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Resumo

O planejamento de tabelas esportivas é um tema que vem ganhando espaço na área de
pesquisa operacional. Métodos de buscas locais estão entre as técnicas mais eficazes
para a construção de tabelas de jogos. Estudos prévios apontam a existência de não-
conectividade nas estruturas de vizinhanças utilizadas na programação de torneios com
rodadas simples. Tal característica afeta o desempenho de buscas locais que fazem uso
dessas vizinhanças.

É sabido que grafos são importantes ferramentas matemáticas usadas na mode-
lagem problemas reais. Uma contribuição desta tese é justamente a modelagem das
estruturas de vizinhanças para o problema de programação de tabelas esportivas por
meio de coloração de arestas.

Esta tese apresenta evidências empíricas e teóricas que relacionam a conectivi-
dade de estruturas de vizinhanças com a técnica de embaralhamento perfeito de cartas.
Prova-se que, quando a permutação em um embaralhamento possui uma órbita per-
mutacional de tamanho (n − 2), uma determinada vizinhança analisada é desconexa,
assim as buscas locais baseadas em tal vizinhança não são capazes de obter tabelas de
jogos que não sejam isomórficas à tabela inicial. Um novo método construtivo baseado
na técnica de embaralhamento perfeito de cartas é apresentado. O método proposto é
usado na análise de conectividade de uma das vizinhança estudadas.

Por fim, uma nova estrutura de vizinhança para o problema de programação de
tabelas esportivas em torneios com rodadas é proposta. Essa estrutura de vizinhança
é descrita em termos de coloração de arestas e a sua corretude é provada. Mostramos
que a nova estrutura de vizinhança aumenta a conectividade do espaço de soluções.
O seu desempenho é avaliado usando o Problema de Torneio com Viagens com Está-
dios Predefinidos e o Weighted Carry-Over Effects Value Minimization Problem como
estudos de caso.

Palavras-chave: Teoria dos Grafos, Coloração de Arestas, Pesquisa Operacional em
Esportes, Programação de tabelas esportivas, Busca local, Estruturas de vizinhanças.
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Abstract

Sport scheduling is a trending research topic in operations research. Local search
heuristics are among the most effective methods to construct schedules. Prior studies
have noted the existance of non-connectivity in neighborhoods used in local search
heuristics for single round-robin tournament scheduling. This non-connectivity affects
the performance of local search heuristics.

It is well-known that graphs are useful tools for modeling relevant parts of reality.
A contribution from this thesis is the modeling of the existing neighborhood structures
in edge coloring terms.

This thesis presents empirical and theoretical evidences relating the non-
connectivity of the neighborhood structures with the perfect riffle shuffle permutations
of a deck of playing cards (faro shuffle). It is proved that, when the faro shuffle permu-
tation has an (n − 2)-cycle, the neighborhood is not connected and it does not allow
the search to escape from schedules isomorphic to the initial one.

A new constructive method based on the faro shuffle of playing cards (faro
method) is presented. The faro method is used in the analysis of neighborhood con-
nectivity of one of the existing neighborhood structures.

This thesis introduces a novel neighborhood structure for single round-robin sport
scheduling problems. The neighborhood structure is described in edge coloring terms
and its correctness is proven. We show that the new neighborhood structure increases
the connectivity of the solution space and evaluate its performance using the Traveling
Tournament Problem with Predefined Venues and the Weighted Carry-Over Effects
Value Minimization Problem as case studies.

Keywords: Graph Theory, Edge Coloring, Operations Research in Sports, Round-
robin tournament scheduling, Local Search, Neighborhood structures
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Chapter 1

Introduction

Sports competitions attract worldwide attention. The Rites of Men: Manhood, Politics,
and the Culture of Sport by [Burstyn, 1999] states: “The rituals of sport engage more
people in a shared experience than any other institution of cultural activity”. This
chapter begins with the motivation of this work. Next, we define some concepts in
graph theory and sport scheduling that will be used throughout the text. Finally, we
present the objectives of this work and the organization of the text.

1.1 Motivation

Several optimization techniques have been applied to solve problems arising from sports
scheduling. The difficulty of these problems leads to the use of a number of exact
and approximate approaches, including integer programming, constraint programming,
metaheuristics, and hybrid methods [Kendall et al., 2010].

Round-robin scheduling problems are very hard to solve even for small values of
n, therefore many heuristics have been developed for these kinds of problems. Local
search heuristics are among the most effective heuristic algorithms to solve round-robin
scheduling problems as in Ribeiro and Urrutia [2007], Anagnostopoulos et al. [2006]
and Di Gaspero and Schaerf [2007].

The performance of local search algorithms crucially depends on structural as-
pects of the space being searched. Studying the nature of this dependency can signif-
icantly improve our understanding of local search behavior and facilitate the further
improvement and successful application of local search methods.

Hoos and Stützle [2004] introduces various aspects of search space structure and
discuss their impact on local search performance. These include fundamental properties
of a given search space and neighborhood graph, such as size, connectivity, diameter

1



1. Introduction 2

and solution density, as well as global and local properties of the search landscapes
encountered by local search algorithms, such as the number and distribution of local
minima, fitness distance correlation, measures of ruggedness, and detailed information
on the plateau and basin structure of the given space. Some of these search space
features can be determined analytically, but most have to be measured empirically,
often involving rather complex search methods.

Jhonson and McGeoch [1997] exemplifies an analysis of search space features and
their impact on local search performance for the Traveling Salesman Problem (TSP).
Among simple local search algorithms for the TSP, the most famous are 2-Opt and
3-Opt. The authors describe what is known theoretically about these algorithms in
the worst and average case. They also present some experimental results that show
that the algorithms perform much better in practice than the theoretical bounds might
indicate, for a specific set of instances.

Han [2006] also considers the TSP as a case study in another analysis of local
search algorithms. This time, the authors investigate the behavior of the 2-Opt heuris-
tic. Empirical evidences show that when applying the 2-opt heuristic to the travelling
salesman problem, selecting the best improvement at each iteration gives worse results
on average than selecting the first improvement, if the initial solution is chosen at
random.

Di Gaspero and Schaerf [2007] presents an investigation of the properties of the
known neighborhood structures for the Traveling Tournament Problem (TTP). They
determined that the intersection between the two most used neighborhood structures
in the context of round-robin scheduling is not empty and proposed strategies to avoid
redundant moves in local search algorithms.

In a recent paper Costa et al. [2012] an Iterated Local Search (ILS) was proposed
for the Traveling Tournament Problem with Predefined Venues (TTPPV). During
the analysis of their computational results, it was noted that the used neighborhood
structures were not connected for some instance sizes, entrapping the local search
procedures in a small portion of the solution space. The motivation behind this thesis
started from the study about the issue of neighborhood non-connectivity noted in Costa
et al. [2012].

This thesis considers concepts of graph theory to formulate and solve problems
faced by tournament organizers. Its first contribution is the modeling of the existing
neighborhood structures in edge coloring terms. Traditional models for constructing
sports schedules are based on graphs. It is well-known that graphs are useful tools for
modeling relevant parts of reality. Therefore, the research area of this thesis will be
bounded by round-robin sport scheduling problems related to graph theory focused on
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edge coloring problems.
During the investigation of the neighborhood non-connectivity noted in Costa

et al. [2012], it was noted that part of this issue can be explained by a classical result
in graph theory, related to perfect one-factorizations of complete graphs. The research
was extended and an empirical study revealed a previously unknown relation between
the neighborhood non-connectivity and the perfect riffle shuffle permutation of a deck
of playing cards (faro shuffle).

This thesis contributes with a formal relation between the connectivity of the
solution space for the studied neighborhood structures and the faro shuffle of playing
cards. According to [Goossens and Spieksma, 2012b] the circle method is the most
used constructive method in the literature. Here, a new constructive method based on
the faro shuffle of playing cards (faro method) is presented and its equivalence with
the circle method is proved. The faro method is used in the analysis of neighborhood
connectivity of one of the existing neighborhood structures.

In this thesis, a novel neighborhood structure for round-robin scheduling prob-
lems to be used by local search procedures is proposed: the Teams and Rounds
Swap (TARS). Using two problems from the literature as case studies, it is shown that
the proposed neighborhood structure may circumvent the issue of non-connectivity in
the existing ones. Moreover, the use of TARS lead to good results for both case study
problems regardless the initial solution or the problem instance.

1.2 Elements of sport scheduling

A round-robin tournament is a competition involving n different teams indexed by
t ∈ T = {0, . . . , n− 1}, in which T is the set of teams. The games of the competition
must be scheduled in a number r of rounds in such a way that each team plays one
game at each round, and each team is required to play against all other teams exactly
m times. Since the number of teams participating in a tournament is usually even, we
assume that n is even.

Single Round-Robin (SRR) tournament is a competition in which all teams face
each other once, there are n/2 games in each round and each team plays exactly once in
each round. A common way to describe a solution of an SRR scheduling problem is by
using a timetable. Usually, a timetable is described by an opponent schedule combined
with a Home-away Pattern (HAP) set. An opponent schedule may be represented by
an n × (n − 1)-matrix of opponents O = [ot,r] where each entry ot,r ∈ {0, . . . , n −
1} \ {t} specifies the opponent of team t in round r. The HAP set determines in
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which conditions (home or away) each team plays at each round. It is defined as an
n× (n− 1)-matrix H = [ht,r], where ht,r = + (resp. ht,r = −) when team t has a home
(resp. away) game in round r. The opponent schedule and the home-away pattern set
together determine the tournament schedule, as seen on Table 1.1.

teams rounds

0 1 2 3 4

0 −4 −5 +3 −1 −2
1 −3 +4 −2 +0 −5
2 −5 +3 +1 −4 +0
3 +1 −2 −0 −5 +4
4 +0 −1 +5 +2 −3
5 +2 +0 −4 +3 +1

Table 1.1: A tournament schedule for 6 teams comprising 5 rounds.

Concerning the geographical position and the distance traveled by the teams,
we assume that each team is associated with a home venue located in a city and the
distances between the venues are associated with an already known n × n distance
matrix D = [dt1,t2 ]. It is considered that each team starts the tournament at its home
venue. At the beginning of the tournament, if the team plays its first game away from
home, it must travel from its own venue to the opponent’s venue. Whenever a team
plays two consecutive away games, it goes directly from the city of the first opponent
to the other without returning to its own home city. At the end of the tournament, if
the team played its last match away from home, it must return to its home venue.

The cost associated with a team in a given schedule is the sum of all distances it
has to travel between each game according to the schedule. The cost of a solution is
defined as the sum of the costs of all teams in the tournament. For instance, according
to the scheduled on Table 1.1, team 0 has to successively play against teams 4 away,
team 5 away, team 3 at home, team 1 away and finally team 2 away. Accordingly, the
travel cost of team 0 would be d0,4 + d4,5 + d5,0 + d0,1 + d1,2 + d2,0.

It is said that there is a break when a team plays two consecutive home games
or two consecutive away games. A road trip is a sequence of consecutive away games
for a team, while a home stand is a sequence of consecutive home games. Breaks are
convenient because in a large country (e.g. USA, Chile and Brazil), where the distances
between the home cities can be very large, it is advantageous to organize a tour for a
number of consecutive away games.
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1.3 Elements of graph theory

Graph theory, a major branch of mathematics, has been studied intensively for hun-
dreds of years. Many important and useful properties of graphs have been discovered,
many important algorithms were developed, and many difficult problems are still ac-
tively being studied [Sedgewick and Wayne, 2011]. This section follows [Diestel, 2005;
Gabow et al., 1985; Misra and Gries, 1992] and introduces a variety of fundamental
graph definition that are important for a better understanding of this work.

A graph is a pair G = (V,E) in which the n elements of V are the vertices of G
and them elements of E are its edges. Each edge e ∈ E is composed of a pair of vertices
v, w ∈ V , usually called its end vertices, endpoints or ends. The edge e = (v, w) is
said to be incident to v and w. An adjacent vertex of a vertex v in a graph is a vertex
that is connected to v by an edge. Two edges of a graph are called adjacent if they
share a common vertex. The degree (or valency) of a vertex of a graph is the number
of edges incident to the vertex. The degre of a graph, denoted by ∆, is given by its
vertex with maximum degree. If V ′ ⊆ V and E ′ ⊆ E, then G′ = (V ′, E ′) is a subgraph
of G (and G is a supergraph of G′), written as G′ ⊆ G. If G′ ⊆ G and G′ 6= G, then
G′ is a proper subgraph of G. If G′ ⊆ G and G′ contains all the edges (v, w) ∈ E with
v, w ∈ V ′, then G′ is an induced subgraph of G. All graphs in this work are complete,
undirected, finite and without multiple edges or self-loops.

Edge coloring is an important problem in graph theory. It consists in coloring
the edges of a graph such that every two edges incident to the same vertex get different
colors. An assignment of colors to the edges of a graph G = (V,E) is a map c : E → C,
where C is a non-empty set of colors. Let C(v, w) be the color of the edge (v, w) and
let adj(v, c) be the vertex w such that C(v, w) = c. A color c is incident to a vertex v
if any edge incident to v has that color, otherwise, the color is free or absent on that
vertex. A conflict in an assignment of colors is the existence of adjacent edges with the
same color.

A proper edge coloring of G is an assignment of colors to every edge of G without
conflicts and a proper partial edge coloring is an assignment of colors without conflicts
such that some edges of G may be uncolored. A proper edge coloring is said to be
minimum if the cardinality of C is minimum.

A k-coloring is a proper edge coloring using at most k colors. The minimum
number of colors necessary to obtain a proper edge coloring is called the chromatic
index χ′(G), so that χ′(G) = min{k|∃k-coloring of G}. Let ∆ be the degree of the
graph G. It is easy to see that χ′(G) ≥ ∆ because different colors have to be assigned
to all edges incident to a vertex with the maximum degree. Vizing’s theorem proves, in
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a constructive way, that every simple graph can be colored, in polynomial time, with
no more than ∆ + 1 colors [Vizing, 1964]. The proof immediately yields an O(|E| · |V |)
time edge coloring algorithm.

A simple graph G is said to be in class 1 if χ′(G) = ∆ and in class 2 if χ′(G) =

∆ + 1. Vizing’s theorem states that there are no other possibilities: all graphs are
either in class 1 or class 2. However, it is NP-Complete to determine whether a graph
is in class 1 or in class 2 [Holyer, 1981].

Two structures, introduced by [Misra and Gries, 1992], called cd− path and fan
will be used in this work. A cd − path is a path in which its edges are alternately
colored with colors c and d. A closed cd− path is called a cd− cycle.

A fan at v is an ordered sequence of distinct edges fan(v) =

{(v, w1), . . . , (v, ws)}, in which s = |fan(v)|. We say that v is the center of fan(v)

and wi are its leaves, for i ∈ {1, ..., s}. A shift of fan(v) means to circularly shift the
colors of its edges. In a shift forward, for 1 ≤ i < s and j = i+ 1, (v, wj) gets the color
of (v, wi) and (v, w1) gets the color of (v, ws). In a shift backward, for 1 ≤ i < s and
j = i + 1, (v, wi) gets the color of (v, wj) and (v, ws) gets the color of (v, w1). Given
a valid coloring, a shifting of fan(v) yields another coloring of G with the same set of
colors.

A one-factor of graph G = (V,E) is a set of edges R ⊆ E, such that all vertices
in V have degree equal to 1 in the subgraph G′ = (V,R) (R is also called a perfect
matching). A one-factorization of G = (V,E) is a partition of E into one-factors, i.e.,
a set R = {f1, f2, . . . , fγ} of disjoint one-factors such that

⋃γ
i=1 fi = E.

A one-factorization is said to be perfect, called Perfect One-Factorization (P1F),
when the graph induced by the edges in fi∪fj (G = (V, fi∪fj)) is a hamiltonian cycle
for each pair of distinct one-factors fi and fj, wherein a hamiltonian cycle is a cycle
through a graph that visits each vertex exactly once. Figure 1.1 gives an example of a
P1F for a complete graph with 4 vertices.

1.4 Edge coloring for sport scheduling

To model an SRR tournament, we label the teams by {v1, v2, ..., vn}, and represent
the tournament by a complete graph, where the vertices represent the n teams, and
each edge e = (vi, vj) represents the match in which teams i and j play against each
other. Hence, the schedule of an SRR tournament can be seen as an edge-coloring of
a complete graph with n vertices. In the proposed model, a schedule is a partition of
the edge set of the graph into rounds.
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As noted by [de Werra, 1981], a one-factor represents a round, therefore sched-
ules of SRR tournaments have a one to one relation with ordered one-factorizations
of complete graphs Kn. Figure 1.1 gives an SRR schedule represented by a one-
factorization of K4. If we consider the relation between the factors and rounds
R = {(dashed line, round 1), (solid line, round 2), (double line, round 3)}, the matches
in the first round, for example, will be team 1 against team 4 and team 2 against team
3.

0 1

23

=
0 1

23

+
0 1

23

+
0 1

23

Figure 1.1: An example of a tournament represented by a one-factorization of K4.

Two one-factorizations F = {f1, f2, . . . , fk} and J = {j1, j2, . . . , jk} of a graph
G = (V,E) are called isomorphic if there is a bijection ϕ : V → V such that ji =

{(ϕ(x), ϕ(y)) : (x, y) ∈ fi} for each i = 1, . . . , k [Dinitz et al., 1994].
The concept of isomorphic one-factorizations can also be extended to isomorphic

schedules and isomorphic colorings, therefore two schedules (resp. colorings) are said to
be isomorphic if, and only if, their associated one-factorizations are isomorphic. Note
that one-factorization and minimum proper edge coloring are interchangeable concepts
for complete graphs with an even number of vertices, e.g., a one-factor fc represents
the edge-set wherein all edges are colored with color c.

From now on, teams will be represented by vertices of Kn, matches will be repre-
sented by edges and rounds will be represented by the colors of the edges. For instance,
if an edge e = (v, w) is colored by a color c, then the game between teams tv and tw is
played in round r = c.

1.5 Objectives

It was noted in [Costa et al., 2012] that the solution space defined by some commonly
used neighborhoods in round-robin sport scheduling literature are not connected in the
case of SRR tournaments, which explains the hardness of finding high-quality solutions
to some problem instances. They showed that initial solutions obtained by the circle
method should not be used in some situations. As an alternative, the vizing algorithm
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led to considerably better initial solutions as the authors were able to obtain better
results than the ones published by [Melo et al., 2009].

The main objective of this thesis is to investigate the connectivity of neighborhood
structures applied to SRR scheduling problems making use of graph theory concepts,
focused on edge coloring of complete graphs. Hereof, this thesis establishes a formal
relation between the most used method to construct initial solutions to tackle SRR
scheduling problems with the connectivity of the solution space for the studied neigh-
borhood structures. When constructing an initial solution with the circle method and
for specific numbers of participating teams, the existing neighborhoods are not con-
nected and local search procedures stay trapped in a tiny portion of the solution space.
In consequence, search procedures on those neighborhoods are not likely to find good
schedules for the tournament.

This thesis presents empirical and theoretical evidences relating the non-
connectivity of the neighborhood structures with the perfect riffle shuffle permutations
of a deck of playing cards (faro shuffle). It is proved that, when the faro shuffle permu-
tation has an (n − 2)-cycle, the neighborhood is not connected and it does not allow
the search to escape from schedules isomorphic to the initial one. A new constructive
method based on the faro shuffle of playing cards (faro method) is presented. The
faro method is used in the analysis of neighborhood connectivity of one of the studied
neighborhood structures.

Hereof, a novel neighborhood structure for SRR sport scheduling problems to be
used by local search procedures is proposed: the Teams and Rounds Swap (TARS).
Using the Traveling Tournament Problem with Predefined Venues (TTPPV) and the
Weighted Carry-over Effects Value Minimization Problem (WCOEVMP) as case stud-
ies, experimental results show that this neighborhood structure diminishes the issue of
non-connectivity in SRR scheduling problems. Moreover, the use of TARS can lead to
good results for both case study problems regardless the initial solution or the problem
instance.

1.6 Text organization

This thesis is organized as follows. Chapter 2 describes the circle method, the vizing
algorithm, and a new method for constructing SRR schedules based on faro shuffle per-
mutation of playing cards. Such method, called faro method is proved to be equivalent
to the circle method. Given a first non-empirical relation between the circle method
and the faro shuffle of playing cards, chapter 3 describes the existing neighborhood
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structures for round-robin sport scheduling problems and analyze their connectivity.
We give a theoretical proof characterizing the situations in which the existing neigh-
borhood structures are disconnected. A detailed description of the proposed TARS
neighborhood structure followed by the proof of its correctness is given in Chapter 4,
followed by a discussion about how TARS increases the solution space connectivity. An
experimental analysis of the TARS neighborhood structure is performed in Chapter 5
using the TTPPV and the WCOEVMP as case studies. Empirical results show that the
theoretical findings of this thesis have implications in the performance of local search
heuristics under consideration. The last chapter presents some concluding remarks and
describes some future works that can be produced as outcomes of this thesis.



Chapter 2

Building an SRR Schedule from
Scratch

Initial solutions for round-robin sport scheduling problems can be obtained with edge
coloring algorithms applied to complete graphs as the circle method [de Werra, 1981]
and the vizing algorithm [Vizing, 1964; Misra and Gries, 1992]. This chapter begins
with the description of those two edge coloring methods. Next, we introduce a con-
structive method based on the faro shuffle of playing cards and show its equivalence
with the circle method. The faro method is used to analyze the connectivity of the
existing neighborhood structures for round-robin scheduling problems given a first non-
empirical relation between the circle method and the faro shuffle of playing cards.

2.1 The circle method

The circle method has been widely used to construct initial solutions for round-robin
tournaments. The one-factorization generated by the circle method is called canonical
coloring. According to [Goossens and Spieksma, 2012b], this method is at least a
century old, can be found in most textbooks on graph theory, and it is the most used
method in practice.

Denote the set of n teams by T = {0, 1, ..., n − 1} and the set of n − 1 rounds
by R = {0, 1, ..., n − 2}. To schedule a tournament, first draw a regular (n − 1)-sided
polygon. Each vertex of the polygon is numbered from 0 to n− 2 and an extra vertex
n− 1 is placed in the middle of the polygon. See the initial setup of the circle method
on the top leftmost side of Figure 2.1.

At each iteration i, starting from iteration 0 to iteration n− 2, in order to deter-
mine n/2 games at the i-th round of the tournament, a straight line is drawn from the

10
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1

23

4
5

initial setup
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1

23

4
5
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0

1

23

4
5

round 1

0

1

23

4
5

round 2

0

1

23

4
5

round 3

0

1

23

4
5

round 4

Figure 2.1: Circle method for a tournament with n = 6 teams.

vertex n−1 to the vertex i of the polygon, together with all possible straight lines that
lie perpendicular to (i, n − 1). All matches that can be obtained this way determine
one round of the tournament. In the next iteration, the lines are rotated 1/(n−1)-th of
a circle (i.e. one vertex point) in clockwise direction. All new straight lines represent
the games for the new round. The procedure is repeated until all rounds are defined.

A description of the circle method based on [Miyashiro and Matsui, 2006] is given
as follows:

In round r ∈ R = {0, 1, . . . , n− 2},

• team t ∈ T \ {n− 1} plays against team t′ ∈ T \ t for (t+ t′) ≡ 2r mod (n− 1).

• team n− 1 plays against team r;

Based on the previous definition, we can represent the circle method by the
following opponent schedule function:

Υ(t, r) =





r if t = n− 1

n− 1 if t = r

(2r − t) mod (n− 1) otherwise

(2.1)

Function Υ(t, r) computes the opponent of team t ∈ T in round r ∈ R based on
the circle method. Table 2.1 shows a schedule constructed with the circle method for
a tournament with n = 6 teams.
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r
0 1 2 3 4

t

0 5 2 4 1 3
1 4 5 3 0 2
2 3 0 5 4 1
3 2 4 1 5 0
4 1 3 0 2 5
5 0 1 2 3 4

Table 2.1: Schedule constructed by the circle method for a tournament with n = 6
teams.

2.2 An algorithm based on Vizing’s theorem

The following result on edge coloring was published by [Vizing, 1964]:

Theorem 1. All graphs are either in class 1 or class 2, i.e., ∆ ≤ χ′(G) ≤ ∆ + 1.

There are several proofs of Vizing’s theorem in the literature, see for example
[Diestel, 2005; Dijkstra and Rao, 1990; Gabow et al., 1985; Gould, 1988; Misra and
Gries, 1992]. All proofs are based on augmenting the coloring of the graph by assigning,
at each iteration, a new edge with color c ∈ {c1, c2, . . . c∆+1}. The proofs show how
to color an uncolored edge of an arbitrary partially colored graph, which may require
changing the color of some edges to maintain validity, never exceeding ∆ + 1 different
colors. This procedure is repeated until all edges are colored. The following proof may
be found in [Gould, 1988].

Let e0 = (w, v0) be an uncolored edge of a graph G partially colored with no more
than ∆ + 1 colors. Observe that, since both w and v0 have at most ∆ − 1 incident
colored edges, there are at least two available colors in both of them. Let us call
Free(v) the set of colors available at vertex v.

If Free(w)∩Free(v0) 6= ∅ we can simply choose one color from that intersection
to color the edge e0.

Assume now, that the intersection is empty. Let c be an available color at v0 and
let d be an available color at w. Let cd − path be the maximal path that starts at v0

in such a manner its edges are alternately colored with colors c and d. Two cases may
arise: cd − path ends at a vertex different from w or cd − path ends at w. Whenever
the first case happens, the coloring may be augmented. First, exchange the colors of
the edges on the cd− path. Edges colored with c are recolored with d and vice-versa.
Finally, color the edge e0 with d, which in turn is available at vertex v0 (see Fig. 2.2).
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v0 w

d

c

c
cd−path

→

v0 w
d

c

c

d
cd−path

Figure 2.2: Color d is free at v0 after the exchanging of colors.

Assume now that the cd− path ends at w. If we exchange the colors of the edges
on the cd− path, then color d will be available in v0 but, on the other hand, it will not
be available in w (see Fig. 2.3).

v0 w

cd−path

d c

→
v0 w

c d

cd−path

Figure 2.3: An example of the cd− path ending at w.

Let v1 be the vertex adjacent to w in the cd − path and let e1 = (w, v1) be an
edge colored with c. Remove the color c from e1 and color e0 = (w, v0) with that color
(see Fig. 2.4).

v0 w

v1

d c

cd−path

→
v0 w

v1

c

d

cd−path

Figure 2.4: Color c moves from (w, v1) to (w, v0).

Now the problem consists in re-coloring edge e1. The same sequence of steps that
was used to color e0 can also be applied in order to assign a color to e1. Note that, if
Free(w) ∩ Free(v1) is also empty then the color c1, available at v1, must be different
from c in order to avoid cycling. Such color always exists because v1 has at most ∆−1

colored edges.
We may continue this way until Free(w)∩Free(vi) is not empty or the cd−path

does not end at w. The remaining of the proof of Vizing’s theorem shows that one of
these cases will eventually occur after at most ∆ iterations [Gould, 1988]. This proof
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of Vizing’s theorem immediately yields an O(|E| · |V | ·∆) time algorithm to obtain a
∆ + 1 proper edge coloring of a simple graph.

In order to find an edge coloring of a complete graph Kn using ∆ = n− 1 colors,
color the edges of a complete graph Kn−1 using exactly ∆ + 1 = n − 1 colors. Note
that there is one distinct color that is not used to color the edges incident to each
of its vertices. Then, add a new vertex vn to Kn−1 and new edges ei = (vi, vn) for
1 ≤ i ≤ n− 1 connecting each vertex vi of Kn−1 to vn, thus building a complete graph
with n vertices. Each new edge ei is colored with the unique element of Free(vi),
leading to an (n− 1)-edge coloring of Kn. An example of how this procedure could be
applied to obtain an edge coloring for K4 is depicted in Figure 2.5.

0 1

2

→
0 1

23

Figure 2.5: Finding an edge coloring of K4 based on an edge coloring of K3.

The edge coloring ofKn with n−1 colors constructed by Vizing algorithm depends
on the order in which the yet uncolored edges are considered. In fact, one may get
any possible edge coloring since there always exists an order for which Vizing algorithm
produces a given edge coloring of Kn. This is clearly not the case for the circle method.

2.3 The faro method

Suppose you have a deck with an even number n of playing cards you want to shuffle.
Take the deck, split it into two parts, and interleave the cards in each part of the deck,
by dropping cards from the bottoms of the two half-decks. The top and bottom cards
of the deck are always left unaltered. Such shuffling technique is known as riffle shuffle,
see [Aigner and Ziegler, 2004]. The faro shuffle, an idealized riffle shuffle, is a term
used to denote a perfect riffle shuffle performed in such a manner that the deck is split
exactly in half and all its cards are perfectly alternated, see [Morris and Hartwig, 1976;
Diaconis et al., 1983]. For a visual representation of a faro shuffle of a deck with 6
playing cards, see Figure 2.6.

We can mathematically model a deck of n playing cards by a sequence of integers
{0, 1, . . . , n− 1}. The card at position i = 0 is the top card, and the card at position
i = n− 1 is the bottom card. In order to perform a faro shuffle, a card at position i ∈
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Figure 2.6: The faro shuffle. We begin with an ordered deck, and then we divide it
into two packets of the same size and riffle them together. The last line of cards shows
the resulting shuffled deck.

{0, . . . , n/2− 1} is moved to the position 2i. If a card is at position i ∈ {n/2, . . . , n− 2},
then it is moved to the position 2i − (n − 1) = 2i mod (n − 1) and the card at the
position n − 1 stays at its position. Since 2i < n − 1 for i ∈ {0, . . . , n/2 − 1}, we can
represent a faro shuffle of a deck of n cards by the mapping

<(i) =




n− 1 if i = n− 1

2i mod (n− 1) otherwise
(2.2)

A concise mathematical way to think about changing orderings of the deck is
given by permutations [Mann, 1995]. A permutation of n cards may be seen as a
one-to-one map from the set of integers, between 0 and n− 1 inclusive, to itself.

According to [Ellis et al., 2002], a faro shuffle permutation of cards can be de-
scribed as a set of permutation cycles. A permutation cycle is a subset of a permu-
tation whose elements trade places with one another. Permutation cycles are also
called “orbits” by [Comtet, 1974]. For example, in a faro shuffle that transforms
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[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] into [0, 5, 1, 6, 2, 7, 3, 8, 4, 9], (0) is a 1-cycle, (3,6) is a 2-cycle,
(1, 5, 7, 8, 4, 2) is a 6-cycle and (9) is a 1-cycle. Here, the notation (0)(3,6)(1,5,7,8,4,2)(9)
means that, starting from the natural ordering of cards {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, the
first and last cards stay in their positions, cards at positions 3 and 6 are switched,
card at position 1 is replaced by the card at position 5, card at position 5 is re-
placed by the card at position 7, and so on until the card at position 2 is replaced
by card at position 1. The order of the cycles does not change the permutation cy-
cle. Therefore (0)(3,6)(5,7,8,4,2,1)(9), (9)(0)(3,6)(7,8,4,2,1,5), (8,4,2,1,5,7)(9)(0)(3,6)
and (9)(4,2,1,5,7,8)(0)(3,6) all describe the same permutation cycle. Note that a faro
shuffle can be performed several times in a row, however, despite the cards changing
positions, the permutation cycles will always be the same.

2.3.1 Scheduling a tournament with faro shuffles

In the following, a new method for constructing initial solutions for round-robin tour-
naments is presented. At each iteration i, starting from iteration 0 to iteration n− 2,
the faro method determines all opponents of team t, for 0 ≤ t ≤ n − 1. Consider two
decks of n playing cards represented by an ordered set of integers {0, . . . , n− 1}. One
deck will be used to determine the opponents of team t while the other deck will be
used to identify the rounds in which t faces its opponents.

In order to determine the opponents of the team 0, take the first deck and arrange
all its cards side-by-side on ascending order. Then, take the second deck and arrange
all its cards as a faro shuffle of the first deck, keeping every card of the second deck right
below every card of the first deck. Figure 2.7 shows an example of such arrangements
of cards for decks of size n = 6.

0 1 2 3 4 5

0 3 1 4 2 5

opponents

rounds

Figure 2.7: Scheduling a tournament with n = 6 teams based on the faro shuffle of
playing cards. Here the opponents of team 0 are: team 1 on round 3, team 2 on round
1, team 3 on round 4, team 4 on round 2 and team 5 on round 0.

Note that the card 0, representing the team 0, is at position 0 and the card n−1,
representing the team n− 1, is at position n−1. For each position i ∈ {1, 2, . . . , n−2},
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each card at the position i of the second row denotes a round r = i and each card at
the position i in the first row denotes the opponent of team 0 in round r = i. Team 0

faces team n− 1 at round r = 0.

0 1 2 3 4 5
1 2 3 4 0 5

1 4 2 0 3 5

opponents

rounds

1 2 3 4 0 5
2 3 4 0 1 5

2 0 3 1 4 5

opponents

rounds

. . .

3 4 0 1 2 5
4 0 1 2 3 5

4 2 0 3 1 5

opponents

rounds

Figure 2.8: The faro method for scheduling an SRR tournament.

In order to determine the opponents of the team t, for 0 < t ≤ n − 2, take the
deck of the first row on previous iteration and rotate it, except for the last card, by
placing the card from the position 0 between the cards at positions n − 2 and n − 1.
After the rotation, the card that represents the team t will be displayed at position 0.
As before, take the second deck and arrange all its cards as a faro shuffle of the first
deck, keeping every card of the second deck right below every card of the first deck.
The opponents of team n− 1 are determined by the first card on the top of the deck.
Therefore, team n− 1 faces team t at round r = t. Figure 2.8 shows an example with
n = 6.

A tournament schedule as presented in Table 2.1 can be obtained through the
faro method by extracting the information about the opponents of every team from
Figure 2.8.
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2.4 The faro method and circle method are

equivalent

In the faro method, during n − 2 iterations, we circularly shift the cards in the deck,
except the card n − 1, thus every other card i will appear at the top of the deck at
iteration i. The shifting move can be done by placing the card on the top between the
cards at positions n − 2 and n − 1. Likewise, at each iteration j ∈ {0, . . . , n − 2} the
position i such that 0 ≤ i < n−1 is occupied by the card numbered (i+j) mod (n−1).
This shifting yields another permutation of the cards in which n− 1 is always fixed at
position n− 1 and its permutation cycle can be written as (0,1,. . . ,n− 3,n− 2)(n− 1).
Function F(j, i) computes the position of the card of value i in the shifted n-size deck
at iteration j ∈ {0, . . . , n− 2}

F(j, i) =




n− 1 if i = n− 1

i− j mod (n− 1) otherwise
(2.3)

Function F(j, i) computes the value of the card that is placed at position i at
iteration j ∈ {0, . . . , n− 2}

F(j, i) =




n− 1 if i = n− 1

i+ j mod (n− 1) otherwise
(2.4)

For a deck of size n at iteration j, we can represent the faro shuffle permutation
of a shifted deck by the mapping <?(j, i) based on of Eq. 2.2, for each iteration j ∈
{0, . . . , n− 2} and for each card at position i ∈ {0, . . . , n− 1}

<?(j, i) =




n− 1 if i = n− 1

(2F(j, i)) mod (n− 1) otherwise
(2.5)

In a deck of n cards, the card i ends at position <?(j, i) after j shifts and one
faro shuffle. Since the values of F(j, i) are never computed for the first case in Eq. 2.3
(when i = n− 1), we can apply the following substitution:
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(2(F(j, i))) mod (n− 1) = (2(i− j)( mod (n− 1))) mod (n− 1)

= (2(i− j)) mod (n− 1)

= (2i− 2j) mod (n− 1)

Hence, we may rewrite <?(j, i) as:

<?(j, i) =




n− 1 if i = n− 1

(2i− 2j) mod (n− 1) otherwise
(2.6)

Finally, we define the function A(j, i) = F(j,<?(j, i)) to recover the value of the
card that is placed at position <?(j, i) in the shifted deck of size n at iteration j after
a faro shuffle:

A(j, i) = F(j,<?(j, i))
= F(j, (2i− 2j) mod (n− 1)) i < n− 1

= (j + (2i− 2j) mod (n− 1)) mod (n− 1)

= (j + 2i− 2j) mod (n− 1)

= (2i− j) mod (n− 1)

Function A(t, r) determines the opponent of team t in round r for r 6= t. Con-
sidering that team i plays against team n− 1 at round i the full opponent schedule for
the faro method is:

A(t, r) =





r if t = n− 1

n− 1 if t = r

(2r − t) mod (n− 1) otherwise

(2.7)

Such schedule is equal to the one constructed by the circle method since Eq. 2.7
is equal to Eq. 2.1. Therefore, the two methods are equivalent.



Chapter 3

Exploring the Solution Space

This chapter describes, in edge coloring terms, four well-known neighborhood struc-
tures for round-robin sport scheduling problems. These neighborhood structures are
analyzed as functions that operate on edge-colored graphs. Each new coloring obtained
by each function is a neighbor of the current schedule in the neighborhood structure
under consideration. At the end of this chapter, a proof of a theorem relating the
faro shuffle of playing cards and the neighborhood connectivity of one of the existing
neighborhood structures is presented.

3.1 Existing neighborhood structures

Connectivity is a key feature of neighborhood structures that drastically affects the
performance and search capability of local search algorithms. Let s be a schedule
of an SRR tournament with n teams and let the solution space S be the set of all
possible schedules for those n teams. A neighborhood structure is a mapping that
assigns to each schedule s ∈ S, a set of schedules N(s) that are neighbors of s. Local
search procedures use the concept of neighborhoods to move from one schedule s to a
neighbor schedule s′ ∈ N(s). The solution space of a neighborhood structure is said to
be connected if it is possible to move from any solution s to any other solution s′ ∈ S
through a series of neighborhood moves.

The idea of a neighborhood graph, in which vertices are SRR schedules, and
each edge is a transition from a particular SRR schedule to another, will be used
throughout the text. All neighborhood structures will be modeled in terms of operators
over ordered one-factorizations (or proper edge colorings with a minimum number of
colors) of complete graphs.

20
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Due to several research groups working in parallel on sports scheduling problems,
it is not uncommon to find in the literature different names corresponding to the same
concept, including the nomenclature of the existing neighborhood structures. As can
be seen in [Anagnostopoulos et al., 2006], [Costa et al., 2012], [Di Gaspero and Schaerf,
2007] and [Ribeiro and Urrutia, 2007], four different neighborhood structures have
been used in local search procedures for round-robin sport scheduling problems in the
literature. They are mostly known as Round Swap (RS), Partial Round Swap (PRS),
Team Swap (TS) and Partial Team Swap (PTS). PRS is a generalization of RS and
PTS is a generalization of TS, which makes PTS and PRS the two neighborhood
structures most commonly used in local search based algorithms.

Round Swap (RS) and Partial Round Swap (PRS) neighborhood structures are
based on permutation of opponents between rounds. Given two different rounds, each
neighbor in the RS neighborhood structure is obtained by exchanging the opponents
of all teams in those rounds. Figure 3.1 gives an example of a move in RS. On the
left, there is an initial schedule in which rounds 2 and 4 were selected as parameters
of a move in RS. The resulting schedule after changing the opponents in the selected
rounds is shown on the right side of the Figure 3.1.

r
0 1 2 3 4 5 6

t

0 7 2 4 6 1 3 5
1 6 7 3 5 0 2 4
2 5 0 7 4 6 1 3
3 4 6 1 7 5 0 2
4 3 5 0 2 7 6 1
5 2 4 6 1 3 7 0
6 1 3 5 0 2 4 7
7 0 1 2 3 4 5 6

r
0 1 2 3 4 5 6

t

0 7 2 1 6 4 3 5
1 6 7 0 5 3 2 4
2 5 0 6 4 7 1 3
3 4 6 5 7 1 0 2
4 3 5 7 2 0 6 1
5 2 4 3 1 6 7 0
6 1 3 2 0 5 4 7
7 0 1 4 3 2 5 6

Figure 3.1: A move in RS neighborhood for a tournament with n = 8 teams.

The PRS neighborhood is a generalization of RS in which each neighbor is ob-
tained by exchanging the opponents between two different rounds for a subset of teams.
For any team t ∈ T and for any two rounds r1 ∈ R and r2 ∈ R, with r1 6= r2,
let T ′ be a minimum cardinality subset of teams, including team t, in which the
opponents of the teams in T ′, in rounds r1 and r2, are the same. In other words,
T ′ = {1, . . . , k} ⊆ T is minimum and such that t ∈ T ′ and {i ∈ T : ∃u ∈ T ′ such that
adj(i, r1) = u} = {i ∈ T : ∃u ∈ T ′ such that adj(i, r2) = u}. A schedule obtained
by exchanging the opponents of each team t ∈ T ′ in rounds r1 and r2 is a neighbor of
the initial schedule in PRS neighborhood. Table 3.1 gives an illustration of the subset
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T ′ ∈ T when considering team 1 and rounds 0 and 3. Observe that, when T ′ is equal
to T a move in PRS neighborhood is equal to a move in RS neighborhood.

r
0 1 2 3 4 5 6 7 8

t

0 9 2 4 6 8 1 3 5 7
1 8 9 3 5 7 0 2 4 6
2 7 0 9 4 6 8 1 3 5
3 6 8 1 9 5 7 0 2 4
4 5 7 0 2 9 6 8 1 3
5 4 6 8 1 3 9 7 0 2
6 3 5 7 0 2 4 9 8 1
7 2 4 6 8 1 3 5 9 0
8 1 3 5 7 0 2 4 6 9
9 0 1 2 3 4 5 6 7 8

r
0 1 2 3 4 5 6 7 8

t

0 9 2 4 6 8 1 3 5 7
1 5 9 3 8 7 0 2 4 6
2 7 0 9 4 6 8 1 3 5
3 6 8 1 9 5 7 0 2 4
4 2 7 0 5 9 6 8 1 3
5 4 6 8 1 3 9 7 0 2
6 3 5 7 0 2 4 9 8 1
7 8 4 6 2 1 3 5 9 0
8 1 3 5 7 0 2 4 6 9
9 0 1 2 3 4 5 6 7 8

Table 3.1: The minimum cardinality subset of teams T ′, including team 1, in which
the opponents of every team t ∈ T ′, in rounds r = 0 and r = 3, are the same, for a
tournament with n = 10 teams, is {1, 4, 7}.

0 1

23
c2

c2

c1 c1

Figure 3.2: A graph obtained through a
move in RS neighborhood with colors c1

and c2 as parameters.

2 1

03

Figure 3.3: A graph obtained through a
move in TS neighborhood with teams 0
and 2 as parameters.

Using edge coloring terms in order to obtain a neighbor in the RS neighborhood
structure, we take two different used colors, cj and ck, and exchange them for all edges
colored with any of those colors, i.e., we exchange the two factors rj and rk associated
to the colors cj and ck. Figure 3.2 illustrates the application of RS on the tournament
depicted in Figure 1.1, using colors c1 (represented by the single solid line) and c2

(represented by the dashed line) as parameters.
For a move in the PRS neighborhood structure, we select any two distinct colors,

for instance, c1 and c2, and consider a cycle in the subgraph induced by the edges
that have those colors. Then, we exchange the colors in the cycle to get a neighbor
schedule. If the involved edges are incident to all vertices of the graph, i.e., if they form
a hamiltonian cycle, then this move is equivalent to a move in the RS neighborhood



3. Exploring the Solution Space 23

structure. As a consequence, PRS and RS are equivalent for perfect one-factorizations.
Figure 3.4 gives an illustration of a move in PRS neighborhood.

0 1

23

4 5

67

c2c2

c1

c1

c1

c1

c2c2

0 1

23

4 5

67

c2c2

c1

c1

c1 c1

c2

c2

Figure 3.4: On the left: a subgraph induced by the edges with colors c1 (solid lines)
and c2 (double-dashed lines). On the right: a neighbor coloring obtained with a move
in PRS neighborhood, by exchanging the assignment of colors in one cycle.

Each neighbor in the TS neighborhood is obtained by exchanging all opponents
of two distinct teams ti and tj, in all rounds except for round r such that Υ(ti, r) = tj

(see Figure 3.5). In this neighborhood, each neighbor coloring is isomorphic to the
initial one.

r
0 1 2 3 4 5 6

t

0 7 2 4 6 1 3 5
1 6 7 3 5 0 2 4
2 5 0 7 4 6 1 3
3 4 6 1 7 5 0 2
4 3 5 0 2 7 6 1
5 2 4 6 1 3 7 0
6 1 3 5 0 2 4 7
7 0 1 2 3 4 5 6

r
0 1 2 3 4 5 6

t

0 7 2 4 6 1 3 5
1 6 7 3 5 0 2 4
2 5 4 6 1 3 7 0
3 4 6 1 7 5 0 2
4 3 5 0 2 7 6 1
5 2 0 7 4 6 1 3
6 1 3 5 0 2 4 7
7 0 1 2 3 4 5 6

Figure 3.5: A move in TS neighborhood using teams 2 and 5 as parameters.

The PTS neighborhood structure is a generalization of the TS neighborhood
structure. For any round r and for any two distinct teams t1 and t2, where adj(t1, r) 6=
t2, let R′ be a minimum cardinality subset of rounds including r in which the opponents
of t1 and t2 are the same, i.e., R′ = {r1, ..., rk} ⊆ R is minimal and such that r ∈ R′
and {t ∈ T : ∃rj ∈ R′ such that adj(t, rj) = t1} = {t ∈ T : ∃rj ∈ R′ such that
adj(t, rj) = t2}. A schedule obtained by exchanging the opponents of teams t1 and t2
in all rounds in R′ is a neighbor in PTS. Figure 3.6 gives an illustration of the subset
R′ ∈ R when we consider round 0 and teams 2 and 7. In the PTS neighborhood
structure, the opponents of the teams in a given round are exchanged and a procedure
of repair chain must be used in order to remove any violation created by PTS (see
[Di Gaspero and Schaerf, 2007] for further details). Observe that if R′ is equal to
R \ r : adj(t1, r) = t2 then PTS is equivalent to TS.
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r
0 1 2 3 4 5 6

t

0 7 2 4 6 1 3 5
1 6 7 3 5 0 2 4
2 5 0 7 4 6 1 3
3 4 6 1 7 5 0 2
4 3 5 0 2 7 6 1
5 2 4 6 1 3 7 0
6 1 3 5 0 2 4 7
7 0 1 2 3 4 5 6

r
0 1 2 3 4 5 6

t

0 7 2 4 6 1 3 5
1 6 7 3 5 0 2 4
2 0 1 7 4 6 5 3
3 4 6 1 7 5 0 2
4 3 5 0 2 7 6 1
5 2 4 6 1 3 7 0
6 1 3 5 0 2 4 7
7 5 0 2 3 4 1 6

Figure 3.6: The minimum cardinality subset of rounds including r = 0 in which the
opponents of t = 5 and t = 7 are the same, for a tournament with n = 8 teams, is
{0, 1, 5}.

In edge coloring terms, each neighbor in the TS neighborhood is obtained by
exchanging two distinct vertices v1 and v2. After this move, v1 will have the assignment
of colors to its incident edges that previously belonged to v2 and vice-versa. Figure 3.3
illustrates the application of TS, using team 0 and team 2 as parameters, based on the
schedule previously presented in Figure 1.1.

In graph theoretical terms, a move in PTS neighborhood structure consists of the
following steps. First select two distinct vertices v1 and v2 of the complete edge-colored
graph, then consider the subgraph induced by the edges connecting every other vertex
to v1 and v2. This subgraph is isomorphic to the complete bipartite graph K2,n−2 and
colored with n− 2 colors, (all colors in Kn but the color of the edge (v1, v2)). Compute
a subset of vertices W ⊆ V − {v1, v2} such that the set of colors assigned to edges
joining v1 to vertices in W is equal to the set of colors assigned to edges joining v2 to
vertices in W . Next, exchange the color assignment of edges (v1, wi) and (v2, wi) for
each vertex wi in W . Figure 3.7 shows such a subgraph K2,n−2 with W = {w5, w6}
and Figure 3.8 illustrates the coloring after exchanging colors around W . Note that if
W = V − {v1, v2}, the move is equivalent to a TS move.

3.2 An analytical study in connectivity of RS and

PRS neighborhood structures

Let us analyze some aspects of the connectivity of PRS. Note that moves in the
RS neighborhood affect the order of one-factors in the one-factorization, but it does
not modify the one-factorization itself. Also note that, whenever the current one-
factorization is perfect, PRS neighborhood is equivalent to the RS neighborhood. In-
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v1

v2

w1 w2 w3 w4 w5 w6

W

Figure 3.7: A subgraph K2,n−2 with W =
{w5, w6}

v1

v2

w1 w2 w3 w4 w5 w6

W

Figure 3.8: The subgraph of Figure 3.7
after exchanging of colors around W .

deed, exchanging opponents between two rounds corresponds to exchanging edges be-
tween two one-factors. In order to maintain each of the involved factors as one-factors,
the edges exchanged must form a set of cycles. If the one factorization is perfect, the
only cycle that can be exchanged between two rounds is a Hamiltonian cycle, implying
that all edges of both one-factors must be exchanged.

Let n be the number of participating teams in a tournament. For tournaments
with n ≤ 100, whose initial construction was obtained with the circle method, the
existing neighborhoods are not connected for several values of n = p + 1, where p is
a prime number. It means that not all the solution space is reachable using those
neighborhood structures. Moreover, when a schedule is constructed with the circle
method and using the existing neighborhood structures it is not possible to move from
an initial schedule to other schedules that are nonisomorphic to the initial one.

The circle method itself, as well as the faro method, generates P1Fs ofKn wherein
n is equal to 4, 6, 8, 12, 14, 18, 20, 24, 30 and so on, that is, whenever n = p+ 1, being
p is a prime number [Kobayashi, 1989], therefore the subgraph induced by the edges
belonging to any two one-factors is a hamiltonian cycle.

As a result, whenever a coloring is generated using the circle method, and n is
equal to a prime number plus one, it is not possible to obtain new non-isomorphic edge
colorings using the PRS neighborhood structure, since all moves in this neighborhood
are equivalent to moves in the RS neighborhood and all schedules obtained with them
are isomorphic to the original one.

As an example, K14 has 1,132,835,421,602,062,347 non-isomorphic colorings to
be explored, see [Kaski and Ostergard, 2009]. However, using the RS and PRS neigh-
borhoods any local search procedure may stay trapped in P1Fs, as the one constructed
with the circle method.
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3.3 An analytical study in connectivity of TS and

PTS neighborhood structures

Now, we study the connectivity of TS and PTS. Each neighbor in a TS neighborhood
is obtained by swapping the label of two distinct vertices of the graph. Therefore, all
neighbor schedules generated with TS moves are isomorphic to each other.

PTS neighborhood, however, may modify the underlying one-factorization of the
schedule, for that reason it is frequently used in local search procedures to solve round-
robin sport scheduling problems. In [Costa et al., 2012] and [Januario and Urrutia,
2015] it is established that, for several values of n = p+ 1 being p a prime number, the
one-factorization that is built by the circle method is such that any possible PTS move
is equivalent to a TS move. In those one-factorizations, the smallest set of factors in
which any pair of vertices shares all their adjacent vertices has size n− 2.

The previous chapter introduced a method to construct SRR schedules based
on faro shuffles of a deck of playing cards and showed the equivalence between the
introduced method and the circle method. In consequence, it is reasonable to think
that properties of the faro shuffle may be translated into characteristics of the schedule
constructed by the circle method. So far, [Januario and Urrutia, 2015] is the only work
that has related these two research areas.

In the following, an analysis of the connectivity of PTS based on permutation
cycles is presented. Table 3.2 gives an example of a construction, step by step, of a
permutation cycle that describes a move in a PTS neighborhood for a tournament with
n = 10, built with the circle method, taking round 0 and teams 5 and 9 as parameters.
The values of the opponents were computed by Eq. 2.1.

Opponents Permutation cycle
adj(5, 0) = 4 adj(9, 4) = 4 (0)
adj(5, 4) = 3 adj(9, 3) = 3 (0,4)
adj(5, 3) = 1 adj(9, 1) = 1 (0,4,3)
adj(5, 1) = 6 adj(9, 6) = 6 (0,4,3,1)
adj(5, 6) = 7 adj(9, 7) = 7 (0,4,3,1,6)
adj(5, 7) = 0 adj(9, 0) = 0 (0,4,3,1,6,7)

Table 3.2: A construction of a permutation cycle based on the move illustrated in Table
3.6.

The set (0,4,3,1,6,7) is a 6-cycle equals to the minimum cardinality subset of
rounds including r = 0 in which the opponents of t = 5 and t = 9 are the same. From
Table 3.6 we can also obtain another minimum cardinality subset of rounds including
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r = 2 in which the opponents of t = 5 and t = 9 are the same, described by the set
(2,8).

It is important to emphasize that, when a move in PTS has an (n− 2)-size per-
mutation cycle, such move will be equivalent to a move in TS neighborhood structure.
Therefore, the underlying one-factorization of the schedule is not affected by the move.

The connectivity of PTS when the initial schedule is constructed with the circle
method is investigated for values of n in which the faro shuffle permutation with n

elements has an orbit of size n − 2. These values of n match the list of numbers for
which a faro shuffle permutation permutes all except the first and the last cards, listed
in [OEIS, 2015], that were experimentally obtained. So far, there is no known formula
to compute them. Additionally, those numbers are equal to p + 1, being p a prime
number. For such values of n and using the studied neighborhoods, it is not possible to
move from a one-factorization constructed by the circle method to a one-factorization
non-isomorphic to it using the existing neighborhoods.

3.3.1 When not to use Partial Team Swap

For the remainder of this chapter, vertices and colors will be referred by their indexes.
In that way, a given integer t may refer either to a vertex vt or to a color ct. In each
context, it should be clear whether we are referring to vertices or to colors.

Consider the complete bipartite graph B = (X,W ), isomorphic to K2,n−2,
spanned by a set X = {u, v}, u < v, and a set W = V \ {u, v} = {w1, w2, . . . , wn−2}.
Without loss of generality, we can assume that the edges of B = (X,W ) are colored
with colors 1, 2, . . . , n − 2, as can be seen in Figure 3.9. Let Su,v be a partition of W
into subsets {S1

u,v, . . . , S
q
u,v, . . . , S

ψ
u,v} such that for any Squ,v, with 1 ≤ q ≤ ψ < |W |, the

set of colors of edges (u,w), for w ∈ Squ,v, is the same as the set of colors of edges (v, w),
for w ∈ Squ,v, and each Squ,v is inclusionwise minimal. These colors define a permutation
π of {1, . . . , n− 2} by setting π(C(u,wi)) = C(v, wi).

In order to construct the partition Su,v, we build an auxiliary graph G as follows
(see Figure 3.10): each color {1, . . . , n− 2} is associated to a vertex in G. Each vertex
wi in W corresponds to an oriented arc wi of G. The arc wi is oriented from vertex k
to vertex l if and only if (u,wi) has color k and (v, wi) has color l.

G has n− 2 vertices and n− 2 arcs. Note that G defines at least one permutation
of colors without fixed points. A fixed point would mean that, for a given i, edges
(u,wi) and (v, wi) would have the same color. For that reason, G has no (directed)
loops. In the graph B, each color occurs once on edges adjacent to u and once on
edges adjacent to v, as a result, each vertex in G has exactly one incoming arc and one
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u

w1 w2 w3 w4 w5 w6 w7 w8

v

1
2 3 4 5 6 7

8

5
1 6 2 7 3 8

4

Figure 3.9: A complete bipartite graph B = (X,W ) isomorphic to K2,8.

3 6

w3

w6

1 2 4

5 7 8

w2 w4

w8

w7w5

w1

Figure 3.10: The graph G, generated from the bipartite graph in Figure 3.9

outgoing arc. Hence, G consists of vertex-disjoint cycles of length at least two. Clearly
there is a one-to-one correspondence between the orbits of π and the oriented cycles of
G. The sets of edges of the cycles within G are the classes Squ,v of the partition of W .

Let d(i) be the class of vertex i of Kn in the partition Su,v, that is, i ∈ Sd(i)
u,v . A

recursive definition of Sd(i)
u,v is given as follows:

• i ∈ Sd(i)
u,v .

• j ∈ Sd(i)
u,v → adj(u, C(v, j)) ∈ Sd(i)

u,v .

• nothing else is in Sd(i)
u,v .

Let u, v and w be three distinct vertices of V such that u < v. Observe that
2 ≤ |Sd(w)

u,v | ≤ n− 2 and that x ∈ Sd(w)
u,v ↔ d(x) = d(w).

The following mathematical arguments were designed to characterize the values
of n that allows PTS to move from a coloring constructed by the circle method to a
coloring non-isomorphic to the original one. It is analogous to define the values of n
for which there is at least one orbit of size smaller than n− 2 in the canonical coloring
of Kn. Functions Υ(v, k), defined by Eq. 2.1, and C(v, w), defined in Chapter 1, refer
to canonical colorings.
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Given three distinct vertices u, v and k, Lemma 1 shows how to compute the
value of another vertex of Kn that belongs to the class Sd(k)

u,v .

Lemma 1. If u, v and k are three distinct vertices of Kn, such that u < v < n − 1,
k ≤ n− 1, and i = d(k), then the following holds:

(I) if k = (2u− v) mod (n− 1) then n− 1 ∈ Siu,v

(II) if k = n− 1 then (2v − u) mod (n− 1) ∈ Siu,v

(III) else vertex (k + v − u) mod (n− 1) ∈ Siu,v
Proof. Let r be the color of the edge (v, k), i.e, C(v, k) = r. By the recursive definition
of Siu,v, k ∈ Siu,v and Υ(u, C(v, k)) ∈ Siu,v.

To prove (I), note that we have Υ(v, r) = k and, since v < (n−1) and k < (n−1),
we can apply the following substitution

Υ(v, r) = k

= (2r − v) mod (n− 1) third case of Eq. 2.1

= (2u− v) mod (n− 1) value of k in (I)

implying that r = u. Consequently, we have

Υ(u, C(v, k)) = Υ(u, r) since C(v, k) = r

= Υ(u, u) since r = u

= n− 1 second case of Eq. 2.1

therefore, n− 1 must be in Siu,v
To prove (II), since Υ(v, r) = k, we can apply the following substitution:

Υ(v, r) = k

= n− 1 value of k in (II)

which implies in r = v, according to the second case of Eq. 2.1. Consequently, we have

Υ(u, C(v, k)) = Υ(u, r) since C(v, k) = r

= Υ(u, v) since r = v

= (2v − u) mod (n− 1) third case of Eq. 2.1

therefore, (2v − u) mod (n− 1) must be in Siu,v
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To prove (III), since k and v are different from each other and different from
n− 1, we can apply the following substitution:

Υ(v, r) = k

= (2r − v) mod (n− 1) third case of Eq. 2.1

2r − v ≡ k mod (n− 1) property of congruence

2r ≡ (k + v) mod (n− 1) adding v to both sides

Observe that

n ≡ 1 mod (n− 1)

2(n/2) ≡ 1 mod (n− 1)

2(n/2)(k + v) ≡ (k + v) mod (n− 1) multiplying both sides by k + v

This implies that r = (n/2)(k + v) mod (n− 1).

Υ(u, C(v, k)) = Υ(u, r) since C(v, k) = r

= Υ(u, (n/2)(k + v) mod (n− 1)) since r = (n/2)(k + v) mod (n− 1)

There are two cases to be considered. Assume first that r 6= u.

Υ(u, C(v, k)) = (2((n/2)(k + v) mod (n− 1))− u) mod (n− 1) third case of Eq. 2.1

= (2((n/2)(k + v))− u) mod (n− 1)

= (n(k + v)− u) mod (n− 1)

= (k + v − u) mod (n− 1) n ≡ 1 mod (n− 1)

Therefore, vertex (k + v − u) mod (n− 1) must be in Siu,v.
In the second case, if r = u then Υ(u, r) = (n − 1). But in this case, since

2r ≡ k + v mod (n− 1), we have 2u ≡ k + v mod (n− 1). After subtracting v from
both sides we have k = (2u − v) mod (n − 1) and then statement (I) of Lemma 1
should be applied.

Lemma 2 takes into account the case where vertex v = (n−1), which is ommited
fom Lemma 1, and shows how to compute the value of another vertex (2k−u) mod (n−
1) that belongs to the class Sd(k)

u,n−1.
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Lemma 2. If u and k are two distinct vertices of Kn, such that u < n− 1, k < n− 1,
and i = d(k), then vertex (2k − u) mod (n− 1) ∈ Siu,n−1.

Proof. Let r be the color of edge (n − 1, k). Note that, by the first case of Eq. 2.1,
r = k. Then, vertex Υ(u, C(n − 1, k)) = Υ(u, r) = Υ(u, k) must be in Siu,n−1. Since
k 6= u, applying the third case of Eq. 2.1, we have Υ(u, r) = (2r − u) mod (n − 1)

and, since r = k, Υ(u, r) = (2k − u) mod (n − 1). Therefore, the vertex (2k − u)

mod (n− 1) must be in Siu,(n−1).

In Lemma 3, if n is chosen so that n− 1 is not a prime then |Sd(1)
0,s | < n− 2. Note

that in Lemma 3 n must be at least 10 since n− 1 is prime for smaller even values of
n > 2.

Lemma 3. If s · t = n− 1, with 1 < s ≤ t < n− 1, then the class Sd(1)
0,s of S0,s has size

t < n− 2.

Proof. By definition, 1 ∈ Sd(1)
0,s . Note that

Υ(0, s) = (2 · 0− s) mod (n− 1) third case of Eq. 2.1

= n− 1− s congruence modulo (n− 1)

= s · (t− 1) because s · t = n− 1

Since (s · i + 1) mod (n − 1) is not a multiple of s, for any positive value of i, then
(s · i + 1) mod (n− 1) 6= (2 · 0− s) mod (n− 1). In consequence, statement (III) of
Lemma 1 applies.

By statement (III) of Lemma 1, (1+s−0) mod (n−1) = (s+1) mod (n−1) ∈
S
d(1)
0,s . The fact that (s+ 1) mod (n− 1) ∈ Sd(1)

0,s implies (2s+ 1) mod (n− 1) ∈ Sd(1)
0,s .

Following this way and applying the statement (III) of Lemma 1 repeatedly, we show
that in fact 1 + i · s ∈ Sd(1)

0,s for all 0 ≤ i < t (observe that 1 + t · s ≡ 1 mod (n− 1)).
Note that (1+i·s) mod (n−1) is never equal to n−1−s because they are not multiple
of s while n − 1 − s is equal to s · (t − 1). Since no other vertex can be obtained by
the recursive definition, the class Sd(1)

0,s has exactly t vertices. To show that t < n− 2,
note that t = (n−1)/s, which is at most (n−1)/3 and this is strictly smaller than n− 2 for
n larger than or equal to 4.

Corollary 1 is a consequence of Lemma 3.

Corollary 1. When n− 1 is not prime there exists u and v in Kn such that partition
Su,v of V \ {u, v} generated by the canonical coloring has more than one class.
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Lemma 4 states that, if one chooses n such that n − 1 is a prime number then
Su,v has one single class of size n− 2, whenever u and v are distinct and smaller than
n− 1. In such conditions, a move in PTS neighborhood will have the same effect as a
move in TS neighborhood structure.

Lemma 4. If (n−1) is prime, Su,v with u < v < n−1 has a unique class of size n−2.

Proof. Choose i = d((2v−u) mod (n−1)). By definition, the vertex (2v−u) mod (n−
1) ∈ Siu,v. Let l be the smallest integer such that 2v − u + (l − 1)(v − u) ≡ 2u − v

mod (n−1). By the recursive application of statement (III) in Lemma 1, we show that
all vertices (2v − u+ (j − 1)(v − u)) mod (n− 1) ∈ Siu,v for all vaues of 2 ≤ j ≤ l.

In order to determe l note that

2v − u+ (l − 1)(v − u) ≡ 2u− v mod (n− 1)

2v − u+ l · v − l · u− v + u ≡ 2u− v mod (n− 1)

(l + 1)v − l · u ≡ 2u− v mod (n− 1)

(l + 2)v − (l + 2)u ≡ 0 mod (n− 1) subtract 2u− v from both sides

(l + 2)(v − u) ≡ 0 mod (n− 1)

since (v − u) and (n− 1) are relatively prime then

l + 2 ≡ 0 mod (n− 1)

l = (n− 3) mod (n− 1)

and since l has to be as small as possible, then l = n− 3.
This implies that, recursively applying the statement (III) of Lemma 1, we show

that n − 4 different vertices (all vertices (2v − u + (j − 1)(v − u)) mod (n − 1) for
2 ≤ j ≤ n− 3) are in Siu,v in addition to vertex (2v − u) mod (n− 1). Then applying
statement (I) of Lemma 1 we show that n− 1 also belongs to Siu,v. Therefore, Siu,v has
size n− 2.

Lemma 5 is a generalization of Lemma 2, by applying the latter t consecutive
times.

Lemma 5. Let i = d(k), if vertex k ∈ Siu,n−1 then, for each t ≥ 1, vertices P(k, t) =

(2tk − (2t − 1)u) mod (n− 1) ∈ Siu,(n−1).

Proof. Observe that, when t = 1, Lemma 5 is equal to Lemma 2. Suppose that
Lemma 5 is valid for a given value of t ≥ 1. We show that it is also valid for t + 1 by
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applying Lemma 2. That is, if (2tk − (2t − 1)u) mod (n− 1) ∈ Siu,(n−1) then:

(2(2tk − (2t − 1)u mod (n− 1))− u) mod (n− 1) = (2t+1k − 2(2t − 1)u− u) mod (n− 1)

= (2t+1k − 2t+1u+ 2u− u) mod (n− 1)

= (2t+1k − (2t+1 − 1)u) mod (n− 1)

∈ Siu,(n−1)

Function P(k, t) gives indeed the value of the t-th vertex (2tk − (2t − 1)u)

mod (n− 1) that belongs to the class Sd(k)
u,(n−1). For instance, when t = 1

(2tk − (2t − 1)u) mod (n− 1) = (21k − (21 − 1)u) mod (n− 1) t = 1

= (2k − (2− 1)u) mod (n− 1)

= (2k − u) mod (n− 1)

which is the same result as the one of Lemma 2.
In Lemma 6, the function R(x, t) is a simplification of the faro shuffle function

given in Eq. 2.2. It gives the position of the card x after t consecutive faro shuffles
in the same deck of playing cards. Lemma 6 shows that R(x, t) and P(k, t) have the
same period.

Lemma 6. Let R(x, t) = 2tx mod (n − 1), 0 < x < n − 1 and let P(k, t) = (2tk −
(2t − 1)u) mod n− 1, 0 ≤ k < n− 1, where u is a constant such that 0 ≤ u < n− 1

and k 6= u. Then R(x, t) = R(x, l) if and only if P(k, t) = P(k, l).
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Proof. In the following sequence each formula is equivalent to the next one:

R(x, t)−R(x, l) = 0

2tx mod (n− 1)− (2lx mod (n− 1)) = 0

(2t − 2l)x ≡ 0 mod (n− 1)

2t − 2l ≡ 0 mod n− 1 0 < x < (n− 1)

(2t − 2l)(k − u) ≡ 0 mod n− 1 k 6≡ u mod (n− 1)

2tk − (2t − 1)u− 2lk + (2l − 1)u ≡ 0 mod (n− 1)

P(k, t)− P(k, l) = 0

Finnaly, Theorem 2 gives the desired result in the study of PTS connectivity.

Theorem 2. Given a complete graph Kn with an even number n of vertices, there
exist vertices u and v of Kn such that the partition Su,v of V \ {u, v} generated by the
canonical coloring has more than one class if and only if (n − 1) is not prime or the
faro shuffle permutation with n elements has no orbit of size n− 2.

Proof. If (n−1) is not prime, Corollary 1 shows that u and v exist and Lemma 3 shows
how they can be found.

If n−1 is prime, Lemma 4 shows that if u and v exist then we must have v = n−1.
In this case, by Lemma 5, we know that the vertices belonging to Sd(k)

u,n−1 are computable
by (2tk−(2t−1)u) mod (n−1), for t ≥ 1. By Lemma 6, we know that such a function
is periodic with the same period as the faro shuffle function. Then, Su,n−1 has more
than one class if and only if the faro shuffle permutation with n elements has no orbit
of size n− 2.



Chapter 4

A New Neighborhood

Last chapter showed that it is not always possible to visit all feasible solutions in
scheduling problems using the existing neighborhoods.

The aim of this chapter is to present a new neighborhood for round-robin sport
scheduling problems that is able to find good schedules regardless the initial solution
or the size of the instance under consideration. We show that one can move from a
valid schedule to another which is not isomorphic to the initial one even when moves in
the existing neighborhood structures cannot. The neighborhood is described in graph
theoretical terms and its correctness is proven.

4.1 Teams and Rounds Swap

This chapter introduces a new neighborhood structure, named Teams and Rounds
Swap (TARS), that combines characteristics of PTS and PRS in order to generate
neighbors that cannot be obtained using either of them.

A move in the proposed neighborhood structure consists of two phases: selection
and change. Given a colored graph s, a vertex v ∈ s and two distinct colors c and
d, the selection phase determines a set of subgraphs of s. In the change phase, the
color assignment of each subgraph identified in the previous phase is modified. The
change phase occurs immediately after the selection phase and it returns a neighbor
solution with the best cost-function for the problem under consideration, among those
obtained through modifications introduced to the color assignment of the subgraphs
selected in the previous phase. Observe that, for any schedule s, TARS(s) = {s′ =

change(s, selection(s, v, c, d)) : v ∈ V, c, d ∈ C, c 6= d}. The selection phase returns up
to O(n) subgraphs. Since there are O(n3) possible combinations of one vertex and two
distinct colors, the size of TARS is O(n4).

35



4. A New Neighborhood 36

4.1.1 Selection phase

The selection phase has four parameters: two distinct colors c and d, and one vertex
v. It selects the subgraphs η1 and ηtp, for t ∈ {2, 3}, of the colored graph s, for
1 ≤ p ≤ pmax, that will be used in the change phase. The value of pmax depends on
the length of a cd− cycle that has vertex v.

parameters: a vertex v and a pair of distinct colors c and d
output: the subgraphs η1 and ηtp of the colored graph s, for 2 ≤ t ≤ 3 and

1 ≤ p ≤ pmax
1 begin
2 p← 1;
3 η1 ← ∅;
4 while η1 = ∅ do
5 η2

p ← η3
p ← ∅;

6 Build a cd− path of size 2p from v1 to v2 having v as the middle vertex;
7 w1 ← adj(v2, c);
8 wend ← adj(v1, d);
9 if w1 = wend then

10 Add the cd− path of size 2p from v1 to v2 having v as the middle vertex
into η1;

11 Add w1, (w1, v1) and (w1, v2) into η1, thus forming a cd− cycle;
12 pmax ← p− 1;
13 else
14 Add the cd− path of size 2p from v1 to v2 having v as the middle vertex

into η2
p;

15 j ← 1;
16 while wj 6= wend do
17 cj ← C(v1, wj);
18 wnew ← adj(v2, cj);
19 Add wj , (v1, wj) and (v2, wj) to both η2

p and η3
p;

20 j ← j + 1;
21 wj ← wnew;

22 Add wend, (v1, wend) and (v2, wend) to both η2
p and η3

p;
23 Build a new cd− path from wend to w1, not passing through v;
24 Add the new cd− path into η3

p;
25 p← p+ 1

Figure 4.1: Pseudocode of the selection phase.

The algorithm in Figure 4.1 depicts the full selection process. First, let p = 1

(line 2) and let η1 to be empty (line 3). The while-loop in lines 4-25 constructs, at
each iteration, a pair of subgraphs η2

p and η3
p or, at its last iteration, the η1 subgraph.
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At each iteration, a cd− path of length 2p having v as its middle vertex is constructed
in line 6. The endpoints of this path are called v1 and v2. See Figure 4.2.

The path is then extended by setting w1 as the vertex adjacent to v2 such that
C(v2, w1) = c and wend as the vertex adjacent to v1 such that C(v1, wend) = d (lines
7 and 8). Observe that, if w1 = wend, the path is now a cycle and the existence of a
longer cd − path having v as its middle vertex is not possible anymore. In this case,
the subgraph η1 is set as the cd− cycle and the selection phase ends (lines 10 and 11),
see Figure 4.3.

v1 v2

v

cd
-p

ath
cd-path

dc

Figure 4.2: The subgraph η1
p = η2

p where
the cd − path from v1 to v2 has v as the
middle vertex.

v1 v2

w1

v

cd
-p

ath
cd-path

dc

cd

Figure 4.3: The subgraph η1
p, obtained

when wi = wk, after the inclusion of the
vertex w1 and edges (v1, w1) and (v2, w1).

If w1 6= wend, subgraphs η2
p and η3

p are constructed (lines 14-24). First, the
cd − path built in line 6 is added to η2

p. The while-loop in lines 16-21 determines a
set of vertices W , including w1 and wend, that are connected to v1 and v2 with edges
colored with the same subset of colors, with the exception of c and d which are the
colors of (w1, v2) and (wend, v1). All vertices in W and the edges joining them to v1

and v2 are then added to η2
p and η3

p, see Figures 4.4 and 4.5.
In lines 23 and 24 a cd− path from wend to w1 not passing through v is built and

added to η3
p, as can be seen in Figure 4.6. To show that such a path always exists,

observe that we have already built a cd− path from w1 to wend passing through v and
that the subgraph induced by the edges colored with c or d is a collection of cd−cycles.
Therefore, there must be a way to reconnect wend and w1 through a new and disjoint
cd− path. After this last step, both η2

p and η3
p are ready to be processed by the change

phase and the algorithm increases the value of p to start a new while-loop iteration.
In the analysis of time complexity for the selection phase of TARS, we assume

that the functions adj(v, c) and C(v, w) take O(1) time. The comparison w1 = wend, in
line 9, is true when the addition of one more vertex is enough to close the cd − path
built in line 6. The loop of lines 4-25 runs until η1 6= ∅, which takes at most O(n)
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v1 v2

w1

w2

wj

wend

v

cd
-p

ath
cd-path

dc

cc1

cj−1cj

...

c2 c1

d ...

...

Figure 4.4: A final configuration of a subgraph η2
p.

v1 v2

w1

w2

wj

wend

cc1

cj−1cj

...

c2 c1

d ...

...

Figure 4.5: A subgraph η3
p obtained after

the inclusion of all vertices in W and the
edges joining them to v1 and v2.

v1 v2

w1

w2

wj

wend

cd
-p
at
h
d

c

cc1

cj−1cj

...

c2 c1

d ...

...

Figure 4.6: A configuration of a subgraph
η3
p after the inclusion of the cd − path
starting from wend and ending at w1, not
passing through v.

iterations since the maximum value of p is limited by n/2 − 1. The path constructed
in line 6 can be extended from the path used in the previous iteration and takes O(1)

to be updated. The loop in lines 16-21 runs for at most n iterations since it processes
one vertex at each iteration and cannot process a vertex twice. The construction of
the path in line 23 takes O(n) time. All other operations take constant time and the
complexity of the entire algorithm is O(n2).
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4.1.2 Change phase

Every subgraph η1 and ηtp, for t ∈ {2, 3} and 1 ≤ p ≤ pmax obtained in the selection
phase is used as input in the change phase in order to perform a move in the TARS
neighborhood structure. All neighbor solutions created in this phase are evaluated and
the one with best cost function value of the associated problem is returned.

input : the subgraphs η1 and ηtp of the colored graph s, for 2 ≤ t ≤ 3 and
1 ≤ p ≤ pmax

output: a neighbor solution with the best cost function
1 begin
2 foreach subgraph ηtp do
3 let t be the superindex of the subgraph;
4 if t = 1 then
5 Perform a move in PRS neighborhood based on a subgraph of η1;
6 else if t = 2 then
7 if p = 1 then
8 Perform a move in PTS neighborhood based on the subgraph of η2

1;
9 else

10 Exchange the colors along the cd− path from v1 to v2;
11 foreach edge e ∈ η2

p incident to v1 and not in the cd− path do
12 Let w be the end vertex of e such that w 6= v1;
13 Exchange the color assignment of (v1, w) and (v2, w);

14 else
15 Exchange the colors along the cd− path from wend to w1;
16 Let fan(v1) = {(v1, w1), (v1, w2), . . . , (v1, wend)};
17 Let fan(v2) = {(v2, w1), (v2, w2), . . . , (v2, wend)};
18 Rotate fan(v1) by shifting it backward;
19 Rotate fan(v2) by shifting it forward;

20 s′ ← neighbor solution obtained in the current iteration;
21 if cost function of s′ is the best so far then
22 s? ← s′;

23 return s?

Figure 4.7: Pseudocode of the change phase.

Figure 4.7 gives the pseudocode of the change phase. For each subgraph, it
identifies the value of the superindex t in order to decide what kind of change will be
applied to the subgraph under consideration (line 3). If t = 1 then it exchanges the
colors c and d along the edges of η1 in order to obtain a subgraph equivalent to the
one in Figure 4.8. Note that this procedure (line 5) is equivalent to a move in PRS
neighborhood, as depicted in Figure 3.4.
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v1 v2

w1

v

cd
-p

ath
cd-path

cd

dc

Figure 4.8: A resulting subgraph η1 obtained in the change phase after exchanging the
colors c and d along its edges.

If t = 2 and p = 1 then the move based on the subgraph η2
1 is equivalent to a PTS

move, as depicted in Figures 3.7 and 3.8 . In case p 6= 1 then, in line 10, the algorithm
exchanges the colors c and d along the cd − path starting from v1 and ending at v2.
From line 11 and 13, it exchanges the color of the edges (v1, wi) and (v2, wi) for each
vertex wi in the set W determined in the selection phase. See Figure 4.9.

v1 v2
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c2c1

...
d...

...

Figure 4.9: A resulting subgraph η2
p after

exchanging the colors c and d in cd−path
and exchanging the color assignment of
(v1, w) and (v2, w).
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Figure 4.10: The resulting subgraph η3
p

obtained after exchanging the colors c and
d in cd − path and rotating fan(v1) and
fan(v2).

If t = 3 then, it exchanges the colors c and d along the cd − path starting from
wend and ending at w1 (line 15). Let fan(v1) = {(v1, w1), (v1, w2), . . . , (v1, wend)} and
fan(v2) = {(v2, w1), (v2, w2), . . . , (v2, wend)} such that C(v1, wj) = cj and C(v2, wj) =

cj−1. Next, the algorithm rotates fan(v1) and fan(v2) by shifting fan(v1) backward
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and shifting fan(v2) forward, see Figure 4.10.
The rest of the algorithm keeps track of the best neighbor solution and returns

it once all neighbors were generated and evaluated according to the problem objective
function.

The algorithm processes 2pmax + 1 subgraphs. Since pmax ≤ n/2 − 1, the outer
loop executes O(n) iterations. A move in PRS or in PTS can be performed in O(n).
The exchange of colors of the cd− paths in lines 10 and 15, as well as the loop of lines
11-13, can be implemented in O(n). The rotation of each fan in lines 18 and 19 also
takes O(n) and the entire algorithm runs in O(n2) time.

Figure 4.11 shows a subgraph η2
3 obtained from an edge-colored K12, with

parameters v = 8, color c represented by solid lines and color d represented by
double-dashed lines. In this subgraph, we have v1 = 1, v2 = 7, cd − path =

{(1, 6), (6, 10), (10, 8), (8, 11), (11, 9), (9, 7)}, 2p = |cd − path| = 6, w1 = 4, w2 = 10,
w3 = 5 and w4 = wend = 0. Figure 4.12 gives the resulting subgraph after we exchange
the colors along the cd − path, starting from v1 = 1 and ending at v2 = 7, and swap
the assignment of colors of the edges joining v1, v2 and wj, with 1 ≤ j ≤ 4.

wend

w1

v1

v

v2

1 7
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5
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9
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dc

d d

Figure 4.11: A subgraph η2
3 obtained

from an edge-colored K12.

wend

w1

v1

v

v2

1 7

4

10

5

06

8

11

9
d

cd

c

Figure 4.12: A resulting subgraph after
we change the assignment of colors in
η2

3.

Figure 4.13 shows a subgraph η3
3 obtained from the same edge-colored K12 with

the same parameters used to build the subgraph η2
3 in Figure 4.11. Note that η2

3 and
η3

3 differ only by the cd − path present in them. In this subgraph, we have v1 = 1,
v2 = 7, fan(v1) = {(1, 4), (1, 10), (1, 5), (1, 0)}, fan(v2) = {(7, 4), (7, 10), (7, 5), (7, 0)},
w1 = 4, w2 = 10, w3 = 5, w4 = wend = 0, and cd − path = {(0, 5), (5, 2), (2, 3), (3, 4)}.
Figure 4.14 gives the resulting subgraph after we exchange the colors along the cd−path
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starting from w4 = 0 and ending at w1 = 4 and rotate fan(v1) by shifting it backward
and rotate fan(v2) by shifting it forward. Notice that the vertices wj, for 1 ≤ j ≤ 4,
may belong to any cd− path in ηtp.
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Figure 4.13: A subgraph η3
3 obtained

from an edge-colored K12.
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Figure 4.14: A resulting subgraph after
we change the assignment of colors in
η3

3.

Figure 4.15 shows an example of how a move in TARS neighborhood structure
changes the opponent assignment in a timetable. The timetable on the left was obtained
with the circle method, for a tournament with n = 12. The teams were chosen in such
a way to reflect the underlying subgraph represented in Figure 4.13. On the right, we
have a resulting timetable after performing a move in TARS neighborhood structure
that considers the subgraph represented in Figure 4.14. Note that such move is quite
hard to derive and understand without the graph theory modeling used in this thesis.

4.1.3 Correctness of Teams and Rounds Swap

When applying a move in TARS neighborhood structure that is based on a subgraph
ηtp, the obtained neighbor s′ ∈ TARS(s) is a proper edge coloring of the graph. To
show that, we analyze the changes of colors of the edges involved in the move.

Moves based on η1 subgraphs are equivalent to PRS moves and are therefore
valid.

For moves based on η2
p and η3

p subgraphs we analyze, for each vertex in the
subgraph, the modification in the color assignment of its incident edges and certify
that each color is still present in exactly one of them after the move.

First, we analyze η2
p subgraphs.
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r
0 1 2 3 4 5 6 7 8 9 10

t

0 11 2 4 6 8 10 1 3 5 7 9
1 10 11 3 5 7 9 0 2 4 6 8
2 9 0 11 4 6 8 10 1 3 5 7
3 8 10 1 11 5 7 9 0 2 4 6
4 7 9 0 2 11 6 8 10 1 3 5
5 6 8 10 1 3 11 7 9 0 2 4
6 5 7 9 0 2 4 11 8 10 1 3
7 4 6 8 10 1 3 5 11 9 0 2
8 3 5 7 9 0 2 4 6 11 10 1
9 2 4 6 8 10 1 3 5 7 11 0
10 1 3 5 7 9 0 2 4 6 8 11
11 0 1 2 3 4 5 6 7 8 9 10

r
0 1 2 3 4 5 6 7 8 9 10

t

0 11 2 4 6 8 10 7 3 1 5 9
1 4 11 3 10 7 9 5 2 0 6 8
2 9 0 11 4 6 8 10 1 5 3 7
3 8 10 1 11 5 7 9 0 4 2 6
4 1 9 0 2 11 6 8 10 3 7 5
5 6 8 10 7 3 11 1 9 2 0 4
6 5 7 9 0 2 4 11 8 10 1 3
7 10 6 8 5 1 3 0 11 9 4 2
8 3 5 7 9 0 2 4 6 11 10 1
9 2 4 6 8 10 1 3 5 7 11 0
10 7 3 5 1 9 0 2 4 6 8 11
11 0 1 2 3 4 5 6 7 8 9 10

Figure 4.15: An example of a move in TARS neighborhood structure for a tournament
with n = 12.

• Interior vertices of cd− path:
Note that all these vertices have an incident edge colored with c and an incident
edge colored with d that are part of cd − path. Therefore, by exchanging colors
c and d the colors assigned to edges incident to those vertices remain the same.

• Vertices v1 and v2:
These are the end vertices of the cd − path. After exchanging the colors in the
edges of this path, the color c will not be assigned to any edge incident to v1 and
will be assigned to two edges incident to v2. An equivalent situation occurs with
color d considering vertices v1 and v2 in reverse order. After exchanging the color
of the remaining edges in η2

p, the situation is fixed. By construction of η2
p, every

color present in an edge incident to v1 is also present in an edge incident to v2.
Therefore, after exchanging colors, the set of colors present in edges incident to
v1 (as well as those present in edges incident to v2) are the same.

• Vertices wj ∈ W :
For any vertex wj, two incident edges exchange their color assignments. The
colors assigned to edges incident to those vertices remain the same.

Finally, we analyze moves based on η3
p subgraphs.

• Interior vertices of cd− path:
The situation is equivalent to the correspondent case for η2

p subgraphs.
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• Vertices v1 and v2:
These vertices are the center of the fans. Note that, since the shifts are circular,
the set of colors incident to them is unchanged after the rotation.

• Vertices wj ∈ W \ {w1, wend}:
Observe that, for these vertices wj, it holds that C(v1, wj) = cj and C(v2, wj) =

cj−1. After the shift of both fans the new coloring satisfies that C(v1, wj) = cj−1

and C(v2, wj) = cj. All other edges incident to wj are unchanged, therefore, all
colors remain present at it.

• Vertices w1 and wend:
For vertex w1, it holds that C(v1, w1) = c1 and C(v2, w1) = c. After rotating both
fans it holds that C(v1, w1) = d and C(v2, w1) = c1. Now, in the set of edges
incident to w1, the color c is absent and color d is repeated. By exchanging the
colors of cd−path, one edge changes its color from d to c restoring the correctness
of the coloring. An equivalent analysis shows that the new coloring is also proper
in regard to wend.

4.2 A study in connectivity of TARS neighborhood

structure

In general, good neighborhood structures offer a high search capability and conse-
quently lead to good results largely independent of the initial solution while the search
performance induced by weak neighborhood structures is often highly correlated to the
initial solution [Papadimitriou and Steiglitz, 1998].

Chapter 3 exposed conditions in which the existing neighborhood strucures
suffer from the issue of non-connectivity. In this chapter, we show that the
proposed TARS neighborhood structure is able to get around the issue of non-
connectivity, regardless the initial solution or the number of participating teams.
Figure 4.16 shows a perfect one-factorization of K12; each row is a one-factor and
each pair of vertices indicates an edge. Thus, the first line specifies the one-factor
{(0, 11), (1, 10), (2, 9), (3, 8), (4, 7), (5, 6)}. The union of any two factors builds a hamil-
tonian cycle, as the one depicted in Figure 4.18, obtained by considering its two first
factors. Also, for any pair of vertices, the smallest set of factors in which they share
all its adjacent vertices has size n− 2.
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(0,11), (1,10), (2,9), (3, 8), (4, 7), (5, 6)
(0,9), (1, 8), (2, 7), (3, 6), (4, 5), (10,11)
(0, 7), (1, 6), (2, 5), (3, 4), (8,10), (9,11)
(0, 5), (1, 4), (2, 3), (6,10), (7,9), (8,11)
(0, 3), (1, 2), (4,10), (5,9), (6, 8), (7,11)
(0, 1), (2,10), (3,9), (4, 8), (5, 7), (6,11)
(0,10), (1,9), (2, 8), (3, 7), (4, 6), (5,11)
(0, 8), (1, 7), (2, 6), (3, 5), (4,11), (9,10)
(0, 6), (1, 5), (2, 4), (3,11), (7,10), (8,9)
(0, 4), (1, 3), (2,11), (5,10), (6,9), (7, 8)
(0, 2), (1,11), (3,10), (4,9), (5, 8), (6, 7)

Figure 4.16: A perfect one-factorization
of K12.

(0,11), (1, 4), (2,9), (3, 8), (5, 6), (7,10)
(0,9), (1, 8), (2, 7), (3, 6), (4, 5), (10,11)
(0, 5), (1, 6), (2, 3), (4, 7), (8,10), (9,11)
(0, 1), (2, 5), (3, 4), (6,10), (7,9), (8,11)
(0, 3), (1, 2), (4,10), (5,9), (6, 8), (7,11)
(0, 7), (1, 5), (2,10), (3,9), (4,8), (6,11)
(0,10), (1,9), (2, 8), (3, 7), (4, 6), (5,11)
(0, 8), (1, 7), (2, 6), (3, 5), (4,11), (9,10)
(0, 6), (1,10), (2, 4), (3,11), (5, 7), (8,9)
(0, 4), (1, 3), (2,11), (5,10), (6,9), (7, 8)
(0, 2), (1,11), (3,10), (4,9), (5, 8), (6, 7)

Figure 4.17: A one-factorization obtained
after a move in TARS neighborhood struc-
ture.
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Figure 4.18: A Hamiltonian cycle built us-
ing the first two factors of a perfect one
factorization of K12.
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Figure 4.19: After a move in TARS neigh-
borhood, the two first factors form two
distinct cycles, showing that the new fac-
torization is no longer perfect.

Figure 4.17 shows a one-factorization of K12 obtained from the perfect one-
factorization of K12 depicted in Figure 4.16, after a single TARS move. A graphical
representation of such move is given by Figures 4.13 and 4.14.

In Figure 4.19 we have the subgraph induced by the two first factors from Fig-
ure 4.17. As one can see, the two factors do not form a hamiltonian cycle, which shows
that the new factorization is no longer perfect. Therefore, by this example, we show
that TARS increases the connectivity of the solution space of SRR sport scheduling
problems.

For any schedule s, all schedules s′ that are connected to s through PTS, PRS,
TS and RS moves, are also connected to s through a TARS move. Furthermore,
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Figures 4.16 and 4.17 show that there is at least one pair of schedules s and s′ not
connected by PRS or PTS, which are connected by TARS. Whether the solution space
is fully connected by TARS is still an open issue.



Chapter 5

Computational Results

This chapter presents a series of experimental analysis that were carried out in or-
der to evaluate the neighborhood structures described in this thesis. We describe two
sport scheduling problems: the Weighted Carry-over Effects Value Minimization Prob-
lem (WCOEVMP), proposed by [Guedes and Ribeiro, 2011], and the Traveling Tour-
nament Problem with Predefined Venues (TTPPV), proposed by [Melo et al., 2009].
An ILS heuristic is applied to both problems. At the end of this chapter, we present
some computational results that confirm the theoretical foundation introduced in the
previous chapters.

5.1 The Weighted Carry-Over Effects Values

Minimization Problem

The Carry-over effects value (COEV) is one of the various measures that can be consid-
ered when assessing the quality of a round-robin tournament schedule. If team a plays
against team b and c in two consecutive rounds, team c is said to receive a carry-over
effect from team b. The rounds are considered cyclically, i.e., round n − 1 is followed
by the first round. Let Cab denote the number of times team b receives a carry-over
effect from team a during a tournament. Hence the COEV of an n-team SRR schedule
is given by COEV =

∑n
a=1

∑n
b=1Cab

2.
If team b is much stronger than the other competitors, then team c will possibly

take some advantage over team a in their game due to the great effort team a went
through in its previous game. This sort of situation, in which one of the teams might
be benefited, should be avoided or at least minimized. The problem of minimizing the
COEV in SRR schedules was originally proposed by [Russell, 1980].

47
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Based on the schedule described in Figure 5.1 (a), one may count the number of
carry-over effects each team gives to every other in an SRR tournament and build the
carry-over effects matrix, as shown in Table 5.1 (b). Each entry (a, b) in this matrix
indicates the number of carry-over effects team a gives to team b. An ideal schedule is
one in which all non-diagonal elements of the corresponding matrix are equal to one.

teams rounds

0 1 2 3 4

0 −4 −5 +3 −1 −2
1 −3 +4 −2 +0 −5
2 −5 +3 +1 −4 +0
3 +1 −2 −0 −5 +4
4 +0 −1 +5 +2 −3
5 +2 +0 −4 +3 +1

teams teams

0 1 2 3 4 5

0 0 1 0 0 1 3
1 0 0 3 0 1 1
2 3 0 0 1 1 0
3 1 3 0 0 1 0
4 1 1 1 1 0 1
5 0 0 1 3 1 0

Figure 5.1: (a) A tournament schedule for 6 teams comprising 5 rounds. (b) A carry-
over effects matrix.

In the original problem, all carry-over effects have the same weight unit. Taking
into account the different strength of teams in real competitions, [Guedes and Ribeiro,
2011] proposed the weighted variant of the problem called Weighted Carry-over Effects
Value Minimization Problem (WCOEVMP). For instance, a team with a small number
of good players may be more susceptible to the carryover effect than a team with a lot of
good players, which can more easily deal with injuries or suspensions, or even simply put
a completely fresh team on the pitch after a difficult game. In this approach, we assign
a weight wab to every ordered pair (a, b) of teams, based on their relative strengths
or handicaps, and minimize the total weighted carry-over effects value. Therefore,
the weighted COEV of an SRR schedule with n participating teams is given by the
following equation:

WCOEV =
n∑

a=1

n∑

b=1

wab × Cab2 (5.1)

[Goossens and Spieksma, 2012a] claim that, in general, a football team cannot
be considered at a disadvantage because of a schedule that does not balance carryover
effects. However, it does not exclude that there may exist specific circumstances where
the carryover effect may have an influence.
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5.2 The Traveling Tournament Problem with

Predefined Venues

The Traveling Tournament Problem with Predefined Venues (TTPPV) [Melo et al.,
2009] is a variant of the Traveling Tournament Problem (TTP) [Easton et al., 2001]
and consists in scheduling an SRR tournament in which the home team of each game is
known beforehand. A game between teams i and j can be represented by the ordered
pair (i, j) or by the ordered pair (j, i). In the first case, the game between teams i and
j takes place at the venue of team i; otherwise, at the venue of team j. For instance,
the home-away assignment for the tournament schedule presented in Figure 5.1 (a) can
be represented by {(4, 0), (5, 0), (0, 3), (1, 0), (2, 0), (3, 1), (1, 4), (2, 1), (5, 1), (5, 2),
(2, 3), (4, 2), (5, 3), (3, 4), (4, 5)}.

Given an n × n distance matrix, assume that each team is at its home venue at
the beginning of the tournament and that it returns there after playing its last game.
The goal of the problem is to minimize the total distance traveled by all teams while no
team plays more than three consecutive home-games or three consecutive away-games.

The circle method and vizing algorithm are used by [Costa et al., 2012] in order to
build initial solutions for the TTPPV. Both construction procedures and some moves
in neighborhood structures for SRR tournament problems may build schedules that
violate the limits on the maximum number of consecutive home or away-games.

teams rounds

0 1 2 3 4

0 -4 -5 +3 -1 -2
1 -3 +4 -2 +0 -5
2 -5 +3 +1 -4 +0
3 +1 -2 -0 -5 +4
4 +0 -1 +5 +2 -3
5 +2 +0 -4 +3 +1

teams rounds

0 1 2 3 4

0 -4 -5 -2 -1 +3
1 -3 +4 -5 +0 -2
2 -5 +3 +0 -4 +1
3 +1 -2 +4 -5 -0
4 +0 -1 -3 +2 +5
5 +2 +0 +1 +3 -4

Figure 5.2: A neighbor solution obtained after a move in RS neighborhood having
rounds 2 and 4 as parameters.

Figure 5.2 shows a neighbor schedule obtained after a move in RS neighborhood,
considering the tournament scheduled presented in Figure 5.1 (a) and rounds 2 and 4
as parameters. After the move, team 0 has four away-games in a row while team 5 has
four home-games in a row. Thus, this neighbor solution has two violations.
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An ILS heuristic for the TTPPV was proposed in [Costa et al., 2012]. The local
search algorithm is allowed to work with solutions with violations in the number of
consecutive home or away-games. They showed that, for several values of n, ordered
one-factorizations obtained by the circle method should not be used to build initial
solutions. Instead, using vizing algorithm for constructing the initial solutions led to
better solutions as the authors were able to obtain better results for the problem than
the ones previously published in [Melo et al., 2009].

5.3 Experimental results

In this work, we heuristically tackle the WCOEVMP and the TTPPV with a simple
heuristic based on the ILS heuristic proposed in [Guedes and Ribeiro, 2011], depicted
in Figure 5.3. The main difference from our version of the ILS to the one proposed by
[Guedes and Ribeiro, 2011] is the stopping criterion. While they use a fixed number of
iterations for each instance, we fix the wall-clock runtime of our experiments to n3/2

seconds. Otherwise, we kept all other features of the original version. The experimental
results aim to validate the theoretical findings presented in the previous chapters.

1 begin
2 while runtime < n3/2 seconds do
3 Build a solution s;
4 repeat
5 Obtain a solution s′ by applying a perturbation to s;
6 Apply local search to s′;
7 Replace s by s′ using an acceptance criterion;
8 Update the best-known solution s?;
9 until non-improving condition is met ;

10 return s∗

Figure 5.3: Iterated Local Search heuristic.

The ILS heuristic depicted in Figure 5.3 starts by constructing an initial solution
s with the circle method or vizing algorithm (line 3). An inner loop starts in line
4. The solution s is then perturbed by applying up to five random moves of PRS
or PTS neighborhood, randomly chosen (line 5). Then, a local search procedure is
applied to the perturbed solution s′, using either PRS∪PTS or TARS, with the best
improvement strategy, that is, moving the search from the current solution to the best
neighbor solution until there is not neighbor solution that improves s′ (line 6). Next,
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the solution s′, is compared with the current solution s. The current solution s is
replaced by s′, in line 7, if the cost function of the latter is less than or equal to (1 + b)

times the cost function of s. The value of the variable b starts with 0.01 and it doubles
after every 2× n iterations without an update of the current solution. The variable b
is reset to its initial value whenever the current solution is updated. Finally, in line 8,
the best-known solution s∗ is updated if the cost function of s′ is smaller than the cost
function of s?. The inner loop stops in line 9 after a maximum number of 1000 non-
improving moves have been accepted since the last time the best solution was updated.
The same parameter setup was defined for both case study problems.

Computational experiments were performed on an Intel R© Xeon R© E5-2660 ma-
chine with 2.20 GHz and 128 GB of RAM memory. The code was implemented in
C++ and compiled with a GNU GCC compiler version 4.9.2 under Ubuntu Linux
14.10. The same set of instances considered in [Guedes and Ribeiro, 2011] for the
WCOEVMP and in [Costa et al., 2012] for the TTPPV were used in our experiments.
Average and best values were obtained over 30 independent runs of the ILS heuristic
for each instance.

Tables 5.1, 5.2 and 5.6 provide an experimental evaluation of the performance of
the studied neighborhood structures. The first column shows the instance sizes while
the second column gives the instance names. For each instance, an initial solution is
obtained with a constructive method. Next, a local search based on the best improve-
ment strategy is applied until a local optimum is found. The third, fourth, fifth and
sixth columns give the average local optimum values over 30 repetitions of such proce-
dure. The last two columns give the relative difference between PRS∪PTS and TARS,
computed as λ−µ

µ
× 100%, where λ stands for the values obtained with PRS∪PTS,

and µ stands for the values obtained with TARS. The performance of the local search
using TARS is considered superior whenever the relative difference is positive, and the
performance of the local search using PRS∪PTS is superior otherwise.

The numerical results obtained with ILS heuristic are presented in Tables 5.3, 5.4,
5.5, 5.7 and 5.8. The first column shows the instance sizes while the second column gives
the instance names. The third one shows the best-known results for the WCOEVMP as
reported in [Guedes and Ribeiro, 2011] or for the TTPPV as reported in [Costa et al.,
2012]. Fourth and fifth columns show the best results obtained by the ILS heuristic
based on the PRS∪PTS neighborhood structure when the circle method and vizing
method were respectively used to build initial solutions. The next two columns display
the average results, considering both versions of the ILS heuristic for each instance.
The next four columns show the same information for the ILS heuristic based on TARS
neighborhood structure. The next two columns present the lower and upper bounds
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of the confidence interval obtained for the difference of averages observed for the ILS
heuristic based on the PRS∪PTS neighborhood structure and the ILS heuristic based
on TARS neighborhood structure when both heuristics use the circle method to build
initial solutions. The last two columns show the same information when using the
vizing algorithm to build initial solutions.

A t-test for paired observations, as presented in [Jain, 1991], was applied in
order to compare the different configurations of the ILS. A 99.9% confidence level
was chosen. 30 experiments on each configuration were conducted such that there
is a one-to-one correspondence between the ith test on each configuration. For each
pair of configuration, the difference in performance can be computed and a confidence
interval can be constructed for the difference. If the confidence interval includes zero,
the systems are not significantly different.

Whenever the lower-bound of the confidence interval is greater than zero, one
can be 99.9% confident that the ILS heuristic based on TARS neighborhood structure
outperforms the same ILS heuristic using the existing neighborhood structures for the
given instance and for the given method that is used to build an initial solution.

5.3.1 Numerical results for the Weighted Carry-Over Effects

Values Minimization Problem

Four classes of instances for the WCOEVPM, generated by [Guedes and Ribeiro, 2011],
were used in order to evaluate the performance of the studied neighborhoods. The
weights of the Random instances are randomly generated in the interval [1, 2n]. Three
matrices identified by letters A, B and C were generated for each value of n. For
the Linear instances, a strength in the interval [1, n] is assigned to each team. For
simplicity, the strength of team i is made equal to i. Each weight wij is defined as
the absolute value of the difference between the strengths of teams i and j. For the
real-life inspired instances, six instances are derived from six consecutive issues of the
Brazilian football championship. The strength of each team is given by the number
of points it obtained in the previous year. As with the linear instances, each weight
wij is defined as the absolute value of the difference between the strengths of teams i
and j. For the Perturbed instances, each weight of a linear instance is increased by an
individual perturbation, randomly generated in the interval [−n/2, n/2]. Three different
instances identified by letters A, B and C are generated for each value of n. Absolute
values are taken whenever the perturbation leads to a negative weight.

As can be seen from Tables 5.1 and 5.2, the performance of the local search using
TARS is slightly superior when vizing method is used to build the initial solutions,
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for almost all considered instances. The relative difference is greater when the circle
method is considered for building the initial solutions, specially for those values of
instance sizes listed in [OEIS, 2015], as 12, 14 and 20.

For the Random instances in Table 5.3, when the circle method is used to build
the initial solutions and for any instance of size greater than or equal to 12, TARS
outperforms the existing neighborhood structures. The proposed algorithm was able to
improve the best-known solution for 14 of the 27 evaluated instances. Besides the draw
in two results for instances of size 10, the ILS version using the existing neighborhoods
found two best results for inst12randomB and inst16randomB. Note that those results
were obtained when the vizing algorithm was used to build the initial solutions.

Table 5.4 gives the numerical results for the classes of linear instances and real-life
inspired instances. For linear instances, regardless the initial solution, TARS outper-
forms the existing neighborhood structures for instances of sizes greater than 12. For
the real-life inspired instances, TARS outperforms the existing neighborhood structures
in all scenarios, except the one with instances of size 24 and when the initial solution
is obtained with the circle method.

For the Perturbed instances in Table 5.4, although the numerical results present
an outlier, for instance, inst16perturbedlinearA, TARS still outperforms the existing
neighborhood structures at 99.9% confidence level for instances of sizes greater than
12, regardless the initial solution used.

5.3.2 Numerical results for the Traveling Tournament Problem

with Predefined Venues

Two sets of instances for the TTPPV, generated by [Costa et al., 2012], were used in
order to evaluate the performance of the studied neighborhoods in Table 5.6 and in
the computational experiments presented in Tables 5.7 and 5.8. In these instances, the
distance between team i and j, for i > j is given by min{i − j, j − i + n}, which are
the same as in instances circ18 and circ20 of the TTP.

As can be seen from Table 5.6, the performance of the local search using TARS
is superior regardless the method used to build the initial solutions, for all considered
instances. The relative difference is at least 17.1% when the circle method is considered
for building the initial solutions for instances of size 20.

For instances of size 18 of the TTPPV, TARS was able to improve the best-
known solution for 13 of the 17 evaluated instances. For all instances of size 20 of the
TTPPV, TARS outperforms the existing neighborhood with a 99.9% confidence level
for all 18 evaluated instances. This result was expected since 20 is a special case of
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Instance PRS∪PTS TARS Relative difference

Size Name Circle Vizing Circle Vizing Circle Vizing

4 inst4randomA 63.0 63.0 63.0 63.0 0.0% 0.0%
4 inst4randomB 53.0 53.0 53.0 53.0 0.0% 0.0%
4 inst4randomC 45.0 45.0 45.0 45.0 0.0% 0.0%
6 inst6randomA 233.0 233.0 233.0 233.0 0.0% 0.0%
6 inst6randomB 274.6 274.5 274.6 274.5 0.0% 0.0%
6 inst6randomC 244.4 242.0 244.0 241.6 0.2% 0.2%
8 inst8randomA 553.5 564.3 564.9 556.9 -2.0% 1.3%
8 inst8randomB 572.4 552.6 544.3 552.4 5.2% 0.0%
8 inst8randomC 545.5 554.5 523.4 549.9 4.2% 0.8%
10 inst10randomA 1176.5 1184.7 1123.6 1133.8 4.7% 4.5%
10 inst10randomB 1031.6 1034.0 996.7 975.4 3.5% 6.0%
10 inst10randomC 976.5 977.9 931.9 935.8 4.8% 4.5%
12 inst12randomA 2098.3 1925.0 1832.9 1836.6 14.5% 4.8%
12 inst12randomB 2067.9 1857.7 1789.8 1784.0 15.5% 4.1%
12 inst12randomC 2197.6 1930.8 1915.9 1866.2 14.7% 3.5%
14 inst14randomA 3430.1 3108.8 2990.8 2957.8 14.7% 5.1%
14 inst14randomB 3745.1 3499.4 3317.2 3275.5 12.9% 6.8%
14 inst14randomC 3570.1 3292.7 3223.3 3219.5 10.8% 2.3%
16 inst16randomA 4748.3 4538.0 4429.9 4359.6 7.2% 4.1%
16 inst16randomB 4678.9 4569.4 4384.8 4362.1 6.7% 4.8%
16 inst16randomC 4723.3 4539.1 4382.3 4326.4 7.8% 4.9%
18 inst18randomA 7024.3 6629.9 6393.4 6251.5 9.9% 6.1%
18 inst18randomB 7351.9 6978.8 6754.6 6675.9 8.8% 4.5%
18 inst18randomC 7092.3 6576.5 6387.3 6207.2 11.0% 6.0%
20 inst20randomA 9932.9 9316.2 8909.3 8628.5 11.5% 8.0%
20 inst20randomB 10196.0 9440.9 9050.3 8853.2 12.7% 6.6%
20 inst20randomC 9822.2 9139.3 8797.2 8773.0 11.7% 4.2%

4 inst4linear 20.0 20.0 20.0 20.0 0.0% 0.0%
6 inst6linear 114.0 114.0 114.0 114.0 0.0% 0.0%
8 inst8linear 178.1 185.3 176.8 181.9 0.7% 1.9%
10 inst10linear 405.0 403.6 383.2 391.3 5.7% 3.2%
12 inst12linear 783.7 688.3 660.3 680.2 18.7% 1.2%
14 inst14linear 1225.8 1078.7 1042.0 1043.6 17.6% 3.4%
16 inst16linear 1675.7 1620.8 1561.5 1506.1 7.3% 7.6%
18 inst18linear 2454.4 2299.1 2185.7 2162.7 12.3% 6.3%
20 inst20linear 3471.3 3085.1 2960.9 2942.1 17.2% 4.9%

Table 5.1: Performance evaluation of the existing neighborhoods for the Weighted
Carry-Over Effects Value Minimization Problem. The local optimum values were ob-
tained after applying each local search procedure to solutions obtained with construc-
tive methods presented in this thesis.
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Instance PRS∪PTS TARS Relative difference

Size Name Circle Vizing Circle Vizing Circle Vizing

4 inst4perturbedlinearA 16.0 16.0 16.0 16.0 0.0% 0.0%
4 inst4perturbedlinearB 17.0 17.0 17.0 17.0 0.0% 0.0%
4 inst4perturbedlinearC 22.0 22.0 22.0 22.0 0.0% 0.0%
6 inst6perturbedlinearA 72.2 72.2 72.2 71.9 0.0% 0.4%
6 inst6perturbedlinearB 73.0 73.0 73.0 73.0 0.0% 0.0%
6 inst6perturbedlinearC 60.0 60.0 60.0 60.0 0.0% 0.0%
8 inst8perturbedlinearA 173.7 176.1 171.1 173.0 1.5% 1.8%
8 inst8perturbedlinearB 180.5 176.9 172.2 177.2 4.8% -0.2%
8 inst8perturbedlinearC 195.1 188.5 185.2 185.6 5.3% 1.6%
10 inst10perturbedlinearA 434.7 432.3 409.2 415.9 6.2% 3.9%
10 inst10perturbedlinearB 354.2 357.8 336.3 335.5 5.3% 6.6%
10 inst10perturbedlinearC 392.4 392.3 374.8 375.6 4.7% 4.4%
12 inst12perturbedlinearA 872.6 768.8 719.1 731.3 21.4% 5.1%
12 inst12perturbedlinearB 774.3 683.2 643.1 654.6 20.4% 4.4%
12 inst12perturbedlinearC 785.9 664.3 637.5 629.3 23.3% 5.6%
14 inst14perturbedlinearA 1341.8 1150.1 1077.8 1069.7 24.5% 7.5%
14 inst14perturbedlinearB 1304.9 1108.9 1034.5 1027.2 26.1% 8.0%
14 inst14perturbedlinearC 1323.8 1150.2 1112.7 1094.8 19.0% 5.1%
16 inst16perturbedlinearA 1846.8 1784.5 1705.7 1670.8 8.3% 6.8%
16 inst16perturbedlinearB 1767.9 1714.8 1631.2 1595.4 8.4% 7.5%
16 inst16perturbedlinearC 1528.0 1473.4 1374.3 1369.1 11.2% 7.6%
18 inst18perturbedlinearA 2842.3 2541.9 2447.1 2404.9 16.2% 5.7%
18 inst18perturbedlinearB 2645.6 2408.5 2290.1 2293.1 15.5% 5.0%
18 inst18perturbedlinearC 2546.2 2275.7 2117.8 2107.4 20.2% 8.0%
20 inst20perturbedlinearA 4002.1 3574.0 3486.4 3363.8 14.8% 6.3%
20 inst20perturbedlinearB 3883.2 3342.5 3200.5 3173.6 21.3% 5.3%
20 inst20perturbedlinearC 3785.0 3281.2 3110.9 3041.5 21.7% 7.9%

24 inst24brazil2003 10136.7 9741.2 9441.1 9200.8 7.4% 5.9%
24 inst24brazil2004 10377.2 9723.5 9543.0 9258.3 8.7% 5.0%
22 inst22brazil2005 6898.1 6670.6 6525.3 6327.9 5.7% 5.4%
20 inst20brazil2006 6978.7 6670.0 6400.6 6340.7 9.0% 5.2%
20 inst20brazil2007 6140.7 5865.7 5736.6 5622.5 7.0% 4.3%
20 inst20brazil2008 6285.1 5705.1 5402.5 5329.4 16.3% 7.0%

Table 5.2: Performance evaluation of the existing neighborhoods for the Weighted
Carry-Over Effects Value Minimization Problem. The local optimum values were ob-
tained after applying each local search procedure to solutions obtained with construc-
tive methods presented in this thesis.
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Instance PRS∪PTS TARS Relative difference

Size Name Circle Vizing Circle Vizing Circle Vizing

18 circ18abal 962.8 947.6 909.9 903.5 5.8% 4.9%
18 circ18bbal 972.8 952.1 922.1 916.2 5.5% 3.9%
18 circ18cbal 955.5 946.0 904.2 905.6 5.7% 4.5%
18 circ18dbal 951.5 946.9 916.1 903.8 3.9% 4.8%
18 circ18ebal 958.5 937.1 905.4 908.0 5.9% 3.2%
18 circ18fbal 957.9 948.0 917.3 912.3 4.4% 3.9%
18 circ18gbal 966.7 942.3 904.5 908.4 6.9% 3.7%
18 circ18hbal 950.5 942.1 906.6 904.8 4.8% 4.1%
18 circ18ibal 951.6 946.5 913.2 912.9 4.2% 3.7%
18 circ18jbal 958.7 944.2 901.8 910.5 6.3% 3.7%
18 circ18anonbal 965.1 964.2 928.7 927.2 3.9% 4.0%
18 circ18dnonbal 969.6 957.9 918.9 921.7 5.5% 3.9%
18 circ18enonbal 967.4 963.7 932.7 936.9 3.7% 2.9%
18 circ18fnonbal 983.4 970.6 936.8 939.6 5.0% 3.3%
18 circ18gnonbal 959.9 966.8 926.1 933.7 3.6% 3.5%
18 circ18hnonbal 973.1 970.7 941.7 936.5 3.3% 3.7%
18 circ18jnonbal 951.3 945.7 920.2 919.7 3.4% 2.8%

20 circ20abal.txt 1502.6 1290.9 1237.5 1232.9 21.4% 4.7%
20 circ20bbal.txt 1498.2 1293.0 1241.9 1244.9 20.6% 3.9%
20 circ20cbal.txt 1489.1 1283.7 1240.7 1233.3 20.0% 4.1%
20 circ20dbal.txt 1502.1 1287.7 1231.1 1231.5 22.0% 4.6%
20 circ20ebal.txt 1500.7 1290.3 1241.9 1234.2 20.8% 4.5%
20 circ20fbal.txt 1491.3 1279.1 1230.3 1239.7 21.2% 3.2%
20 circ20gbal.txt 1492.1 1288.5 1237.6 1239.4 20.6% 4.0%
20 circ20hbal.txt 1521.7 1295.7 1252.5 1250.6 21.5% 3.6%
20 circ20ibal.txt 1505.5 1288.9 1235.5 1242.1 21.9% 3.8%
20 circ20jbal.txt 1517.4 1280.0 1235.5 1239.1 22.8% 3.3%
20 circ20cnonbal.txt 1510.5 1305.2 1270.2 1271.7 18.9% 2.6%
20 circ20dnonbal.txt 1519.9 1321.4 1279.7 1268.2 18.8% 4.2%
20 circ20enonbal.txt 1532.3 1350.8 1292.8 1302.2 18.5% 3.7%
20 circ20inonbal.txt 1514.7 1310.3 1255.9 1267.4 20.6% 3.4%
20 circ20anonbal.txt 1495.1 1314.7 1270.1 1272.1 17.7% 3.3%
20 circ20bnonbal.txt 1510.0 1315.9 1268.1 1270.5 19.1% 3.6%
20 circ20gnonbal.txt 1512.9 1321.8 1292.1 1283.3 17.1% 3.0%
20 circ20jnonbal.txt 1496.5 1299.4 1247.1 1249.3 20.0% 4.0%

Table 5.6: Performance evaluation of the existing neighborhoods for the Traveling Tour-
nament Problem with Predefined Venues. The local optimum values were obtained after
applying each local search procedure to solutions obtained with constructive methods
presented in this thesis.
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prime number plus one reported by [Costa et al., 2012] and [Januario and Urrutia,
2015] in which the connectivity issue of the search space arises. As discussed in the
previous chapter, when the initial solutions are constructed using the circle method,
any local search procedure based on the existing neighborhood structures cannot move
from the schedules that are isomorphic to the canonical one.

We note that regardless the initial solution, in general, the quality of the solutions
obtained with the use of TARS is statistically superior than the ones obtained with
the previously known neighborhood structures. For the TTPPV, the heuristic using
TARS in its local search procedure was able to improve the best-known solution for 31
of the 35 evaluated instances. For the WCOEVMP, the same algorithm was able to
improve the best-known solution for 34 of the 69 evaluated instances.



Chapter 6

Conclusion

This chapter gives a brief discussion about the findings reported in this thesis. Future
works can be produced as outcomes of this thesis. Some are presented afterward.

6.1 Concluding remarks

This work built on a proper modeling of Single Round-Robin (SRR) scheduling prob-
lems in terms of edge coloring of complete graphs. Describing the neighborhood struc-
tures for sport scheduling problems without using the formalism of graph theory would
undoubtedly be a challenging - but tedious - task which we can, fortunately, avoid.

A new constructive method for scheduling SRR tournaments, the faro method,
was introduced and its equivalence to the classic circle method was established. The
proposed method was used to study the relation between schedules constructed by the
circle method and the faro shuffle of playing cards. There are many ways to construct
initial solutions for scheduling problems but, according to [Goossens and Spieksma,
2012b], the most popular method is definitely the circle method.

In this thesis, we analyzed the connectivity of the most commonly used neigh-
borhoods in the literature. When n = p + 1 with p being a prime number PRS is
not connected and if the initial schedule is constructed with the circle method it is not
possible to move to other non-isomorphic schedules with that neighborhood. Analyzing
PTS, due to the relation established between the faro method and the circle method it
is clear to see that such neighborhood is also not connected. It was proven that, when
n is such that a faro shuffle permutation on a deck of n cards has an (n − 2)-cycle,
it is again not possible to move to other non-isomorphic schedules with it. A new
theorem were introduced in this thesis, giving theoretical evidences that local search
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algorithms that make use of the existing neighborhoods may lead to poor results when
initial schedules are constructed with the circle method, for certain values of n.

An important contribution is this work is a new neighborhood for SRR scheduling
problems, called Teams and Rounds Swap (TARS). Using the Weighted Carry-Over
Effects Values Minimization Problem and the Traveling Tournament Problem with
Predefined Venues as case studies, we showed that this neighborhood structure avoids
the issue of non-connectivity of the existing neighborhood structures. Moreover, and
as a consequence, the ILS heuristic using the TARS neighborhood structure led to
several best results for both case problems, regardless the initial solution or the tackled
instance.

The dominance of TARS over the existing neighborhood structures is confirmed
by a test t for paired observation at 99.9% confidence level. For the WCOEV, we
note that the improvement over the existing neighborhood structures is larger when
comparing results for instances with of size 12, 14 and 20 while the circle method is
used to generate the initial coloring. This expected result is an outcome of the fact
that TARS is able to move from perfect colorings to non-perfect colorings even in cases
where the existing neighborhood structures cannot.

6.1.1 Future works

As shown in this work, TARS increases the connectivity of the search space of single
round-robin problems. Whether the search space is fully connected by TARS is still
an open issue.

Approaches based on graph theory concepts applied to round-robin sport schedul-
ing problems seem promising. [de Werra, 1981] was one of the first authors who dis-
cussed the application of graph theory concepts to sport scheduling problems and,
after more than 30 years, it is still an inspiring subject. [Lewis and Thompson, 2011]
presented models based on vertex coloring of complete graphs in order to solve the
TTP.

We aim to include the usage of TARS in other round-robin scheduling problems
and even propose new neighborhood structures. In particular, we are interested in eval-
uating TARS’ performance in a heuristic approach to Mirrored Traveling Tournament
Problem (MTTP) and TTP.

The MTTP is a variant of the TTP with an SRR tournament in the first n − 1

rounds (first leg), followed by the same tournament with reversed venues in the last
n − 1 rounds (second leg). After years of investigation, the optimal solution for even
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small instances of the TTP remains unknown. The best results for instances of the
TTP are being tracked on Michael Trick’s webpage [Trick, 2015].

Besides, many other discrete problems in several areas can be transformed into
equivalent graph problems and then solved using graph algorithms [Ebert, 1987]. TARS
neighborhood may be used in local search algorithms for solving problems that can be
modeled as edge coloring of graphs.
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