
A BENCHMARK-BASED METHOD TO DERIVE

METRIC THRESHOLDS





GUSTAVO ANDRADE DO VALE

A BENCHMARK-BASED METHOD TO DERIVE

METRIC THRESHOLDS

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais – Departa-
mento de Ciência da Computação
como requisito parcial para a obtenção do
grau de Mestre em Ciência da Computação.

Orientador: Eduardo Magno Lages Figueiredo

Belo Horizonte

Fevereiro de 2016





GUSTAVO ANDRADE DO VALE

A BENCHMARK-BASED METHOD TO DERIVE

METRIC THRESHOLDS

Dissertation presented to the Graduate
Program in Ciência da Computação of the
Universidade Federal de Minas Gerais – De-
partamento de Ciência da Computação
in partial fulfillment of the requirements for
the degree of Master in Ciência da Com-
putação.

Advisor: Eduardo Magno Lages Figueiredo

Belo Horizonte

February 2016



c© 2016, Gustavo Andrade do Vale.
Todos os direitos reservados.

Vale, Gustavo Andrade do

V149b A Benchmark-based Method to Derive Metric
Thresholds / Gustavo Andrade do Vale. — Belo
Horizonte, 2016

xx, 76 f. : il. ; 29cm

Dissertação (mestrado) — Universidade Federal de
Minas Gerais – Departamento de Ciência da
Computação

Orientador: Eduardo Magno Lages Figueiredo

1. Computação – Teses. 2. Engenharia de software –
Teses. 3. Software – Reutilização – Teses. I.
Orientador. II. Título.

CDU 519.6*32(043)







Acknowledgments

This work would not have been possible without the support of many people.

I thank God to provide me the discipline and persistence to reach a Master degree.

I thank my dear wife Fernanda, who has had patience in difficult moments and has
always been by my side.

I thank my whole family — especially my father Fernando, my mother Marcia, my
sister Leticia, my father-in-law Tom, my mother-in-law Regina and my sister-in-law
Paula — for having always supported me.

I thank my advisor E. Figueiredo for his attention, motivation, patience, dedication,
and immense knowledge. I certainly could not complete my Master study without him.

I thank L. Veado, E. Fernandes, R. Abilio, H. Costa, D. Albuquerque for the valuable
collaboration in the case studies.

I thank the members of the LabSoft research group for the friendship and technical
collaboration.

I would like to express my gratitude to the members of my dissertation defense — A.
Garcia (PUC-Rio), K. A. M. Ferreira (CEFETMG) and M. T. Valente (UFMG).

I thank Capes and PPGCC-UFMG for the financial support.

ix





Resumo

Com o crescimento em tamanho e complexidade dos sistemas de software, melhores
suportes são requeridos para medir e controlar a qualidade de software. Métricas de
software são um caminho prático para avaliar diferentes atributos e características
de qualidade, como tamanho, complexidade, manutenibilidade e usabilidade. Apesar
disso, apenas os valores de métricas não são suficientes. A medição efetiva de sistemas
de software é diretamente dependente da definição de valores limiares apropriados.
Valores limiares permitem caracterizar objetivamente ou classificar cada componente
de acordo com uma métrica de software. A definição de valores limiares apropriados
precisa ser calculada para cada métrica. Com o objetivo de investigar este tópico,
uma revisão sistemática da literatura de métodos para calcular valores limiares foi
realizada. Nesta revisão, foi analisada a evolução de tais métodos e percebeu-se que
pesquisadores e profissionais da indústria não possuem um consenso sobre as caracterís-
ticas de tais métodos. De fato, muitos métodos têm sido propostos e utilizados nos
últimos anos. Após a revisão da literatura, foi realizado um detalhado estudo compar-
ativo de três métodos recentemente propostos para calcular valores limiares (métodos
de Alves, Ferreira e Oliveira). Nessa comparação são destacadas as principais carac-
terísticas de cada método e, como lições aprendidas, baseado no conhecimento teórico
e prático adquirido, são apresentados oitos pontos desejáveis para este tipo de método.
Almejando cobrir todos os pontos desejáveis e capturar o melhor de cada método,
um método é proposto para calcular valores limiares para métricas, chamado Vale’s
method. Este método foi devidamente descrito, cada passo do método foi justificado
e uma ferramenta para apoiar o método proposto e os métodos comparados foi de-
senvolvida. No total derivaram-se valores limiares para 8 métricas de software. Para
avaliar o método proposto, (i) analisaram-se os valores limiares individualmente e uti-
lizando uma estratégia baseada em métricas, (ii) analisaram-se os resultados utilizando
duas bases de dados com métricas de diversos sistemas de dois diferentes tipos, e (iii)
forneceu-se uma visão geral do método proposto comparado com outros métodos pre-
sentes na literatura. Em resumo, todos os métodos estudados parecem ser justos para
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calcular valores limiares para métricas de software, no entanto, o método proposto se
saiu melhor nas avaliações.

Palavras-chave: Qualidade de Software, Métricas de Software, Valores Limiares,
Métodos para Calculo de Valores Limiares.
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Abstract

With software-intensive systems growing in size and complexity, better support is re-
quired for measuring and controlling the software quality. Software metrics are the
practical means for assessing different quality attributes and characteristics, such as
size, complexity, maintainability, and usability. In spite of that, only the values of
metrics are not enough. The effective measurement of software systems is directly de-
pendent on the definition of appropriate thresholds. Thresholds allow to objectively
characterize or to classify each component according to one of the software metrics.
The definition of appropriate thresholds needs to be tailored to each metric. Aiming
to investigate this topic, we first performed a literature review of methods to derive
thresholds. In this review, we analyzed the evolution of such methods and realized
that researchers and practitioners do not have a consensus about the characteristics of
these methods. In fact, many methods have been proposed and have been used in the
lasts years. After the literature review, we present a detailed comparison of three re-
cently proposed methods to derive metric thresholds (Alves’s, Ferreira’s, and Oliveira’s
methods). This comparison highlights the main characteristics of each method and, as
lessons learned, we present eight desirable points for this kind of method based on our
theoretical and practical knowledge. Trying to fit all desirable points and getting the
best of each method, we propose our own method to derive metric thresholds, named
Vale’s method. We explain our method, justifying each of its steps, and develop a
tool to support the method, called TDTool. In the total we provide thresholds for 8
metrics. To evaluate Vale’s method, we (i) analyzed the derived thresholds individ-
ually and using a metric-based detection strategy, (ii) analyzed the results using two
different types of benchmarks, and (iii) provided an overview of the method compared
to other methods in the literature. In summary, all the compared methods seem to be
fair to derive metric thresholds, but our method fared better in the evaluations.

Keywords: Software Quality, Metric, Thresholds, Method to Derive Thresholds.
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Chapter 1

Introduction

With software-intensive systems growing in size and complexity, better support is re-
quired for measuring and controlling the software quality [Gamma et al., 1995]. Soft-
ware metrics are the practical means for assessing different quality attributes, such
as maintainability and usability [Chidamber and Kemerer, 1994; Lorenz and Kidd,
1994]. Certain metric values can help to reveal specific components (or modules) of
a software system that should be closely monitored [Dumke and Winkler, 1997]. For
instance, such measures can be used to indicate whether a critical anomaly (or smell)
is affecting a component structure [Riel, 1996].

Although software metrics are the pragmatic means for assessing different quality
attributes, only the values of metrics are not enough. The effective measurement of
software systems is directly dependent on the definition of appropriate thresholds.
Thresholds allow to objectively characterize or to classify each entity (e.g. module,
class, method) according to one of the quality metrics. The definition of appropriate
thresholds needs to be tailored to each metric.

1.1 Motivation, Problem Description, and Goal

Thresholds have a high influence in the software quality measurement. Additionally,
as software systems have been increasing in size and complexity in the past few years,
thresholds must be calculated in a specific context, avoiding generic or global thresh-
olds. However, it is necessary methods easy to use, simple, and fair to derive thresholds.
Given the necessity we want to know:

• What are the methods to derive metric thresholds?

• What are the main characteristics of methods to derive thresholds?

1



2 Chapter 1. Introduction

• What is desirable for methods to derive thresholds?

• Do a method better than another? Based on its characteristics?

Given these four questions, we start a literature review to answer them. We could
see that in the past few years, thresholds were calculated based on software engineers’
experience or by using a single system as reference [Chindamber and Kemerer, 1994;
Coleman et al., 1995; Erni and Lewerentz, 1996; French, 1999; McCabe, 1976; Nejmeh,
1988; Spinellis, 2008; Vasa et al., 2009]. Recently, it has been changing and thresholds
have been calculated considering three key points [Alves et al., 2010; Ferreira et al.,
2012; Oliveira et al., 2014]: (i) well-defined methods, (ii) methods that consider the
skewed distribution of software measurements, and, (iii) methods which use data from
benchmarks.

Although we have found many studies about thresholds calculation, the recent
improvements in methods to derive thresholds indicate an open field to explore this re-
search topic and we did not find any comparative study of methods to derive thresholds.
Additionally, methods previously proposed in literature do not address important as-
pects when metric-based strategies are used, such as the lower bound thresholds. Lower
bound thresholds can be useful for identifying lazy class, for example. Lazy class is a
bad smell defined as a class that knows or does too little in the software system [Fowler
et al., 1999].

Figure 1.1 presents a detection strategy to identify lazy class instances [Munro,
2005] which combine three metrics (Lines of Code (LOC) [Fenton and Pfleeger, 1998],
Weight Method per Class (WMC) [Chidamber and Kemerer, 1994], and, Coupling
between Objects (CBO) [Chidamber and Kemerer, 1994]) with logical operators (AND
and OR). Note that for each metric a specific threshold is required. According to this
detection strategy, for a class be a lazy class instance, it should have LOC and WMC
smaller than threshold of these metrics; or CBO smaller than threshold of this metric.

Figure 1.1: Lazy Class Detection Strategy (Adapted from [Munro, 2005])
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Additionally to lower bound thresholds, as we are going to see in this disserta-
tion, we compared three methods recently proposed, which address the three key points
previously mentioned. With this comparison, we described eight desirable points ex-
tracted based on our theoretical and practical experience. Following these desirable
points, the methods should: (i) be well-defined and deterministic; (ii) derive thresh-
olds in a step-wise format; (iii) be weakly dependent on the number of systems; (iv)
be strongly dependent on the number of entities; (v) not correlate metrics; (vi) calcu-
late upper and lower thresholds; (vii) provide representative thresholds independent of
metric distribution and (viii) provide tool support. These desirable points were used
as motivation to propose our own method to derived metric thresholds, called Vale’s
method.

Our method is organized in the five following steps: (i) metric extraction, (ii)
weight ratio calculation, (iii) sort in ascending order, (iv) entity aggregation, (v) thresh-
olds derivation. In summary, we need to extract the metric values of the target entities
(which composes the benchmark) to give the same weight for each entity. The sum
of all entities represents 100%. After, we should organize the entities by the value of
the selected metric. Then, we should sum up the entities with same value. Finally,
we should to derive the thresholds for each one of the labels of the method (verylow,
low, moderate, high, and veryhigh). It is important to highlight that for each metric
these steps should be followed. Additionally, we provide a tool to support our method
and, the proposed method was evaluated in different ways, it is better explained on
the next section.

The main goal of this dissertation is to propose a method to derive metric thresh-
olds addressing the eight desirable points that previous proposed methods do not ad-
dress, but these desirable points are important to derive appropriate thresholds.

1.2 Methodological Procedures and Contributions

Given the importance of metrics as well as thresholds to measure software quality, we
explore this topic in this dissertation. To achieve our main goal, we realized four main
tasks. The four tasks are: literature review, comparative study, proposal of a method,
and evaluation of the proposed method. First, we performed a literature review about
methods to derive thresholds. With this literature review, we found many methods to
derive metric thresholds. In special, we highlight three methods that fit the three key
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points previous mentioned: Alves’s [Alves et al., 2010], Ferreira’s [Ferreira et al., 2012]
and Oliveira’s [Oliveira et al., 2014] methods.

Then, we provide a comparative study with the highlighted methods using 3
benchmarks composed by software product lines (SPLs). An SPL is a configurable set of
systems that shares a common, managed set of features in a particular market segment
[SEI, 2016]. Features can be defined as modules of an application with consistent,
well-defined, independent, and combinable functions [Apel et al., 2009]. We decided
to build SPL benchmarks because of SPLs tend to be systems more modularized than
single systems and they are been increasingly adopted in software industry to support
coarse-grained reuse of software assets [Dumke and Winkler, 1997]. To build these
benchmarks, we looked for papers and repositories about SPLs. Chapter 3 gives more
details about the SPL benchmarks.

With the comparative study, we pointed out some desirable points based on
theoretical and practical knowledge applying the three methods. With these desirable
points, we find the opportunity to propose a method (third task). For example, Alves’s,
Ferreira’s, and Oliveira’s methods do not present lower bound thresholds. Additionally,
we can find aspects addressed by one method, but not addressed by other methods,
such as, to present thresholds in a step-wise format.

After the comparative study, we propose our own method, called Vale’s method.
The proposed method is descripted and we present a complete example of use. Addi-
tionally, in the third task, we provide a tool, called TDTool, to support the proposed
method and other three methods (Alves’s, Ferreira’s, and Oliveira’s methods).

Finally, on the forth task, we evaluate the proposed method using different con-
texts, benchmarks, and in different ways, such as the effectiveness in detecting bad
smells and analyzing the values individually. In the total, we derive thresholds for
eight different metrics. In the case of benchmarks, we use three benchmarks composed
by SPLs and one composed by single systems developed using Java. Differently to the
SPL benchmarks, the Java benchmark was previously proposed and used in another
studies.

1.3 Dissertation Outline

This master dissertation is organized in 6 chapters, as follows.

Chapter 2 introduces background concepts about metrics, software product lines,
and the evolution of methods to derive thresholds.
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Chapter 3 presents a comparative study of methods to derive thresholds high-
lighting desirable points pointed out in this comparison.

Chapter 4 describes the proposed method, called Vale’s method, based on the
desirable points, presented in previous chapter, and a tool to support the proposed
method and other three methods, called TDTool.

Chapter 5 evaluates the proposed method considering different aspects, such as
using different benchmarks and benchmarks from different contexts.

Finally, Chapter 6 concludes this dissertation, presents some contributions of our
work, publication results, and directions for future work. Additionally, Appendix A,
presents primary studies of our literature review.





Chapter 2

Background

This chapter presents important concepts to understand this dissertation. These main
concepts involve three main topics: software product lines (SPLs), metrics, and meth-
ods to derive metric thresholds. Section 2.1 starts with some important concepts about
SPLs and feature-oriented programming because we build a benchmark composed by
SPLs on the next chapter and, we use a metric specific to SPLs. Then, Section 2.2 intro-
duces the concept of metrics and the metrics used in this dissertation. After, the next
sections are related to the literature review and concepts about metrics to derive thresh-
olds. Therefore, Section 2.3 presents our protocol to get methods to derive thresholds.
Section 2.4 presents the results of our literature review and the different types of these
methods. Section 2.5 discusses the importance of three fundamental points of methods
to derive thresholds. We called these points of three key points. These key points
are: (i) methods well-defined, (ii) methods that consider the skewed distribution of
software measurements, and, (iii) methods that use benchmarks as database to derive
thresholds. Section 2.6 describes three methods which address these three key points.
These methods are explored in this dissertation and, because of that we present them
in a separate section. Finally, Section 2.7 summarizes Chapter 2.

2.1 Software Product Lines

Software Product Line (SPL) is a set of software systems that share a common, man-
aged set of features satisfying the specific needs of a particular market segment [Pohl
and Metzer, 2006]. The systematic and large scale reuse adopted in SPLs aim to re-
duce time-to-market and improve software quality [Pohl et al., 2005]. The software
products derived from an SPL share common features and differ themselves by their
specific features [Pohl et al., 2005]. A feature represents an increment in functionality

7



8 Chapter 2. Background

or a system property relevant to some stakeholders [Kastner et al., 2007]. And, features
can be defined as modules with consistent, well-defined, independent, and combinable
functions [Apel et al., 2009]. The possible combinations of features to build a product
are called SPL variability [Weiss and Lai, 1999] and it can be represented in a feature
model [Kang et al., 1990]. Feature model is a formalism to capture and to represent
the commonalities and variabilities among the products in an SPL [Asikainen et al.,
2006].

In order to develop an SPL, we can use different approaches, such as, annotative
[Liebig et al., 2010] and compositional [Apel and Kastner, 2009]. For these approaches,
there are several techniques, for example, preprocessors [Liebig et al., 2010], virtual
separation of concerns [Kastner et al., 2008], aspect-oriented programming [Kiczales
et al., 1997], delta-oriented programming [Schaefer et al., 2011], and feature-oriented
programming [Batory et al., 2003]. These approaches and techniques aim to support
configuration management at source code level and improve the software quality.

Feature-oriented programming (FOP) is a compositional technique to develop
SPLs. There are many feature-oriented languages and tools aiming at feature mod-
ularity, e.g., AHEAD/Jak [Batory et al., 2004], FeatureC++ [Apel et al., 2005], and
FeatureHouse [Apel et al., 2009]. In this section, we use AHEAD as a representative
for FOP compositional approaches. AHEAD is based on the concept of step-wise re-
finements. Step-wise refinement is a paradigm to develop a complex program from a
simple program by incrementally adding details [Batory et al., 2003]. The program
increments and original fragments are called refinements and constants, respectively
[Batory et al., 2003]. Classes (constants) implement basic functions of a system and
extensions in these functions constitute the class refinements. The AHEAD Tool Suite
(ATS) was developed to support FOP in AHEAD and it has tools for realization and
composition of features [Batory, 2004]. ATS relies on the Jakarta (Jak) programming
language (superset of Java) [Batory, 2004]. Constants and refinements are defined
in Jak files, but constants are pure Java-code and refinements are identified by the
keyword refines.

Figure 2.1 depicts the concept of constants and refinements into features. In this
figure, three features are represented (i, j, and k). Feature i has 4 class constants (ai,
bi, ci, di); feature j has 3 class refinements aj, cj, and dj and 1 class constant ej; feature
k has 2 class refinements ck and dk. However, the refinements ck and dk cross-cuts 3
features, i.e., it encapsulates fragments of i, j, and k. In general, a forest of inheritance
hierarchies is created as features are composed, and this forest grows progressively
broader and deeper as the number of features increases [Batory et al., 2002].
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Figure 2.1: Features, Constants, and Refinements relationship

Figure 2.2 depicts a code example in AHEAD. The ai class implements a stack
with two methods: push and pop. The refines keyword in aj class indicates that aj
refines ai. In this example, the aj class adds new methods (backup() and restore())
and extends the behavior of the push() method (in the ai class) by adding the calling of
backup() method. The calling of push() method in the refinement chain is performed
using the Super keyword. We use ATS to compose base code and different feature
modules. Different products are generated according to inclusion of features in the
composition process [Kastner and Apel, 2008].

Figure 2.2: Example of code (adapted from [Kastner and Apel, 2008])

2.2 Software Metrics

Developers, project managers, clients, and software maintainers are interested in mea-
suring different properties of software projects, processes, and products. For instance,
developers might measure software properties aiming at checking functional require-
ments or quality. Regarding software internal quality, we can measure properties, such



10 Chapter 2. Background

as size, coupling, cohesion, and complexity using metrics. In this work, we use the eight
following metrics: Coupling between Objects, Depth of Inheritance Tree, Lack of Cohe-
sion in Methods, Number of Children, Response for a Class, Weight Method per Class,
Lines of Code, and Number of Constant Refinements. Figure 2.3 provides examples of
applying each of the eight metrics:

Figure 2.3: Examples of Computing Metrics
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• Coupling between Objects (CBO) (Chidamber and Kemerer 1994) counts the
number of classes called by a given class. CBO measures the degree of coupling
among classes. Figure 1.3(a) illustrates an example of how CBO is calculated.
In that example, each box represents classes and each arrow represents a relation
between two classes.

• Depth of Inheritance Tree (DIT) (Chidamber and Kemerer 1994) counts the
number of levels that a subclass inherits methods and attributes from a superclass
in the inheritance tree of the system. This is another metric to estimate the class
complexity/coupling. Figure 1.3(b) presents an example of DIT computation.
As can be seen in Figure 1.3(b), a class has DIT = 0, the subclass of this class
has DIT = 1 and, successively.

• Lack of Cohesion in Methods (LCOM) (Chidamber and Kemerer 1994) counts
the number of method pairs whose access non-common attributes, minus the
count of method pairs whose access common attributes. The larger the number
of similar methods, the more cohesive the class. For instance, in Figure 1.3(c),
M1, M2, and M3 are methods. The pairs M1-M3 and M2-M3 do not access the
attribute A1. On the other hand, the pair M1-M2 accesses the attribute A1.
Therefore, LCOM = 1.

• Number of Children (NOC) (Chidamber and Kemerer 1994) counts the number
of direct subclasses of a given class. This metrics indicates code reuse. Figure
1.3(d) presents an example of computed NOC. For instance, the class higher up
in inheritance tree has two derived classes at the immediately below level, that
extends the parent class. Therefore, this class has NOC = 2. In turn, the classes
at the lowest levels have no derived classes that extend them. Therefore, NOC
= 0.

• Response for a Class (RFC) (Chidamber and Kemerer 1994) is a set of methods
that can potentially be executed in response to a message received by an object
of that class. This metric supports the assessment of class complexity. Figure
1.3(e) presents an example of RFC computing. In this figure, the sample class
implements two methods, and it calls three methods from other classes. These
five methods may be called depending on the use of instantiate objects of the
illustrative class. Therefore, RFC = 5.

• Weight Method per Class (WMC) (Chidamber and Kemerer 1994) weights the
methods of a class. Particularly, in this work it weights the method of a class
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counting the number of methods in a class. This metric can be used to estimate
the complexity of a class. Figure 1.3(f) illustrates how WMC is computed when
considering the number of method as a weight. For each method present in a
class, we increment the value of WMC. Therefore, in case of Figure 1.3(f) in
which there are three methods, WMC = 3.

• Lines of Code (LOC) (Lorenz and Kidd 1994) counts the number of uncommented
lines of code per class. The value of this metric indicates the size of a class. Figure
1.3(g) presents an illustrative example of computed LOC. LOC counts code lines,
but LOC does not count neither comment lines nor blank lines. In Figure 1.3(g),
LOC is equals to 8.

• Number of Constant Refinements (NCR) (Abilio et al. 2015) counts the number
of refinements that a constant has. Its value indicates how complex the relation-
ship between a constant and its features is. Constants and refinements are files
that can often be found in Feature-Oriented Programming (FOP) (Batory, 2004).
That is, refinements can change the behavior of a constant if certain feature is
included in a product (see Section 2.1). Figure 1.3(h) presents an example of
computed NCR. In Figure 1.3(h), we have the features i, j, and k; classes a, b,
and, c; ai, bi, ci are constants of feature i; aj, cj, ck are refinements of feature
j and k. Therefore, constants ai, bi, and ci have NCR equal to 1, 0, and, 3,
respectively.

We chose LOC, CBO, WMC, and, NCR because of the metric-based detection
strategies that we are going to use in this dissertation. Moreover, we included other
metrics to cover all the six well-known object-oriented software metrics proposed by
Chidamber and Kemerer (1994): CBO, DIT, LCOM, NOC, RFC, and WMC. For all
eight metrics described, classes with higher values are more likely to be worse in the
software systems quality.

2.3 Literature Review Protocol

One of the goals of Software Engineering is to manage and control the quality of
software systems [Sommerville, 2011]. Software metrics are the practical means for
assessing different quality aspects, such as maintainability and usability [Chidamber
and Kemerer, 1994; Lorenz and Kidd, 1994]. As important as metrics, thresholds allow
to objectively characterize or to classify each component according to one of the quality
metrics. Given the importance of metrics and thresholds, we can find many studies
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that propose metrics and thresholds [McCabe 1976; Nejmeh, 1988; Chidamber and
Kemerer, 1994; Erni et al., 1996; Lanza and Marinescu, 2006; Ferreira et al., 2012].
Generally, studies that propose thresholds present a method or strategy to derive such
thresholds.

This section summarizes how we got the papers related to methods to derive
thresholds. First, we started an ad-hoc literature review held in four different electronic
databases: IEEExplore 1, Science Direct 2, ACM Digital Library 3, and El Compendex
4. With this ad-hoc literature review, we found a systematic literature review (SLR)
[Lima, 2014] with a similar, but different purpose of ours. An SLR is a well-defined
method to identify, evaluate, and interpret all relevant studies regarding a particular
research question, topic area, and phenomenon of interest [Kitchenham and Charters,
2007]. This existing SLR of Lima [2014] aims to group metric thresholds reported in
the literature, but it does not focus on methods to derive thresholds.

The previous SLR was used as a starting point for our work. It selected 19 pa-
pers to get and report information. We read these 19 selected papers and other papers
that we found in the ad-hoc literature review. Then, we performed the snowballing
technique in those papers [Brereton et al., 2007]. This technique consists of investigat-
ing the references retrieved in electronic databases in order to find additional relevant
papers to increase the scope of the search, providing broader results [Brereton et al.,
2007].

The literature review of this dissertation followed similar steps to the protocol of a
Systematic Literature Review (SLR) [Kitchenham and Charters, 2007]. The inclusion
criteria are: (i) paper must be in computer science area; (ii) paper must be written in
English; (iii) paper must be completely in electronic form; and, (iv) paper must propose
or use at least one method to derive metric thresholds. Following these inclusion
criteria and applying the snowballing technique in the papers of our literature review,
we selected 50 primary studies in order to extract information related to methods to
derive thresholds. These primary studies are listed in Appendix A. We summarize the
main idea of these primary studies in the next section.

1ieeexplore.ieee.org/
2www.sciencedirect.com
3www.acm.org/
4www.engineeringvillage.com
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2.4 Types of Methods to Derive Thresholds

The 50 primary studies mentioned in the previous section propose or use a strategy or
method to derive thresholds. The primary studies were published between 1976 and
2015. This range shows that software engineers started to worry about thresholds a
long time ago. Additionally, we can see that methods to derive thresholds are still an
open issue and different strategies have been proposed over time.

To summarize our review, we start by describing papers where thresholds are
defined by programming experience. Then, we analyze in details methods that derive
thresholds based on data analysis, which are directly related to our research. After, we
discuss techniques to analyze and summarize metric distributions. Finally, we present
the three key points and well-defined methods that consider the three key points.

2.4.1 Thresholds Derived from Programming Experience

Many authors defined metric thresholds according to their programming experience
[McCcabe, 1976; Nejmeh, 1988; Coleman et al., 1995]. For example, the values 10
and 200 were defined as thresholds for Cyclomatic Complexity of McCabe [1976] and
NPATH [Nejmeh, 1988], respectively. McCabe Cyclomatic Complexity counts the
number of linearly independent paths through a program’s source code and NPATH
computes the number of possible execution paths through a function. The aforemen-
tioned values are used to indicate the presence (or absence) of code smells. Code
smells describe a situation where there are hints that suggest a flaw in the source
code [Riel, 1996]. Regarding Maintainability Index (MI), the values 65 and 85 are
defined as thresholds [Coleman t al., 1995]. When MI values are higher than 85, be-
tween 85 and 65, and are smaller than 65 they are considered as highly-maintainable,
moderately-maintainable, and difficult to maintain, respectively. These thresholds rely
on programming experience and these results are difficult to reproduce or generalize.
Additionally, the lack of scientific support can lead to contest the derived values.

2.4.2 Thresholds Derived from Metric Analysis

Erni et al. [1996] propose the use of mean (µ) and standard deviation (σ) to derive a
threshold (T) from project data. A threshold is calculated as T = µ+σ and T = µ - σ
when high and low values of a metric indicate potential design problems, respectively.
Lanza and Marinescu [2006] use a similar method in their research for 45 Java projects
and 37 C++ projects. Nevertheless, they use four labels: low, mean, high, and very
high. Labels low, mean, and high is calculated in the same way as Erni [1996]. Labels
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very high is calculated as T = (µ+σ) x 1.5. Abilio et al. [2015] use the same method of
Lanza and Marinescu, but they derive thresholds based on eight Software Product Lines
(SPLs). These methods are a common statistical technique few years ago. However,
Erni et al. [1996], Abilio et al. [2015], and Lanza and Marinescu [2006] do not analyze
the underlying distribution of metrics. The problem with these methods is that they
assume metrics are normally distributed, limiting the use of these methods.

French [1999] also proposes a method based on the mean and standard deviation.
However, French used the Chebyshev’s inequality theorem (whose validity is not re-
stricted to normal distributions). A metric threshold ‘T ’ can be calculated by T = µ+k

x σ, where k is the number of standard deviations. Additionally, this method is sen-
sitive to large numbers of outliers. For metrics with high range or high variation, this
method identifies a smaller percentage of observations than its theoretical maximum.

2.4.3 Methods for Characterizing Metric Distributions

Chidamber and Kemerer [1994] use histograms to characterize and analyze data. For
each of their 6 metrics (e.g., WMC and CBO), they plotted histograms per program-
ming language to discuss metric distribution and spot outliers in C++ and Smaltalk
systems. Spinellis [2008] compares metrics of four operating system kernels (i.e., Win-
dows, Linux, FreeBSD, and OpenSolaris). For each metric, boxplots of the four kernels
are put side-by-side showing the smallest observation, lower quartile, median, mean,
higher quartile, and the highest observation and identified outliers. The boxplots are
then analyzed by the author and used to give ranks, + or -, to each kernel. However,
as the author states, the ranks are given subjectively.

Vasa et al. [2009] propose the use of Gini coefficients to summarize a metric dis-
tribution across a system. The analysis of the Gini coefficient for 10 metrics using 50
Java and C# systems revealed that most of the systems have common values. More-
over, higher Gini coefficient values indicate problems and, when analyzing subsequent
releases of source code, a difference higher than 0.04 indicates significant changes in
the code.

Other three papers [Alves et al., 2010; Ferreira et al., 2012; and, Oliveira et
al., 2014] propose methods to derive thresholds characterizing metric distributions.
These papers consider it and other two points fundamental for this kind of method.
Hence, we explain these fundamental points (called key points) first in Section 2.5, to
after in Section 2.6 describes Alves’, Ferreira’, and Oliveira’s methods. Additionally,
these three methods are highlighted because they were used in other chapters of this
dissertation.
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2.5 Key Points of Methods to Derive Thresholds

Previously, we have mentioned three key points for methods to derive thresholds: (i)
methods well-defined, (ii) methods that consider the skewed distribution of software
measurements, and, (iii) methods that use benchmarks as database to derive metric
thresholds. This section discusses the importance of each one of these key points. But
before it, we would like to highlight our point of view. We think that thresholds should
be derived for specific contexts (benchmarks), rather than for universal contexts.

2.5.1 Well-defined Methods

This key point is related to the steps of a method. In the key point it is taken into
account how well structured and described, a method is. Using the same input and
following the method description, the same thresholds for a metric must be obtained.

2.5.2 Consider the Skewed Distribution of Software Metrics

The second key point is related to the statistical approach used by the method to derive
thresholds. This is an important point because software metrics can have different
distributions, such as normal, power law, and common values (like Poisson distribution)
[Louridas et al., 2008]. A method using only mean and standard derivation can provide
invalid or non-representative thresholds. Some studies assume that software metrics
have a normal distribution [Louridas et al., 2008]. In spite of that, several studies
clearly demonstrate that most software metrics do not follow normal distributions
[Alves et al., 2010; Concas et al., 2007; Ferreira et al., 2012; Louridas et al., 2008;
Oliveira et al., 2014], limiting the use of any statistical method that relies on mean to
derive thresholds, for example.

Hence, some studies fall short in concluding how to use these distributions, and
their coefficients, to establish baseline values for measuring and controlling the software
quality. Moreover, even if such baseline values were established, it would not be possible
to identify the code responsible for deviations, since there is no traceability of results.
Additionally, several studies [Concas et al., 2007; Louridas et al., 2008] show that
different software metrics follow heavy-tailed distribution. For instance, Concas et
al. [2007] show that most of the Chidamber and Kemerer’s metrics [Chidamber and
Kemerer, 1994] follow heavy-tailed distribution for a large Smalltalk system.
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2.5.3 Benchmark-based

This key point is related to the confidence of the derived thresholds. In the past,
software engineers derived thresholds by their subjective opinion. Then, they started
to discuss in groups and get a consensus about the thresholds [Coleman et al., 1995].
After, in a third moment, they started to analyze systems to help deriving thresholds.
Finally, as from the first to the second case, they started to derive thresholds using a
group of systems, commonly called benchmarks. In this work, we consider a benchmark
as a set of systems in which the source code and metrics used are available online.

The idea of using benchmark-based methods is to collect information from similar
systems to help derive thresholds. For example, if almost all classes of a benchmark
have cyclomatic complexity of McCabe [McCabe, 1976] smaller than 10, the minority
of classes with cyclomatic complexity greater than 10 are outliers. It does not mean
that these outliers are worse than the other classes, but they are different. On the other
hand, it is known that the greater the cyclomatic complexity of a class is, the more
difficult it is to be understood and consequently smaller its quality is. Summarizing,
the idea of using benchmark-based methods is to get common behaviors of the majority
of entities. Hence, we assume that it is better than outliers.

2.6 Methods to Derive Thresholds that Fit the Key

Points

This section describes three methods that fit the three key points described in the
previous section. These methods are compared in the next chapter. Hence, we describe
these methods with more details.

Alves’s Method – The method proposed by Alves and his colleagues in 2010
[Alves et al., 2010] is divided into six steps: (1) measurement extraction, (2) weight ratio
calculation, (3) entity aggregation, (4) system aggregation, (5) weight ratio aggregation,
and (6) thresholds derivation. In this method, the metric values are collected for each
system – each system values should be in a different file (step 1). It then computes the
weight percentage of lines of code (LOC) within each system entity; in other words,
it is necessary to know the total LOC of the target system. The LOC of each entity
should be divided by the total LOC of the target system and, then multiplied by 100.
This needs to be done for each system (step 2). Equal measures of each system are
then grouped by adding up the percentage. This may be done for each system (step
3). The obtained values are grouped in the same file and are divided for the number
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of systems which compose the benchmark. In other words, all data should be placed
in a same spreadsheet, for example. Then, the percentage column should be divided
by the number of systems – observes that if the data in that column were added the
result should be 100 (step 4). Equal measures of this file are also grouped and the
percentage calculated, like step 3 (step 5). Finally, the percentage is defined and, the
thresholds can be extracted. Generally, this method proposes 70%, 80%, or 90% to
represent the labels: low (between 0-70%), moderate (70-80%), high (80-90%), and
very high (>90%). For example, if it is required values of high label it is necessary to
add the percentages until get 80%, the upper metric value is the threshold.

Ferreira’s Method – This method is proposed by Ferreira and her colleagues
in 2012 [Ferreira et al., 2012]. It is relatively simple and can be divided in 4 steps:
(1) measurement extraction, (2) grouping metrics, (3) group representation, and (4)
threshold derivation. The metric values are first collected for each system (step 1)
and organized into a unique file (step 2). Using manual graphic analysis or with a
supporting tool, three groups should be created (step 3). These groups represent values
with a high, medium, and low frequency in the systems which are classified as good,
regular, and bad labels, respectively. Hence, each label represents an interval (step 4).
The reasoning is that the lower the frequency, the far from the common metric value.
In the method description, it is not clear how to extract the three groups.

Oliveira’s Method – This method is proposed by Oliveira and her colleagues
in 2014 [Oliveira et al., 2014] it relies on a formula for calculating thresholds. This
formula is called ComplianceRate and can be expressed as follows: p% of the entities

should have M ≤ k, where M is a given source code software metric calculated for
a given software entity (e.g., features or classes), k is the upper limit of M , and p is
the minimal percentage of entities that should follow this upper limit k. Therefore,
this relative threshold tolerates (100-p)% of classes with M > k. The values of p and
k are based in two constants, Min and Tail. These constants are used to drive the
method towards providing some quality confidence to the derived thresholds. More
specifically, these constants are used to convey the notions of real and idealized design
rules, respectively. The values of these two constants are in a range between 0 and 100.
This method also relies on three additional formulas beyond the Compliance Rate.
Two of these formulas involve penalties for the Min and Tail constants, respectively.
The third formula sums up these penalties. The combined pair of p and k with minor
penalty is chosen to compose the Compliance Rate. In case of ties, it chooses the pair
with highest p and then the one with the lowest k.



2.7. Final Remarks 19

2.7 Final Remarks

This chapter provides an overview of methods to derive metric thresholds, metrics and
feature-oriented software product lines. We saw that thresholds have been explored
since a long time ago. Additionally, software engineers still do not achieve a consensus
on which method to use because new methods have been recently proposed. Although,
it is notable an evolution in the different types of methods to derive thresholds proposed
since 2010. The recently proposed methods addressed the three key points, described
on Section 2.5. These key points are fundamental when appropriate thresholds are
required.

To help software engineers in the choice of methods to derive thresholds, it is
required a comparison to highlight the strengths and weaknesses of each one of the
recently proposed methods. Therefore, in the next chapter, we compare the three
methods to derive metric thresholds, presented on Section 2.6, highlighting different
aspects. Our comparison covers different aspects, such as, we analyze the skewed
distribution of some target metrics and correlate the target metrics with one specific
metric.





Chapter 3

A Comparison of Methods to
Derive Metric Thresholds

In the previous chapter, we presented an overview about methods to derive thresholds.
We saw that the recent proposed methods addressed three key points: well-defined
methods, methods that consider the skewed distribution of software measurements, and
methods that use benchmarks as database to derive metric thresholds. We discussed
the importance of these three key points in Section 2.5. Additionally, we described in
Section 2.6 Alves’s, Ferreira’s and Oliveira’s methods which address these three key
points.

This chapter presents a comparative study of these three methods to derive
thresholds in the light of benchmarks of software product lines and four metrics also
presented in Chapter 2. The metrics used in this study are LOC, CBO, WMC, and
NCR. As we could see in previous chapters, thresholds are also important to evaluate
quality of software systems. Therefore, the idea is highlighting strangeness and weak-
ness of methods to derive thresholds aiming to make easy the choice of one method that
fits better with the user needs. Section 3.1 describes how we built our benchmark. Sec-
tion 3.2 presents the method comparison. Section 3.3 presents lessons learned with the
comparison. Section 3.4 presents threats to validity of the comparative study. Finally,
Section 3.5 summarizes this chapter.

3.1 SPL Benchmarks

This section presents three benchmarks of Software Product Lines (SPLs). To build
these benchmarks, we focus on SPLs developed using FOP [Batory and Sarvela, 2004].
The main reason for choosing FOP is because this technique aims to support modular-

21
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ization of features - i.e., the building blocks of an SPL (See Section 2.1). In addition,
we have already developed a tool, named Variability Smell Detection (VSD) [Abilio et
al., 2014], which is able to measure FOP code. Since it is very difficult to find composi-
tional feature-oriented SPLs, this benchmark by itself can be considered an important
contribution to the SPL community.

We selected 47 SPLs from repositories, such as SPL2go [SPL2GO, 2015] and
FeatureIDE examples [FeatureIDE, 2015], and 17 SPLs from research papers; summing
up to 64 SPLs in total. In order to have access to the SPLs source code, we either email
the paper authors or search on the Web. In the case of SPL repositories, the source
code was available. When different versions of the same SPL were found, we picked up
the most recent one. Some SPLs were developed in different languages or technologies.
For instance, GPL [FeatureIDE, 2015] has 4 different versions implemented in AHEAD,
FH-C#, FH-Java and FH-JML. FH stands for FeatureHouse [Apel et al., 2009] and FH-
Java means that the SPL is implemented in Java using FeatureHouse as a composer. In
cases where the SPL was implemented in more than one technique, we selected either
the AHEAD or FeatureHouse implementation. After filtering our original dataset by
selecting only one version and one programming language for each SPL, we end up
with 33 SPLs listed in Table 3.1. The step-to-step filtering of SPLs is further explained
on the supplementary website [SPL Repository, 2016].

In order to generate different benchmarks for comparison, we split the 33 SPLs
into three benchmarks according to their size in terms of LOC. Table 3.1 presents the
33 SPLs ordered by their value of LOC, implementation technology (Technology), and
grouped by their respective benchmarks. Benchmark 1 includes all 33 SPLs. Bench-
mark 2 includes 22 SPLs with more than 300 LOC (SPLs 1-22). Finally, Benchmark 3
is composed of 14 SPLs with more than 1,000 LOC (SPLs 1-14). The goal of creating
three different benchmarks is to analyze the results with varying levels of thresholds.

3.2 Comparative Study

We evaluate different aspects of methods used to derive thresholds for SPLs. Before
we present the derived thresholds, we explore two varying characteristics of the studied
methods for the four selected metrics (LOC, CBO, WMC, and NCR): (i) correlation
with LOC (Section 3.2.1) and (ii) distribution of software metrics (Section 3.2.2). Our
goal is to reveal whether these varying characteristics impact on the derived thresholds
and if they can provide support to discuss the derived thresholds. Section 3.2.3 presents
the derived threshold by Alves’, Ferreira’s, and, Oliveira’s methods.
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Table 3.1: Software Product Lines Benchmarks

Id SPL Technology LOC
1 BerkeleyDB [SPL2GO, 2015] FH-Java 37247
2 AHEAD-Java [Abilio et al., 2015] AHEAD 16719
3 AHEAD-guidsl [Abilio et al., 2015] AHEAD 8738
4 TankWar [FeatureIDE], [SPL2GO, 2015] AHEAD 4670
5 AHEAD-Bali [Abilio et al., 2015] AHEAD 3988
6 Devolution [FeatureIDE, 2015] AHEAD 3913
7 MobileMedia v.7 [Ferreira et al., 2014] AHEAD 2691
8 WebStore v.6 AHEAD 2082
9 DesktopSearcher [FeatureIDE, 2015], [SPL2GO, 2015] AHEAD 1858
10 GPL [FeatureIDE, 2015] AHEAD 1824
11 Notepad v.2 [SPL2GO, 2015] FH-Java 1667
12 Vistex [SPL2GO, 2015] FH-Java 1480
13 GameOfLife [SPL2GO, 2015] FH-Java 1047
14 Prop4J [SPL2GO, 2015] FH-Java 1047
15 Elevator [SPL2GO, 2015] FH-Java 728
16 ExamDB [SPL2GO, 2015] FH-JML 568
17 PokerSPL [SPL2GO, 2015] FH-JML 461
18 EmailSystem [SPL2GO, 2015] FH-Java 460
19 GPLscratch [SPL2GO, 2015] FH-JML 405
20 Digraph [SPL2GO, 2015] FH-JML 374
21 MinePump [SPL2GO, 2015] FH-JML 367
22 Paycard [SPL2GO, 2015] FH-JML 319
23 IntegerSet [SPL2GO, 2015] FH-JML 225
24 UnionFind [SPL2GO, 2015] FH-JML 194
25 NumberContractOverrinding [SPL2GO, 2015] FH-JML 165
26 NumberConsecutiveContractRef [SPL2GO, 2015] FH-JML 148
27 Number ExplicitContractRef [SPL2GO, 2015] FH-JML 143
28 BankAccount [SPL2GO, 2015] FH-JML 122
29 EPL [FeatureIDE, 2015] AHEAD 98
30 IntList [SPL2GO, 2015] FH-JML 94
31 StringMatcher [SPL2GO, 2015] FH-Java 22
32 Stack [SPL2GO, 2015] FH-Java 22
33 HelloWorld [FeatureIDE, 2015] AHEAD 22

3.2.1 Correlation with LOC

Alves’s method assumes that all software metrics correlate with LOC. In order to verify
if this assumption is true, we use the Pearson′s correlation coefficient. Pearson’s
correlation is +1 in the case of a perfect direct linear correlation, -1 in the case of a
perfect decreasing linear correlation, and some values around 0 implies that there is no
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linear correlation between the variables [Dowdy and Wearden, 1983]. We apply this
coefficient to identify the correlation of LOC with the other selected metrics (CBO,
WMC, and NCR).

Table 3.2 shows the coefficient of correlation of LOC and other metrics for the
three benchmarks. It can be observed that CBO and WMC metrics have high corre-
lation (values above 0.75) with LOC for all benchmarks. However, NCR has no linear
correlation with LOC since the values are closer to 0.3. A metric has correlation 1
with itself (case of LOC with LOC) and, therefore, this correlation was not presented
in Table 2. The goal of investigating the correlation of the selected metrics with LOC
is to investigate if this correlation impacts on the calculated thresholds.

Table 3.2: Correlation of Metrics with LOC

Benchmark Metrics
CBO WMC NCR

1 0.751621 0.976406 0.28995
2 0.753825 0.97711 0.295099
3 0.757247 0.97896 0.292746

3.2.2 Distribution of Software Metrics

All three selected methods to derive thresholds (Section 2.6) claim to take the distribu-
tion of metrics into account. Therefore, this section analyzes the distribution of each
software metric (Section 3.1.1) based on the SPL benchmarks (Section 3.1.2).

According to the classification schema suggested by Foss et al. [2011], the metric
has heavy−tailed distribution when the best distribution of a particular measure is one
of the following: Weibull, Lognormal, Cauchy, Pareto, or Exponential. We decided
to use Weibull distribution because its versatility and relative simplicity. Weibull has
two main probability distribution functions: (i) probability density function (pdf) – f(x),
and (ii) cumulative distribution function (cdf) – F(x). The first function expresses the
probability the random variable takes a value x. On the other hand, cdf expresses the
probability the random variable takes a value less than or equal to x [Mathwave, 2015].
These functions have parameters α and β, defined by equations (Eq1) and (Eq2):

fx(x) = P (X = x) =
α

β
(x/β)α−1e−(

x
β
α), α > 0, β > 0

Fw(x) = P (X ≤ x) = 1− e−(
x
β
)α , α > 0, β > 0
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The parameter β is called by scale parameter. Increasing the value of β has
the effect of decreasing the height of the curve and stretching it. The parameter α is
called by shape parameter. If the shape parameter is less than 1, Weibull is a heavy-
tailed distribution [Mathwave, 20015]. A heavy-tailed distribution means that a small
number of entities have high values and a large number of cases have low values. In this
distribution, the mean is not representative [Alves et al., 2010; Ferreira et al., 2012;
Mathwave, 2015].

Table 3.3 presents the values of α and β for each metric and benchmark. For
example, LOC has values of α = 0,95201 and β = 26,858 for Benchmark 1. Based
on the analysis of the parameter α, we can observe that the metrics LOC, WMC, and
NCR follow a heavy-tailed distribution. According to Table 3.3, CBO does not follow
a heavy-tailed distribution for FOP-based SPL implementations because it presents α
values higher than 1. By analyzing the parameters values, we can be more confident
about the metric distribution because, in some cases (e.g., depending of the scale), the
plotted graph may give the wrong impression that the metric follows a heavy-tailed
distribution.

Table 3.3: Weibull Values for Each Metric per Benchmark

Metric Benchmark α β

LOC
1 0.95201 26.858
2 0.72892 28.37
3 0.93964 27.232

CBO
1 1.1253 5.2798
2 1.1693 5.4341
3 1.2244 5.6196

WMC
1 0.7277 6.5979
2 0.72748 6.6063
3 0.72041 6.5979

NCR
1 0.98339 3.9359
2 0.97109 3.9679
3 0.96919 4.0734

3.2.3 Derived Thresholds

This section presents the derived thresholds that were obtained using the three methods
to derive thresholds (Section 2.6) according to each benchmark (Section 3.1). The
process was performed with the four metrics used in this comparative study. Only the
key values of each method are presented. For example, Alves’s method presents four
labels, but these labels are established in three percentages (key values). Hence, only
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the values that represent the percentages are shown. This presentation strategy is also
applied to Ferreira’s method, because the range of values of group 2 is equals to the
ranges of groups 1 and 3. In addition, although Ferreira’s method definition does not
provide how to extract the three groups, we extracted them by our own knowledge
about the method. The three groups have 50% (good), 25% (regular) and, 25% (bad)
of data, respectively.

Tables 3.4, 3.5, and 3.6 present the obtained values from the three methods,
respectively. We present in separate tables because each method has a different
output. These tables should be read as follows. The first column represents the
benchmarks and the second column indicates the different labels in the case of Alves’s
and Ferreira’s methods. The other columns determine the thresholds of LOC, CBO,
WMC, and NCR, respectively. For example, Alves’s method defined labels as: low
(0-70%), moderate (70-80%), high (80-90%), and veryhigh (90-100%). These labels
are represented for CBO by the intervals 0-8, 9-12, 13-20, and >21, respectively in
Benchmark 1.

Table 3.4: Threshold Values from Alves’s Method

Benchmark Percentage LOC CBO WMC NCR

1
70 92 9 14 1
80 151 13 31 2
90 252 21 58 4

2
70 127 13 25 1
80 221 19 45 1
90 328 24 75 5

3
70 192 18 40 1
80 293 22 58 1
90 442 29 84 7

Table 3.5: Threshold Values from Ferreira’s Method

Benchmark Group LOC CBO WMC NCR

1 1 12 3 2 0
3 33 6 7 1

2 1 12 3 2 0
3 34 6 7 1

3 1 12 4 2 0
3 34 7 7 1
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Table 3.6: Threshold Values from Oliveira’s Method

Benchmark LOC CBO WMC NCR
1 91 6 11 1
2 86 9 14 2
3 78 13 21 2

It should be observed that there is a difference between the thresholds from
the same method (varying the benchmark) and between methods. The variation was
sharper in the case of Alves’s method. This variation happens because the smallest
(22 LOC) and the largest (37,247 LOC) SPLs have the same weight (step 4 of Alves’s
method description). Hence, a higher variation across benchmarks was observed in the
case of metrics with high correlation with size. We did not have a high variation in the
case of NCR, which has low correlation with size (LOC). The other methods do not
correlate metrics and do not weight metrics by the number of systems. Then, in almost
all cases, the thresholds remained the same or have a slight growth in the system size.
A peculiar case occurred in Oliveira’s method (Table 3.6), in which LOC had a small
decrease. This decrease is probably impacted by the penalties applied to derive metric
thresholds. We did not expect for it because with larger SPLs and consequently lager
class it was expected higher thresholds. It does not mean a problem only a particularity
of such metric for this method.

In order to have an objective discussion, we focus now on the analysis of the
high values (considered). For Alves’s method, it is clear that high values are upper
than 80%. However, such percentage is not clear for Ferreira’s method. Therefore, we
have considered values of the third group (bad label). Finally, we use the returned
values for Oliveira’s method. Figure 3.1 presents the thresholds for LOC, CBO, WMC,
and NCR. In addition, each letter presents the difference of each method for the three
benchmarks. For example, Figure 3.1(a) refers to LOC and, for Benchmark 1, the
thresholds for methods of Alves, Ferreira, and Oliveira are 151, 33, and 91, respectively.

Figure 3.1 indicates that Alves’s method returned higher values for three of the
four metrics. These three metrics (LOC, CBO, and WMC) have high correlation with
LOC metric. In contrast, NCR has low correlation with LOC and it has the smallest
values in two out of three cases (Benchmarks 2 and 3) as presented in Figure 3.1(d).
NCR values vary from 0 to 28. However, approximately 90% of the entities has NCR
lower than 4. This phenomenon can be an evidence of the low thresholds derived by
three methods.
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Figure 3.1: Metric Thresholds Side by Side

By analyzing the derived thresholds and considering the correlation of the metrics
with LOC (Section 3.2.1), it is possible to see that Alves’s method has undergone a
major change in its behavior. This major change is probably, due to the method cor-
relate LOC to calculate thresholds. With respect to Ferreira’ and Oliveira’s methods,
it is not possible to observe a clear change in their behavior like Alves’s method.

By looking at the derived thresholds and considering the software metrics dis-
tribution (Section 3.2.2), we did not observe a big difference on the behavior of the
three methods to calculate thresholds. For example, even though CBO does not have
a heavy-tailed distribution (Section 3.2.2), the threshold values were not too different
between the methods. As far as the values of the other metrics are concerned, the
behavior was similar in different methods. We observed some variation in threshold
values of all metrics. For example, the largest class of our benchmarks has 1,686 LOC
and the thresholds of this metric derived by methods of Alves, Ferreira, and Oliveira
were 293, 34, and 78, in this order to Benchmark 3. Similarly, CBO, in the same case,
ranges from 0 to 68 and the derived thresholds of this metric was 22, 7, and 13. Based
on these two examples (in the context of Benchmark 3), the thresholds seem to be
relatively low. Due to this assumption, the number of outliers tends to be large.
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To illustrate this point, the threshold 6 to CBO defined by Oliveira’s method for
Benchmark 1 has 639 outliers out of 2,700 entities. This number of outliers represents
23.67% of the entities. We consider that this percentage is not reasonable, as we do
not want a very large number of outliers. Based on this observation, we can conclude
that: (i) this calculation is extremely dependent from the benchmark quality to the
three methods and (ii) Alves’s method is more rigid to define thresholds than the other
methods. Considering these two points, we believe Alves’s method fared better with
the majority of the analyzed metrics, especially with the ones highly correlated with
LOC.

It is clear that some metrics are correlated to others and this is expected. How-
ever, we considered that correlating metrics to calculate thresholds may not be a good
practice, when this correlation is low. Since it is not always easy to know if a met-
ric correlates with other metrics; it might be better to not correlate metrics to derive
thresholds. In the case of the distribution of the software metrics, the three meth-
ods seem to work well with heavy-tail distributions. Even if the distribution is not
heavy-tailed, the three methods presented similar derived thresholds.

3.3 Desirable Points of Threshold Derivation

Methods

This section discusses characteristics of each method for threshold derivation based
on the lessons we learned during this study. In other words, after all our theoretical
analysis in and running these three methods in Benchmark 1, 2, and 3 we observed
some points that increase or decrease the reliability of the method. We called these
points of desirable points. Regarding the use of each method, we enumerate eight
questions for discussion: (i) Is it a well-defined method (ii) Is it a deterministic
method? (iii) Are step-wise outliers identified? (iv) Does the number of systems
impact on the derived thresholds? (v) Does the number of entities impact on the
derived thresholds? (vi) Is some metric correlated with another? (vii) Are lower bound
thresholds calculated? (viii) Does the method have tool support? It is important to
mention that each method has different strengths and weaknesses. These strengths
and weaknesses do not necessarily mean that a method is better (or worst) than the
other methods. Table 3.7 shows the answer for each question in which are discussed
on the five topics bellow, based on our empirical experience by applying the methods
in this study.
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Table 3.7: Comparative Evaluation of the Method for Calculating Thresholds

Question Method
Alves Ferreira Oliveira

Is it well-defined? Yes Yes Yes
Is it deterministic Partially No Yes

Are step-wise outliers identified? Yes Yes No
Does the number of systems impact? Strong Weak Strong
Does the number of entities impact? Weak Strong Weak
Does it correlate with other metrics? Yes No No

Lower bound thresholds? No No No
Provides tool support? No No Yes

Well-defined and Deterministic – We consider well-defined methods when
it is possible to define steps based on the method description. As we did it for the
three methods, we considered all these three methods well-defined. If we replicate this
study, are the results going to be exactly the same? Alves’s method is well-defined, but
the chosen percentage can vary. Therefore, we considered it as partially deterministic.
In the case of Ferreira’s method, it does not describe how the three groups should
be extracted and, so, this subjectiveness makes it well-defined, but not deterministic.
Oliveira’s method is highly deterministic and well-defined. If someone uses the same
input, the same results are expected to be obtained.

Number of Systems and Entities - Thresholds are extracted from software
entities (e.g., features, modules and classes). Therefore, the main information used for
calculating thresholds is expected to be metrics collected from these entities instead of
the number of systems, for example. Although the number of systems can be considered
important in terms of representativeness, we believe that the number of entities is more
important. Hence, a method is expected to derive thresholds weakly dependent on the
number of systems and strongly dependent on the number of entities. Alves’s method
calculates thresholds by using, essentially, the number of systems. Both Ferreira’s
and Oliveira’s methods use the number of entities to derive thresholds. However,
Oliveira’s method uses the median of entities of the systems. Therefore, Alves’s and
Oliveira’s methods can be considered as strongly dependent to the number of systems
and Ferreira’s method as strongly dependent to the number of entities.

Correlation of Metrics - Alves’s method uses LOC to weight other metrics
and generate percentages. Due to high correlation of LOC and many other software
metrics, the reasoning applied in Alves’s method is usually useful. However, it fails
when the metric (e.g., NCR) does not correlate with LOC (Section 3.2.1). The method
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does not make explicit whether or not to weight measurements by LOC. The other
two methods do not consider the correlation of metrics with LOC. As explained in the
end of Section 3.2.1, we believe that, in the general case, it is better to not correlate
metrics to calculate thresholds.

Lower Bound Thresholds and Tools Support - Thresholds are often used to
filter upper bound outliers. However, in some cases, it may make sense to identify lower
bound outliers. For instance, classes with low values of LOC can be an indicative of
the Lazy Class code smell [Fowler et al., 1999]. A Lazy Class is defined as a class that
knows or does too little in the software system [Fowler et al., 1999]. None of analyzed
methods calculate lower bound thresholds. Tool support is not essential, but it can
facilitate the use of a method because it easier it’s systematic application. Among the
analyzed methods, we only found a tool to support the Oliveira’s method [Oliveira et
al., 2014].

Given the answer of these question we think that it is desirable that a method
should: (i) be well-defined and deterministic; (ii) derive thresholds in a step-wise for-
mat; (iii) be weakly dependent on the number of systems; (iv) be strongly dependent
on the number of entities; (v) not correlate metrics; (vi) calculate upper and lower
thresholds; (vii) provide representative thresholds independent of metric distribution,
and (viii) provide tool support.

3.4 Threats to Validity

Even with the careful planning, this research can be affected by different factors which,
while extraneous to the concerns of the research, can invalidate its main findings.
Actions to mitigate their impact on the research results are described below.

SPL Repository – We followed a careful set of procedures to create the SPL
repository and build the benchmarks. As the number of open source SPLs found is
limited, we could not derive a repository with a larger number of SPLs. This limitation
has implication in the amount of analyzed entities, which is particularly relevant to
NCR. This factor can influence the defined thresholds as the number of entities for
NCR analysis is further reduced. In order to mitigate this limitation, we created
different benchmarks for comparison of the derived thresholds.

Metric Distribution and Metric Label – In this work, we identified that
LOC, WMC, and NCR have heavy-tailed distribution and CBO does not have. Using
a different benchmark (e.g., composed by other programming technologies) the distri-
bution of these metrics may be different. The non-systematization of Ferreira’s method
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to extract the three groups required us to define three groups with approximately 50%
(good), 25% (regular) and, 25% (bad) of data, respectively, totalizing the 100%. We
know that Ferreira’s method needs a graphic analysis, but to make it more systematic
we decided to derive the thresholds with those percentages. Since the other methods
are full or partially deterministic, we did not have this problem with them.

Measurement Process – The SPL measurement process in our study was
automated based on the use of existing tooling support. However, as far as we are con-
cerned, there is no existing tool defined to explicitly collect metrics in FeatureHouse
(FH) code. Therefore, the SPLs developed with this technology had to be transformed
into AHEAD code. This transformation was made changing the composer of FH to
the composer of AHEAD. There are reports in the literature justifying that this trans-
formation preserves all properties of FH [Apel et al., 2009]. We also reduced possible
threats by performing automated tests with a few SPLs. In fact, we observed all
software proprieties were preserved after the transformation.

Tooling Support and Scoping – The computation of metric values and metric
thresholds can be affected by the tooling support and by scoping. Different tools
implement different variations of the same metrics [Alves et al., 2010]. To overcome
this problem, the VSD tool [Abilio et al., 2014] was used both to collect the metric
values and to identify God Class instances. The tool configuration with respect to
which files to include in the analysis (scoping) also influences the computed thresholds.
For instance, the existence of test code, which contains very little complexity, may
result in lower threshold values [Alves et al., 2010]. On the other hand, the existence
of generated code, which normally has very high complexity, may result in higher
threshold values [Alves et al., 2010]. As previously stated, for deriving thresholds, we
removed all supplementary code (e.g., generated code and test cases) from our analysis.

3.5 Final Remarks

This chapter discussed the calculation of representative thresholds in the light of three
methods to derive metric thresholds. These methods were described and compared
using as input data metrics collected from 33 SPLs. We believe that the methods were
reasonable evaluated because we provided a comparison with respect to: (i) three dif-
ferent benchmarks, (ii) metrics with different distributions, (iii) metrics with different
degrees of correlation with LOC, and (iv) an analysis of the derived thresholds.

We created a repository with 64 SPLs, in spite of that only 33 SPLs were used
(Benchmark 1) following some restrictions. For instance, we picked up only the most
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recent ones (to exclude duplicates). In addition, we applied two refinements to extract
Benchmarks 2 and 3. These two refinements consist of keeping only SPLs with more
than 300 and 1,000 LOC, respectively. Providing the benchmarks as input for the
methods, we observed that Alves’s method is a little more sensitive to the benchmark
quality. It happened because this method weights each SPL by LOC and SPLs with
different sizes receive the same weight.

Regarding distribution of the metrics used in this study, the metrics LOC, WMC,
and NCR have heavy − tailed distributions. In spite of following a different distri-
bution, CBO apparently did not present a different behavior of the other metrics.
Although we have a small sample, the methods seemed to behave well with different
distributions. Regarding metrics correlation, we noticed that Alves’s method correlates
metrics to derive thresholds. As can be seen in Section 3.2.1, correlating metrics can
be danger, when we have metrics with low correlation. The other methods did not
correlate metrics and, hence, this problem did not impact them.

In order to provide reliable outcomes, we analyzed the thresholds individually.
We considered that Alves’s method was better in the individual evaluation because it
presented more representative thresholds given the inputs for three out of four metrics.
In addition, the thresholds are higher compared to the other methods. It resulted in a
smaller number of outliers compared to the number of outliers detected by the other
methods. On the other hand, Alves’s method seems to be more instable when metrics
have low correlation with LOC.

After all comparisons and analyses, it can be observed eight desirable points in
methods to derive thresholds. It is desirable that a method to derive metric thresholds
should: (i) be well-defined and deterministic; (ii) derive thresholds in a step-wise for-
mat; (iii) be weakly dependent on the number of systems; (iv) be strongly dependent
on the number of entities; (v) not correlate metrics; (vi) calculate upper and lower
thresholds; (vii) provide representative thresholds independent of metric distribution,
and (viii) provide tool support. These desirable points are explored in the next chapter
where we propose a new method to derive thresholds based on them.





Chapter 4

The Proposed Method

Based on the comparison of methods presented in the previous chapter, we see the
opportunity to propose a method to derive thresholds with the strangeness and avoiding
the weaknesses of the compared methods. However, this chapter proposes a method to
derive thresholds based on the eight desirable points described in the previous Chapter.

Section 4.1 presents the proposed method. Section 4.2 describes how we believe
that our method addresses the eight desirable points. Section 4.3 presents the tool to
support the method. Section 4.4 provides an example of use of the proposed method
using a Software Product Line (SPL) benchmark. Section 4.5 presents some threats to
validity to the proposed method and it example of use. Section 4.6 summarizes this
chapter.

4.1 Method Description

We propose a method with 5 well-defined steps. With the proposed method, we try to
get the best of each compared method avoiding the points that we saw are not adequate
for methods to derive thresholds, such as, metrics’ correlation. Figure 4.1 summarizes
the 5 steps of the proposed method. Each step is described as follows.

1. Metric extraction: in the first step, metrics have to be extracted from a
benchmark of software systems. For each system, and for each entity belonging to
the system (e.g., class), we record a metric value. The metric value of each entity of
the entire benchmark must be in the same file, such as a spreadsheet. Each column
represents a metric and each row represents an entity.

2. Weight ratio calculation: for each entity, we compute the weight percentage
within the total number of entities in the second step. That is, we divide the entity
weight by the total number of entities and, then, it is multiplied by one hundred. All

35
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Figure 4.1: Summary of the Method Steps

entities have the same weight and the sum of all entities must be 100%. As an example,
if one benchmark has 10,000 entities, each entity represents 0.01% of the overall (0.01%
x 10,000 = 100%).

3. Sort in ascending order: we sort the metric values in ascending order and
take the maximal metric value that represents 1%, 2%, . . . , 100%, of the weight. This
step is equivalent to computing a density function, in which the x-axis represents the
weight ratio (0-100%), and the y-axis the metric scale. For instance, all entities that
WMC value is 4 must come first that all metrics which WMC value is 5.

4. Entity aggregation: we aggregate all entities per metric value in the step.
This aggregation is equivalent to computing a weighted histogram (the sum of all bins
must be 100%). As an example, if we have four entities with WMC value of 4 and each
entity representing 0.01%, it corresponds to 0.04% of all entities.

5. Threshold derivation: finally, thresholds are derived by choosing the per-
centage of the overall metric values we want to represent. For instance, to represent
90% of the overall code for the WMC metric, the derived threshold is X. This threshold
is meaningful, since not only it represents 90% of the code of a benchmark of systems,
but it also can be used to identify 10% of the worst code in terms of WMC. We believe
that it is necessary to have different labels. For this reason, the thresholds derived by
choosing 3%, 15%, 90% and 95% of the overall metric value, which derive thresholds
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X1, X2, X3, and X4, respectively, where X1 ≤ X2 ≤ X3 ≤ X4. This step allows
identifying metrics value to be defined in long-term, medium-term, and short-term.
Furthermore, these percentiles can be used in quality profiles to characterize metrics
value according to five categories: very low values (between 0-3%), low values (3-15%),
moderate values (15-90%), high values (90-95%), very high values (95-100%).

4.2 Addressing the Eight Desirable Points

This section discusses the decisions we made to propose our method, called Vale’s
method. This discussion mainly justifies why we believe the proposed method addresses
all the eight desirable points. Following the eight desirable points a method should:
(i) be well-defined and deterministic; (ii) derive thresholds in a step-wise format; (iii)
calculate upper and lower thresholds; (iv) be weakly dependent on the number of
systems; (v) be strongly dependent on the number of entities; (vi) not correlate metrics;
(vii) provide representative thresholds independent of metric distribution, and (viii)
provide tool support.

First, we think that the proposed method is well-defined because we have well de-
scripted and structured steps. On the other hand, despite of recommending the default
percentages, we give freedom for the users to change the percentages if they want. It
makes the proposed method partially deterministic, like Alves’s Method. Addressing
the second desirable point, our method presents the thresholds in a step-wise format
with the labels very low, low, moderate, high, and very high. Additionally, addressing
the third desirable point and, differently of the related methods, our method calculates
lower bound thresholds captured by very low and low labels.

The fourth and fifth desirable points are related to the dependence with the
number of systems and the number of entities. We consider that our method has a
strong dependence with the number of entities because it uses this information to derive
thresholds. On the other hand, the proposed method has a weak dependence with the
number of systems because it is only a consequence related to the number of entities.
Related to the sixth desirable point, our method does not correlate metrics; therefore,
it fits this desirable point.

The seventh is the most difficult desirable point to fit, but we are going to
present some arguments to explain why we think that our method provide represen-
tative thresholds independent to the metric distribution. The thresholds are derived
to find outliers in a system. If the statistical properties of metrics are changed, the
derived thresholds can include wrong outliers. Hence, it is believed that a good method
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should analyze the metric distributions without changing anything in their statistical
properties. It implies in neither correlating metrics nor weighting entities differently
(all entities of all systems should have the same importance). Therefore, the analysis
of the metric distributions can be done by viewing the metrics distribution in different
ways. For example, an alternative way to examine a distribution of values is to plot
its Probability Density Function (PDF).

Figure 4.2 depicts the distribution of the CBO and WMC values for Benchmark
3 (Section 3.1.2), using a PDF. The x-axis represents the CBO and WMC values
(ranging from 0 to 66 to CBO and from 0 to 383 to WMC) and the y-axis represents
the percentage of observations (percentage of entities). The use of PDF is justifiable,
because we want to determine thresholds (the dependent variables, in this case the
CBO and WMC values) as a function of the percentage of observations (independent
variable). Also, by using the percentage of observations instead of the frequency,
the scale becomes independent of the size of the benchmark making it possible to
compare different distributions [Alves et al., 2010]. In Figure 4.2(a), we can observe
that 68.35% of entities have a CBO value ≤ 5. In Figure 4.2(b), we can observe that
90% of entities have a WMC value < 19. Nevertheless, after these two points, the
metrics values come to increase quickly. For example, 95% of entities have a WMC
value < 35. Looking at first time, the labels high (90%) and very high (95%) of the
proposed method looks too rigid, but as can be seen, it is not.

Figure 4.2: Probably Density Function
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On the other hand, if we listed low percentages of CBO values of Benchmark 3,
the values do not have a big difference. For instance, to 1%, 3%, 5%, 10%, 15%, and
20% the values are 1, 2, 2, 2, 2, and 3, respectively. Similarly it happens with WMC
values of Benchmark 3, the values for the same percentages are 1, 1, 1, 2, 2, and 2. We
have a variation of two units in the first case and one unit in the second case. This
happens because following the distribution of Weibull these metrics have (or close to
have) a heavy-tailed distribution (with shape parameter equals to 1.2244 and 0.72041,
respectively to CBO and WMC). By analyzing these data, it is possible to see that very
low label should be stronger than very high and distant to low label. We considered
1% very rigid; hence, we choose 3% for very low label. On the other hand, we choose
15% for low label to be a greater difference in terms of percentages.

Another point that we want to highlight here is that the selected metrics do not
follow a normal distribution (see Table 3.3). Additionally, several studies show that
different software metrics follow heavy-tailed distribution [Alves et al., 2010; Concas et
al., 2007; Louridas et al., 2008]. Nevertheless, if a metric does not follow a heavy-tailed
distribution, are the derived thresholds from the proposed method valid? The proposed
method takes into account the metric distributions focused on how to identify outliers.
Hence, if the metric follows a normal distribution or a common value distribution,
for example, the outliers will be identified using the proposed labels. As a concrete
example, Figure 4.3 presents the DIT (Depth of Inheritance Tree) metric from the
benchmark of Ferreira et al. [2012] which has a common value distribution, like Poisson,
(the common value is 1). Probably, with the proposed method the high and very high
values for this metric would be 2 or higher. That is, a value above the common (above
than 1), and the low value would be 0 or 1; it is a value bellow or equal to the common.
In other words, we are identifying discrepant values (outliers). Therefore, we consider
that our method derives reliable thresholds.

Figure 4.3: Probably Density Function [Ferreira et al., 2012]
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For the reasons explained in this section, the proposed method uses the percent-
ages 3%, 15%, 90%, 95% to represent the labels very low (0-3%), low (3-15%), moderate
(15-90%), high (90-95%), very high (>95%). We do not change anything in the metric
distributions and we believe the proposed method is a good way to derive thresholds
with different metric distributions.

Finally, the eighth desirable point is related to tool support. The next section
presents a tool to support the proposed method, called TDTool. Therefore, the pro-
posed method fits all the eight desirable points at least partially.

4.3 Tool Support

We provide a tool to derive metric thresholds, called TDTool. The proposed tool is
able to execute not only our method, but also three other methods (Alves’s, Ferreira’s,
and, Oliveira’s Methods). Figure 4.4 presents the architecture of TDTool. The tool
expects a set of CSV files which each file must represent the measures of the entities of
a system. For a benchmark with 100 systems, 100 CSV files are expected. The results
of TDTool are presented on screen and they also can be exported in CSV format.

Figure 4.4: TDTool Overview

Figure 4.5 presents the main four stages of the execution of TDTool. The stages
are: method selection, configuration, processing, and presentation. In the method
selection stage, it is shown to the tool user a summary of all methods available and for
each method an execution button. After choosing a method, the tool opens another
screen which the method can be executed. We chose the proposed method (Vale’s
method) to illustrate the use of TDTool. The same view is presented for the other
three methods.

In the configuration stage, the tool user must select the files which compose
the benchmark and, after, the user should select metrics that the user wants to derive
thresholds. Each file must represent a software system. TDTool accepts CSV files and
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Figure 4.5: TDTool Stages

it is expected files in the following structure: each column must represent a metric
and each row must represent an entity. Figure 4.6 shows an example of structure for
the expected file to derive thresholds for four metrics (LOC, CBO, WMC, and NCR).
TDTool does not depend on the way the metrics have been calculated. It only needs
to receive as input the file in the expected format.

Figure 4.6: Example of Input File for TDTool

Figure 4.7 presents the selection metrics view. TDTool identified Component,
LOC, CBO, WMC, and NCR as metrics. In spite of that, the first column represents
the entities’ name. Therefore, we did not want to derive thresholds for this column.
Hence, we selected only LOC, CBO, WMC, and NCR.
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Figure 4.7: Metrics Selection

The processing stage is responsible for deriving the thresholds. Each method
derives following its descriptions. The descriptions of Alves’s, Ferreira’s, and Oliveira’s
methods are in Section 2.6 and the description of the proposed method is in Section
4.1.

Finally, in the presentation stage, the results are shown in a table. The table
summarizes the derived thresholds for a method. In particular, Figure 4.8 presents the
results of Vale’s Method for CBO, LOC, NCR, and WMC. As described in Section 4.1,
Vale’s Method provides thresholds in step-wise format and because of that, more than
one threshold is presented for each metric.

For each stage the user can close the tool, return to the previous stage or go
to the next one. In the final stage, the user can export the results clicking in the
Save button. The results are saved in a CSV file containing all the metrics with their
respective percentage. TDTool is an open-source project and available at our research
group website1.

1http://labsoft.dcc.ufmg.br/doku.php?id=about:tdtool



4.4. Example of Use 43

Figure 4.8: Final Results

In order to evaluate the thresholds provided by the TDTool, we derive thresholds
for the benchmarks previously presented in Section 3.1. We compared the thresholds
obtained manually with the thresholds obtained by TDTool, the thresholds are the
same. Therefore, we believe that TDTool works correctly.

4.4 Example of Use

The proposed method can be applied in different ways, such as using SIG quality model
[Heitlager et al., 2007], using metrics individually, or using metric-based detection
strategies [Fowler et al., 1999]. Generally, it is necessary six steps to derive metric
thresholds in the proposed method: (i) to have a benchmark composed by software
systems, (ii) to choose a set of metrics to derive thresholds, (iii) to choose a tool able
to extract these metrics value from each system of the target benchmark. Additionally,
as we decided to exemplify our method using metric-based detection strategies, it is
still necessary: (iv) to select metric-based detection strategies, (v) to select a system
to identify anomalies, and, (vi) to have an oracle of the bad smells instances, if it is
required to know the effectiveness of the detection.

We are going to present a complete example. Hence, we are going to use the SPL
benchmark (Section 3.1), the set of four metrics (LOC, WMC, CBO, NCR) described in
Section 2.2, and TDTool (4.3). The rest of this section is organized as follows. Section
4.4.1 presents the metric-based detection strategies used to exemplify our method.
Section 4.4.2 presents the target system, why we selected it and the oracle of the target
bad smells. Section 4.4.3 presents the derived thresholds using the chosen benchmarks
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to the selected metrics. Finally, Section 4.4.4 evaluates the effectiveness of the detection
strategies using the derived thresholds and the target metric-based detection strategies.

4.4.1 Metric-Based Detection Strategies

Despite of the extensive use of metrics, they are often too fine grained to comprehen-
sively quantify deviations from good design principles [Lanza and Marinescu, 2006].
In order to overcome this limitation, metric-based detection strategies have been pro-
posed [Marinescu, 2004]. Detection strategies are a composed logical condition, based
on metrics and threshold values, which detect design fragments with specific code smells
[Lanza and Marinescu, 2006]. Code smells describe a situation where there are hints
that suggest a flaw in the source code [Riel, 1996]. This section illustrates detection
strategies for two code smells: God Class and Lazy Class.

God Class is defined as a class that knows or does too much in the software
system [Fowler et al., 1999]. In addition, we should mention that God Class is a strong
indicator that a software component is accumulating the implementation of many other
ones (captured by NCR metric). On the other hand, Lazy Class is defined as a class
that knows or does too little in the software system [Fowler et al., 1999]. As can be
seen by this definition, Lazy Class is the opposite of God Class.

In this work, we selected detection strategies in the literature to identify God
Classes [Abilio et al., 2015] and Lazy Classes [Munro, 2005] for the following reasons.
First, they have been evaluated in other studies and presented good results for the
detection of God Class and Lazy Class [Abilio et al., 2015; Abilio et al., 2014]. Second,
these detection strategies use a straightforward way for identifying instances of God
Class and Lazy Class by combining 4 different metrics. We also believe that these
strategies are better than traditional ones because they were adapted for SPL by us-
ing NCR (a FOP-specific metric), for example. This metric is able to fit complexity
properties of SPLs that traditional metrics cannot fit.

Figure 4.9 shows the God Class and Lazy Class detection strategies adapted from
Abilio et al. [2015] and Munro [2005], respectively. LOC, CBO, WMC, and NCR refer
to the metrics used in these detection strategies. The original detection strategies
rely on absolute values. However, to provide strategies more dependent of the derived
thresholds, we substitute absolute values by labels, such as Low and High.
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Figure 4.9: Code Smells Detection Strategy

4.4.2 Target System and Oracle of Code Smells

We choose an SPL, called MobileMedia [Figueiredo et al., 2008] to exemplify the
method in practice. MobileMedia is an SPL for manipulating photos, music, and
videos on mobile devices [Figueiredo et al., 2008]. It is an open source SPL imple-
mented in several programming languages, such as Java, AspectJ, and AHEAD. We
selected MobileMedia version 7 - AHEAD implementation [Ferreira et al., 2014]. This
SPL was chosen because: (i) it was successfully used in other previous empirical studies
[Ferreira et al., 2014; Figueiredo et al., 2008; Padilha et al., 2014], (ii) it is part of the
benchmarks presented in Section 3.1, and (iii) we have access to its software developers.

The oracle can be understood as the reference model of the actual smells found
in an SPL. The reference model is used for evaluating methods to derive thresholds. In
particular, the oracle is the basis for determining whether the derived thresholds are
effective on the identification of code smells in a specific SPL. In order to provide a
reliable oracle, we analyzed the source code of the target SPL and the oracle of other
versions of the MobileMedia developed using other technologies and languages. Only
after that we defined some God Class and Lazy Class instances. This preliminary
oracle has been validated by experts. The experts are two other researches that know
the MobileMedia source code and the main developer of this system. The final version
of the oracle was produced as a joint decision of us and the experts. Table 4.1 presents
the final version of the oracle that includes seven God Class instances and ten Lazy
Class instances.



46 Chapter 4. The Proposed Method

Table 4.1: Code Smell Oracle for MobileMedia

Code Smell Classes in the Oracle

God Class

MainUIMidlet (Base), MediaAccessor (Base), MediaController
(MediaManagement), MediaListController (MediaManagement),

MediaListScreen (MediaManagement), AlbumData
(AlbumManagement), and SmsMessaging (SMSTransfer)

Lazy Class

Constants (AlbumManagement), MediaData (SetFavourites),
ControllerCommandInterface (Base), ControllerInterface

(Base), Constants (Base), PhotoViewController (CaptureVideo),
Constants (CreateAlbum), Constants (CreateMedia),

Constants (DeleteAlbum), and Constants (MediaManagement)
The first word refers to constant or refinement and the word in parenthesis is the

name of feature in which this constant or refinement is.

4.4.3 Derived Thresholds

This section presents the derived thresholds that were obtained using the proposed
method to derive thresholds (Section 4.1) according to each benchmark presented in
Section 3.1. The process was performed with the four metrics (LOC, WMC, CBO,
and NCR) presented in Section 2.2. Only the key values of the proposed method are
presented. For example, the proposed method presents five labels, but these labels are
established in four percentages. Hence, Table 4.2 shows just the values that represent
the percentages. This table should be read as follows: the first column represents the
benchmarks, the second column indicates the different labels, and the other columns
determine the thresholds of LOC, CBO, WMC, and NCR, respectively. For example,
the labels are defined as: very low (0-3%) low (3-15%), moderate (15-90%), high (90-
95%) and very high (95-100%). These labels are represented by the intervals 0-3, 4,
5-76, 77-138, and >138, respectively for LOC in Benchmark 1.

It should be observed that there is a difference between the thresholds varying
the benchmark for the same label, although, it is a slight difference in most cases.
The values of thresholds by the same metric from Benchmark 1, 2, and 3 (in this
order) increased. It makes sense because small SPLs were removed and the constants
and refinements from SPLs whose compose Benchmark 1 are generally smaller than
constants and refinements from SPLs whose compose Benchmark 2 and 3. In addition,
it can be seen evidence that the proposed method is concerned with the entities values
to derive thresholds, because in theory the quality of the benchmarks is increasing.
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Table 4.2: Threshold Values from the Proposed Method

Benchmark % LOC CBO WMC NCR

1

3 2 1 0 0
15 4 1 1 0
90 77 11 17 3
95 138 16 31 7

2

3 2 1 0 0
15 4 1 1 0
90 78 11 17 3
95 142 16 32 7

3

3 2 1 0 0
15 4 1 1 0
90 79 12 18 3
95 146 17 34 8

4.4.4 Evaluation of the Derived Thresholds in Detecting Bad

Smells

This section presents the results of a preliminary evaluation of effectiveness applied to
the derived thresholds of the proposed method. This evaluation relies on the Mobile-
Media SPL and its oracle of code smells (Section 4.4.2). It is important to mention
that the thresholds were derived based on the three benchmarks presented in Section
3.1.

Table 4.3 presents the results of the proposed method, summarizing the true
positives (TP), false positives (FP), false negatives (FN), precision, and recall. TP and
FP quantify the number of correctly and wrongly identified code smell instances by
the detection strategies. FN, on the other hand, quantifies the number of code smell
instances that the detection strategies missed out. Precision quantifies the rate of TP
by the number of detected code anomalies (TP + FP). Recall quantifies the rate of TP
by the number of existing code anomalies (TP + FN).

The derived thresholds were applied for the Benchmarks 1, 2, and 3. For instance,
by using the thresholds derived in Benchmarks 1, 2, and 3 the number of TP for God
Class candidates was 7 for the three benchmarks. In all cases, one FP was found. In
the case of FN, we found 0 for Benchmarks 1, 2, and 3. The derived thresholds found
the same values for TP, FP, and FN for Benchmarks 1, 2, and 3. In spite of that, we
found different thresholds for the chosen metrics. For instance, for Benchmarks 1 and
2, the proposed method derives 77 and 78 to LOC, respectively (see Table 4.2). It
happens because the MobileMedia source code does not have any entity (class) in the
interval of our thresholds. For example, we can see that the thresholds for Benchmarks
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1 and 2 for LOC are 77 and 78. Applying the detection strategy the same instances
were obtained because the MobileMedia source code does not have an entity with 78
Lines of Code.

Table 4.3: Identification of Code Smells Based on Thresholds Derived From the Pro-
posed Method

Code Smell #
Benchmark
1 2 3

God Class

TP 7 7 7
FP 1 1 1
FN 0 0 0

Precision 87.5 87.5 87.5
Recall 100 100 100

Lazy Class

TP 9 9 9
FP 0 0 0
FN 1 1 1

Precision 100 100 100
Recall 90.0 90.0 90.0

We can observe in Table 4.3 that the precision is 87.5% to Benchmarks 1, 2, and
3, for the detection strategy to identify God Class instances. For the detection strategy
that aims to identify Lazy Class instances, the values of recall and precision are 100%
and 90%, respectively, for the three benchmarks. We considered that the identification
of God Class instances was better because recall is considered more useful than precision
in the context of identification of code smells as recall is a measure of completeness
[Padilha et al., 2014]. That is, high recall means that the detection strategy was able
to identify a high number of code smells in software.

4.5 Threats to Validity

Even with the careful planning, this preliminary evaluation can be affected by different
factors which, while extraneous to the concerns of the research, can invalidate its main
findings. Some actions to mitigate the weakness of the proposed method, TDTool, and
the example of use of the proposed method are described, as follows.

Metric Labels for the Proposed Method – We define the labels very low (0-
3%), low (3-15%), moderate (15-90%), high (90-95%), and very high (>95%), although
the chosen percentages cannot be the best for all systems and benchmarks. But, to
try generalizing and providing default labels, we decide to use these percentages. In
addition, it can be seen that very low and low labels might be equals or similar values.
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In spite of that, we prefer keeping both labels and increase their difference in terms
of percentages. For most metrics, high and very high labels have a small difference in
terms of percentage than very low and low labels. This small difference (5%) was chosen
because at the end (tail) the difference of the values is greater. In other words, these
percentages were defined based on our experience analyzing some metric distributions.
If someone thinks that these values do not fit well in their metric distribution, other
percentages can be used.

TDTool evaluation – We compared the results calculated manually with the
thresholds automatically calculated by TDTool. If some mistake occurred in both cases
(manually or automatically), we may have achieved wrong thresholds. To minimize this
problem, we calculate the thresholds for three different benchmarks. Therefore, if some
mistake happened, it happened in the three cases. We think that it is unlikely since
we had calculated the thresholds for three benchmarks.

Code smell – We discuss only two code smells (i.e., God Classes and Lazy
Classes). Fowler et al. [1999] has cataloged a list with twenty two code smells. There-
fore, these smells used to evaluate the effectiveness of our method may not necessarily
be a representative sample of code smells found in certain SPL. In addition, we have
to adapt the Lazy Class detection strategy changing the absolute values to labels of
the used metric. It can have affected the evaluation, but we assume that we made a
fair decision. The detection strategy chosen in this work might have influenced the
results. For example, as NCR has greater influence in the strategy of God Class than
other metrics, it may be interesting to define higher thresholds (very high instead of
high) for this metric. Nonetheless, as not all methods have labels, we decided to use a
default label (that we considered high) for all metrics.

Oracle Generation – An oracle for each code smell had to be defined in order
to calculate recall and precision measures. Several precautions were taken. In spite of
that, we can have omitted some code smell instances or chosen a code smell instance
that does not represent a design problem. In order to mitigate this threat, we rely on
experts of the target application in order to validate the oracle.

4.6 Final Remarks

This chapter described our method to derive thresholds. Additionally, we discussed
each point to justify our decisions, presented TDTool, and presented a complete exam-
ple of use. We believe that the proposed method fits all the eight desirable points. In
the example of use of our method, we derived thresholds from three SPL benchmarks
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for four metrics and identified God Class and Lazy Class instances in an SPL, called
MobileMedia. We also performed a preliminary evaluation of the proposed method
in terms of its effectiveness. Our results indicate good (90% and 100%) recall and
precision for both code smells (God Class and Lazy Class), being better to God Class.

The next chapter presents more consistent evaluations of the proposed method.
While in this chapter we present an example of use, in the next chapter we compared the
derived thresholds of the proposed method with other methods. Additionally, present
a scalability study using a different benchmark composed by single software systems
developed in Java and a summarization of our previous results.



Chapter 5

Evaluation of the Proposed Method

In Chapter 3, we compared three methods to derive metric thresholds. Based on
desirable points extracted from this comparison, we proposed, described, and exemplify
a method to derive metric thresholds in Chapter 4. Now, in this chapter, we evaluate
and compare the proposed method with the three methods compared on Chapter 3.

This evaluation occurs in three different ways. First, in Section 5.1, we analyze
the precision and recall (effectiveness) for detection of God Class instances using thresh-
olds derived by the four methods (Alves’s, Ferreira’s, Oliveira’s, and Vale’s methods).
Second, in Section 5.2, we derive the thresholds for a Java benchmark using the four
methods and analyze the derived thresholds. Finally, in Section 5.3, we put the thresh-
olds derived for these four methods side by side (like figure 3.1) for two benchmarks,
one composed by SPLs (Benchmark 3) and another composed by Java systems (Bench-
mark 4). This chapter still describes some threats to validity of our work (Section 5.4)
and final remarks (Section 5.5).

5.1 Comparison of God Class Instances

This section presents a comparison on the effectiveness of the four methods explored
in this dissertation (Alves’s, Ferreira’s, Oliveira’s, and Vale’s methods). For this com-
parison, we need: (i) to derive thresholds for each method, (ii) to select a smell and
its metric-based detection strategy, (iii) to select a system, and (iv) to have an oracle
of bad smell instances. Therefore, we use the thresholds presented in Section 3.2.3
for Alves’s, Ferreira’s, and Oliveira’s methods and the thresholds presented in Section
4.3.3 for Vale’s method. Additionally, we use the metric-based detection strategy of
God Class presented in Section 4.4.1, the MobileMedia SPL and the Oracle of God
Class instances presented in Section 4.4.2. In other words, we get the results of previ-

51



52 Chapter 5. Evaluation of the Proposed Method

ous chapters, put these results together and realize this first evaluation. We would like
to highlight that the metric-based detection strategy of God Class used was selected
from a previous study [Abilio et al., 2015].

Table 5.1 describes the results per method, summarizing true positives (TP), false
positives (FP), false negatives (FN), precision, and recall. TP and FP quantify the
number of correctly and wrongly identified God Classes by the detection strategy. FN,
on the other hand, quantifies the number of God Classes that the detection strategy
missed out. Precision (P) quantifies the rate of TP by the number of detected code
anomalies (TP + FP). Finally, recall (R) quantifies the rate of TP by the number of
existing code anomalies (TP + FN).

Table 5.1: Identification of God Classes based on Derived Thresholds of Each Method

#

Method
Alves Ferreira Oliveira Vale

Benchmark Benchmark Benchmark Benchmark
1 2 3 1 2 3 1 2 3 1 2 3

TP 6 5 5 7 7 7 7 7 6 7 7 7
FP 3 8 8 12 12 12 8 4 3 1 1 1
FN 1 2 2 0 0 0 0 0 1 0 0 0
P 66.7 38.5 38.5 36.8 36.8 36.8 46.7 63.8 66.7 87.5 87.5 87.5
R 85.7 71.4 71.4 100 100 100 100 100 85.7 100 100 100

The thresholds were derived from Benchmarks 1, 2, and 3 in the other chapters
of this dissertation. For instance, by using the thresholds derived by Alves’s method
in Benchmarks 1, 2, and 3 the number of FP was 3, 8, and 8, respectively. Our oracle
has 7 instances (see Table 4.1) and in the case of Alves’s method we found 6, 5, and
5 true positive instances to Benchmarks 1, 2, and 3, respectively. We found 1, 2, and
2 false negatives. Looking at the results of the same method we found 66.7%, 38.5%,
and 38.5% of precision and 85.7%, 71.4%, and 71.4% of recall for Benchmarks 1, 2, and
3, respectively.

In this evaluation, Vale’s and Ferreira’s methods achieved the best performance
in terms of recall measure. This result is due to the fact that the thresholds values from
these two methods are not too high when compared to Alves’s thresholds. Similarly,
Alves’s thresholds are not too bad being 85.7% in the worst case. Ferreira’s method
derived the lowest thresholds for the majority of metrics and, because of that it got
one of the higher recall values to the three benchmarks. On the other hand, Alves’s
method provide the highest thresholds for the majority of metrics, consequently, this
method got the lowest recall.
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Regarding precision values, we observed Vale’s method has good rates in the
three benchmarks. For this method, we found precision higher than 85%. Alves’s
method achieved the worst performance in terms of precision. In the case of Alves’s
method, NCR metric was responsible for the lowest precision to Benchmarks 1, 2, and
3. For instance, if the thresholds were three to Benchmark 2 and 3, like Vale’s method,
the precision would have increased to 71.4% in both cases (rather than 38.4%). NCR
was not the unique responsible for the low values of precision for Ferreira’s method,
but this metric has a strong influence in such measures. Given these two examples, we
assume that NCR has too much importance in the selected god class detection strategy,
because LOC, CBO, and WMC are combined, but NCR is not (see Figure 4.9). This is
the main fact that we get the low values of precision to Alves’s and Ferreira’s methods.

Summarizing, NCR has too much importance in the used God Class detection
strategy. A solution to minimize this problem would be to use higher labels to NCR
(for example, very high label instead of high label). However, in an attempt to be
fair to all methods, we use only the values considered high in the proposed method.
This strategy may have favored the Ferreira’s method and/or affected Alves’s method
in terms of recall and precision, respectively. This argument is not valid to Oliveira’s
because this method provides a unique threshold (not thresholds in a step-wise format).
In the case of Vale’s method change to very high label would reduce recall values, but
increase the precision to 100%. Given the limitations of three out of these four methods
do not derive lower bound thresholds and one out of these four methods do not derive
thresholds in a step-wise format; we did not calculate the effectiveness of Lazy Class
instances.

It is important to mention that the thresholds used in a detection strategy directly
impact on detected code smells obtained by each method. Accordingly, recall and
precision values are also impacted by the threshold values used in the detection strategy.
On the other hand, the detection strategy directly impact on the detected code smells
obtained by each method. Hence, we provided an analysis difficult to be generalized,
but in this case Vale’s method presented overall better results. Probably for another
detection strategy another method can be better. Given the importance of the detection
strategy and the thresholds, it is important to select a method to derive thresholds and
a detection strategy previously evaluated and reliable to get correct results.
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5.2 Scalability Study

We also conducted a scalability study to evaluate our method using another benchmark
(Benchmark 4). We chose a well-known benchmark of Java systems, called Qualitas
Corpus [Oliveira et al. 2014]. We chose this benchmark because only “real” software
systems compose it (not toy or prototype systems). This benchmark has more than
a hundred systems and most of these systems are larger and more complex than the
SPLs of the previously used benchmarks. In addition, systems from Qualitas Corpus
were developed in another programming language (Java). We planned this evaluation
to see if the thresholds derived from the four methods follow a behavior, for example
with larger systems they are higher, to analyze the results in another scale (larger
benchmark with larger systems, analyzing more metrics, etc.), and if the proposed
method works perfectly out of the context of SPLs.

We used the 20101126 release, composed by 106 open source Java software sys-
tems. For each system, the corpus presents a set of 21 software metrics, 20 of them are
numeric values. In this study, we aim to derive thresholds for a subset of seven metrics:
LOC, CBO, WMC, DIT, LCOM, NOC, and RFC. These metrics were described on
Section 2.2. From the 106 systems available in Qualitas Corpus, only three of them
do not have all these metrics computed. These systems are Eclipse 3.7.1, JRE 1.6.0,
and Netbeans 7.3. Therefore, we discarded them from this study. We then derived
thresholds using the four methods (Alves, Ferreira, Oliveira, Vale’s methods) to 103
systems. The 103 systems have 94,393 entities together. These entities are used to
derive thresholds for the four methods.

Table 5.2 shows the obtained threshold values for the four methods. For example,
for LOC using Alves’s method, we found thresholds equals to 565, 901, and 1650 to
the percentages 70, 80 and, 90, respectively. Note that, we present the key values for
each method, like we did in Chapters 3 and 4.

It is difficult comment the thresholds of these seven metrics for these four
methods because each one present the thresholds in a different format. In spite of
that, we can note that the thresholds do not vary too much for metrics with a common
value distribution, such as NOC and DIT. In the case of NOC, 87.4% of the entities
have NOC equals to 0. In the case of DIT, 50.2% of the entities have DIT equals to 1.
These numbers of equal values characterizes a common distribution for these metrics.
NOC varies from 0 to 670 and DIT from 0 to 12. Note that despite of NOC has a
greater variation than DIT, the thresholds vary from 0 to 2 in the maximum case.
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Table 5.2: Threshold Value from Four Studied Methods

Method Label LOC CBO DIT LCOM NOC RFC WMC

Alves
70 565 29 2 90 0 84 75
80 901 39 2 240 0 119 123
90 1650 59 3 851 1 191 233

Ferreira 1 19 3 1 0 0 6 3
3 131 14 3 14 0 30 19

Oliveira - 222 21 3 39 1 50 41

Vale 3 3 0 1 0 0 1 1
15 11 2 1 0 0 3 2
90 308 24 4 66 1 58 42
95 510 33 5 186 2 85 70

To present a more direct discussion, we are going to use the thresholds with
label high for Alves’s and Vale’s methods, with label bad for Ferreira’s method, and
the obtained thresholds for Oliveira’s method. The high label represents 80% of the
entities in the case of Alves’s method and 90% of the entities in the case of Vale’s
method. It is important to highlight that Alves’s method weight the entities’ values
with LOC and it changes a little the metric distribution. The bad label of Ferreira’s
method represents the third quartile (75%) of the entities in this section. Oliveira’s
method uses a defined formula. We are going to represent these labels as high for
the four methods. For more details about how the methods work, see the methods
descriptions on Sections 2.6 and 4.1.

Figure 5.1 depicts the thresholds considered high for the four studied methods.
We can see that Alves’s method provides the highest thresholds in the majority of the
cases. Ferreira’s method provides the lower thresholds. Oliveira’s and Vale’s meth-
ods provide the intermediate thresholds. The greater difference between the derived
thresholds from Alves’ and the other methods in absolute and percentage is to LOC
and LCOM metrics, respectively. The derived threshold of Alves’s method for LOC is
901 while the derived threshold of Vale’s method, the second higher, is 308. It repre-
sents almost three times more. LCOM, on the other hand, represents a difference of
almost four times more (240 to 66).

Another point to highlight here is that, despite of NOC has almost 90% of data
equals to 0, Alves’s and Ferreira’s failed to determine threshold 0 for this metric. We
said this, because 0 is the lowest value possible for this metric. Therefore, it is not
expected these threshold for a high label.
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Figure 5.1: Derived Thresholds for 7 Metrics Using Benchmark 4

5.3 Discussing Previous Results

We can see that using different methods, generally, different thresholds are derived. In
this section, we discuss the derived thresholds of three metrics (LOC, CBO, WMC)
using two different benchmarks (an SPL benchmark and a Java benchmark). The
first benchmark has fewer systems and the systems are smaller than the second bench-
mark. Additionally, the benchmarks have systems developed by different programming
languages. While in the first one, systems are developed using AHEAD and Feature-
House, in the second one the systems are developed in Java. Despite of AHEAD and
FeatureHouse are Java-based languages, they have different functions (such as step-
wise refinement) and are feature-oriented programming languages. With this study we
aim to show the difference and a common behavior for the thresholds derived from
different benchmarks.

These different functions and programming languages justify the different thresh-
olds. However, we believe that even using the same language different thresholds can
be obtained, such as the derived thresholds from benchmark 1, 2, and 3, but it is de-
pendent to the target benchmark. In other words, we want to highlight that we did
not believe in universal thresholds even using the same programming language. We
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believe that thresholds are dependent on the used benchmarks and, it is better when
it is possible to build a benchmark with systems similar to target system that is going
to be evaluated, for example, systems in a same domain and similar sizes. This is one
of the reasons we believe that this task should be easier as possible to do. Because of
that we provide tool support for the studied methods.

This section presents the thresholds using the same method side-by-side, but
derived from different benchmarks. We aim to highlight the difference of the derived
thresholds using different benchmarks. In Chapter 3, we derived thresholds using
different subgroups of an SPL benchmark. In this section, we put the derived thresholds
from benchmarks composed by different types of systems (SPLs and single systems)
side-by-side. It is important to highlight that despite of SPLs give the idea that are
larger than single systems, in our case, the majority of single systems are bigger than
the SPLs of our SPL benchmark.

Figure 5.2 presents thresholds of LOC, CBO, and WMC for an SPL benchmark
with 14 feature-oriented SPLs (Benchmark 3) and another benchmark composed by
103 Java systems (Benchmark 4). We can see that for all metrics and methods the
thresholds derived from the Java benchmark are higher than the SPL benchmark. In
some cases, we found a large difference, such as the case of LOC, and in other cases we
found a smaller difference, such as the cases of CBO and WMC. It is justified, mainly,
because the systems in the Java benchmark are larger than the systems of the SPL
Benchmark. In Chapter 3, we could see that the thresholds tend to increase when a
benchmark with larger systems is selected. Now, we can see in a greater scale that it
also happens.

5.4 Threats to Validity

Even with the careful planning, the evaluations presented in this chapter can be af-
fected by different factors which, while extraneous to the concerns of the research, can
invalidate its main findings. Some actions to mitigate the threats of our evaluations
are described, as follows.

Related to the first evaluation, we took some cares described in Section 4.5. In
addition to these cases, we compare the effectiveness of the thresholds derived from
four different methods, but using the same detection strategy. In that analysis, a
method fared better. Probably, if we use another detection strategy or another bad
smell other method can fare better. Our results cannot be generalized for all bad smells.
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Figure 5.2: Derived Thresholds from SPL and Java Benchmark Side-by-Side

In the second evaluation, we got the Qualitas Corpus metrics already calculated.
All metrics are available online and we believe that they are correct, but we are not
sure. The third evaluation strengthens some results of our dissertation. As we only
discuss previous results, some threats to validity this evaluation can already have been
mentioned on previous sections (such as, Sections 3.4 or 4.5).

5.5 Final Remarks

This chapter compared the four methods to derive thresholds explored in this disserta-
tion (Alves’s, Ferreira’s, Oliveira’s, and Vale’s methods). We conducted three evalua-
tions. In the first evaluation, we compared the derived thresholds using a metric-based
detection strategy. This metric-based detection strategy aims to identify a bad smell
called God Class. This strategy is composed by four metrics (LOC, CBO, WMC, and
NCR). Vale’s method fared better in that evaluation of effectiveness (precision and
recall). We also could conclude that the selected detection strategy gives too much
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importance to NCR metric. We suggested changing the label of this metric to very
high instead of high to reduce the importance of such metric in the detection strategy.

In the second evaluation, we provided a scalability study. Previously, we pre-
sented three benchmarks composed by software product lines (Benchmarks 1, 2, and
3). In the second evaluation, we derived thresholds for another benchmark composed
by Java systems (Benchmark 4). We considered a scalability study because all systems
from the Java benchmark are, in general, bigger than the systems from the SPL bench-
marks and, the systems were developed in another technology and language (Java –
object-oriented programming instead of AHEAD and FeatureHouse – feature-oriented
programming). With this evaluation, we can see that the methods work similarly to
the other benchmark and the derived thresholds are different from one to other meth-
ods. Alves’s method carries on deriving higher thresholds and metrics such as DIT
and NOC, which have a common value distribution the thresholds from the different
methods, are more similar.

In the third evaluation, we compared the derived thresholds of Benchmarks 3 and
4. We could see that the derived thresholds from Benchmark 4 (Java benchmark) are
higher than the thresholds from Benchmark 3. In the case of LCOM the method which
derives the highest thresholds (Alves’s method), derived thresholds almost four times
higher than the second higher thresholds.

The next chapter concludes this dissertation by highlighting our main findings.
It also describes our intended contributions, gives directions to future work, and sum-
marizes some published papers in the master period.





Chapter 6

Final Considerations

This chapter presents our conclusions, contributions, published papers directly or in-
directly related to this dissertation, and directions for future work.

6.1 Conclusion

In this dissertation, we can see that metrics are a practical means in the process of
measurement of software quality. Additionally, we can see that to this process be
effective, it is directly dependent on the definition of appropriate thresholds. Starting
to study this topic of threshold calculation, we can see that it is an open topic to
explore, because, despite of many methods have been proposed, we did not find a
consensus of researches and practitioners. Additionally, we can see that this topic
have being studied since a long time ago. To get a consensus of them, in the recent
years, more reliable methods have been proposed. We believe on that, because recent
proposed methods consider three points (well-defined methods, methods which consider
the skewed distribution of software metrics, and benchmark-based). We consider these
three points fundamental for this kind of method and, because of that we called them
of three key points.

Aiming to make easier the choice of a method to derive metric thresholds, we
performed a comparison of method which addresses the three key points. Hence, we
compared Alves’s, Ferreira’s, and Oliveira’s methods. To compare these methods we
built three benchmarks composed by software product lines. Additionally, we explore
each characteristic of these methods, such as correlate metrics and provide thresholds
in a step-wise format. As main results, we can see that Alves’s method derives higher
thresholds and, consequently, the number of outliers is smaller than the other meth-
ods. With this perspective we consider the thresholds of this method better than the
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thresholds than other methods. Additionally, we described eight desirable points for
this kind of method and we saw the opportunity to propose a method getting the best
of each method.

Therefore, we propose Vale’s method. Additionally to Vale’s method, we propose
TDTool. TDTool a tool able to support the proposed method (Vale’s method) and
other three methods previously compared (Alves’s, Ferreira’s, and Oliveira’s methods).
The idea of proposing a tool able to support the four methods is to make easier the
threshold calculation independent of the used method. The proposed method and
TDTool were descripted, exemplified, and evaluated. In our description, we justified
each decision point of our method, such as why we chose that percentages to represent
the labels very low, low, moderate, high, and very high. We exemplified our method
with two metric-based detection strategies, one for detect God Class instances and
another to detect Lazy Class instances.

The evaluation of the proposed method occurred in three ways. First, we com-
pared the effectiveness of the derived thresholds from the SPL benchmarks using a
detection strategy of God Class. Second, we derived the thresholds using a different
type of benchmark composed by single-systems developed in Java. Third, we discuss
the derived thresholds of Benchmark 3 and 4, discussing our previous results.

As results of the evaluations of this dissertation, we can see that Vale’s method
fared better in the first evaluation. In the second evaluation, we can see that the
studied methods work similarly to another benchmark. Discussing previous results, in
the third evaluation, we showed that the derived thresholds from the Java benchmark
are higher than the thresholds from the SPL benchmarks for all methods and metrics.
Therefore, as the Java benchmark is larger than the SPL benchmarks and the systems
from the Java benchmark are higher than the systems from the SPL benchmark the
thresholds seem to be reliable. In addition, TDTool works correctly when compared to
the thresholds derived manually.

Summarizing the research questions, we find many methods to derive metric
thresholds, such as Erni et al. [1996], Lanza and Marinescu [2006], Chidamber and
Kemerer [1994], Spinellis [2008], Alves et al., 2010, Ferreira et al., 2012, Oliveira et
al., 2014, and other method, see Section 2.4. The more reliable methods follow three
key points: well-defined methods, methods that consider the skewed distribution of
software measurements, and benchmark-based. With the comparative study, we can
see eight desirable points for this kind of method: (i) be well-defined and deterministic;
(ii) derive thresholds in a step-wise format; (iii) be weakly dependent on the number
of systems; (iv) be strongly dependent on the number of entities; (v) not correlate
metrics; (vi) calculate upper and lower thresholds; (vii) provide representative thresh-
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olds independent of metric distribution, and (viii) provide tool support. And finally,
given that in the evaluations our method fared better we recommend use it to derive
thresholds.

To conclude our dissertation and highlight our increments in the literature, we
provide an overview of the four studied methods in this dissertation. In Section 3.3, we
presented a comparative table summarizing the strangeness and weakness of Alves’s,
Ferreira’s, and Oliveira’s methods (Table 3.7). Now, we provide such table actualized.
Table 6.1 shows the strangeness and weakness of Alves’s, Ferreira’s, Oliveira’s, and
Vale’s method. When comparing Tables 3.7 and 6.1, we add Vale’s method and tool
support for Alves’s and Ferreira’s methods (underlined lines means contribution to the
state of art).

Table 6.1: Evolution in the Threshold Calculation Literature

Question Method
Alves Ferreira Oliveira Vale

Is it well-defined? Yes Yes Yes Yes
Is it deterministic Partially No Yes Partially

Are step-wise outliers identified? Yes Yes No Yes
Does the number of systems impact? Strong Weak Strong Weak
Does the number of entities impact? Weak Strong Weak Strong
Does it correlate with other metrics? Yes No No No

Lower bound thresholds? No No No Yes
Provides tool support? Yes Yes Yes Yes

Therefore, we believe that we achieved all our goals because we answered the
research question, provide an overview of method to derive thresholds, compared three
methods and, given the needs to propose a method with address all the eight desirable
points, we proposed our own method, called Vale’s Method. Additionally, we provided
a tool, called TDTool, able to run all four studied methods in this dissertation.

6.2 Contribution

We consider four main contributions in this dissertation, as follows.

• The literature review and overview of methods to derive thresholds;

• The proposal of a new method to derive thresholds;

• The comparison of four methods to derive metric thresholds, and;
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• The tool, called TDTool, to support our method (Vale’s method) and other three
methods (Alves’s, Fereira’s and Oliveira’s methods).

6.3 Publication Results

This section presents 9 published papers directly and indirectly related to this disser-
tation. The first two papers are part of this dissertation. The other papers are related,
but are not part of this dissertation. Nevertheless, they were fundamental to increase
the quality of this dissertation.

1. Vale, G.; Albuquerque, D.; Figueiredo, E.; Garcia, A. Defining metric
thresholds for software product lines. In: the 19th International Conference,
2015, Nashville. Proceedings of the 19th International Conference on Software Product
Line - SPLC ’15. New York: ACM Press. p. 176.

2. Vale, G. A. and Figueiredo, E. A Method to Derive Metric Thresholds
for Software Product Lines. In: Proceedings of 29th Brazilian Symposium on
Software Engineering (SBES), Belo Horizonte, 2015. * 2nd Best Paper *

3. Vale, G.; Abilio, R.; Freire, Andre; Costa, H. Criteria and Guidelines
to Improve Software Maintainability in Software Product Lines. In: 2015
12th International Conference on Information Technology New Generations (ITNG),
2015, Las Vegas. 2015 12th International Conference on Information Technology - New
Generations. p. 427.

4. Vale, G. A. ; Borges, H. ; Figueiredo, E. ; Padua, C. Ferramentas de
Medição de Software: Um Estudo Comparativo. In: Workshop on Experimental
Software Engineering - CIbSE, 2015, Lima. ESELAW,

5. Reis, J. ; Vale, G.; Costa, H. Manutenibilidade de Tecnologias para Pro-
gramação de Linhas de Produtos de Software: Um Estudo Comparativo. In:
Simpósio Brasileiro de Qualidade de Software, 2015, Manaus. XIV Simpósio Brasileiro
de Qualidade de Software, 2015. * Best paper *

6. Vale, G.; Figueiredo, E.Detection and Description of Variability Smells.
In: V Workshop de Teses e Dissertações do CBSoft (WTDSoft), 2015, Belo Horizonte.

7. Abilio, R.; Vale, G.; Oliveira, J.; Figueiredo, E. ; Costa, H. Code Smell
Detection Tool for Compositional-based Software Product Lines. In: Session
tools - CBSoft, 2014, Maceio. v. 2. p. 109-116.

8. Vale, G.; Ferreira, L; Figueiredo, E. On the Detection of God Class
in Aspect-Oriented Programming: An Empirical Study. In: Workshop on
Software Modularity (WMod), Maceio, 2014. v. 2. p. 27-38.
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9. Vale, G.; Figueiredo, E.; Abilio, R.; Costa, H. Bad Smells in Software
Product Lines: A Systematic Review. In: 2014 Eighth Brazilian Symposium on
Software Components, Architectures and Reuse (SBCARS), 2014, Maceio, p. 84-94.

6.4 Future Work

With this dissertation, we found many directions for future work. With our literature
review and the comparison of methods to derive thresholds, we proposed a method.
Other ways could be followed in the proposal of a method, for example, using fuzzy
logic to get the groups which represent the labels. We knew a tool to measure AHEAD
code (VSD tool), but we did not find any too to measure FeatureHouse code. Aiming to
avoid the transformation of FeatureHouse code to AHEAD code, when it is necessary
to measure FeatureHouse code (as we did in this dissertation), we plan to develop a
tool to measure FeatureHouse code.

We know that benchmarks are a practical means to derive thresholds and, we
know many methods to do this task using benchmarks. Despite of it, we did not find
any work providing guidelines or helping software engineers to build a benchmark. In
addition, we could see that the thresholds are dependent to benchmarks. Hence, low
quality benchmarks can provide low quality thresholds. Thereby, we want to explore
how to build representative benchmarks for software systems.

As other future work and ways to evaluate the proposed method, we intent to:
use the studied methods using benchmarks composed by systems developed in other
languages; analyze other bad smells and other detection strategies for the studied bad
smells, and; use other quality models, such as the SIG quality model to measure the
quality of software systems using the derived thresholds.





Bibliography

Abilio, R. , Padilha, J. , Figueiredo, E. and Costa, H (2015). Detecting Code Smells in
Software Product Lines - An Exploratory Study. In Proceedings of 12th International
Conference on Information Technology: New Generations (ITNG).

Abilio, R. , Vale, G. , Oliveira, J. , Figueiredo, J.and Costa, H. (2014). Code Smell
Detection Tool for Compositional-based Software Product Lines. In Proceedings of
21th Brazilian Conference on Software, Tools Session. pages 109-116.

Alves, T.L. , Ypma, C. and Visser, J. (2010). Deriving Metric Thresholds From Bench-
mark Data. In Proceedings of 26th International Conference on Software Mainte-
nance (ICSM). pages 1-10.

Apel, S. and Kästner, C. (2009). An Overview of Feature-Oriented Software Develop-
ment. In Journal of Object Technology. volume 8, pages 49-84.

Apel, S. , Kästner, C. and Lengauer, C. (2009). Language-Independent, Automated
Software Composition.. In Proceedings of the International Conference on Software
Engineering (ICSE). pages 221-231.

Apel, S. , Leich, T. , Rosenmuller, M. and Saake, G. (2005). FeatureC++: On the Sym-
biosis of Feature-Oriented and Aspect-Oriented Programming. In Proceedings of the
International Conference on Generative Programming and Component Engineering
(GPCE). pages 125-140.

Asikainen, T. , Mannisto, T. and Soininen, T. (2006). A Unified Conceptual Foundation
for Feature Modelling. In Proceedings of the International Software Product Line
Conference (SPLC). pages 31-40.

Batory, D. (2004). Feature-Oriented Programming and the AHEAD Tool Suite. In
Proceedings of the International Conference on Software Engineering (ICSE). pages
702-703.

67



68 Bibliography

Batory, D. (2005). A Tutorial on Feature Oriented Programming and the AHEAD Tool
Suite. In Proceedings of the International Conference on Generative and Transfor-
mational Techniques in Software Engineering (GTTSE). pages 3-35.

Batory, D. , Johnson, C. , MacDonald, B. and von Heeder, D. (2002). Achieving
extensibility through product-lines and domain-specific languages: a case study. In
ACM Transactions on Software Engineering and Methodology. volume 11,pages 191-
214.

Batory, D. , Sarvela, J. and Rauschmayer, A. (2004). Scaling Step-Wise Refinement.
In IEEE Transactions on Software Engineering. pages 335-371.

Brereton, P. , Kitchenham, B. , Budgen, D. , Tumer, M. and Khalil, M. (2007). Lessons
From Applying the Systematic Literature Review Process within the Software Engi-
neering Domain. In Journal of Systems and Software. volume 80,pages 571-583.

Chidamber, S. R. and Kemerer, C. F. (1994). A Metrics Suite for Object Oriented
Design. In IEEE Transactions on Software Engineering. volume 20, pages 476-493.

Coleman, D. , Lowther, B. and Oman, P. (1995). The Application of Software Main-
tainability Models in Industrial Software Systems. In Journal on System Software.
volume 29, pages 3-16.

Concas, G. , Marchesi, M. , Pinna, S.and Serra, N. (2007). Power-Laws in a Large
Object-Oriented Software System. In IEEE Transactions on Software Engineering.
volume 33, pages 687-708.

Conejero, J.M. , et al. (2012). On the Relationship of Concern Metrics and Require-
ments Maintainability. In Information and Software Technology (IST). volume 54,
pages 212-238.

Dowdy, S. and Wearden, S. (1983). Statistics for Research. In Wiley. page 230.

Dumke, R.R. and Winkler, A.S. (1997). The Component-Based Software Engineering
with Metrics. In Proceedings of International Symposium on Assessment of Software
Tools and Technologies. pages 104-110.

Erni, K. and Lewerentz, C. (1996). Applying Design-Metrics to Object-Oriented Frame-
works. In Proceedings of the 3rd International Symposium on Software Metrics
(METRICS). pages 64-72.



Bibliography 69

FeatureIDE (2016). <http://wwwiti.cs.uni-magdeburg.de/iti_db/research/
featureide/>. In Access in January, 2016.

Fenton, N.E. and Pfleeger, S.L. (1998). Software Metrics: A Rigorous and Practical
Approach. In Publishing Co. Boston. page 656.

Ferrari, F. et al. (2010). Exploratory Study of Fault-Proneness in Evolving Aspect-
Oriented Programs. In Proceeding of International Conference on Software Engi-
neering (ICSE). pages 65-74.

Ferreira, K. , Bigonha, M. , Bigonha, R. , Mendes, L. and Almeida, H. (2012). Identi-
fying Thresholds for Object-Oriented Software Metrics. In Journal of Systems and
Software. volume 85, pages 244-257.

Ferreira, G.C. , Gaia, F.N. , Figueiredo, E. and Maia, M.A. (2014). On the Use of
Feature-Oriented Programming for Evolving Software Product Lines – A Compara-
tive Study. In Science of Computer Programming. volume 93, pages 65-85.

Figueiredo et al. (2008). Evolving Software Product Lines with Aspects: an Empir-
ical Study on Design Stability. In Proceedings of the International Conference on
Software Engineering (ICSE). pages 261-270.

Foss, S. , Korshunov, D. and Zachary, S. (2011). An Introduction to Heavy-Tailed and
Subexponential Distributions. In Springer-Verlag.

Fowler, M. , Beck, K. , Brant, J. , Opdyke, W. and Roberts, D. (1999). Refactoring:
Improving the Design of Existing Code. In Addison-Wesley Professional.

French, V.A. (1999). Establishing Software Metric Thresholds. In Proceedings of the
International Workshop on Software Measurement (IWSM’99).

Gamma, E. , Helm, R. , Johnson, R. and Vlissides, J. (1995). Design Patterns: Ele-
ments of Reusable Object-Oriented Software. In Addison-Wesley.

Garcia, J. , Edwards, D. and Medvidovic, N. (2009). Identifying Architectural Bad
Smells. In Proceedings of Conference on Software Maintenance and Reengineering
(CSMR)). pages 255-258.

Heitlager, I. , Kuipers, T. and Visser, J. (2007). A Practical Model for Measuring Main-
tainability. In Proceedings of International Conference on the Quality of Information
and Communications Technology (QUATIC’07). pages 30-39.

<http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/>
<http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/>


70 Bibliography

Kang, K. , Cohen, S. , Hess, J. , Novak, W.and Peterson, A. (1990). Feature-Oriented
Domain Analysis (FODA) – Feasibility Study. In SEE Technical report CMU/SEI-
90-TR-021.

Kästner, C. and Apel, S. (2008). Integrating Compositional and Annotative Ap-
proaches for Product Line Engineering. In Proceedings of GPCE – Workshop on
Modularization, Composition, and Generative Techniques for Product Line Engi-
neering. pages 35-40.

Kästner, C. , Apel, S. and Batory, D. (2007). A Case Study Implementing Features
Using AspectJ. In Proceedings of International Software Product Line Conference
(SPLC). pages 223-232.

Kästner, C. , Apel, S. and Kuhlemann, M. (2008). Granularity in Software Product
Lines. In Proceedings of International Conference on Software Engineering (ICSE).
pages 311-320.

Kiczales, G. , Lamping, J. , Mendhekar, M. , Maeda, C. , Lopes, C.V. , Loingtier, J.
M. and Irwin, J. (1997). Aspect-Oriented Programming. In Proceedings of European
Conference on Object-Oriented Programming. pages 220-242.

Kitchenham, B. and Charters, S. (2007). Guidelines for Performing Systematic Lit-
erature Reviews in Software Engineering. In Software Engineering Group, School
of Computer Science and Mathematics, Keele University, EBSE Technical Report
Version 2.3.

Lanza, M. and Marinescu, R. (2006). Object-Oriented Metrics in Pratice. In Springer-
Verlag. page 205.

Liebig, J. , Apel, S. , Lengauer, C. , Kästner, C. and Schulze, M. (2010). An Analysis of
the Variability in Forty Preprocessor-Based Software Product Lines. In Proceedings
of International Conference on Software Engineering (ICSE). pages 105-114.

Lima, E. (2014). Uma Análise dos Valores de Referência de Algumas Medidas de Soft-
ware. In Master Dissertation in Computer Science, Computer Science Department
of Federal University of Lavras (UFLA). page 192.

Lorenz, M. and Kidd, J. (1994). Object-oriented Software Metrics. In New York:
Prentice Hall. page 146.

Louridas, P. , Spinellis, D. and Vlachos, V. (2008). Power Laws in Software. In ACM
Transactions on Software Engineering and Methodology. volume 18.



Bibliography 71

Macia, I. et al., (2012). Are Automatically-Detected Code Anomalies Relevant to
Architectural Modularity?. In Proceedings of International Conference on Aspect-
Oriented Software Development (AOSD). pages 167-178.

Marinescu, R. (2004). Detection Strategies: Metrics-Based Rules for Detecting Design
Flaws. In Proceedings of 20th International Conference on Software Manutenace
(ICSM). pages 350-359.

Mathwave (2016). https://netbeans.org/. In Access in January, 2016.

McCabe, T.J. (1976). A Complexity Measure. In IEEE Transactions on Software
Engineering. volume 2, pages 308-320.

Munro, M. J. (2005). Product Metrics for Automatic Identification of "Bad Smell"
Design Problems in Java Source-Code. In Proceedings of 11th IEEE International
Software Metrics Symposium (METRICS).

Nejmeh, B.A. (1988). NPATH: A Measure of Execution Path Complexity and its
Applications. In Magazine Communications of the ACM.

Oliveira, P. , Valente, M.T. and Lima, F.P. (2014). Extracting Relative Thresholds for
Source Code Metrics. In Proceedings of the Conference on Software Maintenance,
and Reengineering (CSMR). pages 254-263.

Oliveira, P. , Lima, F.P. , Valente, M.T. and Serebrenik, A. (2014). RTTOOL: A
Tool for Extracting Relative Thresholds for Source Code Metrics. In Proceedings of
the 30th International Conference on Software Maintenance and Evolution (ICSM).
pages 1-4.

Padilha, J. , Pereira, J. , Figueiredo, E. , Almeida, J. , Garcia, A.and Sant’Anna, C.
(2014). On the Effectiveness of Concern Metrics to Detect Code Smells: An Empirical
Study. In Proceedings of 26th International Conference on Advanced Information
Systems Engineering (CAISE). pages 656-671.

Pohl, K. , Bockle, G. and Linden, F.J.V. (2005). Software Product Line Engineering:
Foundations, Principles, and Techniques. In Berlin Springer. page 490.

Polh, K. and Metzger, A. (2006). Software Product Line Testing. In Communications
of the ACM. pages 78-81.

Riel, J. (1996). Object-Oriented Design Heuristics. In Addison-Wesley Professional.
page 400.

https://netbeans.org/


72 Bibliography

Schaefer, I. , Bettini, L. and Damiani, F. (2011). Compositional Type Checking for
Delta-Oriented Programming. In Proceedings of International Conference on Aspect-
oriented Software Development (AOSD). pages 43-56.

Schulze, S. , Apel, S. and Kästner, C. (2010). Code Clones in Feature-Oriented Software
Product Lines. In Proceedings of International Conference on Generative Program-
ming and Component Engineering (GPCE). pages 103-112.

SEI - Software Engineering Institute (2016). <http://migre.me/nOM7f>. In Access
in January, 2016.

Sommerville, I. (2011). Software Engineering, 9a Edition. In Pearson Education.

Spinellis, D. (2008). A Tale of Four Kernels. In Proceedings of the International
Conference on Software Engineering (ICSE). pages 381-390.

SPL2GO (2016). <http://spl2go.cs.ovgu.de/>. In Access in January, 2016.

SPLRepository (2016). <goo.gl/BQUxJU>. In Access in January, 2016.

Vasa, D. , Lumpe, M. , Branch, P. and Nierstrasz, O. (2009). Comparative Analysis
of Evolving Software Systems Using the Gini Coefficient. In Proceedings of the
International Conference on Software Maintenance (ICSM). pages 179-188.

Weiss, D.M. and Lai, C.T.R. (1999). Software Product-Line Engineering: A Family-
Based Software Development Process. In Addison-Wesley.

<http://migre.me/nOM7f>
<http://spl2go.cs.ovgu.de/>
<goo.gl/BQUxJU>


Appendix A

Primary Studies

This appendix presents the list of papers which we analyze to extract the methods
to derive metric thresholds explored in this dissertation. Table A.1 presents the list
of 50 papers selected in our literature review in alphabetical order, with the year of
publication.

Table A.1: List of Papers of Our Literature Review

Title/Authors Venue/Publication
Year

A Complexity Measure / McCabe TSE/1976
A Measure of Execution Path Complexity and Commun. ACM
its Applications / B. Nejmeh / 1988
A Metrics Suite for Measuring Reusability of Software
Components / H. Washizaki et al. METRICS / 2003
A Metrics Suite for Object Oriented Design /
S. Chidamber and C. Kemerer TSE / 1994
A Practical Model for Measuring Maintainability /
I. Heitlager et al. QUATIC / 2007
A Quantitative Investigation of the Acceptable Risk
Levels of Object-Oriented Metrics in Open-Source
Systems / R. Shatnawi TSE / 2010
Assessing the impact of bad smells
using historical information / A. Lozano et al. IWPSE / 2007
A Tale of Four Kernels / D. Spinellis ICSE / 2008
An adjusted boxplot for skewed distributions /
M. Hubert and E. Vandervieren JCSDA / 2008
An Empirical Exploration of the Distributions
of the Chidamber and Kemerer Object-Oriented
Metrics Suite / G. Succi et al. JESE / 2005
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Table A.2: List of Papers of Our Literature Review (Cont.1)

Title/Authors Venue/Publication
Year

An Outlier Detection Algorithm Based on Object-
Oriented Metrics Thresholds / O. Alan and C. Catal ISCIS / 2009
Applying Design-Metrics to Object-Oriented Frameworks
/ K. Erni and C. Lewerentz METRICS / 1996
Benchmark-based Aggregation of Metrics to Ratings
/ T. Alves et al. IWSM-MENSURA / 2011
Can We Avoid High Coupling? / C. Taube-Schock et al. ECOOP / 2011
Calculation and optimization of thresholds for sets of
software metrics / S. Herbold JESE / 2011
Class noise detection based on software metrics and
ROC curves / C. Catal et al. JIS / 2011
Comparative Analysis of Evolving Software Systems
Using the Gini Coefficient / R. Vasa et al. ICSM / 2009
Clustering and Metrics Thresholds Based Software
Fault Prediction of Unlabeled Program Modules
/ C. Catal et al. ITNG / 2009
Deriving Metric Thresholds from Benchmark
Data / T. Alves et al. ICSM / 2010
Does Feature Scattering Follow Power-Law Distributions?
An Investigation of Five Pre-Processor-Based
Systems / R. Queiroz et al. FOSD / 2014
Establishing Software Metric Thresholds / V. French IWSM/ 1999
Estimation of Software Reusability: An Engineering
Approach / T. Nair and R. Selvarani SIGSOFT / 2010
Extracting Relative Thresholds for Source Code
Metrics / P. Oliveira et al. CSMR-WCRE / 2014
Faster Defect Resolution with Higher Technical
Quality of Software / B. Luijten and J. Visser TDU-SERG / 2010
Faster Issue Resolution with Higher Technical
Quality of Software / D. Bijlsma et al. SQJ / 2012
Finding software metrics threshold values using
ROC curves / R. Shatnawi et al. JSME / 2010
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Table A.3: List of Papers of Our Literature Review (Cont.2)

Title/Authors Venue/Publication
Year

Getting what you measure: four common pitfalls in
using software metrics for project management
/ E. Bouwers et al. SR / 2012
Identifying thresholds for object-oriented software
metrics / K. Ferreira et al. JSS / 2012
Improving the applicability of object- oriented class
cohesion metrics / J. Dallal JIST / 2011
Managerial Use of Metrics for Object-Oriented Software:
An Exploratory Analysis / S. Chidamber et al. TSE / 1998
Mining the impact of evolution categories on object-
oriented metrics / H. Rocha et al. SQJ / 2013
Observing Distributions in Size Metrics: Experience from
Analyzing Large Software Systems / R. Ramler et al. COMPSAC / 2007
Power Law Distributions in Class Relationships /
R. Wheeldon and S. Counsell IWSCAM / 2003
Power-Law Distributions in Empirical Data
/ A. Clauset et al. SIAM / 2007
Power Laws in Software / P. Louridas et al. TOSEM / 2008
Power-Laws in a Large Object-Oriented Software System
/ G. Concas et al. TSE / 2007
Quantifying Maintainability in Feature Oriented Product
Lines / G. Aldekoa et al. CSME / 2008
Reference Values for Object-Oriented Software Metrics /
K. Ferreira et al. SBES / 2009
RTTOOL: A Tool for Extracting Relative Thresholds
for Source Code Metrics / P. Oliveira et al. ICSME / 2014
Scale-free Geometry in Object-Oriented Programs / A.
Potanin et al. Commun. ACM / 2005
Software metrics for object-oriented systems / J.
Coppick and T. Cheatham Commun. ACM / 1992
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Table A.4: List of Papers of Our Literature Review (Cont.3)

Title/Authors Venue/Publication
Year
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Industrial Software Systems / D. Coleman et al. JSS / 1995
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Code for Empirical Studies / E. Tempero et al. APSEC / 2010
The Optimal Class Size for Object-Oriented Software
/ K. Emam et al. TSE / 2002
Thresholds for Object-Oriented Measures /
S. Benlarbi et al. ISSRE / 2000
Understanding the Shape of Java Software
/ G. Baxter et al. OOPSLA / 2006
You Can’t Control the Unfamiliar: A Study on the
Relations Between Aggregation Techniques for Software
Metrics / B. Vasilescu et al. ICSM / 2011
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