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Resumo

Congestionamento ¢ um problema comum dos centros urbanos, que ocasiona perdas
economicas e de tempo, maior consumo de combustivel e maiores emissoes de COs.
A literatura indica que os Sistemas de Transporte Inteligentes (ITS) vao influenciar
no transito. As redes veiculares, por sua vez, surgem como um componente do ITS,
possibilitando a comunicagao cooperativa entre veiculos e de veiculos com a infraestru-
tura. Além do congestionamento, a maioria das aplicagoes depende de localizacao e
mobilidade das informagoes de veiculos, que ¢ dificil de estimar.

Para superar esses problemas, esta tese aborda congestionamento de transito
explorando seu comportamento através de dados historicos, incidentes de transito,
transicoes de fase, modelo analitico e de previsao, e servicos. A afirmacao da tese é
modelar, prever e controlar o congestionamento de transito usando redes veiculares. Os
objetivos sao: (1) coletar diferentes fontes de dados sobre as condiges de transito; (2)
caracterizar condigbes de transito reais e correlacionar com essas fontes de dados; (3)
prever as condigoes de transito e seus efeitos; (4) propor servigos de sugestao de rotas
para fazer um balanceamento de carga do fluxo de veiculos na cidade. Todos esses
objetivos fazem parte de um Sistema de Gerenciamento de Transito (SGT). Além das
contribuigoes em todas os moédulos de um SGT, a diferenca para outras abordagens é
a coleta e a analise de informacgoes em tempo real sobre as condigoes e os incidentes de
transito por meio de servicos de mapas.

Os resultados mostraram que os modelos de previsao melhoram a acurécia em até
80% para prever o congestionamento com base em dados historicos e de tempo real.
Adicionalmente, a partir da correlacao dos dados de sistemas de sensores participativos
com as condicoes de trafego intenso, a acuracia dos modelos de previsao foi melhorada
de 80% para até 90%, em geral. Essas solu¢oes reduzem o tempo de viagem em até

56%, e o consumo de combustivel e a emissao de CO5 em 18%, em média.

Palavras-chave: Rede veicular, engarrafamento, congestionamento de transito,

servigos de mapa, controle de congestionamento, rede bayesiana, regressao logistica.
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Abstract

Traffic jam is a common contemporary society problem in urban areas, leading to eco-
nomic losses, waste of time in traffic, higher fuel consumption and major CO5 emissions.
The literature indicates that Intelligent Transportation Systems (ITS) will influence the
traffic. In this context, vehicular networks emerge as a component of I'TS, allowing the
cooperative communication between vehicles and vehicles with infrastructure. Besides
the congestion problem, most applications rely on location and mobility information
of vehicles, which are hard to estimate.

To overcome such matters, this thesis tackles traffic jam by exploiting the traffic
behavior through historical data, traffic incidents, phase transitions, analytical and
prediction models, and services. The statement is to model, to predict, and to control
traffic jams using vehicular networks. Our goals are: (i) to collect different data sources
related to traffic conditions; (ii) to characterize real traffic conditions and to correlate
with these data sources; (iii) to predict the traffic flow and its effects; (iv) to propose
a suggestion of routes service that makes the load balance of vehicles flow in the
city. All of these goals are part of a Traffic Management System (TMS). Besides
the contributions in all modules of a TMS, the difference to other approaches is the
collection and analysis of real-time data about traffic conditions through map services.

Our results show that our prediction models improve the accuracy in up to 80%
to predict the traffic jam based on historical and real-time data. In addition, by
correlating data from participatory sensing systems with the intense traffic conditions,
the accuracy of our prediction models was improved from 80% up to 90%, in general.
These solutions reduce the travel time in up to 56%, and the fuel consumed and the

CO, emissions in up to 18%, in average.

Palavras-chave: Vehicular network, traffic jam, traffic congestion, map services, con-

gestion control, bayesian network, logistic regression.
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Chapter 1

Introduction

At the beginning there were not as many cars nor big roads as nowadays. After a
while, there were more cars, but no infrastructure improvement. The consequence to
this “evolution” is traffic jam: a common contemporaneous problem that leads to eco-
nomic losses, waste of time, more fuel consumption, and more environmental issues.
In the context of a smart city, dealing with the traffic jam in urban areas is a chal-
lenge, especially regarding traffic prediction, when the goal is to perform short-term
forecasting. Although we can find in the literature some advances in algorithms and
techniques to tackle this problem [Aratjo et al., 2014; Endarnoto et al., 2011; Fortz
and Thorup, 2000; Google, 2009; Krumm, 2010; Microsoft Research, 2013b; Niu et al.,
2014; Schougaard, 2007; Silva et al., 2013b; Soares et al., 2014b; Su et al., 2000], we
still need innovative solutions, such as those that consider different information sources
about the city dynamics and urban social behavior, leading to richer possibilities. This

problem is explored in this thesis.

1.1 Motivation

A disturbing issue of large urban centers is traffic jam. Despite the technological
advances in vehicles improving the experience of drivers and passengers, traffic jam
leads to economic losses, decreases the overall productivity and impacts negatively in
the environment [Bauza et al., 2010]. Consequently, drivers waste too much time in
traffic, increasing both fuel consumption and CO5 emissions [Capone and Martignon,
2007].

The problem is that, no matter the proposed solution, traffic jam is still getting
worst. One example of “congested city” in United States is Chicago, which was the

number one in road congestion, according to the Urban Mobility Report, issued by

1



2 CHAPTER 1. INTRODUCTION

the Texas Transportation Institute in 2011 [Tribune, 2011]. Beyond the time a driver
normally takes to travel without delays, the national average for traffic delays in the
U.S. was 34 hours while commuters in the Chicago area spent an additional 70 hours
behind the wheels in 2009, and this is just increasing (55 hours of wasted time in 1999,
and 18 hours in 1982).

Another example is New York City that, according to the NYMTC report [Coun-
cil, 2013], has the third lowest daily vehicle miles traveled! (VMT) per capita. The
reasons for that include the high population density and the high proportion of transit
use, among others. Notice that Manhattan region has 10,702,575 VMT daily, and this
is not exclusive to New York. As an illustration, Figure 1.1 shows that New York and
Los Angeles have the highest travel volumes in comparison with other cities and a very

large area (a metropolitan statistical area with over three million residents).

160,000
140,000
120,000
100,000
80,000
60,000
40,000

Wehicular Travel Volume

20,000

1]
Freeway VMT (1,000s) Arterial VMT ({1,000s) Public Transit Passenger Miles (M)

WVery Large Area Average B New York Los Angeles ®Chicago ®Miami = Philadelphia

Figure 1.1: Vehicular travel volumes in New York and other areas [Council, 2013|.

In this context, the literature indicates four important areas that will influence
the traffic [Wang et al., 2013]: (i) road infrastructure; (ii) urban planning and design;
(iii) supply and demand; and (iv) traffic management system. The first area consists in
making physical infrastructure modifications such as junction improvements, building
tunnels, viaducts, bridges, local-express lanes, reversible lanes, and others. The second
area has more impact in future congestion, but it is also the hardest to implement in big
cities. It relies on applying some practices of city planning and urban design, such as
zone laws, grid plans, car-free cities, and having a better urban transportation system.
The third area aims to increase the road capacity, which can happen either increasing
the infrastructure of roads, or reducing the demand (of traffic) by introducing park

restrictions, or road pricing and policy approaches (public transportation and cycling

1Vehicle Miles Traveled (VMT) is the sum of distances traveled by all motor vehicles in a specified
region [Council, 2013].



1.2. STATEMENT AND GOALS 3

promotions, for instance). Whereas other areas are less practical and might have
more impact on our society (political, economic and culturally speaking), the fourth
area looks more attractive considering smart cities: the development of Intelligent
Transportation Systems (ITS) [Boukerche et al., 2011].

ITS use infrastructure sensors to monitor the traffic condition in a vehicular
environment and provide applications, such as collision detection systems, with traffic-
related information and ubiquitous connectivity to the Internet |Briesemeister et al.,
2000; Hartenstein and Laberteaux, 2008; Li and Wang, 2007]. An important component
of ITS is the Vehicular Ad Hoc Network (VANET), which focuses on the cooperative
communication between vehicles and roadside units. Its main characteristics are the
high mobility of nodes, intermittent links, and stringent latency requirements. Unlike
traditional mobile ad hoc networks, a VANET does not have energy constraints nor
limited processing power. Its dynamic nature, i.e. the constant change in the network
topology, raises challenges about communication. These challenges are summarized in
[Domingos Da Cunha et al., 2014].

1.2 Statement and Goals

The statement of this thesis is to model, predict and control traffic jam. The following

are the goals of this thesis:

1. Collect different data sources about traffic conditions;
2. Characterize real traffic conditions and correlate them with other data sources;
3. Predict the traffic flow and its effects;

4. Propose a suggestion of routes in order to achieve the load balance of vehicles’

flow in the city.

All these goals can be seen as part of a Traffic Management System (TMS). Figure
1.2 illustrates the modules in TMS and the logical interconnection among them. We can
observe the following modules: (i) data collection; (ii) characterization; (iii) prediction;
(iv) inferences; and (v) services. In addition, Figure 1.3 shows more details about the
thesis proposal and contributions to these different TMS modules.

In module 1, we have the heterogeneous data collection, in which different data
sources related with traffic conditions are gathered by using traditional Application
Programming Interfaces (APIs), new methodologies or streams of data. In this mod-

ule, we have challenges in terms of clock synchronization worldwide, data quality,
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Figure 1.2: The architecture of a Traffic Management System.

representativeness, variations in the availability of data, and big data questions such

as “is it really necessary to store all data gathered?”

In module 2, we observe data characterization. The main goal of this module is to
understand how data gathered in module 1 are correlated and how they influence the
traffic conditions. It is important to understand their spatio-temporal distributions,
identifying traffic patterns and producing metrics for a better detection and to control
traffic jams. The challenge is how to deal with the distinct granularity of data, that is,
we have different time intervals of data collection with different amount of data per time

interval. “How to correlate such huge amount of data, with different granularities?”

In module 3, we have prediction models. Here, the goal is not just to identify
when and where traffic jams will occur, but more important is to answer to the question:
how does it spread in the city? Therefore, we have two challenges: (a) when and where
traffic jams will occur, and (b) how the data source spreads in the city. Examples of

prediction models are short-term traffic forecasting and mobility prediction models.

In addition to module 3, there is the module 4, where we have the inferences of the
prediction models. Recall that we can vary the time horizon for the traffic forecasted
in a near future. This time horizon is the fixed point of time in the future at which the
prediction will occur. About the application of this module, inferred data can be used

as new data sources in the services (module 5).

Finally, in the module 5, we have services that take advantage of data sources
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(module 1) and inferences (module 4) to manage traffic jams. Examples of services
are: (i) VANET protocols to detect and control intense traffic conditions; and (ii)
mechanisms of route suggestions that make the load balance of vehicle flows in the
city. In the first service, there are protocols to detect and control traffic jam, others to
make the semaphore synchronization, and another one to disseminate the information

of traffic jams as an alert of congestion.

1.3 Contributions

In this thesis, we have contributions in all modules of the traffic management system.

More specifically, we have the following:

e We exploit underexploited sources of real-time traffic flow from map services,
from which we have analyzed the traffic behavior through phase transitions and
traffic patterns |Tostes et al., 2013].

e We analyze the traffic conditions according to social sensing from Foursquare
and Instagram [Tostes et al., 2014], showing that both sources are correlated

with intense traffic flow for Manhattan region, New York.

e We introduce and validate an analytical model, named ALLuPIs |Tostes et al.,

2012] that provides a real-time measure of performance for road intersections.

e We introduce and validate two prediction models: (i) MoVDic (Mobility Vehic-
ular preDiction model) |Tostes et al., 2015al, which predicts how the mobility of
vehicles spreads in the city; and (ii) STRIP (Short-term TRafflc jam Prediction
model) |Tostes et al., 2013, 2015b], which forecast the future traffic flow in each
road based on historical traffic flows in that same road. MoVDic has been val-
idated through a realistic mobility trace from Cologne, Germany, while STRIP

has been evaluated for different cities, such as Chicago and New York.

e We propose and evaluate several route suggestion mechanisms while making the
load balance of flows in the city in Tostes et al. [2015].

1.4 Origins of the Material

Partial results of this thesis have been previously presented in conferences (or are under

submission). We now give an overview of published research, organized by chapters.
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The red asterisk represents contribution of this thesis, while unmarked present the

collaboration with other students.

e Chapter 2: we review the state of the art and compare our proposed protocols
TransTree, CARTIM, and TODD with the related work.

— Silva, T. H., Vaz de Melo, P. O. S., Almeida, J. M., Borges Neto, J., Tostes,
A. 1. J., Celes, C. S. F. S., Mota, S., V. F., Cunha, F. D., Ferreira, A. P. G.,
Machado, K. L. S., and Loureiro, A. A. F. (2015b). Redes de sensoriamento
participativo: Desafios e oportunidades. In Minicursos / XXXIII Simpdsio
Brasileiro de Redes de Computadores e Sistemas Distribuidos, pages 266--

315, Porto Alegre. Sociedade Brasileira de Computacao™

— Silva, T. H., da Cunha, F. D., Tostes, A. I. J., Neto, J. B. B., de S Celes,
C. S. F., Mota, V. F. S., Ferreira, A. P. G., de Melo, P. O. S. V., Almeida,
J. M., and Loureiro, A. A. F. (2015a). Users in the urban sensing process:
Challenges and research opportunities (accepted). In Pervasive Computing:

Next Generation Platforms for Intelligent Data Collection™

— Aratjo, G., Queiroz, M., de Lima Procopio Duarte-Figueiredo, F., Tostes,
A. 1. J., and AF. Loureiro, A. (2014). CARTIM: a proposal toward identifi-
cation and minimization of vehicular traffic congestion for VANET. In 19th
IEEE Symposium on Computers and Communications (IEEE ISCC 2014),
Madeira, Portugal™®

— Soares, R. B., Tostes, A. I. J., Nakamura, E. F., and A.F. Loureiro, A.
(2014b). An adaptive data dissemination protocol with dynamic next hop

selection for vehicular networks. In 19th IEEE Symposium on Computers
and Communications (IEEE ISCC 2014), Madeira, Portugal ®

— Aratjo, G., Duarte-Figueiredo, F., Tostes, A. . J., and Loureiro, A. A. F.
(2014). Um protocolo de identificacdo e minimizac¢ao de congestionamentos
de trafego para redes veiculares. In SBRC 2014*

— de Brito, M. R., Tostes, A. I. J., Duarte-Figueiredo, F., and Loureiro, A.
A. F. (2014b). Simulagao e analise de métodos de deteccao de congestiona-
mento de veiculos em vanet. In SBRC 2014 - WGRS*

— de Brito, M. R., Tostes, A. I. J., Duarte-Figueiredo, F., and Loureiro, A.
A. F. (2014a). Simulagao e andlise de congestionamento em redes veiculares.

In CTIC 2014*



CHAPTER 1. INTRODUCTION

— de Brito, M. R., Silva, B., Tostes, A. I. J., Duarte-Figueiredo, F., and
Loureiro, A. A. F. (2015). Transtree: Detecgao de congestionamento uti-

lizando redes veiculares. In SBRC 2015 - WGRS*
— de Castro, M. S., Tostes, A. 1., Duarte-Figueiredo, F., and Loureiro, A.

A. F. (2013). Disseminagdo de mensagens de acidente em redes veiculares.

In SEMISH 2015*

e Chapter 3: we describe our proposed methodology to collect traffic low and
incidents from Bing Maps, and social data from Twitter, Foursquare and Insta-

gram.

— Tostes, A. 1. J., de L. P. Duarte-Figueiredo, F., Assuncao, R., Salles, J.,
and Loureiro, A. A. F. (2013). From data to knowledge: City-wide traffic
flows analysis and prediction using bing maps. In Proc. of ACM SIGKDD
UrbComp’13, pages 12:1--12:8, Chicago, Illinois

— Tostes, A. I. J., Silva, T. H., Duarte-Figueiredo, F., and A.F. Loureiro, A.
(2014). Studying traffic conditions by analyzing foursquare and instagram
data. In PeWaSUN’1})

e Chapter 4: we analyze the traffic flow and traffic incidents in real time from
online map, such as Bing Maps and Google Maps. We also analyze social data
(e.g., check-ins, when users share their location) and presented a correlation be-
tween them and intense traffic flow. Finally, we propose the analytical model of
crossroads performance named ALLuPIs. Notice that this chapter also considers
the already mentioned publications |Tostes et al., 2013| and [Tostes et al., 2014].

— Tostes, A. 1., Duarte-Figueiredo, F., Almeida, J., and Loureiro, A. A. F.
(2012). Modelo analitico de contencao de trafego em vanet usando dados
reais de mobilidade. In CSBC 2012 - WPerformance, Curitiba-PR

e Chapter 5: we introduce our proposed prediction model of mobility MoVDic,
submitted to |Tostes et al., 2015al, and our prediction model of traffic flow STRIP,
submitted to |Tostes et al., 2015b].

— Tostes, A. 1. J., Maia, G., ao, R. A., Duarte-Figueiredo, F., and Loureiro,
A. A. (2015a). MoVDic: predicting the mobility of vehicles through infor-

mation of street detectors [submitted|. In Ad Hoc Network Journal

— Tostes, A. 1. J., Silva, T. H., ao, R. A., Figueiredo, F. D., and Loureiro, A. A.
(2015b). Strip: A short-term traffic jam prediction model based on online
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maps and social sensors (submitted). In IEEE 82nd Vehicular Technology
Conference (VT C2015-Fall)

e Chapter 6: we present several heuristics to suggest routes that avoid traffic

congestion and that makes the load balance of vehicles flow.

— Tostes, A. 1., Maia, G., Duarte-Figueiredo, F., and A.F. Loureiro, A. (2015).
Suggestion of routes for vehicles in vehicular networks using the multicom-
modity flow model. In 20th IEEE Symposium on Computers and Commu-
nications (ISCC2015), Larnaca, Cyprus

1.5 Qutline

The remainder of this thesis is organized as follows. Chapter 2 outlines the background
in vehicular networks as well as a review of the related literature about prediction mod-
els, social sensing, and services in TMS. Chapter 3 describes the data collection module.
We present our proposed methodology to collect and analyze the traffic flow from on-
line maps. Chapter 4 describes our contributions to the characterization module. We
present spatial and temporal analyses of the collected data. Within the scope of the
later, we introduce the concept of phase transitions and, then, we analyze the traffic
flow for several cities. In addition, we propose our analytical model ALLuPIs. In the
following, Chapter 5 introduces our prediction models MoVDic and STRIP. Chapter 6
describes our solutions in the service module of the TMS; i.e., the suggestion of routes
with the load balance of flows. Finally, Chapter 7 shows our final remarks and future

directions.






Chapter 2

Background and Related Work

Vehicular networks, also called VANETSs (Vehicular Ad hoc Networks) are networks
formed by vehicles and stationary equipment (Road Side Units - RSUs) located on the
roadsides. These networks are characterized by the high mobility of its nodes (vehicles),
intermittent links and stringent latency requirements. According to [Karagiannis et al.,
2011], these attributes prevent some protocols used in ad hoc networks to be used in
vehicular networks, because they do not have satisfactory performance.

Although having another concepts, vehicular networks have five important topics
for the understanding of this thesis: (i) architecture; (ii) social sensing; (iii) prediction
models; (iv) services to deal with traffic congestion, such as the load balance of traffic
flow and protocols (congestion control mechanisms and data dissemination). Next

sections presents their main concepts while we review the most correlated approaches.

2.1 Architecture

The architecture of vehicular networks is organized depending on the adopted com-
munication models. There are three distinct communication models as illustrates Fig-
ure 2.1. Depending on how the network nodes organize themselves and communicate,
the architecture can be: (i) pure ad hoc, (ii) infrastructured, and (iii) hybrid.

Notice that, in the communication model (i), vehicles communicate among them-
selves without any external support or centralized element, which is known as vehicle-
to-vehicle (V2V) communication. In this model, the protocols and applications must
consider the high mobility of vehicles, which causes a high frequency of disconnections
in the network. Model (ii), in the other hand, is the V2I (Vehicle-to-Infrastructure)
communication. It deals with the communication between vehicles and nearby fixed

equipment among the road. This model can increase the network connectivity if it has

11



12 CHAPTER 2. BACKGROUND AND RELATED WORK

E Internet } e

Vehicle to vehicle communication (V2V).

Vehicle-to-infrastructure communication (V2I).

% Infrastructure-to-infrastructure communication (12I).

Figure 2.1: The architecture of vehicular networks.

a suitable amount of static nodes, although the network cost can be increased. Finally,
model (iii) combines both models (i) and (ii) [Hartenstein and Laberteaux, 2008].

In vehicular networks, due to the special nature of the environment, protocols
and applications must consider some aspects that characterize this type of network
[Domingos Da Cunha et al., 2014]: (i) highly dynamic topology; (ii) the frequently dis-
connection; (ii) geographical communication; (iv) constrained mobility and prediction;
and (v) propagation model to highways, rural and cities. In order to deal with such
issues, most protocols and applications rely on location and mobility information of
vehicles, which is very difficult to predict keeping in view the nature and pattern of
movement of each vehicle [Su et al., 2001]. For instance, the challenges in dissemination
protocols, that is, dealing with the broadcast storm and network fragmentation, can
be more easily tackled with the knowledge of future directions that vehicles will take
when they arrive at an intersection. However, how to forecast this mobility on the fly
on such a highly dynamic environment is still a challenge.

In this context, distinct routing protocols have been proposed and evaluated
for VANETS [Li and Wang, 2007] concerning whether its performance can satisfy the
throughput and the delay requirements of safety and emergency applications. Tra-
ditional routing protocols, such as the protocols ad hoc on-demand distance vector
(AODV) and the dynamic source routing (DSR) [Nzouonta et al., 2009], can not be
used due the route instability that causes packet loss and high overhead. Notwith-

standing, geographical routing protocols, e.g. the greedy perimeter stateless routing
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(GPSR) protocol, have better path stability, but the matter is how to forward the
packet through the next hop. To solve this, the main routing protocols use road in-
formation to choose the crossroad to forward the packet. There are works that use
prediction models for route prediction, but they do not use real-time information of

crossroads behavior or traffic flow inference. This is the main difference for this thesis.

2.2 Social Sensing

Participatory Sensing Systems (PSSs) provides a mobile interface that allows people to
share data about the environment (context information) they are in any time and place
using any mobile device. Examples of PSSs deployed and functioning at global scale
are location-sharing services, such as Foursquare, and photo sharing services, such as
Instagram. They can provide valuable information about an aspect of a given city or
society in almost real-time, such as its traffic and weather conditions, local parties and
festivals, riots, among others integrate user interactions [Silva et al., 2013b].

Data shared in participatory sensing systems have the active participation of
users. These systems can be seen as a sort of sensor network, also known as partici-
patory sensor network (PSN) [Silva et al., 2014]. In this network, users plus his/her
mobile devices can be considered a sensor, because users carry mobile devices that are
able to sense the environment and make relevant observations at a personal level.

PSNs are an example of the interplay between technological networks and social
networks, since a key element in a participatory sensor network is the human being.
As shown in [Silva et al., 2014] data shared by the sensors in a PSN are associated
with users’ habits and routines. Thus, these sensors can be considered social sensors,
which provide valuable to better understand city dynamics and the urban behavioral
patterns of their inhabitants. Many questions emerge when using this new type of
data, for example: Can we use them to better understand traffic conditions? In fact,
this is a very interesting question that is discussed in Chapter 4.

There are several studies about participatory sensing, obtained, for example, from
Twitter, in order to better understand city dynamics. The authors in [Frias-Martinez
et al., 2012] used a dataset from Twitter and proposed a technique to determine the
type of activities that is most common in a city by studying tweeting patterns. [Bollen
et al., 2011] studied whether collective mood states derived from Twitter feeds are
correlated to the value of the Down Jones Industrial Average over time. [Sakaki et al.,
2010] studied the real-time interaction of events in Twitter (e.g. earthquakes), and

propose an algorithm to monitor tweets to detect a target event. [Lee and Sumiya,
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2010] present a geo-social event detection system to identity local events (e.g., local

festivals) by monitoring crowd behaviors indirectly via Twitter.

In the same direction [Silva et al., 2013b] considers the traffic alert system Waze,
another example or participatory sensing source, as a sensor network in order to verify
its properties. Among the results, the authors show that data sharing is correlated
with users’ routines, and that Waze data can improve traffic condition understanding.
Correlated with [Silva et al., 2013b], in [Endarnoto et al., 2011], the authors used a
dataset from Twitter and proposed an information extraction technique to get the data

of traffic. The traffic data is presented in map view as a mobile application of Android.

In the health direction, in [Gomide et al., 2011], the authors have analyzed how
Dengue epidemic is reflected on Twitter and to what extent that information can be
used for the sake of surveillance. They showed that Twitter can be used to predict,

spatially and temporally, dengue epidemics by means of clustering.

Although much has been done, no previous effort studied the correlation of in-
formation from participatory sensing systems and real traffic conditions data. This is
the point that differentiates our work from the previous ones. In Section 4.3 (Chapter
4), we have investigated whether we use can use participatory sensing data (or social

data) to better understand traffic conditions.

2.3 Prediction Models

In VANETS, prediction models are used to mainly predict the location and mobility
of vehicles, which is difficult to predict in such dynamic environment [Su et al., 2001].
Most of researches use Markov Models, Hidden Markov Models, Variable Order Markov
Models and/or Bayes Theory [Uma Nagaraj, 2011]. A Markov Model predicts the
future route of the vehicle based on its near term past route, not in its entire trajectory.
A Hidden Markov Model is a Markov model with unobservable state, which is well
known as hidden states. A Variable-Order Markov Model captures longer regularities
while avoiding the size explosion caused by increasing the order of the model. That is,
the number of conditioning random variables may vary based on context information.
The past states that are independent from the future states can be removed, reducing

the number of model parameters.

In this section, we divided the related works in two categories: (i) the prediction

of mobility; and (ii) the prediction of traffic flow.
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2.3.1 Prediction of Mobility

The knowledge of how the traffic spreads in the city can help agencies or department
of transportation to manage the traffic in order to avoid jams. If we know where and
when people moves, and which routes they follow, we could know where to focus our
strengths and investments. Researchers all over the world tried to predict the traffic
mobility using several sources of information and distinct models, some with a good
accuracy, but as they do not scale well, they can not be applied in real-time, and some
may not perform very well with temporary changes of the surrounding infrastructure,
or with lack of data.

Recent years have seen a considerable amount of work done on mobility prediction
models, mainly about vehicles. The motivation behind such studies is to support short-
term prediction models of jams and/or the suggestion of route mechanisms that make
a load balancing. If we knew the directions that a vehicle will take, how the traffic
would spread, we could use such information to make improve the suggestion of route
algorithm in order to avoid/prevent current/future jams. This could be an easy task
if we could assume that all drivers will strictly follow the routes suggested by a GPS.
As stated in [Xue et al., 2009], this is not true: drivers who request GPS routes do not
always follow the indicated route. Given a source and destination points, drivers may
prefer to drive through different routes, depending on traffic condition. If an avenue is
congested during rush hour, probably most of the drivers will follow alternative routes,
created based on their common knowledge. There is still one source of information that
captures this mobility: the road detector sensor, which counts the number of vehicles

on road in a time-interval.

Although much have been done, as we can see in Table 2.1, there is not much mod-
els that were developed based on real-time sensing. For instance, the model proposed
in [Su et al., 2000] depends on speed and moving direction information. Same happen
in [Hayashi and Yamada, 2009|, for speed, acceleration and direction angle, and [Son
et al., 2013] for average encounter rate and degree node. Solutions from [Schougaard,
2007], [Krumm, 2008|, [Kaaniche and Kamoun, 2010a| and [Manasseh and Sengupta,
2013], they all depend on the vehicle location, some depending also on historical data
of the vehicle’s route. The model proposed in [Manasseh and Sengupta, 2013| predicts
the most likely origin-destination routes, which is different from this topic. In this
work, we want to forecast the mobility of traffic, its route, and not from where and to

where it is more likely the vehicle go.

Therefore, the only approaches that would be feasible to apply in practice are
[Civilis, 2006], [Krumm, 2010] and our approach MoVDic [Tostes et al., 2015a|. The
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Table 2.1: Predicting mobility in cities: models and its characteristics

Model Technology Variables History
Wireless mobility prediction | Gauss-markov random pro- | Speed and moving direction. Yes
[Su et al., 2000] | cess
Prediction of crossroad | Artificial neural network Booleans for each crossroad Yes
passing [Civilis, 2006] segment.
Vehicular mobility model | Bayesian network Location and direction. No
[Schougaard, 2007
Random guess [Krumm, 2008] | — - No
Simple markov model | Markov model The most recent 3 segments Yes
[Krumm, 2008]* into the past.
The most recent 10 segments Yes
into the past.
Predicting unusual right-turns | Hidden markov model Speed, acceleration and head- No
[Hayashi and Yamada, 2009] ing direction angle.
Basic [Krumm, 2010]* Number of destinations associ-
ated with that turn direction.
Triangles [Krumm, 2010[¥ Number of triangles associated
with that turn direction.
Trip time probabilities | Markov Probabilities of remaining trip No
[Krumm, 2010]* | model times.
Trip time weights [Krumm, Down-weighting more distant
2010]* destinations.
Ad hoc mobility prediction | Recurrent neural networks | XYZ location Yes
[Kaaniche and Kamoun,
2010a]
Bayesian model [Son et al., | Bayesian network / Maxi- | Average encounter rate and No
2013]* | mum a posteriori node degree.
Predicting driver destination | Decision tree with pruning | The current position of the Yes
[Manasseh and Sengupta, driver, the position at which
2013] the driver was 5 min prior, the
time of day, and the day of the
week.
MoVDic [Tostes et al., 2015] | Bayesian model and | Street Detectors. No
Markov Chain Monte Carlo

* Important references

model proposed in [Civilis, 2006] depends on historical data to construct a training
dataset of crossroads passing to be used in an artificial neural network. For that, all
vehicles should have GPS systems uploading to a database in real-time. Supposing
that this is feasible with cloud computing and sensing, there is still the problem of
scalability since the ANN training takes too much time and might not capture all the
patterns considering the time dimension (weekdays, weekends, seasons, events). By the
other hand, in [Krumm, 2010], Krumm presents four algorithms, in which the best one
in terms of mean error is Trip Time Weights, based on the drivers’ turn proportions at
road intersections and trip times, but not all cities present turn count sensors, which
difficult the usage of this approach in practice. In our approach, we overcome such
issue by using only detectors information, which is feasible to obtain in real time and

that are present in cities as Sao Paulo, Rio de Janeiro and Belo Horizonte.

Another important characteristic when comparing models is their accuracy /mean

error, which can be seen in Table 2.2. Notice that there are some models that does not
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Table 2.2: Predicting mobility in cities: accuracy and experiments details
Model Accuracy Mean Error Evaluated City Segments
Wireless mobility prediction | NA NA Simulation -
[Su et al., 2000]
Prediction of crossroad passing | NA NA Simulation and GPS —
[Civilis, 2006] dataset (city unknown)
Random guess [Krumm, 2008]* | 50% -
Simple markov 76% — Seattle
model [Krumm, 90% - USA 237.5 m
2008]*
Predicting unusual right-turns | — < 0.16 - -
[Hayashi and Yamada, 2009]
Basic [Krumm, 2010[* | — 0.192
Triangles [Krumm, 2010[F | — 0.183
Trip time probabilities | — 0.183 Seattle,
[Krumm, 2010]* USA 237.5m
Trip time weights [Krumm, | — 0.142
2010]*
Ad hoc mobility prediction | NA NA Simulation —
[Kaaniche and Kamoun, 2010a)
Bayesian model [Son et al., | — < 0.15 Simulation -
2013]*
Predicting driver destination | 96% 1.72% of con- | San Francisco, USA -
[Manasseh and Sengupta, 2013] fidence inter-
val error
Vehicular mobility model | 80.54% - Aalborg, Denmark 200 m
[Schougaard, 2007]**
MoVDic [Tostes et al., 2015] | S125%%*: S2216%F*: Realistic  trace in -
(87.82%, (94.52%, Cologne, Germany
83.22%, 93.24%,
100%, 91.17%,
58.06%) 96.34%)

*** Prediction accuracy for different types of crossroads (2, 3, 4 and 5 exit-streets).

** Most related reference.
* Important references.

present their accuracy nor even their mean error, such as [Su et al., 2000| and [Civilis,
2006]. Indeed, since it is difficult to obtain real time data, their evaluation were made
only for a small controlled scenario via simulation. Though in [Schougaard, 2007] real
data have been used, the model’s evaluation was only for a small city (Aalborg in Den-
mark), with a population of approximately 120,000 residents, where does not present
that much traffic and mobility patterns such as big cities, with more than 1,000,000
residents (Cologne, New York, Los Angeles). With that said, the best approach in
term of accuracy/mean error is the Trip Time Weights algorithm [Krumm, 2010], with
a mean error of 0.142. The drawback of this approach is that, due to limited data,
Krumm only evaluated for a small area in Seattle, with only 40 intersections in a fairly
limited area, with only a shopping mall and a software maker dominant destinations.
In our approach MoVDic [Tostes et al., 2015a], we have evaluated for two sub-scenarios
of Cologne, with more dominant destinations.

Another approach was proposed in [Schougaard, 2007], in which a Bayesian net-

work has been projected to predict the mobility of vehicles in a grid map. The model is
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based on location information and the direction that vehicles take when they arrive at
an intersection. On such approach, the common sense knowledge about how vehicles
move feeds into the network and the possibility of an accuracy of 80.54%. The map
is divided into hexagonal cells. The model predicts which cell the vehicle will go into
it. One difference to the proposed MoVDic [Tostes et al., 2015a| is the model adopted,
which is quite different from the research of Schougaard [2007|, although they are both
within the class of Bayesian models. Another more relevant difference is the granularity
of the prediction. MoVDic |[Tostes et al., 2015a| considers street segments themselves
rather than large cells. The idea is to predict what is the probability of a vehicle to
follow in the next possible directions when he arrives at an intersection.

Additionally, in [Uma Nagaraj, 2011], there is also a prediction solution using
Markov Model, Hidden Markov Model and Variable-Order Markov Model. The goal is
to predict vehicle’s future path, elevation, and turns based on the observations of the
path that was driven by commuters, recovered from GPS traces. Notice that the idea
is not to predict where on the road segment a vehicle will be, or when it will arrive in
a road segment, and this is the difference from our work. In [Tostes et al., 2015a], we
predicted which road segment the vehicle will be in a near future.

Finally, we summarize the limitations of existing approaches as follows:

e Only [Manasseh and Sengupta, 2013] considers the temporal context (e.g., day-

of-week and time-of-day), which can improve the accuracy of other models.

e They need inputs that are not available in real-time [Hayashi and Yamada, 2009;
Kaaniche and Kamoun, 2010a; Krumm, 2008; Manasseh and Sengupta, 2013; Son
et al., 2013; Su et al., 2000].

e They are limited to short-term (e.g., next cell/road) mobility prediction |Civilis,
2006; Hayashi and Yamada, 2009; Krumm, 2008, 2010; Manasseh and Sengupta,
2013; Schougaard, 2007].

e They do not consider inputs related to the most common destinations of com-

mutes in a time dimension (all of them).

e They require historical data storage space [Hayashi and Yamada, 2009; Kaaniche
and Kamoun, 2010b; Krumm, 2008; Manasseh and Sengupta, 2013; Su et al.,
2000]; (6) they solely rely on the history of individual users” movement [Civilis,
2006; Hayashi and Yamada, 2009; Krumm, 2008, 2010; Manasseh and Sengupta,
2013; Schougaard, 2007].

e Most of them do not scale well due to a high processing overhead.
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2.3.2 Prediction of Traffic Flow

Short-term traffic forecasting models are well studied in the literature. Some have
good accuracy, but they differ in the use of information sources. Some do not scale
well, others can not be applied to real time, or they might just not perform well with
temporary changes of the surrounding infrastructure nor with the lack of data. Thus,
this is still an open problem.

Figure 2.2 shows a classification of the prediction models of traffic jam. We
can see that the models can be classified by type (long-term or short-term), by the
source of information that they use (univariate or multivariate), by the used technique
(theoretical or empirical — parametric or nonparametric), and by their performance
evaluation (with real data, traces or simulations, i.e. mobility models). In addition to

this figure, Table 2.3 shows a summary about the classification of related work.

Long-term
Type Short-term
Univariate
Source Multivariate
Prediction of Traffic Jam
Technique Theoretical
\ Darametric
Empirical f

\ Nongarame‘rrfc

Real data (gensors or online maps)
Evaluation
Traceq (realigtic data)

Simulation (mobility models)

Figure 2.2: Taxonomy about the prediction models of traffic jam.

In this context, Table 2.4 summarizes the main prediction models of traffic jam
with a comparison between the sources of information that they use and the following
characteristics: traffic patterns, real-time sensing, real-time forecasting, historical data,
time series, and customization. Notice that there are 11 models that do detection of
traffic jam, 20 models that predict the traffic jam and only 2 models that do both.

The models use different sources of information to make the prediction, and most
of them use GPS traces, cellular updates, road data and weather. Only four of them use
seasons, events and traffic incidents information ([Ghosh et al., 2009; Inrix, 2006; Mi-
crosoft Research, 2013b; Stutz and Runkler, 2002; Tostes et al., 2015b]). Although, the
only models that use community sensing are the ones described in [Google, 2009; Tostes

et al., 2015b|. The one presented in [Google, 2009] only uses information reported from
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Table 2.3: Classification of the prediction models of traffic jam.
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Model Technique FlE|a|Zz|Ala|lp|2|m|& P Cities Error
[Okutani and Stephanedes, 1984] | Kalman filter . . o | o | o Nagoya < 0.09
[Davis and Nihan, 1991] | k-Nearest Neighbor . . o | o ° - -
[Williams and Hoel, 2003] | SARIMA . . o | o o | o Atlanta 0.086
and Lon-
don
[Stutz and Runkler, 2002] | Fuzzy clustering . o | o . o | o German B
autobahn
[Yu et al., 2003] | Gaussian mixture model | o o | o o | o Beijing 0.0895
and expectation maxi-
mum
[Sun et al., 2004] | Sampling markov chain o | o o | o o | o Beijing
[Yoon et al., 2007] | Traffic patterns and clus- o | o . . e | o | o | Michigan < 0.10
ter
[Yuecong et al., 2007] | Genetic algorithm . . o | o - 0.057
[Ye et al., 2008] | Multivariate Adap- . . . . - 0.167
tive Regression Splines
(MARS)
[Jun and Ying, 2008] | Artificial neural network . o [ o . - 0.083
(ANN)
[Horvitz et al., 2005 Bayesian network . . . o | o e | e | Seattle 0.057
[Ghosh et al., 2009] | Time series ° | o . e | o e | Dublin 0.05817
[Tan et al., 2009] | Combination of models o | o | o o | o o | o Guangzhou,| 0.06"
China
[Min et al., 2009] | Dynamic-STARIMA o | o o | o ° e | Beijing 0.0818
[Chunmei et al., 2010] | Chaos theory and ANN ° . o | o
[Thomas et al., 2010] | ARIMA and kalman fil- o | o R ° e | Almelo, 0.05
ter Nether-
lands
[Duan et al., 2011] | Support vector machine 0 . o | o Minnesota —
[Marfia and Roccetti, 2011] | Mathematical model o | o o | o . e | Los An- -
geles and
Pisa, Italy
[Chan et al., 2012] | Taguchi method and . . o | o o | o Australia 0.13
ANN
|[Kong et al., 2013] | Urban traffic network . o | o * | — 0.72637
|Li et al., 2013 Support vector machine . . . . - 0.5
[Kurihara, 2013] | Pheromone communica- . . e [ o - 0.14
tion model
[Niu et al., 2014] | Deep learning and sup- D) . . o | o e | Wuhan, 0.15
port vector machine China
|Tostes et al., 2015b] | Logistic regression . . . e | o | o | o | Chicago 0.07*
and New
York*

! With variations.

2 Mean absolute scaled error — this model is better than ARIMA, Kalman Filter, k-NN and ANN.

3 Mean absolute relative error.

4 Extension to other cities such as Los Angeles, Seattle, London, Paris, Ottawa, Helsinki, Sdo Paulo, and
Belo Horizonte.

a participatory sensing system, which is different from [Tostes et al., 2015b| that uses

information about the mobility of users captured from social networks characterization.

The prediction models of traffic jam can be classified as univariate or multivariate
[Ghosh et al., 2009]. Univariate and multivariate define whether the model uses infor-
mation sources from a single location point (univariate [Kurihara, 2013; Li et al., 2013,
Microsoft Research, 2013b; Niu et al., 2014; Thomas et al., 2010]), or from several sites
(multivariate [Ghosh et al., 2009; Kamarianakis and Prastakos, 2003; Y.Kamarianakis
and P.Prastacos, 2005]). Multivariate approaches have the advantage of capturing the
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Table 2.4: Predicting traffic jam in cities: models and its characteristics
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temporal and spatial evolutions of the traffic conditions over the time, although it
demands more computational effort to estimate more parameters [Ghosh et al., 2009].
The empirical or theoretical classifications explicit the used technique. Empirical
approaches use a statistical methodology or heuristic without referring to the actual
traffic dynamics. It can be parametric — time-series models and autoregressive linear
processes (e.g., |Y.Kamarianakis and P.Prastacos, 2005]), or nonparametric — nonpara-
metric regressions are neural networks (e.g., [Kurihara, 2013; Li et al., 2013; Microsoft
Research, 2013b; Niu et al., 2014; Thomas et al., 2010]). Most solutions are univariate-
empirical-parametric solutions due to the ease of computation and good accuracy.
Most approaches differ in terms of the used information source in the prediction.
While most solutions use only road data (e.g., [Kong et al., 2013; Kurihara, 2013; Li
et al., 2013]) and GPS traces (e.g., [Niu et al., 2014|), some approaches use additional
distinct inputs such as weather (e.g., [Inrix, 2006; Li et al., 2013; Microsoft Research,
2013b]), events (e.g., [Ghosh et al., 2009; Microsoft Research, 2013b]), and traffic inci-
dents (e.g., [Inrix, 2006; Microsoft Research, 2013b|). What is quite interesting is that
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none of them uses SSs data, and that is exactly what we did in [Ribeiro et al., 2014].

Urban computing deals with a massive amount of data, gathered by ubiquitous
mobile sensors from personal GPS devices to mobile phone. In [Toole et al., 2012],
the authors measure spatiotemporal changes in the population, identifying clusters of
locations with similar zones used and mobile phone activity patterns. Beyond charac-
terizing human mobility patterns and measuring traffic congestion, Ban and Gruteser
[2012] show how mobile sensing can reveal details about intersection performance statis-
tics. None of them use Bing maps information, which is the difference to our research.
We have used AJAX/JavaScript APIs to visualize traffic layer over the city map.

From Microsoft Research to Bing Maps, in [Apacible et al., 2005], the authors
describe the JamBayes project, started in 2002, which provides estimates of flows
inferences about current and future traffic flows. The challenge was to predict the
future of traffic flow in Seattle area. When does the highway system would become
clogged? The authors developed a probabilistic traffic forecasting system based on
Bayes Theory, and predict future surprises about traffic congestion and flow. Results

have shown an accuracy ranging from 84% up to 98% for Seattle for some bottlenecks.

Afterwards, following on JamBayes effort, the Clearflow project focused on ap-
plying machine learning to learn how to predict the flows on all street segments of
a greater city area |[Microsoft Research, 2013b]. It was based on GPS data collected
from volunteers, buses, and vehicles for over five years. Clearflow considers all flows
on all roads via predictive models in addition to real-time sensing while directions are
provided based on best guesses about flows over all roads. Its main contribution is
high coverage of traffic flow for 72 major cities in North America, inferring on over 60
million road segments in North America [Microsoft Research, 2013b].

Bing Maps is a web mapping platform that can provide business intelligence and
data visualization solutions [Microsoft Research, 2013al. Bing Maps services can be
used to accurately pinpoint locations from geo-coding address (latitude and longitude),
base maps and imagery, overlay customer locations, and data analysis. It is similar
to GIS systems but without its complexity. This is done using Bing Maps APIs!,
including JavaScript/AJAX or Silverlight Controls. Data from SQL Server or other
BI data sources can be easily visualized without the complexity of traditional GIS
systems. Also, base maps and imagery can be manipulated. Bing map cloud platform
infrastructure is divided in consumer offering and AJAX, Silverlight Control and web

services APIs [Microsoft Research, 2013a].
In [Sera, 2007], a traffic jam prediction device has been developed. The prediction

LA full overview of Bing Maps API can be found at www.bingmapsportal.com.
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method correlates traffic jam with the traffic jam pattern and predicts the current traffic
jam degree based on the up-to-the-minute traffic jam information and the current traffic
state. Results have shown that the device can be used in a conventional navigation

method and so as to plot driving routes for a vehicle.

2.4 Services

Here we present a brief overview about the services that deal with traffic congestion.
These services can use different data sources, such as sensors, social networks, detectors,
online maps, and also inferences produced by the prediction models. In this section,

we focus on: (i) the load balance of traffic flow; (ii) protocols.

2.4.1 Suggestion of Routes

There are several mechanisms to suggest routes in order to avoid or reduce traffic jams.
Table 2.5 presents a summary of the most recent works that suggests routes. Some
makes suggestion of routes to avoid worst traffic conditions, or traffic incidents, while

there are others that suggest beautiful routes to improve people’s quality of life.

Table 2.5: Related work about suggestion of routes mechanisms.
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[Liu and Ozguner, 2003] | Traffic throughput °
[Hu and Wang, 2006] | Frank-Wolfe algorithm with Gradient Projection o [ o
Shen et al., 2008| | Game °
Shen et al., 2009| | Particle swarm optimization °
[Liu et al., 2011 Visualization aspects ° °
[Wang et al., 2014] | Unexpected congestion o | o | o
[Quercia et al., 2014] | Happy and beautiful routes . °
[Liang and Wakahara, 2014] | Personalized routing ° °
[de Souza et al., 2014] | Shortest-path without accident roads .
[Salnikov et al., 2015] | Comparison between prices of cabs °
rennand et al., -shortest-paths selected based on the Boltzmann . .
B d 1., 2015| | k-sh hs selected based he Bol
probability distribution
[Meneguette et al., 2015] | UCONDES o[ o | o
[Tostes et al., 2015] | Model as the multicommodity flow problem o | o | o

Besides, we can observe in Table 2.5 that most researches use simulations to

evaluate their mechanisms, and only two have used a real dataset (taxi dataset) [Liu
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et al., 2011; Salnikov et al., 2015]. They are evaluated in urban areas or in freeways.
The best evaluation was made in [Wang et al., 2014] and [Tostes et al., 2015|, part of this
thesis, since both have used a realistic dataset (TAPAS Cologne scenario). However,
the evaluation that was made in this thesis stands out, since we used metrics beyond
the average trip time, such as fuel consumed and C'O5 emissions.

The interesting aspect is that we can compare [Wang et al., 2014| and [Tostes
et al., 2015], since they use the same evaluation scenario: the TAPAS Cologne trace.
Although, in this thesis, there were more evaluations in terms of CO, emissions and
fuel consumption. In [Wang et al., 2014], the results have shown the following average
trip time: MNTR with 58.09s, ModRe with 63.55s, ConRe with 78.04s, ERE with
65.94, and ORG with 56.26s. In this thesis, the average travel time was less than 20s.

Following the modeling of this thesis, described in Chapter 6, the problem of
traffic congestion minimization can be modeled as the MFP, which is well study since
the decade of 1960. Its origin is in the contributions of maximum flow [Fulkerson and
Ford, 1962] and multicommodity flow [Hu, 1963]. The flow of products, that is, of
vehicles, is distributed through the network edges, homogeneously, without any arc
overload. Considering a cost in each arc, the goal is to minimize the sum of all these
costs.

The literature presents heuristic-based and metaheuristic-based strategies. Typ-
ically, solutions uses two phases [Mourao, 2009]: (i) elaborate a viable initial solution
by a constructive heuristic; (ii) improve this initial solution by using other heuris-
tics/metaheuristics, moving closer to optimal solution. We can quote as heuristics:
approximate algorithms (greedy), local search, randomized algorithms, linear program-
ming and integer programming. As metaheuristics: tabu search, genetic algorithms,
iterative local search and simulated annealing.

Approximation heuristics are also quite used. For instance, a greedy heuris-
tic has been proposed in [Awerbuch and Khandekar, 2007|, which achieves a 1 + -
approximation. In this case, multiple cooperative agents, but uncoordinated, obtained
distributed solutions. The advantage is that the heuristic requires a more aggressive
increase in the flow rate on a link than a decrease in the rate [Awerbuch and Khandekar,
2007]. In the greedy heuristics, we can also quote [Gabrel et al., 2003], in which they
implement the Benders heuristic. Remarkably, it produces the best heuristic solutions
in comparison with classical greedy approaches.

Another category of MFP works uses metaheuristics, such as tabu search, genetic
algorithms, iterative local search and simulated annealing. Indeed, examples of iterative
local search and genetic algorithms for MFP are explained in [Silva, 2007 and evaluated
in [Mourao, 2009]. The different between both works is that, in [Mourao, 2009], they
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evaluate first genetic algorithms and then iterative local search, while the opposite
occurred in [Silva, 2007].

Briefly, several studies reduce network problems to MFP. In [Buriol et al., 2003],
the authors have reduced MFP to the network routing optimization problem. The
authors propose heuristics and metaheuristics, standing out the tabu search and genetic
algorithms, to minimize the packet-based traffic congestion through the Open Shortest
Path First protocol. Another example can be found in [Fortz and Thorup, 2000], in
which the minimum congestion problem is studied using the real backbone data from
AT&T. Although, there is no exhaustive proposal and evaluation of heuristics and

metaheuristics in the context of VANETS, which is our focus.

Finally, as motivation we can quote examples of ITS applications. Some works
use RSUs to suggest routes for vehicles, such as [Doolan and Muntean, 2013]. In the
distributed version, each RSU is responsible to suggest routes for vehicles inside its
coverage area. When the vehicle arrives at another coverage area, it requests another
route for that specific area. So, our heuristics proposed could be (and were — see
Section 6.3) developed in these RSUs so as to keep the load balancing of vehicles in

each coverage area.

2.4.2 Protocols

There are several protocols in vehicular networks that can take advantage of prediction
model such as the one we described in Section 2.3. According with [Chen et al.,
2009], location information has a direct impact on the behavior of several models
and algorithms in distinct areas of VANET, such as routing, resources management
and security. Algorithms that use such information usually have better performance.
However, the performance gains depend on the location precision [Son et al., 2004],
which actually culminates in the assumption that the GPS error tends to zero. In [Son
et al., 2004], the authors study the effects of errors in the location estimation used
in routing protocols for MANETs and wireless sensor networks. Results showed an
improvement of up to 27% in packet delivery and 37% reduction in network resource

wastage, on average.

In addition to such protocols, here we present related works about protocols in
VANET applied in traffic management systems, focusing on: (i) congestion control

mechanisms; and (ii) dissemination protocols.
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2.4.2.1 Congestion Control Mechanisms

Adequate congestion control mechanisms are essential to optimize the flow of vehicles
in vehicular networks. Congestion control applications in vehicular networks can be
broken down into identifying, minimizing and preventing congestion. The identification
of traffic congestion is the effectiveness in characterizing congestion in traffic. The
minimization corresponds to an attempt to reduce detected congestion. Congestion
avoidance is a complex approach, since it needs to manage vehicular flows on the
roads, to prevent the onset of congestion. The problem of preventing traffic congestion
can be reduced to a minimum-cost flow problem in flow networks, which falls into the

category of NP-Complete problems.
The works of [Fukumoto et al., 2007] and [Fahmy and Ranasinghe, 2008] present

proposals for monitoring and detection of traffic conditions, using V2V (Vehicle-to-
Vehicle) communication. To accomplish this, beacon-type messages are transmitted.
Such messages are simple, have low overhead and are used to announce the presence
of a vehicle to its neighbors. Other approaches, such as ConProVa [Silva et al., 2013a]
use only V2I (Vehicle-to-Infrastructure) communication, which limits the proposal. In
ConProVa, mechanisms to deal with issues relating to the provision of contexts in
vehicular networks are implemented in the infrastructure. For this, ConProVa imple-
ments a middleware in order to assist in decision making and resolution of conflicts of
interest regarding the actual traffic situation reported by vehicles, since vehicles cannot

collaboratively validate conditions detected on the road.

There also exist approaches such as ECODE [Younes and Boukerche, 2013|, which
use both V2I and V2V communication. However, ECODE depends on the infrastruc-

ture (RSU) in monitoring areas, and this restrains the proposal to specific scenarios.

As the approaches in the literature have distinct characteristics, a rank encom-
passing the proposals for monitoring vehicular traffic was adapted for this work, in
order to enable analyzed techniques to be compared. Table 2.6 presents a comparative
information regarding congestion protocols in vehicular networks.

The adopted classification distinguishes the analyzed works according to the fol-
lowing aspects: (i) cooperative V2V validation refers to the proposal’s ability to use
cooperative communication between vehicles to reach a consensual decision regarding
the traffic situation in a region. (ii) congestion identification portrays the effective-
ness in measuring traffic conditions on the road. (iii) congestion size indicates the
effectiveness in estimating congestion length. (iv) the overhead is the ability to avoid
overloading the communication channel. (v) dissemination refers to whether or not the

proposal transmits traffic information in the network. (vi) the architecture shows how
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Table 2.6: Evaluated proposals for monitoring vehicular traffic
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the vehicular network is organized. (vii) rerouting indicates that vehicles can change

their initial routes.

In [Lu and Cao, 2003], an algorithm for automatic congestion level classification,
using computational intelligence such as fuzzy logic, have been proposed. In |Binglei
et al., 2008] and [Bauza et al., 2010]|, the idea proposed in [Lu and Cao, 2003] was
used to increase the efficiency in detecting congestion. As portrayed in |Binglei et al.,
2008], the use of fixed boundaries between categories of vehicular traffic leads to high
error rates, especially when a category is close to the classification border between two
categories. This is due to the characteristics of vehicular traffic flow, which has no
clear boundaries between different types of traffic. In this case, for non-deterministic
decision problems, fuzzy logic gets good results by allowing input variables of the fuzzy
system to contain elements with partial degree of membership in the border regions.
This characteristic of the system helps ensure the accuracy of the results.

COTEC, presented in [Bauza et al., 2010|, uses fuzzy logic to detect the level
of congestion. The technique also provides a cooperative approach to validate traffic
conditions detected by the system. The concepts addressed by the authors in |[Bauza

et al., 2010] were incorporated into this work. However, COTEC has some shortcomings
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such as: (i) the inefficiency in preventing a vehicle to reach a congested area and (ii) the
lack of a policy to allow route modification. (iii) New settings in the fuzzy system are
also necessary so this technique is not confined to the ideal scenario (freeway) proposed

by the authors.

2.4.2.2 Dissemination Protocols

Data dissemination is concerned about how to send data from a source to a destination
[Soares et al., 2014b]. The matter is how to send packets while meeting application
requirements, such as high delivery rate and low delivery delay. The source and desti-
nation could be a set of vehicles, vehicles located in a given geographic area or roadside
units. There are three categories of dissemination protocols: (i) unicast dissemination,
which consists in one source to one destination; (ii) multicast dissemination, in which
the data is sent to a set of nodes, and (iii) broadcast dissemination, which is sending
data to all neighbor nodes.

In VANETS scenarios, protocols need to deal with different issues caused by their
dynamic nature. For instance, the network topology is temporary and short-lived
and network partition leads to increase in delivery delay. Moreover, broadcast-based
protocols could cause broadcast storm problem, which leads to high packet traffic and
packet losses. Therefore, the most important challenge is to develop a protocol suitable
to different vehicular environments, as city and highway scenarios. For instance, in city
scenarios the vehicle density along the streets varies a lot during the day, while in rural
scenarios, the density tends to be low during most of the time.

Routing and data dissemination protocols developed for traditional ad hoc net-
work [Karp and Kung, 2000; Perkins and Royer, 1999b| suffer a critical drop in per-
formance when applied to vehicular environments [Li and Wang, 2007]. This is caused
by high mobility, speed and disconnection rate among the network nodes. However,
VANETS present some factors that can help the dissemination process, as vehicles mo-
bility pattern, limited by road layout, [Ranjan and Ahirwar, 2011] the tendency of
vehicles to move in groups, the integration with in-built vehicle sensors (GPS), and the
use of real-time and historical traffic information to infer network behavior. TODD in-
tends to use all these factors in order to obtain good performance of data dissemination
in different scenarios.

In recent years, researchers proposed several protocols and algorithms that take
advantage of VANETs main characteristics seeking to improve dissemination perfor-
mance. We have separated some key aspects related to data dissemination and an

overview of the state of the art in dissemination protocols.
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Summary. Table 2.7 compares the main routing protocols in terms of technique,
category, maps and GPS (Global Positioning System), and buffer [de Castro et al.,
2013; Soares et al., 2014b]. The category can be the following: (i) based on topology,
(ii) geographical position; (iii) opportunistic; and (iv) dissemination. Some protocols
use digital maps with route data (maximum speed, length and geographic coordination)
and GPS. Others also use buffer in the vehicle to store messages during a specific time
interval until the message’s time to live is exceeded, or to carry the message until
the next hop is selected. Finally, some protocols were designed or adapted to ad hoc

networks, while others were specifically designed for VANETS.

Table 2.7: Evaluated proposals for routing and dissemination

Technique Category

Multicast Routing
Specific for VANET

Best Moment
Positioning
Dissemination
Opportunistic
Maps

GPS

Buffer

Proposal
AODV [Perkins and Royer, 1999a
New-AODYV [Ding et al., 2011
[Atechian and Brunie, 2008
Flooding [Banzi et al., 2011
GFG/GFPG [Seada and Helmy, 2006
Gossiping[Banzi et al., 2011
ROVER [Kihl et al., 2008
UMB [Korkmaz et al., 2004a
VADD [Zhao and Cao, 2008 ° o | o
SADV [Ding and Xiao, 2010 . °
GyTAR [Jerbi et al., 2009] | e .
CBF [Fifler et al., 2004 ° °
GEDDAI-NP [Villas et al., 2013 . °
DRIVE [Villas et al., 2014 ° °
TODD/CTODD [Soares et al., 2014b . o | o

o o| Shortest Path
e| e Topology

1 - Only detects a jam, does not rank or estimate congestion levels.
2 - V2V and V2I architectures

Usage of traffic information. As vehicular environments are constantly changing,
using traffic information can help to treat or even avoid problems caused by these
changes. Nowadays, data dissemination and routing protocols use different sources
of traffic information. Historical traces can be generated by GPS [Xue et al., 2009],
gathered by roadside sensors or induction loops. Statistical information can be derived
from road map and traffic environment characteristics, e.g., number of lanes, maximum

speed and period of the day [Skordylis and Trigoni, 2008|. Also, with the increase in
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usage of social networks, researchers are studying ways to extract traffic information
from published messages [Huzita et al., 2012].

Some dissemination protocols gather traffic information by broadcasting control
packets. In this case, distributed algorithms use special nodes located within intersec-
tions of the scenario to store traffic information about the nearby roads. These special
nodes could be passing vehicles or roadside units. HTAR protocol [Lee et al., 2011]
uses junc-trackers, vehicles located in intersections, responsible to periodically collect
and disseminate up-to-date traffic information from adjacent connected roads. When
a vehicle that carries a packet arrives at an intersection, it requests the traffic informa-
tion from the junc-tracker in order to choose the next road of the dissemination path.
Due to the mobility of vehicles, junc-trackers need to be elected very often, which could
lead to increase in overhead and delivery delay rates.

One of the main drawbacks of using control packets to evaluate traffic behavior is
the overhead caused by broadcasts. Online traffic information resources already exist
and can be used to assist data dissemination. Besides, when an online resource is not

available, traffic behavior can be predicted by historical traces and traffic statistics.

Topology-based dissemination paths. Several works propose topology-based pro-
tocols, i.e., they calculate dissemination paths before send packets [Chang et al., 2011,
Chou et al., 2011; Nzouonta et al., 2008; Wu et al., 2004|. In these works, the road net-
work is abstracted as a directed graph, where vertices represent intersections and edges
represent road segments. Protocols can thereby assign weights to the edges according
to traffic information. The IG-based architecture [Chang et al., 2011| uses historical
traffic statistics to compute average inter-vehicle distance. Then, it creates an inter-
section graph consisting of all connected road segments and uses Dijkstra algorithm
to find the path to destination that presents shorter inter-vehicle distance. In HTAR
[Lee et al., 2011], the edges weights are adjusted in real-time based on monitored traffic
information and routing paths are computed using Dijkstra.

RBVT [Nzouonta et al., 2008] is a topology-based protocol that seeks to dissem-
inate packets through paths that present highest connectivity rate among the network
nodes. When a vehicle wants to send a packet, it broadcasts a route discovery packet
(RD) using a controlled flooding approach to discover a connected path to packet des-
tination. When the destination vehicle receives the RD packet, it responds with a
route reply packet (RR), in which stores the connected path. As soon as the sender
receives the RR packet, it starts the data dissemination. When a route is broken, route
error (RE) and update (RU) packets are disseminated. One of main problems of this

approach is that packets are disseminated only through connected paths. Therefore,



2.4. SERVICES 31

the protocol does not work well on sparse networks, where it is very difficult to have
such paths.

The most critical issues of topology-based dissemination approaches are caused
by the dynamic behavior of vehicular scenarios. The topology of VANETS is constantly
changing. At one time, we have few vehicles interconnected because they are near each
other. After few seconds, these interconnections (network topology) can change, since
the vehicles are constantly moving and they may be not near each other anymore.
Thus, a route path that existed before may not exists in the near future. In this case,
dissemination protocols seek to overcome this problem by recalculating the topology
every time a new event is detected, e.g. broken dissemination paths. This process could
lead to packet losses and an increase in overhead rate, caused by the broadcasting of
control packets to fix broken paths. Also, packets need to wait until a new path to the

destination is calculated, which contributes to an increase in delivery delay.

Next hop selection. One of the most used next hop selection methods is to maintain
tables to store neighbor information [Lee et al., 2011; Wu et al., 2004; Zhao et al.,
2007]. When a vehicle wants to send a packet, it chooses the best next hop based
on context information stored in the neighbor table, e.g., position, speed and distance
to packet destination. In order to keep tables updated, the vehicles must broadcast
control packets to request neighbors’ information. The main problem of this approach
is the overhead caused by the broadcasting of control packets. In vehicular scenarios,
this problem is more critical, because the tables become outdated very quickly, due to
the dynamic behavior of VANETSs. Thus, vehicles must broadcast control packets more
often, generating more overhead.

In order to reduce the overhead, some protocols use RTS (Request-To-Send) /CTS
(Clear-To-Send) method [Fasolo et al., 2006; Korkmaz et al., 2004b; Nzouonta et al.,
2008]. When a vehicle wants to send a packet, it starts a neighbor selection phase by
broadcasting a RT'S packet. When their neighbors receive the RTS, they choose whether
to reply or not based on their current information. For instance, a neighbor could reply
only if it is closer to packet destination than the RTS sender. If a vehicle chooses to
reply, it computes a waiting time to reply with a CTS packet. This approach leads to
reduce in overhead rate in comparison to the use of neighbor tables, but contributes
to an increase in delivery delay.

RBVT proposes a new function to calculate the waiting time, which is based on
three factors: forward progress, optimal transmission area and received power. Also,
it proposes the use of factor weights that can be dynamically set based on network

and traffic conditions. However, RBVT does not take into account important context
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information like speed and traffic information. Besides that, it does not evaluate the

use of different weights and how they impact in different vehicular scenarios.

2.5 Chapter Remarks

This chapter provided a comprehensive and up-to-date background on vehicular net-
work, social sensing, prediction models, and TMS services. Starting with an overview
of vehicular network, in Section 2.1, we described its architecture and presented its
main characteristics. Within the scope of the later, we provided a contextualized back-
ground on social sensing and the main related approaches in Section 2.2. Then, Section
2.3 summarized the prediction models that have been used and proposed in VANETS.
Moreover, in Section 2.4, we extended our discussion about vehicular networks by
presenting the main challenges and related work in services, such as the suggestion of
routes in Section 2.4.1 and protocols in Section 2.4.2. In the next chapter, we introduce

the data collection module of our traffic management system.



Chapter 3

Data Collection

Although ITS use infrastructure sensors to monitor the traffic condition in a vehicular
environment, there are many kinds of sensors that can be used such as road detectors
(inductive loop detection), in-road reflectors, infrastructure-to-vehicle and vehicle-to-
infrastructure electronic beacons. These are some examples of “traditional sensors”.
However, today we have many other emerging source of data that can be very useful
for ITS. For instance, there are information about traffic conditions in the Web, such
as Bing Maps! and Google Maps?. This system presents real-time information about

the traffic conditions (e.g., free or congested).

In addition to Bing and Google Maps, there are crowdsourcing geodata in projects
such as OpenStreetMap?, which is a collaborative project to create a free editable world
map. Although not presenting traffic jam information as well as Bing and Google
Maps, there are several ways to download data from OpenStreetMap and export a file
to a simulator of urban mobility as SUMO. Thus, junctions, traffic lights, and road
network can be a VANET scenario, allowing a more realistic evaluation of VANET
protocols. The only missing information is traffic jam, which is available at Bing or
Google Maps. As |Horvitz and Mitchell, 2010] said, methods for learning automated
driving competencies from data will be crucial in the development of autonomous
vehicles that drive without human intervention. First, how to acquire and predict
the traffic flow are the matters to build safer cars that employ collision warning and

avoidance systems.

Besides that, the use of participatory sensing systems, such as Foursquare?, In-

1
2

www.bing.com/maps

www . google. com/maps

3 Available at www.openstreetmap.org.
4http:/ /www.foursquare.com.
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stagram®, and Waze®, are becoming very popular. For example, in 2014 Foursquare
registered 45 million users, Instagram 200 million users, and Waze 50 million users.
Data shared in these systems have the active participation of users. In this case, these
systems can be seen as a sort of sensor network, also known as participatory sensor
network (PSN) [Silva et al., 2014]. In this network users plus his/her mobile devices
can be considered a sensor, because users carry mobile devices that are able to sense
the environment and make relevant observations at a personal level.

This chapter describes our contributions in the Data Collection module, illus-
trated by Figure 3.1. We describe which data we have collect, how and for how long.

Details about our methodology, as well as the challenges that we faced, are explained.

1. Data Collection .
Sensors / Actuators / Other
17
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Figure 3.1: Description of the Data Collection chapter.

First, we present our methodology to collect the traffic flow from Bing Maps as
well as our traffic flow dataset [Tostes et al., 2013]. Second, we have collected data
about traffic incidents, from Bing maps. Third, we describe our collected data about
check-ins, i.e. when users share their location in the Web [Tostes et al., 2014]. In
this case, we have used Twitter, Foursquare and Instagram. We have collected data
from several cities, such as Chicago, New York, London, Paris, Belo Horizonte and Sao
Paulo, besides others. Recall that, in this work, we have focused in data from Bing
Maps due to data quality. Although, it is important to notice that a natural extension
is to apply this thesis’” methodology with Google Maps, as future directions.

This chapter is organized as follows. Section 3.1 describes details about the
elaboration of our traffic low datasets. Section 3.2 presents our dataset of traffic
incidents. Section 3.3 shows details about our social dataset, i.e. check-ins data (social

data). Finally, Section 3.4 concludes this chapter.

Shttp://www.instagram.com.
Shttp:/ /www.waze.com.
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3.1 Traffic Flow Dataset

3.1.1 Methodology

Aiming a city-wide traffic flow information to establish inferences and big data analy-
sis for patterns discovery, a methodology for acquiring traffic flow data from distinct
sources has been designed [Tostes et al., 2013]. Any GIS map service can be input of
this methodology. This was a necessary step, because we required an API that allowed
us unlimited requisitions to obtain the traffic flow data, which is not available.

GIS Map APl | Clty Flow
| Web Crawler

GIS

Street Binary

Image
database Masks

< Y
Traffic Flow Image
Acquisition Processing

Figure 3.2: Traffic flow acquisition methodology through a GIS map web crawler.

Figure 3.2 presents the process of traffic flow acquisition. Through the API map
service, a city flow web crawler has been developed. Then, a script was designed in
order to collect the traffic flow image from the selected city. We used PhatomJS?, a
JavaScript library to take a screenshot of the city map with the traffic flow layer on and
save the image into the database. Next, an image processing software was developed
for extracting each road traffic intensity, saving the percentage of green pixels, yellow
pixels, and red pixels, which correspond to the flow intensity (green is free while red is
congested). Each image from the image database was processed and its flow intensity
was saved to a specific date and time into the Traffic Flow Acquisition.

In this work, Bing Map has been used as input. Algorithm 1 presents the pro-
cedure for loading Bing Map in a web page, with the traffic layer on, and without
the illustrations over the map. First the map is set to the specific city center location
(the geo-code of New York is 40.783094, -73.980324), with the specific zoom level (12).
Then, the traffic layer is enabled and its opacity is turned off (1). We display only

the map, disregarding everything else. To know when the maps and the traffic layer

7 Available at http://phantomjs.org/
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are loaded on the browser, we start two event handlers. When the map and the traffic

layer are loaded, two events tiledownloadcomplete are triggered.

Algorithm 1 Bing Map Traffic Module Load
1: setMapView()

2: showTrafficLayer()

3: opacityTrafficLayer()

4: eventHandlers()

The web crawler algorithm is presented by Algorithm 2. For each HTML scenario
established as Algorithm 1, we get current hour, open the web browser with the created
HTML file, and wait for the event signals indicating that all map layers were loaded.
Then, we get a screenshot. This process is repeated every second. This approach was

implemented with PhantomJS, an open-source headless browsers.

Algorithm 2 Traffic Flow Web Crawler

1: for each scenario s do
2 get current hour

3 open web browser with the code from Algorithm 1
4 print the screen

5: kill web browser
6

7

8:

m < 60 - current minutes in the time
sleep(m)
end for

After collecting image data, the next step is the processing. As input, the algo-
rithm needs the image data and the masks for each road. The mask is a binary image
with white background and black street line. Figure 3.3 illustrates a street mask for
one street segment and a translucent image of Chicago map overlapped, which were
used in this work. Notice that, in this work, all street masks were manually drawn.
Although not being in the scope of this thesis, we can automatize such procedure
by applying Harris Corner detector to find the crossroads and, then, the Canny edge
detector algorithm to isolate the street borders.

Algorithm 3 presents the steps followed to process one map image. For each black
pixel in the street mask, the counter for each flow category (green, yellow, red, or no
category — error) was increased according to its color. To establish a band for each flow,
HSL (Hue, Saturation, and Lightness) was used. As HSV (Hue, Saturation, Value),
HSL is one of the most common cylindrical-coordinate representations of points in an

RGB color model. The variation of the hue corresponds to the values 0-360, in which
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Bing Maps with the layer of traffic flow on Mask of street ID 65 of Chicago Traffic flow dataset

Mask image
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Figure 3.3: Street mask example, considering the city of Chicago.

Algorithm 3 Traffic Flow Image Processing

Require: Image file 7, Set of Road Masks k,
1: procedure IMAGECONVERSION (i, k)

2 GreenPixels = 0

3 YellowPixels = 0

4: RedPixels = 0

5: NoCategoryPixels = 0

6 for each Road Mask &, do

7 for each Pixel p in the k, image do

8 if p is black then // Increase the counter of its respective color
9: if hue(p) < 30 or hue(p) > 330 then RedPixels+ +

10: else

11: if hue(p) < 70 then YellowPixels++

12: else

13: if hue(p) < 150 then GreenPixels+-+
14: elseNoCategoryPixels++

15: end if

16: end if

17: end if

18: end if

19: end for

20: end for
21: end procedure

0 is a red band, followed by a yellow band, and other band colors, and finally a red
band again. So it is possible to identify color bands to Bing’s traffic flow intensity.
Therefore, considering a street ID «, we can define the named Bing value for a

as only one of the following definitions.
Definition 1. Bing value = 1: if the traffic flow in the street « is free (green color).

Definition 2. Bing value = 2: if the traffic flow in the street « is congested (yellow

color).
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Definition 3. Bing value = 3: if the traffic flow in the street a is jammed (red

color).

Definition 4. Bing value = 0: if there is no traffic flow in the street «, that is, the
image processing mechanism have matched the street background in the map without

the traffic layer on. This can be considered as either an error or the absence of data.

3.1.2 Description

This section describes the dataset of traffic flow collected from Bing Maps for different
cities, median ones (e.g., Ottawa, Helsinki, Seattle), and large ones (e.g., New York,
Los Angeles, London). In this work, we present the results for datasets containing
approximately two months of data. Table 3.1 shows the main characteristics of the
datasets from 10 cities: Helsinki, Seattle, Chicago, Ottawa (Canada), London, Los
Angeles, Paris, New York, Belo Horizonte (Brazil) and Sao Paulo (Brazil).

Table 3.1: Description of datasets used in this work.
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City & A %] % | & o | & | Z
1. Helsinki 02-13 | 04-08 | 53 | 91 | 15.71 | 5.94 | 0.04 | 78.32
2. Seattle 02-13 | 04-15 | 60 | 38 | 70.11 | 1.53 | 0.57 | 27.79
3. Chicago 02-13 | 04-17 | 62 | 51 | 88.74 | 1.20 | 0.61 | 9.45
4. Ottawa 02-13 | 04-09 | 54 | 141 | 36.85 | 1.02 | 0.18 | 61.95
5. London 02-13 | 04-09 | 54 | 273 | 76.99 | 4.33 | 0.29 | 18.39
6. Los Angeles | 02-13 | 04-00 | 54 | 172 | 86.63 | 7.39 | 3.80 | 2.18
7. Paris 02-13 | 04-09 | 54 | 160 | 65.66 | 21.29 | 1.65 | 11.4
8. New York 02-13 | 04-16 | 62 | 175 | 76.27 | 6.51 | 1.48 | 15.73
9. Belo Horizonte | 02-13 | 04-17 | 62 | 169 | 34.11 | 7.55 | 0.23 | 58.11
10. So Paulo 02-13 | 04-17 | 62 | 996 | 65.23 | 20.77 | 1.56 | 12.45

Additionally, Figure 3.4 shows a map of each city with the masks overlapped. The
masks indicate streets that have available traffic conditions. We have chosen streets
that presented traffic data on Bing Maps (colored lines over the map). The absence
of the other streets in our datasets does not affect the prediction model itself, since a
street is a parameter to the model. Although, the absence of traffic flow on streets can

indicate for which streets we need other sources of information about traffic flow.
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We can observe that cities with more congestion data, based on Table 3.1, are
Paris and Sao Paulo (Brazil), followed by Los Angeles, New York and Belo Horizonte
(Brazil). The city with more mapped streets is Sao Paulo (996 streets), London (273
streets), Belo Horizonte (175 streets) and Los Angeles (172 streets). We mapped the
main streets, such as avenues and highways. All these datasets are from 2015. The
no data column indicates the absence of data in the database, because there was no
data about the traffic conditions in the Bing for some streets. This happens for other
traffic maps as well such as Google, and, possibly, we will have more information in
the future.

(a) Helsinki

Figure 3.4: Masks of the crawled cities.

3.1.3 Dataset From Microsoft Research

Here we present a dataset obtained by a collaboration with Bing Maps team at Mi-
crosoft Research, when the author of this thesis were doing an internship. We extracted
one week data from Los Angeles and London, from June 28th 2014 to July 6th 2014.
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The reason to choose just one week data is because the traffic flow dataset is huge,

around some terabytes.

(a) Main streets of Los Angeles. (b) Secondary streets of Los Angeles.

(¢) Main streets of London. (d) Secondary streets of London.

Figure 3.5: Overview of the traffic flow on street sectors.

This dataset is composed by date time, street sector, and speed flow. Each street
sector has its own latitude and longitude. Figure 3.5 presents the traffic flow for the
main and secondary streets. The classification was made based on the speed limit of
the street, based on limited thresholds.

3.2 Traffic Incidents Dataset

In the context of smart cities, a challenge relies on not only how to deal with traffic
jam, but why they occur. Several reasons can occur, even the named invisible jams,
which are traffic congestion caused by no known reason. Some aspects can involve
changes in infrastructure, constructions, accidents, weather, road hazards, and others.

Nowadays, Bing Maps system offers the RESTful API of Traffic Incidents®. In
this work, we used this API in order to collect real-time traffic incidents. With it, we
can store data of the traffic incidents from a rectangular area with a maximum size of
500 km x 500 km. We can also recovery real-time data from different types of incidents:
(1) accident; (2) congestion; (3) disabled vehicle; (4) mass transit; (5) miscellaneous

(incidents that do not fit in another category); (6) other news; (7) planned event; (8)

8http://msdn.microsoft.com/en-us/library/hh441726.aspx
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road hazard; (9) construction; (10) alert; and (11) weather. Each traffic incident can
have different levels, classified as low, minor, moderate and serious impact.

We have collected one year of traffic incidents data from several cities (LosAngeles,
Chicago, Seattle, New York, London, Ottawa, Paris), since May 1st of 2014 until May
8th of 2015. Table 3.2 summarizes the total of incidents per type for each city. They

are normalized by the maximum amount of incidents in each category.

Table 3.2: Details about the collected dataset about traffic incidents world wide.
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Los Angeles 96 100 3 100 | 57 100 6 27 37 0 67
Chicago 62 68 7 39 0 17 27 8 11 42 0 0
New York 27 16 1 26 0 26 22 1 7 19 100 | 100
Seattle 23 16 1 39 0 9.25 26 3 9 17 0 33
London 100 18 100 39 0 100 95 | 100 | 100 100 0 33
Ottawa 2 2 0 1 0 1 0 0 2 1 0 0
Max 48311 | 23434 | 3301 | 5833 | 0 | 15211 | 415 | 366 | 1436 | 21091 1 3

- All data are in percentage.

We can observe that the city with more reported traffic incidents in Bing maps is
London, followed by Los Angeles and Chicago. Although having more traffic incidents,
most of them are not accidents, such as in Los Angeles, but of road hazards (21,091
out of 48,311 incidents).In New York, most of the incidents are accidents, followed by
road hazards. Actually, this also happens in both Los Angeles and Chicago, although
Los Angeles has more miscellaneous incidents than Chicago (18.53% of all incidents in
Los Angeles in comparison with 8.5% of all incidents in Chicago). Notice that alert
and weather incident are not well used as a traffic incident alerts, since it has few

occurrences in over 150,614 incidents (1 and 7 respectively).

3.3 Social Dataset

In this study we focus on users’ check-ins given on Foursquare and Instagram.
Foursquare is a very popular location sharing service, class of system that enables users
to share their location with friends. To give an idea of the popularity of Foursquare,
this year it gathered over 45 million users worldwide, which shares millions of locations

every day [Foursquare, 2014].
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In location sharing services the main object are venues, which represent any
physical location, such as a restaurant, a university, or a gas station, that a user can
be at. Thus, the basic activity users can perform in location sharing services is called
check-in, which is an action to announce in the system the venue you are at a certain
moment. Foursquare also maintains a set of eight pre-defined venue categories, namely,
“Arts & Entertainment”, “Colleges & Universities”, “Food”, “Great Outdoors”, “Nightlife
Spots”, “Travel Spots”, “Shops”, “Home, Work and Others”. Other actions could also
be allowed. For instance, in Foursquare users can post tips in specific places aiming at
sharing information on any aspect related to the venue.

Instagram, created in 2010, is a photo sharing service that allows users to take
pictures, and share them on a several social networking services, such as Twitter.
Currently, Instagram users can create Web profiles featuring recently shared pictures,
biographical information, and other personal details. Instagram is a very popular
photo-sharing service. In February 2013 Instagram announced that they had 100 mil-
lion users, and in 2014 this number reached 200 million users [Instagram, 2014]. In
photo sharing services the main object are photos. Photos could be taken anywhere,
e.g., at a restaurant or at home. Thus, the basic action is the sharing of a photo. In
Intagram the user can also associate a location with each photo. The action of sharing
a photo with a location is also called check-in, because, as in location sharing services,
the user is announcing where he/she is at a certain moment.

We have collected data from Foursquare and Instagram directly from Twitter,
since Foursquare and Instagram check-ins are not publicly available, by default. Some
tweets provide a URL to the Foursquare or Instagram website, where information about
the geographic location of the venue was acquired. We have datasets for three different
cities: (i) New York — Manhattan region; (ii) Los Angeles; and (iii) London. This cities
were chosen because they present different patterns of traffic jams and a high usage of
participatory systems.

Our datasets are described by table 3.3. Each line in each dataset represents a
check-in, with its latitude, longitude, timestamp and the participatory system id (0
— Twitter, 1 — Foursquare, 2 — Instagram). For New York, we have extracted 65,293
geo-tagged tweets containing check-ins shared on Foursquare in 18,896 unique venues.
The Instagram dataset is composed of 12,7185 geo-tagged tweets containing check-ins
shared by 41,205 users in 30,738 unique venues and 269 streets segments (we will show
how this was collected from Bing Maps in next section). For Los Angeles, we extracted
1,231,222 geo-tagged tweets from Twitter, being 15,156 from Foursquare, and 65,175
from Instagram for 12,374 street segments. For London, we extracted 812,106 geo-

tagged tweets from Twitter, 11,652 from Foursquare, and 35,077 from Instagram for
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5,046 street segments. The number of street segments is higher in London and Los

Angeles because we have used a different dataset from Bing Maps itself.

Table 3.3: Dataset description.

. Participatory System Period
City Twitter Forl)lrsqlfarey Instagram Street Segments From To
New York 65,293 127,185 269 June, 24" 2014 | August, 22", 2014
Los Angeles | 1,231,222 15,156 65,175 12,374 June, 29", 2014 July, 6", 2014
London 812,106 11,652 35,077 5,046 June, 29" 2014 July, 6™, 2014

In summary, since data from sensors in a PSN can provide valuable to better
understand city dynamics and the urban behavioral patterns of their inhabitants, an
important question emerges: are they related to with traffic conditions? It is known
that they are associated with users’ habits and routines Silva et al. [2014], therefore,
maybe we can use data from social sensors, specifically from Twitter, Foursquare and
Instagram, to better understand traffic conditions. In fact, one goal of next chapter is

to answer this question.

3.4 Chapter Remarks

People typically use map services and social networks in their life in order to avoid
traffic jams and to share with others information such as his/her location, photos,
videos, or simply messages. In the other hand, there are many kinds of sensors used
by ITS, e.g., the traditional sensors as road detectors, and the unconventional sensors,
such as map services and social sensors. In this context, this chapter showed how and
why can we collect data from map services, presenting several datasets about traffic
flow, incidents and social data (check-ins).

The main challenge in the data collection is where to store such huge amount of
data and how to extract the traffic low information from online maps, which are not
freely available. For the first, we have used a storage in the Cloud through Microsoft
Azure®. For the second, we have presented a methodology to acquire flow intensities
from map services such as Bing maps and Google maps. Data from several cities have
been collected regarding traffic flow and incidents, such as Los Angeles, Chicago, New
York, Seattle, London, Paris, Ottawa, Belo Horizonte, Sao Paulo, and others. These

datasets will be analyzed in the following chapters.

9We had an award in Microsoft Azure with the Traffic Prediction project. More information are
available at http://research.microsoft.com/apps/video/7id=241812






Chapter 4

Characterization

In this chapter, we analyze the data that we have collected in the previous chapter in
order to understand its effects in different cities. It’s a common sense that different
cities have different characteristics. Some can be similar, while others are very differ-
ent. However, how can we identify such information so as to use as inferred data in
prediction models? Understanding these needs helps to calibrate prediction models to
each city, improving its performance. Besides, there are other questions such as: how
do they evolve spatially and temporally?; which data can influence in the other?; how
are they correlated?; can social data, from participatory sensor networks (PSNs), be a
reflect of the traffic flow behavior? These are all an example of questions made for the
Characterization module that will be answered in this chapter.

In fact, as mentioned in [Silva et al., 2014|, data from sensors in a PSN are asso-
ciated with users’ habits and routines. These sensors can be considered social sensors,
which provide valuable to better understand city dynamics and the urban behavioral
patterns of their inhabitants. Since this is a new type of data many questions emerge.
For instance, as it was mentioned, can we use data from social sensors, specifically from
Twitter, Foursquare and Instagram, to better understand traffic conditions? In fact,
answer this question is one goal of this chapter.

Here we describe our contributions in terms of the Characterization module. They
are summarized in Figure 4.1. First, we can observe that they were published in [Tostes
et al., 2013], [Tostes et al., 2015b] and |Tostes et al., 2012]. Second, we can see that
our characterizations are based on data that were collected in the first module of TMS,
discussed in the previous chapter, that is, traffic flow, traffic incidents, and check-ins.

We have made the following analyses: (i) spatial and temporal analyses; (ii) the
identification of phase transitions; (iii) heterogeneous correlation; and (iv) the design

of metrics to analyze the performance of crossroads. The spatial and temporal analy-
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2. Characterization
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Figure 4.1: Description of the Characterization chapter.

ses have been made with the several cities datasets, mentioned previously. Then, the
traffic behavior was analyzed based on phase transitions (shocks in the system). In ad-
dition, we have correlated data from social sensors (check-ins from Twitter, Foursquare
and Instagram) and intense traffic conditions (traffic jam from Bing maps). Finally,
we proposed ALLuPIs: an Analytical modeL to evalL.Uate the Perfomance of Intersec-
tionS [Tostes et al., 2012|, which presents some metrics to evaluate the performance of
crossroads in accordance with the current traffic flow from the incident roads.

This chapter is organized as follows. Section 4.1 presents the spatial and temporal
analyses of our data collected previously. Section 4.2 defines the concept of phase
transitions, with some evaluations. Section 4.3 correlates heterogeneous data, that is,
intense traffic flow (traffic jam) and check-ins. Section 4.4 explains and evaluates our
analytical model ALLuPIs.

4.1 Spatial and Temporal Analyses

In this section, we analyze the traffic flow and the traffic incidents from several cities,
focusing on Chicago and New York (Manhattan). As it was mentioned, these cities

have been chosen due to data quality in Bing Maps.
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4.1.1 About the Traffic Flow

Spatial Analysis. To make a spatial analysis, we generated videos presenting the most
likely traffic low for Manhattan region considering weekdays and weekends. These
videos are available online!. Intervals of 5 minutes have been used in order to consider
most of the traffic flow transitions on streets. Figure 4.2(a) and 4.2(b) show two
snapshots during the instant 7TAM and 4PM, respectively. We can see which street
segments are more congested and which streets have free flow. Comparing with Figures
4.2(c) and 4.2(d), we can see that at TAM the yellow traffic flow is more likely than
at 4PM during weekdays. In weekends, the free flow is more likely in such hours than

during weekdays.

(a) Monday, 7TAM  (b) Monday, 4PM (c) Weekend, TAM (d) Weekend, 4PM

Figure 4.2: Most likely traffic flow in time intervals of 5 minutes.

Dataset from Microsoft Research. Here we have analyzed the dataset obtained from
Microsoft Research about the traffic low from Bing Maps. We have considered the
check-ins dataset in order to consider only street regions with check-ins data.

Figure 4.3 illustrates a closer look on the main streets for Los Angeles and London.
We can observe that it is a good classification. Also, recall that each street segment has
several sectors that can be combined to generate the traffic flow for the street segment,
as related in Section 3.1.1, in Chapter 3. Future works may combine the flow of sectors
on the same street segment to generate a street traffic low. In this study, we consider
the lowest granularity that is each sector as a street segment.

In addition, Figures 4.3(b) and 4.3(c) show a closer look to street sectors in
Los Angeles and London, respectively, when we consider also the check-ins dataset.

Recall that yellow squares represents the street segment and the red squares represent

'http://annatostes.azurewebsites.net/bing-maps-videos/
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the polygon that we use to count the check-ins on each street segment. We consider
0.0002 as the latitude/longitude error from the center of the square, which represents

approximately 20 meters from the center.

g o :
East Los
“Angeles  «

CHESTERFIELD
SQUARS

2 QUARE
_ WSdth st

(b) Sectors with check-ins box as street segments in

(¢) Sectors with check-ins box as street segments
Los Angeles.

in London.

Figure 4.3: Closer look on the main streets in cities, considering the check-ins.

Temporal Analysis. To make a temporal analysis of the traffic low for Manhattan
region we designed Figures 4.4(a) and 4.4(b), which presents the frequency of green,
yellow and red traffic flow during weekdays (Monday to Friday) and during weekend
(Saturday and Sunday). One can notice that the traffic congestion has two peaks of
congested traffic flow, at x = 85 (approximately 7am) and at z = 192 (4PM), corre-
sponding to rush hours (when people drive to work and to home). During weekends,
one can notice that we have only one peak when x = 175 (approximately 3PM), but
the free traffic is more usual that does not occurs on weekdays in which the congested

traffic is more usual (yellow and red flows).
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Traffic Flow in Working Days Traffic Flow in Weekends

1.0
1.0

0.8
0.8

0.6
0.6

0.4
0.4

Frequence/Max(Frequence)
0.2

Frequence/Max(Frequence)

0.2

0.0

T T T T } o
0:00 4:10 8:20 12:30 16:40 20:50 ° T T T T T
— Free 0:00 4:10 8:20 12:30 16:40 20:50

Intervals Average — Free
— Congested Intervals Average
—— Congested
(a) Weekdays (b) Weekends

Figure 4.4: Frequency of traffic flow aggregate in time intervals of 5 minutes.

Comparison Between All Cities. Here we analyze how the traffic flow temporally
evolves in different cities world wide. Figure 4.5 illustrates the hourly variations of
intense traffic conditions in the following cities: London, Paris, Los Angeles, Chicago,
New York, Seattle, Ottawa, Helsinki, Belo Horizonte, and Sao Paulo. We have two
series: congestion flow and traffic jam. The series of congestion flow is calculated as
the frequency of Bing values 2 (yellow — congested) and 3 (red — jams), while the series
of traffic jam consists only of the frequency of Bing value 3 (red — jams). Note that
the curve of each city follows almost the same pattern observed for all locations: two

peaks of intense traffic conditions, one in the morning and other in the evening.

Notice that these peaks reflect distinct rush times that are related to the common
working hours in different cities. For instance, in London (Figure 4.5(a)) the morning
peak is around 10 AM, as in Paris (Figure 4.5(b)) and in Helsinki (Figure 4.5(h), with
smaller intensity since it is a smaller city). In contrast, in New York, Los Angeles,
Chicago and in the Brazilian cities (Figures 4.5(i) and 4.5(j)), the morning peak is
usually two hours later, suggesting that people tend to leave later to work in those
cities. The second most expressive peaks is at 6PM in London, Paris, New York,
Chicago, Helsinki, Chicago, while in Belo Horizonte and Sao Paulo this time is at
7PM, being one hour later. It is also interesting to recall that in cities such as Seattle
and Ottawa, which are smaller and have a colder weather, people tend to leave later

to work, at 9PM, and they also tend to arrive earlier, at 5PM.

In addition, we can observe in Paris, New York, Belo Horizonte and Sao Paulo
that the congestion flow starts in the morning, but it stays higher during all day until
the other rush hour peak in the evening. This does not happen in other cities, such as

London, Los Angeles, Chicago, Seattle and Ottawa, where we have two clear peaks of
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intense traffic flow and a decrease in the afternoon.
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Figure 4.5: Evaluation of the traffic flow in several cities, considering a typical weekday.
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4.1.2 About the Traffic Incidents

Traffic jam is always caused by some reason, even when we can not explain (invisible
jams). In order to understand why traffic jam occur in our previous dataset, we have
collected data regarding traffic incidents, also from Bing Maps, as we mentioned in
Chapter 3. We have chosen London, Los Angeles, Chicago, and New York, since they

had more traffic incidents than the others.

Q1. What are the most common types of traffic incidents according with the
days of the week? Are they caused more due to accidents, or construction,
or weather, or other type?

Figure 4.6 illustrates the amount of traffic incidents per type and day of the week,
from Sunday up Saturday, in the fours cities that we have analyzed. We can observe

that accident, construction and miscellaneous are the most reported types of incidents.
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Figure 4.6: Amount of traffic incidents per type and weekday.

In London, there are more miscellaneous and construction incidents. These inci-
dents are more reported on Monday and Sunday. Accidents tend to occur more often
in Wednesday, while congestion incidents are more common on Friday.

In Los Angeles, we have more accidents than others, with similar occurrences of
disabled vehicles, miscellaneous and construction. Notice that accidents occur more

often on Friday. Incidents of miscellaneous occur more often on Wednesday. Construc-
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tion and disabled vehicles are more common on Thursday.

In Chicago, there are more accidents and construction. Most accidents occur
on Tuesday, while most constructions are reported on Thursday. Regarding disabled
vehicles and miscellaneous, we can observe that they occur more often on weekdays.

Similar as in Chicago, New York has more accidents and construction incidents.
Accidents usually occur on Friday, while construction incidents are more often reported

on Tuesday and on Thursday.

Q2. How traffic incidents evolve spatially and temporally?

Here we analyze the distribution of traffic incidents spatially. Figure 4.7 presents
the spatial distribution of incidents, being represented in blue the slow congestion, in
red the road closed, and in black incidents that did not cause road closure.

According with our results, we can observe that London has more slow congestion
than others being reported. In Los Angeles, Chicago and New York, there are more
road closed incidents in comparison with London. Also, we can notice that most of

them happen in the downtown.

Spatial Analysis Spatial Analysis

Road Closed and Slow Congestion in London Road Closed and Slow Congestion in Los Angeles
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Figure 4.7: Spatial analysis of traffic incidents per city.

Figure 4.8 presents a temporal analysis for accidents in Los Angeles, Chicago and

New York. We can observe that the frequency of accidents in Los Angeles achieves
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peaks at 1PM, 3PM and 9PM. In Chicago, the peaks are at noon and 8PM. In New
York, the peaks are at 10AM and 6PM.
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Figure 4.8: Temporal analysis of accidents in different weekdays.

In addition, Figure 4.9 illustrates how do the traffic incidents of several types

evolve temporally in these different cities. In London, we can observe that the con-

struction incidents on Tuesday have different peaks than on Thursday (6AM, 6PM and

11PM in comparison with 10AM and 9PM), but they are concentrated to occur mostly
in the evening. This does not happen with Los Angeles, where the highest peak for

construction and disabled vehicle is at 2PM, for miscellaneous is at 3AM, 2PM and

4PM and for construction is at 4AM, 2PM and 4PM. In Chicago, disabled vehicles and

miscellaneous are not as expressive as accident and construction, which have higher
and 4PM. The latter has peaks at 2AM, 9AM, 1PM and 7PM.
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Q3. How the severity of traffic incident impacts in the traffic jam?

Here we analyze the severity of traffic incidents per day of the week. Figure 4.10
illustrates the results for London, Los Angeles, Chicago and New York. Recall that,
in London, most traffic incidents with lower and minor severity occur on Sunday or
Monday, while the more severe (serious) occur on Thursday and Friday. Regarding
to Los Angeles, we can see that, despite the severity of the traffic incident, they are
concentrated on weekdays, specially on Tuesday to Thursday. The same happens for
Chicago, concentrating its incidents on Tuesday to Thursday, without much difference
on the levels of severity. Similar to London, New York concentrates the more severe
incidents (moderate and serious) specially on Friday, while the minor incidents are

concentrated on Monday and Tuesday.
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Figure 4.10: How and when less and more severe traffic incidents occur.

Q4. How a road closure impacts in the traffic congestion?

One interesting variable related to traffic incidents is the road closed, which in-

dicates is the road was closed due to the traffic incident or not. In this context, the

question that emerges is how this road closed information impacts the distribution of

traffic incidents temporally, that is:

changes when the road is closed?”

“does the temporal evolution of traffic incidents

Figure 4.11 presents the results, being Figure 4.11(a) related to incidents when
the road is closed and Figure 4.11(b) when the road is not closed. Notice that, in
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London, we have only traffic incidents of accidents, disabled vehicles and construction
when the road is not closed. In Los Angeles, Chicago and New York, we can observe
that the peaks of incidents for each type change when we consider the traffic incidents.
For instance, in Los Angeles, we have more incidents (0 - black) in the night and
afternoon when there is a road closed warning, but when there is not, the incidents are

more likely to occur in the evening and specially in the afternoon.
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Figure 4.11: Analysis of the impact of road closure in the report of traffic incidents.

Q5. Do the traffic incidents vary in weekdays and weekends? And what is
the time duration of most traffic incidents in the city?

Figure 4.12 illustrates the empirical cumulative distribution of accidents in each
city, considering weekdays (Figure 4.12(a)), weekends (Figure 4.12(b)), and of the time
duration, in hours, of such traffic incidents (Figure 4.12(c)). The x-axis and y-axis are
both presented in log-scale. Notice that we have lines indicating 80% of probability
to occur more than a certain amount of accidents in each city. The grids indicate the
25th, 50th and 75th quartiles.

We can observe how the probability of incidents evolve during a typical day.
Regarding the time duration, we can notice that most traffic incidents in London have
a higher duration than in other cities (0 up to days), since it happens more on highways.
As for Los Angeles, Chicago and New York, incidents with lower duration are more

likely to occur than others (respectively 30min, 6 hours and 5 hours of time duration



56 CHAPTER 4. CHARACTERIZATION

London Los Angeles Chicago New York
1.0 1.0 1.0 g 1.0 -
0.8 0.8 0.8 0.8
w 06 - w 06 w 06 - w 06 -
[=} o o o
O O o O
w04 w04 w04 w04 -
0.2 o 02 - 02 02 -
0o e .../ =152 00 e . ) N4 108 0o L vees o0 ” =11 wode o e =109
T T T T T T T T T T T T T T T T T T T T T T T T T T T T
1 5 10 50 500 5 10 20 50 100 500 1 5 10 50 500 2 5 10 20 50 100 200
#incidents #incidents #incidents #incidents

(a) ECDF of the total of incidents in weekdays.

London Los Angeles Chicago New York
1.0 N 1.0 O 1.0 O 1.0 0
o A o
0.8 08 . 08 * 08
¢ ¥
.
w 06 w 06 " w 06 _f w 06
O o 'I o [
oo04 o 04 - P o 04 - ¢ o 04 - $
0.2 o T 0.2 o 4 0.2 0.2 o o
Lot =60 ,, N=42 VN N=a2 .8 N=42
00 fe _e° 00 e * 00 —e* 00 Lo L
T T T T T T T T T T T T - T T T - T T T T T
12 5 10 20 50 200 500 100 200 500 50 100 200 5 10 20 50 100
#incidents #incidents #incidents #incidents
(b) ECDF of the total of incidents in weekends.
London Los Angeles Chicago New York
1.0 /..- 1.0 o Lo e e 1.0 - 1.0 P
. o -
08 08 08 08 -
B
w06 w06 w06 w 06
o o
8 04 o 04 o 0.4 2 04
02 0.2 02 02
- N=150 N=157 -
00 oo N 0.0 - 0.0 0.0 e
T T T T T T T T T T T T T T T T T T T T T T T T T T T T
2 5 10 20 50 200 500 0102 0510 20 50 200 01 05 50 500 01 05 50 500
Time Spent Time Spent Time Spent Time Spent

(c) ECDF of the time duration (in hours).

Figure 4.12: Empirical cumulative distribution function of incidents and their duration.

with 80% of probability). Finally, we can see that it follows a power law, indicating

that places with less incidents are more common than with more incidents.

Q6. Does traffic accidents have an impact in the traffic congestion?

Figure 4.13 analyzes the impact of traffic accidents in the traffic congestion. We
have calculated the frequency of accidents in streets with at least 1,000 incidents that
were considered as moderate or severe. Then, we have calculated the frequency of
intense traffic flow (Bing values of 2— yellow or 3 — red) in streets that have not achieved
1,000 accidents. Notice that we did not want to classify streets. Instead, we can have
different streets in distinct time intervals.

Despite the different x-axis scales, the important thing is to notice these two
series are different. In London, for instance, most traffic congestion that occur in the

morning might be due to accident, but not in the evening. In Los Angeles, the opposite
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occur. The curves are similar in the evening, but not in the morning as in London. In
Chicago we have a similar behavior than in London. Finally, in New York, we have a

similar shape than in Los Angeles, being similar in the evening.
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Figure 4.13: How much do accidents impact in the traffic congestion?

4.1.3 About the Social Dataset

In this section, we analyze two aspects of our social datasets presented in Section 3.3,

in Chapter 3: (i) network coverage; (ii) seasonality.

Network Coverage. Figure 4.14 shows the occurrence of check-ins in New York, Los
Angeles and London using Worldwide Telescope?, a Microsoft Research tool. Videos
were also produced and they are available online®. They show how the amount of
check-ins varies temporally and spatially. About the spatial aspect, notice that check-
ins occur more often in downtown for all cities.

Since we are interested in the check-ins nearby or over a street segment, we have

to filter the dataset. So we have created a polygon around each street segment and we

2http://www.worldwidetelescope.org/
3http://annatostes.azurewebsites.net/
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(a) New York.
(c) London.

Figure 4.14: Check-ins over cities.

have counted the number of check-ins that occur inside it. Figure 4.15(a) illustrates the
check-ins on streets. Additionally, in Figure 4.15(b), we can see the street id. Notice
that the street IDS for downtown avenues are less than 120, despite Broadway which
is around 220. Figure 4.15(c) shows the median of the amount of check-ins per day
in Manhattan. We can observe that there are more check-ins over downtown avenues,
such as Time Square, and 5th-9th avenues. Counterwise, we have less check-ins in the
north of Manhattan and some streets have no check-ins at all.

Although there are some streets with more check-ins than others, it is important
to notice that we have almost the same peaks for all streets. To demonstrate that,
Figure 4.16(a) represents a heatmap of the relative check-ins in a time interval, that is,
the amount of check-ins in a time interval divided by the maximum amount of check-ins
in each street. The color indicates the relative amount of check-ins, from blue (less
checkins) to red (more check-ins). Notice that the white columns represent streets with
no check-ins. Recall that streets have more check-ins in the evening.

Additionally, it is also important to verify if the check-ins are well distributed
on it, depending on the area of this polygon. For that, we calculated the percentage
of the polygon area that is occupied by check-ins over the entire New York dataset,
which is shown by Figure 4.16. In the y-axis we have intervals of 30 minutes during
one typical weekday (a total of 48 intervals of 30 minutes). The color in Figure 4.16(b)
means how well the check-ins over a street segment are distributed, from blue (lower

coverage distribution) to red (higher coverage distributed).



4.1. SPATIAL AND TEMPORAL ANALYSES 59

P—

y¢ Palisades Parkl i :
Cliffside Pl 155 .

North Bergepiis

Union C'tigf

L ==
]
i
250

b
200

T
Q
N
" ~,
150

100

50

(a) Mlustration of check-ins on streets. (b) Street IDs.

150
|

50
|

median of checkins/day

18 17 27 37 47 57 67 77 87 97 108 121 134 147 160 173 186 199 212 225 238 251 264

streets

(¢) Median of check-ins per day.

Figure 4.15: Coverage of check-ins per day.

Recall that streets with highest coverage are more frequent from 9AM to 8PM,
with the highest values in the evening. The streets with lower coverage tends to stay in
the same behavior during all day long. There are also streets with no check-ins at all.
Thus, if we compare both heatmaps at the same time, we can see that there are five
categories of streets: (i) with a lot of check-ins that are well distributed; (ii) with a lot
of check-ins that are not well distributed, so they are concentrated in some specific part
of the street; (iii) a lower number of check-ins well distributed; (iv) a lower number of
check-ins concentrated in a region; and (v) no check-ins.

Figure 4.17 summarizes a spatial representation of these categories. We can
observe that most of downtown avenues are on categories (i) and (ii). Categories (i)
and (ii) are more interesting, because we have to consider streets with more check-ins

than a certain minimum threshold to be able to use in traffic jam forecasting models.
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(b) Street coverage distribution.
Figure 4.16: Analysis of how well check-ins are distributed on the street.
That is why we do not consider categories (iii) and (iv). Besides, categories (i) and

(il) might have a different influence in the accuracy of prediction models. Similar to

categories (iii) and (iv), category (v) has to be not considered due to the minimum
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None Category | Category IV ' Category V

Figure 4.17: Categories of streets in New York.

amount of check-ins requirement.
Since we are interested in categories (i) and (ii), Figure 4.18 remarks the street
coverage distribution for streets in category (i) and in category (ii). Recall that category

(i) is more well distributed than category (ii), as mentioned.

Seasonality. We now analyze how the seasonal behavior affects the location-sharing
data. Timestamp were normalized for each city local time.

Figure 4.19 illustrates the number of check-ins throughout the hours of the day in
different cities, considering all check-ins and just the check-ins on streets. Recall that
we have two curves, one from the entire dataset, including all the geolocated tweets
for Los Angeles and London, and another from Foursquare-Instagram tweets only. For
New York, we have collected only check-ins from Foursquare/Instagram. Notice that
we have three peaks of check-ins, one in the morning at 8AM, other at 12PM, and
another in the evening at 6PM. From Los Angeles and London, we have collected all
geolocated tweets. For the Los Angeles all dataset, we have one peak in the evening at
8PM and two peaks in the morning, at SAM and at 12PM. Notice that in this case we
have a little drawback at 1PM. Considering only tweets from Foursquare/Instagram,
we have two peaks, one at 10AM and another at 4PM. For London, the shape of the
curve is similar to New York for the all dataset, but with three peaks, one at 10AM,
other at 5PM and another at 9PM. For the Foursquare-Instagram dataset, we have
only two peaks, similar to Los Angeles, one at 12PM and another at 6PM.

Figure 4.20 presents the time series of accumulated check-ins on streets per days
of the week for New York, considering check-ins on Foursquare and Instagram (pink),

only on Foursquare (green) and only on Instagram (blue). Notice that there are more
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Figure 4.19: Amount of check-ins throughout the hours of the day in different cities.
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Figure 4.20: Time series of accumulated check-ins on streets per days of the week for
New York.

check-ins from Foursquare than from Instagram. The amount of check-ins is higher on
weekdays, specially in the evening. Tuesday and Thursday have more check-ins.

This is the average pattern for the city, but if we analyze in the street level, we can
see that check-ins vary spatially and temporally. As an example, Figure 4.21 illustrates

two time series of the amount of check-ins on a street segment in the half-hours of one
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(b) Street 63 of New York.

Figure 4.21: Time series of the amount of check-ins on a street segment for one specific
day.

specific day. Notice that for street 54 we have considerably more check-ins on Sunday
than on other days, which is different from street 63, in which we have approximately
the same amount of check-ins per day. Also, we can observe that the pattern of check-
ins varies considering the street segment, day and time. For this reason, in Section 4.3,
we consider the time series in the street level and for different time intervals so as to

apply check-ins data to the traffic jam forecasting model.

4.2 Phase Transitions

4.2.1 Definition

In this section we define and present an example of a phase transition.
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Definition 5. Traffic Flow Phase: time frame when the traffic flow in a specific

street does not vary, that is, has always the same Bing value.
Considering the definition of a traffic flow phase, we can define a phase transition:

Definition 6. Phase Transition (PhT): occur when the traffic flow changes

abruptly from one phase to another phase, different from the previous.

Red 3 .

Yellow 2

Green 1

08:00 08:10 08:20 08:30 08:40 08:50

=—eo—MNegative PhT Positive PhT

Figure 4.22: Tllustration of the definition of a positive and a negative PhT.

That is, considering Figure 4.22, notice that we have two phases with g duration,
and an abrupt change in the Bing value — one series from red to green and the other
from green to red. Since this abrupt change («) is shorter than the phase duration
(B), this can be considered as a phase transition. In this example, a street has a traffic
jam for f = 20min, and after « = 10min, the traffic flow changes to a free phase
for § = 20min. Similarly, the opposite can occur: a street has a free traffic flow for
[ = 20min, and after = 10min, the traffic flow is jammed for 5 = 20min.

These two situations indicate abrupt changes in the traffic flow. In one case, the
traffic is getting better, and in the other, the traffic is getting worst. Therefore, we

have the definitions of positive and negative phase transitions.

Definition 7. Positive Phase Transition (PhT+): occur when the phase transi-
tion is from free flow to traffic jam (green-to-red transition), indicating that the traffic

flow is getting worst (“positive to jam”).

Definition 8. Negative Phase Transition (PhT-): occur when the phase transi-
tion is from traffic jam to free flow (red-to-green transition), indicating that the traffic

flow is getting better (“negative to jam”).
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Nevertheless, identifying these moments of PhT is an arduous task as its pre-
diction depends on the amount of available occurrences, which can vary. PhT can
be classified as regular or irregular. Regular PhT can happen in “ moments” socially
known by the population such as rush hours, while the irregular PhT occurs in ad-
verse times, as in the occurrence of traffic accidents, congestion waves or unexplained
congestions. Therefore, algorithm 4 presents how to identify a PhT. With a sliding

window, we can identify a Ph'T based on the values of o and f3.

Algorithm 4 Algorithm to identify a PhT

Require: Dataset from our traffic flow acquisition methodology, based on Bing Maps
information, time limit ¢;,,;, a, and
Ensure: Periods of time that occured a PhT.
1: while current time t < ty,; do

2: Initiate a sliding windows of a + 23 minutes
3 if traffic low matches with a Ph'T then

4: Register the PhT

5 end if

6: end while

4.2.2 Evaluations

Here we have made two case studies involving the concept of phase transitions. First,
we have used a dataset from Chicago. Second, we have used a dataset from Manhattan,
in New York.

4.2.2.1 Chicago Case Study

Chicago was our first study case. The methodology of Flow Acquisition was applied.
We collected data from April 10th 2013 to April 24th 2013. Data from Bing maps
were collected every 7 minutes. Next, the database has the following information: (I)
date; (II) hour; (III) street number; (IV) number of green pixels; (V) number of yellow
pixels; (VI) number of red pixels; and (VII) number of no category pixels.

Chicago map was divided into geo-code sectors, as Figure 4.23 illustrates. Each
street has its influence area, considering the direction of the street. It is important to
notice each street number. Also, we mapped Chicago as a graph (see Figure 4.23(b)):
the vertexes are roads and the edges are the direction that can be taken by a vehicle
to continue its path.

In order to present the most important streets, we have calculated the between-

ness centrality, which indicates the number of shortest paths from all vertexes to all
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(a) Street sectors over Chicago map. (b) Graph representation

Figure 4.23: Street sectors and the graph of Chicago.
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Figure 4.24: Street importance according to the vertex betweenness.

others that pass that vertex. Figure 4.24 summarizes the most important roads, which
are the downtown streets (red squares in the heat map). The top is street 79 (759),
followed by street 28 (731), street 78 (719), street 31 (713) and street 26 (702).
Another graph metric that has been evaluated was the edge betweenness, i.e. the
number of shortest paths between pairs of nodes that run along the edge. This metric
evaluates how much relevance this road is considering both infrastructure and traffic
jams. Here we named this as convergence importance, which is calculated as the edge

betweenness of the weighted graph, considering as weight the Bing value.
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Table 4.1: Important roads and convergences according with the city infrastructure.

Road | Importance Edge Convergence Importance
79 759 31 =79 | 775 100.00%
28 731 78 — 28 | 7H4 97.29%
78 719 80 — 78 | 633 81.68%
31 713 79 — 82| 628 81.03%
26 702 82 — 80 | 615 79.35%
82 611 26 — 42 | 520.5 67.16%
80 597 50 — 9 | 427 55.10%
42 582 25 — 26 | 383 49.42%
25 531 76 — 31 | 380 49.03%
50 454 28 — 26 | 372 48.00%

Table 4.1 presents the top-10 roads importance and the convergence importance
(edge betweenness). One can notice that the top-5 roads involve the top-5 vertex
betweenness that is vertexes 79, 28, 78, 31, and 26. A traffic jam in such roads has
more impact on the network availability.

Next analysis consists in the identification of phase transitions. It is presented
in different periods of the day (dawn, morning, lunch, afternoon, and night), indicated
by Table 4.2 with their corresponding times. Notice that the x-axis is presented in the
time frame ID. For instance, if the time frame is 5 min (0:05AM), than 1 is the first

interval of 5 min, 2 is the second interval of 5 min (0:10AM), and so on.

Bing Average in Dawn Bing times Betweeness in Dawn Bing times Betweeness in Afternoon
| more increased metric
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Figure 4.25: Average traffic congestion and such value updated by the edge between-
ness.

Figure 4.25 presents the scatterplot of the average traffic congestion (metric 1)
of weekdays in the left graphic while the two last graphics illustrate the multiplication
of the average traffic congestion and the edge betweenness (metric 2) for each street
at dawn and in the afternoon. Notice that with metric 1, we can not differ clearly the

most important roads with a higher value, which is the advantage of metric 2. We



4.2. PHASE TRANSITIONS 69

Table 4.2: Parameters of the period of the day.

Description Time
Dawn 0:00am—5:00am
Morning 5:00am—10:00am
Lunch 10:00am—-15:00am
Afternoon | 15:00am-20:00am
Night 20:00am—0:00am

Ol W N~

can see that some streets have more trafic flow, but this comparison do not consider
infrastructure characteristics, which can influence in the traffic flow impact in other
roads. In other words, it is not fair to compare one avenue with 4 lanes and a small
street with 1 lane. Traffic congestion in those streets will have different impacts in
the propagation of the traffic congestion. Also, we can see that the period of the
day influence in the traffic congestion, which will influence in which street is more
important. For instance, in the afternoon, streets with higher congestion will be more
important than at dawn (meaning that their traffic flow will have a higher impact in the
traffic congestion of other streets during the afternoon). Therefore, distinct behavior
patterns stand out depending on the period of the day. The comparison of such metrics

is discussed in Section 4.2.2.3.
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Figure 4.26: Flow intensity analysis for street 28.

Besides, phase transitions are difficult to identify in a daytime analysis, but not
in each period of the day. Figure 4.26 presents the flow intensity in April 19th 2013 in
the morning and during lunch. In Figure 4.26(a), we have used a larger value of § to
identify the phase of traffic flow, when we compare with Figure 4.26(b), in which we
have used a lower value of 5. One can notice that are several hours of the day that if
we leave 7 minutes earlier, it will make a difference.

Figure 4.27 presents the flow intensity for streets 31 and 79, which is the most

important road. About street 31, we can identify 852 minutes (14:12 hours) as a phase
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transition due the street flow intensity remains highly congested (level 3).
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Figure 4.27: Flow intensity analysis for streets 31 and 79.

By the daytime analysis, we can identify traffic patterns during hours of the day,
as well as the phase transitions. Figure 4.28 presents the flow intensity result for the
top-4 important streets in April 19th, 2013. Notice that the street 79 has more traffic
jam at night, as well as the street 28. Notwithstanding, the street 28 has more flow

fluctuation during lunch, and in the afternoon and in the night it is highly congested

for hours.
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Figure 4.28: Day time analysis of the top-4 streets’ flow intensity.

Finally, four clusters have been made, according to the average flow intensity so
as to preserve the street main characteristics: (i) streets with values between 1 and 1.5;
(ii) streets with values between 1.5 and 2; (iii) streets with values between 2 and 2.5;
and (iv) streets with values higher than 2.5. Such division has been made with data of
weekdays and of weekends, creating two distinct clustering of behavior.

So as to define the street categories, Figure 4.29 presents the probabilities of flow
intensity for each. One can notice that category 1 has a higher probability of being green
during almost all the day, except at dawn that presents a higher probability of being
yellow. The same happens for category two, highlighting the red higher probability at
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Figure 4.29: Probabilities of flow intensity per street category.

8pm. Streets of category 3 presents a variation of green and red probabilities, being
more susceptible of being red at 11lam and 20pm. Finally, category 4 presents a red
probability during most of the day, except for 9am that has a higher probability of
being green.

Table 4.3 shows the classification of streets 79, 78, 28, and 31. One can notice that
almost every period of the day the street category is 1, being sometimes 2. Categories
3 and 4 are rare, standing out street 28 that change its category during the periods of
the day. Even in the weekend, one can notice that street 28 has a distinct behavior in

comparison with streets 79, 78, and 31.

Table 4.3: Classification of streets in periods of the day.

weekdays Weekends
Streets | 79 [ 28 | 78 | 31 | 79 | 28 | 78 | 31
Dawn 11|11, 1111
Morning | 1 | 2 | 1| 1| 1] 1]1]1
Lunch 13 /1 (2 ]1|2|1]1
Afternoon | 2 | 4 | 2 | 2 |1 | 4|11
Night {211 (1 }]1{2|1]1
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4.2.2.2 Manhattan Case Study

Another case study was New York, Manhattan area. In our dataset, data was collected
from June 10 of 2013 to August 22 of 2013. Data were collected every 1 min. Next,
the database has the following information: (I) date; (II) hour; (III) street number;
(IV) number of green pixels; (V) number of yellow pixels; (VI) number of red pixels;

and (VII) number of no category pixels.

(a) Street sectors over New York map. (b) Graph representation

Figure 4.30: Street sectors and the graph of New York.

The same process that was made with Chicago was conducted with Manhattan
data. Figure 4.30 illustrates New York geo-code sectors and its graph (see Figure
4.30(b)). We mapped a graph in which the vertexes are roads and the edges are the
direction that can be taken by a vehicle.

In order to present the most important streets, the betweenness centrality has
been calculated. Figure 4.31 summarizes the most important roads, which are the
downtown streets (red squares in the heat map). The top is street 181 (522), followed
by street 180 (497), street 207 (445), street 185 (388) and street 105 (369). Figure
4.31b and c presents the flow importance on June, 11th at 08:00 and at 22:00, which is
the multiplication of the edge betweenness by the Bing value, which is the edge weight.
One can notice that important roads change according to the traffic flow besides the
traffic infrastructure.

Figure 4.32 shows the traffic flow and the flow importance for each street during

weekdays. One can notice that roads with higher id are more important. The flow
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(a) Vertex  betweenness (b) Example of flow impor- (c¢) Example of flow impor-
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infrastructure).

Figure 4.31: Street importance according to the vertex betweenness.

importance discriminates the roads based on their infrastructure nature and their flow.

More details are presented in Section 4.2.2.3.
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Figure 4.32: Comparison between the betweenness and the flow importance for each
street during weekdays.

In summary, Table 4.4 presents the top-10 roads importance and the convergence
importance (edge betweenness). One can notice that the 5 most important roads
involve the top-5 vertex betweenness that is vertexes 181, 180, 185, 178, and 207. A
traffic jam in such roads has more impact on the network availability.

For the streets category, Figure 4.33 presents the probability of the road be con-
gested or not. One can notice that category 1 is more likely to be free (green), while
category 3 is more likely to be yellow and category 4 tends to be congested (red).
Category 2 has a probability of presenting phase transitions.

Finally, with our methodology to identify phase transitions, we can develop ap-
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Table 4.4: The most important roads according to flow and infrastructure.

Road Edge Convergence Importance
181 | 181 — 180 || 522 100.00%
180 | 180 — 178 || 497 95.21%

207 | 207 — 185 || 445 85.25%
185 | 185 — 181 || 388 74.36%
105 | 105 — 217 || 369 70.69%
178 | 178 — 269 || 349 66.86%
217 | 217 — 207 || 348 66.67%
176 | 176 — 195 || 319 61.11%
230 | 230 — 105 || 297 56.90%
203 | 203 — 230 || 247 47.32%
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2 2 --- green
© © < yellgw
S ) _ S — red
5 0 5 2 s 0 5 o2
Day Hours Day Hours
Street Probability: Cat. 3 Street Probability: Cat. 4
g B g * \/\_/\_./_/'/\\
EI) 1Io 1;; 2I0 EL 1Io 1; 2I0
Day Hours Day Hours

Figure 4.33: Street probability based on the streets’ four clusters.

plications that shows spatially and temporally when and where these shocks in the
system occur. Figure 4.34 illustrates this idea, presenting two Ph'T+ and two PhT- in
different times and weekdays. We can see that these transitions occur on Broadway

avenue and the 5th street, besides the highway.
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Figure 4.34: Spatial representation of phase transitions in Manhattan.

4.2.2.3 Flow Importance in Several Cities

Here we evaluate the correlation between the average Bing Value of each street in
comparison with its betweeness and its flow importance for several cities. Figure 4.35
presents the results of this comparison. We can observe in Figures 4.35(a), 4.35(c) and
4.35(e) that there are different categories of streets, some with lower betwenness and
others with higher. Although, we can not differ such streets with the same range of

betwenness.

In order to consider the traffic flow and the infrastructure measured by the be-
twenness, we have proposed the flow importance metric. The scatterplot between the
average Bing Value and the flow importance is illustrated in Figure 4.35(b), 4.35(d)
and 4.35(f). In these graphs, we can observe that for the same category of streets,
streets with higher traffic flow have higher flow importance. In other words, we can
affirm that there are streets that even with traffic jam, considering their infrastructure
(its neighbors), do not impact much for a greater traffic congestion in the city. Streets
with higher flow importance, by the other hand, they impact more in the traffic flow

of the city than those with lower flow importance.
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4.3 Data Correlation: Check-ins X Traffic Jam

In |Tostes et al., 2014|, we have analyzed how do social sensors, derived from Twitter,
Foursquare, and Instagram, are correlated with traffic jam. Recall that, in our work,
every data shared in them is called a check-in. We want to investigate if we can use
data from social sensors (check-ins) to better understand the traffic condition, that is,
the traffic flow from Bing Maps. The objective is to verify if check-ins can be used as

a hint of traffic conditions changes or current situation.

As people move around in cities, they share their location, pictures and videos
throughout their routine through the check-in. Between one check-in and the next one
users have to move in a certain way, for example by bus or by car. Thus, since check-ins
are correlated with inhabitants routines Silva et al. [2014], they might implicitly have
embedded information about the traffic conditions. Consider the following scenario: a
person makes a check-in at home, gets his/her car and drives to work, gets stuck in a
traffic jam, and arrives at work and makes another check-in. Imagine how many people
on Foursquare follow the same routine. Finally, when we have more check-ins, we can
affirm that there are more people moving there, and this is the relation of causality:

the more people, the more traffic.

Therefore, can we affirm that the information of check-in can reflect the behavior
of the traffic? Do people make more check-ins when traffic is congested? Do check-ins
can be a sign of heavy traffic? In other words, do the information of check-ins are
correlated with heavy traffic? In summary, can we use the check-ins as a sensor to
indicate and to predict traffic jams? Answer those questions is a fundamental step in
order to use check-ins as a complementary source of information to improve intelligent

traffic systems.

To investigate our hypothesis that check-ins and traffic jams are correlated, we
analyze two datasets from the same period of time at Manhattan, New York City: (1)
check-ins from Twitter, Foursquare and Instagram; (2) traffic flow from Bing Maps.
We chose New York City, Manhattan region, because it is a popular region, having a
high number of people performing check-ins, as it was verified in [Silva et al., 2012].
Besides that, according to the NYMTC report [Council, 2013], it has the third lowest
daily vehicle miles traveled, as it was mentioned. Besides, the U.S. cities present a

good quality of data in Bing Maps traffic flow.
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4.3.1 Definition

In order to evaluate the influence of check-ins in traffic jam, we have developed the

following methodology:

1. As the time interval between check-ins is high, we aggregate the check-ins into
a 3-hour period. Thus, for the 24 hours of a day, we have 8 periods of 3 hours.
However, if we aggregate the traffic low in the same time interval we can miss
valuable information, as the transit varies widely. Traffic flow in Bing Maps varies
from fast traffic (represented by green color or the integer 1), moderate traffic
(represented by yellow color or the integer 2), and slow traffic (represented by
red color or the integer 3). As we mentioned, these are the definition of the Bing
Value (see definition 1). Knowing that, we categorized the aggregated traffic flow

(provided by Bing Maps), named 7, for a particular street as it follows:

e 7 = 1, when the average traffic flow of that specific street segment is less

than 1 (recall that we also represent traffic conditions by an integer);

e 7 =2 when the average traffic flow of that specific street segment is between
1 and 1.5;

e 7 = 3, when the average traffic flow of that specific street segment if higher
than 1.5.

2. For each street segment?, we calculate the mean value and standard deviation of
check-ins. These information will be used to map the check-ins category into 1,

2, or 3 (the same as traffic flow categories).

3. For each time interval (1-8), we perform the following steps:

e Capture the traffic flow category (1, 2 or 3);

e (Calculate the total number of check-ins in which its location is in the street

segment;

e Based on the total number of check-ins every street segment, the mean
and standard deviation calculated on step 2, apply the following steps to

categorize check-ins:

— If the number of check-ins in the street segment is between the confi-
dence interval (based on the mean and one third of the standard devi-

ation), then the check-in category is 2;

4Street segment is the part of the street between consecutive intersections, considering a specific
direction.
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— If the number of check-ins in the street segment is higher than the sum
of the mean with one third of the standard deviation, then the check-in

category is 3;

— Otherwise, the category is 1.

4. To analyze if check-ins are a good signal to indicate traffic flow condition (free
or congested), we aggregated the data according to a time interval of § minutes.
We separate the analysis in weekdays and weekends. For each dataset, two dis-
tributions were plotted, one with the frequency of check-ins during 24 hours, and
another with the frequency of congested traffic flow (average traffic flow category
for all streets). With these distributions, we want to demonstrate that they have
similar shapes, i.e., even if a certain threshold shifts them, acting then as a sort of
signal about traffic condition changes. This could help to improve the prediction

of, for example, problems such as jams.

5. After this, it makes sense that there are streets with more check-ins over the time
than others. Maybe the correlation would change temporally and spatially. In
some periods of the day, some streets can be more correlated with the traffic jam
than in other times. So in this step, we analyze the correlation of check-ins and
traffic conditions in a lower granularity, in the street level, using the following

strategy:

e Cluster streets according to the number of check-ins and the frequency of
intense traffic conditions. For this we have used K Means algorithm with
four centers. Our hypothesis is that four clusters will be formed: (i) less
check-ins and less traffic jam; (ii) more check-ins and less traffic jam; (iii)
less check-ins and more traffic jam; and (iv) more check-ins and more traffic
jam, which is the category that we are interested on. So, we count the
amount of check-ins and the frequency of intense traffic jam (7 2 and 3) per
weekday and per street. We are doing this considering the seasonality of

both time series.

In order to apply K Means algorithm, some precautions are necessary. When
the variables are in different units, they should be standardize to minimize

the effect of scale differences. For that we use the following equation:

f@) = log((x = pa) /00 + 1)
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where z is either the amount of check-ins and the frequency of intense traf-
fic conditions in a time interval, p, is the average and o, is the standard
deviation. We add +1 at the end, because there might be cases in which

the amount of check-ins or the frequency of jam is 0 (the log(0) issue).

Besides clustering, with this analysis, we can answer questions such as:
which weekday has more check-ins? which weekday has more traffic? when

and where this happens?.

For proof of concept, in this step we should create the distribution graph
as it was don’t in step 4, but with the street level. This is important to
analyze the possibility of using the check-ins data as another source in the

traffic jam forecast models.

e After that, we are gonna choose, for each street in the higher category
(more check-ins and jam), the most representative days, that is, days with
more check-ins and more traffic variation that matches with their time series

seasonality:.

e Finally, we analyze the correlation for each street during each time interval
of the chosen days. It is important to consider the seasonality, weekdays
and weekends. Our focus is on weekdays since in this days the traffic jam is

more intense.

Our hypothesis is that these two functions are shifted  minutes. For that we

propose the equation

D)= (|ve — viis)) (4.1)

t
in which y, is the value of traffic flow in time ¢ and y;, the value of check-ins in time k.
To discover the value of 9, we calculated the discrepancy value through the sum of the
difference between the y value (traffic flow) in time ¢ and the other y* value (check-ins)
in time ¢ — 0. Then, it is possible to calculate the above function for 6 =1,2,3, - in
order to find the ¢ value that minimizes the discrepancy. This equation represents the

error between the two input distributions, which is also a random variable.

4.3.2 Results

This section presents the results about our investigation to discover if check-ins are
correlated with traffic jams. In other words, if check-ins are good signal of traffic

conditions changes and matters. We made four analyses: (i) spatial analysis; (ii)
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temporal analysis; (iii) offset analysis; and (iv) correlation. Here we present the results

of the spatial analysis for New York, Manhattan.

Spatial Analysis. We show the traffic flow and check-ins categories during the eight
periods of time per day (3 hours of interval) considered in this study, using the entire

dataset.

Figures 4.36(a)—4.36(c), 4.36(d)—4.36(f) and 4.36(g)-4.36(i) show the check-ins,
the traffic flow and the check-ins categories in different periods of time, respectively,
when we have different traffic flows. For a better visualization, videos featuring each
result during all periods of time considered have been made. They can be found online?.

Based on Figure 4.36(a)-4.36(c), we can see that the number of check-ins increases
gradually throughout the day. At dawn we have less check-ins than during the morning,
when we have less check-ins than at night. One can also notice that check-ins are more
concentrated at downtown. Note that we can see the shape of Manhattan, showing a
distribution of our data.

The categories of check-ins in the same periods of time presented in Fig-
ure 4.36(a)-4.36(c) can be seen in Figure 4.36(d)-4.36(f). We can see that when
we have less check-ins, we have more green streets. When the number of check-ins
increases, the intensities of the streets (color) change from green to yellow and then
to red. Regarding to the average check-ins in the street, the illustration enable the
identification of where (street) there are more check-ins, beyond the usual, and where
there are not. We can see that the red lines are more concentrated in downtown (see
Figure 4.36(e)), but the period of 6PM-9PM (see Figure 4.36(f)) is when people tend
to make more check-ins, above the average, in the entire region (not just in downtown).

On the other hand, Figure 4.36(g)-4.36(i) presents the traffic flow from the same
periods. One can notice that the yellow traffic is more common at morning (see Fig-
ure 4.36(h)) and less common in other periods. This behavior is expected because it
is the time when people go to work.

When we compare all graphics, we can see that when the traffic flow is higher (red
lines), check-ins are lower (green lines). In the first look, it seems like the check-ins and
the traffic flow are inverse correlated. But this is not what happens. The explanation
is that the traffic flow behavior will only be seem in the check-ins category after
minutes, as it will be shown in next topics of evaluation (temporal and offset analysis).

Despite that, a better analysis can be performed, because a period of 3 hours

is too large to represent the dynamics of traffic. So we need to investigate shorter

Shttp://annatostes.azurewebsites.net/check-ins-and-traffic-flow/
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Figure 4.36: Results of check-ins and traffic flow in different periods of time.

intervals of time, such as 5 min, 10 min, and so on. This analysis is presented in the

next section.

Temporal Analysis. We present a temporal analysis of check-ins and traffic flow,

describing how the check-ins and the congested traffic flow vary during the day.

Figure 4.37 presents two graphs where we can compare the real data from an
specific day (07/25/2013 — see Figure 4.37(a)), and the typical distribution for weekdays
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(see Figure 4.37(b)).
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Comparing the two first graphs, we can see that the traffic flows and check-ins
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distributions seems to be almost the same, but shifted. And the typical distribution
represents the specific day. During weekends the behavior changes, presenting only one
peak in the late afternoon for both check-ins and congested traffic flow. This finding is
very surprising and shows that the social sensing might reflect real traffic conditions.

A natural question that emerges is the impact in the results when changing the
time interval of our analysis. To evaluate the impact of choosing another time interval,
we calculated the distribution for intervals of 5, 10 and 30 min, 1 hour and 3 hours,
depicted in Figures 4.37(b) and 4.38. As we can see, the difference between weekdays
and weekends are clearer in the traffic flow. However choosing one specific time interval
does not impact in the distribution, but only in the amount of data. For this reason
we chose a time interval that provides the bigger amount of data, which in our case is
the time interval of 5 min.

Complementarily, in order to apply the check-ins data so as to improve the ac-
curacy of a traffic forecasting model, we need to analyze both distributions in a lower
level, the street level, according to step 5 of our methodology. Figure 4.39 shows the
time series of check-ins and intense traffic low during weekdays. Each dashed-line
indicates midnight.

Thus, we chose the time interval of 5 min to go on. In all graphics the distributions
are shifted. But how to discovery this offset of minutes? This is investigated in next

section.

Offset Analysis. Our hypothesis is that these two functions are shifted ¢ minutes.
For that we propose the Equation 4.2, in which y; is the value of traffic flow in time ¢
and y*; the value of check-ins in time k. To discover the value of §, we calculated the
discrepancy value through the sum of the difference between the y value (traffic flow)

in time ¢ and the other y* value (check-ins) in time ¢ — ¢, as shows Equation 4.2:

D(6) = Z (Jve — y*a-9)) (4.2)
t

It is possible to calculate the above function for 6 = 1,2, 3, -+ in order to find the
0 value that minimizes the discrepancy. That equation represents the error between
the two input distributions, which is also a random variable.

In order to formally discover the value of the shift § between the two distributions
(check-ins and traffic flow), we calculated the distribution given by the Equation 6.1.
It represents the discrepancy distribution, illustrated in Figure 4.40. The red line
indicates the value of § (time) that minimizes the discrepancy error. As we can see,

for Manhattan, the ¢ should be equal to 36 minutes.
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Then, we shifted the check-ins distribution in 36 intervals and Figure 4.41 presents
both distributions but shifted. With this result, we can see that the check-ins distri-
bution is equal do the congested traffic flow distribution. This indicates that check-ins

can be used to forecast intense traffic flow.

Correlation. Here the main idea is to understand if check-ins and traffic jam variables
are correlated. Steps 1-3 from our methodology have been applied with intervals of 3
hours due to the high inter-sharing times of check-ins. A positive correlation, between
check-ins and traffic flow, means that the more check-ins the worse traffic condition.
Table 4.5 presents the results of correlation for the five groups through different
periods of the day. Each column represents a group (1-4) from left to right. As
explained before, Group 5 was omitted because the correlation is always one, when
we have data. We can see that the highest correlation is in Group 3 (“Check-in <=
Traffic Flow” — {0.44, 0.33, 0.34, 0.55, 0.43, 0.42, 0.64, 0.67}), where the category of
check-ins is lower than or equal to the traffic low. In times when the traffic flow is

more intense, we can see a higher correlation (after 6pm — 0.64 and 0.67).

Table 4.5: Correlation between check-ins and traffic flow.

Group 1 Group 2 Group 3 Group 4
Correlation / Check-in < Check-in > Check-in <= | Check-in >= e
Hour Traffic Flow | Traffic Flow | Traffic Flow | Traffic Flow
' 1 1 1
1| cam-gam |‘esscheckin/f 4 jede 0.44898 024973 | -0.0%2274
Free flow f ! !
Less checkin / i i i ]
2 3am - 6am 0.389957 0.332612 0.471531 0.0697677
Free flow i i i !
" I [ [ :
3| eam-gam |‘esscheckin/f o aiagy 0.34998 0.63896 0.11069
Free flow | | | |

1 L
9am - Opm 0.461655 | 0.483602 0.554067 0.568104 | 0.0541979
Opm - 3pm 0.385695 | 0.288453 0.43952 0.34258 0.081738
6| 3pm-6pm 0.533001 | 0.535456 0.427304 0.329002 | -0.076603
L)

Less checki :
7| epm-gpm [“SPEKN) ¢ 23gz00a | 06435024 | 0.368643 | 0.03p255
Free flow i i i !

9pm — Dam ] 0.255889 0.6711934| | 0.2051497 -0.017546

Another interesting result is the comparison between the Groups 3 and 4 during
3am-6am and 6pm-9pm. We can see that the correlations are inverses. It suggests that
in the morning, people makes more check-ins before going to work when the traffic is
free, and then they move in the city and the traffic flow gets more intense (potentially
congested). This can be seen by the greater correlation of Group 4 (0.47) compared
to the correlation of Group 3 (0.33). At night, the opposite occurs, people tend to
make more check-ins after getting stuck in traffic jams. This is an expected behavior

because people do note have many incentives to perform check-ins while driving in
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intense traffic conditions. As we can see, the correlation of Group 3 (0.64) is higher
than the correlation of Group 4 (0.36), enforcing our conjecture.

As we can see, those correlations are still low, suggesting that some regions might
be more correlated than others. This indicates the usefulness of check-ins as a hint to

predict traffic conditions.

4.4 Our Analytical Model ALLuPls

As it was mentioned, there are several routing protocols proposed and evaluated for
VANETs [Li and Wang, 2007| related to whether their performance can satisfy through-
put and delay requirements of safety and emergency applications. Both traditional and
geographical ad hoc routing protocols cannot be used due to either route instability
that causes packet loss and high overhead of the forward process. To solve such matter,
most of the routing protocols use road information to choose the crossroad to forward
packets, but they do not use information of the crossroad behavior. In this context,
we believe that crossroads can be used to improve the performance of these protocols.

The assessment of protocols depends on the chosen simulation scenario model.
Simulation models of real-world scenarios are proposed to assess several protocols in
VANETs. There are several mobility models, which differ from their realistic mobil-
ity description at both macroscopic and microscopic levels. There are models where
vehicles move at a random direction and high speed inside a limited area of simu-
lation scenario [Li and Wang, 2007]. Other models include the drivers’ decision of
direction [Chen et al., 2001b| and city maps to produce real vehicular mobility pat-
terns. There are also patterns that resemble a real behavior such as of Zurich [Naumov
et al., 2006] and the United States [Saha and Johnson, 2004]. Although evaluating its
efficacy, such simulations are only capable to review a limited subset of all possible
behaviors, leading to unpredictable behavior due to its incompleteness analysis. This
work’s context is to provide a complementary tool for the evaluation of the protocols
for VANETs.

4.4.1 Definition

This section discusses the impact of traffic contention at crossroads from a real mo-
bility model. The main goals are the following: (i) to estimate the crossroad traffic
throughput, i.e., the number of vehicles that cross an crossroad at an specific time; (ii)
the impact of a higher vehicles load in the average response time; and (iii) the time

that a crossroad has vehicles traffic. To achieve such objectives, this work proposes an
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analytical model for analyzing the performance of traffic at crossroads (intersection).
It is called ALLuPIs — Analytical modeL to eval.Uate the Perfomance of IntersectionsS.
Based on queuing theory, the Mean Value Analysis (MVA) algorithm [Menasce et al.,
2004] has been applied to estimate the desired metrics for a map of intersections, con-
sidering real data of vehicular mobility. The analytical model represents the behavior of
the system performance. Its main advantage is being faster than simulations [Menasce
et al., 2004]. Ideally the model needs to be simple and precise to capture the main as-
pects of system characteristics. Therefore, the simulation must achieve the stationary
state and it needs to be executed various times.

Several questions were answered: (i) in average, what is the optimal point of
operation at an intersection (throughput) with respect to the number of vehicles that
cross that intersection? (ii) what is the impact of a higher number of vehicles crossing
an intersection in relation to the average response time? (iii) how does the intersection
utilization changes with the increase in the number of vehicles? By using the proposed
analytical model, we evaluate a traffic behavior, estimating the impact of a higher
load in the throughput, average response time and utilization in a vehicular network.
Results show that the increase of concurrency at an intersection implies in an increase
of time spent by a vehicle to cross an intersection. Thus, we can predict a traffic jam
and specify the level of contention (low, medium, high).

Figure 4.42 presents the methodology followed to design our analytical model.
The followings steps were followed: (i) simulation; (ii) model definition; (iii) validation.

In this section, we describe steps 1 and 2. The next section presents step 3.

Step 1
Simulation

Step 2

D G
3

Validation

Figure 4.42: Methodology to design the analytical model.

1. Simulation description: the first step to design the analytical model was to
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reproduce the simulation of [Naumov et al., 2006]. This simulation has two objectives:
(i) to produce inputs to the analytical model; and (ii) to validate it. Due the lim-
itations of event-oriented network simulators to process over 10.000 nodes, Naumov
et al. [Naumov et al., 2006] divided Zurich in sub-regions (lanes). With 30-40 vehi-
cles/km, we have 30-40 vehicles passing through every 1km of road. Each sub-region
has three levels of motor activity: (i) low: less than 15 vehicles/km, (ii) average: 30-40
vehicles/km, and (iii) high (rush hour): more than 50 vehicles/km. Each simulation
time (300s) corresponds to 30 min.

The following sub-regions have been modeled: enge oberstrass, unterstrass, zen-
trum bellevue (Zurich’s center) and highways (aarau oftingen, hurgen jona, effi winti).
Each simulation generates as result a trace with the mobility of users and a Network
ANimator (NAM) file. The NAM file has been used in order to view NS-2 simulations.
Figure 4.43 illustrates the simulation results of the three density levels of vehicles in

the enge oberstrass subregion in NAM.

(a) Low. (b) Medium.

Figure 4.43: NAM output: vehicular simulated traffic in different traffic density levels.

The focus of this work is in the enge oberstrass region for the high density traffic.
We conducted simulations with 520 vehicles during 300 s in a scenario of 5km x 7.5 km.
These are the same values used in [Naumov et al., 2006]. The communication channel is
wireless and the radio propagation model is FreeSpace, with omnidirectional antennas
and droptail priority queue (FIFO). The Media Access Control (MAC) protocol is IEEE
802.11p (WAVE).

NS-2 simulation generates a trace file summarizing the vehicles” mobility. Each
line represents an event and each column represents the event. With this trace, we
calculate each service center demand, the response time of an intersection, the number
of vehicles in the queue, the number of intersection visits by one vehicle, and the

number of vehicles in traffic during a simulation period.
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2. Model definition: the step 2 of our methodology involves the proposal of the
analytical model to meet the requirements for performance analysis. The inputs are
the demand of each road intersection, which indicates the total average time that a
vehicle spends to cross it. The system workload consists in the number of vehicles
at time. So as to validate the analytical model, real workload has been used based
on [Naumov et al., 2006]. Simulations were conducted in NS-2. When a vehicle enters
the simulated scenario, it immediately begins to travel through the roads. The vehicle
exits the system when it leaves the simulated area or its trip is finished. Since the

number of vehicles in the system is unlimited, we have an open workload.

Server Server
Queue Queue
nput | Output nput | Output

(a) Load independent device. (b) Load dependent device.

Figure 4.44: The simplest queue system.

An intersection set represents the queue network. Each intersection is a service
center. The simplest queue systems [Menasce et al., 2004] have one service center
(a queue and a server), as it is illustrated by Figure 4.44. A service center can be
load independent (LI) or dependent (LD), according to the following characteristics:
(i) time between arrivals of vehicles crossing, and (ii) average demand service, which
indicates the minimum time (not considering the queue) that the vehicle takes to cross
the intersection. LD is a service center whose service time depends on the number of
vehicles waiting to cross an intersection. The more vehicles in the queue, the longer the
service time. In this work, vehicles arrive in the queue waiting to cross an intersection
(server). The response time is the total time a vehicle spends to cross an intersection.
It depends on the number of vehicles waiting in the queue and the absence of traffic
jam, which is measured by the number of vehicles in the system. This dependency
implies in the modeling of a LD center [Menasce et al., 2004].

The model abstracts several output possibilities in an intersection because of the
tunneling of the road characteristics. The load of vehicles at an intersection implies in
the time spent by a vehicle to cross it. If there are many cars at an intersection, the
vehicle takes longer to continue its route. Table 4.6 presents the variables notation of
the model.

Figure 4.45 presents the simulated scenario with 21 centers (black dots). Besides
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Table 4.6: Notation of analytical model variables.

# Variable Description

N Number of competing vehicles.

N* Optimal number of competing ve-
hicles (saturation threshold of the
region).

A Arrival rate of vehicles.
Dy, Demand on center k.
pr(j) | Throughput of j vehicles in center
k

L Throughput in region.
ag(j) | Slowdown with j vehicles in center

k.
Ry, Response time in center k.
R Region response time.
Qx Queue size of center k.
Q Region queue size.
Uy, Utilization of center k.

pr(j|n) | Proportion of time the center k
have j vehicles when the popula-
tion size is n.

each center C ... Cy, we put it respective coordinate (x,y) in the simulated area. Each
highlighted point represents a vehicle in the system (speed ranges from 10 to 35km /h).

The arrival rate of vehicles in the system (\) is calculated by the following equation:

520
A= % =300~ 1.7 vehicles/s (4.3)
in which ~ is the number of arrival vehicles and ( is the simulation time. For Zurich,

the result is 1.7 vehicles/s.

From the simulation we calculate each center demand. We measure the num-
ber of vehicles crossing an intersection (center) to estimate the occupancy time of
each vehicle served by this center, in average. We obtain the system through-
put when the intersection has N = 1,2,3---~ vehicles (the respective symbols of
(1), i (2), pe(3), .. ., pe(7y)), in which 7 represents the number of simultaneous vehi-
cles in the system. The demand of a center k is calculated by dividing 1 by ux(1), as

follows:
1

E— /1y

sz(l)'

This is important since those variables are inputs to the system performance evaluation.
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Algorithm 5 MVA Algorithm for LI Center

Require: m as the number of service centers and the demand of each center (Dy,)
Ensure: Q,Qy, Ry, U, X

1: procedure MVA-LI (m)

2: Qr=0;n=1,

3 repeat

4 for k in 1:m do

6: end for

8 X« &

9: for k in 1:m do

10: Qr +— XRy; Up+ XD,
11: end for

12: Q> Qx

13: n<n+1

14: until n # v
15: end procedure

Algorithm 6 MVA Algorithm for LD Center

Require: m as the number of service centers and the demand of each center (Dy,)
Ensure: Qy, Ry, U, X

1: procedure MVA-LD (m)

22 Qr=0;n=1;p(0/0) =1

3 repeat

4 for k 1:m do '

5: Rk < Dk Z?:l ﬁpk(‘j — 1|n — 1)
6: end for

7 R« > Ry

8 X<« %

0: for k in 1:m do

10: for j in 1:n do

11: (i) < 2spi(j —1n — 1)
12: end for

13: pie(0n) <= 1 =377, pi(jin)

14: U < 1 —pr(0[n)

15: Qr < 25—y jpk(jln)

16: end for

17: n+<n+1

18: until n # v
19: end procedure
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Figure 4.45: Simulation scenario with load dependent centers.

Next, we obtain two results. The first is the performance evaluation of a region.
In the second, we identify the intersections responsible for the contention. To evaluate
(1) we have used a Mean Value Analysis (MVA) model [Menasce et al., 2004], presented
by Algorithm 5, that represents the contention at an intersection as the waiting time.
Hence, we use an LI center, analyzing each region performance in terms of response
time, throughput and slowdown. The goal is to generate the throughput when the
center has N = 1,2,3,...,~ vehicles. In the second result, we consider LD centers
and use the MVA algorithm for LD centers [Menasce et al., 2004]. It is important to
represent the traffic jam since this work aims to analyze which intersection leads to

contention.

Algorithm 6 presents the MVA Algorithm for LD center. The algorithm requires
the slowdown and the queue size distribution, i.e., the fraction p(j|n) of time in which
each possible size exists in the center. Slowdown is the throughput in each center
divided by the system throughput, as follows:

L p)
aj) = A7)
p(1)
We calculate the system response time (R), the center response time (Rj), system

throughput (X)), the utilization of each intersection (Uy), and the size of system queue

(@) that includes the vehicle in service.
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4.4.2 Validation

Before we have validated our proposed model, we have obtained the values of demand,
response time and utilization for each center (crossroad) based on the simulation de-
scribed in step 1.

Table 4.7 summarizes the simulation results. As we can see, different centers
obtained different demands. For example, centers C1; (8.30s) and Cy7 (0.11s). Cpy
presents lower utilization than C'7, but C';; has a higher response time. This justifies
the demand variations. The service centers with higher utilization are 9 and 13, with
99.67% of utilization. All services are saturated, except center 11 with 85% of utiliza-
tion. Using Little’s Law, we calculate the utilization in the MVA algorithm (demand
times throughput). C7 is the center with the highest average response time (27.39s).
We measure the response time by dividing Wy, which is the cumulative vehicle time in

the center, by C), which is the number of vehicles crossing an intersection k.

Table 4.7: Simulation Results

Center | Demand | Response Time (Ry,) | Utilization (Uy)

C 10.16s 24.54s 92.67%
Cy 5.52s 18.07s 98.34%
Cs 7.08s 11.39s 99.00%
Cy 8.63s 15.01s 99.01%
Cs 8.83s 23.86's 97.01%
Cs 9.38s 17415 95.00%
C 11.76 s 27.39s 95.34%
Cs 9.39s 14.57s 98.67%
Cy 16.90s 24.12s 99.67%
Cho 11.82s 25.91s 92.67%
Chy 8.30s 20.92s 85.00%
Ch2 9.65s 13.34s 97.67%
Cis 12.71s 19.43s 99.67%
Cla 11.95s 25.30s 99.67%
Cis 16.03s 20.75s 96.00%
Cie 10.39s 16.25s 97.01%
Ch7 0.11s 14.61s 98.34%
Cis 12.76s 20.61s 94.67%
Cho 7.52s 15.38s 95.67%
Cao 17.26s 23.04s 98.67%
Cy 10.05s 16.93s 99.34%
Response Time (R) 123.49]s
Throughput (X) 1.7 vehicles/s
Queue size (Q) 214 vehicles
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To estimate each center response time, we need each center throughput. This
section confirms that each intersection can be modeled as an LD center. We run the
LD-MVA algorithm with the same slowdown values (a(j)) for each center from the
inputs (pug(1)).

We validate the results using the MVA and LD-MVA algorithms, to verify if the
LD center can model road intersections. We made two tests: (i) the evaluation, through
the MVA algorithm, of the intersection performances (response time, throughput and
slowdown); and (ii) the analysis of which intersections are responsible for contention,
using the LD-MVA algorithm. Based on these results and the simulation data, de-
scribed previously, we can calculate the error of the model. If the error is lower than
30%, than the model is validated and the intersection can be modeled as a LI or LD
center.

Table 4.8a presents the validation of each center utilization by the MVA algo-
rithm. Errors up to 30% are reasonable for MVA [Menasce et al., 2004]. In this work,
the errors for response time, throughput and queue system size are less than 5%, and
all others are less than 10%, validating the proposed model. The simulation results
also validate this table.

The second part of this work (LD-MVA algorithm) validates each center response
time. Table 4.8b presents these results. The error rate of response time obtained by
the model in comparison to the simulation was less than 30%, which indicates a good
approximation. This validation indicates that an intersection can be modeled as a LD
center.

To analyze the impact of the load increase in the center response time and utiliza-
tion, we calculate the system saturation threshold, i.e., the area beneath the function
after the optimum system level. In this work, the threshold is 12 (vehicles). The opti-
mum system level depends on the system demand and the maximum center demand.
Based on the simulation results, Center 20 has the maximum demand (17.26s). The
sum of center demands is 216.18s. We calculate the optimum system level through Eq.

4.4. The response time is 34.83s.

D 21618

N* = =
Dz 17.26

~ 12 simultaneous vehicles (4.4)

Figure 4.46(a) illustrates the impact of load increase in the response time for
Center 10. The number of vehicles crossing the intersection 10 was increased over
time. The higher the number of vehicles in the center, the greater the center response
time in an exponential scale.

On the other hand, Figure 4.46(b) presents the impact of increasing the number of
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Table 4.8: Analytical model results and validation

a. Validation of system performance b. Validation of center response

results (test 1). time (test 2).

Variable \ Simulation \ MVA \Error R . Ry, B
U | 92.61% [99.99%] 7.90 CoPORE I Simulation [ MVA |
Us 98.34% 199.98% | 1.67 Ry 24.54 20.99 (14.46
Us 99.01% {100.00%| 1.00 Ry 18.07 13.04 |27.84
Uy 99.01% 199.99% | 0.99 R 11.39 12.54 {10.08
Us 97.01% 199.98% | 3.07 Ry 15.01 12.55 [16.35
Us 95.01% 199.93% | 5.18 Rs 23.86 17.49 26.72
U; 95.34% 1100.00%| 4.89 Rg 17.41 18.00 | 3.37
Us 98.67% | 98.08% | 0.60 R 27.39 19.35 |29.34
Uy 99.67% | 94.04% | 5.65 Rg 14.57 16.79 |15.24
Uio 92.67% |98.48% | 6.27 Ry 24.12 28.51 [18.20
Ui 85.01% | 87.05% | 2.40 Rio 25.91 29.23 [12.81
U 98.76% |99.98% | 1.23 R 20.92 25.86 [23.62
Uss 99.67% 199.44% | 0.23 Ris 13.34 15.02 [12.66
Uiy 96.00% |99.38% | 3.52 Ri3 19.43 21.09 | 8.54
Uis 93.73% |97.93% | 4.48 Ry 25.30 26.70 | 5.50
Uie 98.34% 199.80% | 1.49 R 20.75 26.27 |26.61
U7 94.67% 199.97% | 5.59 Rig 16.25 18.78 |15.56
Uis 95.67% 1100.00%| 4.52 Ri7 14.61 14.65 | 0.29
Uig 98.67% |100.00%| 1.34 Rig 20.61 23.57 (14.36
Uy 97.01% 199.47% | 2.54 Rig 15.38 11.44 |25.66
U 99.34% 199.99% | 0.65 Ray 23.04 26.87 |16.64
R 125.92 122.81 |2.47% Ry 16.93 19.22 |13.50
X 1.70 1.74  12.53%
9) 214.00 | 214.00 |0.00%

vehicles running simultaneously through Center 10. It has a significant grow, achieving
the system saturation with 12 vehicles. The dotted line indicates the optimum center
level. The tangent in a function point from the optimum point has a lower inclination
angle, which indicates a slowdown and, thus, validating the ideal number of concurrent
vehicles in an intersection. The multiprogramming level of the service center is 12
vehicles, i.e., the intersection must have 12 vehicles (operating and standby) to have
the best cost/benefit in response time versus center utilization. When one vehicle
is in service, the others are on hold. Thereby, one vehicle has a significant impact on
increasing the center response time and utilization, since the center is already saturated.

We evaluated an intersection contention evolution through the increased load.

This analysis considers the center response time. Figure 4.47 presents the contention
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Figure 4.46: Performance results of center 10.
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Figure 4.47: Contention in a service center in accordance with the load level.

of Centers 1 and 2. The time spent by a vehicle (in average) to cross an intersection
depends on the intersection concurrency. This function increases according to the angle
of the linear function that describes the intersection contention. The larger the angle,
the faster increase the center service time. For instance, assume 40 vehicles are crossing
Center 1 with an average response time of 150 s, and the same amount of vehicles cross
the intersection 2 during approximately 110s. This shows a reduction of 26.67%. We

can use this information to predict a road contention, and start a contingency plan.

4.4.3 Application of ALLuPlIs

One of the purposes of vehicular networks is to tackle the traffic jam matter. In
this context, researchers simulate real urban scenarios to evaluate vehicular network

protocols [Naumov et al., 2006; Saha and Johnson, 2004|. However, routing protocols
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consider only road information, but not crossroad performance.

In this work, we proposed a model to evaluate crossroad intersections, consid-
ering the vehicles” mobility and the road characteristics, i.e., the model includes only
vehicles data. The model is a queue network to represent the contention at each road
intersection. We believe that this model can be applied to general traces with vehi-
cle movement. The goal of this model is to analyze the impact of road intersection
as possible traffic contention points through a real mobility model. Simulation of the
scenario described in [Naumov et al., 2006] has been made. We believe that this model
can be applied to general traces with vehicle movement.

Notice that we can use this information to predict a road contention and start a
contingency plan. Protocols can initiate a congestion control method while quantifying
the contention level. Other studies can use the information of crossroad performance

to apply it in a routing or dissemination protocols in the search for the next hop.

4.5 Chapter Remarks

This chapter has investigated how the traffic flow, traffic incidents evolve spatially and
temporally, how are they correlated, and whether social data (check-ins) can be used
to signalize congested traffic flow. In other words, can we use check-ins to better predict
traffic jam?

According with our results: check-ins may be useful to better predict traffic jam.
We found that data from social sensors and traffic conditions, provided by Bing Maps,
are surprisingly very correlated. The social data distribution is equal to the traffic
condition distribution, shifted by an offset that can be easily calculated. That is, the
time difference between the measurements is 0 minutes, which indicates that social data
signalize the traffic flow o intervals latter. For Manhattan, ¢ is equal to 36 intervals.
We believe that the 36 intervals threshold occurs because there is a time between the
congestion and the time that the person arrives at the check-in point. The threshold
can vary from place to place, but as shown in the paper, with our methodology this
value can be easily calculated.

This information can be extremely valuable in several scenarios. For instance
to build more efficient services that take advantage of such information, as in traffic
prediction models or to build new VANET protocols to control and to minimize the
traffic problems (e.g. jams).

Another approach that we have used in the characterization module is the pro-

posal of ALLuPIs, in order to evaluate crossroad intersections, considering the mobility
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of vehicles and the road characteristics. This means that the model includes only ve-
hicles data. ALLuPIs is a queue network to represent the contention at each road
intersection. We believe that this model can be applied to general traces with vehi-
cle movement. The goal of this model is to analyze the impact of road intersection
as possible traffic contention points through a real mobility model. Simulation of the
scenario described in [Naumov et al., 2006] has been made. We believe that this model
can be applied to general traces with vehicle movement.

Our results have shown the impact of vehicle load in the throughput, response
time and utilization. They indicate that there is an optimal number of vehicles com-
peting for intersections to achieve a better cost/benefit relation in center response time
versus utilization. The ideal number of vehicles crossing an intersection is the multipro-
gramming system level, which has a direct impact on the response time (time spent by
a vehicle in a traffic jam). In this work, this multiprogramming level was 12 (vehicles).
It means that if there are less than 12 vehicles, the cost/benefit relation in response
time versus utilization is positive, and the system is available, otherwise it occurs a
system saturation. Moreover, the multiprogramming level and the center response time
affect the vehicular network performance. The traffic performance changes according
to the number of vehicles that want to cross an intersection. The advantage is that the

analytical model provides faster results than simulations.






Chapter 5

Prediction and Inferences

In a smart city, physical and virtual (or social) sensors can be used spread in the city
to collect context data in order to provide more information about the city behavior in
real-time. This was demonstrated in Chapters 3 and 4 through the data collection and
characterization of traffic flow, incidents and check-ins. Since distinct cities have differ-
ent characteristics and needs, the usage of such characterized data can help prediction

models to better calibrate to different cities.

Figure 5.1 illustrates several data spread in the city, most of them discussed in
the previous chapter. We can see check-ins (social sensor), traffic incidents and traffic
flow (virtual sensors), and street detectors (physical sensor). Notice that they are
all collected in a specific time interval, that can be different for each kind of sensor.
We also know that dealing with such different time intervals is a challenge that, when
overcome, facilitates the characterization of information. That is, how such data evolve
temporally and spatially. Moreover, now we can understand the correlation between
them in order to discover which data might influence or depend on others. For instance,
we saw that check-ins distribution is similar to the intense traffic flow distribution, but
with a given offset. Also, the occurrence of traffic incidents explains intense traffic

flows.

Figure 5.2 summarizes this chapter goals. We propose the following prediction
models: (1) MoVDic — Mobility Vehicular preDiction model [Tostes et al., 2015a];
(2) STRIP — Short-term TRafflc jam Prediction [Tostes et al., 2013, 2015b]. While
MoVDic uses only street detectors information from the above modules, STRIP uses
both traffic flow and check-ins. Recall that the answers from both models can (and
are) stored in inferences databases, presented in the following module (4. Inferences).

Finally, about the evaluation of our models, we discuss:

101
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e Which data are required, at least, to predict traffic mobility and traffic jam in
the city?

e Which data can contribute to a better prediction?
e How much can they contribute in the accuracy of the data forecasted?

This chapter is organized in four sections. Section 5.1 defines and validates
MoVDic, while Section 5.2 defines and validates STRIP. A brief discussion of our

results is presented in Section 5.3. Finally, Section 5.4 concludes this chapter.

5.1 MoVDic

Here we present the proposed model MoVDic (Mobility Vehicular preDiction model),
which predicts the mobility of vehicles in a city using a Bayesian network. The Bayesian
network predicts the likelihood of a vehicle to follow a certain direction based on its
current location and trajectory. The key idea is to predict the future locations of
vehicles. To accomplish that, the following questions must be answered: (i) if the
vehicle is on the Y street, then what is the probability of driving to the adjacent streets
of Y?; (ii) if the vehicle is on the Y street, then what is the probability of driving to a

specific direction?; (iii) what is the probability of a vehicle being on the street Y given

Prediction Model Basis
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Figure 5.1: Which (and how) the data collected and characterized can be used in
prediction models?
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Figure 5.2: Description of the Prediction and Inferences chapter.

that it is on the X street driving in a specific direction?; (iv) how can we use our model
to forecast future paths in order to reduce the emission of COs and fuel consumed?

However, the focus of this work is to answer the question (ii) by a Bayesian model
learned through a Markov chain Monte Carlo algorithm. Notice that the only known
variables are the data of street detectors, therefore we do not know the destinations
of vehicles route. First, we assume a priori a uniform distribution for the turning
choices, i.e., a vehicle has the same probability for following in any direction before the
algorithm sees any empirical data. This uniform distribution corresponds to a random
walk on the route graph. This uninformative distribution is updated by the Bayesian
model through the MCMC algorithm. Despite knowing that this is not true in reality,
this discrete prior distribution will be improved by MCMC. Moreover, the model uses
only the data of street detectors, i.e., the number of vehicles driving on the street
during a time interval, dispensing with the need to collect data on the actual turning
choices at each intersection. The main idea is that the simple frequency of vehicles in
each edge of the graph, and the implied many tight constraints it ensues, the entire
flow can be predicted by a learning algorithm.

For instance, consider the scenario illustrated in Figure 5.3. Given the position
and direction in which the vehicle is driving, the goal is to find out the odds on it

following possible future directions. In the case of the vehicle A (blue), it can go in all
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Figure 5.3: Illustration of a question answered by MoVDic.

four directions. But the vehicle B (red) has a 0% probability of heading south (right
conversion). However, other than this logical exclusion, we can need to predict from
the remaining possibilities of conversion appropriately. Therefore, the issue faced by
this work can be summarized by answering the following question: for the vehicles on
the street segments 7 and 11, when they arrive at an intersection, what is the probability
of their future directions, that is, the likelihood of going to any of the adjacent street

segments? How the mobility of vehicles spreads in the city?

After updating the uniform prior distribution with the edge frequencies by mean
of the Bayesian model, we obtain the posterior distribution, which describes the likely
directions where there is greater flow of vehicles. In possess of such information, it is
possible to improve routing algorithms and data dissemination protocols. As discussed
in [Schougaard, 2007, protocols can be based on the behavior of the vehicular network
itself. The context information (temperature and humidity sensors on roads) can be
used in prediction models to save energy, for example. Furthermore, the forecast
allows the discovery of the best route for vehicles, the reservation of resources (vehicles

traveling on a road), the delivery of messages in real time with a lower loss of packets.

In order to evaluate our proposal, we validate our model with the large-scale
mobility dataset of TAPAS Cologne [Uppoor and Fiore, 2012|. Two sub-scenarios are
considered: (i) a small scenario with 125 streets; (ii) and a bigger scenario with 2216

streets, to represent the central area. Our evaluations were made to answer two main
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questions: (i) “How well the model fits when we want to know which will be the road
with more vehicles in the near future?”’; and (ii) “How well the model fits when we
want to know which road will have more vehicles in the near future, when we are in a
crossroad?” These two questions can be useful to dissemination protocols, i.e. when
we need to decide where to send the packet when we are in a crossroad. Results have
shown that the mean error is lower than 0.002, overcoming other approaches. Also,
regarding the road with more turnings, our model performs well when choosing a street,

achieving the mean accuracy of:

e For the small scenario: considering only crossroads with more than a vehicles
(av = 21), the accuracy for crossroad with two exit-streets is 88%, for three exit-

streets is 83%, and for four exit-streets is 100%, and five exit-streets is 58%.

e For the bigger scenario: considering only crossroads with more than «
vehicles (a« = 21), the accuracy for crossroad with two exit-streets is 95%, for

three exit-streets is 94%, and for four exit-streets is 91%.

5.1.1 Definition

Our model MoVDic relies only on information of street detectors. It uses a Markov
Chain Monte Carlo (MCMC) algorithm to learn a model providing the probability for

vehicles movements when they arrive at an intersection.

10

17

Figure 5.4: An example of graphical model over the traffic scenario.
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Consider the scenario illustrated in Figure 5.4, which presents a 4 x 4 grid with
24 street segments, which corresponds to 48 lanes when we consider the both opposite
moving directions. FEach directed street segment is a vertex. We design an edge if
we can go from one vertex to another crossing an intersection. Each street segment
has a detector that counts the number of vehicles that drive on the road in a specific
time interval. Based on the above scenario, our model calculates the probabilities of
turning choices at the intersections of a street segment, based on the observed data

from detectors in a street segment, considering the observed data from detectors.

Definition 9. 6,: the probability of seeing a vehicle in the street segment k, which

is defined as the one-way part of the street between two consecutive crossroads.
Definition 10. §: the vector of 8 for all street segments in the region.

Definition 11. P(6;): considering that the vehicle is on the j-th segment, we assume

that the probability of moving to the k-th segment is given by the equation:

O,
ZrEN(k) 07’

where r € N (k) means that r is in N(k), which is the set of neighbors of k, and this

sum is over all neighbors of 7, including k.

P(bh) = (5.1)

Based on the definitions 9, 10 and 11, we assume that the prior distribution
regarding the movement of vehicles when they arrive at an intersection is a Dirichlet
distribution for variables 6 =(0y, 6,,03,0,,- - ,0x) and parameters a = (a1, a9, - , a),

as it shows Equation 5.2.
Q = (91,92,"' ,Qk) ~ DZT(k’) (52)

The Dirichlet distribution is defined in Equation 5.3:

1
Z(a) TTi 07

being Z(a) normalization constant. Notice that we do not need to know the normaliza-

(5.3)

tion constant since it will be removed due to the Markovian property. Also, the sum of
all @ must be 1. Therefore, our goal is to discover the probability of § = (6y,0s,--- | 6).

Consider X = (Xg, X1, Xo, -+, X;) as the path taken by a vehicle. Hence, X
means that the vehicle is at a given segment at time ¢ = 0, and X; means that this

vehicle is at an adjacent segment at time ¢ = 1, and henceforth. The likelihood function
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is the conditional probability
IP)(X07 Xla X27 e 7Xt|017 027 e 7916)

The posterior distribution can be calculated as the prior distribution times the likeli-

hood function.

To impose sparsity and decrease complexity in estimation, we assume a Markovian
property for the probabilities. That is, 6; depends only on the last position of the
vehicle, and not on the entire trajectory taken until then, and this is valid for each
variable of §. Therefore, the historical paths can be discarded. We only need to know
the last position of the vehicle to predict its future position, and this information is
described in the data of street detector. The two pieces of information that the system
must know about the trajectories are: (i) the number of times the stretch j was traveled
by any vehicle (NV;) and (ii) the number vehicles that began their route at stretch j
(M;). Thereafter, according to the Bayes theorem, we can simplify the conditional
probability distribution of 8;, for each variable of #, given by Equation 5.4 less than a

constant.

P(B;]--+) o 7T G 0 (5.4)

The symbol “---” after the conditioning symbol stands for all the other 6; values
but 6, which are all the neighbors of ;. This means that the proposal of ; depends
only on its last value (proposed in the last iteration) and the values of its neighbors,
represented by ;. To propose the last 6, we can do the normalization, because the sum
of all variables of 6 is 1. This conditional distribution is what the MCMC algorithm
requires to obtain the joint posterior distribution.

Algorithm 7 presents our prediction model. The values proposed to 6 is stored
in the matrix O, defined in line 4 and 5. The iterations of the MCMC can be seen at
line 11. The distribution of 8; is calculated from Equation 5.4. To draft a new value
of 6, for each street segment, we use the Metropolis-Hasting MCMC algorithm (lines
12, 13, 16-22). It proposes a new value for each 6; (line 13), except for the last, which
is obtained by the linear restriction (the sum of ¢ is 1). The real data used by the
MCMC are the values N; and M;, according to Equation 5.4.

To implement the MCMC, there were two main challenges:

1. How to deal with underflow?



108 CHAPTER 5. PREDICTION AND INFERENCES

Algorithm 7 MoVDic Algorithm

Require: nsim: number of iterations in MCMC;
1: seg: number of segments in the street; MCMC inputs
Ensure: Distribution of §, which is in the last line of the matrix ©
2: procedure PREDICTION (nsim, seg, MCMC inputs)
3: > Initial guess: uniform distribution

4: © <« numeric(nsim*seq)

5: © < matrix(0, nrow = nsim, ncol=segq)

6: ratio <— 1/seg

7 for i in 1:seg do

8: ©]1,1i] « ratio

9: end for

10: > Iterations of MCMC
11: for i in 2:nsim do

12: for k in 1:seg do

13: Calculate the ¢ as log(6y)

14: end for

15: for j in 1:(seg-1) do

16: Store the 6; (O[i, j]) from the previous iteration (O[i — 1, j])

17: Ol[i, j] = Propose a 0;* that is not zero

18: Calculate the ¢;* of such 60,*

19: Calculate the probability of #; according to eq. 5.4 (in function of ¢,)
20: ax < P(¢;*) — P(¢))

21: Usx < log(runif(1))

22: if Ux < min(0,ax) then

23: Accept the candidate

24: else

25: Reject the candidate

26: end if

27: end for

28: > Update the last 6;
29: Oli, seg| < 1 - > (Oi,1:(seg-1)|)

30: Update the probability of this iteration as the previous

31: end for

32: return O [nsim|

33: end procedure

2. How to propose a new value according to Equation 5.47

To deal with (1), we use the logarithmic transformation of ¢; = log(6;), and then
we modify the Equation 5.4. For (2), the challenge was to propose a new valid value for
6;. This new value is proposed according to a uniform distribution between zero and
a maximum value, which is calculated as the excess to complete all the probabilities.

That is, 07 = {1 — vazl 6; + 0;}. This proposed value can be accepted or rejected
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according to the Metropolis-Hastings test. During such process, a number of the last
values of 6; must be stored to empirically evaluate the posterior distribution.
Therefore, MoVDic provides the following information based on only street de-
tectors: (i) the probability of seeing a vehicle on the street segment k (0, — based
on Equation 5.4); and (ii) the probability of turning choices in a crossroad (based on

Equation 5.1). The evaluation of achieving such information is in the next section.

5.1.2 Validation
5.1.2.1 Simulation Description

To validate our model, we use two sub-scenarios from the large-scale realistic mobility
dataset of TAPAS Cologne. Such dataset spans two hours of vehicles’” movements
over a 400km? area of the city of Cologne, Germany [Uppoor and Fiore, 2012]. Such
dataset is realistic from both macroscopic and microscopic viewpoints [Uppoor and
Fiore, 2011]. Moreover, it contains information such as different types of roads, traffic
light programs and road signalization, which is used as input for the Simulation of
Urban MObility (SUMO) [Behrisch et al., 2011]. Notice that, this turns our analysis
much more accurate than using a regular Manhattan grid, as the one illustrated in

Figure 5.5.

7} passenger_nowntermal_shapes _ SUMO dev SV 168 al0l x|
# Do B4 Sene W teo -Ex

@D -0 @

Figure 5.5: Part of the TAPAS Cologne Scenario [Uppoor et al., 2013].

To assess the behavior of the model under different road traffic conditions, we
predicted the mobility of vehicles at different times of the day. Initially, we assume
the first 1800 seconds as the warm-up period, and then, at every 30 seconds interval,
our model generates an output, which is produced offline (that is, not during the
simulation). Note that the choice of 30 minutes is empirical, and this does not affect

our results, it is just to count the amount of cars on the road. That is, our model
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Table 5.1: Vehicle density for different times of the day for the real city scenario.

Time of the day (a.m.) | Density (vehicles/km?)
06:30 61
06:45 82
07:00 92
07:15 102
07:30 108
predicts the positions of vehicles at time steps 1830s, 1860, 1890s, ---, 5400s, for a

total of 120 intervals. Notice that, as the time of the day increases, so does the road
traffic, as shown in Table 5.1.

Our model uses a graph in which the street segments are the vertexes. Notice that,
this is the opposite of the road topology graph, in which the junctions are the vertexes
and the roads are the edges on the graph. Therefore, we created the equivalent line
graph for the road topology graph. Due to scalability issues, we have used subgraphs
of the original graph. Here, we present the model validation for two scenarios: (i) with
125 streets, named S125; (ii) with 2216 streets, named S2216. The process to create
these scenarios was the following: (i) choose the street with the highest betweenness
centrality; (ii) initiate a depth-first search and add the streets to the sub-scenario until

the maximum number of streets is achieved.

5.1.2.2 Evaluations

Here we present the evaluations of MoVDic.

Evolution of § against the demand of vehicles: Common sense indicates that the
number of vehicles driving through a street segment is proportional to the probability
of seeing a vehicle in that street. To support that, we plotted Figures 5.6 and 5.7,
which demonstrate the correlation between the prediction probability and the values
from street detectors (weight). The red dots indicate a higher amount of vehicles that
the one predicted.

One can notice the difference between the smaller and bigger scenarios through
Figure 5.7. In the sub-scenario S2216, due to the amount of data, we can clearly see
the correlation between the variables weight and prediction during a time variation.
As the time increases and there are more vehicles on the roads (weight), the greater
the probability of seeing a vehicle (prediction).

Besides static images, we have also developed videos containing graph images for

all time intervals in order to allow a temporal and spatial analysis about the mobil-



5.1. MoVDic 111

Street Weight X Prediction Probability Street Weight X Prediction Probability Street Weight X Prediction Probability
o
3 3 3
< < <
E® E® o6 ®
= 8 = 8 o = 8
5 s 55 5 5
@ @ @
s o s o s o
g & ge g & s g & g
@ @ @
=) = =)
2 &C 2 % 2
por &
o | o | °
h T T T T T T T T
0.00 0.01 002 003 004 005 0.06 0.00 0.01 002 003 004 005 0.06 0.00 0.01 002 003 004 005 0.06
Prediction Probability (%) Prediction Probability (%) Prediction Probability (%)

(a) S125 at 2100s — 6:35am (b) S125 at 3900s — 7:05am (c) S125 at 5100s — 7:25am

Street Weight X Prediction Probability Street Weight X Prediction Probability Street Weight X Prediction Probability

80 100 120
80 100 120
80 100 120

60

40

40
Street Weight (#)
60

Street Weight (#)
Street Weight (#)
60

40

20
20
20

0
0

0

T
0.00 0.01 0.02 0.03 0.04

T
0.00 0.01 002 003 004 000 001 002 003 004

Prediction Probability (%) Prediction Probability (%) Prediction Probability (%)

(d) S2216 at 2100s — 6:35am (e) S2216 at 3900s — 7:05am (f) 52216 at 5100s — 7:25am

Figure 5.6: Correlation between the street detectors and the prediction during different
simulation times.
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Figure 5.7: Scatterplot of time X weight X prediction.

ity of vehicles. They are available online (http://annatostes.azurewebsites.net/
mobility-prediction-model/). The videos show the traffic flow increasing in specific
vertexes and the prediction model output predicting this evolution.

Figures 5.8(a), 5.8(b), 5.8(c) and 5.8(d) present the weight (detector) and predic-
tion graphs at time ¢ = 3900s, respectively, for the sub-scenarios S125 and S2216. The
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Figure 5.8: Graph illustrations at 3900s of simulation (real time: 7:05am).

colors in vertexes indicate the detectors values, and their sizes indicate their degree.
One can notice that the vertexes with colors dark blue or higher (color bar) have a

higher probability in our prediction model (green or higher).

Probability of §: The main results are summarized in Figure 5.9, which presents
the probability of seeing a vehicle in each street segment (#). One can notice that
the predicted probabilities follow the real probabilities, but there are mistakes. The
question is: how much distant from the real probabilities they are? This is answered

in this section.

To answer this question, first we have used the metric known as Prediction Error
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Figure 5.9: Prediction and real probabilities of the variables at 3900s (7:05am).

(€), represented by
e(8) = ma (|6} — 65))

that measures the difference between the real value of 0} and the predicted value of
¢7. If the crossroad has a minimum number of vehicles () and the prediction error e

is less than 0.1, than the model is accurate. Otherwise, it is not.

/ \
Prediction: 20% | p
Real: 10% ,\
3
Prediction: 45%
300 vehicles [ Street Real:50% [ N
- —»| Segment | = B |
R 150 AN S/
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Real: 40%  \_ /

Figure 5.10: Example of future possible paths.

First, we classified the crossroads based on the number of exit-streets that they
present (2, 3, 4 or 5). For instance, consider the example illustrated by Figure 5.10
that indicates possible paths for the vehicles in street segment R with 300 vehicles, that
is, to take route A, B or C (3 exit-streets). For each street segment, we calculate the
probability of vehicles going to the adjacent streets, having for instance a4, ap, a¢ for
the real data (observed — that is the hypothetical values of 10%, 50%, and 40%) and
Ba, B, B for our probability model (that is 20%, 45% and 35%), that is calculated
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through the Dirichlet distribution (see Equation 5.1). For this example we have

04
(9,4 + 0 + 9(])7

ap =

in which the sum of «a; for each 7 representing an street segment adjacent of R is 100%.
Second, we varied the minimum number of vehicles, represented by «. This
variation was made based on the density of vehicles in the scenario, described in Table

5.1 in Section 5.1.2.1 (61, 82, 92, 102, 108).

Third, we answered the following questions.

Q1. How many crossroads have the proper conditions to MoVDic makes
its prediction? And based on this amount of valid crossroads, how many of
them are accurate?

Here we have calculated the percentage of crossroads where the mean prediction
error is lower than 0.10 with a minimum of « vehicles. Figure 5.11 shows a heatmap
of crossroads where MoVDic’s performance is accurate over the time. In this graph,
for each crossroad in every second of simulation, we indicate whether the crossroad
has (yellow) or has not (red) proper conditions for MoVDic prediction. Since scenario
S125 (500 vehicles) has more vehicles than S2216 (130 vehicles), than it has more
crossroads with the proper conditions to be predicted than in S2216. We can notice
that most crossroads with proper conditions tend to keep this way during all simulation,
depending on the amount of vehicles.

To complement, recall to Figure 5.12. It shows the percentage of valid crossroads,

that is, the frequency of crossroads that have proper conditions for MoVDic prediction.

S$125

S2216
Q ©
Crossroads Crossroads
(a) S125 (b) S2216

Figure 5.11: Indicative of crossroads where MoVDic is accurate over the time.
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Figure 5.12: Percentage of valid crossroads, with proper conditions to predict.

We can see that the amount of valid crossroads is higher in the smaller scenario (S125)
than in the bigger scenario (S2216), ranging from 84% to 75% of crossroads over the
simulation time. Therefore, we can conclude that scenario S125 has more example
cases to evaluate MoVDic than S2216.

Q2. How does the frequency of accurate crossroads varies over the time,

considering that the demand of vehicles also increases?
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Figure 5.13: Percentage of crossroads where MoV Dic is accurate over the time.

To make this evaluation, we have calculated the mean value of € over the time
only for the valid crossroads. If the value of € was lower than 0.10, than MoVDic fitted

well and we considered this as a accurate crossroad. Therefore, this metric indicates
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the percentage of accurate crossroads for MoVDic. Figure 5.13 illustrates the results.
We can see that more MoVDic performs well for more than 70% of crossroads. For the
scenario S2216, we can see that the frequency reduces from 83% down to 78%. This
occurs because of the lower amount of vehicles in the scenario. Also, we can observe
that the variation of the prediction accuracy in the entire simulation is lower, being

easier to predict.

Q3. How well the model adjust to predict the street with more turnings,
according with Equation 5.17

To answer this question, we have considered the hypothesis that a vehicle will
turn in the street with the highest probability to turn. In the example of Figure 5.10,
we consider that a vehicle will turn to B because it presents the highest probability
(real of 50% and prediction of 45%), in comparison with the other streets A and C. If

this is correct, than we consider this a hit.

Table 5.2: Frequency of hits in the prediction of the street with more turnings, consid-
ering a crossroad with 2 up to 5 exit-streets.

S125 S2216

a | 2 streets | 3 streets | 4 streets | 5 streets | 2 streets | 3 streets | 4 streets | 5 streets
1 0.89 0.87 0.80 0.58 0.95 0.88 0.90 0.89
11 0.88 0.85 0.96 0.58 0.90 0.88 0.91 0.92
21 0.88 0.83 1.00 0.58 0.95 0.94 0.91 —
31 0.91 0.83 - 0.54 0.99 0.99 0.92 -
41 0.93 0.82 - 0.53 1.00 - - -
51 0.93 0.83 - 0.51 1.00 — - -
61 0.96 0.85 - 0.47 1.00 — - -
82 1.00 0.90 — 0.41 - — — —
92 1.00 0.92 - 0.38 - - - -
102 1.00 0.96 - 0.29 - - - -
108 1.00 0.96 - 0.27 - - - -
120 1.00 0.99 - 0.20 - - - -
150 1.00 1.00 - - - — - -
200 - - - - - - - -

Based on this, table 5.2 summarizes the frequency of hits in the prediction of the

street with more turning in a crossroad, also varying the minimum number of vehicles

(@).

number of exit streets (2, 3, 4 or 5).

Notice that we have clustered the crossroads with similar features, that is, the

Notice that the performance of MoVDic for the smaller scenario (S125) is higher
than 0.8 (80%) for crossroads with 2, 3 and 4 exit-streets, but it is not good for 5

exit-streets. Also, when we increase the value of «, the performance of MoVDic also
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improves. Regarding the amount of vehicles in the scenario with more exit-streets,
MoVDic does not perform well, since it requires more features than only detectors.
Finally, in the bigger scenario, with less number of vehicles (120 vehicles agains 500
vehicles in the smaller scenario), MoVDic also performs well (more than 0.88 — 88% of
crossroads). Notice that the sample size for both scenarios is different: S125 has more
valid crossroads than S2216.

Q4. What is the mean value of ¢ for each category (number of exit-streets)?

How does it varies over the time?

Here we have calculated the prediction error (€). Figure 5.14 presents the evolu-
tion of the mean value of € over the time. One can notice that the mean error is lower
than 0.002 during the entire simulation, being lower for the bigger scenario than the

small scenario.
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Figure 5.14: Mean error for valid crossroads.

5.2 STRIP

In this section, we describe the proposed prediction model STRIP — Short-term TRafflc
jam Prediction model [Tostes et al., 2015b], based on logistic regression. In statistics,
logistic regression is a type of regression analysis used for predicting the outcome of
a categorical dependent variable based on one or more predictor variables. Its main
characteristic is that the probabilities describing the possible outcomes of a single trial
are modeled, as a function of the predictor variables, using a logistic function. Logistic

regression measures the relationship between a categorical dependent variable and one
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or more independent variables. The probability function follows the logistic function:

B 1
14 et

P(t)

5.2.1 Definition

STRIP is composed of two logistic regressions (LRs), one to predict whether the flow is
free or congested, and another one to predict the congestion intensity. The prediction is
based on several variables such as weekday, hour of the day, historical traffic conditions
(crawled from Bing Maps using the methodology described in [Tostes et al., 2013]) and
social sensors data (crawled from Foursquare and Instagram as described in [Ribeiro
et al., 2014]). The traffic flow can be: (1) green, representing a free flow; (2) yellow,
representing a low congested flow; or (3) red, representing a high-congested flow.
Figure 5.15 depicts the architecture of STRIP. We have several basic inputs (week-
day, hour, street ID, historical traffic and check-ins) to predict the level of traffic con-
gestion (low or high). STRIP consists of one Logistic Regression (LR) per street,
predicting the traffic conditions locally (a distributed version). For vehicular networks,
this model can contribute to a lower overload in the network, a lower exchange of in-
formation between roadside units and vehicles, and an increase in the performance of

the prediction itself.
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Figure 5.15: Architecture of STRIP



5.2. STRIP 119

LR is a type of regression analysis used for predicting the outcome of a categorical
dependent variable based on one or more predictor variables. Its main characteristic
is that the probabilities describing the possible outcomes of a single trial are modeled
as a function of the predictor variables, using a logistic function. LR measures the
relationship between a categorical dependent variable and variables. The probability

function follows the logistic function (Equation 5.5).

P(t) = . (5.5)

We have used LR because it refers to the problem in which the dependent variable
is binary, which is our case. In addition, different from the linear regression, LR
considers the conditional distribution as a Binomial distribution, and not a Gaussian
distribution. In the case of a traffic jam, we are indicating where there is a probability
of having intense traffic condition or not (Binomial). Also, since LR predicts the
probability of the instance being positive, the estimated probabilities are restricted to
[0, 1] through the logistic distribution function.

In this context, STRIP differs from other approaches in terms of the used in-
formation sources in the prediction. While most solutions use only road data (e.g.,
[Kong et al., 2013; Kurihara, 2013; Li et al., 2013]) and GPS traces (e.g., [Niu et al.,
2014]), some approaches use additional distinct inputs such as weather (e.g., |Li et al.,
2013; Microsoft Research, 2013b]), events (e.g., [Ghosh et al., 2009; Microsoft Research,
2013b]), and traffic incidents (e.g., [Inrix, 2006; Microsoft Research, 2013b|). What is
quite interesting is that none of the prediction models we found in the literature has
used social sensors data, and that is exactly what we did. Another contribution of this
work is that we can evaluate our model in real time and apply a street-level granularity
to assess how much each input variable contributes to the predicted output, allowing
us to evaluate if we will consider this input or not.

Algorithm 8 shows the STRIP algorithm, being executed for each street in the
city every 15min. First, the algorithm randomly selects 70% of the data for the training
set (Lines 3—-11). Second, we perform the LR for the requested street (Lines 12-19).
Third, we perform the second LR, to classify the intensity of the traffic jam (Lines
20-35). Four, we perform the validation and the Chi-squared test to evaluate if all
inputs have contributed to the prediction output or not (Lines 38-41). This allows us
to indicate, in real time, if an input is significant to the traffic forecasting or not.

Each independent variable is categorical or numeric. The green flow (Bing = 1)
intensity is considered as class 0, while class 1 is yellow (Bing = 2), and red (Bing =

3) represents the congested flow. By removing the green data, the second LR classifies
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Algorithm 8 STRIP

Require: Database data of inputs and street id
Ensure: Logistic regressions of STRIP

1: > Run this algorithm for each street in the city.
2: procedure LOGISTICREGRESSION (data, id)
3: datal < randomly chooses 70% weekday samples from data (training dataset)
4: > The categorical dependent variable
5: y « vector of bing flow intensity (1, 2 or 3) of datal
6: X < matrix of the six independent variables of datal
7 > Consider bing = 1 as class 0 and others as class 1
8: y +—y—1 > in order to consider bing as 0, 1 and 2
9: yly==2] «+ 1 > considering bing=2 as 1
10: classQ ¢+ y ==
11: classl « !Iclass0
12: > Run the logistic regression 1 — classifier 1, with all inputs
13: flrml + glm(y ~ (factor(x[,1])
14: + factor(x[,2])
15: + as.numeric(x[,3])
16: + as.numeric(x[,4])
17: + as.numeric(x[,5])
18: + (...)
19: ), family=binomial("logit"))
20: > Prepare data for classifier 2
21: y « vector of bing flow intensity (only 2 or 3)
22: X < matrix of the six independent variables data
23: > Consider the bing value 2 as class 0 and the bing value 3 as class 1

24: y ¢ y—2
25: classQ <~y == 10

26: classl < IclassO

27: > Run the logistic regression 2
28: flrm2 « glm(y ~ (factor(x[,1])

29: + factor(x[,2])

30: + as.numeric(x/[,3])

31: + as.numeric(x[,4])

32: + as.numeric(x[,5])

33: + as.numeric(x[,6])

34: + (...)

35: ), family=binomial("logit"))

36: data2 + the remaining 30% weekday samples from data (validation dataset)
37: Evaluate the model accuracy for street id

38: Perform the Chi-squared test and produce the p-value for all inputs.
39: if p—value >= 0.05 then

40: Input not significant; suggest to remove the input.

41: end ifreturn firml and flrm2

42: end procedure

the flow intensity as yellow (class 0) and as red (class 1), measuring the intensity of the
traffic jam. The STRIP classifiers of were written using the glm library in R—Project.

The basic inputs are: (i) weekday, (ii) time, (iii) street number, (iv) historical
traffic flow (i.e., traffic condition obtained from Bing for a specific time interval in the

past at the same day of the week). As new unconventional inputs, we are using data
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from social sensors (check-ins) performed in PSNs. As discussed in |[Ribeiro et al.,
2014], part of this thesis, data from social sensors and traffic conditions are correlated.
The distribution of the number of observed social data is equal to the traffic condition
distribution, shifted by an offset easily calculated. This information can be extremely
valuable to build more efficient traffic condition predictors, but the problem is to know
in real time when and where (street level) this data really contributes to the traffic
prediction.

The main advantage of the STRIP architecture is its flexibility for defining inputs.
We can add new inputs to the LR and, during the training, evaluate how much each
variable contributes to the predicted output. For this specific evaluation, we used
the Chi-squared test. If the probability value (p-value!) is lower than 0.05, the more
significant the input is.

Finally, it is important to compare our initial prediction model |Tostes et al.,
2013] with STRIP, proposed in this work. In [Tostes et al., 2013], we predicted the
traffic jam in the next instant of time (next minute), which is less useful. The inputs
for our previous model were date, time and historical traffic low. The model was based
on two logistic regressions for the entire city, which is not scalable. In this work, we
propose a scalable distributed model, STRIP, that predicts the traffic jam in a near
future with a higher time horizon (15 min, 30 min, 1 hour). Another difference is that
we use a new input that considers data from PSNs as a social sensor (virtual sensor).
Besides, since STRIP presents a street granularity, that is scalable, we can now measure
in real time how significant this input is to the model accuracy. This is possible due to

the Chi-squared test, based on the probability value, as explained above.

5.2.2 Validation

In this section, we evaluate STRIP considering the dataset of traffic flow described in
Section 3.1.2, in Chapter 3.
Q1. If we increase the amount of historical data while increasing the time
horizon (0), how this will affect the prediction accuracy in terms of the
quality metrics (accuracy, recall, false positive rates, specificity, precision)?
The hypothesis of Q1 is that there will be a specific threshold of time frame
that contributes to a better prediction. Moreover, this amount will not be statistically
significant to an increase in the prediction accuracy.
In order to evaluate STRIP in terms of the amount of historical data necessary

to achieve a better accuracy, we selected New York (Manhattan), which also appears

Tt shows that the observed result is highly unlikely under a null hypothesis.
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in our previous work |Tostes et al., 2013]. We collected a different and longer time
interval for this dataset: from June 24, 2013 to August 22, 2013, with a lower time
interval for the Bing maps acquisition (every 1 min instead of 7min). We have selected
the same amount of data for each category (free and congested).

Table 5.3 summarizes STRIP’s accuracy against the amount of historical data.
The best accuracy is achieved when we consider the last 15 min of traffic flow as input.
Initially, we hypothesized that the predictor is not as sensitive to the amount of data
when we give more than 5 min information. This was confirmed by the data of Table 5.3:
81% of accuracy with 5min in comparison with 81% of accuracy with 15min. Since
we can ignore the significant digits in the accuracy, we can observe that the increase
of historical data does not improve the accuracy of the prediction model, and does not
reduce the rate of false positive as well. This means that knowing the last 5min of

traffic flow, it is enough for the good performance of STRIP.

Table 5.3: Accuracy of STRIP while increasing the amount of historical data.

Minutes | Accuracy | Recall | False Positive Rate | Specificity | Precision
1 75.80% 84.99% 44.65% 55.35% 80.89%
5 81.03% 88.57% 35.72% 64.27% 84.64%
10 80.94% 88.25% 34.31% 64.69% 84.75%
15 81.06% 88.24% 34.89% 65.11% 84.91%

Q2. What is the temporal behavior of intense traffic conditions and the
amount of check-ins, considering a street granularity?

The hypothesis of Q2 is that the higher the number of check-ins on the streets,
the higher the probability of occurring a traffic jam. For comparison purposes, we have
used the same NYC dataset, covering the period from June 24, 2013 to August 22,
2013, to predict future traffic jam in the next 30 min. We compare STRIP with our
previous model (accuracy of 80%) [Tostes et al., 2013]. Additionally, we demonstrate
why and how data from social sensors can be used for a better prediction. We used two
social sensor datasets: (SS1) measures the amount of check-ins, referred here as 7, that
occurs on or near the street; (SS2) measures the difference between two consecutive
check-ins near the street, i.e., between the SS1 data 7 (¢ is the current time) and 7;_s.

Figure 5.16 shows the likelihood of the SS 1 (green) and of the traffic jam (red) for
two different streets (IDs 35 and 266) for NYC. We present the results for these streets,
because they are popular in terms of number of check-ins and traffic jam. Recall that
we consider check-ins as data from social sensors, as we mentioned above.

We can observe that during the night, when there is less data from social sensors,

it is less likely to have a traffic jam. After 35 intervals of 30 min (= 5:30pm), there are
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Figure 5.16: Likelihood of SS data (green) and traffic jam (red).

more data from social sensors and less traffic jam. Differently, in street 266, we have
similar distributions for data from social sensors and jams. Thus, we have two patterns
indicating whether the social sensor data will contribute (or not) to the prediction
model. We can observe that for streets like 266, the accuracy increased from 80% up
to 90%, showing that social sensors can improve the performance of prediction models

for traffic jam.

Q3. Can we identify in real time when and where the check-ins (social
sensor) can be significant to the prediction model?

The hypothesis of Q3 is that for some streets, which have more check-ins and
more variation of traffic conditions, this will be correct. The social sensor will possibly
contribute, but varying spatially and temporally. The question addressed here is: how
correlated is social sensor data and traffic jam and how significant they are to the
prediction? To answer that, we correlated the check-ins occurring on streets with the
average traffic jam. For this, we have used the NYC dataset. Figure 5.17 presents how
correlated (Figure 5.17(a)) and significant (Figure 5.17(b)) they are.

Figure 5.17(a) shows that correlations vary in terms of time and space. Blue
and red colors indicate correlation —1 and 1, respectively, while white cells indicate
no correlation at all. Recall that data from social sensors, in some streets, are more
correlated with jams in some periods. In certain periods and locations, they are not
correlated (e.g., Street 75 at 0:00am and 3:00am). With this, we have a way of knowing
when and where it is appropriate to use social sensor data.

For how significant social sensors are, we can look back in Figure 5.17(b), the

probability values (p—value) for streets, i.e., if there exists a significant impact of the
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Figure 5.17: Analyzing the importance of social data with traffic conditions

value used to test the correlation in the prediction output. Red color indicates more
significant (p-value < 0.05) and blue no significant. Notice that each social sensor
contributes differently spatially. For the highlighted streets, we can see that SS2 is
more meaningful than SS1. Overall, SS1 contributes for 90.32% streets while SS2
contributes for 58.07% streets.

Q4. What is the performance of STRIP, considering additional social sen-
sors as inputs, in comparison with baseline models? Is STRIP better in
terms of higher accuracy, recall, specificity, and precision, and lower false

positive rates?

The hypothesis of Q4 is that the STRIP accuracy will be better than the predic-
tion model of [Kurihara, 2013; Niu et al., 2014; Tostes et al., 2013|. Here we discuss
the STRIP performance in terms of accuracy, recall, false positive rates, specificity and
precision. We have used 5min as a historical data period. First, we have used the
same dataset of last section (NYC dataset).

A) Comparison with baseline models. Figure 5.18 represents results for popular
streets in our datasets, regarding the number of social sensor data and the occurrences
of traffic jam. For comparison, we plotted the results of [Niu et al., 2014] as baselines for

our prediction that are approximately: (i) 70% of accuracy in the temporal approach,
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(ii) 81% of accuracy in deep learning and (iii) 84% in DeepSense. As we mentioned,

the related work [Kurihara, 2013| has an accuracy of 86%, in average.
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Figure 5.18: Accuracy of the traffic jam forecasting

In Figure 5.18(a), we can observe that the STRIP accuracy is above the baseline
for eight streets, achieving up to 90.49%, which is 7.71% higher than DeepSense, in av-
erage. In comparison with deep learning, our results are 11.7% better for 19 streets and
27.44% better than temporal for all streets. A spatial representation of the prediction
accuracy of the most significant streets is depicted in Figure 5.18(b).

Furthermore, in comparison with our model proposed in |Tostes et al., 2013],
we improved the results for some streets: from 80%, in average, up to 93.21% for
some streets, which corresponds of an improvement of approximately 16% in accuracy.
In comparison with the results of Table 5.3, STRIP is, in average: 3.89% better in
accuracy, 5.25% in recall, 82.72% in FP (false positive) rate, 42.87% in specificity and

8.48% in precision, even considering a prediction for a higher time horizon (30 min).

B) Evaluation of quality metrics. Figure 5.19(a) shows the box plots for quality
metrics. The thicker line indicates the average. Individual outliers are plotted as indi-
vidual points (observe in Accuracy, FP rate and Specificity). Recall that the average
accuracy is 82.21% (confidence interval of 80.57%-83.85%). Although having the ac-
curacy up to 93.21% with 91.82% of specificity and precision, if we ensure a balanced
dataset for training?, the quality metrics are, overall, better (87%) and higher than

2Same amount of samples for each class in the prediction output, in average.
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baseline models (84%) in average.
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Figure 5.19: Using the correlation to decide when and where to use social data.

In addition, Figure 5.19(b) compares the sensitivity of the model with the FP
rate (complement of specificity). Each line represents the result of STRIP V2 LR
for one street. We can observe that the highest accuracy (87.26%) had still a good
precision (up to 89.49%). The same was noticed to the highest precision (91.82%), also
presenting a good accuracy (81.43%). Although we had streets with a lower accuracy
(78.83%), the precision of prediction for such streets was high (89.49%), being still
above our baseline (84%). For the accuracy of 90.48%, we had a good recall (77.85%)
and specificity (91.34%), but no good precision (38.11%) due to the lack of congestion
data in datasets (unbalanced outputs). Therefore, besides being better than baseline

models, STRIP can improve its accuracy to NYC when considering PSN data.

Q5. What is the performance of the prediction model for different cities?
The hypothesis of Q5 is that different cities have different traffic patterns, cul-
minating to different traffic prediction accuracies. Here we have used datasets from
different cities using the same methodology as we described in Section 3.1.2. From
these datasets, we considered the same as the NYC dataset: only weekdays in our
training datasets, since weekdays and weekends have different traffic patterns.
Figure 5.20 shows the STRIP accuracy for the streets that have more traffic flow

variation. We can observe the average STRIP accuracy as a green line, temporal and
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DeepSense from [Niu et al., 2014| as blue and red lines, respectively, and our previous
model [Tostes et al., 2013] as yellow.
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Figure 5.20: Prediction accuracy of STRIP for different cities, in comparison with the
overall performance of baseline models.

For all cities, our results were better than the baseline models. For Sao Paulo
and Paris, which are the most congested cities in our dataset, the accuracy was up to
85% and 87%, respectively. For New York, the accuracy was 85%. For London, the
accuracy was 89%. For Los Angeles, the accuracy was 92%. For median cities, like
Ottawa and Seattle, the accuracy was also very good, up to 98%, representing our best
results. Therefore, STRIP has a good prediction accuracy (above 80%), in average,
for both median and large cities. Therefore, this indicates that the size of the traffic
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Figure 5.21: Evolution of the STRIP accuracy in comparison with the standard devi-
ation of the traffic conditions in the training dataset, considering different cities.

fleet does not affect STRIP performance. The important aspect is to keep the training

dataset representative for each city.

In order to explain such results, Figure 5.21 shows a graph comparing the predic-

tion accuracy with the standard deviation of traffic flow considering only the training

dataset. We can observe that the prediction models with a lower accuracy, Helsinki and

Belo Horizonte, present a standard variation between 0.35-0.55. The other datasets

present a larger standard deviation interval (0.2-0.8). This indicates that the dataset

is probably more representative than others are.
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5.3 Discussion

As we have mentioned, there are several context data that can be crawled and char-
acterized in a smart city, such as traffic flow, incidents, check-ins, and physical sensors
(street detectors). In this work, we focused in traffic flow and check-ins, since they
have already demonstrated a correlation between them.

Notice that future works may investigate the usage of other variables such as
traffic incidents. In addition, it is important to recall that we have not used traffic
incidents to predict the traffic jam, since its raw form can only explain why jams
occurred, but in order to predict, we would have to also predict whether we would
have a traffic incident or not. This complex topic is out of this thesis outline.

Therefore, we have proposed and evaluated the prediction models MoVDic and
STRIP. But how can they be applied or be combined in vehicular networks? What can
be possible applications for them? This is discussed in this section.

Figure 5.22 illustrates an example of how to use the proposed models, MoVDic,
STRIP, and ALLuPIs, mentioned in the previous chapter. In this scenario, vehicles 5
(red — street s2) and 6 (blue — street s5) want to turn left, in street s4 that has a traffic
jam. But when the vehicles 5 and 6 communicate with the infrastructure, our models
enter in action. In this context, we can have the following applications, based mainly

in the service of route suggestion:

e ALLuPIs, discussed in Chapter 4, knows that the next intersection has a bet-
ter performance than others, since it can measure the response time and the

utilization of passing through a crossroad (turning or moving forward).

e MoVDic knows that more vehicles turn left in this crossroad because of its pre-
diction (by definition). Therefore, based with these two information, the infras-

tructure can send a new path to vehicle 5 in order to avoid the traffic jam.

e STRIP, in turn, could previously tell vehicles that street s4 will be congested in

the next time horizon, changing the decision of the last route for vehicle 5.

Recall that all these processes can occur in real time, given a more precise infor-
mation to the traffic jam minimization procedure. Also, for sure the performance of
such application will depend on how routes will be suggested. Therefore, an important
task is to investigate how can we better suggest routes while minimizing the traffic jam,
i.e. better spreading the traffic flow in the city, and also to evaluate these proposals
and their impact in the travel time, fuel consumed and CO4 emissions. This is shown

in the next chapter.
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Figure 5.22: Example of how to use the proposed models.

5.4 Chapter Remarks

This chapter presented two prediction models: (i) MoVDic, a mobility vehicular pre-

diction model; and (ii) STRIP, a short-term traffic jam forecasting model.

First, MoVDic has been proposed to predict how the traffic flow spreads in the
scenario. The driving idea of this work was to propose a model to predict the mobility
of vehicles in a city through Bayesian networks. The Bayesian network predicts the
likelihood of a vehicle to follow a certain direction based on its current location and
trajectory. The key idea is to predict the future locations of vehicles. That is, consider
a vehicle that follows some path. When it arrives at an intersection, it can turn
left, turn right or move forward. How can we forecast the probability of vehicles that
will turn left, turn right or move forward when they arrive at an intersection? How
to recover such mobility in a highly dynamic environment as VANETSs in real-time?
MoVDic calculates the probabilities of seeing a vehicle in a street segment, considering
the observed data from detectors. The Metropolis-Hastings algorithm has been used

considering the Dirichlet as the prior distribution.

Two sub-scenarios have been used to validate our model, a smaller one with 125
streets and a bigger one with 2216 streets. Results have shown that the values observed
from detectors and the mobility of vehicles are correlated. The higher the number of
vehicles on the street at an instant of time, the higher will be the probability of seeing
a vehicle in that street. We have also evaluated the distance between the real mobility

of vehicles and the obtained from the prediction model through distinct metrics: (i)
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hits to predict the street with more turnings; (ii) mean prediction error considering
several crossroad categories. We have also evaluated how many crossroads are valid
and accurate to the model, that is, having a minimum of vehicles in the crossroad and
predicting correctly to street with more turning choices. Comparing both scenarios,
results have demonstrated that MoVDic is accurate for up to 74% in S125 and 80%
in S2216, in average, for up to 85% of the crossroads in S125 and 24% in S2216. This
indicates that our model is quite accurate for valid crossroads. The mean error was
lower than 0.002 for both scenarios, being lower to S2216 since it presented less vehicles
than S125 (130 vehicles against 500 vehicles).

We have also vary the minimum number of vehicles in the crossroads, based on the
density of vehicles in the scenario. Recall that MoVDic performs well for crossroads
with 2, 3 and 4 exit-streets, predicting correctly the crossroads with more turning
choices more than 82% of crossroads. It has also achieved up to 100% in some cases,
when we have a higher number of vehicles (150 vehicles). Since the amount of valid
crossroads with 2 and 3 exit-streets is higher than with 4 and 5 exit-streets, then the
result for 2 and 3 exit-streets is more representative than for 4 and 5 exit-streets.

Second, we have proposed a short-term traffic jam prediction, named STRIP. Its
has a distributed architecture, with one logistic regression per street. We forecasted
traffic jam for a near future (30 min). We gave a proof of concept that check-ins can
be used as social sensors to improve the accuracy of prediction models. Then, the
correlation between check-ins and traffic jam has been following a methodology that
allows us to indicate when and where such sensors are significant to STRIP.

According with our results, the social sensors are very significant for 90.32% of
streets with SS1 and 58.07% streets with SS2. As proved, social sensors can improve
the prediction quality (from 80% up to 90%, in general). We have also evaluated the
performance of STRIP in comparison with baseline approaches, including our previous
model [Tostes et al., 2013]. Results have shown that the accuracy of STRIP in pre-
dicting the next 30 min-traffic jam increased up to 90% for some streets, being above
the baseline (84% for [Niu et al., 2014] and 86% for [Kurihara, 2013]).

Therefore, we have explored the proposal and the evaluation of two prediction
models: MoVDic and STRIP. Notice that we can use both models to predict a road
contention and to start a contingency plan. Protocols can initiate a congestion algo-
rithm while quantifying the contention level. Other studies can use the information of
crossroad performance to apply it in a routing protocol while searching for the next
hop. Also, we can use MoVDic to design a new mobility model for any city. In dissem-
ination and routing protocols, we can use MoVDic to inform future densities instead

of using the real-time densities. We can also investigate new approaches to use the
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forecasted paths. About STRIP, future works can investigate its performance in other

cities and with new sensors (physical, virtual or social).



Chapter 6

Services

In this chapter, we discuss one specific service approach to prevent and to control
traffic jam: the load balance of traffic flow. Recall that, besides the load balance of
flow, we have also made collaborations in other services, such as protocols for congestion
detection and control [Aratjo et al., 2014; Aratjo et al., 2014; de Brito et al., 2015,
2014b], and data dissemination [de Castro et al., 2013; Soares et al., 2014b|.

Related work have different focus in the context of services to deal with traffic
jam. Some focus on ways in which VANET could be used to support algorithms
which reduce emissions and fuel consumption (e.g. [Doolan and Muntean, 2013| and
[Fiifler et al., 2005]). Others propose novel communication protocols in terms of how
to identify, minimize and disseminate the information of traffic congestion, after it
happens (e.g. [Araujo et al., 2014; Soares et al., 2014a]). There are also proposals
of traffic jam forecasting (e.g. [Jain and Sethi, 2012; Kurihara, 2013; Manasseh and
Sengupta, 2013]) and of novel navigation algorithms, deciding how to determine quicker
and more fuel-efficient routes for vehicles (e.g. [Chen et al., 2011; Sommer et al., 2010]).
Instead, we study ways to suggest routes while mitigating the traffic congestion.

Here we assign routes to vehicles according with the graph modeling that mini-
mizes the traffic congestion (a mitigation process), considering also the roads capacity
and flow. Suppose that at least one crossroad has a static node representing the RSU.
When a vehicle commutes from a source to a destination, it requests a path to the
nearby RSU. Recall that we consider both source and destination as crossroads. As a
solution, we use the modeling of mode (iii) with Graph Theory, as the union of two
graphs: the graph of mode (i), defined as G; = (Vi, E4) (vehicles); and the graph of
mode (ii), defined as Go = (Va, Ey) (RSU). The edges of this graph G = G; U G4 are
FE; = FE; U E,, which enables the communication between vehicles, infrastructures and

between the vehicle with the infrastructure. Therefore, the RSU determines the best

133
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route between all possible routes, which are the k—shortest-paths algorithm in Gs.

The traffic congestion was modeled as the Multicommodity Flow Problem (MFP).
We use a non-directional graph G = (V, E) and a set of source (s;) and destination
(t;) pairs defined as {(s;,t;) : 1 < i < k} |[Raghavan and Tompson, 1987]. The set
of vertexes V' consists in the definition of several possible sources. For each source s;,
there is a path to its respective destination ¢; through the set of edges E of the graph
G. Each edge e € E has a capacity c(e), which is the superior bound for the total flow
capacity in e.

We map the problem of congestion minimization as the following graph problem:
assign disjoint paths from multiple sources to multiple destinations. From the set
o = P, : 1 <i <k such that P; is the path from s; to ¢; in G, the MFP problem is how
to find a route for each pair of source/destination in g that minimizes the number of
paths that use same edges. Since this problem is NP-hard [Even et al., 1975], we use

heuristic to find solutions closer to the optimal in a polynomial time [Karp, 1972].

5. Services
Suggestion of Routes Heuristics
(load balance of traffic flow)
i
ISCC'15 > Evaluations
> =2 fiy
o Heuristics evaluations
Constructive under different conditions
> .
Constructive L»|  VANET Application
> *k t\l}l'.p
- - Applying our solutions in
Multlparhte the TAPAS Cologne
*k scenario
> Multipartite
— Heuristics
> - Travel time
Local Search - Fuel consumed
- - CO2 emissions
" Local Search —>  Movbic
> *x - Travel time
- - Fuel consumed
Metaheuristic/GRASP - CO2 emissions
> . —> STRIP
Metaheuristic/GRASP

- Prediction accuracy

Figure 6.1: Description of the Services chapter.

Figure 6.1 summarizes this chapter goals. First, we propose the following heuris-

tics, with several levels of complexity [Tostes et al., 2015]: (i) two constructive heuris-
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tics; (ii) two multipartite heuristics; (iii) two local search heuristics; and (iv) two meta-
heuristics. Second, we have evaluated all heuristics in terms of time and cost, varying
the scenario size and requested routes. Third, we have evaluated a realistic scenario
based on a trace from vehicular networks in terms of travel time, CO4 emissions and
fuel consumed. Three strategies have been used: (i) with our proposed heuristics; (ii)
with MoVDic prediction; and (iii) with STRIP prediction. Results have shown that,
with our proposed heuristics, we can have a decrease of up to 56% in travel time,
and up to 18% in both CO, emissions and fuel consumed, in average, against 33% in
travel time and up to 11% in CO, emissions and fuel consumed when using MoVDic
prediction. Also, the accuracy of STRIP was more than 95%, in average.

The rest of this chapter is organized in five sections, as it follows. Section 6.1
explain the heuristics proposed. Section 6.2 describes the evaluations that have been
made in our heuristics. Section 6.3 presents the developed applications based on our
heuristics and both of our prediction models, MoVDic and STRIP. In Section 6.4, we
summarize our results with a brief discussion. Finally, this chapter remarks is presented

in Section 6.5.

6.1 Suggestion of Routes Heuristics

In this section, we explain the heuristics proposed as solution to MFP in vehicular

networks.

6.1.1 Constructive Heuristics

Here we propose two constructive heuristics: Random Routes and Sorted Routes.
These heuristics assign a route for every vehicle, considering three parameters: (i)
a road graph; (ii) a capacity matrix; and (iii) a list of source/destination pairs. They
differ in the selection of which vehicle will be firstly assigned with a route. Random
Routes selects randomly the vehicle that will be assigned with a route, while in Sorted
Routes we assign a route to the farthest vehicle first.

The first proposed heuristic is called Random Routes, described by Algorithm 9.
In Line 3, we randomly remove vehicles from the list of routes, until the list becomes
empty. At each iteration, in Lines 4 and 5, we calculate and assign a new route to
the selected vehicle, by using the shortest—path algorithm of |Dijkstra, 1959]. For each
assigned route, in Line 6, we update the weights of edges according with the ¢(x) func-
tion (see Equation 6.1), proposed in [Buriol et al., 2003] based on the weight /capacity

relation (l,/c,) in the capacity matrix.
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Algorithm 9 Random Routes

Require: Graph G = (V, E), list R of n pairs of source/destination (required routes).
Ensure: Array of suggested routes to vehicles.
1: Create an array R of n lists of vertexes to store the routes suggested.
2: for each vehicle » € R randomly chosen do
3 Remove the vehicle r from the list R
4 Assign to the vehicle r the route e, calculated by the Dijkstra algorithm.
5: Add the route e to the array R™ in the index of r.
6
7
8

Update the weights of the edges of the route e according with the ¢ function.
: end for
. return R™

The second heuristic is called Sorted Routes, described in Algorithm 10. First, in
Lines 3-6, we assign a route for each vehicle through the algorithm of [Dijkstra, 1959].
Second, in Line 7, we sort the list of routes in a decreasing order according with the
size of the routes. Third, in Lines 8-13, for each vehicle in the sorted list, we assign
a new route calculated by [Dijkstra, 1959] and we update the weights of the edges by

using the ¢(z) function.

1, se 0<ly/ca <1/3
3, sel/3<l,/cqa<2/3
10, se 2/3 <l,/cqa <9/10
70, se 9/10 <ly/ca < 1
500, sel<l,/c, <11/10
5000, se 11/10 <l,/c, < o0

Algorithm 10 Sorted Routes

Require: Graph G = (V, E), list R of n pairs of source/destination (required routes).
Ensure: Array of suggested routes to vehicles.

1: Create an array R™ of n lists of vertexes to store the routes suggested.

2: Create an array D with the size of the n requested routes.

3: for each vehicle r € R do

4: Assign a route aux to the vehicle r, calculated by the Dijkstra algorithm.

5: Store the size of the route auz in the array D|r].
6
7
8
9

: end for
: Sort the list R in descending order according with the size of the routes in the array D.
: for each vehicle r € R do
: Remove the vehicle r from the list R
10: Assign the route e to the vehicle r; calculated by the Dijkstra algorithm.
11: Add the route e to the array R™ in the index of r.
12: Update the weights of the edges of the route e according with the ¢ function.
13: end for
14: return R
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6.1.2 Multipartite Heuristics

One technique that improves the quality of the constructive heuristic solutions is the
multipartite approach. The idea is to perform several times a constructive heuristic
with a perturbation in the input data. Accordingly, at each execution, we have a
different solution with different costs. What is important is to randomize the solution,
producing several options among which we choose the best. This section describes two
multipartite heuristics, based on constructive heuristics.

First, we propose the multipartite heuristic known as Multipartite Random
Routes (MRR), presented in Algorithm 11. At each execution of Random Routes
in Line 3, we find a new solution based on the random choice of the vehicle that will
be assigned with a route, using an uniform distribution. This means that all vehicles
have equal probability of being selected, regardless of the distance to the destination.

In Line 4, we keep the best solution amount the solutions proposed.

Algorithm 11 Multipartite Random Routes

Require: Graph G = (V, E), list R of n pairs of source/destination (required routes), the
number of iterations ¢.
Ensure: Array of suggested routes to vehicles.
1: Create an array R of n lists of vertexes to store the routes suggested.
2: fori=1—1tdo
3: R = RandomRoutes(G, R)
4: Update R if this is the best solution that has been found.
)
6

: end for
. return R"¢

Algorithm 12 Multipartite Gaussian Sorted Routes

Require: Graph G = (V, E), list R of n pairs of source/destination (required routes), the
number of iterations ¢.
Ensure: Array of suggested routes to vehicles.
1: Create an array R of n lists of vertexes to store the routes suggested.
2: fori=1—1tdo
3: R = GaussianSortedRoutes(G, R)
4: Update R if this is the best solution that has been found.
)
6

: end for
. return R"¢

We also propose the multipartite heuristic known as Multipartite Gaussian Sorted
Routes (MGSR), presented in Algorithm 12. The idea is to choose first the most
requested routes. In this case, we privilege the routes with average size instead of
short and long routes. The advantage is the flexibility, because we can change the

probability distribution if there are more long or short routes. MGSR is based on a
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Algorithm 13 Gaussian Sorted Routes

Require: Graph G = (V, E), list R of n pairs of source/destination (required routes).
Ensure: Array of suggested routes to vehicles.
1: Create an array R of n lists of vertexes to store the routes suggested.
2: Create an array D with the size of the n requested routes.
3: Create two doubles: u and o.
4: for each vehicle r € R do
5: Assign the route aux to the vehicle r, calculated by the Dijkstra algorithm.
6
7
8
9

Store the size k of the route auz in the array D[r].
Calculate p = p+ k
: end for
: Calculate p = p/n
10: Sort the list R in descending order according with the size of routes in the array D.
11: Calculate o by Equation 6.1.
12: for R is not empty do
13: Randomly choose a vehicle r through the Gaussian distribution (u, o) and remove this
vehicle from the list R.
14: Assign the route e to the vehicle r, calculated by the Dijkstra algorithm.
15: Add the route e to the array R™ in the index of r.
16: Update the weights of the edges of the route e according with the ¢ function.
17: end for
18: return R"*

version of Sorted Routes, the Gaussian Sorted Routes described in Algorithm 13. We
have inserted a perturbation in the choice of the vehicle made by Sorted Routes. We
highlight the differences in Lines 3, 7, 9, 11 and 13. The selection of a vehicle occur
based on a Gaussian distribution (normal) with mean p and a standard deviation o

that are calculated based on the distance from sources to destinations.

6.1.3 Local Search Heuristics

Despite multipartite heuristics have better results than constructive heuristics, they
still lack the ability to improve the result. Additionally, a good solution cannot be
guarantee due to the randomness of the results. The idea of local search heuristics is
to improve the solution of a constructive heuristic or multipartite, to achieve optimal
local (or global) solution.

In this section, we propose two local search heuristics: (i) best improvement
(2-OPT-BI), described in Algorithm 14; and (ii) first improvement (2-OPT-FI), pre-
sented in Algorithm 15. The difference between them is in Line 4. While 2-OPT-BI
moves to the best solution among the neighbors, 2-OPT-FI moves the solution that
gives the first improvement.

The local search algorithm starts through a multipartite heuristic, also known



6.1. SUGGESTION OF ROUTES HEURISTICS 139

Algorithm 14 2-OPT-BI

Require: Graph G = (V, E), list R of n pairs of source/destination (required routes), the
number of iterations ¢.
Ensure: Array of suggested routes to vehicles.
1: Create an array R of n lists of vertexes to store the routes suggested.
2: while there is improvement in the solution do
3: R"** =MultipartiteRandomRoutes (G, R)

4: for each one of the k neighbors

5. do

6: Randomly choose an edge.

T Save the weight of this chosen edge.

8: Set the weight of this chosen edge to infinite.

9: Randomly choose a route, saving its source s and its destination ¢
10: Find the shortest path from s — t using the Dijkstra algorithm.
11: Set this new path as the vehicle route
12: Calculate the cost of this new solution S*

13: Set the weight of the chosen edge to its original weight
14: if cost(S*) < cost(R"¢") then

15: Rt = G*

16: end if

17: end for
18: end while
19: return R"¢

Algorithm 15 2-OPT-FI

Require: Graph G = (V, E), list R of n pairs of source/destination (required routes), the
number of iterations t.
Ensure: Array of suggested routes to vehicles.
1: Create an array R of n lists of vertexes to store the routes suggested.
2: while there is improvement in the solution do
3: R"¢* =MultipartiteRandomRoutes (G, R)

4: while there is no neighbor with a better solution than cost(R") do
5: Randomly choose an edge.
6: Save the weight of this chosen edge.
T Set the weight of this chosen edge to infinite.
8: Randomly choose a route, saving its source s and its destination ¢
9: Find the shortest path from s — ¢ using the Dijkstra algorithm.
10: Set this new path as the vehicle route
11: Calculate the cost of this new solution S*
12: Set the weight of the chosen edge to its original weight
13: if cost(S*) < cost(R"") then
14: Rt = G*
15: end if

16: end while
17: end while
18: return R"
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as randomized constructive heuristic (Line 3). The neighbor is defined as the set of
solutions that can be achieved by removing and edge (from the solution) by another
route, calculated through the shortest path algorithm of [Dijkstra, 1959]. For each
iteration the algorithm tries to change one edge from a route by other, evaluating this
exchange in terms of the quality of the solution (cost, which, in this case, we measure
by the number of repeated edges in different routes). This happens in Lines 6-10 in
Algorithm 14 and in Lines 5-9 in Algorithm 15. The heuristic searches for a better
solution (Lines 11-15 in Algorithm 14 and Lines 10-14 in Algorithm 15), based on
an initial solution. The algorithm is executed while having a better solution (Line 2),

analyzing all the neighbors.

6.1.4 Metaheuristics

Here we propose two metaheuristics of reactive Greedy Randomized Adaptive Search
Procedure (GRASP) [Feo and Resende, 1995], each with two phases: (i) create a viable
solution; (ii) apply a local search. The idea is to improve an initial solution by using
the local search to achieve an optimal solution (local or global). Since we calculate
the initial solution by a multipartite, we generate several local optimums. At the
end, we return the best solution among all the solutions found. In order to control
the diversification of solutions and the intensification of improved solution, we use the
parameter of randomness «, which is self-adjusting according with the previously found

solutions.

Algorithm 16 Metaheuristic of Reactive GRASP

Require: Graph G = (V, E), list R of n pairs of source/destination (required routes), the
number of iterations ¢.
Ensure: Array of suggested routes to vehicles.
1: Create an array R™ of n lists of vertexes to store the routes suggested..
2: for each i of MAX(Iterations) do
3: R = MultipartiteRandomRoutes(G, R)

4: Run local search approach in R"¢

5: Update « every k iterations.

6: if custo; < lowest cost 4+« * ( highest cost — lowest cost ) then
T Save the solution and its cost

8: end if

9: end for

10: return Best solution found in the procedure

Algorithm 16 describes the metaheuristics Meta—BI and Meta—FI. The difference
is in the utilization of the two local search algorithms proposed in previously, respec-
tively 2-OPT-BI and 2-OPT-FI. Line 5 shows the automatic update in the parameter
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of randomness («), which is initialized with value of 1, and is decreasing by 0.1 every k

iterations. When « reaches zero, we increase until it reaches 1, also every k iterations.

6.2 Evaluations

We have defined a metric of cost for the heuristics. In this work, the cost means the
number of edges in more than one route. That is, for each route assigned, if two
routes have the same edge, than we increase in one unit in the cost of the solution
(per every edge). A heuristic has cost zero when there is only routes with disjoints of
edges. Then, we evaluate the heuristics in terms of time and cost. For the time, we
have made an asymptotic evaluation. For the heuristic cost, we have varied the size of
requested routes and the size of the scenario. Finally, to have an overview of all pairs
of sources/destination, before starting a route, vehicles request routes to the nearest
RSU, which responds with a set of routes, calculated by the heuristics proposed. At

each time interval, the RSU has a set of requests and initiates the proposed heuristic.

6.2.1 Asymptotic Evaluation

According with the number of requested routes, we made an asymptotic evaluation
of the constructive heuristics proposed (Random Routes — RR and Sorted Routes —
SR). Consider a graph G = (V, E), with v vertexes (crossroads) and e edges (streets),
representing the road network where we request k routes. Based on the algorithm
description, one can notice that RR has complexity of O(k x (e + vlogv + €)) =
O(k(e + vlogv)) = O(ke + kvlogv). For each k routes, the shortest path algorithm
is performed (O(e + vlogv)) and the weights of all edges are updated (O(e)). On
the other hand, SR generates k shortest paths and sort them by the size of the route
(O((v — 1) log (v —1))}). We generate the final routes while we update the weights of
edges through the ¢ function, at each iteration (O(ke+kvlogv+wvlogv) — see Equation
6.2). Therefore, RR has an asymptotic upper bound lower than SR.

O(k x (e +vlogv) + (v—1)log (v — 1)+

kx (e+vlogv) +e) =

O(ke + kvlogv + vlogv + ke + kvlogv) + ke) =
O(ke + kvlogv + vlogv) (6.2)

'In the worst case, each route will go through v — 1 vertexes.
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In addition, we made an evaluation of time (in milliseconds)?, considering the
following: (i) time to create the graph; (ii) time to create the array of routes; (iii)
calculation of routes by the heuristic that is being evaluated; and (iv) retrieval of the
heuristic cost. These computations were executed for both RR and SR. We have used
the grid scenarios of 50 x 50 and 100 x 100 vertexes. Figure 6.2 illustrates the results.
It can be seen that the time spent by RR is lower than the time spent by SR as far as

the number of routes increases. This was expected due to the asymptotic upper bound.

Evaluation of Time Evaluation of Time

in ri X . .
a Grid 50 x 50 in a Grid 100 x 100
400 2500
350 -
300 - 2000 -
m | —
é 250 g 1500 -
) 200 - =
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Number of Requested Routes Number of Requested Routes
—RR —SR —RR —SR
(a) 50 x 50 (b) 100 x 100

Figure 6.2: Time evaluation results for Random Routes and Sorted Routes.

6.2.2 Evaluation by the Size of Requested Routes

Here we varied the size of the requested routes to evaluate our heuristics. We have two
categories of assessment: (i) requests of short routes; and (ii) requests of long routes.
We consider a route as short if it has two or less edges, and as long if a commuter can
travel from one corner of the grid to another. For this analysis, we have used a grid of
4 x 5. Figure 6.3 presents the results. We can observe that the higher is the size of the
requested route, the higher is the cost of the heuristic since it is harder to balance the
load of vehicles. Independent of the scenario, the best approach were OPT-PA and
OPT-MA. When there are more requested routes, SR is better than RR, while RR is
better when we request a small number of routes (5 up to 15). Notice that 15 requested
routes is the inflection point, that is, over this point, an additional requisition provokes

more impact on the cost than what it was.

2The machine we use was completely dedicated to experiments, with the following configuration:
Mac OS X version 10.6.8, with Intel Core 2 Duo of 2.4GHz and 4GB of RAM DDR3.
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Figure 6.3: Cost of heuristics in terms of the size of requested routes.

6.2.3 Evaluation by the Request of Random Routes

To evaluate heuristics sensitivity to the number of routes requested we have generated

randomly n sources and n destinations in scenarios of increasing size. The number of
routes varied from 1 to 100 routes in a grid 4 x 5, 50 x 50, 100 x 100 and 150 x 150.

For Random Routes, we evaluate the average of 100 performances.

Figure 6.4 has the results for the constructive heuristics. Notice that both have

similar behavior for the small scenario (grid of 4 x 5 — Figure 6.4(a)), but, for bigger
scenarios (Figures 6.4(b), 6.4(c) and 6.4(d)), Random Routes has a better performance

than Sorted Routes in terms of cost. This can be explained by the edges congestion

caused by Sorted Routes at each iteration (each new route), which consequently in-
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creases the solution cost. When the selection of vehicles is random, we assign distinct

routes that reduces the cost, in average.
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Figure 6.4: Sensibility to the size of routes for constructive heuristics.

Figure 6.5 illustrates a comparison between the constructive, multipartite and
local search heuristics. Through Figure 6.5(a), we can observe that, as expected, for
the grid of 50 x 50, the multipartite approaches have better solutions, closer to the
optimal, than the constructive heuristics. The higher is the number of routes requested,
the higher is the cost of the solution. Besides, recall that there is almost no distinction
in the performance of the multipartite heuristics, i.e., they are equivalents. For grids
bigger than 50 x 50, the results were the same, and we omit them due to space issues.

In addition, Figure 6.5(b) shows the results of the local search heuristics in a
bigger grid, of 100 x 100. Similarly, local search solutions have similar behavior to the
multipartite heuristics, presenting small peaks of improvements for some number of
routes requested. This is a indicative that we did not choose the neighbors properly.

For instance, when we requested 100 routes, the heuristic 2-OPT-BI had a higher cost
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Figure 6.5: Sensibility to the size of routes for multipartite and local search.

than the heuristic 2-OPT-FI, which is an evidence of multiple optimal solutions in the

space of MFP solutions.

6.2.4 Evaluation by the Request of Predefined-size Routes

The heuristics proposed regarding to request of routes with sizes predefined increases
gradually until it achieves the maximum size of a route in the graph (30 routes).

As Figure 6.6 shows, there is no clear difference in cost between heuristics when
we increase the number of routes in the scenario. RR has lower cost than SR. For both,
the cost increases as the number and the size of routes is incremented.

According with the graph of Figure 6.6(c), both multipartite heuristics have the
same performance in terms of cost. Although, they are only better than the constructive
heuristics when we request more than 20 long routes (size 20). Therefore, this means
that there is no different when we request short routes. When we observe Figure 6.6(d),
which indicates that most heuristics had the same cost, we can see that Sorted Routes
has slightly higher cost after requesting up to 40 routes.

Since some heuristics had similar behavior, we have also evaluated the conver-
gence time to a solution closer to the optimal. In the grid of 150 x 150, we request
100 routes from different sources to different destinations, randomly selected. Through
the graphs of Figure 6.7, we can observe that MRR has a better performance than
MGSR, since MRR converges faster to the optimal solution (Z* = 108) while MGSR
took substantially more time to outstrip the cost of 117.

As for the local search heuristics, we present the cost to achieve an optimal
solution (evolution of the heuristic’s cost) in Figure 6.7(b). There is a significant
improvement comparing 2-OPT-BI and 2-OPT-FI. In 1,000 iterations, we can observe
that 2-OPT-BI achieves a better solution faster than 2-OPT—F1I. This happens because
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Figure 6.7: Efficiency of multipartite and local search heuristics.

2-OPT-FI can make detours while searching for a local optimal solution, since it is

satisfied with the first improvement. Rather, 2-OPT-BI always ensures the choice of
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the lower cost solution between neighboring solutions. Therefore, in this scenario, the
best is 2-OPT-BI.

6.2.5 Evaluation of Metaheuristics

We had two goals in order to evaluate the metaheuristics: (i) to know the cost (and the
solution) of the best metaheuristic; and (ii) to analyze the time spent to achieve this
solution. For that, we have requested from 10 to 100 routes, randomly. We have chosen
sources and destinations crossroads randomly with a uniform distribution. We have
made 100 iterations with both metaheuristics. The parameter of randomness («) was
self-adjusted every 20 iterations. First, o starts with the value of 1 for diversification,
and then we reduce this value until it reaches zero, for intensification. After this, we
have increased the value until 1 and repeat this cycle all over again. In diversification,

the metaheuristic prioritizes viable solutions.
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Figure 6.8: Results for the metaheuristics in a grid of 100 x 100.

Figure 6.8 presents the results for Meta—BI and Meta—FI. In Figure 6.8(a), we can
observe the performance of the metaheuristics in comparison with the other heuristics.
We can observe that both had similar performance (same cost), and that RR was the
worst heuristic. Until 60 routes requested, both found the optimal cost. To distinguish
which one was the best, Figure 6.8(b) presents the evolution of the heuristic cost (until
achieving the optimal solution), i.e. the robustness of heuristics® when they achieve
the solutions with same cost. Meta—BI is better than the Meta—FI, because Meta—BI
tends to the optimal cost faster than Meta—F1.

3Robustness indicates how fast a metaheuristic decreases its solution heading towards the optimal.
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6.3 VANET Applications

In this section, we have evaluated our proposed solutions in a VANET scenario. The
chosen scenario is the large-scale realistic mobility dataset of TAPAS Cologne. Such
dataset spans two hours of vehicles’” movements over a 400km? area of the city of
Cologne, Germany [Uppoor and Fiore, 2012], being realistic from both macroscopic and
microscopic viewpoints [Uppoor and Fiore, 2011]. Moreover, it contains information
such as different types of roads, traffic light programs and road signalization, which is
used as input for the Simulation of Urban MObility (SUMO) [Behrisch et al., 2011].
Notice that, this turns our analysis much more accurate and complete than using a
regular Manhattan grid, since streets have different characteristics and this scenario is
more complex than grid.

We have made three analyses. First, in terms of our proposed heuristics, discussed
and already evaluated in this chapter. Second, as an application of our proposed model

MoVDic. Third, to evaluate the performance of our proposed model STRIP.

6.3.1 Our Proposed Heuristics

In order to evaluate the performance of our heuristics with real data, we have used
the following metrics: travel time, fuel consumed and CO5 emissions. Our goal is to
assess the behavior of our heuristics under different road traffic conditions. For that,
we made the load balance of flow in the network while suggesting routes for vehicles at
different times of the day, i.e. at every 100 seconds interval, we suggested a different
route according with the proposed heuristic (RR or MRR) for each vehicle.

Results are demonstrated in Table 6.1. We compared these two scenarios with
the original scenario (in Table 6.1 “None”), in which there is no route suggestion (we
use the original routes for each vehicle). For MRR, we have used 5 iterations that
produce a good cost—benefit. When we increase the number of iterations in MRR, its
performance gets better but it takes longer time to make the suggestion. According
with the results shown in Table 6.1, as the time goes, the traffic density increases
(at 6am is 61 vehicles/km while at 7:30 is 108 vehicles/km) and the travel time, fuel

consumed and CO, emissions decrease.

Table 6.1: RR and MRR results in TAPAS Cologne.

Method | Average Travel Time | Average CO2 Emissions | Fuel Consumption
None | 47.8990 0.3422 2.0322 0.009 0.8102 0.004
RR 23.5762 0.1282 1.7046 0.007 0.6796 | 0.0029
MRR | 20.7990 0.0867 1.6623 0.0070 0.6627 | 0.0028
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Figure 6.9: The main results for the load balancing. The boxes reach from the 25%
to 75% quartile while the whiskers extend to 1.5x InterQuartile Range. The bold line
within the box marks the median.

Figure 6.9 summarizes the main results for the load balance with our proposed
heuristics. The travel time reduced significantly when we started suggesting the routes
(50% for RR and 56% for MRR, in average). We can see a drop in the average travel
time when we use MRR instead of RR. The same occurs for the average CO5 emissions
and fuel consumption. We can see that the average CO4 emissions was reduced in 16%
for RR and 18% for MRR, in average. About the fuel consumption, in average, RR
decreased in 16% while MRR decreased in 18% compared with no rerouting.

6.3.2 MoVDic Predictions

In this section, we show how the prediction from our proposed model MoVDic may be
used to improve the overall road traffic condition at a large city. For that, we simulate

a route recommendation application for the city of Cologne, as mentioned. The idea is



150 CHAPTER 6. SERVICES

to suggest the best routes to vehicles based on predicted traffic conditions, and then,

assesses possible improvements regarding efficiency and environment metrics.

Initially, we randomly select 50 trips, i.e., origin-destination pairs for Cologne.
Then, starting at time 1800s of the dataset (06:30 a.m.), every 30s, we define the
routes for these trips using two strategies. In the first one (Predicted Routes), we
use the traffic prediction for the next 30s to select the best route. For instance, if
the routes being generated are for vehicles departing at time 1800s, then we use the
model output for time 1830s to choose the best routes. The second strategy (Shortest
Routes) consists in choosing the routes using distance information, i.e., it always selects

the shortest route.

This trip selection and route generation process continues until time 5370s, for
a total of 120 time steps. Therefore, a total of 6000 vehicles are added to the original
mobility dataset. This amount represents only 2% of the total number of vehicles when
we consider the resulting dataset. The resulting dataset is then given as input to SUMO
in order to execute the routes and collect both efficiency and environmental statistics.
It is worth noticing that these statistics are collected only for the 6000 vehicles added

to the original dataset.

Figure 6.10 shows the main results for both the routes generated using MoVDic
and the shortest routes. In particular, Figure 6.10(a) shows the results for the traveled
distance. As expected, routes generated by our model are longer. However, on average,
they are only 5% longer than the shortest routes. Figure 6.10(b) shows the travel times
for vehicles to complete the routes. As can be observed, vehicles using routes generated
by our proposed model takes much less time to complete their journey. Indeed, on
average, the travel time is 33% lower when compared to the shortest routes. Despite
the small increase on the average distance, the decrease in the travel time is substantial.
Figure 6.10(c) shows the amount of COy emitted per vehicle. As can be observed,
vehicles that follow the routes suggested by the model emit less CO, when compared
to vehicles that take the shortest routes. In fact, on average, they emit about 11% less
CO,. Moreover, by considering only this small amount of vehicles (2% of the dataset),
a total reduction in the amount of CO5 emitted was about 1,900 kilograms, which is
quite impressive. Finally, Figure 6.10(d) shows the fuel consumption for vehicles. Once
again, the vehicles that take the routes suggest by the model consume less fuel. On

average, they consume 11% less and the total saving was about 760 liters.

In summary, these results show that even when manipulating the routes of a small

amount of vehicles, the gains can be profound.
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6.3.3 STRIP Prediction

In this section, we show how accurate is STRIP prediction considering a VANET
scenario such as the TAPAS Cologne. First, we have produced a trace with the travel
time, density, and occupancy in each street at every 1 second of simulation. There was
up to 69,000 edges. We have executed the STRIP prediction model considering the

last 5 seconds of data from the different combinations of those variables:

GLM1. Density only;
GLMZ2. Density and occupancy;
GLM3. Density and travel time;

GLMA4. Density, occupancy and travel time.
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For each logistic regression (GLM1-GLM4), we have considered 70% for training
and 30% for the validation dataset. The metrics evaluated were accuracy and precision.
Figure 6.11 presents the results of STRIP for each GLM already mentioned, considering
the average of traffic congestion in the street. Figure 6.11(a) indicates the accuracy
of STRIP while Figure 6.11(b) indicates its precision, in accordance with the traffic
congestion in the street, that is, when the traffic density is higher than the average

density in that street.
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Figure 6.11: Results of STRIP performance with the different GLMs in comparison
with the traffic congestion.

We can observe that, overall, STRIP accuracy is higher than 75% for most GLMs,
except for GLM3 that had instances with an accuracy of 20%. For GLM4, the accu-
racies were higher than 80%. Although not having much difference, notice that GLM4
is better than the others. Also, regarding STRIP precision, notice that it is linear
proportional to the traffic congestion, achieving up to 70% of precision when the traffic

congestion is 70%.

6.4 Discussion

Considering constructive heuristics, Random Routes (RR) is better than the Sorted

Routes (SR) when there are more route required in the scenario. For scenarios with less
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route requirements, RR is better. SR performs better with more vehicles. Although,
when improving the constructive heuristics, the utilization of RR is better in terms of
time and complexity.

For the multipartite heuristics, MRR and MGSR have better performance than
the constructive heuristics, reaching solutions with a lower cost. The complexity de-
pends on the number of iterations in the multipartite approach, which consequently
determines the solution quality. MRR converges faster and closer to the optimal solu-
tion than MGSR.

The local search heuristics have no significant improvement in the cost of the
heuristic when compared with the multipartite heuristics. Despite that, the local search
2-OPT-BI consumes less time to achieve a solution with the same quality as the other
approaches. In 1,000 iterations, 2-OPT—-BI achieved a better solution, with a lower
cost, than 2-OPT-FI.

Regarding the metaheuristics, both Meta-BI and Meta—FI achieved the optimal
solution, when 60 routes were required in the scenario of 100 x 100. For scenarios higher
than that, both had solutions with the same optimal cost. About their robustness,
Meta-BI was better than Meta—FI, since we achieve the optimal solution faster. Thus,
Meta—BI was the best heuristic of this work, considering 100 iterations.

Besides, when we have used services for suggestion of routes based on our pro-
posals in the TAPAS Cologne scenario. First, we have evaluated the application of
MoVDic prediction in the suggestion of routes. Second, we evaluated the suggestion
of routes based on load balancing with RR or MRR.

In the first evaluation, we showed how the prediction model could be used as a
building block for a route suggestion application. In summary, the routes recommended
by the application led to a 5% increase on the average distance traveled, when compared
to the shortest routes. However, it incurred a 33% decrease on the travel time and 11%
decrease on the total amount of COy emitted and fuel consumed, which is promising.

In the second evaluation, we observed a decrease in the travel time, CO4 emitted
and fuel consumed. In average, RR reduced about 50% in the travel time and 16%
in both CO, emitted and fuel consumed, while MRR reduced about 56% in the travel
time and 18% for both CO, emitted and fuel consumed. Notice that these percentages
are even better than the previous approach with MoVDic only. Although MRR is
better, it also takes longer to suggest the routes. Despite the improvement in MRR,
we could use RR as a faster and efficient approach. If we really need all improvements,
than we suggest MRR.

In the third evaluation, we observed that STRIP is very accurate and precise in

all cases. Its accuracy is higher than 80% for all streets, and its precision is linear



154 CHAPTER 6. SERVICES

proportional to the traffic congestion, achieving up to 70% of precision when the traffic
congestion is 70%.

Finally, we can compare our solution with Waze [Google, 2009]. Waze is an
application made by Google to suggest routes based on the current traffic flow of
vehicles, which is inferred according to data reported by users. Basically, it uses only
the current traffic conditions to suggest a less-congested-faster route. When we have
phase transitions, this less-congested-faster route might be not less congested in a near
future, nor even the faster route. To overcome this problem, our application can suggest
routes based on the predicted traffic flow, which behave better when we have phase

transitions. This evaluation is being conducted as future work.

6.5 Chapter Remarks

In this chapter, we have studied the problem of traffic congestion minimization in
vehicular networks, also known as MFP. It consists in minimizing the vehicles that
moves on the same roads, based on a graph of roads and a list of routes of vehicles.
We proposed and evaluated several heuristics: (i) two constructive heuristics (RR and
SR), (ii) two multipartite heuristics (MRR and MGSR), (iii) two heuristics of local
search (2-OPT-BI and 2-OPT-FI), and (iv) two metaheuristics of reactive GRASP
(Meta—BI, and Meta—FT).

Accordingly to our evaluations, the best heuristics were Meta—BI and MRR, re-
spectively. The advantage of the proposed heuristics is to avoid future congestion while
keeping the load balance of vehicles in the roads. This contributes to reduce the travel
time of commuters (up to 56%, in average), the emissions of CO5 (up to 18%, in aver-
age), and the fuel consumption (up to 18%, in average), being bigger than the simple
usage of MoVDic in the suggestion of route mechanism. Finally, STRIP performed
very well, achieving accuracies higher than 80% for all streets with a precision of up to
70% when the traffic congestion is 70%.

The disadvantage of our proposed heuristics can be the cost to find the solution.
Since MFP is a NP-hard problem, the challenge is to find the balance between good so-
lutions in a viable time for its computation. Some heuristics such as Meta—BI demand
many resources due to their complexity. The quality of the solution will be propor-
tional to its execution time. Therefore, this work contributes with various heuristics in

different levels of cost in a viable execution time.



Chapter 7

Final Remarks

Vehicular congestion is getting worse every year. New solutions to minimize traffic
jam are necessary. People believe that traffic congestion occurs because the demand
exceeded roads capacity, and only with additional infrastructure the issue will be solved.
However, as [Chen et al., 2001a] discuss, the major cause of traffic jams is inefficient
operation of highways during periods of high demand. The increase in the vehicle
fleet is not the main cause, although it contributes to a worse traffic. They say that
congestion can reduce highway efficiency by 20-50%. These 20% of efficiency loss mean
more loss of time, more stress, more pollution, more CO5 emissions, and less money. As
[Chen et al., 2001a] mentioned: “The best way to combat congestion is through increases
in operational efficiency.” Besides developing smart mechanisms, understanding the
traffic behavior is essential for such a complex matter.

In this thesis, we propose to tackle traffic jam by exploiting the traffic behavior
through probabilities, traffic incidents, phase transitions, analytical model and predic-
tion models. In particular, we have analyzed the traffic flow from Chicago and from
New York, Manhattan region. We have also analyzed the traffic incidents from Man-
hattan in comparison with USA. Then, we have identified the phase transitions, which
has provided a clearly understand of the traffic behavior. Furthermore, we proposed
an analytical model, whereby metrics for evaluating the performance of intersections,
and two prediction models, in which we can respectively predict, with a granularity
of road segment, how the mobility of vehicles spreads in the city and what traffic flow
shall be in the next instant of time. We have also correlated the intense traffic flow
with participatory sensing systems, such as Foursquare and Instagram.

Throughout this thesis, we proposed and validated models. In this chapter, Sec-
tion 7.1 summarize our conclusions and contributions drawn from the previous chapters,

while in Section 7.2 we lay out future work.
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7.1 Conclusions

In this section, we summarize the main conclusions drawn from the thorough and
comprehensive evaluation of our models, including the main contributions of this thesis.
In particular, these conclusions validate the statement of this thesis, as presented in
Section 1.2.

e The characterization of real-time traffic flow and incidents from map
services, and social data: In Sections 4.1.1, 4.1.2 and 4.1.3, we have analyzed
the properties of traffic flow, traffic incidents, and check-ins, such as, for instance,
how they evolve spatially and temporally. In addition, in Section 4.2, we have
proposed and evaluated phase transitions with two case studies, one from Chicago
and other from New York, where we have analyzed the traffic behavior. Notice
that we have compared different traffic patterns in several cities, besides these
ones. Results have demonstrated that the traffic usually has two peaks, one in

the morning and another in the evening, remarking rush-hours.

e The correlation between intense traffic flow and social sensing: Al-
though being part of the characterization module, this is an important contri-
bution that it is worth it to be highlighted. In Section 4.3, we have analyzed
social sensing sources, mainly from Twitter, Foursquare and Instagram, in order
to correlate them with intense traffic flow. We have shown that the distributions
of intense traffic low and of social sensing are similar, but shifted from § time
intervals. For example, in New York (Manhattan), intense traffic flow and check-
ins are shifted from § = 36 intervals. This indicates that check-ins can be used

to better predict the traffic congestion, as it was proved in Section 5.2.2.

e A novel analytical model to measure the performance of intersections:
In Section 4.4, we have proposed a model to evaluate crossroad intersections, con-
sidering the vehicles’ mobility and the road characteristics. This model, named
ALLuPIs, is a queue network to represent the contention at each road intersec-
tion. The goal of this model is to analyze the impact of road intersection as
possible traffic contention points. The impact of vehicle load in the throughput,
response time and utilization has been analyzed in Section 4.4.2. They indicate
that there is an optimal number of vehicles competing for intersections to achieve
a better cost/benefit relation in center response time versus utilization. For the
scenario that we have evaluated, this ideal number is 12 vehicles. Notice that

we can use this information to predict a road contention and start a contingency
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plan. Moreover, we believe that this model can be applied to general traces with

vehicle movement.

A novel prediction model on the mobility of vehicles: In Section 5.1,
we have proposed a model to predict the mobility of vehicles (MoVDic) in a city
through Bayesian network, in which the model learned through a Markov chain
Monte Carlo algorithm. The model uses only the data of street detectors, i.e.,
the number of vehicles driving on the street during a time interval, dispensing
with the need to collect data on the actual turning choices at each intersection.
The main idea is that the simple frequency of vehicles in each graph edge, and
the implied many tight constraints it ensues, the entire flow can be predicted

through a learning algorithm.

In Section 5.1.2, we validated our model when we have contrasted the values from
the detectors and the mobility of vehicles with the outputs from MoVDic. Its
validation has been conducted using the large-scale mobility dataset of TAPAS
Cologne [Uppoor and Fiore, 2012|, overcoming other approaches in terms of mean
error (less than 0.002). To predict the road with more turnings in a crossroad,
comparing both scenarios, results have demonstrated that MoVDic is accurate for
up to 74% in S125 and 80% in S2216, in average, for up to 85% of the crossroads
in S125 and 24% in S2216. This indicates that our model is quite accurate for
valid crossroads. The mean error was lower than 0.002 for both scenarios, being
lower to S2216 since it presented less vehicles than S125 (120 vehicles against 500
vehicles). Also, recall that MoVDic performs well for crossroads with 2, 3 and 4
exit-streets, predicting correctly the crossroads with more turning choices more
than 82% of crossroads. It has also achieved up to 100% in some cases, when we

have a higher number of vehicles (150 vehicles).

A novel prediction model on future traffic flow: In Section 5.2, we have
proposed a short-term prediction model (STRIP), through logistic regression, to
discovery future flow intensities for a target street. We have also discussed about
the impact of the amount of previous data that are necessary to better predict
the traffic flow.

In Section 5.2.2, we have evaluated STRIP in accordance with Manhattan data,
using as input variables the traffic flow from the current minute, from the last «
minutes, besides the time and the street identification. We have tested different
values of « in order to discover the best value with the best cost/benefit relation.

Results have shown that more than five minutes of information to the model does
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not make much difference in the performance of STRIP. Also, STRIP improves
the accuracy of the state-of-the-art studies, especially when using social sensors
data as an input (from 80% up to 90%). Its accuracy to predict the traffic jam for
the next 30 min increased up to 90% for some streets, being above the baseline
(84% for [Niu et al., 2014| and 86% for [Kurihara, 2013]).

e The suggestion of routes service with the load balance of flows: In
Chapter 6, we have proposed a service to suggest new routes to vehicles while
making the load balance of vehicles flow. We have studied the problem of traffic
congestion minimization in vehicular networks, also known as the Multicommod-
ity Flow Problem. It consists in minimizing the vehicles that moves on the same
roads, based on a graph of roads and a list of routes of vehicles. We proposed
and evaluated several heuristics: (i) two constructive heuristics (RR and SR), (ii)
two multipartite heuristics (MRR and MGSR), (iii) two heuristics of local search
(2-OPT-BI and 2-OPT-FI), and (iv) two metaheuristics of reactive GRASP
(Meta—BI, and Meta—FT).

In Section 6.2, we have evaluated these heuristics in terms of time and cost,
varying the scenario size and requested routes. Besides, we have applied these
heuristics, MoVDic and STRIP in a suggestion of routes service that was evalu-
ated in the realistic scenario of TAPAS Cologne. When considering the service
based on our proposed heuristics RR and MRR, results have shown a decrease
of up to 56% in travel time, and up to 18% in both CO, emissions and fuel
consumed, in average. By using MoVDic prediction, results led to 33% decrease
on the travel time, and 11% decrease on the fuel consumed and CO, emissions.
Finally, to predict future traffic jam in the TAPAS Cologne scenario, STRIP
achieved accuracies higher than 80% with up to 70% of precision when the traffic

congestion was 70% (linear proportional).

Finally, Table 7.1 provides a comparison between this thesis contributions on
Intelligent Transportation Systems (ITS) and the state-of-the-art. Recall that there are
some works about participatory systems, others about congestion detection and traffic
level estimation. There are also researches on dissemination protocols for VANETs and
prediction models related to traffic jam and mobility. In addition, there are studies
about traffic rerouting techniques in order to avoid or to minimize jams. Although,

this thesis is the only research that provides contributions in all layers of the ITS.
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Table 7.1: The state-of-the-art on ITS with this thesis contributions.
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7.2 Future Work

Here follows a list of possible future research directions based on this thesis content:

e Perform a comprehensive study of the traffic conditions based on complex net-

works metrics. We can study how can we apply metrics from complex networks

into our statement, providing new metrics with traffic flow information to mea-

sure the level of congestion.

e Apply our models in other applications and protocols using VANETs.

e To investigate the reason for the correlations of check-ins and traffic jam (e.g.

due to restaurants, bars?).
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To optimize MoVDic’s performance in order to achieve a real-time prediction

(e.g. create a map to update only partial data of MoVDic’s prediction).

To compare STRIP’s performance with other models, specially with a Waze-like

strategy.

To use the contention of a crossroad calculated by ALLuPIs as a variable in

STRIP and to evaluate its performance.
To analyze the entropy of check-ins according with their types and their effects.

To evaluate the suggestion of routes service in VANETs when only a percentage

of commuters follow suggested routes.

To evaluate our solutions in VANET regarding the network performance, such as

delay, packet loss and throughput.

In dissemination and routing protocols, we can use our models to inform future

densities instead of using the real-time densities.
Investigate new approaches to use the forecasted paths.

Propose new mechanisms and protocols that can take advantage of the predic-
tion output, such as suggestion of routes, congestion control and dissemination

protocols for vehicular networks.

Evaluate other techniques, such as fuzzy logic, to classify the level of traffic

congestion in the prediction models.
Analyze and predict traffic incidents.

Suggest routes based on predicted traffic flow and with a certain level of crimi-

nality in the city.

Generalize the ALLuPIs model and apply the unmarked and marked intersection
theory [Chevallier and Leclercq, 2007; Rouphail et al., 2000].

These are only examples of future work that could be made from this thesis.

Certainly, there are several other possibilities that can also be proposed.
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