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Resumo

Redes de compartilhamento de conhecimento, como wikis e portais de perguntas e

respostas (Q&A) provêem a seus usuários um ambiente para busca e discussão de in-

formação sobre diversos assuntos de seu interesse. Através da sua colaboração para

fornecer orientação, levantar e responder perguntas e participar de discussões técnicas,

usuários formam comunidades interativas, baseadas em tópicos de interesse mútuo. A

análise dessas comunidades centradas em tópicos é crucial no entendimento de proces-

sos internos que ditam como a rede evolui com o tempo, os �uxos de usuários entre

comunidades e a difusão de informação dentro da rede.

Nesta dissertação, nós investigamos como usuários se relacionam com comu-

nidades centradas em tópicos e como este relacionamento determina a dinâmica das

comunidades na rede ao longo do tempo. Utilizando um grande conjunto de dados

coletados do Stack Over�ow, um site popular de perguntas e respostas sobre progra-

mação, estudamos diversos fatores ligados à evolução das comunidades no site, como o

impacto de revisitas e da migração de usuários na sustentabilidade de uma comunidade.

Nossas descobertas são formalizadas na proposição de um novo modelo de evolução de

comunidades que se baseia na atividade de usuários e incorpora elementos-chave da

dinâmica de comunidades. Além de descrever os níveis de atividade das comunidades

ao longo do tempo, o modelo proposto também permite o entendimento do impacto

de comunidades relacionadas umas sobre as outras. Esse conhecimento é então ex-

pandido para mostrar como o relacionamento entre comunidades pode ser utilizado

para identi�car macro-comunidades na rede, com base nos �uxos de usuários.

Palavras-chave: Redes de compartilhamento de conhecimento, dinâmica de comu-

nidades, caracterização e modelagem.
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Abstract

Online knowledge-sharing networks, such as wikis and question-answering (Q&A) por-

tals, present users with a channel for seeking and discussing information on diverse

subjects pertaining to their interests and expertise. Through their collaborative ef-

forts in providing guidance, raising and answering questions, and otherwise engaging

in topical and technical discussions, users form interactive communities around topics

of mutual interest. Analyzing the dynamics of these topic-based communities is cru-

cial to understanding the network's inner processes, such as the �ow of users across

communities and the di�usion of information within it.

In this thesis, we study how users relate to topic-based communities and how this

relationship shapes long-term community dynamics. Using a large dataset collected

from Stack Over�ow, a popular programming-oriented Q&A site, we investigate several

factors related to the evolution of communities in the site, including the impact of user

revisits, continued activity and migration on community sustainability. Our �ndings

motivate the development of a community evolution model based on user activity,

which incorporates key aspects of community dynamics. In addition to describing the

activity levels of communities over time, our new model also provides additional insight

into the e�ects that related communities may have on one another. We expand on this

insight to show how information about inter-community relationships can be used to

identify macro-communities based on the dynamic �ow of users.

Keywords: Knowledge sharing networks, community dynamics, characterization and

modeling.
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Chapter 1

Introduction

Knowledge-sharing refers to the exchange of well-understood facts, information and

skills previously acquired through experience or education. In a rapidly advancing

world where more raw information is divulged than can be e�ectively processed, it is

often di�cult to internalize relevant pieces of information, especially in the absence

of guidance or a suitable channel through which the information can be conveyed

[Cummings, 2003]. In this context, personal knowledge becomes especially valuable

and the importance of sharing such knowledge is ampli�ed. When one is faced with a

particular problem or simply wants to learn about a given subject, one can then seek

knowledge directly from an expert, rather than having to go through several distinct

sources to gather possibly loose information that one can then attempt to process.

While knowledge-sharing relies on the interaction between the ones transmitting

and the ones receiving it, the development of online technologies has cleared the way

for such social interactions taking place among individuals at any time and at any

place [Ma, 2012]. As the means and tools for remote discussions become increasingly

accessible, online users can more easily seek them out in order to discover, debate and

impart knowledge, unimpeded by physical restrictions. Thus, users are limited only by

their willingness to engage in knowledge-sharing activities.

On the Web, knowledge-sharing networks exist in various formats, including

Wikis (e.g., Wikipedia1), discussion forums (e.g., Unix & Linux forums2) and question-

answering (Q&A) portals (e.g., Stack Over�ow3, Yahoo! Answers4). Collectively, these

networks represent a unique environment where users with diverse levels of expertise

can collaborate to create a specialized knowledge base, participate in discussion threads,

seek technical advice, ask questions, and provide answers to fellow users.

1http://wikipedia.org/
2http://unix.com/
3http://stackover�ow.com/
4http://answers.yahoo.com/
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2 Chapter 1. Introduction

1.1 Motivation

Focusing on their potential wealth of information, much of the existing research on on-

line knowledge-sharing networks has centered around discovering and evaluating qual-

ity content [Dalip et al., 2013; Harper et al., 2008], �nding experts [Ravi et al., 2014;

Pal et al., 2011] and analyzing audience and contributor pro�les [Furtado et al., 2013;

Adamic et al., 2008]. Despite their collaborative nature, and even proven social network

characteristics [Li et al., 2012], previous research has seldom considered the underlying

community structure of these networks and the role it plays in its dynamics.

More than a repository of knowledge, online knowledge-sharing networks rep-

resent a medium through which users collectively assert their interests in terms of

contributions. By posing questions, providing answers with personal expertise, editing

and maintaining existing content, users contribute to topics of their interest and inter-

act with other users who share them. Through their continued collaboration, groups

of users who display similar interests essentially make up communities centered around

topics of mutual interest and expertise.

Analyzing the dynamics of these communities plays an integral part in under-

standing how these networks function and evolve over time. The way users organize

themselves in terms of their discussions determines the di�usion of information in the

network and re�ects their interests in the site at di�erent moments. For example, it is

possible to track the success and adoption of a new product or technology by noticing

how community dynamics change in response to its introduction as a new topic for

discussion. Such knowledge could also bene�t business services by guiding advertise-

ment placement decisions or motivating new marketing strategies aimed at a particular

community of interest. Similarly, incentive and recommendation mechanisms could be

employed by the system to encourage participation in communities that are losing user

interest, or to promote more active communities. Insights into the network's overall

community structure are also valuable in the design and maintenance of these systems,

in order to improve user navigation or to better handle the tra�c between speci�c

sections of the network.

1.2 Goals

The primary goal of this thesis is to broaden the understanding of the temporal dy-

namics of online knowledge-sharing networks. While the results of user collaboration in

these networks have been well addressed by previous work, there is still a fundamental

gap in understanding the underlying mechanisms that make this collaboration possi-
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ble. By investigating the way users organize their e�orts and how they continuously

relate to di�erent topics of discussion in the network, we seek to explore their potential

community structure, which has thus far been overlooked.

Beyond unconvering this community structure, we aim at clarifying user commu-

nity behavior and how their interactions impact the evolution of topics in the network.

Focusing on their behavioral patterns, we wish to discover how users can sustain on-

going topics of discussion over time and how changes in user interests can hinder or

bene�t a community, in terms of how much attention it receives from other users in the

network. Thus, the focus of our research lies not only on a structural interpretation of

knowledge-sharing networks, but also in understanding them as dynamic community

environments driven by their users.

1.3 Contributions

Our main contributions with this work are threefold.

• Conceptual. We shed new light on knowledge-sharing networks by approaching

them as a dynamic community environment. To this end, we introduce the

concept of topic-based communities to describe groups of users gathered by their

shared interest in a particular topic or theme. This de�nition not only captures

the social ties between users, which result from their interactions in the network

[Fortunato, 2010; Backstrom et al., 2006], but also explicitly relates them to their

main interests and contributions.

• Characterization. Guided by our new concept of communities in knowledge-

sharing networks, we perform a thorough characterization of the prominent Q&A

site Stack Over�ow in terms of the main topic-based communities it houses. We

focus on user behavior in order to understand how it drives community activity

over time. Our analyses uncover several key factors in the evolution of com-

munities in the site, and give insight into community aspects like sustainability

and continued user participation. By recognizing the diversity of user interests

and behavior, we go beyond the inner dynamics of single communities and also

consider inter-community user migration patterns as important factors in how

communities evolve.

• Modeling. Drawing from the main �ndings in our characterization, we de-

velop the Community Evolution model with Revisits and Inter-community e�ectS

(CERIS), an epidemic model that describes the temporal evolution of community
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activity. By combining elements of two state-of-the-art approaches to modeling

user activity towards a given object [Figueiredo et al., 2014; Beutel et al., 2012],

our model is able to represent the concurrent evolution of multiple communities

in the network according to key aspects of community dynamics, such as user

revisits to a same community and the transition of users from one community

to another. By o�ering a reasonably accurate portrayal of long-term commu-

nity activity, the model also yields signi�cant results regarding the relationship

between communities. In particular, we show how our model can be applied to

uncover macro-communities, that is, groups of communities related by strong

inter-community �ows of users, and possibly re�ect broader subjects that share

a large fraction of experts and/or interested users.

Our work has yielded the following publications:

• On the Dynamics of Topic-Based Communities in Online Knowledge-Sharing

Networks, featured in the European Network Intelligence Conference (ENIC)

2015 [Guimarães et al., 2015a], and

• Temporal Analysis of Inter-Community User Flows in Online Knowledge-Sharing

Networks, featured in the SIGIR Workshop on Time-aware Information Access

(TAIA) 2015 [Guimarães et al., 2015b].

1.4 Outline

The remainder of this work is organized as follows. Chapter 2 reviews existing literature

on knowledge-sharing networks and online communities. Chapter 3 introduces the

concept of topic-based communities and discusses how it applies to our case study,

i.e., Stack Over�ow. Our characterization of community dynamics in Stack Over�ow

follows in Chapter 4. In Chapter 5, we present our community evolution model and

discuss its results and applications. Finally, conclusions and directions for future work

are presented in Chapter 6.



Chapter 2

Related Work

In this chapter, we review the current literature on knowledge-sharing networks, em-

phasizing those studies which look into user behavior and evolution, and which are,

as such, more closely related to our work. Because the community problem is under-

addressed in the context of knowledge-sharing networks, we also discuss relevant stud-

ies in community evolution in other social network settings, motivating our community

approach. Finally, we present relevant state-of-the-art models which describe user be-

havior in network evolution and which serve as fundamental stepping stones to our

own model of community evolution.

2.1 Knowledge-Sharing Networks

Present research on online knowledge-sharing networks primarily focuses on their po-

tential as a rich source of information. As well as devising methods to uncover quality

content and mining expertise [Agichtein et al., 2008; Harper et al., 2008; Anderson

et al., 2012; Ravi et al., 2014]), recent work seeks also to understand how such expert

content comes into fruition. Due to the voluntary and collaborative nature of these

sites, one natural approach to the problem is to look at how users behave in the net-

work and how this behavior translates into meaningful content [Adamic et al., 2008;

Li et al., 2012; Furtado et al., 2013; Wang et al., 2013].

Adamic et al. [2008] study user interests on Yahoo! Answers, �nding that the

frequency and focus of a user's contributions closely relate to the user's personal moti-

vation for using the site. Di�erent goals, such as seeking advice or providing grounded

answers to speci�c problems, will naturally lead users to di�erent categories in the

websites and result in di�erent contribution patterns, both in terms of quantity and

perceived quality.

5
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In the same vein, Mendes Rodrigues and Milic-Frayling [2009] study the social

aspect of Yahoo! Answers and MSN Q&A1 in order to determine user intent in Q&A

networks. Through a manual analysis of a subset of questions from both networks,

the authors distinguish social intent in discussions: while some users were mainly

interested in factual and practical information, others came to the network looking for

opinions, or simply to start an informal conversation, outside of any speci�c subject.

Measurements of the impact of both forms of engagement (non-social and social) reveal

that both contribute to the activity in these networks. The authors also suggest that a

more detailed analysis of users' social behavior may add to the understanding of their

importance in the evolution of the network.

The work of Furtado et al. [2013] describes contributor pro�les in Stack Exchange

sites by identifying patterns in user activity and behavior, following in the idea that

users with distinct intents in knowledge-sharing play distinct parts in shaping the

network. The authors analyze these di�erent pro�les by grouping users according to

their activity levels, their preferred role (i.e., as asker, answerer or commenter), and

the quality of their contributions (as evaluated by the number of upvotes their posts

have received). Despite �nding that only a small minority of users �t into high-activity

pro�les, the authors argue that both low-activity posters and highly active posters are

equally important for content production in the sites. Our work complements this

study by investigating user behavior in terms of the topic-based communities they

contribute to, giving special attention to the issue of revisiting and sporadic users in

community dynamics.

In their study of Quora2, Wang et al. [2013] investigate how explicit social features

(such as the ability to follow other users) a�ect the perceived quality of questions and

answers on the site. As users are faced with an activity feed from the people they follow,

posts by popular users, dubbed superusers, who have a greater number of followers will

thus have greater exposure. This introduces a bias in how users in the network are

directed towards certain discussion threads, so that most of the site's attention will

go to a small subset of discussion threads per topic. Although Quora's social features

are absent in other Q&A systems, this work suggests the importance of taking user

interactions and user in�uence into account when analyzing site-wide activity.

Zhang et al. [2014] delve further into the interaction between users in Q&A sites by

recognizing the existence of communities of users who take part in the same discussions.

Focusing on the relationship between askers and answerers, the authors develop a

probabilistic model to extract evolving clusters of linked users from the social graph of

1http://qna.live.com/. Site closed in 2009.
2https://www.quora.com/
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Yahoo! Answers and attempt to relate these user groups to a shared topic of interest.

Unlike the majority of previous work, which has ultimately been interested in content

quality, Zhang et al. approach Yahoo! Answers as a social environment, wherein users

interact through discussions of topics pertaining to their interests and expertise. While

the focus of this study is mainly on detecting user communities, we here take the

communities as given by the structure of Stack Over�ow (as we further discuss in

Chapter 3), focusing rather on advancing the knowledge on their dynamics. Thus, out

work is orthogonal to that of [Zhang et al., 2014]

Solomon and Wash [2014] explore possible factors for project survival and sus-

tainability in WikiProjects. The authors relate di�erent measures of a project's success

to three possible growth patterns: accelerating, linear, and descelerating. While the

growth of membership is found to correlate with the growth of production (i.e., new ar-

ticles, edits and reviews), the authors �nd that a project's sustainability is more closely

related to the diversity and interest of its user base than with the content produced.

Our work similarly addresses the impact of user participation on the evolution of topics

and discussions in Stack Over�ow, but unlike [Solomon and Wash, 2014], our main fo-

cus lies on the communities that surround these topics. Moreover, despite recognizing

that users may have numerous interests in a network, thus dividing their activity across

multiple communities, this prior study, like the one by Zhang et al. [2014], does not

analyze how the inner dynamics of one community may a�ect the evolution of another,

which we do.

In Zhu et al. [2014], the authors address the issue of overlapping membership

across di�erent wikis. This work builds on the idea that communities may bene�t from

fresh perspectives but su�er from having to share their users' limited attention as they

devote their time to many di�erent communities. As wikis are separate websites that

require individual membership, the overlapping set of users across them is very small,

which makes it di�cult to discover signi�cant evidence of the impact of users' shared

activity. Despite this, the authors do �nd a positive impact of member overlap on the

survival of communities, particularly in their earlier days when they do not yet have

a core set of persisting members. In our work, we analyze groups of users in a same

network, where the interaction between di�erent communities is therefore expected to

be more signi�cant, thus allowing us to more e�ectively study the e�ect of the overlap

and migration of users between communities.

The aforementioned studies stand out to us for considering user behavior and

dynamics in online knowledge-sharing networks. Despite their di�erent perspectives,

all of them point towards factors that may in�uence content creation and network

activity. We consider many of these factors in our own analyses, but focus instead
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on community, instead of site-wide, activity. Thus, we take a di�erent approach when

studying these networks, while still drawing from previous research results. To the best

of our knowledge, our work is the �rst thorough examination of a knowledge-sharing

network from the perspective of dynamic topic-based communities.

2.2 Community Evolution

As previous work demonstrates, user dynamics play a key factor in how a network de-

velops. Furthermore, users do not act in isolation and the set of interactions between

them often results in a complex community structure within the network. These com-

munities usually denote groups of densely connected individuals inserted in a larger

social network context, such as a circle of friends or a team of peers in a corporation.

In our speci�c context, communities may result from frequent interactions between net-

work participants, such as askers and answerers in a Q&A site [Zhang et al., 2014]. Due

to frequent changes in the activity patterns and relationships of individuals, their as-

sociated social and communication network is also subject to constant evolution [Palla

et al., 2007; Fortunato, 2010]. In this section, we review some current approaches to the

community evolution problem in real world and online social settings, and constrast

them to our own community approach to Stack Over�ow.

Backstrom et al. [2006] study community development and evolution in di�erent

types of social networks. The authors rely on data from a co-authorship network,

where communities correspond to publication venues and social links correspond to co-

authorship relationships, as well as data from LiveJournal, where users can explicitly

join pre-established communities in the network and add other users to their friends

list. For both of these networks, the authors investigate the structural features that

in�uence the growth of community and its ability to attract new members, as well

as how this structure can determine the appearance and di�usion of interests in the

network. Key structural features investigated include the total number of members

in a community, the number of closed triads (mutual links between three members)

and the number of friends a non-member has in the community. The study �nds that

no single element is capable of dictating community evolution on its own, and instead

o�ers insights into several structural community aspects and methods with which to

evaluate them.

Extending the previous work, Leskovec et al. [2008] investigate the evolution of

di�erent communities based on link formation between new users and users already in

the network. In contrast with other studies, their proposed model takes into considera-
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tion the time of appearance and duration of each new link, instead of observing network

evolution in di�erent snapshots. With a greater detailing of link dynamics, the authors

propose a new method for network evolution based on preferential attachment, which

can be used to generate synthetic network data that closely mimics the characteristics

of real-world social networks.

In [Alves et al., 2013], the authors study the role of researchers in the evolution of

scienti�c communities. This work hypothesizes that changes in researchers' interests,

particularly those researchers who are more well-known, will have an impact on other

researchers in the same scienti�c community. When a research leader decides to leave

their current community in order to approach a new theme, they take with them their

students, knowledge and resources. This transition may also encourage others to make

the same changes, even if they are not linked to the initial researcher. The work

observes that there is indeed such an in�uence of senior members in di�erent scienti�c

communities and that they often feature in the core of the community, bridging together

smaller research groups. Comparison of successive moments in the lifetime of these

communities also reveals that changes in the community core often lead to changes in

the structural properties of the network itself, such as its assortativeness and average

degree.

Palla et al. [2007] investigate community extraction and evolution in co-

authorship and phone call networks. The authors use a soft-clustering technique to

discover cliques of interacting users in the network over several time steps. The result-

ing communities at each time step are matched with their corresponding communities

at the subsequent step, and the evolution of the community is then evaluated according

to changes in their member base between time steps, such as the appearance of new

members and the departure of old ones. The authors use these results to investigate

community sustainability, �nding that it strongly correlates with member commitment

and that community survival is positively a�ected by membership turnover, particu-

larly in larger communities, where users are less likely to have a strong relationship

with one another.

Similarly, Lin et al. [2007] examine the community structure that arises from

mutual awareness between bloggers posting about a speci�c event or occurrence. In

this scenario, communities are formed from the social ties between users who link to

each other's blog posts. As in the previous work by Palla et al. [2007], the work presents

a method to discover communities from densely connected users at di�erent time steps,

which are subsequently matched and compared in order to provide information on

community evolution and how relationships between bloggers can change as a function

of the events they focus on in their blog posts.



10 Chapter 2. Related Work

The extraction of evolving communities is also featured in [Tang et al., 2008],

which studies communities in multi-mode networks. These networks involve di�erent

kinds of participants with di�erent roles interacting at once. A co-authorship network,

for example, could be seen as a multi-mode network where researchers can interact with

one another as co-authors, with papers as authors and with conferences as committee

members, while papers can also interact with conferences via publications. In order to

discover communities of the same kinds of participants in these networks, the authors

propose a new clustering method which can be applied to a series of network snapshots

and regularized to account for community evolution.

While these prior studies deal primarily with the extraction and evolution of

social communities, that is, groups of users linked by social interactions, our work

focuses on a di�erent community de�nition, wherein users do not need to be in direct

contact in order to be part of the same community. Instead, we rely on topics of

interest, which are explicitly declared by users in their contributions in the network,

in order to group them together in topic-based communities. This de�nition, which

will be further explained in Chapter 3, moves us away from the community extraction

problem, allowing us to focus instead on community dynamics and evolution.

2.3 Ecological Models

The literature is rich with models describing how individuals in a network share their

attention and behave towards a given object, be it a topic, an event or a commu-

nity. Often, this process can occur similarly to well-understood natural processes, such

as the adaptation of a living population to an environment or the spread of a viral

contagion [Bartholomew and Bartholomew, 1967]. As such, ecological, epidemic and

even chemical systems are often adapted into social network settings. We here brie�y

review some recent studies that apply ecological intuition to diverse situations where

individuals interact with one or several objects in the network.

A common approach for describing the dynamics of users' interest in the network

is to model the object of their interest as a contagion. The underlying idea is that,

similarly to an infectious disease, content can spread from individuals across their

social network. By creating and sharing content with those around them, individuals

can potentially infect others who will subsequently repeat the process and continue the

infection.

In order to describe this contagious process, the classic SIR (Susceptible-Infected-

Recovered) model speci�es three main stages of infection and accordingly groups indi-
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viduals into three states. Initially, individuals who are not yet infected but who have

been exposed to an infection are said to be susceptible (S). After coming in direct

contact with the infection, individuals may then become infected (I) and are capable

of transmiting the infection to other susceptible individuals. Eventually individuals

may recover (R) from the infection, becoming imune to it in the future. At any point

during an epidemic (that is, while the infection still exists in the network), individuals

may be in any of these stages and may transition from one to the next according to an

infection and recovery rate. Examples of real-world diseases that can be described by

the SIR model include the measles and mumps. A comparable phenomena in a social

network setting is the adoption and abandonment of an online social network service.

In this case, users who hear about such a service may join and participate in it for

some time. Later, they may lose interest, ultimately leading to a permanent departure

from the service.

While the SIR model assumes that individuals who recover from a given infec-

tion are subsequently immune to it, there are scenarios where an individual may be

reinfected multiple times. A biological example of this is the �u, which can a�ect the

same individual several times over. In a social network context, a user may periodi-

cally interact with the same content, such as a video or a post repeatedly shared by

friends. These situations are addressed by the SIS (Susceptible-Infected-Susceptible)

model, where individuals can either be in the Susceptible (S) or Infected state (I). This

means that once individuals recover from the infection, they are immediately succep-

tible to it once more. As in the SIR model, the transitions from one state to another

are determined by a rate of infection and recovery, which capture the evolution of the

number of individuals in each state during the contagion.

Drawing from these prior models, Matsubara et al. [2012] proposes the Spike-M

model to describe and predict rise and fall patterns in information di�usion in di�erent

blogging sites. As a parallel to the susceptible and infected states in the previous

SIS and SIR models, Spike-M models contagions in two stages: users can either be

uninformed about a piece of news or they can be informed and blogging about it. The

rate at which users become informed, and thus transition from the �rst to the second

infectious state, is given by the quality or interestingness of the news. Rather than

a recovery rate, at which users would transition out of the informed state, the model

assumes a decay function that associates the infectiveness of a blogger to the age of

the infection. Thus, bloggers become less likely to infect others as time goes by. In

particular, the model focuses on the contagion outbreaks, which result in peaks (or

spikes) of activity, followed by the decay in activity as users cease to blog or search

about a piece of news.
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The recently-proposed Phoenix-R model [Figueiredo et al., 2014] also builds on

the SIR model in order to describe the popularity evolution of social media objects

(e.g., Youtube videos and Twitter hashtags). A key characteristic of Phoenix-R that

distinguishes it from other approaches is the modeling of user revisits, by means of a

transition into a hidden state from the infected state to imply that users are interacting

with the object multiple times. Phoenix-R also captures multiple cascades or outbreaks

of interest in the object caused by external events (e.g., the release of a new object or

a news event about a related subject), o�ering a more detailed modeling of di�erent

aspects driving the popularity of an object.

Myers and Leskovec [2012] also observe contagions in social media. However,

instead of focusing on single isolated contagions, this work consider multiple contagions

in a same network and the di�erent ways in which they interact, either by cooperating

or competing. Contagions may cooperate when two pieces of content are in some way

related or similar, so that one may bring attention to the other and thus help the spread

of both contagions. On the other hand, in cases where pieces of content are di�erent,

they may detract from one another and thus compete for the attention of users. The

authors analyze both of these events in the propagation of tweets containing links

(e.g.., a news story or video posted elsewhere) and propose a new di�usion model to

determine the probability that a user will retweet a post containing a link, based on

the content that the user has been previously exposed to (i.e., the sequence of tweets

that appeared in their news feed). Thus, rather than focusing on the population of

users who take an interest in the subject, the authors focus on how the exposure to

di�erent content may bene�t or obstruct their di�usion in the network.

Beutel et al. [2012] propose an extension to the SIS model to describe the prop-

agation of pairs of infections in a network, seeking to understand the co-existence and

co-evolution of simultaneous contagions. In particular, the model aims to discover a

threshold value which determines whether infections can co-exist or whether one will

eventually overtake the other. The authors apply the model to both simulated and

real-world data regarding the adoption of competing products, such as di�erent video

streaming services and internet browsers, �nding not only evidence of competition and

co-existence but also a possibility for cooperation between infections.

Matsubara et al. [2015] approach the issue of competition and co-evolution in a

di�erent light, by comparing products competing for attention to animals competing for

food. In this view, the web is considered an ecosystem where user attention is a �nite

resource and keywords (be them topics or products) behave as living species, which

must survive by acquiring these resources. Thus, based on information about user

attention directed at certain products on the web (e.g., a search query or a purchase),
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the authors develop a model to detect the existence of competition and forecast future

dynamics for those products, additionally taking into account non-ecological aspects,

such as seasonal events and measurements of keyword interaction.

Ribeiro [2014] proposes a reaction-di�usion model that captures the popularity

of membership-based websites, which are potentially competing for members. Relying

on data about daily user activity, the model evaluates the rate of member arrival and

departure from the website, as governed by internal factors, such as member interac-

tions, as well as the fraction of users targeted by marketing strategies, which aim at

attracting new members to the site. These parameters assist in �tting the activity time

series of a website and predicting whether it will be able to maintain member activity

in the future. This model is further re�ned in [Ribeiro and Faloutsos, 2015] to more

explicitly account for the competition between websites that share a portion of their

members and which are, therefore, competing for attention.

The existence of many di�erent approaches to the same basic problem demon-

strates that this is an active research topic, which is not yet thoroughly understood.

The way users devote their attention to a community or theme may vary according

to the speci�c network setting and its characteristics, and each setting may require a

di�erent perspective.

In our work, we make an e�ort to understand knowledge-sharing networks and

take into account their main features in order to develop a model that can accurately

portray them. Thus, our model draws from previous modeling approaches and �ndings,

as well as from speci�c aspects of our case study network and its community structure,

which will be evidenced in the following chapters.





Chapter 3

Problem Domain and

Contextualization

In this chapter, we formalize our concept of topic-based communities in online

knowledge-sharing networks and explain how it di�ers from the usual community def-

inition for social networks. We then explain how we apply this concept to de�ne

communities in Stack Over�ow, and present an overview of the website and its struc-

ture. Details about the Stack Over�ow dataset we use throughout our study are given

at the end of the chapter.

3.1 Topic-Based Communities

Collaboration is the building block of a knowledge-sharing network. In wikis, editors

cooperate in writing and editing articles, continuously expanding upon each other's

work to provide new insights into a same subject. In support forums and Q&A sites,

users draw from personal experience and expertise to answer questions posed by fellow

network members, working together to solve speci�c problems. By collaborating to

create a robust knowledge base, users are constantly in contact with topics of their

interest, and with other users who share those interests.

In order to describe this multi-faceted relationship, we build on the de�nitions of

social [Wasserman and Faust, 1994] and a�liation networks [Zheleva et al., 2009] to

introduce the concept of topic-based communities. These communities describe groups

of users who actively contribute to discussions about given topics of mutual interest, as

de�ned in the network (i.e., a subject category for an article, a post tag or a keyword).

As such, a topic-based community expresses the relationships between collaborating

users and the underlying common topic that guides their interactions in the network.

15
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This di�ers from the traditional de�nition of social communities in networks, which

refers to tightly-knit groups of users within which connections are dense and between

which connections are sparser [Girvan and Newman, 2002]. In contrast, because our

de�nition of topic-based communities directly stems from how members organize their

discussions, we do not need to derive a community structure from user interactions

within the network. For each topic of ongoing discussion, each corresponding commu-

nity is a well-de�ned dynamic object.

To further explain these topic-based communities, their inner dynamics and their

evolution, we adopt the popular Q&A forum Stack Over�ow as a case study. In the

following section, we introduce Stack Over�ow and explain how we de�ne topic-based

in this network.

3.2 Stack Over�ow

Stack Over�ow is the sub-domain of the Stack Exchange Q&A network specialized in

programming questions. Since going online in 2008, the site's primary objective has

been to create an open, fully collaborative �library of detailed answers to every question

about programming�. As of July 2015, the site hosted over 10 million questions and

16 million answers, and had 4.4 million registered users, over 2 million of which have

made at least one post1. Figure 3.1 shows currently active questions on the front page

of the site.

In Stack Over�ow, the category structure commonly used in Q&A sites is replaced

with user-de�ned tags (seen below each of the questions in Figure 3.1). Thus, instead

of posting their questions to one of a prede�ned set of general categories, users can

associate up to �ve key terms, of tags, to their questions, in order to denote the

topics being addressed. These tags are used to index and organize discussion threads

pertaining to the same topics and provide a simple and well-structured way to navigate

the website. Some popular tags include �javascript�, �ruby-on-rails-3�, �database� and

�performance�.

When applying our concept of topic-based communities to Stack Over�ow, each

tag corresponds to a topic of interest in the network. Users who have contributed to a

certain tag, by creating questions and answers, will form the community around that

tag (e.g., users who post about the Python programming language form a �Python-

based� community). Thus, we take advantage of the user-de�ned structure of the site

to intuitively derive topic-based communities.

1http://stackexchange.com/.
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Figure 3.1: Front page of Stack Over�ow.

This de�nition bears two implications. Firstly, at any moment, a given user may

belong to multiple communities as result of the user's participation in multiple discus-

sions about di�erent topics, or even in a single discussion to which multiple tags were

assigned. In the latter case, the use of multiple tags suggests that the subject of the

discussion relates to multiple disciplines (or topics). Thus, it is reasonable that users

involved in such discussions are considered part of all related communities. Secondly,

users may use di�erent tags to express the same general subject. We note, however,

that Stack Over�ow does attempt to eliminate synonyms and tag redundancy by peri-

odic moderation of the tags used. Thus, we consider each tag as a di�erent community.

Nonetheless, our de�nition can be easily extended to group together multiple related

tags in a single community relating to a more general common theme. We demonstrate

this with the aid of our community evolution model (Chapter 5) and the discovery of

macro-communities based on the interaction of users with multiple topics and commu-

nities.

3.3 Dataset

Stack Exchange asserts its aim of maintaining an open knowledge-sharing network by

providing nearly irrestricted access to its contents. Data dumps with almost all of
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the site's contents are periodically o�ered for download under a Creative Commons

license2. Alternatively, the Stack Exchange database can be directly queried in real-

time via its Data Explorer3, allowing access to all data from any of its sub-domains,

including Stack Over�ow, with a limit of 50 thousand results per query.

Because the data dumps lacked information about post tags (as relationship data

is too vast and too unstable to be properly supported in a dump format), we built our

dataset by collecting data directly from the site. Initially, we borrowed the database

used in a previous study of answer quality in Stack Over�ow [Dalip et al., 2013]. This

database contains a complete dump of the system with detailed data about posts

(i.e. questions and answers) made from 2008 to 2012. We then added to this data

by collecting more recent content through queries posted to Stack Exchange's Data

Explorer. After a series of queries, designed to cover all posts dated after the prior

collection, we were able to extend the original database to a complete dump of user

and post activity Stack Over�ow, with all posts from its opening date in August 2008

until August 31st 2014.

We focus our study on the top 400 communities4 with the highest number of posts,

which alone account for over 90% of all posts in the site5. In total, our dataset with

the selected communities contains 19.8 million posts made by 1.7 million users over

a period of 6 years. On average, each selected community has 100,133 posts (CV6 of

2.34) and 32,038 users (CV of 1.33)7. Futhermore, most communities remained active

through a large fraction of the observed period, with an average period of activity

(interval between �rst and last post) of 2,016 days (CV of 0.19).

Even a simpli�ed overview of our data demonstrates a great variability in our

400 communities, in terms of the number of posts and uses across them. These and

other aspects concerning community and user activity, as well as their evolution, will

be expanded upon throughout our characterization of Stack Over�ow in the following

chapter and will remain our main focus for the rest of the thesis.

2https://archive.org/details/stackexchange
3http://data.stackexchange.com/
4From here on, we use the terms �tags� and �communities� interchangeably, as each community

relates directly to user activity surrounding its corresponding tag.
5We note that there are no obvious synonyms in the tags used to de�ne the communities in our

dataset. Thus, we believe all communities in our set relate to di�erent topics (in a broader sense).
6Coe�cient of Variation (CV) is the ratio of standard deviation to the mean.
7Recall that the same post and user may belong to multiple communities, as a post may receive

multiple tags.
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Temporal Dynamics of Topic-Based

Communities

In this chapter, we attempt to understand the structure and dynamics of topic-based

communities in Stack Over�ow. We examine di�erent factors that drive community

activity by looking into how users divide their attention across di�erent communities

in the network (Section 4.1), how they relate to communities in the long-term (Sec-

tion 4.2) and how their role in each community a�ects its sustainability (Section 4.3).

Because we are dealing with a multi-community environment, which results from its

users exhibiting varied interests, we also look into how communities may a�ect one an-

other by having a shared member base (Section 4.4). As often as possible, our analyses

consider user behavior over time, in order to understand how changes in this behavior

may a�ect community evolution.

4.1 Participation in Multiple Communities

The individual expertises and interests of a user may span over various areas of knowl-

edge. This implies that, at any time, a user may participate in any number of com-

munities in the network. With that in mind, we start our characterization by studying

how users relate to di�erent topics (and, by consequence, their respective communities)

in the network, and how their interests change over time.

Figure 4.1(a) shows the log-distribution of the total number of communities a

user participates in while in the network, with zoomed-in results in Figure 4.1(b). The

distribution is highly skewed, with a CV of 1.54. Around 13% and 15% of the users

are involved in only two and three communities, respectively, while the average user

participates in a total of 17 communities. Interestingly, the �gure shows that only

19
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Figure 4.1: User engagement in all communities.

around 4% of the users participate in a single community, while 9% of them exceed 50

communities in total.

Figures 4.1(a) and (b) show aggregated results, considering the whole lifetime

of users in the network. However, at one moment, a user may be highly involved in

discussions on a certain topic, only to have an entirely di�erent subject steal away

their attention in the next. We analyze the dynamics of user interests by focusing �rst

on the number of communities a user participates in on each month, during the user's

�rst year in the network. Figure 4.1(c) summarizes the distributions of the number of

communities per user on each month by means of boxplots with the 1st, 2nd and 3rd

quartiles, as well as the 10th and 90th percentiles. We note a great variability across

users in every time window. The �gure also reveals that users, particularly the top-

10% users that contribute to the largest number of communities (i.e., 90th percentiles)

tend to become more focused in their interests over time, limiting their contributions

to slightly fewer topics. The same decaying pattern over time is also observed for the

number of posts by a user in each community, particularly for those who are heavier

contributors, as shown in Figure 4.1(d). Despite this decay, the 10% most active users

still go on contributing to at least 42 communities, with at least 87 posts on each
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of them, even 12 months after joining the network. In contrast, 25% of the users

participate in at most only 7 communities, with as many as 11 posts on each of them

by that time (1st quartile). Thus, in general, users tend to become slightly less active,

in terms of numbers of communities and posts, as time progresses. These results are

consistent with previous investigations on user activity in Stack Exchange sites (not

including Stack Over�ow) [Furtado et al., 2013].

We further analyze user interest dynamics by focusing on the speci�c communities

a user contributes to in each window of one month. We employ the Jaccard coe�cient1

to quantify the community membership overlap in consecutive windows for each user.

That is, given Cu
t , the set of communities2 a user u contributes to during window t,

the Jaccard coe�cient Ju is de�ned as:

Ju =

∣∣Cu
t ∩ Cu

t+1

∣∣∣∣Cu
t ∪ Cu

t+1

∣∣ .
Figure 4.1(e) shows the evolution of the Jaccard coe�ecient, computed across

all users during their �rst year of activity in the system. The plot shows noticeable

changes in user interests, with users consistently reclying nearly 85% of the communi-

ties they participate in and remaining active in the other 15%. Note that users may

temporarily cease their activity in a community but return to it at a later date, rather

than abandon it completely. For instance, it is possible that a user is only ever active

in two communities, but alternates between the two in consecutive months, so that our

measurement of this user's community membership overlap would always be at zero.

Thus, this small overlap in community membership should not be strictly considered

a re�ection of members' constant (and permanent) change of interests, but rather a

portrait of their �uidity in the network and their tendency to jump across di�erent

communities, instead of always being restricted to a same group. Indeed, when looking

beyond the mean results, we �nd an overlap of over 0.24 for 25% of members and a

maximum overlap of 1.0 (full overlap) in every pair of consecutive time windows. The

only exceptions to this behavior occur during the �rst two time windows, when users

are still relatively new to the network and are more likely to be exploring di�erent

topics. After this initial period of exploration, similarly to what we �nd in Figures

4.1(c) and 4.1(d), members begin to return to previously visited communities, slightly

restricting their participation in several di�erent ones.

1 Jaccard coe�cient is a statistic used for comparing the similarity and diversity of sample sets.
2Since communities are explicitly de�ned by tags, we can clearly identify those a user contributes

to in each window.
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Figure 4.2: Continued activity in a community.

4.2 Continued Activity in a Community

Being so diverse in their interests, users may go through periods of exploration, when

they brie�y dabble into several subjects, followed by periods of localized activity on

fewer topics. We address the way users commit to communities by analyzing how long

they remain focused on any given topic.

We express this idea of commitment, or prolonged interest, by quantifying the

timespan between a user's �rst and last post in a period of continued activity, that is,

a period during which the user has made at least one post per month in a same com-

munity. For example, if a member contributed to the HTML community in January,

June, July, August, and December, we consider that the user remained active for three

periods with durations 1, 3 and 1 months. Thus, we avoid cases of intermitent partici-

pation, where a user makes a few posts to a community in one month, but only returns

to it several months later, with no activity in between. We note that this does not

imply that the user lost interest in the community, as they might have still passively

followed the discussion. However, by remaining inactive, the user cannot in�uence or

promote changes in the community evolution.

Figure 4.2(a) shows the log-distribution of the periods of continued activity com-

puted for all users and communities in our dataset. While about 24% of the users stay

active in a community for at most a month, over 35% of all users remain continuously

active for longer than a year. When relating these results to our previous analysis of

how users divide their time across communities in the network, we �nd an agreement

between short periods of continued activity and users dynamic behavior. In particular,

the previous Figure 4.1(d) suggested a prevalence of fragmented activity, with users

remaining continuously active in only a smaller portion of the communities they once

participated in.
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Figure 4.3: Revisiting patterns over time (CDFs).

Very similar distributions are obtained if we focus on particular communities, as

illustrated in Figure 4.2(b) for Ruby on Rails, a popular community in the network.

Thus, while communities usually are able to retain some of their members' attention

for much longer periods, a large fraction of the members are only (continuously) active

for a few months, though they might return to the community, becoming active again,

later.

4.3 Revisiting Users

So far, we have learned that despite having varied interests, the average user in Stack

Over�ow tends to also focus on a subset of topics, sometimes dedicating long periods of

continuous activity to them. Now, we attempt to quantify the e�ect of this persistent

participation on community evolution by investigating revisiting behaviour. We de�ne

user u as a revisitor of a community at a time window t=i if u has contributed to that

community in any previous window t < i.

Figure 4.3(a) shows the cumulative distribution function (CDF) of the fraction of

revisitors in all communities over time. For consistency, since communities have varied

ages and member populations, we focus on their �rst year of activity. We compare three

distinct moments in the communities' lifetimes, namely, the 1st, 6th and 12th months

of activity, as well as the overall results in all 12 months, to analyze how member base

composition (new users and revisitors) changes over time.

Early on, when a topic has only just been introduced in the network, one might

expect revisitors to be scarcer. Figure 4.3(a) shows that, during the �rst month of

activity, more than 25% of the users of half of the communities are revisitors, whereas

for 10% of the communities, more than 50% of the users are revisitors. These fractions
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are impressive, given that users only had a short period of contact with the topic

in the network. The sixth month of community activity shows a leap in revisiting

behavior, with the fraction of revisitors exceeding 44% for half of the communities.

This fraction continues to grow as time passes, albeit at a slower rate, reaching 50%

for half of the communities at the 12th month. When considering the entire �rst year,

the distribution is similar: the fraction of revisitors in the whole period exceeds 52%

for half of the communities.

Figure 4.3(b) shows similar patterns for the fraction of posts by revisitors (i.e.,

revisits). During their �rst month of activity, 50% of the communities feature more than

30% of posts made by revisiting users. In time, as members resume participation in

previously visited communities, their collective contribution grows to make up at least

48% of all posts in each community during the 6th month, for half of the communites.

This number continues to increase slowly afterwards: at the 12th month, the fraction of

revisits falls between 40% and 80% for over 60% of the communities. Thus, despite the

great variability, we observe that, for many analyzed communities, revisitors quickly

become a large fraction of the member base, and account for a large fraction of all

monthly posts.

We next analyze to which extent revisiting behavior correlates with community

sustainability. First, we found no clear correlation3 between the lifetime of the com-

munity (time between �rst and last post) and the fraction of revisitors (ρ = 0.06) as

well as the fraction of posts by revisitors (ρ = 0.05). This is not all surprising, as some

communities may remain in the system while receiving only few posts, sporadically.

We do, however, �nd a reasonably strong positive correlation between the fraction of

revisitors and the total number of posts in a community through its lifetime (ρ = 0.46).

Thus, though we cannot claim any causality e�ect, there is a general trend towards

more active communities having higher fractions of revisitors, suggesting that those

users play an important role on community sustainability. As an example, the Java

community received around 2 million posts throughout its lifetime, of which 76% were

made by revisitors.

We �nish this section by illustrating the aforementioned results for speci�c com-

munities. Figure 4.4 shows the evolution of the fractions of revisitors and revisits

during the lifetimes of two particular communities, HTML and Ruby on Rails 3. The

results are representative of most communities. After a brief period of activity, the

fraction of revisitors to each community catches up to the fraction of new members,

and their collective contributions quickly surpass that of newcomers. Past this turning

3We used the Spearman correlation coe�cient ρ, a nonparametric measure of statistical depen-
dence between two variables that does not require linear relationship between them.
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Figure 4.4: Temporal evolution of the fraction of revisitors and revisits for two example
communities.

point, the fractions of revisitors and revisits remain roughly stable. Note that, in the

long run, even though revisitors account for less than half of the member base (around

45%), these same users are responsible for over 75% of all contributions made in these

two communities.

4.4 Community Migration

As user interests change over time, possibly re�ecting the rise of a new popular topic

(e.g., a new technology), users migrate across communities, reducing their participation

in some topics to focus on others of currently greater interest. One particular scenario

where this migration is expected is that of communities centered around technologies

(e.g., applications, frameworks) that are periodically upgraded to new versions. Topics

pertaining to these technologies receive di�erent tags in the network to identify the

speci�c version in question (e.g., iOS 5 and iOS 6), being thus considered di�erent

communities4.

Figure 4.5 shows the composition of the member base of two such communities,

namely iOS 6 and Ruby on Rails 4, over time. On each month, we split the community

members into those who participated in the community centered around the previous

version of the technology (i.e., iOS 5 and Ruby on Rails 3), and those who did not.

We refer to the latter as new members, although they might have participated in

communities centered around even older versions (e.g., iOS 4). As shown in the �gure,

members inherited from the previous version community are indeed present in the new

4We treat the discussons on each version separately, as di�erent versions of the same technology
might have very di�erent features, thus attracting di�erent groups of users. Additionally, the use of
version-speci�c tags in Stack Over�ow is only encouraged when discussing version-speci�c features.
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Figure 4.5: Examples of member composition in communities centered around evolving
technologies.

community in signi�cant number, especially earlier in the lifetime of the new communi-

ty. For example, at the early stages of the iOS 6 community, one third of its members

had been priorly involved in iOS 5 (Figure 4.5(a)). This fraction is more impressive in

Ruby on Rails 4, in which former Rails 3 members make up as much as 82% (79% on

average) of the community for the �rst six months of activity (Figure 4.5(b)).

We note, in particular, that the �nal version of Rails 4 was released in late June

2013, at which point there is leap in community activity. Prior to this, beta versions of

Rails 4 were available for download and testing. These were mainly aimed at developers

and experienced Rails users, who could provide feedback during the beta process and

assist in improving the ultimate �nal product. Thus, it makes sense that Rails 3 users

would be the �rst to hear about and try out Rails 4, so that they would be the main

group discussing the new technology before the o�cial public release. Nevertheless,

former Rails 3 members continue to make up the majority of the Rails 4 community,

with new members catching up to their numbers only in June 2014, after a year of

community activity.

This migration of members between topics is not subject only to version-speci�c

communities, although they are a more intuitive example of this phenomenon. Figure

4.6 shows the member composition of two more example communities, namely MySQl

and CSS, in relation to associated communities. Figure 4.6(a) divides the MySQL

community between those members who previously participated in the PHP commu-

nity and those who did not, while Figure 4.6(b) divides the CSS community between

previous HTML community members and non-HTML members. While the topics for

each community pair are adjacent, as they denote complementing technologies, they

are nonetheless independent and discussions about each topic can, in principle, co-exist

independently from one another.
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Figure 4.6: Examples of member composition in communities centered around related
technologies.

As in the previous examples, we �nd a large presence of members from related

communities, with as many as 55% of MySQL members having also previously partic-

ipated in the PHP community and 60% of CSS members who were previous HTML

members. These fractions also remain roughly stable throughout the lifetime of the

communities, with a mean value of 49.5% (CV of 0.12) for MySQL and PHP, and 51.6%

(CV of 0.09) for CSS and HTML, and they seem to usually accompany �uctuations in

the total membership of the communities during speci�c moments (e.g., the increase

of members between February and March 2014, shown as the peaks in the Figures).

This supports our initial idea that communities do not function and evolve in isola-

tion, based solely on the intra-communitiy activities of their members. Rather, they

are also subject to the evolution of related communities, as shared members migrate

across communities.

4.5 Summary of Findings

Our characterization of topic-based communities in Stack Over�ow uncovers several

key aspects of user behavior in terms of how they relate to communities in the network

and in�uence community activity. We �nd that the average user tends to interact

with several di�erent topics, thus participating in multiple communities throughout

their sojourn in the network. Users are also not static in their interests, but instead

often change the community set they belong to. As a consequence of this variable

behavior, we �nd that communities are not independent objects, but may in fact a�ect

one another as their members migrate across communities, according to changes in

their interest or changes around topics. We illustrate this with version-speci�c topics,

where members of a community centered around a previous version of a technology
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can make up over 80% of the community centered around a newer version of the same

technology. Similar behavior is also found when comparing related topics. For certain

cases, related communities were shown to share up to 60% of their member base.

Despite their varied interests and their engagement in multiple communities, users

who do go on participating in the same topics are shown to be responsible for a large

portion of the community activity surrounding those topics. In over half of the com-

munities we investigate, these revisiting users can account for 52% of the community

participants and up to 80% of all contributions made during their �rst year of activ-

ity. This fraction also tends to grow over time, with revisiting users gaining a more

prominent role in community sustainability as time goes on.

Overall, we �nd that users can promote or hinder community activity through

their dynamic behavior and their engagement in multiple communities. In the next

chapter, we draw from these insights to develop a model for community evolution in the

network, which aims to capture both intra-community e�ects, such as the continued

participation of users, and inter-community e�ects caused by the interaction of a shared

member base between communities.



Chapter 5

CERIS

Aiming at describing the evolution of topic-based communities, we here propose

CERIS, a model that captures the temporal evolution of user activity in a community

and the key elements responsible for shaping this activity pro�le. The model draws

directly from our previous characterization in Chapter 4, explicitly handling commu-

nity aspects such as revisits by the same users and the interactions between related

communities.

In the following sections, we present our general modeling approach (Section 5.1)

and describe CERIS (Section 5.2). We then present �tting results, demonstrating it

�ts reasonably well the dynamics of various communities (Section 5.3). Finally, we

discuss applications of the model (Section 5.4) and show how it can be used to uncover

patterns of user migration across communities and how communities can be grouped

according the �ow of users in the network.

5.1 General Approach

In Chapter 2, we presented a variety of models describing how people share their

attention towards a speci�c object. The community evolution problem, in speci�c,

is most commonly addressed by adoption models. These models aim at exploring

the mechanisms and network conditions that motivate a user's decision to adopt a

new technology or join a new community [Ribeiro, 2014]. Both internal (e.g., user

interactions and in�uence) and external factors (e.g., marketing campaigns and word-

of-mouth) may be taken into consideration in order to capture the di�erent driving

forces behind the evolution of a network of users.

29
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Figure 5.1: Fitting results for the model proposed in [Ribeiro, 2014].

We experimented with some of these approaches in our context, but they failed to

capture important elements of community dynamics. As one example, we evaluated the

di�usion model proposed by Ribeiro [2014], which describes the popularity evolution of

membership-based websites. Although this model was shown to provide good �ttings

to support predictions of website sustainability, it could not accurately describe the

evolution of communities in our dataset, mainly because it relies on adoption thresholds

and because the model is not able to capture abrupt increases and decay in user activity

patterns, nor the interaction between several communities. Examples of the achieved

model �ttings for this model are shown in Figure 5.1. Note that the model performs

well only as long as there is a steady trend in community activity.

Another approach to the community evolution problem is to model communities

as contagions, which spread in the network as users become infected by new topics

through participation in a community discussion, and eventually recover by ceasing

activity in the community. Indeed, Schoenebeck argues that online communities tend to

resemble contagious networks, so that applying epidemiology intuition to them should

provide a better understanding of their structure [Schoenebeck, 2013]. Despite this

intuition, epidemic models have more often been employed to capture the dynamics of

other types of objects in online network settings, such as information di�usion [Myers

and Leskovec, 2012; Matsubara et al., 2012].

We here recall two such models which, while originally designed for other set-

tings, consider similar factors to what we have observed in the dynamics of topic-based

communities in Stack Over�ow. The �rst of these models is proposed by Beutel et al.

[2012]. The model extends the SIS model to describe competition e�ects between pairs

of contagions in a same network and determine the threshold at which one contagion

will overpower another. The authors apply the model to real-world data regarding the

adoption of competing products (e.g., video streaming services), leaving other com-

petition scenarios unexplored. Thus, the idea proposed in the paper remains untried
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in the context of online social communities. In particular, it does not consider the

unique aspects which in�uence how these communities compete, and how they may

even cooperate with one another.

A second model of interest is the Phoenix-R model [Figueiredo et al., 2014], which

describes the popularity evolution of social media objects (e.g., Youtube videos), with

special regard given to revisiting behavior and the cascading behavior of users accessing

these objects. Extending the SIR model, Phoenix-R explicitly models user revisits to

a same object as a transition from an infected state into an new hidden state, wherein

users interact with the object multiple times. Phoenix-R was shown to be robust and

outperform previous state-of-the-art models, like SpikeM [Matsubara et al., 2012] and

Temporal Dynamics [Radinsky et al., 2013], in terms of both scalability (to large object

collections and long time windows) and accuracy. As Phoenix-R explicitly highlights

revisits to an object, it seems well-suited for modeling the user activity in our topic-

based communities. However, this model is restricted to single objects, and thus cannot

capture the interaction between related communities and its e�ect on their activity.

Inspired by the models proposed in [Beutel et al., 2012] and [Figueiredo et al.,

2014], we here propose the Community Evolution model with Revisits and Inter-

community e�ectS (CERIS). By combining elements from both approaches, our model

is able to not only describe the evolution of a community over time, but also give

insight into speci�c mechanisms that drive community activity, including continued

member participation by means of revisits and the impact of related communities on

one another.

5.2 Model Derivation

For the sake of simplicity, we describe CERIS by focusing on two interacting communi-

ties, referred to as C1 and C2. Yet, the model is general enough to handle an arbitrary

number of communities, at the cost of increased model complexity, as we will show in

Section 5.3. As in Phoenix-R, we assume a �xed population of users who are subject to

multiple outbreaks (or shocks) of interest in each community. Each shock is modeled

as a contagious process directly a�ecting one given community, although it may also

indirectly impact the other one. In the following, we �rst present the model for a single

shock, and then discuss how it generalizes to multiple shocks.

The contagious process happens similarly to a SIS model. In order to capture

the interaction between both communities, we assume users can be either susceptible,

infected by C1, infected by C2, or infected by both (as in Beutel et al. [2012]). The
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recovery from each infection is captured by transitions between these states. Specif-

ically, any user can be in one of 7 states: S, meaning that the user is susceptible to

either C1 or C2; I1 and I2, meaning that user is currently participating in C1 and C2,

respectively; I1,2, meaning that user is participating in both communities; and V1, V2

and V1,2, hidden states describing revisits in (only) C1, C2 and both, respectively. The

total user population (for the shock) is N = S + I1 + I2 + I1,2. The process evolves as

follows:

• At �rst, an external shock causes interest to arise around one of the communities,

say C1. The shock starts with 1 user infected by the community (I1=1) and the

others susceptible (S=N -1).

• As users keep interacting in the network, new users may join C1, thus becoming

infected by it. This process happens with an infection rate β1, which determines

how contagious C1 is.

• Users who are discussing one topic may be more frequently exposed to related

topics. Thus, infected users in community C1 may additionally become infected

by community C2 at a modi�ed rate, determined not only by the infectiousness

of C2, i.e. β2, but also by a measure ε of the relationship between C1 and C2.

Although ε could be derived by the model (as in Beutel et al. [2012]), we here

estimate its value directly from the input data to reduce computational costs.

We estimate ε as equal to the user overlap between both communities, that is

ε = |U1∩U2|
|U1∪U2| , where Ui is the full set of users who participated in Ci at any point

in time.

• The product εβ1 is the rate at which users infected by C2 are also infected by C1.

Similarly, εβ2 is the rate at which users infected by C1 become infected by C2.

• While infected by one or both of these communities, users may continuously

interact with them by means of revisits. As in Phoenix-R, we consider that

revisits in a community happen as a Poisson process. Parameters ω1, ω2 and ω1,2

capture the rates at which users revisit only C1, only C2, and both C1 and C2.

• Users may eventually cease participating in a community, according to recovery

rates γ1 and γ2.

• Users who remain active in the network after leaving a community may still

come back to it at a later time by a process of reinfection, so that the users may

continuously cycle through these states.

Figure 5.2(a) illustrates these di�erent states and transitions, following a single

shock in the network. We assume that the shock starts at time t=0, thus focusing
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Figure 5.2: CERIS model representation.

on the dynamics after the shock. The following system of continuous-time di�erential

equations describe how the number of users in states I1, I2, I1,2 and S evolve over

time1:

dI1
dt

= β1S(I1 + I1,2) + γ2I1,2 − γ1I1 − εβ2I1(I2 + I1,2) (5.1)

dI2
dt

= β2S(I2 + I1,2) + γ1I1,2 − γ2I2 − εβ1I2(I1 + I1,2) (5.2)

dI1,2
dt

= εβ1I2(I1 + I1,2) + εβ2I1(I2 + I1,2)− (γ1 + γ2)I1,2 (5.3)

S(t) = N − (I1(t) + I2(t) + I1,2(t)). (5.4)

Equation 5.1 describes the evolution of the number of users infected by C1. This

process depends on: the rate at which users infected by C1
2, which is proportional

C1's infectionousness (β1), are able to in�uence susceptible users (S); the rate at which

users infected by both communities (I1,2) leave C2 and remain active only in C1, which

happens at rate γ2; the rate at which users infected only by C1 cease participating in it

(γ1I1); and the rate at which users infected by C2 (I2+I1,2) infect new users currently

1For the sake of simplicity, we use the same notation to refer to both the state and the number of
users currently in it.

2The total number of users infected by C1 is given by I1 + I1,2.
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participating only in C1 (I1), which happens with contagious power εβ2. The latter

captures the migration of users from C1 to C2. Equation 5.2 describes the same process

for users infected by C2.

Equation 5.3 governs how the number of users infected by both communities

evolves. The �rst two terms capture the rate at which users infected by only one

community are infected by the other. The last term captures the rate at which users

recover from either community. Finally, Equation 5.4 describes how the number of

susceptible users S evolves over time (S(t)) as function of I1, I2, I1,2, and the �xed

population size N .

We note that Equations 5.1-5.4 are the same as those proposed in Beutel et al.

[2012] to capture the propagation of pairs of infections in a network. However, unlike

in that work, we consider the contagious process following one or more shocks in the

network and we consider also that infected members may repeatedly contribute to the

activity of a community by revisiting it. We capture these revisits by hidden states V1,

V2 and V1,2, whose dynamics are de�ned as:

dV1
dt

= ω1I1,
dV2
dt

= ω2I2,
dV1,2
dt

= ω1,2I1,2. (5.5)

We can then de�ne the total number of visits (posts) to community Ci at time t

as Vi(t) + V1,2(t).

The above description focuses on a single shock. Yet, like Phoenix-R, CERIS also

captures multiple shocks that may impact each community. It does so by taking the

model illustrated in Figure 5.2 as a building block for each shock, and connecting the

hidden states V1, V2 and V1,2 so as to aggregate all visits to the same community. This

is illustrated in Figure 5.2(b) for C1. Note that the connecting point, v̂1, counts the

total number of visits in community C1 due to all shocks.

Speci�cally, given K the set of all shocks (for both communities), and sj the time

when the jth shock occurred, the total number of visits in community Ci, due to all

shocks, at time t is:

v̂i(t) =

|K|∑
j=1

Vi,j(t− sj) + V1,2,j(t− sj)(i = 1, 2). (5.6)

Moreover, if Nj is the population a�ected by the jth shock, the overall population

of users is given by N=
∑|K|

j=1Nj. Note that we assume that populations in each shock
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do not interact with one another. That is, an infected user from shock sj does not

interact with a susceptible one from shock sp for j 6= p. While this may not always

hold (users may hear about a topic from di�erent populations), it provides a good

approximation, as we will show in Section 5.3. It also allows us to have di�erent

parameter values for each population, capturing the notion that di�erent populations

may behave di�erently regarding a given topic.

We now discuss how to �t CERIS to a given dataset representing a set of time

series of user activity in each community. We assume time is discretized into time

windows (e.g., a month or a day). The �tting procedure is as follows. For each shock

j on one of the communities, the model estimates the total number of susceptible

users S at time t = 0, as well as β1, β2, γ1, γ2, ω1, ω2, ω1,2 from the data, using

Equations (5.1)-(5.4). These are outputs of the �tting process. To perform the �tting,

we follow the approach in [Figueiredo et al., 2014] to de�ne the set of shocks for each

community. Each shock corresponds to a peak in the community's time series. At

�rst, we discover these candidate shocks from activity peaks in the data by applying

a continuous wavelet transform-based peak-�nding algorithm3. We then �t the model

using the Levenberg-Marquardt (LM) algorithm, which is a standard approach for

nonlinear parameter optimization. The method works by minimizing the sum of the

squares of the errors between the data and the model functions [Gavin, 2015]. Shocks

are incrementally added, in decreasing order of peak volume. We evaluate the cost and

bene�t of adding a new shock by applying the Minimum Description Length (MDL)

method for model selection, in order to �nd a good tradeo� between model accuracy

and model complexity.

5.3 Fittings

We put CERIS to the test by applying it to sets of communities in Stack Over�ow.

Figure 5.3 shows examples of the achieved model �tting for monthly (Figures 5.3(a)

and (b)) and daily (Figures 5.3(c) and (d))activity time series from di�erent sets of

related communities.

The �ttings were fairly accurate overall, with a mean root mean square error

(RMSE) of 21.1317 for all pairs and an error below 35.7251 for 75% of all pairs consid-

ered. The model gives a reasonably accurate portrayal of the concurrent evolution of

related communities in the network and is able to track di�erent trends in community

activity, including both rise and fall patterns, and multiple peaks of activity. We high-

3https://en.wikipedia.org/wiki/Mexican_hat_wavelet
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Figure 5.3: Model �t of the number of posts in related communities.

light the example in Figure 5.3(a), where the �rst signs of activity in the newly created

SQL Server 2012 community coincide with a drop in activity in the SQL Server 2008

community. The Ruby on Rails 3 and Ruby on Rails 4 communities behave similarly,

as shown in Figure 5.3(c), with the appearance of Rails 4 coinciding with a new shock

and subsequent decay in activity in Rails 3. By capturing the migration process of

users who go through di�erent stages of community-infection, the model allows us to

keep track of the impact one community has on the other. Also, as both communities

are evaluated concurrently, the model outputs can be directly applied to compare and

contrast activity patterns in di�erent communities, at any given time. For instance,

the initial infectiousness β of each community, which stands as a proxy for its attrac-

tiveness to new members, provides good insight into how successful a community may

grow to be. Indeed, SQL Server 2012 displayed a smaller adoption rate than its prede-

cessor (βSQL2008 = 0.00165 and βSQL2012 = 0.00141), and it never caught up with the

SQL Server 2008 popularity, despite having drained a portion of its members.



5.4. Model Applications 37

The model also performs well when analyzing communities which are related but

do not display strong migration patterns, such as in Figure 5.3(b). Instead of competing

for members, with users permanently migrating from one community to another, these

communities coexist in the network and share a portion of their member bases. We

will further discuss the �ow of users between communities in the next section. For now,

we note how the model is able to handle communities with largely distinct populations

and still capture how they evolve both independently, with their own distinct member

bases, as well as cooperatively, through their shared members.

Moreover, as mentioned, CERIS can be easily extended to handle more than two

communities. As illustrated in Figure 5.3(d) for three related communities, the model

is able to keep up with changes in community activity patterns, as members transition

from one community to the next. Thus, although presented as handling pairs of related

communities, CERIS can be further extended to account for n-way relationships and

still provide good results.

Finally, we note that CERIS is not only reasonably accurate but also quite scal-

able. The �tting process for the model runs at linear time, in relation to the activity

time series being �tted. As a concrete example of the model's performance, the time

required to do each of the �ttings in Figure 5.3 is on average only 116 seconds on a

Intel Xeon 2.40GHz with 47GB RAM. This is a fairly short time, given the amount

and period covered by the data being �tted, particularly in Figures 5.3(c) and (d),

which make use of daily, rather than monthly, activity information.

5.4 Model Applications

As well as o�ering a way to describe the evolution of communities in the network,

CERIS also give signi�cant insights into the relationship between communities, as

dictated by the way users interact with each of them. In this section, we expand

on these results and explore some of the applications of the CERIS model and its

outputs, including the discovery of migration patterns given by inter-community user

�ows (Section 5.4.1) and how these can determine macro-communities in the network

(Section 5.4.2).

5.4.1 User Flows

One key feature of CERIS is its ability to explicitly capture the relationships between

communities in the network, based on their shared member base. This is expressed

by ε, which is the measure of the overall overlap between two communities, and β1
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and β2, which are outputs of the model. We utilize these results to de�ne the �ow of

users from community C1 to community C2 as the probability that a user in C1 will

eventually join C2. In our model, this value is estimated as εβ2 (and, similarly, the

�ow in the opposite direction is εβ1).

For our following analyses, we look at the �ow values output for each monthly

time window. Thus, whenever we refer to the user �ow between two given communities,

we are discussing the average monthly �ow of users between them, computed during a

certain period of time.

Figure 5.4 shows the cummulative distributions of the computed �ow values be-

tween all possible community pairs in our dataset, as well as between the subset of the

top 100 most active communities, over the whole time period of 2008 to 2014. The

distributions are skewed towards lower �ow values, especially when considering all 400

top communities, with only 10% of all community pairs displaying a �ow value above

0.20. In the smaller subset of 100 communities, we �nd 25% of community pairs with

a �ow value of over 0.20 and 50% of pairs with a �ow value of at least 0.11. These

lower �gures are nonetheless still signi�cant: an outgoing �ow of 0.11 from community

A to community B indicates that members from A approximately have an 11% chance

of later participating in community B as well.

We also investigate how these �gures change over time by observing the inter-

community �ows during individual one-year intervals. Figure 5.5 shows the mean �ow

values and standard deviations computed for community pairs on each year, on both

our sets. Over time, we �nd an increasing number of community pairs with lower �ow

values. These start at a mean value of 0.21 in 2008-2009 and steadily decrease to 0.08 in

2013-2014. At the same time, the variability (estimated by the coe�cient of variation)
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of these values increase, with a CV of 0.73 in 2008-2009 and 1.23 at 2013-2014. Thus,

over time, community pairs tend to present more distinct relationship levels. This

evolution could be partly attributed to the overall popularity growth of the website.

As new users join the network with speci�c intents, they aid in building up distinct

community member bases.

When focusing on speci�c community pairs, we �nd diverse evolution patterns

of user �ow, which are coherent with changes in the relationships between the topics

they refer to. As an example, we look at the evolution of the user �ow between the

Javascript and CSS communities, which correspond to two of the most active topics in

the site. In 2008, the outgoing �ow from CSS to Javascript was 0.75 and it was met

with an incoming �ow of 0.55. Six years later, in 2014, the outgoing �ow from CSS

to Javascript only marginally increased to 0.76, while the �ow to CSS from Javascript

remained stable at 0.55. Other community pairs, such as Flash and HTML, grew more

distant over time, with a �ow of 0.43 from Flash to HTML in 2009 and a lower �ow

value of only 0.29 in 2013.

In some cases, rather than a natural distancing between topics (as with HTML

and Flash), we can observe the disruptive e�ect that one community may have on

existing relationships. For example, the Ruby on Rails 3 community starts out with

an incoming �ow of 0.61 from the Active Record community in 2010. Shortly after the

launch of Ruby on Rails 4 and its introduction as a topic in the network in late 2012,

this �ow value drops to 0.41 in 2013. During this same period, the outgoing �ow from

Active Record to Ruby on Rails 4 was 0.45. This is a good illustration of how users

quickly adapt to the evolution of topics in the network and how the emergence of new

technologies (and their respective communities) can impact previously well-established

relationships between existing communities.

To summarize these distinct evolution patterns, we estimate the variability in the

user �ow for each community pair over time by computing the coe�cient of variation

(CV) of the user �ows measured for the pair4 in all six years covered by our dataset.

The higher the CV computed for a given pair (C1, C2), the greater variability observed

in how the �ow from C1 to C2 evolved over time. We summarize these results in Figure

5.6, which shows the cumulative distributions of the CV values for all community pairs

in our dataset.

Overall, roughly 70% of all pairs had a CV below 0.5 and less than 1% had

a CV over 1.0. Thus, most inter-community �ows in the network tend to remain

roughly stable over time, su�ering from moderate to little variation in consecutive

4Each pair appears twice, once for each direction (C1, C2) and (C2, C1).
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time windows. As a more pronounced example of this, we also single out the top 10

communities which presented the highest �ow values in 2008, also shown in Figure 5.6.

Only two of these community pairs had a CV above 0.1, an already low value in itself.

We note that this set of communities mainly refer to broader topics (such as �Ruby�, as

opposed to �Ruby on Rails 3�) and therefore may be more robust to temporal changes

in the network.

Finally, Figure 5.7(a) illustrates the average monthly �ow between our top 100

communities as a heatmap, where the color depth of each cell represents �ow intensity.

Source communities, in order of popularity, are laid out along the y axis, while desti-

nation communities are shown on the x axis. The diagonal is left blank as it stands for

the �ow from a community to itself. This number would be equivalent to the revisit

rate, which we have discussed in our characterization (Chapter 4).

In general, we �nd that more popular communities, with high overall levels of

activity, have large incoming �ows from most considered communities, including several

smaller ones. Yet, their outgoing �ow is also distributed among some of these smaller

communities. These results are represented by the darker cells for small values of x in

Figure 5.7(a). Thus, these popular communities can be seen as hubs in the network, as

they accumulate and distribute user activity throughout di�erent communities in the

network.

Figure 5.7(b) zooms in on the top 15 most active communities in our dataset.

Clearly, communities centered around related topics have higher �ow values. For ex-

ample, users in the CSS community have a chance of about 0.72 of participating in the

HTML community as well. Interestingly, we often see high �ow values in both direc-
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tions (HTML reciprocates CSS with an outgoing �ow of 0.64), indicating that users

may transit back and forth between related communities. Nonetheless, more popular

communities tend to dominate incoming �ow.

5.4.2 Macro-Communities

As communities and their relationships become more well-established in the network, it

is possible to �nd patterns between them, such as a common theme. Thus, by observ-

ing users' behavior and trajectory in the network, we can recognize groups of related

communities purely based on inter-community �ow dynamics, rather than having to

rely on user interactions or semantic similarity [Papadopoulos et al., 2012].

In order to identify these macro-communities, we approach the network as a

connected graph, wherein each node represents a community and edges represent the

�ow of users between communities. We then apply the Clique Percolation Method

(CPM)5 [Derényi et al., 2005] over the community graph in order to discover clusters

of related communities. The method works by discovering k-cliques, that is, fully

connected subgraphs of k nodes. These cliques are then joined with adjacent cliques

if they share k − 1 nodes. The resulting clusters therefore correspond to the maximal

k-clique-connected sub-graph.

When applying the CPM, we consider only the top 10% of edges with the highest

�ow values, which denote a more signi�cant relationship between the linked communi-

ties. The CPM additionally discards a small number of communities which only appear

in isolated small cliques (with 3 nodes or less). This corresponds to 13% of nodes in our

top-100 set and 9% of nodes in the top-400 set. We also vary the clique size k, starting

at k = 4. Exluding very low (k < 6) and high values (k > 15), results were consistent

for di�erent k values6, with varying k sizes yielding the same number of clusters and

similar community sets for each cluster. Thus, for consistency and generality, we �x

k = 6 for the following analyses.

Figure 5.8 illustrates the macro-communities we found on the top-100 set, consid-

ering an aggregated view of �ows over the whole 6-year period of our dataset. Overall,

we �nd a relatively small number of community clusters, with at most 5 clusters in the

top-400 community set and 3 in the top-100 set. Both cases feature one larger cluster,

containing over half of the communities (259 in the top-400 set and 51 in the top-100

set). These clusters include very popular communities (with the greatest number of

posts), to which several smaller �satellite� communities are connected with high incom-

5Implementation available at http://github.com/michelboaventura/rcpm
6Lower and higher values of k often resulted in a single cluster.
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Figure 5.8: Macro-Communities in the top-100 set.

ing �ows. As an example, in the top-100 subset, the �Javascript� community was still

connected to 88 communities after the removal of the 90% edges with the lowest �ow

values. This again points towards popular communities acting as hubs in the network,

as they gather and redistribute users from and to smaller communities.

These popular communities have another interesting e�ect in macro-community

composition. As macro-communities describe groups of densely connected communi-

ties, we expect the average �ow between communities in a same cluster to be greater

than the �ow between distinct clusters. However, because the CPM allows communities

to simultaneously belong to di�erent clusters, exceptions do occur. In both our sets,

two distinct clusters featured the same four very popular communities (namely, those

surrounding the �.net�, �c#�, �windows�, and �asp.net� tags). This makes it so that

their overall shared member base is similar, which results in a high �ow across clusters.

In the top-100 set, we found both an incoming and outgoing �ow of 0.31 between the

two macro-communities, which stands above the average �ow of 0.28 across di�erent

macro-communities.

The macro-communities we discovered in our aggregate analysis are nonetheless

internally cohesive, both in terms of the user �ow across their communities and in

terms of their underlying common topic. Among the three macro-communities in

our top-100 set, one seems related to general programming discussions, including a

majority of communities surrounding programming languages and operating systems.

Another cluster refers to Windows and technologies commonly associated with it, such

as Visual Basic and the .net framework. The third cluster, which interestingly featured

no community intersection with the other two clusters, encompasses discussions strictly

related to Apple products and associated technologies, such as iPad, iPhone, OSX
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Figure 5.9: Temporal evolution of macro-communities.

and Objective-C. In addition to these three, the top-400 set also features one macro-

community surrounding programming IDEs and their many extensions, such as Eclipse,

NetBeans and jUnit, and another macro-community exclusively about Ruby and Ruby-

on-Rails technologies.

In an e�ort to better understand the dynamic relationships between the commu-

nities in the network, we again analyze their evolution in individual one-year periods.

Figure 5.9(a) illustrates the clusters/macro-communities we identi�ed in the top-100

set in each year, along with the number of communities that belonged to each cluster

in that year (each bar is divided into a number of sectors corresponding to the number

of clusters identi�ed in the year). As in our aggregate analysis, every year sees the

presence of one large cluster, involving a majority of the communities, accompanied

by a few smaller clusters. These are more fragmented during the early years of the

network and display varied compositions. For instance, 6 macro-communities were

identi�ed in 2008. In later years, as communities and their relationships grow more

established, these clusters also become more distinguished (converging to 3 clusters in

2010) and begin to feature a similar core of communities over time. The larger cluster

continuously features a same group of core communities (the same 24 communities

were present in the cluster in every year) while also drawing in new communities. As

new topics appear in the network over time, communities arise that may help bridge

existing communities, thus in�uencing the make-up of clusters at di�erent periods.

This variability in cluster composition is displayed in Figure 5.9(b), which re-

lates each community to its containing cluster (a di�erent color is used to represent

each cluster7) in each year. We see how individual communities can belong to dif-

ferent macro-communities in di�erent periods, which translates how inter-community

7Light-gray is used for communities that did not belong to any cluster.
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�ow dynamics vary over time. Nonetheless, we see a tendency towards communities

settling in to speci�c clusters as time goes on, which points to their growing maturity

as topics in the network. The few communities which continue to feature in di�er-

ent clusters are often those that show up in the overlap between macro-communities

and that thus relate to multiple disciplines (e.g., discussions about Microsoft's C#

programming language may appear in the programming macro-community or in the

smaller Windows-based macro-community).

While we were easily able to relate these macro-communities to a common general

theme, we emphasize that we relied solely on the �ow of users for the discovery of

macro-communities and no evaluation of the discussions in the associated communities

was necessary. Discovering macro-communities in this way is therefore a novel form of

community detection, as it relies neither on textual attributes to determine semantic

similarity between topics in the network, nor on the social graph of user interaction

[Papadopoulos et al., 2012], which may be an ine�ective portrait of a community when

there are hundreds of thousands of active members posting about the same topics but

who have a small chance of interacting directly with one another. Instead, our approach

focuses on the relationships between users and the varied topics and communities they

engage in over time.

5.4.3 Summary of Findings

In an e�ort to summarize community dynamics in Stack Over�ow, we design a new

model to describe the evolution of community activity, while explicitly capturing the

e�ects of user revisits to a single community and the impact of community activity in

related communities, which may hinder or contribute to the evolution of one another.

In particular, insights about inter-community relationships, which are quanti�ed with

the help of the CERIS model outputs, give way to a series of further analyses concerning

user activity and behavior.

By focusing on how users interact with multiple communities in the network over

time, we establish and investigate the �ow of users across communities as a measure of

their relationship. This allows us to uncover signi�cant patterns in how users traverse

communities and how changes in these patterns can a�ect the community network.

We found that the evolution of user �ows tend to follow changes in the technologies

themselves, with �ow values decreasing between their corresponding communities as

technologies drift apart. Nonetheless, most relationships tend to remain stable. No-

tably, communities regarding more general and more popular topics su�er only from

very little variation in their user �ows over time.
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The most popular communities, with the highest number of users and posts, play

another interesting part in the network. As they are connected to a majority of the

other communities with high incoming user �ows, these communities can potentially

act as hubs in the network and bridge communities that would otherwise be disjoint.

We further explore the idea of inter-community user �ows to show that it can be

used to identify groups of closely related communities in the network. Employing a

community detection method, we discover �ve such macro-communities in the network,

each one relating to a broader common topic. The �ow of users in the network thus

provides a clear portrait of a larger topical structure in the network which can be

inferred even without any textual analysis of posts and topics themselves.

These discoveries motivate the use of CERIS for more than a description of com-

munity evolution and of the elements that drive it, and exemplify some of the possible

applications for its results on inter-community dynamics. Furthermore, these new anal-

yses support our initial approach to the network by providing evidence on its cohesive

community structure, which derive from users' participation in di�erent topics.





Chapter 6

Conclusions and Future Work

In this thesis, we investigated knowledge-sharing networks from a novel perspective,

by approaching them as a dynamic multi-community environment whose structure is

given by the way users organize their discussions in speci�c topics. Our work therefore

complements previous studies, which have mostly focused on exploring the content

produced within these networks.

Our community approach to online knowledge-sharing networks was guided by

our concept of topic-based communities, which denote groups of users who contribute

to speci�c topics in the network. In order to explain these communities, we focused

on data from Stack Over�ow, a prominent Q&A site. We performed a thorough char-

acterization of user behavior in the network, investigating how they relate to di�erent

topics in the network and how their interests change over time, a�ecting their activity

in di�erent communities that may be part of. Our characterization revealed that, in

particular, community activity is driven by two key factors: intra-community dynam-

ics, such as and persisting membership and revisiting behavior, and inter-community

dynamics, wherein individual communities that share a portion of their members are

able to a�ect one another.

The �ndings in our characterization drove the design of a new community evolu-

tion model, CERIS. Our model builds on state-of-the-art approaches and incorporates

key elements of community dynamics in order to describe the temporal evolution of

user activity in topic-based communities. The model was shown to perform reasonably

well, yielding overall low �tting errors and a good portrayal of the concurrent evolution

of related communities. In addition, the model results give valuable information about

community relationships in the network. In particular, we focused on the �ow of users

between communities as a measure of how users from one community transition into

another.

47
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Possible directions for future work include bridging the gap between our study

in user behavior and community evolution and previous studies in content and service

quality in online knowledge-sharing networks. Investigating how community dynamics

a�ect the perceived quality of the network could be a valuable tool for the improvement

of these systems. By exploring repeating patterns of user activity, such as activity peaks

or seasonality, and relating these patterns to the content produced at speci�c times, we

may be able to anticipate the production of similar content in the future. For instance,

at the early stages of a community based around a newly-created technology, we may

�nd a larger number of discussions regarding its basic functions, while more in-depth

discussions may follow later on, as users become familiar with the technology. As similar

technologies arise and appear in the network as new topics, displaying similar patterns

of activity, the system may then present users with a pre-made set of basic discussions,

thus making the topics more easily accessible and facilitating the assimilation of the

new technologies.

While we have delved into many of the main factors behind community activity in

Stack Over�ow for our characterization, there are other site-speci�c features that may

also contribute to our understanding of the site and how its members behave within

it. Aspects such as the in�uence of user badges, status and moderation feedback

may in�uence how users behave and what topics they choose to focus on. Built-

in recommendation mechanisms such as the existing �Related� section, which links

users to questions similar to the one currently being viewed, also help shape how users

navigate the site and discover new discussion threads and topics. Analyzing the impact

of these elements, as well as the way users traverse di�erent topic in the site, would

thus be an interesting step to further our present study of Stack Over�ow.

Another direction would be extending the model to cover topic-based commu-

nities found in di�erent systems, such as general-purpose online social networks and

discussion boards. As our model incorporates key dynamics of user behavior in a spe-

ci�c knowledge-sharing network, the model may need to be readjusted to account for

other such factors when applied to a di�erent setting. Comparing these di�erences

is also an interesting research possibility, as it may aid in understanding the distinct

patterns of evolution and sustainability of di�erent networks.
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