
Universidade Federal de Minas Gerais

Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

A ROBUST DEEP CONVOLUTIONAL NEURAL

NETWORK MODEL FOR TEXT CATEGORIZATION

Edgard de Freitas Júnior

VOLUME I

Belo Horizonte

Março de 2016

A ROBUST DEEP CONVOLUTIONAL NEURAL

NETWORK MODEL FOR TEXT CATEGORIZATION

EDGARD DE FREITAS JÚNIOR

A ROBUST DEEP CONVOLUTIONAL NEURAL

NETWORK MODEL FOR TEXT CATEGORIZATION

Dissertation presented to the Graduate
Program in Computer Science of the
Universidade Federal de Minas Gerais in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

ADVISOR: ADRIANO ALONSO VELOSO

Belo Horizonte

Março de 2016

© 2016, Edgard de Freitas Júnior.
All rights reserved.

Freitas Júnior, Edgard de.

F866r A robust deep convolutional neural network model for
 text categorization. / Edgard de Freitas Júnior. Belo
 Horizonte, 2016.

 xxv, 157f.: il.; 29 cm.

 Dissertação (mestrado) - Universidade Federal de Minas
 Gerais – Departamento de Ciência da Computação.

 Orientador: Adriano Alonso Veloso

 1. Computação – Teses. 2. Aprendizado do computador –
 Teses. 3. Processamento da linguagem natural (Computação)
 – Teses. I. Orientador. II. Título.

 CDU 519.6*82 (043)

Ficha catalográfica elaborada pela Biblioteca do IC Ex - UFMG

v

Acknowledgments
I would like to thank my sister Anna Lee for her support and exemplary life trajectory that

inspired my decision on taking this challenge.

This work would not have been possible without the patience and support of my

girlfriend Denise and her family.

I would also like to thank my friends Andréia Martinez, Salomão Fraga and Paulo

Fernando for their encouragement and support that kept me going along the way.

I would like to express my gratitude to Prof. Alfredo Loureiro and Prof. Marcos André

Gonçalves for their recommendation letters and confidence.

I specially thank my longtime friend Prof. Wagner Meira for his support and advices.

My sincere thanks to Prof. Renato Ferreira and NVIDIA Corporation for the donation

of the K40 GPU, without which would not been possible to run all the experiments.

Thanks to Prof. Marco Cristo for the opportunity to participate on a deep learning

course taught by LISA researches at UFAM.

I wish to specially thank my advisor, Prof. Adriano Veloso, for his patience, optimism

and availability to participate in long discussions about deep learning and philosophy

matters.

I would also like to thank all the students from the machine learning group at UFMG

for the interesting discussions and research they have been done.

vii

“Colorless green ideas sleep furiously.”
(Avram Noam Chomsky)

ix

Resumo
Categorização de textos é uma das tarefas mais importantes nas aplicações do domínio do

Processamento de Linguagem Natural (PLN), a qual consiste em associar automaticamente

categorias pré-definidas a documentos escritos em linguagem natural. Técnicas tradicionais

de aprendizado de máquina utilizam características elaboradas manualmente para a

construção dos modelos, tais como, n-gramas, palavras de negação, sinais de pontuação,

símbolos representando emoções, palavras alongadas e dicionários léxicos. Esta abordagem,

chamada de engenharia de características, além de requerer um trabalho árduo, resulta

geralmente em modelos que apresentam uma performance ruim em tarefas para as quais não

foram especificamente criados.

Neste trabalho, propomos um modelo robusto baseado em uma Rede Neural de

Convolução (RNC) profunda para aprendizado chamado de PLN profundo. Nosso modelo

utiliza uma abordagem composicional, na qual o projeto da arquitetura da RNC profunda

induz a criação de uma representação hierárquica para o texto através da descoberta de

representações intermediárias para as palavras e sentenças do texto. As representações

iniciais para as palavras, chamadas de incorporação de palavras, são obtidas de um modelo

de linguagem neural treinado previamente de forma não supervisionada, as quais são

ajustadas para o contexto da tarefa para a qual o modelo está sendo treinado.

O nosso modelo foi avaliado em tarefas de categorização de textos comparando sua

acurácia com os resultados publicados para alguns modelos tradicionais e de aprendizado

profundo utilizando seis conjuntos de dados de larga escala. Os resultados mostram que

nosso modelo é robusto no sentido de que, mesmo quando nós utilizamos os mesmos

parâmetros globais, ele supera a acurácia dos modelos considerados estados da arte em

diferentes tarefas de categorização de textos. Os resultados também mostram que a utilização

de um dicionário de sinônimos semânticos juntamente com as representações iniciais de

palavras ajuda na generalização das representações aprendidas pelo modelo, aumentando sua

acurácia.

Palavras-chave: Aprendizado Profundo, PLN, RNC, Categorização de Textos.

xi

Abstract
Text categorization is the task of automatically assigning pre-defined categories to

documents written in natural languages and it is one of the most important tasks in Natural

Language Processing (NLP) domain applications. Traditional machine learning techniques

rely on handcrafted features such as ngrams, negation words, punctuation, emoticons, stop

words, elongated words and lexicons to build their models. This approach, called feature

engineering, in addition to being labor intensive, results in models that, in general, present

poor performance on tasks for what they have not been specifically tailored.

In this work, we propose a robust deep learning Convolutional Neural Network (CNN)

model named Deep NLP. Our model adopts a compositional approach, in which the design

of the deep CNN architecture induces the creation of a hierarchical representation for the

text, through the extraction of intermediate representations for the words and sentences of

the text. The initial word representations, called word embeddings, are obtained from a pre-

trained unsupervised neural language model and they are adjusted for the context of the task

that the model is being trained.

We evaluated our model comparing its accuracy against the results reported by some

traditional and deep learning models in text categorization tasks using six large-scale data

sets. The results show that our model is robust in the sense that, even when we use the same

hyperparameters, it surpasses the accuracy of the state-of-the-art models in different text

categorization tasks. The results also show that the use of a semantic synonyms dictionary

together with the word embeddings helps to generalize the representations learned by the

model increasing its accuracy.

Keywords: Deep Learning, NLP, CNN, Text Categorization.

xiii

List of Figures
Figure 2.1. Neuron model projected over a typical neuron cell. .. 9

Figure 2.2. Steps of the backpropagation algorithm. .. 11

Figure 2.3. The six layers of the human neocortex... 12

Figure 2.4. Representations learned by layers make data separable................................... 13

Figure 2.5. Effect of the number of parameters on the performance of models with different

depths. .. 14

Figure 2.6. Evolution of GPUs and NNs over time. ... 15

Figure 2.7. Evolution of data sets size over time. ... 16

Figure 2.8. 2D convolution operation. .. 17

Figure 2.9. Patterns learned by the layers of a deep CNN. ... 17

Figure 2.10. 1D convolution sparse connectivity and parameters sharing. 18

Figure 2.11. A typical CNN layer. .. 19

Figure 2.12. Architectures of the CBOW and Skip-gram neural language models. 21

Figure 2.13. Algebraic operations on word vectors. ... 21

Figure 4.1. Model data flow. .. 28

Figure 4.2. Deep NLP model architecture. ... 31

Figure 5.1. Main components of a Torch7 NN package module.. 35

Figure 5.2. Lua code fragment of the deep CNN model implementation. 36

Figure 5.3. Execution log excerpt of the deep CNN model.. 37

Figure 5.4. Input text decoding through the lookup table forward method. 38

Figure 5.5. Temporal convolution over the decoded input text. ... 39

Figure 5.6. Plot of the threshold function and its derivative. ... 40

Figure 5.7. Detailed diagram of our deep CNN architecture. ... 43

Figure 5.8. Detailed diagram of our deep CNN architecture. ... 44

Figure 5.9. Detailed diagram of our deep CNN architecture. ... 45

xiv

Figure 7.1. Experiments with the size of the Amazon Review Polarity data set. 64

xv

List of Tables
Table 6.1. Characteristics of the large-scale data sets used in the experiments.................. 47

Table 6.2. AG's news data set samples. .. 48

Table 6.3. AG's news documents statistics. .. 49

Table 6.4. DBPedia ontology data set samples. .. 50

Table 6.5. DBPedia ontology documents statistics. .. 51

Table 6.6. Yelp reviews polarity data set samples. ... 51

Table 6.7. Yelp reviews polarity documents statistics. ... 52

Table 6.8. Yelp reviews full star data set samples. ... 52

Table 6.9. Yelp reviews full star documents statistics. ... 53

Table 6.10. Yahoo! Answers data set samples. .. 54

Table 6.11. Yahoo! Answers documents statistics. .. 55

Table 6.12. Amazon reviews polarity data set samples. ... 56

Table 6.13. Amazon reviews polarity documents statistics. ... 56

Table 6.14. Values of the model hyperparameters used in the experiments....................... 57

Table 6.15. Minimum vocable frequencies used in experiments. 58

Table 6.16. Vocabulary size and number of parameters of the model. 58

Table 6.17. Amazon reviews polarity training data set size experiment. 59

Table 6.18. Computer hardware specification. ... 60

Table 7.1. Accuracy results summary. .. 62

Table 7.2. Training data sets comparison. .. 63

Table 7.3. Vocabulary generation and text encoding statistics using WordNet. 63

Table 7.4 Training times for the Amazon Review Polarity data set sizes. 65

xvii

List of Acronyms
1D One-dimensional

2D Two-dimensional

ANN Artificial Neural Network

BoW Bag of Words

CBOW Continuous Bag-of-Words

CNN Convolutional Neural Network

DBN Deep Belief Network

DCNN Dynamic Convolutional Neural Network

GPU Graphical Processing Unit

ILSVRC ImageNet Large-Scale Visual Recognition Challenge

LSTM Long Short Term Memory

NLL Negative Log-Likelihood

NLP Natural Language Processing

NLTK Natural Language Toolkit

NN Neural Network

POS Poverty of the Stimulus

RecNN Recursive Neural Network

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

TDNN Time-Delay Neural Network

xix

Contents
Acknowledgments v

Resumo ix

Abstract xi

List of Figures xiii

List of Tables xv

List of Acronyms xvii

Contents xix

1 Introduction 1

1.1 Deep Learning Models .. 1

1.2 Convolutional Neural Network Models .. 2

1.3 Data Representation .. 3

1.4 Compositionality ... 4

1.5 Depth ... 5

1.6 Objectives of this Work ... 5

1.7 Contributions of this Work .. 6

1.8 Organization .. 6

2 Background 8

2.1 Neural Networks.. 8

2.2 Neocortex Deep Structure ... 11

2.3 Deep Learning ... 13

2.3.1 Depth Matters... 13

xx

2.3.2 The Renascence ... 14

2.3.3 CNN Architecture .. 16

2.4 Word Embedding .. 19

3 Related Work 23

4 Model 28

4.1 Data Flow .. 28

4.2 Text Encoding ... 29

4.3 Deep Architecture ... 31

4.4 Optimization .. 33

5 Implementation 34

5.1 Programming Languages .. 34

5.2 Computing Framework ... 34

5.3 Modules ... 36

5.3.1 Lookup Table ... 38

5.3.2 Temporal Convolution ... 39

5.3.3 Threshold ... 40

5.3.4 Spatial Adaptive Max Pooling ... 40

5.3.5 View ... 41

5.3.6 Linear ... 41

5.3.7 Dropout .. 41

5.3.8 Log Softmax .. 42

5.3.9 ClassNLLCriterion .. 42

5.4 Detailed Network .. 42

6 Evaluation 47

6.1 Data Sets ... 47

6.1.1 AG’s News .. 48

6.1.2 DBPedia Ontology ... 49

6.1.3 Yelp Review Polarity ... 51

6.1.4 Yelp Review Full ... 52

6.1.5 Yahoo! Answers .. 53

6.1.6 Amazon Review Polarity ... 55

xxi

6.2 Experiments ... 57

6.2.1 Methodology .. 57

6.2.2 Hardware .. 60

7 Results 61

7.1 Accuracy .. 61

7.2 Training Size ... 64

8 Conclusions 66

9 Future Work 68

Bibliography 70

1

Chapter 1
Introduction
Text categorization is one of the most important tasks in Natural Language Processing

(NLP). Text categorization is the task of automatically assigning pre-defined categories to

documents written in natural languages. Text categorization can be used for, among others,

classifying a document in a set of topics, rating a product review written by a costumer or

associating a sentiment with a text posted by a user [Manning & Schütze, 1999] [de Oliveira

Jr., et al., 2014] [Veloso, Jr., Cristo, Gonçalves, & Zaki, 2006].

Traditional machine learning techniques used to build models for text categorization

rely on handcrafted features to succeed. Features such as ngrams, negation words, stop

words, punctuation, emoticons, elongated words and lexicons are carefully chosen by a

domain specialist for a specific task. This approach leads to models tailored for a specific

context and seldom achieve good performance in different tasks. This approach is called

feature engineering [Bottou, et al., 2011].

1.1 Deep Learning Models
The deep learning paradigm adopts a different approach to find the model features. The

models built using the deep learning approach learn not only the parameters of the features

but also the features themselves for a given task. This approach, called feature learning, leads

to more general models that achieve good performance in different tasks and domains . In

this scenario, the model specialist has to fine-tune the model hyperparameters for the given

task [Goodfellow, Bengio, & Courville, 2016].

2 CHAPTER 1. INTRODUCTION

Despite the good performance achieved by some traditional machine learning NLP

techniques as Bag of Words (BoW) in text categorization tasks such as topic identification,

these models present poor performance in tasks where the semantic of the text is sensitive to

the word positions. For example, a BoW model will give the same value for the expressions

“know a little bit about everything” and “know everything about a little bit”. Both

expressions have exactly the same words, but have different meanings. The first one

designates a generalist and the second one designates a specialist. To be able to capture the

semantic of a sentence, a model has to take into account the word positions in the sentence.

There are different deep learning models suited for specific application domains. The

Recursive Neural Network (RecNN) model is claimed to be well suited for NLP applications

because of its hierarchical structure. The weakness of this type of model is its dependency

on an external syntactic parse tree. This restriction limits the learning of semantic relations

between words to syntactically dictated phrases. Extended models based on RecNN achieved

the state of the art in some NLP tasks using specific data sets [Socher, et al., 2013].

The Recurrent Neural Network (RNN) model is a special case of RecNN that is suited

for modeling sequential data. Despite its power in representing sequential structures, it is

seldom being used for NLP tasks such as text categorization because of its difficulty in

learning long-term dependencies. This limitation is due to the exploding and vanishing

gradients problems that occur in the training phase [Pascanu, Mikolov, & Bengio, 2013].

To overcome the exploding and vanishing gradients problems, a type of RNN

architecture called Long Short Term Memory (LSTM) has been used with success in some

application domains [Zaremba, Sutskever, & Vinyals, 2014].

1.2 Convolutional Neural Network Models
Two-dimensional (2D) Convolutional Neural Network (CNN) models have been

successfully applied in computer vision domain problems for some time [LeCun, Bottou,

Bengio, & Haffner, 1998]. More recently, the remarkable results achieved by deep CNN on

image classification challenges got the state of the art to a new level and promoted the

renascence of the deep learning paradigm [Krizhevsky, Sutskever, & Hinton, 2012].

CHAPTER 1. INTRODUCTION 3

It has been showed that deep CNN models are able not only to discover the features of

the data, but also they are able to learn a hierarchical representation for the data through the

discovered features. The revealed features have desirable properties such as

compositionality, increasing invariance and class discrimination as they ascend the network

layers [Zeiler & Fergus, 2013].

One-dimensional (1D) CNN models like Time-Delay Neural Networks (TDNN) have

been successfully used for some time in speech recognition applications such as phoneme

recognition [Waibel, Hanazawa, Hinton, Shikano, & Lang, 1989]. More recently, deep 1D-

CNN models have been used in NLP tasks like language modeling [Bottou, et al., 2011].

1.3 Data Representation
A central problem present in all NLP applications is how to represent the input text. Some

models view the input text as a stream of characters [Zhang, Zhao, & LeCun, 2015]. Other

models deal with the input text as a sequence of phonemes [dos Santos & Gatti, 2014]. Most

models make the natural choice of viewing the input text as a sequence of words. In these

models, the problem is how to represent a word. The simplest way is to associate with each

vocable present in the text a unique id and use a lookup table to encode the text’s words.

Each id is represented as a vector that has the size of the vocabulary and only the bit that

identifies the vocable is set to one. That is why this type of word representation is called

one-hot.

The problem with the one-hot representation is the dimensionality of the word vectors.

For example, in a dataset with 30K vocables, each word in the text will be represented by a

vector of size 30K. Despite of this limitation, some models using one-hot representation have

achieved remarkable results in text categorization tasks [Johnson & Zhang, 2015].

A more sophisticated way of word representation is called word embedding. This type

of representation tries to create a mapping from the symbolic representation of a word into

a lower dimensional vector space. In addition to effectively dealing with the problem of the

dimensionality, it has been shown that word embeddings are able to capture many semantic

relationships between the words they represent [Mikolov, Chen, Corrado, & Dean, 2013].

4 CHAPTER 1. INTRODUCTION

Intuitively, in the context of deep learning models, the use of word embeddings makes

sense. Like humans do, the model learns a semantic representation of a word in some context

and it adjusts this representation for the specific context that it is being trained. The models

that make use of word embeddings are considered semi-supervised models because the

initial word representations are learned in an unsupervised way and they fit these

representations for a specific task through a supervised training.

1.4 Compositionality
Another central problem present in all NLP tasks is how much syntax is needed to extract

semantics. As we have already mentioned, the RecNN models depend on an external

syntactic parse tree to extract semantic from a text. The performance of these models

degrades on NLP tasks where the input text is written using an informal language style that

does not strictly follow syntactic rules.

Some models try to learn a representation in an unsupervised way not only for the

words but also for the whole paragraph. These models are suited for NLP tasks where there

is not data sets with enough labeled data. [Le & Mikolov, 2014]

Most of the deep CNN models used in NLP tasks convolves a set of filters over the

sequence of text words. They do not explicitly take into account the syntactic information of

text sentence units. They consider the whole text as a syntactic unit. These models are suited

for NLP tasks where the input text holds in one sentence. An example of this type of task is

sentiment classification of texts from a Twitter dataset [Kalchbrenner, Grefenstette, &

Blunsom, 2014].

In some NLP tasks, it seems to make sense to apply a compositional approach. These

models explicitly consider a text made up by sentence units that, in turn, are compounded

by words [Denil, Demiraj, Kalchbrenner, Blunsom, & de Freitas, 2014].

Analogously to an image made up by different classes of objects in the computer vision

domain, a text is made up by sentence units that can have different semantics. It was showed,

in the computer vision domain, that forcing information to pass through carefully chosen

bottlenecks makes it possible to control the types of intermediate representations learned by

CHAPTER 1. INTRODUCTION 5

the model [Hinton, Krizhevsky, & Wang, 2011]. This strategy helps on the generalization of

the representations learned by the model [Gülçehre & Bengio, 2013].

1.5 Depth
Another central question in the design of deep learning models is how deep a network must

be. There is a consensus that shallow models are not able to extract complex features of the

data but there is not a rule of thumb to determine how many layers suffice to extract the

required features for a specific task. In the computer vison domain, a deep CNN model that

achieved the state of the art in image classification tasks was implemented using 22 layers

[Szegedy, et al., 2014].

Another critical issue on the design of deep CNN models is the relationship between

the number of parameters and the depth of the model. In the specific case of NLP models,

the dimensionality of the data representation has a huge impact on the number of parameters

of the model.

1.6 Objectives of this Work
The objective of this work is to propose a robust deep CNN model for text categorization

tasks, named Deep NLP. The design of this model aims to overcome the limitations of other

models reported in the literature and to achieve a robustness in the sense that the model can

be used in different text categorization tasks without the need of tuning the model

hyperparameters. To achieve these objectives, we employ a series of deep learning concepts

and techniques. We adopt a semi-supervised approach where the initial vocable

representations are obtained from a pre-trained unsupervised neural language model publicly

available1 (Word2Vec). The vocable representations are adjusted to a specific task context

during the training phase. The model implements a compositional approach explicitly

creating intermediate representations for the sentences. The size of the input text is not

limited by the model. The model is made up of seven layers to extract complex features of

1 https://code.google.com/archive/p/word2vec/

6 CHAPTER 1. INTRODUCTION

the input text. We make use of the WordNet corpus to find semantic synonyms for the

vocables not found in Word2Vec and for the text words not found in the generated

vocabulary [Miller, 1995].

1.7 Contributions of this Work
We evaluated our model comparing its accuracy against the results reported by deep learning

models in text categorization tasks [Zhang, Zhao, & LeCun, 2015]. The model was trained

without and with the use of the WordNet synonyms. We also made experiments to measure

how the data set size affects the accuracy and training time of our model.

The results show that our model is robust in the sense that, even when using the same

model hyperparameters, it can beat the state of the art models’ accuracy in different text

categorization tasks. The results also show that the use of the WordNet semantic synonyms

helps to generalize the representation learned by the model, thus increasing its accuracy. The

experiments made with the data set size show that our model beat the accuracy of the state

of the art model using only one third of the data set size.

Another contribution resultant from the design of the proposed architecture is that our

model do not impose any limit on the size of the input text. The implementation of our model

makes an efficient use of the massively parallel processing power of the GPU, which makes

it possible to train huge data sets in a shorter processing time.

1.8 Organization
The remaining part of this work is organized as follows. In Chapter 2, we introduce some

underlying concepts used in artificial neural networks and deep learning models. In Chapter

3, we present the related work that apply or develop similar concepts used in this dissertation.

In Chapter 4, we provide an in-depth description of the architecture of our model. In Chapter

5, we discuss the implementation details of our model. In Chapter 6, we describe the data

sets and experiments used to evaluate our model. In Chapter 7, we report and analyze the

CHAPTER 1. INTRODUCTION 7

results of the experiments. In Chapter 8, we discuss the main contributions of this work. In

Chapter 9, we address some future work.

8

Chapter 2
Background
In this chapter, we present the underlying concepts necessaries for the understanding of this

work. We introduce some Artificial Neural Networks basic concepts, then we present some

principles discovered by the neural science that inspired the development of the

neurocomputing algorithms. Finally, we present an overview of the deep learning paradigm.

2.1 Neural Networks
The basic concepts used in the deep learning paradigm are inherited from the Artificial

Neural Networks (ANNs) models or Neural Networks (NNs) for short. The aim of the NNs

paradigm is to develop computer programs capable of solving abstract problems that are

hard to be described using formal rules, but are easily solved by human beings.

The development of the NNs paradigm started in the 1950s [McCulloch & Pitts, 1943]

[Rosenblatt, 1962]. The NNs models were inspired by the concepts and principles of the way

the human brain works, which was discovered by the neural science.

The human cortex can be viewed as a complex network whose nodes are neurons. Each

neuron receives input signals from other neurons through its dendrites. The neurons

connections are established through the synapses. The strength of the input signals is

determined by the stimulus received. The input signals are combined inside the neuron to

create an output signal. The output signal is transmitted to other neurons through the axon if

its amplitude is greater than a pre-determined value called action potential. The output signal

is called a spike. It is estimated that the human cortex has 10 billion of neurons and 60 trillion

of synapses [Kandel, Schwartz, & Jessel, 2000].

CHAPTER 2. BACKGROUND 9

At the cell level, the human behavior adaptability or learning mechanism can be

explained by the plasticity hypothesis. The stimulus received from the environment and the

output produced by the network cause permanent changes on the neurons connections.

Figure 2.1 shows a node of a feedforward NN model projected over a schematic view of a

typical neuron.

In Haykin [1999], the author defines an ANN as a massively parallel distributed system

made up of simple processing units, which has a natural propensity for storing experimental

knowledge. An ANN resembles the human brain in that the knowledge is acquired by the

network from its environment through a learning process and the strength of neuron

connections, known as synaptic weights, are used to store the acquired knowledge.

In the context of ANNs, learning is the process by which the synaptic weights, or

network parameters, are adjusted through a process of stimulation known as training. The

type of learning is determined by the way the parameters changes take place. There are many

types of learning mechanisms. In ANNs, the most used learning mechanism is the error-

correction algorithm.

The error-correction learning algorithm compares the network output with a target

value through an objective or cost function. The cost function associates the network

parameters with a measure of the error produced by the network output. In feedforward NNs,

the most used error-correction learning algorithm is the backpropagation.

Figure 2.1. Neuron model projected over a typical neuron cell.

10 CHAPTER 2. BACKGROUND

Backpropagation is about understanding how adjusting the weights and biases in a

network changes the error given by the cost function. Because the cost function depends on

the network output value, which in turn is a function of the output layer activation function

that depends on the previous layers weights and bias and so on, we can recursively use the

chain rule to calculate the gradient of the cost function with respect to the network

parameters. This way, we know how the changes on each network parameter contribute to

the error measured by the cost function.

The backpropagation algorithm is executed in four steps. In the feedforward step, the

network output is calculated. In the error step, the cost function gradient of with respect to

the network output is calculated. In the backward step, the error is back propagated

calculating the gradient with respect to the previous layers outputs. In the update step, the

values of the network parameters are adjusted using some updating rule. In general, the

updating rule used is the gradient descent algorithm. The network parameters are subtracted

from its gradient multiplied by a constant. This constant is called the learning rate.

The backpropagation algorithm was originally introduced in the 1970s, but it became

popular only in 1986 after the publication of a paper in which the authors showed that the

speedup aroused from the use of the backpropagation algorithm made it possible to use NNs

to solve problems that had previously been insoluble [Rumelhart, Hinton, & Wilson, 1986].

What is clever about the backpropagation algorithm is that it enables us to compute all

the gradients partial derivatives simultaneously using just one forward pass through the

network, followed by one backward pass. Roughly speaking, the computational cost of the

backward pass is about the same as the forward pass.

Even in the late 1980s, people ran up against computational limits, especially when

attempting to use backpropagation to train deep NNs. The backpropagation algorithm is

based on common linear algebraic operations like vector additions and matrix

multiplications. In 2006, the improvement of the algorithms and the popularization of the

use of the GPUs for scientific computation made the use of the backpropagation algorithm

feasible in deep NNs models [Hinton, Osindero, & Teh, 2006] [Kirk & Hwu, 2010].

CHAPTER 2. BACKGROUND 11

Figure 2.2 shows the steps of the backpropagation algorithm in a small segment of a

typical feedforward neural network.

2.2 Neocortex Deep Structure
Another concept used in ANNs inspired by the human cortex structure is the concept of

hierarchy. Humans organize their ideas and concepts hierarchically first learning simpler

concepts and then composing them to represent abstract concepts. It is believed that this

behavior is due to the physical structure of the human neocortex.

The human neocortex is organized into regions and the typical neocortex tissue is made

up by six layers of neurons cells. The lower layers, sixth and fifth, have a higher

concentration of neurons than the upper layers. They receive input signals from other cortex

Figure 2.2. Steps of the backpropagation algorithm.

12 CHAPTER 2. BACKGROUND

regions and pass the extracted features to the upper layers, which in turn pass the information

to other neocortex regions.

Within the neocortex, the information flows serially from one region to another. For

example, the visual cortex is built by a sequence of regions, each of which contains a

representation of the input and the signals flow from one region to the next. Each level of

this feature hierarchy represents the input at a different abstraction level, with more abstract

features further up in the hierarchy, defined in terms of the lower-level ones [Kandel,

Schwartz, & Jessel, 2000].

The upper layers and regions also have feedback connections to the lower ones. For

many years, most scientists ignored these feedback connections. They are essential for the

brain to accomplish one of its most important functions, which is to make predictions.

Predictions requires a comparison between what is happening and what you expect to

happen. What is actually happening flows up in the hierarchy, and what you expect to happen

flows down [Hawkins & Blakeslee, 2004].

Figure 2.3 shows on the left a histological structure of the human neocortex tissue and

on the right a schematic representation of some sensory regions layers hierarchy. The

appearance of the histological structure depends on what was used to stain it. The Golgi stain

reveals the neuronal cell bodies and the dendritic trees. The Nissl method shows the cell

bodies and the proximal dendrites. The Weigert stain for myelinated fibers reveals the

pattern of axonal distribution [Kandel, Schwartz, & Jessel, 2000].

Figure 2.3. The six layers of the human neocortex.

CHAPTER 2. BACKGROUND 13

2.3 Deep Learning

2.3.1 Depth Matters
The deep learning paradigm can be characterized by the use of two strategies inspired by the

working of the human brain. The first strategy is the learning from experience, which was

already adopted in the ANNs. The second strategy is to understand the world in terms of a

deep hierarchy of concepts, with each concept defined in terms of its relation to simpler

concepts.

The approach of gathering knowledge from experience avoids the need to specify the

formal rules that allow the computer programs to solve abstract problems. The approach of

viewing an abstract problem as a hierarchy of concepts allows the computer programs to

learn complicated concepts by building them out of simpler ones.

The building of a hierarchy of concepts is induced by the deep architecture of layers.

The use of a deep architecture can be viewed as a kind of function factorization. The depth

of two layers may be enough to represent some families of functions with a given target

accuracy. Theoretical results showed that there are families of functions for which the

insufficient depth makes the number of parameters grows exponentially with the input size

[Bengio, 2009]. The Kolmogorov’s Mapping Neural Network Existence theorem assures

that an arbitrary continuous function, mapping values from an n-dimensional compact set to

the real numbers vector space, can be implemented by a feedforward neural network with at

least three layers of depth [Hecht-Nielsen, 1990].

Figure 2.4 illustrates a classification problem of a two-class data set represented by

two curves. Each layer of the network transforms the data, creating a new representation and

making the data easily separable by a linear classifier.

Figure 2.4. Representations learned by layers make data separable.

14 CHAPTER 2. BACKGROUND

Deeper models tend to perform better not only because they are larger. Increasing the

number of parameters in models having less than three layers, called shallow models, does

not allow them to reach the same level of performance as deeper models. This is primarily

due to overfitting. Figure 2.5 presents a chart with the results of an experiment comparing

the number of parameters with the performance of models having different depths

[Goodfellow, Bulatov, Ibarz, Arnoud, & Shet, 2014].

It is clear that only the deepest models had their accuracy increased with the growth

on the number of parameters.

2.3.2 The Renascence
Until 2006, attempts of training a deep supervised feedforward neural network architecture

yielded worse results then shallow architectures. In Bengio et al. [2006], the authors

extended the pionner work done in Hinton et al. [2006,] showing that the initialization of

Deep Belief Networks (DBN) parameters with pre-trained unsupervised learned

representations values could improve its generalization. Since then, the development of new

algorithms and techniques made possible the implementation of deeper architecutes and the

adoption of the deep learning paradigm to solve problems in many domains [Bengio,

Learning Deep Architectures for AI., 2009].

Figure 2.5. Effect of the number of parameters on the performance of models
with different depths.

CHAPTER 2. BACKGROUND 15

In 2012, a dramatic moment in the meteoric rise of deep learning came when a deep

CNN architecture won the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)

for the first time and by a wide margin, bringing down the state-of-the-art error rate from

26.1% to 15.3% [Krizhevsky, Sutskever, & Hinton, 2012]. Since then, these competitions

are consistently won by deep CNNs and the advances in deep learning have brought the

latest top-5 error rate in this contest down to3.6% [Goodfellow, Bengio, & Courville, 2016].

Two main facts, besides the development of new algorithms and techniques,

contributed to the recent success of the deep learning paradigm. The increase on the

massively parallel processing power of the GPUs for scientific computation made it possible

to implement deeper models having a huge number of parameters.

Figure 2.6 shows comparative charts between the processing power of the GPUs, on

the left, and the number of neurons of ANNs implemented over time on the right

[Goodfellow, Bengio, & Courville, 2016].

The other fact that contributed to the recent success of the deep learning paradigm is

the increase on the data sets size. In the 1980s and 1990s, machine learning became statistical

in nature and began to leverage larger data sets containing tens of thousands of examples

such as the MNIST data set. As the models become more complex, the number of parameters

increases and more data is required to train the model.

Figure 2.6. Evolution of GPUs and NNs over time.

16 CHAPTER 2. BACKGROUND

Figure 2.7 shows a chart of the data sets size over time [Goodfellow, Bengio, &

Courville, 2016].

2.3.3 CNN Architecture
There are many types of ANN architectures. Each architecture has been developed for a

specific task. The Convolutional Neural Network (CNN) architecture was developed for

computer vision tasks and it was inspired by the discoveries of the neurophysiologists about

how the mammalian vision system works [Hubel & Wiesel, 1959]. They observed how

neurons in the cat’s brain responded to images projected in precise locations on a screen in

front of the cat. Their great discovery was that neurons in the early visual system responded

most strongly to very specific patterns of light, such as precisely oriented bars, but responded

hardly at all to other patterns.

The visual cortex contains a complex arrangement of cells that are sensitive to small

sub-regions of the visual field, called a receptive field. The sub-regions are tiled to cover the

entire visual field. These cells act as local filters over the input space and are well suited to

exploit the strong spatially local correlation present in natural images. Simple cells respond

maximally to specific edge-like patterns within their receptive field. Complex cells have

larger receptive fields and are locally invariant to the exact position of the pattern.

The term convolutional comes from a mathematical operation called convolution.

Convolution is a specialized kind of linear operation. The convolution operation used in

ANNs does not correspond precisely to its definition in mathematics. Convolutional

Figure 2.7. Evolution of data sets size over time.

CHAPTER 2. BACKGROUND 17

networks are simply ANNs that use convolution in place of general matrix multiplication in

at least one of their layers [Goodfellow, Bengio, & Courville, 2016].

Figure 2.8 shows a schematic view of a 2D convolution operation as it is used in

ANNs. The small letters correspond to the values of each position of the input and of the

filter.

It has been showed that deep CNN models are able not only to discover the features of

the data, but also they are able to learn a hierarchical representation for the data through the

discovered features. The revealed features have desirable properties such as

compositionality, increasing invariance and class discrimination as they ascend the network

layers [Zeiler & Fergus, 2013]. Figure 2.9 shows the images generated by a visualization

technique called deconvolution. The images reveal the patterns learned by each layer of a

deep CNN. In the lower layers, the discovered patterns, like edges, correspond to small

regions of the image. In the upper layers, the discovered patterns, like objects, correspond to

larger regions of the image.

Figure 2.8. 2D convolution operation.

Figure 2.9. Patterns learned by the layers of a deep CNN.

18 CHAPTER 2. BACKGROUND

Another key consideration about the architecture design of ANNs is the connection

between the layers. Traditional ANN layers use a matrix multiplication to describe the

interaction between each layer. This means that every element of a layer is connected to

every element of the previous and next layers. CNNs have sparse connections. This is

accomplished by making the filter smaller than the input. For example, when processing an

image, the input image might have thousands or millions of pixels, but we can detect small,

meaningful features such as edges with filters that occupy only tens or hundreds of pixels.

This means that we need to store fewer parameters, which both reduces the memory

requirements of the model and improves its statistical efficiency. It also means that

computing the output requires fewer operations. These improvements in efficiency are

usually quite large.

Another strategy present in CNNs that helps reduce the memory requirements is the

parameter sharing. Parameter sharing refers to using the same parameter for more than one

function in a model. In a traditional ANN, each element of the weight matrix is used exactly

once when computing the output of a layer. It is multiplied by one element of the input and

then never revisited. As a synonym for parameter sharing, one can say that a network has

tied weights, because the value of the weight applied to one input is tied to the value of a

weight applied elsewhere. In a CNN, each element of the filter is used at every position of

the input. The parameter sharing used by the convolution operation means that rather than

learning a separate set of parameters for every location, the model learns only one set. CNNs

are thus dramatically more efficient than dense matrix multiplication in terms of the memory

requirements and statistical efficiency [Goodfellow, Bengio, & Courville, 2016]. Figure 2.10

shows a schematic view of the sparse connectivity and parameters sharing effects caused by

a 1D-convolution operation.

Figure 2.10. 1D convolution sparse connectivity and parameters sharing.

CHAPTER 2. BACKGROUND 19

Figure 2.11 shows the three stages of a CNN typical layer. In the first stage, the layer

performs several convolutions in parallel to produce a set of linear activations. In the second

stage, each linear activation is run through a nonlinear activation function, such as the

rectified linear activation function. This stage is sometimes called the detector stage. In the

third stage, we use a pooling function to modify the layer output further.

A pooling function replaces the layer output at a certain location with a summary

statistic of the nearby outputs. For example, the max pooling operation reports the maximum

output within a rectangular neighborhood. The pooling operation helps to make the

representation become approximately invariant to small translations of the input. Invariance

to translation means that if we translate the input by a small amount, the values of most of

the pooled outputs do not change. Invariance to local translation can be a very useful property

if we care more about whether some feature is present than exactly where it is.

2.4 Word Embedding
In the NLP domain, when we decide to consider the words as the building blocks of a text,

we have to find a way to represent these words. This choice is a trade-off between robustness

and computational efficiency.

The most obvious choice is to use the one-hot representation. In this type of

representation, each vocable of the text is represented by a vector having the size of the

vocabulary. The position in the vector that corresponds to the id of the vocable is set to one.

Figure 2.11. A typical CNN layer.

20 CHAPTER 2. BACKGROUND

There are two main problems with this type of representation. The first is the

dimensionality of the vectors. For example, for a vocabulary with the size of 30K, each word

in the text will be represented by a vector of size 30K. A sentence with 20 words will be

represented by an input having 600K parameters.

Another problem with the one-hot representation is that it treats the words as atomic

units; there is no notion of similarity between the words. All words are equally distant from

each other. A way to solve this problem is to create a representation based on a statistical

language model.

The goal of the statistical language modeling is to learn the joint probability function

of word sequences in a language. This probability function can be used to create a distributed

representation where more statistically dependent words are closer. In this distributed

representation, each word corresponds to a point in a feature space, so that similar words get

to be closer to each other in that space [Vincent, Bengio, & Ducharme, 2000].

The main limitations of the statistical language modeling approach are the curse of

dimensionality and the generalization of the representation learned. As we increase the

number of words in a learned sequence from the training corpus, the computational cost to

calculate the joint probability function becomes expensive and it is likely that this sequence

will not occur again.

To overcome these limitations, neural network based language models are used to

modeling continuous variables that generate distributed representations that have some local

smoothness properties. For example, the sentences “The cat is walking in the bedroom” and

“A dog was running in a room” should have similar representations because the words “dog”

and “cat”, “the” and “a”, “room” and “bedroom”, “walking” and “running” have similar

semantic and grammatical roles [Vincent, Bengio, & Ducharme, 2000].

In our work, the initial vocable representations are obtained from a pre-trained

unsupervised neural language model proposed in Mikolov et al. [2013].

CHAPTER 2. BACKGROUND 21

Figure 2.12 shows the architecture of two neural language models proposed by the

authors.

The Continuous Bag-of-Words (CBOW) neural language model predicts the current

word based on the context, and the Skip-gram model predicts the neighborhood words given

the current word.

The similarity between the words whose distributed representations are generated by

these models can be measured using a word-offset technique where simple algebraic

operations are performed on the word vectors. It was shown for example that the vector

(”King”) minus vector (”Man”) plus vector (”Woman”) results in a vector that is closest to

the vector representation of the word “Queen” [Zweig, Mikolov, & tau Yih, 2013].

Figure 2.13 shows a pictorial representation of this example.

In ANN models, the initial values of the network parameters determine the quality of

the learned representations. The same model trained with the same data set using different

Figure 2.13. Algebraic operations on word vectors.

Figure 2.12. Architectures of the CBOW and Skip-gram neural language models.
[Mikolov, Chen, Corrado, & Dean, 2013]

22 CHAPTER 2. BACKGROUND

initial values for the network parameters can yield different solutions that differ substantially

in quality. Different initial values will bias the learning algorithm to develop some type of

feature detection units at the hidden layers, but not others [Golden, 1996].

In the context of NLP, the use of word embeddings, in the models that consider the

words as the text building blocks, can be viewed as a prior knowledge information strategy

[Gülçehre & Bengio, 2013].

Although some controversies exist about the ability of the word embeddings to capture

semantics of word sequences, there are experiments showing that their use can improve the

performance of some models on NLP benchmarks [Lev, Klein, & Wolf, 2015].

23

Chapter 3
Related Work
In this chapter, we present the related work that apply or develop similar concepts used in

this work. In the course of our research, we made an extensive literature review including

tens of papers, books and online references, but we present only the works that are closer

related to our work. We summarize five works that employ CNN architectures to solve the

text categorization problem.

In Kalchbrenner et al. [2014], the authors proposed a deep CNN architecture to make

semantic modelling of sentences. The model is named Dynamic Convolutional Neural

Network (DCNN). It is based on the architecture of a Time Delay Neural Network (TDNN)

[Collobert & Weston, 2008]. The authors addressed the limitations of TDNN while

preserving its advantages.

The proposed deep CNN architecture has four layers. In the first layer, the input

sentences are represented using word embeddings initialized using a pre-trained

unsupervised model that predicts the contexts of occurrence for the words [Turian, Ratinov,

& Bengio, 2010]. In the second and third layers, the resulting representations from the

previous layers are convolved by a set of filters. The convolution operators are followed by

dynamic k-max pooling and non-linearity operators. The term dynamic means that the

number of the k maximum values selected by the pooling operators changes according to the

sentence size and to the layer level where the operation happens. The output of the third

layer is fully connected to a softmax non-linearity layer that predicts the probability

distribution over the classes given the input sentence.

The network was trained to minimize the cross-entropy of the predicted and true class

labels distributions by backpropagation using mini- batches. The 1D convolution operator

was implemented using a Fast Fourier Transform function. The code was implemented in

Matlab and the experiments were processed on a GPU device.

24 CHAPTER 3. RELATED WORK

The authors tested the DCNN in four experiments: small-scale binary and multi-class

sentiment prediction, six-way question classification and Twitter sentiment prediction by

distant supervision. The network achieved excellent performance in the first three tasks and

the error reduction with respect to the strongest baseline was greater than 25% in the last

task.

Although their model deals only with sentences, the architecture proposed by the

authors inspired most of the works that use the CNN architecture in the NLP domain,

including our work. Our model accepts input texts of any size, which makes it usable in real

NLP applications.

In Kim [2014], the author proposed four variants of a CNN architecture based on the

work of Bottou et al. [2011]. The proposed CNN architecture has three layers. The four

architecture variants are created changing the way that the word representations are

initialized and updated during the training.

In the first variant, the word representations are initialized randomly and updated

during the training. In the second variant, the word representations are derived from Google

pre-trained vectors (Word2Vec) and they are not updated during the training. The third

variant is the same as the second one, except by the fact that the word representations are

updated during the training. The fourth variant is the innovation proposed by the author. It

is a mixture from the second and third variants. It creates the concept of channels. Each

channel has its own copy of pre-trained word representations. In one channel, the word

representations are updated during the training, and, in the other channel, they are not

updated.

The author made experiments with seven data sets. Five of them are for sentiment

analysis tasks on user reviews. The performance of the models was compared with strong

base lines like DCNN [Kalchbrenner, Grefenstette, & Blunsom, 2014]. The proposed models

improved upon the state of the art on four out of seven tasks.

The results showed that unsupervised pre-training of word vectors is an important

ingredient in deep learning models for NLP tasks. To avoid overfitting on one specific task,

one can use two channels for the word representations. One is kept static and the other one

is optimized for the specific task that the model is being trained.

Their model also deals only with sentences and, although it has three layers, it is not

considered a deep model because it has only one convolutional layer. The sentence

CHAPTER 3. RELATED WORK 25

representations learned by their model is limited because of the lack of depth. Our model

overcomes these limitations using a deep architecture.

In Johnson & Zhang [2015], the authors proposed a shallow CNN architecture using

high dimensional word representations. The convolution operator is applied over sequences

of words called regions. Two variants of high dimensional word representations are used.

One of them is the traditional one-hot vector. The other one, is named bag of words CNN.

In this variant, the words of a region share the same vector representation, where each

position of the vector represents one index of the vocabulary. This approach is a balance in

the trade off between the representations high dimensionality and the order of the words. It

preserves the order of the regions in the sentence but the order of the words in each region

is lost.

The models were implemented using the C++ programming language and they explore

the parallel processing power of the GPUs. Two data sets of user reviews and one of topic

classification are used to compare the performance of the model with other strong baseline

algorithms. The results showed that the proposed architecture achieved an excellent

performance compared with the state of the art algorithms that use low dimensional pre-

trained word representations.

Although the use of an efficient implementation combined with a powerful GPU

makes it feasible the adoption of one-hot representations, the lack of context of this type of

representation makes it harder to their model to extract good semantics from the text. Our

model makes use of the word embeddings as the initial representations for the vocables and

updates them in the training process. This strategy helps our model to extract good semantics

from the text, starting with generic representations and adjusting them to the context of the

specific task.

In Denil et al. [2014], the authors proposed a deep CNN architecture that explicitly

extract representations for the input text at the sentence and document levels. The network

has four layers and it is similar to the one presented in Kalchbrenner et al. [2014], except for

the fact that, in the third layer, the sentence representations are concatenated to form the

document representation. The convolution, k-max pooling and non-linearity operations are

the same used in Kalchbrenner et al. [2014].

The innovation introduced by the authors is the use of a deconvolution technique used

in the computer vision domain to generate interpretable visualizations of the deep layers

26 CHAPTER 3. RELATED WORK

activations in convolutional neural networks [Taylor, Fergus, & Zeiler, 2011]. To generate

the saliency map for a given document, the authors applied the same technique used in

Simonyan et al. [2013].

The authors proposed a way to measure the extraction quality of the most relevant

sentences using them as a summarization for the reviews of the IMDB data set. The model

is trained using the whole text of the reviews and the accuracy of the predicted sentiment is

compared with the accuracy of the model trained using only the sentences extracted through

the deconvolution process. The results show that the proposed model outperforms the

baseline methods on the task of extracting the most relevant sentences from text documents.

Although the architecture of their model induces the creation of a hierarchy of

representations, as our model does, the use of only two convolutional layers and the

restriction on the number of words of the input text make the use of their model restricted to

documents of small size. Our model has three convolutional layers and accepts input texts

of any size, which makes it usable in real NLP applications.

In Zhang et al. [2015], the authors proposed a deep CNN architecture for text

categorization using features extracted from character level representations. The network has

nine layers composed of six convolutional and three full-connected layers.

In the input layer, it is created a representation for the input text using the one-hot

encoding of the 70 alphabet symbols that represents the last 1014 text characters. The first

six layers are made up by a sequence of 1D convolution, non-linearity and max pooling

operators. The last three layers are made up by a sequence of linear and dropout operators.

The last layer has a log softmax operator that gives the class labels log probabilities for the

input text representation. The gradients are obtained by backpropagation and the

optimization is done through Stochastic Gradient Descent (SGD) using mini-batches.

To evaluate their model, the authors built eight large-scale data sets. The model was

trained using these data sets to make sentiment analysis and topic classification tasks. The

authors implemented traditional models such as bag of words, n-grams and their TFIDF

variants, and deep learning models such as word-based CNNs and LSTM to be used as

baselines. The character-level CNN models achieved the state of the art performance on four

of the eight tasks.

The use of characters as semantic units demands a huge number of samples to their

model to learn good representations for a sequence of characters. Our model adopts the prior

CHAPTER 3. RELATED WORK 27

knowledge principle making use of the word embeddings as the initial representations for

the vocables. This strategy makes our model learn good semantics using significantly less

training samples.

28

Chapter 4
Model

In this chapter, we detail the architecture of our model starting by presenting an overview of

the data flow and describing the text encoding mechanism, then we exam the design of the

deep architecture and finally we talk about the network optimization algorithm used to

update the network parameters.

4.1 Data Flow
Figure 4.1 presents a flowchart representing the data flow of our model. The data sets are

split in training and testing sets. The vocables occurring in the training set are used to

generate the vocabulary in the text encoding process. The word embeddings are read from a

binary file obtained from a pre-trained model.

Figure 4.1. Model data flow.

CHAPTER 4. MODEL 29

We implemented two models. The WordNet semantic dictionary corpus is used in the

Deep NLP WordNet model to get synonyms for the vocables in the text encoding process.

The doted lines in the chart denote that the WordNet corpus is not used in the Deep NLP

model.

The vocabulary generated by the text encoding process is used to encode the texts of

the training and testing data sets and it is stored in a binary file that will be loaded by the

deep CNN. The encoded texts of the training and testing data sets are also stored in binary

files that will be used by the deep CNN in the training and testing process. The updating of

the vocabulary representations can be enabled in the training process.

The training state and the network parameters are saved in binary files, so they can be

loaded later in the testing process.

4.2 Text Encoding
The first step in the text encoding process is the text tokenization. Because of our model

explicitly creates intermediate representations for sentences, we first tokenize the text into

sentences, then we tokenize the sentences into words.

The second step in the text encoding process is the vocabulary generation. There are

two steps in the process of building the vocabulary. The first step is to select the vocables

that will compose the vocabulary. In compliance with the principle that the content of the

testing samples should not be viewed by the model before the testing phase, we take into

account only the vocables present in the training samples to build the vocabulary. In this

step, there is an important decision to be made, the vocabulary size.

Because our model learns its parameters in a supervised way and the vocable initial

representations are considered parameters of the network, the vocabulary size has a huge

impact on the number of parameters that have to be learned by the model.

Although there is not a rule of thumb to determine the vocabulary size, one point that

must be considered is the equilibrium between the number of training samples per class and

the number of parameters that have to be learned. To constraint the vocabulary size, we use

the strategy of selecting only the vocables that appear in the training samples at a minimum

frequency.

30 CHAPTER 4. MODEL

The second step in the vocabulary generation process is to assign an initial

representation to the vocables. In our model, the vocable initial representations are obtained

from a pre-trained unsupervised neural language model publicly available2 (Word2Vec).

These initial representations are adjusted to the specific context of the training samples

during the training phase.

When a vocable is not found in the Word2Vec, we assign a random value to its initial

representation. In the model implemented using the WordNet corpus, before assigning a

random value to the initial representation of a vocable, we first try to find a WordNet

synonym, lemma or stem whose vocable is present in the Word2Vec.

The WordNet is a large lexical database of English. Nouns, verbs, adjectives and

adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a distinct

concept. Synsets are interlinked by means of conceptual-semantic and lexical relations. The

WordNet’s structure makes it a useful tool for computational linguistics and natural language

processing [Miller, 1995].

The last step in the text encoding process is to associate each text word of the training

and testing samples with its correspondent vocable in the vocabulary. This association is

made assigning to each text word an integer value that is the index of its correspondent

vocable present in the vocabulary.

Instead of ignoring the words whose vocables are not present in the vocabulary, we

assign to them the index of one of the generic vocables specifically created for this purpose

(#NUMBER#, #SYMBOL#, #UNKNOWN#). In the model implemented using the

WordNet corpus, before assigning the index of a generic vocable to a unknown word, we

first try to find a WordNet synonym, lemma or stem whose vocable is present in the

vocabulary.

This strategy enhances the robustness of our model through the generalization of its

learned representations. Even when the model encounter a text with many vocables that it

cannot find in its vocabulary, it is able to replace them by some cognitive synonym that is

present in the vocabulary. This is similar to what the humans do when they encounter an

unknown word in a text. They search the unknown word in a dictionary or thesaurus and

2 https://code.google.com/archive/p/word2vec/

CHAPTER 4. MODEL 31

replace it by a word whose semantic is already known in a similar context [Gülçehre &

Bengio, 2013].

4.3 Deep Architecture
The design of the network architecture of our model is inspired by the deep CNN

architectures used in the computer vision domain [LeCun, Bottou, Bengio, & Haffner, 1998]

[Krizhevsky, Sutskever, & Hinton, 2012]. Figure 4.2 shows a diagram with the main

components of our model architecture.

Our model implements a sequential standard feedforward architecture. The model is

made up by seven layers that can be grouped into three main components. The first

component is the lookup table. It stores the vocable representations assigned by the

vocabulary building process. This component is responsible for translating the word

encodings into word embeddings. The vocable initial representations are obtained from the

publicly available3 pre-trained Word2Vec binary file using 300-dimensional vectors.

Because these representations are updated in the training phase, this component has the

larger number of the network parameters.

The second component of our model architecture is the deep feature extractor. This

component is responsible for extracting complex features from the text. Because we adopted

the sentence compositional approach, we force the text to pass through layers that explicitly

create intermediate representations for the sentences. At the upper layers of this component,

the sentence representations are concatenated to create the text representation. This

3 https://code.google.com/archive/p/word2vec/

Figure 4.2. Deep NLP model architecture.

32 CHAPTER 4. MODEL

component is made up by three layers. Each of these layers is arranged as a sequence of

temporal convolution, non-linearity and max pooling modules. The temporal convolution

module is responsible for creating new words and sentence representations.

At the sentence level layers, the temporal convolution module convolves a set of filters

through the words of each separated sentence. The filters of the same module have a fixed

size and they are shared among the input text sentences. This approach reduces the number

of parameters that have to be learned by the model. The filter size does not depend on the

number of sentences. The main consequence of this design decision is that there is no

restriction on the size of the input text that can be processed by our model.

At the document level layer, the temporal convolution module convolves a set of filters

through the concatenated sentence representations created in the previous layer. The output

of this layer is a set of features that represent the whole text.

The non-linearity modules are responsible for extracting complex features from the

data and making them more easily separable [Goodfellow, Bengio, & Courville, 2016].

The max pooling modules are responsible for selecting the most important features

and consequently reducing the dimensionality of the learned representations [Boureau,

Ponce, & LeCun, 2010].

The third component of our model architecture is the deep label predictor. This

component is made up by three fully connected layers followed by a classifier. Each of these

layers is arranged as a sequence of linear transformation, non-linearity and dropout modules.

The sequence of linear transformation modules is responsible for extracting features

that are more abstract. Each layer narrows the number of features from previous layer

reducing the dimensionality of the learned representations.

The dropout modules are responsible for reducing the model overfitting. They induce

the network to learn features that are more robust [Hinton, Srivastava, Krizhevsky,

Sutskever, & Salakhutdinov, 2012]. They are activated only in the training phase.

The classifier module is responsible for associating a class label probability

distribution for the text representation produced by the model.

CHAPTER 4. MODEL 33

4.4 Optimization
Our model is trained to minimize the Negative Log-Likelihood (NLL) loss function. The

gradients are accumulated using the backpropagation algorithm. [Rumelhart, Hinton, &

Wilson, 1986].

The network parameters are updated using a mini-batch version of the Stochastic

Gradient Descent (SGD) algorithm called momentum update [Sutskever, Martens, Dahl, &

Hinton, 2013]. This approach helps to accelerate the learning of the network parameters.

We also randomly shuffle the training data set before each epoch, which tends to

provide better convergence [LeCun, Bottou, Orr, & Müller, 2012].

34

Chapter 5
Implementation
In this chapter, we talk about the programming languages and packages used to implement

our model. We also give some details about the modules used to implement the network

architecture presented in Chapter 4.

5.1 Programming Languages
We used the Python programming language to implement most of the text encoding process.

We chose this language because of its aptitude for data manipulation and for the convenience

of the Natural Language Toolkit (NLTK) platform implemented in Python [Bird, Klein, &

Loper, 2009]. In the model implemented using the WordNet corpus, we also used the Python

language to implement the vocabulary generation module.

The Lua programing language was used to implement the deep CNN modules

[Ierusalimschy, 2006]. In the model implemented not using the WordNet corpus, we also

used Lua to implement the vocabulary generation module. We chose this language because

it is used to implement the computing framework we selected.

5.2 Computing Framework
We selected the Torch7 computing framework to implement our deep CNN model

[Kavukcuoglu, Farabet, & Collobert, 2011]. We chose this framework because of its wide

CHAPTER 5. IMPLEMENTATION 35

support for deep learning algorithms, its modularity and its efficiency on the use of the

GPUs.

The Torch7 Neural Network (NN) package provides an easy and modular way to build

and train neural networks. Each module implements the fundamental methods and the

necessary state variables for training a neural network. The modules are grouped into

containers that in turn can be assembled like Lego building blocks to create complex models.

Figure 5.1 shows the main components of a Torch7 NN package module. The forward

method computes the module’s output from its input and it stores the result in a state variable.

The backward method computes the gradients with respect to the module’s input and with

respect to the module’s parameters. During the backward pass, the gradient with respect to

the module’s parameters is accumulated and it is zeroed after being updated.

The cuTorch and cuNN packages provide a GPU implementation for many of the

Torch7 backend and NN package modules. They are implemented using the CUDA API and

they inherit all the CUDA’s efficiency on the use of Nvidia’s GPUs.

These packages give total control over the RAM to/from GPU’s memory data

transfers. This issue is critical for a successfully implementation of deep learning models

that process huge data sets. In our experiments, the implementation of our model sustains

the utilization rate of the Nvidia’s K40 GPU at 95% on average during the training and

testing processing. The transfer of a whole model from CPU to/from GPU is made merely

through the call of a single method.

Figure 5.1. Main components of a Torch7 NN package module.

36 CHAPTER 5. IMPLEMENTATION

5.3 Modules
Figure 5.2 displays a Lua code fragment excerpted from the module that implements our

deep CNN model. The code fragment shows how the NN package modules are stacked to

create the network architecture presented in Chapter 4.

-- First layer: input (encoded text: nSentences x nWords)
 model.modules[1] = {name = "LookupTable", parameters = {vocabulary = model.config.vocabulary}}

 -- Second layer.
 model.modules[2] = {name = "TemporalConvolution", parameters = {inputFrameSize = 300,
outputFrameSize = 200, kW = model.config.minWordsSentence, dW = 1}}
 model.modules[3] = {name = "Threshold", parameters = {}}

 -- Third layer.
 model.modules[4] = {name = "TemporalConvolution", parameters = {inputFrameSize = 200,
outputFrameSize = 200, kW = 3, dW = 1}}
 model.modules[5] = {name = "Threshold", parameters = {}}
 model.modules[6] = {name = "SpatialAdaptiveMaxPooling", parameters = {outputWidth = 200,
outputHeight = 3}}

 -- Fourth layer.
 model.modules[7] = {name = "View", parameters = {}}
 model.modules[8] = {name = "TemporalConvolution", parameters = {inputFrameSize = 200,
outputFrameSize = 100, kW = 3, dW = 1}}
 model.modules[9] = {name = "Threshold", parameters = {}}
 model.modules[10] = {name = "View", parameters = {}}
 model.modules[11] = {name = "SpatialAdaptiveMaxPooling", parameters = {outputWidth = 100,
outputHeight = 15}}

 -- Fifth layer.
 model.modules[12] = {name = "View", parameters = {}}
 model.modules[13] = {name = "Linear", parameters = {inputDimension = 1500, outputDimension =
1000}}
 model.modules[14] = {name = "Threshold", parameters = {}}
 model.modules[15] = {name = "Dropout", parameters = {probability = 0.5}}

 -- Sixth layer.
 model.modules[16] = {name = "Linear", parameters = {inputDimension = 1000, outputDimension = 500}}
 model.modules[17] = {name = "Threshold", parameters = {}}
 model.modules[18] = {name = "Dropout", parameters = {probability = 0.5}}

 -- Seventh layer.
 model.modules[19] = {name = "Linear", parameters = {inputDimension = 500, outputDimension =
model.config.outputClasses}}
 -- Output layer.
 model.modules[20] = {name = "LogSoftMax", parameters = {}}

Figure 5.2. Lua code fragment of the deep CNN model implementation.

CHAPTER 5. IMPLEMENTATION 37

Figure 5.3 displays an excerpt from the execution log of the code showed in Figure

5.2. The network layers were grouped using two sequential modules that, in turn, were

grouped into a sequential container. This approach makes easy to disable the vocable initial

representations updating in the lookup table through the setting of a configuration parameter.

In the next subsections, we give some details about the NN package modules that we

used to implement our deep CNN model.

nn.Sequential {
 [input -> (1) -> (2) -> output]
 (1): nn.Sequential {
 [input -> (1) -> output]
 (1): nn.LookupTable
 }
 (2): nn.Sequential {
 [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> (12) -> (13) -> (14) ->
(15) -> (16) -> (17) -> (18) -> (19) -> output]
 (1): nn.TemporalConvolution
 (2): nn.Threshold
 (3): nn.TemporalConvolution
 (4): nn.Threshold
 (5): nn.SpatialAdaptiveMaxPooling
 (6): nn.View
 (7): nn.TemporalConvolution
 (8): nn.Threshold
 (9): nn.View
 (10): nn.SpatialAdaptiveMaxPooling
 (11): nn.View
 (12): nn.Linear(1500 -> 1000)
 (13): nn.Threshold
 (14): nn.Dropout(0.500000)
 (15): nn.Linear(1000 -> 500)
 (16): nn.Threshold
 (17): nn.Dropout(0.500000)
 (18): nn.Linear(500 -> 10)
 (19): nn.LogSoftMax
 }
}

Figure 5.3. Execution log excerpt of the deep CNN model.

38 CHAPTER 5. IMPLEMENTATION

5.3.1 Lookup Table
In the first layer of our model, we used a lookup table module from the NN package. This

layer is responsible for decoding the input text words into word embeddings. The first reason

for using a lookup table has to do with the efficient use of the GPU. The bus bandwidth is

one of the bottlenecks that prevents the efficient use of the GPUs. Instead of decoding the

input text words in the host’s memory and send them to the GPU device, we make the input

text decoding directly in the GPU’s memory. This approach saves the bus bandwidth of

sending 2,392 bytes per word when we use a 300-dimensional word embedding.

The other reason for using a lookup table for decoding the input text has to do with the

updating of the vocable initial representations. When we enable the vocable representations

updating, they become part of the network parameters, therefore they must stay together with

the other network parameters in the GPU’s memory.

The vocabulary is sent to the GPU device only once when the model is instantiated for

the first time. The vocable initial representations are stored in a matrix and become the

weight parameters of the lookup table.

The encoded input text is stored in a matrix. The lines of the matrix correspond to the

text sentences and the columns correspond to the sentence words. The number of lines is

unlimited. The number of columns is equal to the number of words in the largest sentence

of the input text. The smaller sentences are zero padded to the right.

Figure 5.4 shows a diagram of how the input text is decoded through the forward

method of the lookup table module. The output of the lookup table forward method is stored

in a 3D tensor.

Figure 5.4. Input text decoding through the lookup table forward method.

CHAPTER 5. IMPLEMENTATION 39

5.3.2 Temporal Convolution
The temporal convolutional module applies a 1D convolution using a set of filters over an

input sequence made up of input frames. Each filter generates an output frame. The size of

the filter is determined by the number of input frames and by the width of the convolution.

Figure 5.5 shows a diagram of how the forward method of the temporal convolution

module operates over the decoded input text in the second layer of our model. In this

example, each embedding dimension corresponds to an input frame. Each color represents a

different filter. The temporal convolution produces an output with the same number of

dimensions of the input.

In our model, the temporal convolution module is used to extract new representations

for words and sentence sequences. At the document level layer, the temporal convolution

module convolves a set of filters through the concatenated sentence representations created

in the previous layer.

The value of each element of the output produced by the temporal convolutional

operation over a 3D input tensor can be precisely defined as:

(5.1)

Figure 5.5. Temporal convolution over the decoded input text.

��,�,� �����,�,� ∗ ��,��1	�,�

��1

�

��1

40 CHAPTER 5. IMPLEMENTATION

where, ℱ is the set of filters, ℐ is the 3D input tensor, � is the width of the filters and � is

the number of input frames.

5.3.3 Threshold
The non-linearity function used in our model is implemented by the threshold module. The

threshold function is similar to Rectified Linear Units (ReLUs) [Nair & Hinton, 2010]. It is

defined as:

(5.2)

Figure 5.6 shows a plot of the threshold function and its derivative.

5.3.4 Spatial Adaptive Max Pooling
The spatial adaptive max-pooling module is a 2D version of the temporal max-pooling

operation, which adapts its parameters dynamically such that the output has a fixed size.

Differently from the traditional max-pooling operators that select the maximum values

among all the features of a dimension, the spatial adaptive max pooling splits the dimension

into segments, according to the desired output size, and it selects the maximum value from

each segment.

���� = max�0, ��

Figure 5.6. Plot of the threshold function and its derivative.

CHAPTER 5. IMPLEMENTATION 41

This approach helps to avoid the adverse effect caused by the sentences right padding

made in the input layer. When the number of words in a sentence is too small, depending on

the weights and biases values associated by the convolution operation to the paddings, the

traditional max-pooling operator could select only these values as being the most important

features of the sentence.

5.3.5 View
The view module creates a new view for the input tensor using the sizes passed to the class

constructor. This module is used in the fourth layer of our model to concatenate the sentence

representations created in the previous layer. It is also used in the fifth layer to flattening the

fourth layer output transforming it into an 1D tensor.

5.3.6 Linear
This module applies a linear transformation to an 1D input tensor. This module is used to

implement the fully connected layers of the deep feature extractor component of our model.

5.3.7 Dropout
The dropout module forwards the input masking its elements using binary samples from a

Bernoulli distribution. The input elements associated with a mask position that has a zero

value are dropped, that is the value of their correspondent output elements are set to zero.

The input elements that are not dropped have the value of their correspondent output

elements scaled by a factor of 1 �1 − 	�⁄ , where 	 is the probability of an element being

dropped. The dropout module is activated only in the training phase.

In our model, the dropout module is used in the output of the fully connected layers

and the drop out probability is set to 0.5.

42 CHAPTER 5. IMPLEMENTATION

5.3.8 Log Softmax
The log softmax module implements the log normalized exponential function. The log

softmax function is the gradient-log-normalizer of the categorical probability distribution. It

is defined as:

(5.3)

where, � is the number of classes and ����� is the log-probability associated with the class �.
The log softmax module is used as the classifier in the output layer of our model. It

associates a log-probability to each class label for the text representation produced in the

seventh layer output.

5.3.9 ClassNLLCriterion
Differently from the modules presented above, this module belongs to a set of the NN

package’s modules called criterions. Criterions are helpful to train a neural network. Given

an input and a target, they compute a gradient according to a given loss function.

This module implements the Negative Log-Likelihood (NLL) loss function. It is used

in the training module of our model. The log-probability for each class label, given by the

forward method of the log softmax module in the output of our network, is used as input to

the forward and backward methods of the ClassNLLCriterion module. The computed

gradient is back propagated through the network using the backward method.

5.4 Detailed Network
Figure 5.7, Figure 5.8 and Figure 5.9 show a detailed diagram of a complete forward pass

through the entire deep CNN of our model.

����� = log ���
∑ �����

 , ����� ≥ 0∑ ��������� = 1

CHAPTER 5. IMPLEMENTATION 43

Figure 5.7. Detailed diagram of our deep CNN architecture.

44 CHAPTER 5. IMPLEMENTATION

Figure 5.8. Detailed diagram of our deep CNN architecture.

CHAPTER 5. IMPLEMENTATION 45

The size of the data structures showed in these diagrams are not scaled. In the input

layer, the number of sentences and words of the encoded input text are not fixed.

In the first layer, the number of vocables in the lookup table depends on the data set

and it is determined by the minimum vocable frequency parameter. The model does not

impose a limit on the size of the vocabulary, but, in most of the cases, the number of vocables

is at least one hundred times greater than the size of the word embeddings. In our

experiments, we used word embedding having a size of 300.

In the second layer, the size of the word embeddings is decreased to 200 through a

temporal convolutional operation.

Figure 5.9. Detailed diagram of our deep CNN architecture.

46 CHAPTER 5. IMPLEMENTATION

In the third layer, the sentences width is decreased by a temporal convolutional

operation, using a filter width of three, followed by a spatial adaptive max pooling operation

using a fixed output size of three. The symbol � denotes the highest values selected by the

spatial adaptive max pooling operation.

In the fourth layer, a view operation concatenates the 3D tensor sentence

representations into a 2D tensor. The sentences width and the number of features are

decreased by a temporal convolutional operation using a filter width of three and output

frame size of one hundred, followed by a spatial adaptive max pooling operation using an

output size of fifteen.

In the fifth layer, a view operation concatenates the 2D tensor sentence representations

into a 1D tensor. The number of features is decreased to 1000 by a linear operation. The

symbol � means that the value of a feature is considered as being zero by the dropout

module in the training phase.

In the sixth layer, the number of features is decreased to 500 by a linear operation.

In the seventh layer, the number of features is decreased to the number of classes by a

linear operation.

47

Chapter 6
Evaluation
In this chapter, we describe the experiments carried out to evaluate our model. We initially

introduce the data sets used, then we talk about the methodology and hardware used to run

the experiments.

6.1 Data Sets
To evaluate our model, we used several large-scale data sets, publicly available4, built

specifically to assess deep CNN architectures [Zhang, Zhao, & LeCun, 2015]. The data sets

are used for topic classification and sentiment analysis tasks.

Table 6.1 presents the characteristics of the large-scale data sets used in our

experiments.

Table 6.1. Characteristics of the large-scale data sets used in the experiments.

Data Set Classes
Training

Samples

Testing

Samples
Task

AG’s News 4 120,000 7,600 Topic

DBPedia 14 560,000 70,000 Topic

Yelp Review Polarity 2 560,000 38,000 Sentiment

Yelp Review Full 5 650,000 50,000 Sentiment

Yahoo! Answers 10 1,400,000 60,000 Topic

Amazon Review Polarity 2 3,600,000 400,000 Sentiment

4 http://goo.gl/JyCnZq

48 CHAPTER 6. EVALUATION

6.1.1 AG’s News
The original AG data set is a collection of more than 1 million news articles. News articles

has been gathered from more than 2,000 news sources by ComeToMyHead in more than one

year of activity. ComeToMyHead is an academic news search engine, which has been

running since July 2004. The dataset is provided by the academic community for research

purposes in data mining and information retrieval.

The AG's news data set was constructed by choosing the four largest classes from the

original AG corpus using only the title and description fields. Each class contains 30,000

training samples and 1,900 testing samples. The total number of training samples is 120,000

and testing is 7,600 [Zhang, Zhao, & LeCun, 2015].

The AG's news data set classes and their corresponding labels used for topic

classification are:

1- World 2- Sports 3- Business 4- Science/Technology

Table 6.2 shows some samples of the AG's news data set. In our experiments, we

concatenated the title and description fields on the training and testing processing.

Table 6.2. AG's news data set samples.

Class Title Description

1 On front line of AIDS in
Russia.

An industrial city northwest of Moscow
struggles as AIDS hits a broader
population.

2 Giddy Phelps Touches Gold
for First Time.

Michael Phelps won the gold medal in the
400 individual medley and set a world
record in a time of 4 minutes 8.26
seconds.

3 Fears for T N pension after
talks.

Unions representing workers at Turner
Newall say they are 'disappointed' after
talks with stricken parent firm Federal
Mogul.

4 IBM Chips May Someday
Heal Themselves.

New technology applies electrical fuses
to help identify and repair faults.

CHAPTER 6. EVALUATION 49

Table 6.3 presents some statistics of the AG's news data set documents. This statistics

were acquired in the text encoding process.

Table 6.3. AG's news documents statistics.

Data Set
Sentences per sample Words per sentence

Min Max Mean Stdev Min Max Mean Stdev

Testing 1 24 2.64 0.99 1 131 16.86 11.95

Training 1 19 2.64 0.99 1 128 16.92 11.97

6.1.2 DBPedia Ontology
The DBPedia is a large-scale data set emerged from the crowd-sourced community effort to

extract structured information from Wikipedia [Lehmann, et al., 2015].

The DBPedia ontology classification data set was constructed by picking 14 non-

overlapping classes from the original DBPedia 2014 using only the title and abstract fields

of each Wikipedia article. From each of these 14 ontology classes, 40,000 training samples

and 5,000 testing samples were randomly chosen. Therefore, the total size of the training

data set is 560,000 and testing data set is 70,000 [Zhang, Zhao, & LeCun, 2015].

The DBPedia ontology data set classes and their corresponding labels used for topic

classification are:

1- Company 2- Educational Institution 3- Artist

4- Athlete 5- Office Holder 6- Mean Of Transportation

7- Building 8- Natural Place 9- Village

10- Animal 11- Plant 12- Album

13- Film 14- Written Work

50 CHAPTER 6. EVALUATION

Table 6.4 shows some samples of the DBPedia ontology data set. In our experiments,

we used only the abstract field on the training and testing processing.

Table 6.4. DBPedia ontology data set samples.

Class Title Abstract

1 Export-Import Bank of
Romania.

Exim Bank is The Export-Import Bank of
Romania based in Bucharest.

2 Strong Vincent High School.
Strong Vincent High School is a public
high school in Erie Pennsylvania.

3 Lizzy Pattinson.
Elizabeth Lizzy Pattinson is an English
singer and songwriter.

4 Henry Nicoll (cricketer).
Henry Russell Nicoll (1883–1948) was a
Scottish cricketer.

5 Samuel Douglas.
Samuel Douglas (1781–July 8 1833) was
a Pennsylvania lawyer and state Attorney
General.

6 INS Sharada (P55).
INS Sharada (P55) is a Sukanya class
patrol vessel of the Indian Navy.

7 Château de Sauvebœuf
(Aubas).

Château de Sauvebœuf is a château in
Dordogne Aquitane France.

8 Lake Pacucha. Lake Pacucha is a lake in Peru.

9 Vindornyaszőlős.
Vindornyaszőlős is a village in Zala
county Hungary.

10 Bertula.
Bertula is a genus of moths of the
Noctuidae family.

11 Dracula Polyphemus.
Dracula Polyphemus is a species of
orchid.

12 O Corpo Sutil (The Subtle
Body).

O Corpo Sutil (The Subtle Body) is an
album by musician Arto Lindsay.

13 Rahgir.
Rahgir is a Bollywood film. It was
released in 1943.

14 Red Claw (novel).
Red Claw is a 2009 science fiction novel
by Philip Palmer.

CHAPTER 6. EVALUATION 51

Table 6.5 presents some statistics of the DBPedia ontology data set documents. This

statistics were acquired in the text encoding process.

Table 6.5. DBPedia ontology documents statistics.

Data Set
Sentences per sample Words per sentence

Min Max Mean Stdev Min Max Mean Stdev

Testing 1 32 2.88 1.59 1 519 17.70 9.63

Training 1 39 2.87 1.58 1 1327 17.73 9.66

6.1.3 Yelp Review Polarity
The original Yelp reviews data set consists of 1,569,264 reviews extracted from the Yelp

Data Set Challenge 2015 data5.

The Yelp reviews polarity data set was constructed by considering stars 1 and 2

negative and stars 3 and 4 positive. For each polarity, 280,000 training samples and 19,000

testing samples were taken randomly. In total, there are 560,000 training samples and 38,000

testing samples. Negative polarity is class 1 and positive is class 2. [Zhang, Zhao, & LeCun,

2015].

Table 6.6 shows some samples of the Yelp reviews polarity data set. In our

experiments, we used the whole review text field on the training and testing processing.

Table 6.6. Yelp reviews polarity data set samples.

Class Review text

1

The food is good. Unfortunately, the service is very hit or miss. The
main issue seems to be with the kitchen, the waiters and waitresses are
often very apologetic for the long waits and it's pretty obvious that some
of them avoid the tables after taking the initial order to avoid hearing
complaints.

2

Arrived around midnight and the front desk was ready for us, check in
was quick and we were able to turn in. The room was clean, bed comfy,
the desk was huge...but the bathroom was small. Breakfast in the
morning was very convenient, several choices, and the coffee hit the
spot.

5 http://www.yelp.com/dataset_challenge

52 CHAPTER 6. EVALUATION

Table 6.7 presents some statistics of the Yelp reviews polarity data set documents. This

statistics were acquired in the text encoding process.

Table 6.7. Yelp reviews polarity documents statistics.

Data Set
Sentences per sample Words per sentence

Min Max Mean Stdev Min Max Mean Stdev

Testing 1 105 9.80 8.21 1 545 15.33 10.25

Training 1 148 9.83 8.24 1 745 15.35 10.26

6.1.4 Yelp Review Full
The original Yelp reviews data set consists of 1,569,264 reviews extracted from the Yelp

Data Set Challenge 2015 data6.

The Yelp reviews full star data set was constructed by randomly taking 130,000

training samples and 10,000 testing samples for each review star from 1 to 5. In total, there

are 650,000 training samples and 50,000 testing samples [Zhang, Zhao, & LeCun, 2015].

Table 6.8 shows some samples of the Yelp reviews full star data set. In our

experiments, we used the whole review text field on the training and testing processing.

Table 6.8. Yelp reviews full star data set samples.

Class Review text

1
Don't waste your time. We had two different people come to our house
to give us estimates for a deck (one of them the OWNER). Both times,
we never heard from them. Not a call, not the estimate, nothing.

2
Service was okay, at best. I wouldn't go there again. They quoted me at
thousands of dollars of repairs for my car to pass inspection. I took it
somewhere else and had it done for a fraction of the quote.

3

The pizza is great. Other food items might disappoint. They do deliver!
Service is hit and miss. There is one rude, smile-less bartender... I have
actually seen him through the window and decided to go somewhere
else because I was in the mood for good service.

6 http://www.yelp.com/dataset_challenge

CHAPTER 6. EVALUATION 53

Table 6.8. Yelp reviews full star data set samples.

Class Review text

4

A good Starbucks. There is always a line at this one due to its location
but they do a great job of getting people served quickly. Today I had a
salted camel mocha. It was pretty amazing. This location also has a
fireplace, which is a nice touch for cold days.

5

I am a big fan of Max's for their local flair, real German food, and
authentic Pittsburgh feeling. They did not sell out, are not overly
commercialized, and should be supported for the long standing quality
service to the city. Thanks, Max's.

Table 6.9 presents some statistics of the Yelp reviews full star data set documents. This

statistics were acquired in the text encoding process.

Table 6.9. Yelp reviews full star documents statistics.

Data Set
Sentences per sample Words per sentence

Min Max Mean Stdev Min Max Mean Stdev

Testing 1 110 9.92 8.27 1 441 15.38 10.18

Training 1 131 9.89 8.20 1 796 15.41 10.21

6.1.5 Yahoo! Answers
The original Yahoo! Answers Comprehensive Questions and Answers corpus contains

4,483,032 questions and their answers.

The Yahoo! Answers topic classification data set was constructed from the original

Yahoo! Answers Comprehensive Questions and Answers corpus using the question title,

question content and best answer fields of the 10 largest main categories. Each class contains

140,000 training samples and 6,000 testing samples. Therefore, the total number of training

samples is 1,400,000 and testing samples is 60,000 [Zhang, Zhao, & LeCun, 2015].

The Yahoo! Answers data set classes and their corresponding labels used for topic

classification are:

1- Society & Culture 2- Science & Mathematics

3- Health 4- Education & Reference

5- Computers & Internet 6- Sports

54 CHAPTER 6. EVALUATION

7- Business & Finance 8- Entertainment & Music

9- Family & Relationships 10- Politics & Government

Table 6.10 shows some samples of the Yahoo! Answers data set. In our experiments,

we concatenated the question title, question content and best answer fields on the training

and testing processing.

Table 6.10. Yahoo! Answers data set samples.

Class Question title/Question content/Best answer

1
what are the mining of 'jerban'or 'jarban'?
i think this is a arabic or ibree word.
You may have heard "juban" which means coward.

2

Why does Zebras have stripes?
What is the purpose or those stripes? Who do they serve the Zebras in
the wild life?
this provides camouflage - predator vision is such that it is usually
difficult for them to see complex patterns

3

Why is it desirable to have a 'grill' on your teeth in the hip-hop
community?
You know?...the gold caps and designs. They even have a whole song
dedicated to this trend playing on Mtv.
I think pearly whites are better vs putting any type of rare metal in your
mouth.

4

What year did the stock market crash?
That caused the so called GREAT DEPRESSION
The stock market crashed in October 1929. This launched the "Great
depression" Hope this helps!

5
Whos better, Yahoo or Google?
Out of both email services which is better, Yahoo Mail or Gmail
Though they are not comparable. Yahoo is the best.

6

what happen to Eddie Guerero?
cause of his death
He died of Heart failure do to his past use of drugs and of extensive
exercising.

7

is it good habit to keep ur PC on when u r going somewhere for 5-10
minutes?
i dont like to on it again n again
Yeah you can simply lock it, if you are using window XP. You can use
Ctrl+Alt+del or WindosButton+L

CHAPTER 6. EVALUATION 55

Table 6.10. Yahoo! Answers data set samples.

Class Question title/Question content/Best answer

8

Do someone know what is the origin of Lenore "the cute little dead
girl"?
I saw in the cartoon network, and I am think is disturber.
it's inspired by the poem "lenore" by edgar allen poe.

9

i have an interview in a new state. my husband wants me to move there
alone for it. should i just cancel it?
i don't want a divorce or to live without/away from my husband.
i say go he's letting you know that its over read between the lines you
will see it to.

10

Have married a Chinese National. What is the best visa option for her
travel with me when I return to the USA
Currently on overseas assignment in Beijing. Expected return date to US
May 2006'
Apply for a visa in Beijing

Table 6.11 presents some statistics of the Yahoo answers data set documents. This

statistics were acquired during the text encoding process.

Table 6.11. Yahoo! Answers documents statistics.

Data Set
Sentences per sample Words per sentence

Min Max Mean Stdev Min Max Mean Stdev

Testing 1 129 7.05 6.63 1 765 15.04 13.05

Training 1 650 7.03 6.69 1 1816 15.06 13.39

6.1.6 Amazon Review Polarity
The original Amazon reviews data set consists of product reviews and information about the

users who rated the products. The data span a period of 18 years, including ~35 million

reviews up to March 2013 [McAuley & Leskovec, 2013].

The Amazon reviews polarity data set was constructed by taking reviews with scores

1 and 2 as negatives, and with scores 4 and 5 as positives. Samples with score 3 were ignored.

In the Amazon reviews polarity data set, class 1 is the negative and class 2 is the positive.

56 CHAPTER 6. EVALUATION

Each class has 1,800,000 training samples and 200,000 testing samples [Zhang, Zhao, &

LeCun, 2015].

Table 6.12 shows some samples of the Amazon reviews polarity data set. In our

experiments, we concatenated the title and review text fields on the training and testing

processing.

Table 6.12. Amazon reviews polarity data set samples.

Class Review title Review text

1 DVD menu select problems

I cannot scroll through a DVD menu that is
set up vertically. The triangle keys will only
select horizontally. So I cannot select
anything on most DVD's besides play. No
special features, no language select, nothing,
just play.

2 The Scarlet Letter

I really enjoyed this book. It shows the
judgmental tendencies in our human race
and how one woman strove to live a life of
service to others to gain redemption for her
mistake. Can't go wrong with the classics.

Table 6.13 presents some statistics of the Amazon reviews polarity data set documents.

This statistics were acquired during the text encoding process.

Table 6.13. Amazon reviews polarity documents statistics.

Data Set
Sentences per sample Words per sentence

Min Max Mean Stdev Min Max Mean Stdev

Testing 1 38 6.19 2.96 1 321 14.45 9.93

Training 1 81 6.20 2.97 1 384 14.45 9.92

CHAPTER 6. EVALUATION 57

6.2 Experiments

6.2.1 Methodology
To evaluate the accuracy of our model, we used as the baseline the results reported in Zhang

et al. [2015].

In all experiments, we used the same values for the hyperparameters of our model.

Table 6.14 shows the names of the hyperparameters and the values used in the

experiments.

Table 6.14. Values of the model hyperparameters used in the experiments.

Parameter Value

model.minWordsSentence 1

model.updateLookupTable true

train.epoches 10

train.batchSize 100

train.learningRate 1e-2

train.momentum 0.9

train.parametersDecay 1e-19

train.collectgarbage 100

train.validationSize 0

train.shuffle true

The values of the hyperparameters were determined empirically training and testing

the model using the first 200,000 samples of the Amazon reviews polarity data set and

comparing the accuracy with the values reported in [Zhang, Zhao, & LeCun, 2015].

The text of the data sets samples were encoded with and without the use of WordNet

synonyms. The vocabularies were constructed considering only the content of the training

samples of each data set.

58 CHAPTER 6. EVALUATION

Table 6.15 shows the minimum vocable frequencies used to build the vocabularies for

each data set.

Table 6.15. Minimum vocable frequencies used in experiments.

Data Set Minimum Vocable Frequency

AG’s News 10

DBPedia 12

Yelp Review Polarity 5

Yelp Review Full 5

Yahoo! Answers 12

Amazon Review Polarity 12

The value showed for the Amazon Review Polarity data set corresponds to the

vocabulary built using 2,400,000 training samples. The minimum vocable frequency values

were determined empirically.

The number of network parameters is affected by the vocabulary size that, in turn, is

determined by the minimum vocable frequency parameter.

Table 6.16 shows the number of distinct vocables, the vocabulary size, generated using

the minimum vocable frequency showed in Table 6.15, and the total number of model

parameters for each data set.

Table 6.16. Vocabulary size and number of parameters of the model.

Data Set Distinct Vocables Vocabulary Size Model Parameters

AG’s News 100,039 21,028 8,552,404

DBPedia 718,985 63,739 21,370,714

Yelp Review Polarity 372,994 75,670 24,945,202

Yelp Review Full 414,403 82,080 26,869,705

Yahoo! Answers 1,450,085 104,775 33,680,710

Amazon Review Polarity 1,146,245 108,810 34,887,202

CHAPTER 6. EVALUATION 59

The values showed for the Amazon Review Polarity data set corresponds to the

vocabulary built using 2,400,000 training samples.

In all experiments, we trained our model for 10 epochs. We did not use any validation

data set. After each epoch, we tested the model using the data set testing samples. We

reported the model accuracy for each data set as the best accuracy achieved among the 10

epochs.

We made an experiment with the purpose of evaluating the impact of the training size

on the accuracy of our model. We chose the Amazon Review Polarity data set to make this

experiment because of its huge size. We trained our model using 200,000 samples of the

training data set and repeated the training adding up chunks of 200,000 samples up to the

size of 2,400,000 training samples. The testing data set samples were used in the same

proportion of the samples used in the training data set. We run the experiments encoding the

text with and without the use of WordNet synonyms.

Table 6.17 shows the minimum vocable frequencies used to build the vocabularies, the

size of the vocabularies and the total number of model parameters for each size of the training

set used.

Table 6.17. Amazon reviews polarity training data set size experiment.

Training Samples Minimum Frequency Vocabulary Size Model Parameters

200,000 5 48,405 16,765,702

400,000 5 70,070 23,265,202

600,000 10 57,419 19,469,902

800,000 10 67,131 22,383,502

1,000,000 10 75,571 24,915,502

1,200,000 10 83,300 27,234,202

1,400,000 12 81,382 26,658,802

1,600,000 12 87,373 28,456,102

1,800,000 12 92,994 30,142,402

2,000,000 12 98,535 31,804,702

2,200,000 12 103,751 33,369,502

2,400,000 12 108,810 34,887,202

60 CHAPTER 6. EVALUATION

The minimum vocable frequency values were determined by targeting the total number

of parameters of the model to the 15~35 million interval.

In this experiment, in addition to comparing the accuracy achieved by our model with

the results reported in [Zhang, Zhao, & LeCun, 2015], we also trained the state of the art

model implemented by the authors, named Crepe7, using 200K, 600K, 1,200K and 1,800K

samples to evaluate the impact of the training size on the accuracy of their model.

6.2.2 Hardware
Table 6.18 shows the hardware specification for the computer used to run all the

experiments. The Graphical Processing Unit (GPU) was donated by NVIDIA through the

Academic Hardware Grant Program.

Table 6.18. Computer hardware specification.

Component Manufacturer Model

Motherboard Gigabyte GA-X99-UD3

CPU Intel Core i7-5820K @3.3GHz LGA 2011-v3

RAM G.SKILL Ripjaws 4 - DDR4 - F4-2800C15Q-32GRBB

Hard disk Seagate Barracuda ST2000DM001

GPU NVIDIA Tesla K40 Accelerator Board

Case Nilco NK211 EATX-TF

Power supply EVGA 120-G2-1300-XR

7 https://github.com/zhangxiangxiao/Crepe

61

Chapter 7
Results
In this chapter, we report and analyze the results of the experiments we described in Chapter

6. We initially report the results of the experiments carried out to evaluate the accuracy of

our model, then we report the results of the experiments that we made to evaluate the impact

of the training data set size on the accuracy of our model.

7.1 Accuracy
The accuracy of our model is compared with the models described in Zhang et al. [2015]. In

their paper, the authors implemented 22 models divided into 4 classes. The first class

encompasses 5 traditional models that use a handcrafted feature extractor and linear

classifiers. In the second class, the authors implemented the common vanilla architecture of

LSTM using Word2Vec as the initial representation for the words. The third class is

composed by 8 variations of the word based Convolutional Neural Network (CNN) model.

The architectures of this class models are the most comparable to our model. This class is

subdivided into 2 classes based on the type of the initial representation used for the words.

The names of the models make reference to these subclasses. The term “Lk.” stands for

lookup table, which means that the model uses one-hot as the initial word representations.

The models of the other subclass use the Word2Vec as the initial word representations. The

models, whose names have the term “Th.”, make use of the thesaurus for data augmentation.

The terms “Lg.” and “Sm.” designate the size of the upper fully connected layer and

correspond respectively to the 2,048 and 1,024 sizes. The fourth class is composed by 8

62 CHAPTER 7. RESULTS

variations of the character based CNN model. The models labeled “Full” are those that

distinguish between lower and upper letters.

Table 7.1 shows a summary of the results. The numbers are in percentage. The best

accuracy for each data set is printed in bold face. The table is subdivided into model classes.

Table 7.1. Accuracy results summary.

Model Amazon
Polarity

Yelp
Polarity

Yelp
Full

DBPedia
AG’s
News

Yahoo!
Answers

BoW 90.40 92.24 57.99 96.61 88.81 68.89

BoW TFIDF 91.00 93.66 59.86 97.37 89.64 71.04

ngrams 92.02 95.64 56.26 98.63 92.04 68.47

ngrams TFIDF 91.54 95.44 54.80 98.69 92.36 68.51

Bag-of-means 81.61 87.33 52.54 90.45 83.09 60.55

LSTM 93.90 94.74 58.17 98.55 86.06 70.84

Lg. w2v Conv. 94.12 95.40 59.84 98.58 90.08 68.03

Sm. w2v Conv. 94.00 94.44 57.87 98.29 88.65 68.50

Lg. w2v Conv. Th. 94.20 95.37 60.42 98.63 90.09 68.77

Sm. w2v Conv. Th. 94.37 94.64 58.91 98.47 89.12 70.14

Lg. Lk. Conv. 94.16 95.11 59.48 98.28 91.45 70.94

Sm. Lk. Conv. 94.15 94.46 58.59 98.15 89.13 69.98

Lg. Lk. Conv. Th. 94.48 94.97 59.48 98.42 91.07 71.16

Sm. Lk. Conv. Th. 94.49 94.63 58.83 98.23 90.88 71.08

Lg. Full Conv. 94.22 94.75 61.60 98.34 90.15 70.10

Sm. Full Conv. 94.22 94.33 61.18 98.11 88.41 69.99

Lg. Full Conv. Th. 94.49 95.12 61.96 98.45 90.49 70.42

Sm. Full Conv. Th. 94.34 94.58 62.05 98.31 89.11 70.10

Lg. Conv. 94.49 94.11 60.38 98.27 87.18 70.45

Sm. Conv. 94.50 93.47 59.16 98.02 84.35 70.16

Lg. Conv. Th. 95.07 94.18 60.70 98.40 86.61 71.20

Sm. Conv. Th. 94.33 93.51 59.84 98.15 85.20 70.16

Deep NLP 95.32 96.05 64.76 98.66 92.26 74.02

Deep NLP WordNet 95.65 96.32 65.62 98.82 92.61 74.53

CHAPTER 7. RESULTS 63

The Deep NLP WordNet model surpasses all other models in all tasks. The Deep NLP

model surpasses all models of the other classes in all tasks with the exception of the DBPedia

and AG’s News data sets, in which it is surpassed by the ngrams TFIDF model.

This result can be explained by two facts. The first one is the fact that the amount of

training samples per class on both data sets are the smallest among all data sets used.

The second fact is that the sample documents of both data sets have less than three

sentences on average. Because of our model explicitly creates intermediate representations

for the sentences, texts with small number of sentences have a poorest semantic context.

The worst performance of our model on these two data sets can be justified by the

linguistic theory called Poverty of the Stimulus (POS) [Chomsky, 1980].

Table 7.2 shows a comparison between the number of training samples per class, the

mean number of sentences per sample and number of model parameters of the data sets.

Table 7.2. Training data sets comparison.

Data Set Training Samples
per Class

Mean Number of
Sentences per Sample

Model
Parameters

AG’s News 30,000 2.64 8,552,404

DBPedia 40,000 2.87 21,370,714

Yelp Review Polarity 280,000 9.83 24,945,202

Yelp Review Full 130,000 9.89 26,869,705

Yahoo! Answers 140,000 7.03 33,680,710

Amazon Review Polarity 1,200,000 6.20 34,887,202

This adverse scenario helps to show why the use of the WordNet synonyms provides

robustness to our model making it to surpass the accuracy of all other models. Table 7.3

shows the number of vocables in the vocabulary whose initial Word2Vec representations

were replaced and the number of words in the samples text replaced by WordNet synonyms

in the AG’s News and DBPedia Ontology data sets.

Table 7.3. Vocabulary generation and text encoding statistics using WordNet.

Data Set Vocables Replaced
Words Replaced in
Training Samples

Words Replaced in
Testing Samples

AG’s News 50 44,594 3,166

DBPedia 239 107,477 14,651

64 CHAPTER 7. RESULTS

7.2 Training Size
Figure 7.1 summarizes the results of the experiment that we made to evaluate the impact of

the Amazon Review Polarity data set size on the accuracy of our model.

Figure 7.1. Experiments with the size of the Amazon Review Polarity data set.

CHAPTER 7. RESULTS 65

This chart highlights the best accuracy achieve by each class of the models reported in

[Zhang, Zhao, & LeCun, 2015]. Our model without the use of WordNet synonyms surpasses

the state of the art model accuracy using half of the training samples. Our model using the

WordNet synonyms surpasses the state of the art model accuracy using one third of the

training samples. The accuracies achieved by the state of the art character based CNN model

using these volumes of training are significantly lowers than the ones achieved by our

models.

This chart shows that the accuracy of our models consistently increases as the size of

the training data set grows. It is also clear that the model that make use of the WordNet

synonyms consistently achieved better accuracies than the ones achieved by the model that

do not use the synonyms.

The results presented on this chart suggest that the use of the WordNet synonyms not

only decreases the demand for training samples, but also improves the accuracy of our

model.

Table 7.4 shows the time spent by the Deep NLP and Crepe models in the training of

ten epochs for each Amazon Review Polarity data set size used in this experiment. The time

is presented in hours.

Table 7.4 Training times for the Amazon Review Polarity data set sizes.

Data Set Size Deep NLP Crepe

200,000 5 110

400,000 10 -

600,000 15 120

800,000 20 -

1,000,000 25 -

1,200,000 30 130

1,400,000 35 -

1,600,000 40 -

1,800,000 45 140

2,000,000 50 -

2,200,000 55 -

2,400,000 60 -

66

Chapter 8
Conclusions
In this work, we proposed a robust deep learning CNN model for text categorization tasks.

The model is robust in the sense that it can achieve the state of the art accuracy on different

text categorization tasks without the need to adjust the model hyperparameters for each task.

To achieve the robustness, we incorporated into the model many deep learning

concepts and techniques. The concept of compositionality was used in the design of the deep

CNN architecture to induce the creation of a hierarchical representation for the text.

We employed the concept of prior knowledge when we used the word embeddings and

semantic synonyms in the text encoding process. We used the concept of specialization when

we allowed the initial word representations to be adjusted in the training process, considering

them as parameters of the network.

The concept of depth was used in the design of the feature extractor and label predictor

components of the network. The parameter sharing and sparse connectivity techniques were

used in the convolutional layers. The overfitting was tackled using the dropout technique

during the training process.

To accelerate the network convergence, we used the mini-batch momentum version of

the SGD update algorithm and we randomly shuffled the training data set before each epoch.

To accelerate the training, making viable the use of large datasets, we implemented our

model using a language and framework that make effective use of the massively parallel

processing power of the GPUs.

We evaluated our model comparing its accuracy against the results reported by some

traditional and deep learning models using six large-scale data sets. The results showed that

our model outperformed the accuracy of the state of the art models in different text

categorization tasks. The results also showed that the use of word embeddings and semantic

CHAPTER 8. CONCLUSIONS 67

synonyms helped to generalize the representations learned by the model increasing its

accuracy.

The main contribution of our work is to show that, even when a large amount of

training samples is available, the use of word embeddings is important to achieve a higher

accuracy using less training data, and consequentially in a shorter processing time.

Another contribution comes from the fact that the size of the input text is not limited

by the network architecture of our model. The number of words and sentences in the input

text is limited only by the amount of GPU’s memory. In similar works, the size of the input

text is limited by the number of characters, words or sentences.

Another contribution comes from the implementation of our model that makes an

efficient use of the massively parallel processing power of the GPU, which makes it possible

to train huge data sets in a shorter processing time.

68

Chapter 9
Future Work
The vocabulary size has a huge impact on the number of network parameters of our model.

To limit the number of parameters, we only include in the vocabulary the vocables that have

a minimum frequency in the training data set. If a vocable occurs only in a few training

samples, it is difficult to the model to learn a good representation for it. To overcome this

limitation, as a future work, we propose to employ a different frequency measure that also

takes into account the number of training samples that the vocable occurs.

Since our model does not limit the size of the input text, would be interesting to

evaluate its performance on data sets that have larger documents.

Deconvolution is a visualization technique used to show the patterns learned by each

layer of a deep CNN in computer vision applications. As the design of the deep CNN

architecture of our model induces the creation of a hierarchical representation for the input

text, in a future work, we propose the use of the deconvolution technique to discover the

words and sentences of the input text that most contributed to the class predicted by the

model.

Transfer learning is the process of learning new tasks using the experience gained by

solving predecessor problems that are somewhat similar. In the context of supervised

learning, transfer learning can be used to train a model using a data set and use the trained

model to process the samples of a similar data set. In a future work, we intend to make

experiments using our model trained on a given data set and evaluate its accuracy on testing

samples of other data sets.

Another interesting work would be to evaluate the impact on the accuracy of our model

caused by the use of word embeddings obtained from factual texts of a specific domain. For

example, we can train an unsupervised language model using documents having health,

CHAPTER 9. FUTURE WORKS 69

drugs and other factual contents in the field of medicine. Then we can train our model using

these word embeddings on a data set collected from patient’s posts in health forums and

evaluate the accuracy of the model on the prediction of the rate given by the patients to a

drug.

The degree of agreement among humans is also known as human concordance. In

experiments, this degree is measured using some coefficients and its quality is measure using

inter-rater reliability techniques. There are some works saying that the rate of human

concordance is between 70% and 79%, and that a good accuracy for sentiment analysis tools

is 70% [Gwet, 2014]. Our model achieved an accuracy higher than 70%, in most of the

experiments, using data sets whose documents were written by humans. How this can be

explained? One hypothesis is that our model is able to learn the discourse used by the group

of people who wrote the content of a given data set. Although deep learning models are

inspired by the working principles of the human brain, they do not learn to reason. All they

know about the world comes from the training samples presented to them. Differently from

deep learning models, human beings reason about something using past experiences

acquired in different contexts. In general, a data set is made up by documents published by

a group of people expressing their experiences and opinions about some subject. Although

people of the same group have different experiences and opinions, they must agree about the

discourse used to express them. This can explain why our model has a better performance in

some text categorization tasks that surpasses the human concordance.

To verify this hypothesis, in a future work, we intend to train our model using a data

set containing product reviews written by specialists and evaluate the accuracy of the trained

model on a data set containing product reviews written by lay people.

70

Bibliography
Bengio, Y. (2009). Learning Deep Architectures for AI. Foundations and Trends in Machine

Learning, 2(1), 1-127.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2006). Greedy Layer-Wise
Training of Deep Networks. Em B. Schölkopf, J. C. Platt, & T. Hofmann (Ed.), NIPS (pp.
153-160). MIT Press.

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python. Beijing;
Cambridge [Mass.]: O'Reilly.

Bottou, L., Collobert, R., Weston, J., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (November
de 2011). Natural Language Processing (Almost) from Scratch. J. Mach. Learn. Res.,
999888, 2493-2537.

Boureau, Y.-L., Ponce, J., & LeCun, Y. (2010). A Theoretical Analysis of Feature Pooling
in Visual Recognition. Em J. Fürnkranz, & T. Joachims (Ed.), ICML (pp. 111-118).
Omnipress.

Chomsky, N. (1980). Rules and Representations. New York: Columbia Univeristy Press.

Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing:
deep neural networks with multitask learning. Em W. W. Cohen, A. McCallum, & S. T.
Roweis (Ed.), ICML. 307, pp. 160-167. ACM.

de Oliveira Jr., R. L., Veloso, A., Pereira, A. M., Jr., W. M., Ferreira, R., & Parthasarathy,
S. (2014). Economically-efficient sentiment stream analysis. Em S. Geva, A. Trotman, P.
Bruza, C. L. Clarke, & K. Järvelin (Ed.), SIGIR (pp. 637-646). ACM.

Denil, M., Demiraj, A., Kalchbrenner, N., Blunsom, P., & de Freitas, N. (2014). Modelling,
Visualising and Summarising Documents with a Single Convolutional Neural Network.
CoRR, abs/1406.3830.

dos Santos, C. N., & Gatti, M. (2014). Deep Convolutional Neural Networks for Sentiment
Analysis of Short Texts. Em J. Hajic, & J. Tsujii (Ed.), COLING (pp. 69-78). ACL.

INDEX 71

Golden, M. R. (1996). Mathematical Methods for Neural Network Analysis and Design.
Cambridge, MA: MIT Press.

Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., & Shet, V. D. (2014). Multi-digit
Number Recognition from Street View Imagery using Deep Convolutional Neural
Networks. International Conference on Learning Representations.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning (Book in preparation
ed.). MIT Press.

Gülçehre, Ç., & Bengio, Y. (2013). Knowledge Matters: Importance of Prior Information
for Optimization. CoRR, abs/1301.4083.

Gwet, K. L. (2014). Handbook of Inter-Rater Reliability: The Definitive Guide to Measuring
the Extent of Agreement Among Raters (4th ed.). Advanced Analytics, LLC.

Hawkins, J., & Blakeslee, S. (2004). On Intelligence. Henry Holt.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Prentice Hall.

Hecht-Nielsen, R. (1990). Neurocomputing. Redwood City, CA: Addison-Wesley.

Hinton, G. E., Krizhevsky, A., & Wang, S. D. (2011). Transforming Auto-Encoders. Em T.
Honkela, W. Duch, M. A. Girolami, & S. Kaski (Ed.), ICANN (1). 6791, pp. 44-51.
Springer.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A Fast Learning Algorithm for Deep
Belief Nets. Neural Computation, 18, 1527-1554.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2012).
Improving neural networks by preventing co-adaptation of feature detectors. CoRR,
abs/1207.0580.

Hubel, D. H., & Wiesel, T. N. (1959). Receptive Fields of Single Neurons in the Cat's Striate
Cortex. Journal of Physiology, 148, 574-591.

Ierusalimschy, R. (2006). Programming in Lua (2. ed.). Lua.org.

Johnson, R., & Zhang, T. (2015). Effective Use of Word Order for Text Categorization with
Convolutional Neural Networks. Em R. Mihalcea, J. Y. Chai, & A. Sarkar (Ed.), HLT-
NAACL (pp. 103-112). The Association for Computational Linguistics.

Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (June de 2014). A Convolutional Neural
Network for Modelling Sentences. Proceedings of the 52nd Annual Meeting of the

72 INDEX

Association for Computational Linguistics (Volume 1: Long Papers) (pp. 655-665).
Baltimore, Maryland: Association for Computational Linguistics.

Kandel, E., Schwartz, J., & Jessel, T. (2000). Principles of neural science (fourth ed.).
McGraw-Hill.

Kavukcuoglu, K., Farabet, & Collobert, R. (2011). Torch7: A Matlab-like Environment for
Machine Learning. BigLearn, NIPS Workshop, EPFL-CONF-192376.

Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. Em A.
Moschitti, B. Pang, & W. Daelemans (Ed.), EMNLP (pp. 1746-1751). ACL.

Kirk, D. B., & Hwu, W.-m. W. (2010). Programming Massively Parallel Processors: A
Hands-on Approach. Burlington, MA: Morgan Kaufmann Publishers.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, (pp.
1097-1105).

Le, Q. V., & Mikolov, T. (2014). Distributed Representations of Sentences and Documents.
ICML. 32, pp. 1188-1196. JMLR.org.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-Based Learning Applied
to Document Recognition. Proceedings of the IEEE, 86, pp. 2278-2324.

LeCun, Y., Bottou, L., Orr, G. B., & Müller, K.-R. (2012). Efficient BackProp. Em G.
Montavon, G. B. Orr, & K.-R. Müller (Eds.), Neural Networks: Tricks of the Trade (2nd
ed.) (Vol. 7700, pp. 9-48). Springer.

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., . . . Bizer,
C. (2015). DBpedia - A large-scale, multilingual knowledge base extracted from
Wikipedia. Semantic Web, 6(2), 167-195.

Lev, G., Klein, B., & Wolf, L. (2015). In Defense of Word Embedding for Generic Text
Representation. Em C. Biemann, S. Handschuh, A. Freitas, F. Meziane, & E. Métais
(Ed.), NLDB. 9103, pp. 35-50. Springer.

Manning, C. D., & Schütze, H. (1999). Foundations of Statistical Natural Language
Processing. Cambridge, Massachusetts: The MIT Press.

McAuley, J. J., & Leskovec, J. (2013). Hidden factors and hidden topics: understanding
rating dimensions with review text. Em Q. Y. 0001, I. King, Q. Li, P. Pu, & G. Karypis
(Ed.), RecSys (pp. 165-172). ACM.

INDEX 73

McCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysic(5), 115-133.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

Miller, G. (1995). WordNet {A} Lexical Database for {E}nglish. Communications of ACM,
38(11), 39-41.

Nair, V., & Hinton, G. E. (2010). Rectified Linear Units Improve Restricted Boltzmann
Machines. Em J. Fürnkranz, & T. Joachims (Ed.), ICML (pp. 807-814). Omnipress.

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural
networks. ICML (3). 28, pp. 1310-1318. JMLR.org.

Rosenblatt, F. (1962). Principles of Neurodynamics. Spartan, New York.

Rumelhart, D. E., Hinton, G. E., & Wilson, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323, 533-536.

Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency Maps. CoRR, abs/1312.6034.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., & Potts, C. (2013).
Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank.
Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing (pp. 1631-1642). Seattle: Association for Computational Linguistics.

Sutskever, I., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the importance of
initialization and momentum in deep learning. ICML (3). 28, pp. 1139-1147. JMLR.org.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich, A.
(2014). Going Deeper with Convolutions. CoRR, abs/1409.4842.

Taylor, G. W., Fergus, R., & Zeiler, M. D. (2011). Adaptive deconvolutional networks for
mid and high level feature learning. Em D. N. Metaxas, L. Quan, A. Sanfeliu, & L. J.
Gool (Ed.), ICCV (pp. 2018-2025). IEEE Computer Society.

Turian, J. P., Ratinov, L.-A., & Bengio, Y. (2010). Word Representations: A Simple and
General Method for Semi-Supervised Learning. Em J. Hajic, S. Carberry, & S. Clark
(Ed.), ACL (pp. 384-394). The Association for Computer Linguistics.

74 INDEX

Veloso, A., Jr., W. M., Cristo, M., Gonçalves, M. A., & Zaki, M. J. (2006). Multi-evidence,
multi-criteria, lazy associative document classification. Em P. S. Yu, V. J. Tsotras, E. A.
Fox, & B. L. 0001 (Ed.), CIKM (pp. 218-227). ACM.

Vincent, P., Bengio, Y., & Ducharme, R. (2000). A Neural Probabilistic Language Model.
Em T. K. Leen, T. G. Dietterich, & V. Tresp (Ed.), NIPS (pp. 932-938). MIT Press.

Waibel, A., Hanazawa, T., Hinton, G. E., Shikano, K., & Lang, K. (1989). Phoneme
Recognition Using Time-Delay Neural Networks. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 37, 328-339.

Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent Neural Network
Regularization. CoRR, abs/1409.2329.

Zeiler, M. D., & Fergus, R. (2013). Visualizing and Understanding Convolutional Networks.
CoRR, abs/1311.2901.

Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level Convolutional Networks for Text
Classification. CoRR, abs/1509.01626.

Zweig, G., Mikolov, T., & tau Yih, W. (2013). Linguistic Regularities in Continuous Space
Word Representations. Em L. Vanderwende, H. D. III, & K. Kirchhoff (Ed.), HLT-
NAACL (pp. 746-751). The Association for Computational Linguistics.

