metrics in systems written in languages other than
C (e.g., in object-oriented languages) or using other preprocessor mechanisms,
such as visual annotations [Kästner et al., 2008; Valente et al., 2012].

• We can perform a longitudinal study, investigating the evolution history of scat-
tering, tangling and nesting for each subject system.

• We can explore other techniques for extracting thresholds, such as the one pro-
posed by Alves et al. [2010], or boxplots adjusted to skewed distributions [Hubert
and Vandervieren, 2008].

5.4. Future Work 57

• We can validate the proposed thresholds, by checking whether following (or not
following) them has an impact on other software properties, such as bugs, and
maintenance effort.

Bibliography

Adams, B., Van Rompaey, B., Gibbs, C., and Coady, Y. (2008). Aspect Mining in the
Presence of the C Preprocessor. In Proceedings of the AOSD Workshop on Linking
Aspect Technology and Evolution, pages 1:1--1:6. ACM.

Alves, T. L., Ypma, C., and Visser, J. (2010). Deriving Metric Thresholds from Bench-
mark Data. In Proceedings of the International Conference on Software Maintenance,
pages 1--10. IEEE.

Apel, S., Batory, D., Kästner, C., and Saake, G. (2013a). Feature-Oriented Software
Product Lines: Concepts and Implementation. Springer.

Apel, S., Batory, D., Kästner, C., and Saake, G. (2013b). Feature-Oriented Software
Product Lines: Concepts and Implementation. Springer-Verlag.

Apel, S., Leich, T., and Saake, G. (2008a). Aspectual Feature Modules. IEEE Trans-
actions on Software Engineering, 34(2):162–180.

Apel, S., Lengauer, C., Möller, B., and Kästner, C. (2008b). An Algebra for Fea-
tures and Feature Composition. In Proceedings of the International Conference on
Algebraic Methodology and Software Technology. Springer-Verlag.

Batory, D., Sarvela, J. N., and Rauschmayer, A. (2003). Scaling Step-wise Refinement.
In Proceedings of the International Conference on Software Engineering, pages 187-
-197. IEEE Computer Society.

Baxter, G., Frean, M., Noble, J., Rickerby, M., Smith, H., Visser, M., Melton, H., and
Tempero, E. (2006). Understanding the Shape of Java Software. In Proceedings of
the International Conference on Object-oriented Programming Systems, Languages,
and Applications, pages 397--412. ACM.

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., and Khalil, M. (2007).
Lessons from Applying the Systematic Literature Review Process Within the Soft-
ware Engineering Domain.

59

60 Bibliography

Brito e Abreu, F. and Carapuca, R. (1994). Object-Oriented Software Engineering:
Measuring and Controlling the Development Process. In Proceedings of the Interna-
tional Conference of Software Quality.

Caltech (2010). JPL institutional coding standard for the Java programming language.
Technical report.

Chidamber, S. R. and Kemerer, C. F. (1994). A Metrics Suite for Object Oriented
Design. IEEE Transactions on Software Engineering, 20(6):476--493.

Clauset, A., Shalizi, C. R., and Newman, M. E. J. (2009). Power-Law Distributions in
Empirical Data. Society for Industrial and Applied Mathematics Review, 51(4):661-
-703.

Concas, G., Marchesi, M., Pinna, S., and Serra, N. (2007). Power-Laws in a Large
Object-Oriented Software System. IEEE Transactions on Software Engineering,
33(10):687--708.

Couto, M., Valente, M., and Figueiredo, E. (2011). Extracting Software Product Lines:
A Case Study Using Conditional Compilation. In Proceedings of the European Con-
ference on Software Maintenance and Reengineering, pages 191–200. IEEE.

Czarnecki, K. and Eisenecker, U. W. (2000). Generative Programming: Methods, Tools,
and Applications. ACM Press/Addison-Wesley Publishing Co.

Eaddy, M., Zimmermann, T., Sherwood, K. D., Garg, V., Murphy, G. C., Nagap-
pan, N., and Aho, A. V. (2008). Do Crosscutting Concerns Cause Defects? IEEE
Transactions on Software Engineering, 34(4):497--515.

Favre, J.-M. (1996). Preprocessors from an Abstract Point of View. In Proceedings of
the International Conference on Software Maintenance, page 329. IEEE.

Feigenspan, J., Kästner, C., Apel, S., Liebig, J., Schulze, M., Dachselt, R., Papendieck,
M., Leich, T., and Saake, G. (2013). Do Background Colors Improve Program
Comprehension in the #Ifdef Hell? Empirical Software Engineering, 18(4):699--745.

Fenton, N. E. and Neil, M. (2000). Software Metrics: Roadmap. In Proceedings of the
International Conference on Software Engineering, pages 357--370. ACM.

Fenton, N. E. and Pfleeger, S. L. (1998). Software Metrics: A Rigorous and Practical
Approach. PWS Publishing Co., 2nd edition.

Bibliography 61

Ferreira, K. A. M., Bigonha, M. A. S., Bigonha, R. S., Mendes, L. F. O., and Almeida,
H. C. (2012). Identifying Thresholds for Object-oriented Software Metrics. Journal
of Systems and Software, 85(2):244--257.

Figueiredo, E., da Silva, B. C., Sant’Anna, C., Garcia, A. F., Whittle, J., and Nunes,
D. J. (2009). Crosscutting Patterns and Design Stability: An Exploratory Analysis.
In Proceedings of the International Conference on Program Comprehension, pages
138–147. IEEE.

Filó, T. G., Bigonha, M. A., and Ferreira, K. A. (2014). Statistical Dataset on Software
Metrics in Object-oriented Systems. ACM SIGSOFT Software Engineering Notes,
39(5):1--6.

Garrido, A. and Johnson, R. E. (2013). Embracing the C preprocessor During Refac-
toring. Journal of Software: Evolution and Process, 25:1285--1304.

Gillespie, C. S. (2014a). Fitting Heavy-Tailed Distributions: The poweRlaw Package.
R package version 0.20.5.

Gillespie, C. S. (2014b). The poweRlaw Package: A General Overview.

Gini, C. (1921). Measurement of Inequality of Incomes. The Economic Journal,
31(121):124--126.

Hubert, M. and Vandervieren, E. (2008). An Adjusted Boxplot for Skewed Distribu-
tions. Computational Statistics & Data Analysis, 52(12):5186--5201.

Hunsen, C., Zhang, B., Siegmund, J., Kästner, C., Leßenich, O., Becker, M., and Apel,
S. (2015). Preprocessor-Based Variability in Open-Source and Industrial Software
Systems: An Empirical Study. Empirical Software Engineering, pages 1–34. To
appear.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. IEEE
Std 610.12-1990, pages 1--84.

Jbara, A. and Feitelson, D. (2013). Characterization and assessment of the linux con-
figuration complexity. In International Working Conference on Source Code Analysis
and Manipulation, pages 11–20. IEEE.

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A. (1990). Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical report.

62 Bibliography

Kästner, C., Apel, S., and Kuhlemann, M. (2008). Granularity in Software Product
Lines. In Proceedings of the International Conference on Software Engineering, pages
311--320. ACM.

Kästner, C., Apel, S., and Kuhlemann, M. (2009). A Model of Refactoring Physically
and Virtually Separated Features. In Proceedings of the International Conference on
Generative Programming and Component Engineering, pages 157--166. ACM.

Kästner, C., Apel, S., and Ostermann, K. (2011). The Road to Feature Modular-
ity? In Proceedings of the International Workshop on Feature-Oriented Software
Development, pages 1--8. ACM.

Kenner, A., Kästner, C., Haase, S., and Leich, T. (2010). TypeChef: Toward Type
Checking #Ifdef Variability in C. In Proceedings of the International Workshop on
Feature-Oriented Software Development, pages 25--32. ACM.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., and
Irwin, J. (1997). Aspect-Oriented Programming. In Proceedings of the European
Conference on Object-Oriented Programming, pages 220–242. Springer.

Kitchenham, B. and Charters, S. (2007). Guidelines for performing Systematic Liter-
ature Reviews in Software Engineering. Technical report.

Krone, M.; Snelting, G. (1994). On the Inference of Configuration Structures from
Source Code. In Proceedings of the International Conference on Software Engineer-
ing, pages 49--57. IEEE.

Lanza, M. and Marinescu, R. (2010). Object-Oriented Metrics in Practice: Using Soft-
ware Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented
Systems. Springer Publishing Company, Incorporated, 1st edition.

Liebig, J., Apel, S., Lengauer, C., Kästner, C., and Schulze, M. (2010). An Analysis of
the Variability in Forty Preprocessor-Based Software Product Lines. In Proceedings
of the International Conference on Software Engineering, pages 105--114. ACM.

Liebig, J., Kästner, C., and Apel, S. (2011). Analyzing the Discipline of Preprocessor
Annotations in 30 Million Lines of C Code. In Proceedings of the International
Conference on Aspect-Oriented Software Development, pages 191--202. ACM.

Louridas, P., Spinellis, D., and Vlachos, V. (2008). Power Laws in Software. ACM
Transactions on Software Engineering and Methodology, 18:1--26.

Bibliography 63

Medeiros, F., Ribeiro, M., Gheyi, R., and Fonseca, B. (2014). A catalogue of Refactor-
ings to Remove Incomplete Annotations. Journal of Universal Computer Science,
20:746--771.

Newman, M. (2005). Power Laws, Pareto Distributions and Zipf’s Law. Contemporary
Physics, 46:323–351.

Oliveira, P., Lima, F., Valente, M. T., and Alexander, S. (2014a). RTTOOL: A Tool for
Extracting Relative Thresholds for Source Code Metrics. In Proceedings of the In-
ternational Conference on Software Maintenance and Evolution (Tool Demo Track),
pages 1--4.

Oliveira, P., Valente, M., and Paim Lima, F. (2014b). Extracting Relative Thresholds
for Source Code Metrics. In Proceedings of the International Conference on Software
Maintenance, Reengineering and Reverse Engineering, pages 254–263. IEEE.

Overbey, J. L., Behrang, F., and Hafiz, M. (2014). A Foundation for Refactoring C with
Macros. In Proceedings of the International Symposium on Foundations of Software
Engineering, pages 75--85. ACM.

Padioleau, Y. (2009). Parsing C/C++ Code Without Pre-processing. In Proceedings of
the International Conference on Compiler Construction, pages 109--125. Springer-
Verlag.

Passos, L., Guo, J., Teixeira, L., Czarnecki, K., Wasowski, A., and Borba, P. (2013).
Coevolution of Variability Models and Related Artifacts: A Case Study from the
Linux Kernel. In Proceedings of the International Software Product Line Conference,
pages 91--100. ACM.

Passos, L., Padilla, J., Berger, T., Apel, S., Czarnecki, K., and Valente, M. T. (2015).
Feature Scattering in the Large: A Longitudinal Study of Linux Kernel Device
Drivers. In Proceedings of the International Conference on Modularity, pages 1--
12. ACM.

Pearse, T. and Oman, P. (1997). Experiences Developing and Maintaining Software in
a Multi-platform Environment. In Proceedings of the International Conference on
Software Maintenance, pages 270--277. IEEE.

Queiroz, R., Passos, L., Valente, M. T., Apel, S., and Czarnecki, K. (2014). Does
Feature Scattering Follow Power-Law Distributions? An Investigation of Five Pre-
Processor-Based Systems. In Proceedings of the International Workshop on Feature-
Oriented Software Development (FOSD), pages 23--29. ACM.

64 Bibliography

Queiroz, R., Passos, L., Valente, M. T., Hunsen, C., Apel, S., and Czarnecki, K. (2015).
The Shape of Feature Code: An Analysis of Twenty C-Preprocessor-Based Systems.
To appear.

Saebjoernsen, A., Jiang, L., Quinlan, D., and Su, Z. (2009). Static Validation of C
Preprocessor Macros. In Proceedings of the International Conference on Automated
Software Engineering, pages 149--160. IEEE Computer Society.

Serebrenik, A. and van den Brand, M. (2010). Theil Index for Aggregation of Soft-
ware Metrics Values. In Proceedings of the International Conference on Software
Maintenance, pages 1–9. IEEE.

Smaragdakis, Y. and Batory, D. (2002). Mixin Layers: An Object-oriented Implemen-
tation Technique for Refinements and Collaboration-based Designs. ACM Trans.
Softw. Eng. Methodol., 11(2):215--255.

Souza, L. and Maia, M. (2013). Do software Categories Impact Coupling Metrics?
In Proceedings of the Working Conference on Mining Software Repositories, pages
217--220. IEEE.

Spencer, H. and Collyer, G. (1992). #ifdef Considered Harmful, or Portability Expe-
rience with C News. In Proceedings of the USENIX Summer Technical Conference,
pages 185--197. USENIX Association.

Sullivan, K., Griswold, W. G., Song, Y., Cai, Y., Shonle, M., Tewari, N., and Rajan,
H. (2005). Information Hiding Interfaces for Aspect-Oriented Design. In Proceedings
of the International Symposium on Foundations of Software Engineering, pages 166-
-175. ACM.

Taube-Schock, C., Walker, R. J., and Witten, I. H. (2011). Can We Avoid High Cou-
pling? In Proceedings of the European Conference on Object-Oriented Programming,
pages 204–228. Springer.

Valente, M. T., Borges, V., and Passos, L. (2012). A Semi-automatic Approach for
Extracting Software Product Lines. IEEE Transactions on Software Engineering,
38(4):737--754.

Vasa, R., Lumpe, M., Branchand, P., and Nierstrasz, O. (2009). Comparative Analysis
of Evolving Software Systems Using the Gini Coefficient. In Proceedings of the
International Conference on Software Maintenance, pages 179–188. IEEE.

Bibliography 65

Vasilescu, B., Serebrenik, A., and van den Brand, M. (2011). You Can’t Control the
Unfamiliar: A Study on the Relations Between Aggregation Techniques for Software
Metrics. In Proceedings of the International Conference on Software Maintenance,
pages 313--322. IEEE.

Wheeldon, R. and Counsell, S. (2003). Power Law Distributions in Class Relationships.
In Proceedings of the International Working Conference on Source Code Analysis and
Manipulation, pages 45--54. IEEE.

Zave, P. (2003). An experiment in feature engineering. In Programming Methodology,
pages 353–377. Springer New York.

Zhang, F., Mockus, A., Zou, Y., Khomh, F., and Hassan, A. E. (2013). How does
Context affect the Distribution of Software Maintainability Metrics? In Proceedings
of the International Conference on Software Maintainability, pages 1–10. IEEE.

Appendix A

Search Strings and Filters

In this Appendix, we present the search strings used to select the papers revised in
Chapter 3. The strings are adapted to suit specific requirements or limitations of the
different libraries. Additional filtering options were used to limit the search by our
inclusion criteria.

A.1 ACM Digital Library

The ACM Digital Library is a full-text collection of all articles published by ACM
(Association for Computing Machinery) in its articles, magazines and conference
proceedings.

Search String : (Title: "c preprocessor" OR Title: "c pre processor" OR Title: "c++
preprocessor" OR Title: "c++ pre processor" OR Title: "preprocessor for c" OR
Title: "pre-processor for c" OR (Title: "cpp" AND Title:"preprocessor") OR (Title:
"cpp" AND Title:"pre processor") OR Title: "ifdef" OR Abstract: "c preprocessor"
OR Abstract: "c pre processor" OR Abstract: "c++ preprocessor" OR Abstract:
"c++ pre processor" OR Abstract: "preprocessor for c" OR Abstract: "pre-processor
for c" OR (Abstract: "cpp" AND Abstract:"preprocessor") OR (Abstract: "cpp"
AND Abstract:"pre processor") OR Abstract: "ifdef") AND (PublishedAs:journal OR
PublishedAs:proceeding).

URL: http://dl.acm.org/

67

http://dl.acm.org/

68 Appendix A. Search Strings and Filters

A.2 IEEEXplore

IEEEXplore is a research database that provides full-text for articles and papers
on computer science, electrical engineering and electronics. The database mainly
covers material from the Institute of Electrical and Electronics Engineers (IEEE)
and the Institution of Engineering and Technology. Since the web tool limits the
size of the search string, we performed two searches and merged the results. String
A was performed within Document Titles, and String B was performed within Abstracts.

Search String A: (""Document Title"": ""c preprocessor"" OR ""c pre processor""
OR ""c++ preprocessor"" OR ""c++ pre processor"" OR ""preprocessor for c""
OR ""pre processor for c"" OR ""ifdef"") OR (""Document Title"": ""cpp"" AND
""preprocessor"") OR (""Document Title"": ""cpp"" AND ""pre processor"").

Search String B : (""Abstract"": ""c preprocessor"" OR ""c pre processor"" OR
""c++ preprocessor"" OR ""c++ pre processor"" OR ""preprocessor for c"" OR ""pre
processor for c"" OR ""ifdef"") OR (""Abstract"": ""cpp"" AND ""preprocessor"")
OR (""Abstract"": ""cpp"" AND ""pre processor"").

Filtering : Limited to publication type (Conference publications, Journals & Maga-
zines).

URL: http://ieeexplore.ieee.org/

A.3 ScienceDirect

ScienceDirect is a platform operated by the publisher Elsevier, and provides access to
academic journals and e-books full-text.

Search String : TITLE("c preprocessor" OR "c pre processor" OR "c++ preprocessor"
OR "c++ pre processor" OR "preprocessor for c" OR "pre processor for c" OR
"ifdef" OR ("cpp" AND "preprocessor") OR ("cpp" AND "pre processor")) OR
ABSTRACT("c preprocessor" OR "c pre processor" OR "c++ preprocessor" OR
"c++ pre processor" OR "preprocessor for c" OR "pre processor for c" OR "ifdef"
OR ("cpp" AND "preprocessor") OR ("cpp" AND "pre processor")).

http://ieeexplore.ieee.org/

A.4. Ei Compendex and Inspec 69

Filtering : Limited to publication type (Journal).

URL: http://www.sciencedirect.com/

A.4 Ei Compendex and Inspec

Ei Compendex is an engineering bibliographic database that indexes scientific
literature pertaining to engineering materials. The name “Compendex” stands for
COMPuterized ENgineering inDEX. Inspec is an indexing database of scientific and
technical literature, published by the Institution of Engineering and Technology
(IET), and formerly by the Institution of Electrical Engineers (IEE). The search was
performed using Engineering Village web-based discovery platform, which searches
both libraries at the same time.

Search String : (("c preprocessor" OR "c pre processor" OR "c++ preprocessor"
OR "c++ pre processor" OR "preprocessor for c" OR "pre processor for c" OR
"ifdef" OR ("cpp" AND "preprocessor") OR ("cpp" AND "pre processor"))
WN TI) OR (("c preprocessor" OR "c pre processor" OR "c++ preprocessor"
OR "c++ pre processor" OR "preprocessor for c" OR "pre processor for c" OR
"ifdef" OR ("cpp" AND "preprocessor") OR ("cpp" AND "pre processor")) WN AB).

Filtering : Limited to publication type (conference article, journal article), and
language (english).

URL: www.engineeringvillage.com

A.5 SpringerLink

SpringerLink is an online collection of peer-reviewed journals and book series published
by Springer, covering a variety of topics in the sciences, social sciences, and humanities.

Search String : "c preprocessor" OR "c pre processor" OR "c++ preprocessor" OR
"c++ pre processor" OR "preprocessor for c" OR "pre processor for c" OR "ifdef"
OR("cpp" AND "preprocessor") OR ("cpp" AND "pre processor").

http://www.sciencedirect.com/
www.engineeringvillage.com

70 Appendix A. Search Strings and Filters

Filtering : Limited to publication type (article), and language (english).

URL: http://link.springer.com/)

A.6 Scopus

Scopus is a bibliographic database containing abstracts and citations for academic
journal articles and is owned by Elsevier.

Search String : TITLE-ABS("c preprocessor" OR "c pre processor" OR "c++
preprocessor" OR "c++ pre processor" OR "preprocessor for c" OR "pre processor
for c" OR "ifdef") OR TITLE-ABS("cpp" AND "preprocessor") OR TITLE-ABS(
"cpp" AND "pre processor").

Filtering : Limited to publication type (Conference Paper or Article).

URL: http://www.scopus.com/

http://link.springer.com/
http://www.scopus.com/

Appendix B

Selected Studies

In this Appendix, we present the full list of selected papers from the Systematic Lit-
erature Review detailed in Chapter 3. Table B.1 lists the year of publication, the title
of the article and an acronym for the name of the Journal or Conference. Table B.2
correlates the name of the Journal or Conference with its respective acronym.

Table B.1: Full list of selected studies

ID Year Title Journal/Conference

S1 1990 The C preprocessor and Jensenś device ACM-SE
S2 1992 #ifdef Considered Harmful, or Portability ExperienceWith

C News
USENIX STC

S3 1994 SPP-low tech, practical, UNIX software portability USENIX UADS
S4 1994 Understanding code containing preprocessor constructs IWCPC
S5 1995 Design and implementation aspects of an experimental

C++ programming environment
SPE

S6 1996 Preprocessors from an abstract point of view WCRE
S7 1997 A rigorous approach to support the maintenance of large

portable software
EUROMICRO

S8 2000 Framework for preprocessor-aware C source code analyses SPE
S9 2000 Object-oriented preprocessor fit for C++ IEE P-S
S10 2001 Folding: an approach to enable program understanding of

preprocessed languages
WCRE

S11 2002 An empirical analysis of c preprocessor use TSE
S12 2004 Columbus schema for C/C++ preprocessing CSMR
S13 2005 ASTEC: a new approach to refactoring C ESEC/FSE
S14 2006 A simple generic library for C CC
S15 2007 C-CLR: A Tool for Navigating Highly Configurable System

Software
ACP4IS

71

72 Appendix B. Selected Studies

ID Year Title Journal/Conference

S16 2007 How We Manage Portability and Configuration with the C
Preprocessor

ICSM

S17 2008 A tale of four kernels ICSE
S18 2008 Aspect mining in the presence of the C preprocessor LATE
S19 2008 TBCppA: A Tracer Approach for Automatic Accurate

Analysis of C Preprocessor""s Behaviors
SCAM

S20 2009 A model of refactoring physically and virtually separated
features

GPCE

S21 2009 Avoiding Some Common Preprocessing Pitfalls with Fea-
ture Queries

APSEC

S22 2009 C preprocessor use in numerical tools: an empirical analysis ACM-SE
S23 2009 How to compare program comprehension in FOSD empiri-

cally - An experience report
FOSD

S24 2009 Increasing usability of preprocessing for feature manage-
ment in product lines with queries

ICSE

S25 2009 Parsing c/c++ code without pre-processing CC
S26 2009 Refactoring of C/C++ preprocessor constructs at the

model level
ICSOFT

S27 2009 Static Validation of C Preprocessor Macros ASE
S28 2009 Virtual separation of concerns - A second chance for pre-

processors
JOT

S29 2010 An analysis of the variability in forty preprocessor-based
software product lines

ICSE

S30 2010 Efficient extraction and analysis of preprocessor-based vari-
ability

GPCE

S31 2010 Leviathan: SPL support on filesystem level LNCS
S32 2010 TypeChef: toward type checking #ifdef variability in C FOSD
S33 2010 Visual Support for Understanding Product Lines ICPC
S34 2011 #ifdef confirmed harmful: Promoting understandable soft-

ware variation
VL/HCC

S35 2011 Analyzing the discipline of preprocessor annotations in 30
million lines of C code

AOSD

S36 2011 Analyzing the Effect of Preprocessor Annotations on Code
Clones

SCAM

S37 2011 FeatureCommander: colorful #ifdef world SPLC
S38 2011 Partial preprocessing C code for variability analysis VaMoS
S39 2012 A Variability-aware Module System OOPSLA
S40 2012 Characterization of the Linux configuration system ICPC
S41 2012 Marco: safe, expressive macros for any language ECOOP
S42 2012 Static flow-sensitive & context-sensitive information-flow

analysis for software product lines: position paper
PLAS

S43 2012 The demacrofier ICSM
S44 2013 Characterization and assessment of the linux configuration

complexity
SCAM

S45 2013 Do background colors improve program comprehension in
the #ifdef hell?

ESE

73

ID Year Title Journal/Conference

S46 2013 Does the discipline of preprocessor annotations matter?: a
controlled experiment

GPCE

S47 2013 Embracing the C preprocessor during refactoring JSEP
S48 2013 Investigating preprocessor-based syntax errors GPCE
S49 2014 A catalogue of refactorings to remove incomplete annota-

tions
JUCS

S50 2014 A Foundation for Refactoring C with Macros FSE
S51 2014 An approach to safely evolve program families in C SPLASH
S52 2014 Climate models: challenges for Fortran development tools SEHPCCSE
S53 2014 Does feature scattering follow power-law distributions?: an

investigation of five pre-processor-based systems
FOSD

S54 2014 Projectional editing of variational software GPCE
S55 2014 Service layer for IDE integration of C/C++ preprocessor

related analysis
ICCSA

74 Appendix B. Selected Studies

Table B.2: Conference and Journal Acronyms

Acronym Journal/Conference Name

ACM-SE ACM Southeast Regional Conference
ACP4IS Workshop on Aspects, Components, and Patterns for Infrastruc-

ture Software
AOSD International Conference on Aspect-Oriented Software Develop-

ment
APSEC Asia-Pacific Software Engineering Conference
ASE IEEE/ACM International Conference on Automated Software En-

gineering
CC International Conference on Compiler Construction
CSMR European Conference on Software Maintenance and Reengineering
ECOOP European Conference on Object-Oriented Programming
ESE Empirical Software Engineering
ESEC/FSE European Software Engineering Conference/ACM SIGSOFT

Symposium on the Foundations of Software Engineering
EUROMICRO Euromicro Conference on Software Maintenance and Reengineer-

ing
FOSD International Workshop on Feature-Oriented Software Develop-

ment
FSE ACM SIGSOFT International Symposium on the Foundations of

Software Engineering
GPCE International Conference on Generative Programming and Com-

ponent Engineering
ICCSA International Conference on Computational Science and Its Ap-

plications
ICPC International Conference on Program Comprehension
ICSE International Conference on Software Engineering
ICSM International Conference on Software Maintenance
ICSR International Conference on Software Reuse
ICSOFT International Conference on Software and Data Technologies
IEE P-S IEE Proceedings - Software
IWCPC International Workshop on Program Comprehension
JOT Journal of Object Technology
JSEP Journal of software: Evolution and Process
JUCS Journal of Universal Computer Science
LATE AOSD Workshop on Linking Aspect Technology and Evolution
OOPSLA International Conference on Object-Oriented Programming, Sys-

tems, Languages & Applications
PLAS Workshop on Programming Languages and Analysis for Security
SCAM International Working Conference on Source Code Analysis and

Manipulation
SEHPCCSE International Workshop on Software Engineering for High Perfor-

mance Computing in Computational Science and Engineering
SPE Software - Practice and Experience
SPLASH ACM SIGPLAN Conference on Systems, Programming, and Ap-

plications: Software for Humanity
SPLC International Software Product Line Conference
TSE IEEE Transactions on Software Engineering
USENIX STC USENIX Summer Technical Conference
USENIX UADS USENIX UNIX Applications Development Symposium
VaMoS Workshop on Variability Modeling of Software-Intensive Systems
VL/HCC IEEE Symposium on Visual Languages and Human-Centric Com-

puting
WCRE Working Conference on Reverse Engineering

Appendix C

Ranking

In this Appendix, we present the full ranking extracted from the studies selected for
the Systematic Literature Review detailed in Chapter 3. Table C.1 lists the Ranking
of Assumptions and Table C.2 lists the Ranking of Findings.

Table C.1: Ranking of Assumptions. The column Pos indicates the position in our
ranking; the column Degree indicates the number of studies reporting the assumption;
and the column Studies lists the related studies. The details of each study can be found
in Table B.1

Pos ID Assumption Degree Studies

1 A001 CPP is heavily used to implement variability 27 S06, S07, S09, S15, S17, S18,
S21, S23, S24, S25, S28, S29,
S30, S32, S33, S34, S38, S39,
S41, S42, S45, S46, S47, S48,
S49, S52, S55

2 A002 CPP has a negative effect on code readability
and comprehension

24 S01, S02, S06, S07, S10, S11,
S12, S15, S21, S22, S23, S27,
S28, S33, S34, S36, S37, S38,
S44, S45, S46, S47, S48, S55

3 A003 CPP impairs maintainability of code 17 S02, S06, S07, S08, S11, S12,
S17, S21, S23, S27, S28, S29,
S34, S36, S37, S49, S54

4 A004 CPP is error-prone 13 S09, S13, S14, S21, S28, S29,
S36, S38, S41, S43, S48, S49,
S55

5 A005 CPP is often used to achieve portability 11 S02, S03, S08, S16, S17, S18,
S22, S27, S41, S51, S52

6 A006 CPP is simple to use 9 S23, S24, S28, S32, S34, S38,
S45, S46, S48

7 A007 ifdef directives are typically scattered across
the code base

8 S06, S10, S18, S20, S29, S39,
S45, S53

8 A008 CPP directives makes it hard to refactor C
code

6 S13, S19, S26, S29, S47, S50

75

76 Appendix C. Ranking

Pos ID Assumption Degree Studies

9 A009 CPP complicates the analysis of source code 5 S13, S18, S19, S32,
S38

9 A010 CPP is a constant problem to tool builders 5 S08, S11, S43, S52,
S55

9 A011 CPP provides great flexibility 5 S10, S19, S34, S45,
S47

9 A012 In practice most annotations are already in a disciplined
form.

5 S28, S20, S32, S46,
S49

10 A013 CPP annotations have a negative impact on code quality 4 S28, S36, S49, S55
10 A014 CPP can reduce code reuse 4 S15, S21, S24, S28
10 A015 CPP increases expressiveness of C 4 S08, S10, S28, S45
10 A016 CPP introduces problems to reverse engineering 4 S10, S12, S19, S55
10 A017 CPP is often used to improve performance 4 S02, S18, S22, S31
10 A018 Extensive use of preprocessors can lead to serious main-

tenance problems
4 S06, S12, S29, S55

10 A019 Fine-grained extensions complicates the use of CPP 4 S18, S21, S45, S46
10 A020 Heavy usage of prepprocessor directives impairs pro-

gram comprehension
4 S02, S24, S29, S44

10 A021 High degree of feature scattering impairs comprehension 4 S21, S29, S30, S45
10 A022 On average, almost 10% of source code contains

preprocessor directives.
4 S12, S18, S19, S55

10 A023 Transition from preprocessors to other languages and
tools is hard or impossible

4 S02, S29, S33, S45

11 A024 CPP is useful for development 3 S08, S11, S55
11 A025 High degree of tangling impairs comprehension 3 S21, S24, S29
11 A026 It is possible to refactor conditional compilation into

aspects
3 S18, S33, S49

11 A027 There is a lack of adequate tools to support CPP usage 3 S07, S26, S47
11 A028 Undisciplined annotations makes it hard to read and

analyze code
3 S35, 46, 49

12 A029 Academics recommend to limit or entirely abandon the
use of preprocessors and instead implement SPLs with
modular implementation mechanisms

2 S28, S33

12 A030 Annotations increase productivity 2 S02, S20
12 A031 CPP can create portability problems 2 S11, S17
12 A032 CPP conditional compilation makes analysis tasks (e.g.,

type checking) difficult
2 S32, S52

12 A033 CPP errors are hard to detect 2 S02, S27
12 A034 CPP facilities are a constant problem to programmer 2 S08, S11
12 A035 CPP increases maintenance costs 2 S34, S45
12 A036 CPP leads to code that is difficult to test. 2 S21, S24
12 A037 CPP leads to dead code 2 S06, S30
12 A038 CPP usage leads to tangled code 2 S18, S20
12 A039 Developers prefer disciplined annotations 2 S20,S35
12 A040 Fine-grained usage of CPP hinders tool support for code

analysis
2 S32, S46

12 A041 Incomplete annotations aggravates CPP problems. 2 S46, S49
12 A042 Nested #ifdefs impairs comprehension 2 S29, S45
12 A043 Preprocessor directives are easy to use. 2 S28, S45
12 A044 Programs containing CPP directives are difficult to

parse
2 S19, S52

12 A045 Scattered features can cause ripple effects 2 S21, S53

77

Pos ID Assumption Degree Studies

12 A046 Scattered features cause difficulties in maintenance 2 S44, S53
12 A047 Scattering within certain limits is not necessarily bad 2 S24, S53
12 A048 Some developers follow coding conventions or guidelines for

CPP usage
2 S25, S46

12 A049 The issues relating to the CPP arise with virtually all C
programs

2 S06, S08

12 A050 The wide use of ifdefs is “harmful” and should be avoided 2 S02, S12
12 A051 Tool support is needed to cope with #ifef 2 S06, S31
12 A052 Undisciplined annotations reduce code replication 2 S46, S49
13 A053 #ifdef doesn’t hide anything, and the interface it creates is

arbitrarily complex and almost never documented.
1 S02

13 A054 #ifdef legitimate uses are fairly narrow, and it gets abused
almost as badly as the notorious goto statement.

1 S02

13 A055 #ifdef nesting depth with level 5 is not rare 1 S02
13 A056 A high number of fine-grained extensions incur the necessity

of modularization techniques
1 S29

13 A057 A legitimate use of #ifdef is in protecting header files
against multiple inclusion.

1 S02

13 A058 Accommodating other features into product variants re-
quires fine granular code changes in many components, at
many variation points.

1 S21

13 A059 Arbitrary usage of CPP leads to maintainability problems 1 S46
13 A060 As software is ported to more systems, #ifdefs proliferate,

nest, and interlock
1 S02

13 A061 C preprocessor is almost never separated from C code 1 S08
13 A062 C preprocessor makes variability implementation difficult 1 S48
13 A063 Code movement refactorings are sensitive to conditional di-

rectives
1 S50

13 A064 Conditional compilation is also used for include guards 1 S38
13 A065 Conditional compilation is popular avoiding accidental re-

definition of a preprocessor flag
1 S18

13 A066 Conditional compilation takes up half of the preprocessor
directives

1 S18

13 A067 Conditionally compiled configurations results in non-
explicit representation of configuration compositions.

1 S15

13 A068 Consistent and thoughtful scoping of macro identifiers can
greatly ease program comprehension efforts, and reduce
maintenance cost.

1 S16

13 A069 CPP can create reliability problems 1 S17
13 A070 CPP hinders structural information from C++ programs. 1 S05
13 A071 CPP is a potential source of suboptimal coding practices. 1 S18
13 A072 CPP is effective 1 S48
13 A073 CPP is infamous for its obtrusive syntax 1 S34
13 A074 CPP is powerful and unstructured 1 S019
13 A075 CPP leads to inconsistencies with respect to the intended

(modeled) and the implemented variability of the software.
1 S30

13 A076 CPP provides an intuitive mechanism to implement vari-
ability at source code.

1 S30

13 A077 Developers use incomplete annotations to select alternative
statements

1 S49

13 A078 Disciplined annotations alleviate the drawbacks of annota-
tions on source-code quality.

1 S36

78 Appendix C. Ranking

Pos ID Assumption Degree Studies

13 A079 Disciplined annotations are sufficient for most problems in soft-
ware development

1 S35

13 A080 Disciplined annotations limit expressiveness 1 S36
13 A081 Disciplined annotations may require more effort from develop-

ers.
1 S28

13 A082 Disciplined use of the preprocessor can improve performance. 1 S11
13 A083 Disciplined use of the preprocessor can improve portability. 1 S11
13 A084 Disciplined use of the preprocessor can improve readability. 1 S11
13 A085 Features that have no relationship in the feature model often

interact with each other in the implementation.
1 S30

13 A086 For a virtually separated implementation we could often find
an equivalent physically separated one and vice versa

1 S20

13 A087 High numbers of nested #ifdefs are not manageable and in-
crease the potential for errors

1 S29

13 A088 if #ifdef is needed at all, it is best confined to declarations to
try to preserve some explicit notion of interfaces.

1 S02

13 A089 if one must use #ifdef, one should test for specific features or
characteristics, not for specific machines.

1 S02

13 A090 If the code contains macro occurrences or is enclosed in condi-
tional directives, a local knowledge is not sufficient.

1 S06

13 A091 In general it is always possible to expand undisciplined anno-
tations to disciplined ones

1 S32

13 A092 In nested #ifdef code, maintenance is reduced to hit-or- miss
patching

1 S02

13 A093 In nested #ifdef code, not many alternate code paths is tested 1 S02
13 A094 In nested #ifdef code, not many alternate code paths makes

sense
1 S02

13 A095 Incomplete annotations have a negative impact on code quality. 1 S49
13 A096 Industrial practice revealed serious problems with preprocessor

use
1 S24

13 A097 It is difficult to trace feature-related code. 1 S21
13 A098 It’s often possible to avoid system-dependent area well enough

that the same code will run on all systems
1 S02

13 A099 Limitations in existing programming languages can lead to
scattered features

1 S53

13 A100 Macros pervade the code with 0.28 uses per line 1 S19
13 A101 Modularizing the conditional code will improve program un-

derstanding.
1 S18

13 A102 Most of the problems are not specific to CPP and occur with
other preprocessors as well

1 S06

13 A103 Nested #ifdef code have more alternate paths to consider 1 S02
13 A104 Occurrences of #include inside #ifdef should always be viewed

with suspicion.
1 S02

13 A105 Physical separation of features is better suited for long term
development and maintenance.

1 S20

13 A106 Portability is generally the result of advance planning rather
than trench warfare involving #ifdef.

1 S02

13 A107 Portability with #ifdefs requires considerable effort 1 S03
13 A108 Preprocessors are commonly used in the domain of embedded

and operating systems.
1 S31

13 A109 Preprocessors are frequently criticized for their undisciplined
usage

1 S20

79

Pos ID Assumption Degree Studies

13 A110 Preprocessors neglect separation of concerns 1 S28
13 A111 Problems emerge when each feature maps to many variation

points in many base program components (scattering).
1 S21

13 A112 Problems emerge when the number of inter-dependent features
grows (tangling).

1 S21

13 A113 Programmers can visually rely on conventions to easily recog-
nize CPP usages

1 S25

13 A114 Programmers use #ifdef directives when programming security
primitives in languages such as C.

1 S42

13 A115 Programming guidelines recommend moderation in the use of
preprocessor constructs

1 S17

13 A116 Simple use of #ifdef works acceptably well when differences
are localized and only two versions are present

1 S02

13 A117 Some coding guidelines suggest disciplined over undisciplined
annotations

1 S35

13 A118 The best method of managing system-specific variants is to
define a portable interface to suitably-chosen primitives, and
then implement different variants of the primitives for different
system

1 S02

13 A119 The effort required to construct “portable” software can dis-
courage authors from distributing their software

1 S03

13 A120 The impulse to use #ifdefs to implement portability is usually
a mistake

1 S02

13 A121 The intrinsic problem of CPP is the differences between the
code the programmer sees and what the compiler compiles

1 S08

13 A122 The majority of errors occur in incomplete annotations. 1 S49
13 A123 The pitfalls of CPP are now widely known and thus program-

mers are more conservative in their use of CPP.
1 S25

13 A124 The portability scheme adopted can make it more difficult to
port it to other architecture

1 S03

13 A125 Time-pressure can lead to scattered features 1 S53
13 A126 Tools that provides views on variants, completely hiding vari-

ability from developers can increase 40% increase in produc-
tivity.

1 S33

13 A127 Undisciplined annotations are frequently used 1 S46
13 A128 Undisciplined annotations contribute to unstructured, tangled

source code
1 S36

13 A129 Usually, a large software system provides more features than a
small software system.

1 S29

13 A130 Virtual separation of feature approaches are common in indus-
try

1 S20

13 A131 Without incomplete annotations, developers can use more
tools to analyze the code and find bugs

1 S49

80 Appendix C. Ranking

Table C.2: Ranking of Findings. The column Pos indicates the position in our ranking;
the column Degree indicates the number of studies reporting the finding; and the
column Studies lists the related studies. The details of each study can be found in
Table B.1

Pos ID Finding Degree Studies

1 F01 CPP is heavily used to implement variability 6 S11, S22, S29,
S38, S44, S52

2 F02 Alternative mechanisms to CPP such as aspects are hard
to envision

3 S18, S29, S44

2 F03 CPP introduces errors to code 3 S13, S48, S49
2 F04 Most of the #ifdefs are disciplined. 3 S25, S35, S52
3 F05 CPP annotations complicate program comprehension 2 S44, S46
3 F06 Feature scattering have characteristics of heavy-tailed dis-

tributions
2 S44, S53

3 F07 High Feature scattering is concentrated in specific features 2 S44, S53
3 F08 Inconsistencies between feature models and feature imple-

mentations in CPP are common
2 S30, S44

3 F09 Nested ifdefs are used moderately 2 S29, S44
3 F10 Portability accounts for a great part of #ifdef usage 2 S11, S32
3 F11 The benefits of disciplined annotations outweigh the draw-

backs of code cloning
2 S35, S36

3 F12 Undisciplined annotations are not more problematic than
undisciplined annotations

2 S46, S48

4 F13 #undef is rarely used 1 S11
4 F14 A representation of variation based on background coloring

can improve understandability over software implemented
with the CPP

1 S34

4 F15 A tool for understanding CPP cannot focus on just a subset
of directives.

1 S11

4 F16 Alternative macro expansions occur in all analyzed project,
but are not very frequent.

1 S38

4 F17 Annotations are able to implement fine grained extensions. 1 S20
4 F18 Both virtual and physical separation of features can express

the same programs.
1 S20

4 F19 Climate simulation code with fewer lines of code also con-
tain fewer preprocessing directives

1 S52

4 F20 Configuration options typically provided by CPP directives
are most commonly used to: (1) redefine macros for alter-
native configurations, (2) compose multiple configuration
options.

1 S15

81

Pos ID Finding Degree Studies

4 F21 CPP behavior looks simple, but not in practice. 1 S19
4 F22 CPP is used in exceptionally broad and diverse ways. 1 S11
4 F23 CPP syntax errors are not common in family releases 1 S48
4 F24 CPP usage complicates the development of C programming

support tools.
1 S11

4 F25 CPP-aware program analyses will be applicable to Fortran
programs as well.

1 S52

4 F26 Developers are aware of the problems of undisciplined an-
notations and deliberately limit their use.

1 S35

4 F27 Disciplined annotations bear the potential to improve the
situation for tool developers that aim at unprocessed code.

1 S35

4 F28 Disciplined annotations may lead to code clones 1 S36
4 F29 Feature scattering follow a power-law distribution 1 S53
4 F30 Feature-scattering thresholds based on central measures are

not reliable in practice.
1 S53

4 F31 Ifdefs expressions are usually simple and have only one con-
fig option

1 S44

4 F32 Ifdefs have a minor effect on code cloning 1 S36
4 F33 In the Linux kernel, the situation is not so bad and the code

remains largely comprehensible.
1 S44

4 F34 Incomplete annotations can cause memory leaks. 1 S49
4 F35 Many conditional compilation directives would be unneces-

sary if the CPP had a “define only if not already defined”
directive

1 S11

4 F36 Many conditional compilation directives would be unneces-
sary if the CPP had an #import facility that automatically
avoids multiple inclusions

1 S11

4 F37 More systematic SPL implementation techniques are fea-
sible and can improve code quality and reduce error-
proneness.

1 S29

4 F38 Most CPP usage follows fairly simple patterns. 1 S11
4 F39 Most extensions occur at a high level of granularity (such

as if- statements or for-loops) or are heterogeneous
1 S29

4 F40 Most files have few variations, some have an extremely large
number of variations.

1 S44

4 F41 Numerical tools often have a limited need to implement
performance optimization using expression macros.

1 S22

4 F42 Programmers use fine-grained extensions infrequently 1 S29
4 F43 Refactoring can introduce variable code that either do not

compile or have different behavior.
1 S50

4 F44 Simple extensions of concepts and tools can avoid many
pitfalls of preprocessor usage

1 S28

4 F45 Some organizations discourage the use of preprocessor. 1 S17

82 Appendix C. Ranking

Pos ID Finding Degree Studies

4 F46 The average (geometric) scattering degree of config options
is relatively high as well as the number of code variations
within a file.

1 S44

4 F47 The majority of syntax errors occur because of ill-formed
constructions (e.g., missing brackets).

1 S48

4 F48 There are many CPP constants that do not reflect real vari-
ability

1 S44

4 F49 There are no differences in program comprehension between
Java-CPP and Java-CIDE.

1 S23

4 F50 There is considerable variation in the distribution of direc-
tive types in numerical tools

1 S22

4 F51 There is no correlation between the file size and the time
developers need to fix the preprocessor-based syntax errors.

1 S48

4 F52 There is no correlation between the time to fix (CPP) syn-
tax errors and the number of developers that commit a file
with syntax error.

1 S48

4 F53 There is no difference in CPP usage between numerical tools
and general tools

1 S22

4 F54 There is no relationship between the number of features in
a software system and the complexity in terms of feature
constants.

1 S29

4 F55 Tools that analyze Fortran source code must be able to
handle embedded C preprocessor directives.

1 S52

4 F56 Undisciplined systems have more annotated code than dis-
ciplined systems.

1 S36

4 F57 Variability management with CPP does not cause excessive
code degradation

1 S44

4 F58 Variability of a software system increases with its size 1 S29

	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 An Overview of the Study
	1.3 Outline of the Dissertation
	1.4 Publications

	2 Background
	2.1 Software Product Lines
	2.1.1 Features
	2.1.2 Implementation Approaches

	2.2 C Preprocessor
	2.3 Software Metrics
	2.4 Power-law Distributions
	2.5 Final Remarks

	3 Findings and Assumptions on the Usage of ifdefs
	3.1 Study Design
	3.1.1 Search Strategy
	3.1.2 Study Selection
	3.1.3 Data Extraction
	3.1.4 Data Classification and Ranking

	3.2 Results
	3.2.1 Overview
	3.2.2 Best Ranked Assumptions
	3.2.3 Best Ranked Findings

	3.3 Final Remarks

	4 The Shape of Feature Code
	4.1 Methodology
	4.1.1 Selection of Subject Systems
	4.1.2 Data Collection and Metrics
	4.1.3 Statistical Analysis
	4.1.4 Threshold Extraction

	4.2 Results
	4.2.1 Scattering Degree
	4.2.2 Tangling Degree
	4.2.3 Nesting Depth

	4.3 Thresholds for Feature-Related Metrics
	4.3.1 Relative Thresholds
	4.3.2 Thresholds for Scattering Degree
	4.3.3 Thresholds for Tangling Degree
	4.3.4 Thresholds for Nesting Depth
	4.3.5 Discussion

	4.4 Threats to Validity
	4.5 Final Remarks

	5 Conclusion
	5.1 Overview
	5.2 Contributions
	5.3 Related Work
	5.3.1 Metrics for C-preprocessor Annotations
	5.3.2 Characterization of Software Metrics Distribution

	5.4 Future Work

	Bibliography
	A Search Strings and Filters
	A.1 ACM Digital Library
	A.2 IEEEXplore
	A.3 ScienceDirect
	A.4 Ei Compendex and Inspec
	A.5 SpringerLink
	A.6 Scopus

	B Selected Studies
	C Ranking

