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Resumo 
Categorização de textos é uma das tarefas mais importantes nas aplicações do domínio do 

Processamento de Linguagem Natural (PLN), a qual consiste em associar automaticamente 

categorias pré-definidas a documentos escritos em linguagem natural. Técnicas tradicionais 

de aprendizado de máquina utilizam características elaboradas manualmente para a 

construção dos modelos, tais como, n-gramas, palavras de negação, sinais de pontuação, 

símbolos representando emoções, palavras alongadas e dicionários léxicos. Esta abordagem, 

chamada de engenharia de características, além de requerer um trabalho árduo, resulta 

geralmente em modelos que apresentam uma performance ruim em tarefas para as quais não 

foram especificamente criados. 

Neste trabalho, propomos um modelo robusto baseado em uma Rede Neural de 

Convolução (RNC) profunda para aprendizado chamado de PLN profundo. Nosso modelo 

utiliza uma abordagem composicional, na qual o projeto da arquitetura da RNC profunda 

induz a criação de uma representação hierárquica para o texto através da descoberta de 

representações intermediárias para as palavras e sentenças do texto. As representações 

iniciais para as palavras, chamadas de incorporação de palavras, são obtidas de um modelo 

de linguagem neural treinado previamente de forma não supervisionada, as quais são 

ajustadas para o contexto da tarefa para a qual o modelo está sendo treinado. 

O nosso modelo foi avaliado em tarefas de categorização de textos comparando sua 

acurácia com os resultados publicados para alguns modelos tradicionais e de aprendizado 

profundo utilizando seis conjuntos de dados de larga escala. Os resultados mostram que 

nosso modelo é robusto no sentido de que, mesmo quando nós utilizamos os mesmos 

parâmetros globais, ele supera a acurácia dos modelos considerados estados da arte em 

diferentes tarefas de categorização de textos. Os resultados também mostram que a utilização 

de um dicionário de sinônimos semânticos juntamente com as representações iniciais de 

palavras ajuda na generalização das representações aprendidas pelo modelo, aumentando sua 

acurácia. 

Palavras-chave: Aprendizado Profundo, PLN, RNC, Categorização de Textos. 
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Abstract 
Text categorization is the task of automatically assigning pre-defined categories to 

documents written in natural languages and it is one of the most important tasks in Natural 

Language Processing (NLP) domain applications. Traditional machine learning techniques 

rely on handcrafted features such as ngrams, negation words, punctuation, emoticons, stop 

words, elongated words and lexicons to build their models. This approach, called feature 

engineering, in addition to being labor intensive, results in models that, in general, present 

poor performance on tasks for what they have not been specifically tailored. 

In this work, we propose a robust deep learning Convolutional Neural Network (CNN) 

model named Deep NLP. Our model adopts a compositional approach, in which the design 

of the deep CNN architecture induces the creation of a hierarchical representation for the 

text, through the extraction of intermediate representations for the words and sentences of 

the text. The initial word representations, called word embeddings, are obtained from a pre-

trained unsupervised neural language model and they are adjusted for the context of the task 

that the model is being trained.  

We evaluated our model comparing its accuracy against the results reported by some 

traditional and deep learning models in text categorization tasks using six large-scale data 

sets. The results show that our model is robust in the sense that, even when we use the same 

hyperparameters, it surpasses the accuracy of the state-of-the-art models in different text 

categorization tasks. The results also show that the use of a semantic synonyms dictionary 

together with the word embeddings helps to generalize the representations learned by the 

model increasing its accuracy. 

Keywords: Deep Learning, NLP, CNN, Text Categorization. 
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Chapter 1  
Introduction 
Text categorization is one of the most important tasks in Natural Language Processing 

(NLP). Text categorization is the task of automatically assigning pre-defined categories to 

documents written in natural languages. Text categorization can be used for, among others, 

classifying a document in a set of topics, rating a product review written by a costumer or 

associating a sentiment with a text posted by a user [Manning & Schütze, 1999] [de Oliveira 

Jr., et al., 2014] [Veloso, Jr., Cristo, Gonçalves, & Zaki, 2006]. 

Traditional machine learning techniques used to build models for text categorization 

rely on handcrafted features to succeed. Features such as ngrams, negation words, stop 

words, punctuation, emoticons, elongated words and lexicons are carefully chosen by a 

domain specialist for a specific task. This approach leads to models tailored for a specific 

context and seldom achieve good performance in different tasks. This approach is called 

feature engineering [Bottou, et al., 2011]. 

1.1 Deep Learning Models 
The deep learning paradigm adopts a different approach to find the model features. The 

models built using the deep learning approach learn not only the parameters of the features 

but also the features themselves for a given task. This approach, called feature learning, leads 

to more general models that achieve good performance in different tasks and domains . In 

this scenario, the model specialist has to fine-tune the model hyperparameters for the given 

task [Goodfellow, Bengio, & Courville, 2016]. 
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Despite the good performance achieved by some traditional machine learning NLP 

techniques as Bag of Words (BoW) in text categorization tasks such as topic identification, 

these models present poor performance in tasks where the semantic of the text is sensitive to 

the word positions. For example, a BoW model will give the same value for the expressions 

“know a little bit about everything” and “know everything about a little bit”. Both 

expressions have exactly the same words, but have different meanings. The first one 

designates a generalist and the second one designates a specialist. To be able to capture the 

semantic of a sentence, a model has to take into account the word positions in the sentence. 

There are different deep learning models suited for specific application domains. The 

Recursive Neural Network (RecNN) model is claimed to be well suited for NLP applications 

because of its hierarchical structure. The weakness of this type of model is its dependency 

on an external syntactic parse tree. This restriction limits the learning of semantic relations 

between words to syntactically dictated phrases. Extended models based on RecNN achieved 

the state of the art in some NLP tasks using specific data sets [Socher, et al., 2013]. 

The Recurrent Neural Network (RNN) model is a special case of RecNN that is suited 

for modeling sequential data. Despite its power in representing sequential structures, it is 

seldom being used for NLP tasks such as text categorization because of its difficulty in 

learning long-term dependencies. This limitation is due to the exploding and vanishing 

gradients problems that occur in the training phase [Pascanu, Mikolov, & Bengio, 2013]. 

To overcome the exploding and vanishing gradients problems, a type of RNN 

architecture called Long Short Term Memory (LSTM) has been used with success in some 

application domains [Zaremba, Sutskever, & Vinyals, 2014]. 

1.2 Convolutional Neural Network Models 
Two-dimensional (2D) Convolutional Neural Network (CNN) models have been 

successfully applied in computer vision domain problems for some time [LeCun, Bottou, 

Bengio, & Haffner, 1998]. More recently, the remarkable results achieved by deep CNN on 

image classification challenges got the state of the art to a new level and promoted the 

renascence of the deep learning paradigm [Krizhevsky, Sutskever, & Hinton, 2012]. 
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It has been showed that deep CNN models are able not only to discover the features of 

the data, but also they are able to learn a hierarchical representation for the data through the 

discovered features. The revealed features have desirable properties such as 

compositionality, increasing invariance and class discrimination as they ascend the network 

layers [Zeiler & Fergus, 2013]. 

One-dimensional (1D) CNN models like Time-Delay Neural Networks (TDNN) have 

been successfully used for some time in speech recognition applications such as phoneme 

recognition [Waibel, Hanazawa, Hinton, Shikano, & Lang, 1989]. More recently, deep 1D-

CNN models have been used in NLP tasks like language modeling [Bottou, et al., 2011]. 

1.3 Data Representation 
A central problem present in all NLP applications is how to represent the input text. Some 

models view the input text as a stream of characters [Zhang, Zhao, & LeCun, 2015]. Other 

models deal with the input text as a sequence of phonemes [dos Santos & Gatti, 2014]. Most 

models make the natural choice of viewing the input text as a sequence of words. In these 

models, the problem is how to represent a word. The simplest way is to associate with each 

vocable present in the text a unique id and use a lookup table to encode the text’s words. 

Each id is represented as a vector that has the size of the vocabulary and only the bit that 

identifies the vocable is set to one. That is why this type of word representation is called 

one-hot. 

The problem with the one-hot representation is the dimensionality of the word vectors. 

For example, in a dataset with 30K vocables, each word in the text will be represented by a 

vector of size 30K. Despite of this limitation, some models using one-hot representation have 

achieved remarkable results in text categorization tasks [Johnson & Zhang, 2015]. 

A more sophisticated way of word representation is called word embedding. This type 

of representation tries to create a mapping from the symbolic representation of a word into 

a lower dimensional vector space. In addition to effectively dealing with the problem of the 

dimensionality, it has been shown that word embeddings are able to capture many semantic 

relationships between the words they represent [Mikolov, Chen, Corrado, & Dean, 2013]. 
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Intuitively, in the context of deep learning models, the use of word embeddings makes 

sense. Like humans do, the model learns a semantic representation of a word in some context 

and it adjusts this representation for the specific context that it is being trained. The models 

that make use of word embeddings are considered semi-supervised models because the 

initial word representations are learned in an unsupervised way and they fit these 

representations for a specific task through a supervised training. 

1.4 Compositionality 
Another central problem present in all NLP tasks is how much syntax is needed to extract 

semantics. As we have already mentioned, the RecNN models depend on an external 

syntactic parse tree to extract semantic from a text. The performance of these models 

degrades on NLP tasks where the input text is written using an informal language style that 

does not strictly follow syntactic rules. 

Some models try to learn a representation in an unsupervised way not only for the 

words but also for the whole paragraph. These models are suited for NLP tasks where there 

is not data sets with enough labeled data. [Le & Mikolov, 2014] 

Most of the deep CNN models used in NLP tasks convolves a set of filters over the 

sequence of text words. They do not explicitly take into account the syntactic information of 

text sentence units. They consider the whole text as a syntactic unit. These models are suited 

for NLP tasks where the input text holds in one sentence. An example of this type of task is 

sentiment classification of texts from a Twitter dataset [Kalchbrenner, Grefenstette, & 

Blunsom, 2014]. 

In some NLP tasks, it seems to make sense to apply a compositional approach. These 

models explicitly consider a text made up by sentence units that, in turn, are compounded 

by words [Denil, Demiraj, Kalchbrenner, Blunsom, & de Freitas, 2014]. 

Analogously to an image made up by different classes of objects in the computer vision 

domain, a text is made up by sentence units that can have different semantics. It was showed, 

in the computer vision domain, that forcing information to pass through carefully chosen 

bottlenecks makes it possible to control the types of intermediate representations learned by 
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the model [Hinton, Krizhevsky, & Wang, 2011]. This strategy helps on the generalization of 

the representations learned by the model [Gülçehre & Bengio, 2013]. 

1.5 Depth 
Another central question in the design of deep learning models is how deep a network must 

be. There is a consensus that shallow models are not able to extract complex features of the 

data but there is not a rule of thumb to determine how many layers suffice to extract the 

required features for a specific task. In the computer vison domain, a deep CNN model that 

achieved the state of the art in image classification tasks was implemented using 22 layers 

[Szegedy, et al., 2014]. 

Another critical issue on the design of deep CNN models is the relationship between 

the number of parameters and the depth of the model. In the specific case of NLP models, 

the dimensionality of the data representation has a huge impact on the number of parameters 

of the model. 

1.6 Objectives of this Work 
The objective of this work is to propose a robust deep CNN model for text categorization 

tasks, named Deep NLP. The design of this model aims to overcome the limitations of other 

models reported in the literature and to achieve a robustness in the sense that the model can 

be used in different text categorization tasks without the need of tuning the model 

hyperparameters. To achieve these objectives, we employ a series of  deep learning concepts 

and techniques. We adopt a semi-supervised approach where the initial vocable 

representations are obtained from a pre-trained unsupervised neural language model publicly 

available1 (Word2Vec). The vocable representations are adjusted to a specific task context 

during the training phase. The model implements a compositional approach explicitly 

creating intermediate representations for the sentences. The size of the input text is not 

limited by the model. The model is made up of seven layers to extract complex features of 

                                                           
1 https://code.google.com/archive/p/word2vec/ 
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the input text. We make use of the WordNet corpus to find semantic synonyms for the 

vocables not found in Word2Vec and for the text words not found in the generated 

vocabulary [Miller, 1995]. 

1.7 Contributions of this Work 
We evaluated our model comparing its accuracy against the results reported by deep learning 

models in text categorization tasks [Zhang, Zhao, & LeCun, 2015]. The model was trained 

without and with the use of the WordNet synonyms. We also made experiments to measure 

how the data set size affects the accuracy and training time of our model. 

The results show that our model is robust in the sense that, even when using the same 

model hyperparameters, it can beat the state of the art models’ accuracy in different text 

categorization tasks. The results also show that the use of the WordNet semantic synonyms 

helps to generalize the representation learned by the model, thus increasing its accuracy. The 

experiments made with the data set size show that our model beat the accuracy of the state 

of the art model using only one third of the data set size. 

Another contribution resultant from the design of the proposed architecture is that our 

model do not impose any limit on the size of the input text. The implementation of our model 

makes an efficient use of the massively parallel processing power of the GPU, which makes 

it possible to train huge data sets in a shorter processing time. 

1.8 Organization 
The remaining part of this work is organized as follows. In Chapter 2, we introduce some 

underlying concepts used in artificial neural networks and deep learning models. In Chapter 

3, we present the related work that apply or develop similar concepts used in this dissertation. 

In Chapter 4, we provide an in-depth description of the architecture of our model. In Chapter 

5, we discuss the implementation details of our model. In Chapter 6, we describe the data 

sets and experiments used to evaluate our model. In Chapter 7, we report and analyze the 
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results of the experiments. In Chapter 8, we discuss the main contributions of this work. In 

Chapter 9, we address some future work. 
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Chapter 2  
Background 
In this chapter, we present the underlying concepts necessaries for the understanding of this 

work. We introduce some Artificial Neural Networks basic concepts, then we present some 

principles discovered by the neural science that inspired the development of the 

neurocomputing algorithms. Finally, we present an overview of the deep learning paradigm. 

2.1 Neural Networks 
The basic concepts used in the deep learning paradigm are inherited from the Artificial 

Neural Networks (ANNs) models or Neural Networks (NNs) for short. The aim of the NNs 

paradigm is to develop computer programs capable of solving abstract problems that are 

hard to be described using formal rules, but are easily solved by human beings. 

The development of the NNs paradigm started in the 1950s [McCulloch & Pitts, 1943] 

[Rosenblatt, 1962]. The NNs models were inspired by the concepts and principles of the way 

the human brain works, which was discovered by the neural science. 

The human cortex can be viewed as a complex network whose nodes are neurons. Each 

neuron receives input signals from other neurons through its dendrites. The neurons 

connections are established through the synapses. The strength of the input signals is 

determined by the stimulus received. The input signals are combined inside the neuron to 

create an output signal. The output signal is transmitted to other neurons through the axon if 

its amplitude is greater than a pre-determined value called action potential. The output signal 

is called a spike. It is estimated that the human cortex has 10 billion of neurons and 60 trillion 

of synapses [Kandel, Schwartz, & Jessel, 2000]. 
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At the cell level, the human behavior adaptability or learning mechanism can be 

explained by the plasticity hypothesis. The stimulus received from the environment and the 

output produced by the network cause permanent changes on the neurons connections. 

Figure 2.1 shows a node of a feedforward NN model projected over a schematic view of a 

typical neuron. 

In Haykin [1999], the author defines an ANN as a massively parallel distributed system 

made up of simple processing units, which has a natural propensity for storing experimental 

knowledge. An ANN resembles the human brain in that the knowledge is acquired by the 

network from its environment through a learning process and the strength of neuron 

connections, known as synaptic weights, are used to store the acquired knowledge. 

In the context of ANNs, learning is the process by which the synaptic weights, or 

network parameters, are adjusted through a process of stimulation known as training. The 

type of learning is determined by the way the parameters changes take place. There are many 

types of learning mechanisms. In ANNs, the most used learning mechanism is the error-

correction algorithm. 

The error-correction learning algorithm compares the network output with a target 

value through an objective or cost function. The cost function associates the network 

parameters with a measure of the error produced by the network output. In feedforward NNs, 

the most used error-correction learning algorithm is the backpropagation. 

Figure 2.1. Neuron model projected over a typical neuron cell. 
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Backpropagation is about understanding how adjusting the weights and biases in a 

network changes the error given by the cost function. Because the cost function depends on 

the network output value, which in turn is a function of the output layer activation function 

that depends on the previous layers weights and bias and so on, we can recursively use the 

chain rule to calculate the gradient of the cost function with respect to the network 

parameters. This way, we know how the changes on each network parameter contribute to 

the error measured by the cost function. 

The backpropagation algorithm is executed in four steps. In the feedforward step, the 

network output is calculated. In the error step, the cost function gradient of with respect to 

the network output is calculated. In the backward step, the error is back propagated 

calculating the gradient with respect to the previous layers outputs. In the update step, the 

values of the network parameters are adjusted using some updating rule. In general, the 

updating rule used is the gradient descent algorithm. The network parameters are subtracted 

from its gradient multiplied by a constant. This constant is called the learning rate. 

The backpropagation algorithm was originally introduced in the 1970s, but it became 

popular only in 1986 after the publication of a paper in which the authors showed that the 

speedup aroused from the use of the backpropagation algorithm made it possible to use NNs 

to solve problems that had previously been insoluble [Rumelhart, Hinton, & Wilson, 1986]. 

What is clever about the backpropagation algorithm is that it enables us to compute all 

the gradients partial derivatives simultaneously using just one forward pass through the 

network, followed by one backward pass. Roughly speaking, the computational cost of the 

backward pass is about the same as the forward pass. 

Even in the late 1980s, people ran up against computational limits, especially when 

attempting to use backpropagation to train deep NNs. The backpropagation algorithm is 

based on common linear algebraic operations like vector additions and matrix 

multiplications. In 2006, the improvement of the algorithms and the popularization of the 

use of the GPUs for scientific computation made the use of the backpropagation algorithm 

feasible in deep NNs models [Hinton, Osindero, & Teh, 2006] [Kirk & Hwu, 2010]. 
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Figure 2.2 shows the steps of the backpropagation algorithm in a small segment of a 

typical feedforward neural network. 

2.2 Neocortex Deep Structure 
Another concept used in ANNs inspired by the human cortex structure is the concept of 

hierarchy. Humans organize their ideas and concepts hierarchically first learning simpler 

concepts and then composing them to represent abstract concepts. It is believed that this 

behavior is due to the physical structure of the human neocortex. 

The human neocortex is organized into regions and the typical neocortex tissue is made 

up by six layers of neurons cells. The lower layers, sixth and fifth, have a higher 

concentration of neurons than the upper layers. They receive input signals from other cortex 

Figure 2.2. Steps of the backpropagation algorithm. 
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regions and pass the extracted features to the upper layers, which in turn pass the information 

to other neocortex regions.  

Within the neocortex, the information flows serially from one region to another. For 

example, the visual cortex is built by a sequence of regions, each of which contains a 

representation of the input and the signals flow from one region to the next. Each level of 

this feature hierarchy represents the input at a different abstraction level, with more abstract 

features further up in the hierarchy, defined in terms of the lower-level ones [Kandel, 

Schwartz, & Jessel, 2000]. 

The upper layers and regions also have feedback connections to the lower ones. For 

many years, most scientists ignored these feedback connections. They are essential for the 

brain to accomplish one of its most important functions, which is to make predictions. 

Predictions requires a comparison between what is happening and what you expect to 

happen. What is actually happening flows up in the hierarchy, and what you expect to happen 

flows down [Hawkins & Blakeslee, 2004]. 

Figure 2.3 shows on the left a histological structure of the human neocortex tissue and 

on the right a schematic representation of some sensory regions layers hierarchy. The 

appearance of the histological structure depends on what was used to stain it. The Golgi stain 

reveals the neuronal cell bodies and the dendritic trees. The Nissl method shows the cell 

bodies and the proximal dendrites. The Weigert stain for myelinated fibers reveals the 

pattern of axonal distribution [Kandel, Schwartz, & Jessel, 2000]. 

Figure 2.3. The six layers of the human neocortex. 
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2.3 Deep Learning 

2.3.1 Depth Matters 
The deep learning paradigm can be characterized by the use of two strategies inspired by the 

working of the human brain. The first strategy is the learning from experience, which was 

already adopted in the ANNs. The second strategy is to understand the world in terms of a 

deep hierarchy of concepts, with each concept defined in terms of its relation to simpler 

concepts. 

The approach of gathering knowledge from experience avoids the need to specify the 

formal rules that allow the computer programs to solve abstract problems. The approach of 

viewing an abstract problem as a hierarchy of concepts allows the computer programs to 

learn complicated concepts by building them out of simpler ones. 

The building of a hierarchy of concepts is induced by the deep architecture of layers. 

The use of a deep architecture can be viewed as a kind of function factorization. The depth 

of two layers may be enough to represent some families of functions with a given target 

accuracy. Theoretical results showed that there are families of functions for which the 

insufficient depth makes the number of parameters grows exponentially with the input size 

[Bengio, 2009]. The Kolmogorov’s Mapping Neural Network Existence theorem assures 

that an arbitrary continuous function, mapping values from an n-dimensional compact set to 

the real numbers vector space, can be implemented by a feedforward neural network with at 

least three layers of depth [Hecht-Nielsen, 1990]. 

Figure 2.4 illustrates a classification problem of a two-class data set represented by 

two curves. Each layer of the network transforms the data, creating a new representation and 

making the data easily separable by a linear classifier. 

Figure 2.4. Representations learned by layers make data separable. 
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Deeper models tend to perform better not only because they are larger. Increasing the 

number of parameters in models having less than three layers, called shallow models, does 

not allow them to reach the same level of performance as deeper models. This is primarily 

due to overfitting. Figure 2.5 presents a chart with the results of an experiment comparing 

the number of parameters with the performance of models having different depths 

[Goodfellow, Bulatov, Ibarz, Arnoud, & Shet, 2014]. 

It is clear that only the deepest models had their accuracy increased with the growth 

on the number of parameters. 

2.3.2 The Renascence 
Until 2006, attempts of training a deep supervised feedforward neural network architecture 

yielded worse results then shallow architectures. In Bengio et al. [2006], the authors 

extended the pionner work done in Hinton et al. [2006,] showing that the initialization of 

Deep Belief Networks (DBN) parameters with pre-trained unsupervised learned 

representations values could improve its generalization. Since then, the development of new 

algorithms and techniques made possible the implementation of deeper architecutes and the 

adoption of the deep learning paradigm to solve problems in many domains [Bengio, 

Learning Deep Architectures for AI., 2009]. 

Figure 2.5. Effect of the number of parameters on the performance of models 
with different depths. 
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In 2012, a dramatic moment in the meteoric rise of deep learning came when a deep 

CNN architecture won the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 

for the first time and by a wide margin, bringing down the state-of-the-art error rate from 

26.1% to 15.3% [Krizhevsky, Sutskever, & Hinton, 2012]. Since then, these competitions 

are consistently won by deep CNNs and the advances in deep learning have brought the 

latest top-5 error rate in this contest down to3.6% [Goodfellow, Bengio, & Courville, 2016]. 

Two main facts, besides the development of new algorithms and techniques, 

contributed to the recent success of the deep learning paradigm. The increase on the 

massively parallel processing power of the GPUs for scientific computation made it possible 

to implement deeper models having a huge number of parameters. 

Figure 2.6 shows comparative charts between the processing power of the GPUs, on 

the left, and the number of neurons of ANNs implemented over time on the right 

[Goodfellow, Bengio, & Courville, 2016]. 

The other fact that contributed to the recent success of the deep learning paradigm is 

the increase on the data sets size. In the 1980s and 1990s, machine learning became statistical 

in nature and began to leverage larger data sets containing tens of thousands of examples 

such as the MNIST data set. As the models become more complex, the number of parameters 

increases and more data is required to train the model. 

Figure 2.6. Evolution of GPUs and NNs over time. 
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Figure 2.7 shows a chart of the data sets size over time [Goodfellow, Bengio, & 

Courville, 2016]. 

2.3.3 CNN Architecture 
There are many types of ANN architectures. Each architecture has been developed for a 

specific task. The Convolutional Neural Network (CNN) architecture was developed for 

computer vision tasks and it was inspired by the discoveries of the neurophysiologists about 

how the mammalian vision system works [Hubel & Wiesel, 1959]. They observed how 

neurons in the cat’s brain responded to images projected in precise locations on a screen in 

front of the cat. Their great discovery was that neurons in the early visual system responded 

most strongly to very specific patterns of light, such as precisely oriented bars, but responded 

hardly at all to other patterns. 

The visual cortex contains a complex arrangement of cells that are sensitive to small 

sub-regions of the visual field, called a receptive field. The sub-regions are tiled to cover the 

entire visual field. These cells act as local filters over the input space and are well suited to 

exploit the strong spatially local correlation present in natural images. Simple cells respond 

maximally to specific edge-like patterns within their receptive field. Complex cells have 

larger receptive fields and are locally invariant to the exact position of the pattern. 

The term convolutional comes from a mathematical operation called convolution. 

Convolution is a specialized kind of linear operation. The convolution operation used in 

ANNs does not correspond precisely to its definition in mathematics. Convolutional 

Figure 2.7. Evolution of data sets size over time. 
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networks are simply ANNs that use convolution in place of general matrix multiplication in 

at least one of their layers [Goodfellow, Bengio, & Courville, 2016]. 

Figure 2.8 shows a schematic view of a 2D convolution operation as it is used in 

ANNs. The small letters correspond to the values of each position of the input and of the 

filter. 

It has been showed that deep CNN models are able not only to discover the features of 

the data, but also they are able to learn a hierarchical representation for the data through the 

discovered features. The revealed features have desirable properties such as 

compositionality, increasing invariance and class discrimination as they ascend the network 

layers [Zeiler & Fergus, 2013]. Figure 2.9 shows the images generated by a visualization 

technique called deconvolution. The images reveal the patterns learned by each layer of a 

deep CNN. In the lower layers, the discovered patterns, like edges, correspond to small 

regions of the image. In the upper layers, the discovered patterns, like objects, correspond to 

larger regions of the image. 

Figure 2.8. 2D convolution operation. 

Figure 2.9. Patterns learned by the layers of a deep CNN.  
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Another key consideration about the architecture design of ANNs is the connection 

between the layers. Traditional ANN layers use a matrix multiplication to describe the 

interaction between each layer. This means that every element of a layer is connected to 

every element of the previous and next layers. CNNs have sparse connections. This is 

accomplished by making the filter smaller than the input. For example, when processing an 

image, the input image might have thousands or millions of pixels, but we can detect small, 

meaningful features such as edges with filters that occupy only tens or hundreds of pixels. 

This means that we need to store fewer parameters, which both reduces the memory 

requirements of the model and improves its statistical efficiency. It also means that 

computing the output requires fewer operations. These improvements in efficiency are 

usually quite large. 

Another strategy present in CNNs that helps reduce the memory requirements is the 

parameter sharing. Parameter sharing refers to using the same parameter for more than one 

function in a model. In a traditional ANN, each element of the weight matrix is used exactly 

once when computing the output of a layer. It is multiplied by one element of the input and 

then never revisited. As a synonym for parameter sharing, one can say that a network has 

tied weights, because the value of the weight applied to one input is tied to the value of a 

weight applied elsewhere. In a CNN, each element of the filter is used at every position of 

the input. The parameter sharing used by the convolution operation means that rather than 

learning a separate set of parameters for every location, the model learns only one set. CNNs 

are thus dramatically more efficient than dense matrix multiplication in terms of the memory 

requirements and statistical efficiency [Goodfellow, Bengio, & Courville, 2016]. Figure 2.10 

shows a schematic view of the sparse connectivity and parameters sharing effects caused by 

a 1D-convolution operation. 

 
Figure 2.10. 1D convolution sparse connectivity and parameters sharing. 
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Figure 2.11 shows the three stages of a CNN typical layer. In the first stage, the layer 

performs several convolutions in parallel to produce a set of linear activations. In the second 

stage, each linear activation is run through a nonlinear activation function, such as the 

rectified linear activation function. This stage is sometimes called the detector stage. In the 

third stage, we use a pooling function to modify the layer output further. 

A pooling function replaces the layer output at a certain location with a summary 

statistic of the nearby outputs. For example, the max pooling operation reports the maximum 

output within a rectangular neighborhood. The pooling operation helps to make the 

representation become approximately invariant to small translations of the input. Invariance 

to translation means that if we translate the input by a small amount, the values of most of 

the pooled outputs do not change. Invariance to local translation can be a very useful property 

if we care more about whether some feature is present than exactly where it is. 

2.4 Word Embedding 
In the NLP domain, when we decide to consider the words as the building blocks of a text, 

we have to find a way to represent these words. This choice is a trade-off between robustness 

and computational efficiency.  

The most obvious choice is to use the one-hot representation. In this type of 

representation, each vocable of the text is represented by a vector having the size of the 

vocabulary. The position in the vector that corresponds to the id of the vocable is set to one. 

Figure 2.11. A typical CNN layer. 
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There are two main problems with this type of representation. The first is the 

dimensionality of the vectors. For example, for a vocabulary with the size of 30K, each word 

in the text will be represented by a vector of size 30K. A sentence with 20 words will be 

represented by an input having 600K parameters. 

Another problem with the one-hot representation is that it treats the words as atomic 

units; there is no notion of similarity between the words. All words are equally distant from 

each other. A way to solve this problem is to create a representation based on a statistical 

language model. 

The goal of the statistical language modeling is to learn the joint probability function 

of word sequences in a language. This probability function can be used to create a distributed 

representation where more statistically dependent words are closer. In this distributed 

representation, each word corresponds to a point in a feature space, so that similar words get 

to be closer to each other in that space [Vincent, Bengio, & Ducharme, 2000]. 

The main limitations of the statistical language modeling approach are the curse of 

dimensionality and the generalization of the representation learned. As we increase the 

number of words in a learned sequence from the training corpus, the computational cost to 

calculate the joint probability function becomes expensive and it is likely that this sequence 

will not occur again. 

To overcome these limitations, neural network based language models are used to 

modeling continuous variables that generate distributed representations that have some local 

smoothness properties. For example, the sentences “The cat is walking in the bedroom” and 

“A dog was running in a room” should have similar representations because the words “dog” 

and “cat”, “the” and “a”, “room” and “bedroom”, “walking” and “running” have similar 

semantic and grammatical roles [Vincent, Bengio, & Ducharme, 2000]. 

In our work, the initial vocable representations are obtained from a pre-trained 

unsupervised neural language model proposed in Mikolov et al. [2013]. 



CHAPTER 2. BACKGROUND 21 

 

Figure 2.12 shows the architecture of two neural language models proposed by the 

authors. 

The Continuous Bag-of-Words (CBOW) neural language model predicts the current 

word based on the context, and the Skip-gram model predicts the neighborhood words given 

the current word. 

The similarity between the words whose distributed representations are generated by 

these models can be measured using a word-offset technique where simple algebraic 

operations are performed on the word vectors. It was shown for example that the vector 

(”King”) minus vector (”Man”) plus vector (”Woman”) results in a vector that is closest to 

the vector representation of the word “Queen” [Zweig, Mikolov, & tau Yih, 2013]. 

Figure 2.13 shows a pictorial representation of this example. 

In ANN models, the initial values of the network parameters determine the quality of 

the learned representations. The same model trained with the same data set using different 

Figure 2.13. Algebraic operations on word vectors. 

Figure 2.12. Architectures of the CBOW and Skip-gram neural language models. 
[Mikolov, Chen, Corrado, & Dean, 2013] 
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initial values for the network parameters can yield different solutions that differ substantially 

in quality. Different initial values will bias the learning algorithm to develop some type of 

feature detection units at the hidden layers, but not others [Golden, 1996]. 

In the context of NLP, the use of word embeddings, in the models that consider the 

words as the text building blocks, can be viewed as a prior knowledge information strategy 

[Gülçehre & Bengio, 2013]. 

Although some controversies exist about the ability of the word embeddings to capture 

semantics of word sequences, there are experiments showing that their use can improve the 

performance of some models on NLP benchmarks [Lev, Klein, & Wolf, 2015]. 
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Chapter 3  
Related Work 
In this chapter, we present the related work that apply or develop similar concepts used in 

this work. In the course of our research, we made an extensive literature review including 

tens of papers, books and online references, but we present only the works that are closer 

related to our work. We summarize five works that employ CNN architectures to solve the 

text categorization problem. 

In Kalchbrenner et al. [2014], the authors proposed a deep CNN architecture to make 

semantic modelling of sentences. The model is named Dynamic Convolutional Neural 

Network (DCNN). It is based on the architecture of a Time Delay Neural Network (TDNN) 

[Collobert & Weston, 2008]. The authors addressed the limitations of TDNN while 

preserving its advantages. 

The proposed deep CNN architecture has four layers. In the first layer, the input 

sentences are represented using word embeddings initialized using a pre-trained 

unsupervised model that predicts the contexts of occurrence for the words [Turian, Ratinov, 

& Bengio, 2010]. In the second and third layers, the resulting representations from the 

previous layers are convolved by a set of filters. The convolution operators are followed by 

dynamic k-max pooling and non-linearity operators. The term dynamic means that the 

number of the k maximum values selected by the pooling operators changes according to the 

sentence size and to the layer level where the operation happens. The output of the third 

layer is fully connected to a softmax non-linearity layer that predicts the probability 

distribution over the classes given the input sentence. 

The network was trained to minimize the cross-entropy of the predicted and true class 

labels distributions by backpropagation using mini- batches. The 1D convolution operator 

was implemented using a Fast Fourier Transform function. The code was implemented in 

Matlab and the experiments were processed on a GPU device. 
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The authors tested the DCNN in four experiments: small-scale binary and multi-class 

sentiment prediction, six-way question classification and Twitter sentiment prediction by 

distant supervision. The network achieved excellent performance in the first three tasks and 

the error reduction with respect to the strongest baseline was greater than 25% in the last 

task. 

Although their model deals only with sentences, the architecture proposed by the 

authors inspired most of the works that use the CNN architecture in the NLP domain, 

including our work. Our model accepts input texts of any size, which makes it usable in real 

NLP applications. 

In Kim [2014], the author proposed four variants of a CNN architecture based on the 

work of Bottou et al. [2011]. The proposed CNN architecture has three layers. The four 

architecture variants are created changing the way that the word representations are 

initialized and updated during the training. 

In the first variant, the word representations are initialized randomly and updated 

during the training. In the second variant, the word representations are derived from Google 

pre-trained vectors (Word2Vec) and they are not updated during the training. The third 

variant is the same as the second one, except by the fact that the word representations are 

updated during the training. The fourth variant is the innovation proposed by the author. It 

is a mixture from the second and third variants. It creates the concept of channels. Each 

channel has its own copy of pre-trained word representations. In one channel, the word 

representations are updated during the training, and, in the other channel, they are not 

updated. 

The author made experiments with seven data sets. Five of them are for sentiment 

analysis tasks on user reviews. The performance of the models was compared with strong 

base lines like DCNN [Kalchbrenner, Grefenstette, & Blunsom, 2014]. The proposed models 

improved upon the state of the art on four out of seven tasks. 

The results showed that unsupervised pre-training of word vectors is an important 

ingredient in deep learning models for NLP tasks. To avoid overfitting on one specific task, 

one can use two channels for the word representations. One is kept static and the other one 

is optimized for the specific task that the model is being trained. 

Their model also deals only with sentences and, although it has three layers, it is not 

considered a deep model because it has only one convolutional layer. The sentence 
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representations learned by their model is limited because of the lack of depth. Our model 

overcomes these limitations using a deep architecture. 

In Johnson & Zhang [2015], the authors proposed a shallow CNN architecture using 

high dimensional word representations. The convolution operator is applied over sequences 

of words called regions. Two variants of high dimensional word representations are used. 

One of them is the traditional one-hot vector. The other one, is named bag of words CNN. 

In this variant, the words of a region share the same vector representation, where each 

position of the vector represents one index of the vocabulary. This approach is a balance in 

the trade off between the representations high dimensionality and the order of the words. It 

preserves the order of the regions in the sentence but the order of the words in each region 

is lost. 

The models were implemented using the C++ programming language and they explore 

the parallel processing power of the GPUs. Two data sets of user reviews and one of topic 

classification are used to compare the performance of the model with other strong baseline 

algorithms. The results showed that the proposed architecture achieved an excellent 

performance compared with the state of the art algorithms that use low dimensional pre-

trained word representations. 

Although the use of an efficient implementation combined with a powerful GPU 

makes it feasible the adoption of one-hot representations, the lack of context of this type of 

representation makes it harder to their model to extract good semantics from the text. Our 

model makes use of the word embeddings as the initial representations for the vocables and 

updates them in the training process. This strategy helps our model to extract good semantics 

from the text, starting with generic representations and adjusting them to the context of the 

specific task. 

In Denil et al. [2014], the authors proposed a deep CNN architecture that explicitly 

extract representations for the input text at the sentence and document levels. The network 

has four layers and it is similar to the one presented in Kalchbrenner et al. [2014], except for 

the fact that, in the third layer, the sentence representations are concatenated to form the 

document representation. The convolution, k-max pooling and non-linearity operations are 

the same used in Kalchbrenner et al. [2014]. 

The innovation introduced by the authors is the use of a deconvolution technique used 

in the computer vision domain to generate interpretable visualizations of the deep layers 
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activations in convolutional neural networks [Taylor, Fergus, & Zeiler, 2011]. To generate 

the saliency map for a given document, the authors applied the same technique used in 

Simonyan et al. [2013]. 

The authors proposed a way to measure the extraction quality of the most relevant 

sentences using them as a summarization for the reviews of the IMDB data set. The model 

is trained using the whole text of the reviews and the accuracy of the predicted sentiment is 

compared with the accuracy of the model trained using only the sentences extracted through 

the deconvolution process. The results show that the proposed model outperforms the 

baseline methods on the task of extracting the most relevant sentences from text documents. 

Although the architecture of their model induces the creation of a hierarchy of 

representations, as our model does, the use of only two convolutional layers and the 

restriction on the number of words of the input text make the use of their model restricted to 

documents of small size. Our model has three convolutional layers and accepts input texts 

of any size, which makes it usable in real NLP applications. 

In Zhang et al. [2015], the authors proposed a deep CNN architecture for text 

categorization using features extracted from character level representations. The network has 

nine layers composed of six convolutional and three full-connected layers. 

In the input layer, it is created a representation for the input text using the one-hot 

encoding of the 70 alphabet symbols that represents the last 1014 text characters. The first 

six layers are made up by a sequence of 1D convolution, non-linearity and max pooling 

operators. The last three layers are made up by a sequence of linear and dropout operators. 

The last layer has a log softmax operator that gives the class labels log probabilities for the 

input text representation. The gradients are obtained by backpropagation and the 

optimization is done through Stochastic Gradient Descent (SGD) using mini-batches. 

To evaluate their model, the authors built eight large-scale data sets. The model was 

trained using these data sets to make sentiment analysis and topic classification tasks. The 

authors implemented traditional models such as bag of words, n-grams and their TFIDF 

variants, and deep learning models such as word-based CNNs and LSTM to be used as 

baselines. The character-level CNN models achieved the state of the art performance on four 

of the eight tasks. 

The use of characters as semantic units demands a huge number of samples to their 

model to learn good representations for a sequence of characters. Our model adopts the prior 
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knowledge principle making use of the word embeddings as the initial representations for 

the vocables. This strategy makes our model learn good semantics using significantly less 

training samples. 
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Chapter 4  
Model 

In this chapter, we detail the architecture of our model starting by presenting an overview of 

the data flow and describing the text encoding mechanism, then we exam the design of the 

deep architecture and finally we talk about the network optimization algorithm used to 

update the network parameters. 

4.1 Data Flow 
Figure 4.1 presents a flowchart representing the data flow of our model. The data sets are 

split in training and testing sets. The vocables occurring in the training set are used to 

generate the vocabulary in the text encoding process. The word embeddings are read from a 

binary file obtained from a pre-trained model. 

Figure 4.1. Model data flow. 
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We implemented two models. The WordNet semantic dictionary corpus is used in the 

Deep NLP WordNet model to get synonyms for the vocables in the text encoding process. 

The doted lines in the chart denote that the WordNet corpus is not used in the Deep NLP 

model. 

The vocabulary generated by the text encoding process is used to encode the texts of 

the training and testing data sets and it is stored in a binary file that will be loaded by the 

deep CNN. The encoded texts of the training and testing data sets are also stored in binary 

files that will be used by the deep CNN in the training and testing process. The updating of 

the vocabulary representations can be enabled in the training process. 

The training state and the network parameters are saved in binary files, so they can be 

loaded later in the testing process. 

4.2 Text Encoding 
The first step in the text encoding process is the text tokenization. Because of our model 

explicitly creates intermediate representations for sentences, we first tokenize the text into 

sentences, then we tokenize the sentences into words. 

The second step in the text encoding process is the vocabulary generation. There are 

two steps in the process of building the vocabulary. The first step is to select the vocables 

that will compose the vocabulary. In compliance with the principle that the content of the 

testing samples should not be viewed by the model before the testing phase, we take into 

account only the vocables present in the training samples to build the vocabulary. In this 

step, there is an important decision to be made, the vocabulary size. 

Because our model learns its parameters in a supervised way and the vocable initial 

representations are considered parameters of the network, the vocabulary size has a huge 

impact on the number of parameters that have to be learned by the model. 

Although there is not a rule of thumb to determine the vocabulary size, one point that 

must be considered is the equilibrium between the number of training samples per class and 

the number of parameters that have to be learned. To constraint the vocabulary size, we use 

the strategy of selecting only the vocables that appear in the training samples at a minimum 

frequency. 
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The second step in the vocabulary generation process is to assign an initial 

representation to the vocables. In our model, the vocable initial representations are obtained 

from a pre-trained unsupervised neural language model publicly available2 (Word2Vec). 

These initial representations are adjusted to the specific context of the training samples 

during the training phase. 

When a vocable is not found in the Word2Vec, we assign a random value to its initial 

representation. In the model implemented using the WordNet corpus, before assigning a 

random value to the initial representation of a vocable, we first try to find a WordNet 

synonym, lemma or stem whose vocable is present in the Word2Vec. 

The WordNet is a large lexical database of English. Nouns, verbs, adjectives and 

adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a distinct 

concept. Synsets are interlinked by means of conceptual-semantic and lexical relations. The 

WordNet’s structure makes it a useful tool for computational linguistics and natural language 

processing [Miller, 1995]. 

The last step in the text encoding process is to associate each text word of the training 

and testing samples with its correspondent vocable in the vocabulary. This association is 

made assigning to each text word an integer value that is the index of its correspondent 

vocable present in the vocabulary. 

Instead of ignoring the words whose vocables are not present in the vocabulary, we 

assign to them the index of one of the generic vocables specifically created for this purpose 

(#NUMBER#, #SYMBOL#, #UNKNOWN#). In the model implemented using the 

WordNet corpus, before assigning the index of a generic vocable to a unknown word, we 

first try to find a WordNet synonym, lemma or stem whose vocable is present in the 

vocabulary. 

This strategy enhances the robustness of our model through the generalization of its 

learned representations. Even when the model encounter a text with many vocables that it 

cannot find in its vocabulary, it is able to replace them by some cognitive synonym that is 

present in the vocabulary. This is similar to what the humans do when they encounter an 

unknown word in a text. They search the unknown word in a dictionary or thesaurus and 

                                                           
2 https://code.google.com/archive/p/word2vec/ 
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replace it by a word whose semantic is already known in a similar context [Gülçehre & 

Bengio, 2013]. 

4.3 Deep Architecture 
The design of the network architecture of our model is inspired by the deep CNN 

architectures used in the computer vision domain [LeCun, Bottou, Bengio, & Haffner, 1998] 

[Krizhevsky, Sutskever, & Hinton, 2012]. Figure 4.2 shows a diagram with the main 

components of our model architecture. 

Our model implements a sequential standard feedforward architecture. The model is 

made up by seven layers that can be grouped into three main components. The first 

component is the lookup table. It stores the vocable representations assigned by the 

vocabulary building process. This component is responsible for translating the word 

encodings into word embeddings. The vocable initial representations are obtained from the 

publicly available3 pre-trained Word2Vec binary file using 300-dimensional vectors. 

Because these representations are updated in the training phase, this component has the 

larger number of the network parameters. 

The second component of our model architecture is the deep feature extractor. This 

component is responsible for extracting complex features from the text. Because we adopted 

the sentence compositional approach, we force the text to pass through layers that explicitly 

create intermediate representations for the sentences. At the upper layers of this component, 

the sentence representations are concatenated to create the text representation. This 

                                                           
3 https://code.google.com/archive/p/word2vec/ 

Figure 4.2. Deep NLP model architecture. 
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component is made up by three layers. Each of these layers is arranged as a sequence of 

temporal convolution, non-linearity and max pooling modules. The temporal convolution 

module is responsible for creating new words and sentence representations. 

At the sentence level layers, the temporal convolution module convolves a set of filters 

through the words of each separated sentence. The filters of the same module have a fixed 

size and they are shared among the input text sentences. This approach reduces the number 

of parameters that have to be learned by the model. The filter size does not depend on the 

number of sentences. The main consequence of this design decision is that there is no 

restriction on the size of the input text that can be processed by our model. 

At the document level layer, the temporal convolution module convolves a set of filters 

through the concatenated sentence representations created in the previous layer. The output 

of this layer is a set of features that represent the whole text. 

The non-linearity modules are responsible for extracting complex features from the 

data and making them more easily separable [Goodfellow, Bengio, & Courville, 2016]. 

The max pooling modules are responsible for selecting the most important features 

and consequently reducing the dimensionality of the learned representations [Boureau, 

Ponce, & LeCun, 2010]. 

The third component of our model architecture is the deep label predictor. This 

component is made up by three fully connected layers followed by a classifier. Each of these 

layers is arranged as a sequence of linear transformation, non-linearity and dropout modules. 

The sequence of linear transformation modules is responsible for extracting features 

that are more abstract. Each layer narrows the number of features from previous layer 

reducing the dimensionality of the learned representations. 

The dropout modules are responsible for reducing the model overfitting. They induce 

the network to learn features that are more robust [Hinton, Srivastava, Krizhevsky, 

Sutskever, & Salakhutdinov, 2012]. They are activated only in the training phase. 

The classifier module is responsible for associating a class label probability 

distribution for the text representation produced by the model. 
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4.4 Optimization 
Our model is trained to minimize the Negative Log-Likelihood (NLL) loss function. The 

gradients are accumulated using the backpropagation algorithm. [Rumelhart, Hinton, & 

Wilson, 1986]. 

The network parameters are updated using a mini-batch version of the Stochastic 

Gradient Descent (SGD) algorithm called momentum update [Sutskever, Martens, Dahl, & 

Hinton, 2013]. This approach helps to accelerate the learning of the network parameters. 

We also randomly shuffle the training data set before each epoch, which tends to 

provide better convergence [LeCun, Bottou, Orr, & Müller, 2012]. 
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Chapter 5  
Implementation 
In this chapter, we talk about the programming languages and packages used to implement 

our model. We also give some details about the modules used to implement the network 

architecture presented in Chapter 4. 

5.1 Programming Languages 
We used the Python programming language to implement most of the text encoding process. 

We chose this language because of its aptitude for data manipulation and for the convenience 

of the Natural Language Toolkit (NLTK) platform implemented in Python [Bird, Klein, & 

Loper, 2009]. In the model implemented using the WordNet corpus, we also used the Python 

language to implement the vocabulary generation module. 

The Lua programing language was used to implement the deep CNN modules 

[Ierusalimschy, 2006]. In the model implemented not using the WordNet corpus, we also 

used Lua to implement the vocabulary generation module. We chose this language because 

it is used to implement the computing framework we selected. 

5.2 Computing Framework 
We selected the Torch7 computing framework to implement our deep CNN model 

[Kavukcuoglu, Farabet, & Collobert, 2011]. We chose this framework because of its wide 
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support for deep learning algorithms, its modularity and its efficiency on the use of the 

GPUs. 

The Torch7 Neural Network (NN) package provides an easy and modular way to build 

and train neural networks. Each module implements the fundamental methods and the 

necessary state variables for training a neural network. The modules are grouped into 

containers that in turn can be assembled like Lego building blocks to create complex models. 

Figure 5.1 shows the main components of a Torch7 NN package module. The forward 

method computes the module’s output from its input and it stores the result in a state variable. 

The backward method computes the gradients with respect to the module’s input and with 

respect to the module’s parameters. During the backward pass, the gradient with respect to 

the module’s parameters is accumulated and it is zeroed after being updated. 

The cuTorch and cuNN packages provide a GPU implementation for many of the 

Torch7 backend and NN package modules. They are implemented using the CUDA API and 

they inherit all the CUDA’s efficiency on the use of Nvidia’s GPUs. 

These packages give total control over the RAM to/from GPU’s memory data 

transfers. This issue is critical for a successfully implementation of deep learning models 

that process huge data sets. In our experiments, the implementation of our model sustains 

the utilization rate of the Nvidia’s K40 GPU at 95% on average during the training and 

testing processing. The transfer of a whole model from CPU to/from GPU is made merely 

through the call of a single method. 

Figure 5.1. Main components of a Torch7 NN package module. 
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5.3 Modules 
Figure 5.2 displays a Lua code fragment excerpted from the module that implements our 

deep CNN model. The code fragment shows how the NN package modules are stacked to 

create the network architecture presented in Chapter 4. 

-- First layer: input (encoded text: nSentences x nWords) 
  model.modules[1] = {name = "LookupTable", parameters = {vocabulary = model.config.vocabulary}} 
 
  -- Second layer. 
  model.modules[2] = {name = "TemporalConvolution", parameters = {inputFrameSize = 300, 
outputFrameSize = 200, kW = model.config.minWordsSentence, dW = 1}} 
  model.modules[3] = {name = "Threshold", parameters = {}}  
   
  -- Third layer. 
  model.modules[4] = {name = "TemporalConvolution", parameters = {inputFrameSize = 200, 
outputFrameSize = 200, kW = 3, dW = 1}} 
  model.modules[5] = {name = "Threshold", parameters = {}}  
  model.modules[6] = {name = "SpatialAdaptiveMaxPooling", parameters = {outputWidth = 200, 
outputHeight = 3}} 
 
  -- Fourth layer. 
  model.modules[7] = {name = "View", parameters = {}} 
  model.modules[8] = {name = "TemporalConvolution", parameters = {inputFrameSize = 200, 
outputFrameSize = 100, kW = 3, dW = 1}} 
  model.modules[9] = {name = "Threshold", parameters = {}} 
  model.modules[10] = {name = "View", parameters = {}} 
  model.modules[11] = {name = "SpatialAdaptiveMaxPooling", parameters = {outputWidth = 100, 
outputHeight = 15}} 
   
  -- Fifth layer. 
  model.modules[12] = {name = "View", parameters = {}} 
  model.modules[13] = {name = "Linear", parameters = {inputDimension = 1500, outputDimension = 
1000}} 
  model.modules[14] = {name = "Threshold", parameters = {}} 
  model.modules[15] = {name = "Dropout", parameters = {probability = 0.5}}  
   
  -- Sixth layer. 
  model.modules[16] = {name = "Linear", parameters = {inputDimension = 1000, outputDimension = 500}} 
  model.modules[17] = {name = "Threshold", parameters = {}} 
  model.modules[18] = {name = "Dropout", parameters = {probability = 0.5}}  
   
  -- Seventh layer. 
  model.modules[19] = {name = "Linear", parameters = {inputDimension = 500, outputDimension = 
model.config.outputClasses}}  
  -- Output layer. 
  model.modules[20] = {name = "LogSoftMax", parameters = {}} 

Figure 5.2. Lua code fragment of the deep CNN model implementation. 
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Figure 5.3 displays an excerpt from the execution log of the code showed in Figure 

5.2. The network layers were grouped using two sequential modules that, in turn, were 

grouped into a sequential container. This approach makes easy to disable the vocable initial 

representations updating in the lookup table through the setting of a configuration parameter. 

In the next subsections, we give some details about the NN package modules that we 

used to implement our deep CNN model. 

 

nn.Sequential { 
  [input -> (1) -> (2) -> output] 
  (1): nn.Sequential { 
    [input -> (1) -> output] 
    (1): nn.LookupTable 
  } 
  (2): nn.Sequential { 
    [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> (12) -> (13) -> (14) -> 
(15) -> (16) -> (17) -> (18) -> (19) -> output] 
    (1): nn.TemporalConvolution 
    (2): nn.Threshold 
    (3): nn.TemporalConvolution 
    (4): nn.Threshold 
    (5): nn.SpatialAdaptiveMaxPooling 
    (6): nn.View 
    (7): nn.TemporalConvolution 
    (8): nn.Threshold 
    (9): nn.View 
    (10): nn.SpatialAdaptiveMaxPooling 
    (11): nn.View 
    (12): nn.Linear(1500 -> 1000) 
    (13): nn.Threshold 
    (14): nn.Dropout(0.500000) 
    (15): nn.Linear(1000 -> 500) 
    (16): nn.Threshold 
    (17): nn.Dropout(0.500000) 
    (18): nn.Linear(500 -> 10) 
    (19): nn.LogSoftMax 
  } 
} 

Figure 5.3. Execution log excerpt of the deep CNN model. 
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5.3.1 Lookup Table 
In the first layer of our model, we used a lookup table module from the NN package. This 

layer is responsible for decoding the input text words into word embeddings. The first reason 

for using a lookup table has to do with the efficient use of the GPU. The bus bandwidth is 

one of the bottlenecks that prevents the efficient use of the GPUs. Instead of decoding the 

input text words in the host’s memory and send them to the GPU device, we make the input 

text decoding directly in the GPU’s memory. This approach saves the bus bandwidth of 

sending 2,392 bytes per word when we use a 300-dimensional word embedding. 

The other reason for using a lookup table for decoding the input text has to do with the 

updating of the vocable initial representations. When we enable the vocable representations 

updating, they become part of the network parameters, therefore they must stay together with 

the other network parameters in the GPU’s memory. 

The vocabulary is sent to the GPU device only once when the model is instantiated for 

the first time. The vocable initial representations are stored in a matrix and become the 

weight parameters of the lookup table. 

The encoded input text is stored in a matrix. The lines of the matrix correspond to the 

text sentences and the columns correspond to the sentence words. The number of lines is 

unlimited. The number of columns is equal to the number of words in the largest sentence 

of the input text. The smaller sentences are zero padded to the right. 

Figure 5.4 shows a diagram of how the input text is decoded through the forward 

method of the lookup table module. The output of the lookup table forward method is stored 

in a 3D tensor. 

Figure 5.4. Input text decoding through the lookup table forward method. 
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5.3.2 Temporal Convolution 
The temporal convolutional module applies a 1D convolution using a set of filters over an 

input sequence made up of input frames. Each filter generates an output frame. The size of 

the filter is determined by the number of input frames and by the width of the convolution. 

Figure 5.5 shows a diagram of how the forward method of the temporal convolution 

module operates over the decoded input text in the second layer of our model. In this 

example, each embedding dimension corresponds to an input frame. Each color represents a 

different filter. The temporal convolution produces an output with the same number of 

dimensions of the input. 

In our model, the temporal convolution module is used to extract new representations 

for words and sentence sequences. At the document level layer, the temporal convolution 

module convolves a set of filters through the concatenated sentence representations created 

in the previous layer. 

The value of each element of the output produced by the temporal convolutional 

operation over a 3D input tensor can be precisely defined as: 

(5.1) 

Figure 5.5. Temporal convolution over the decoded input text. 
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where, ℱ is the set of filters, ℐ is the 3D input tensor, � is the width of the filters and � is 

the number of input frames. 

5.3.3 Threshold 
The non-linearity function used in our model is implemented by the threshold module. The 

threshold function is similar to Rectified Linear Units (ReLUs) [Nair & Hinton, 2010]. It is 

defined as:  

(5.2) 

Figure 5.6 shows a plot of the threshold function and its derivative. 

5.3.4 Spatial Adaptive Max Pooling 
The spatial adaptive max-pooling module is a 2D version of the temporal max-pooling 

operation, which adapts its parameters dynamically such that the output has a fixed size. 

Differently from the traditional max-pooling operators that select the maximum values 

among all the features of a dimension, the spatial adaptive max pooling splits the dimension 

into segments, according to the desired output size, and it selects the maximum value from 

each segment. 

���� =  max�0, �� 

Figure 5.6. Plot of the threshold function and its derivative. 
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This approach helps to avoid the adverse effect caused by the sentences right padding 

made in the input layer. When the number of words in a sentence is too small, depending on 

the weights and biases values associated by the convolution operation to the paddings, the 

traditional max-pooling operator could select only these values as being the most important 

features of the sentence. 

5.3.5 View 
The view module creates a new view for the input tensor using the sizes passed to the class 

constructor. This module is used in the fourth layer of our model to concatenate the sentence 

representations created in the previous layer. It is also used in the fifth layer to flattening the 

fourth layer output transforming it into an 1D tensor. 

5.3.6 Linear 
This module applies a linear transformation to an 1D input tensor. This module is used to 

implement the fully connected layers of the deep feature extractor component of our model. 

5.3.7 Dropout 
The dropout module forwards the input masking its elements using binary samples from a 

Bernoulli distribution. The input elements associated with a mask position that has a zero 

value are dropped, that is the value of their correspondent output elements are set to zero. 

The input elements that are not dropped have the value of their correspondent output 

elements scaled by a factor of 1 �1 − 	�⁄ , where 	 is the probability of an element being 

dropped. The dropout module is activated only in the training phase. 

In our model, the dropout module is used in the output of the fully connected layers 

and the drop out probability is set to 0.5. 
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5.3.8 Log Softmax 
The log softmax module implements the log normalized exponential function. The log 

softmax function is the gradient-log-normalizer of the categorical probability distribution. It 

is defined as:  

(5.3) 

where, � is the number of classes and ����� is the log-probability associated with the class �. 
The log softmax module is used as the classifier in the output layer of our model. It 

associates a log-probability to each class label for the text representation produced in the 

seventh layer output. 

5.3.9 ClassNLLCriterion 
Differently from the modules presented above, this module belongs to a set of the NN 

package’s modules called criterions. Criterions are helpful to train a neural network. Given 

an input and a target, they compute a gradient according to a given loss function. 

This module implements the Negative Log-Likelihood (NLL) loss function. It is used 

in the training module of our model. The log-probability for each class label, given by the 

forward method of the log softmax module in the output of our network, is used as input to 

the forward and backward methods of the ClassNLLCriterion module. The computed 

gradient is back propagated through the network using the backward method. 

5.4 Detailed Network 
Figure 5.7, Figure 5.8 and Figure 5.9 show a detailed diagram of a complete forward pass 

through the entire deep CNN of our model. 

����� =  log ���
∑ �����

    ,  ����� ≥ 0∑ ��������� = 1 
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Figure 5.7. Detailed diagram of our deep CNN architecture. 
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Figure 5.8. Detailed diagram of our deep CNN architecture. 
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The size of the data structures showed in these diagrams are not scaled. In the input 

layer, the number of sentences and words of the encoded input text are not fixed. 

In the first layer, the number of vocables in the lookup table depends on the data set 

and it is determined by the minimum vocable frequency parameter. The model does not 

impose a limit on the size of the vocabulary, but, in most of the cases, the number of vocables 

is at least one hundred times greater than the size of the word embeddings. In our 

experiments, we used word embedding having a size of 300. 

In the second layer, the size of the word embeddings is decreased to 200 through a 

temporal convolutional operation. 

Figure 5.9. Detailed diagram of our deep CNN architecture. 
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In the third layer, the sentences width is decreased by a temporal convolutional 

operation, using a filter width of three, followed by a spatial adaptive max pooling operation 

using a fixed output size of three. The symbol � denotes the highest values selected by the 

spatial adaptive max pooling operation. 

In the fourth layer, a view operation concatenates the 3D tensor sentence 

representations into a 2D tensor. The sentences width and the number of features are 

decreased by a temporal convolutional operation using a filter width of three and output 

frame size of one hundred, followed by a spatial adaptive max pooling operation using an 

output size of fifteen. 

In the fifth layer, a view operation concatenates the 2D tensor sentence representations 

into a 1D tensor. The number of features is decreased to 1000 by a linear operation. The 

symbol � means that the value of a feature is considered as being zero by the dropout 

module in the training phase. 

In the sixth layer, the number of features is decreased to 500 by a linear operation. 

In the seventh layer, the number of features is decreased to the number of classes by a 

linear operation. 
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Chapter 6  
Evaluation 
In this chapter, we describe the experiments carried out to evaluate our model. We initially 

introduce the data sets used, then we talk about the methodology and hardware used to run 

the experiments. 

6.1 Data Sets 
To evaluate our model, we used several large-scale data sets, publicly available4, built 

specifically to assess deep CNN architectures [Zhang, Zhao, & LeCun, 2015]. The data sets 

are used for topic classification and sentiment analysis tasks. 

Table 6.1 presents the characteristics of the large-scale data sets used in our 

experiments. 

Table 6.1. Characteristics of the large-scale data sets used in the experiments. 

Data Set Classes 
Training 

Samples 

Testing 

Samples 
Task 

AG’s News 4 120,000 7,600 Topic 

DBPedia 14 560,000 70,000 Topic 

Yelp Review Polarity 2 560,000 38,000 Sentiment 

Yelp Review Full 5 650,000 50,000 Sentiment 

Yahoo! Answers 10 1,400,000 60,000 Topic 

Amazon Review Polarity 2 3,600,000 400,000 Sentiment 

                                                           
4 http://goo.gl/JyCnZq 
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6.1.1 AG’s News 
The original AG data set is a collection of more than 1 million news articles. News articles 

has been gathered from more than 2,000 news sources by ComeToMyHead in more than one 

year of activity. ComeToMyHead is an academic news search engine, which has been 

running since July 2004. The dataset is provided by the academic community for research 

purposes in data mining and information retrieval. 

The AG's news data set was constructed by choosing the four largest classes from the 

original AG corpus using only the title and description fields. Each class contains 30,000 

training samples and 1,900 testing samples. The total number of training samples is 120,000 

and testing is 7,600 [Zhang, Zhao, & LeCun, 2015]. 

The AG's news data set classes and their corresponding labels used for topic 

classification are: 

1- World 2- Sports 3- Business 4- Science/Technology 

 

Table 6.2 shows some samples of the AG's news data set. In our experiments, we 

concatenated the title and description fields on the training and testing processing. 

 

Table 6.2. AG's news data set samples. 

Class Title Description 

1 On front line of AIDS in 
Russia. 

An industrial city northwest of Moscow 
struggles as AIDS hits a broader 
population. 

2 Giddy Phelps Touches Gold 
for First Time. 

Michael Phelps won the gold medal in the 
400 individual medley and set a world 
record in a time of 4 minutes 8.26 
seconds. 

3 Fears for T N pension after 
talks. 

Unions representing workers at Turner 
Newall say they are 'disappointed' after 
talks with stricken parent firm Federal 
Mogul. 

4 IBM Chips May Someday 
Heal Themselves. 

New technology applies electrical fuses 
to help identify and repair faults. 
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Table 6.3 presents some statistics of the AG's news data set documents. This statistics 

were acquired in the text encoding process. 

 
Table 6.3. AG's news documents statistics. 

Data Set 
Sentences per sample Words per sentence 

Min Max Mean Stdev Min Max Mean Stdev 

Testing 1 24 2.64 0.99 1 131 16.86 11.95 

Training 1 19 2.64 0.99 1 128 16.92 11.97 

6.1.2 DBPedia Ontology 
The DBPedia is a large-scale data set emerged from the crowd-sourced community effort to 

extract structured information from Wikipedia [Lehmann, et al., 2015]. 

The DBPedia ontology classification data set was constructed by picking 14 non-

overlapping classes from the original DBPedia 2014 using only the title and abstract fields 

of each Wikipedia article. From each of these 14 ontology classes, 40,000 training samples 

and 5,000 testing samples were randomly chosen. Therefore, the total size of the training 

data set is 560,000 and testing data set is 70,000 [Zhang, Zhao, & LeCun, 2015]. 

The DBPedia ontology data set classes and their corresponding labels used for topic 

classification are: 

1- Company 2- Educational Institution 3- Artist 

4- Athlete 5- Office Holder 6- Mean Of Transportation 

7- Building 8- Natural Place 9- Village 

10- Animal 11- Plant 12- Album 

13- Film 14- Written Work  
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Table 6.4 shows some samples of the DBPedia ontology data set. In our experiments, 

we used only the abstract field on the training and testing processing. 

 

Table 6.4. DBPedia ontology data set samples. 

Class Title Abstract 

1 Export-Import Bank of 
Romania. 

Exim Bank is The Export-Import Bank of 
Romania based in Bucharest. 

2 Strong Vincent High School. 
Strong Vincent High School is a public 
high school in Erie Pennsylvania. 

3 Lizzy Pattinson. 
Elizabeth Lizzy Pattinson is an English 
singer and songwriter. 

4 Henry Nicoll (cricketer). 
Henry Russell Nicoll (1883–1948) was a 
Scottish cricketer. 

5 Samuel Douglas. 
Samuel Douglas (1781–July 8 1833) was 
a Pennsylvania lawyer and state Attorney 
General. 

6 INS Sharada (P55). 
INS Sharada (P55) is a Sukanya class 
patrol vessel of the Indian Navy. 

7 Château de Sauvebœuf 
(Aubas). 

Château de Sauvebœuf is a château in 
Dordogne Aquitane France. 

8 Lake Pacucha. Lake Pacucha is a lake in Peru. 

9 Vindornyaszőlős. 
Vindornyaszőlős is a village in Zala 
county Hungary. 

10 Bertula. 
Bertula is a genus of moths of the 
Noctuidae family. 

11 Dracula Polyphemus. 
Dracula Polyphemus is a species of 
orchid. 

12 O Corpo Sutil (The Subtle 
Body). 

O Corpo Sutil (The Subtle Body) is an 
album by musician Arto Lindsay. 

13 Rahgir. 
Rahgir is a Bollywood film. It was 
released in 1943. 

14 Red Claw (novel). 
Red Claw is a 2009 science fiction novel 
by Philip Palmer. 
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Table 6.5 presents some statistics of the DBPedia ontology data set documents. This 

statistics were acquired in the text encoding process. 

 
Table 6.5. DBPedia ontology documents statistics. 

Data Set 
Sentences per sample Words per sentence 

Min Max Mean Stdev Min Max Mean Stdev 

Testing 1 32 2.88 1.59 1 519 17.70 9.63 

Training 1 39 2.87 1.58 1 1327 17.73 9.66 

6.1.3 Yelp Review Polarity 
The original Yelp reviews data set consists of 1,569,264 reviews extracted from the Yelp 

Data Set Challenge 2015 data5. 

The Yelp reviews polarity data set was constructed by considering stars 1 and 2 

negative and stars 3 and 4 positive. For each polarity, 280,000 training samples and 19,000 

testing samples were taken randomly. In total, there are 560,000 training samples and 38,000 

testing samples. Negative polarity is class 1 and positive is class 2. [Zhang, Zhao, & LeCun, 

2015]. 

Table 6.6 shows some samples of the Yelp reviews polarity data set. In our 

experiments, we used the whole review text field on the training and testing processing. 

Table 6.6. Yelp reviews polarity data set samples. 

Class Review text 

1 

The food is good. Unfortunately, the service is very hit or miss. The 
main issue seems to be with the kitchen, the waiters and waitresses are 
often very apologetic for the long waits and it's pretty obvious that some 
of them avoid the tables after taking the initial order to avoid hearing 
complaints. 

2 

Arrived around midnight and the front desk was ready for us, check in 
was quick and we were able to turn in. The room was clean, bed comfy, 
the desk was huge...but the bathroom was small. Breakfast in the 
morning was very convenient, several choices, and the coffee hit the 
spot. 

                                                           
5 http://www.yelp.com/dataset_challenge 
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Table 6.7 presents some statistics of the Yelp reviews polarity data set documents. This 

statistics were acquired in the text encoding process. 

 
Table 6.7. Yelp reviews polarity documents statistics. 

Data Set 
Sentences per sample Words per sentence 

Min Max Mean Stdev Min Max Mean Stdev 

Testing 1 105 9.80 8.21 1 545 15.33 10.25 

Training 1 148 9.83 8.24 1 745 15.35 10.26 

6.1.4 Yelp Review Full 
The original Yelp reviews data set consists of 1,569,264 reviews extracted from the Yelp 

Data Set Challenge 2015 data6. 

The Yelp reviews full star data set was constructed by randomly taking 130,000 

training samples and 10,000 testing samples for each review star from 1 to 5. In total, there 

are 650,000 training samples and 50,000 testing samples [Zhang, Zhao, & LeCun, 2015]. 

Table 6.8 shows some samples of the Yelp reviews full star data set. In our 

experiments, we used the whole review text field on the training and testing processing. 

 

Table 6.8. Yelp reviews full star data set samples. 

Class Review text 

1 
Don't waste your time. We had two different people come to our house 
to give us estimates for a deck (one of them the OWNER). Both times, 
we never heard from them. Not a call, not the estimate, nothing. 

2 
Service was okay, at best. I wouldn't go there again. They quoted me at 
thousands of dollars of repairs for my car to pass inspection. I took it 
somewhere else and had it done for a fraction of the quote. 

3 

The pizza is great. Other food items might disappoint. They do deliver! 
Service is hit and miss. There is one rude, smile-less bartender... I have 
actually seen him through the window and decided to go somewhere 
else because I was in the mood for good service. 

                                                           
6 http://www.yelp.com/dataset_challenge 
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Table 6.8. Yelp reviews full star data set samples. 

Class Review text 

4 

A good Starbucks. There is always a line at this one due to its location 
but they do a great job of getting people served quickly. Today I had a 
salted camel mocha. It was pretty amazing. This location also has a 
fireplace, which is a nice touch for cold days. 

5 

I am a big fan of Max's for their local flair, real German food, and 
authentic Pittsburgh feeling. They did not sell out, are not overly 
commercialized, and should be supported for the long standing quality 
service to the city. Thanks, Max's. 

Table 6.9 presents some statistics of the Yelp reviews full star data set documents. This 

statistics were acquired in the text encoding process. 

 

Table 6.9. Yelp reviews full star documents statistics. 

Data Set 
Sentences per sample Words per sentence 

Min Max Mean Stdev Min Max Mean Stdev 

Testing 1 110 9.92 8.27 1 441 15.38 10.18 

Training 1 131 9.89 8.20 1 796 15.41 10.21 

6.1.5 Yahoo! Answers 
The original Yahoo! Answers Comprehensive Questions and Answers corpus contains 

4,483,032 questions and their answers. 

The Yahoo! Answers topic classification data set was constructed from the original 

Yahoo! Answers Comprehensive Questions and Answers corpus using the question title, 

question content and best answer fields of the 10 largest main categories. Each class contains 

140,000 training samples and 6,000 testing samples. Therefore, the total number of training 

samples is 1,400,000 and testing samples is 60,000 [Zhang, Zhao, & LeCun, 2015]. 

The Yahoo! Answers data set classes and their corresponding labels used for topic 

classification are: 

1- Society & Culture 2- Science & Mathematics 

3- Health 4- Education & Reference 

5- Computers & Internet 6- Sports 
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7- Business & Finance 8- Entertainment & Music 

9- Family & Relationships 10- Politics & Government 

 

Table 6.10 shows some samples of the Yahoo! Answers data set. In our experiments, 

we concatenated the question title, question content and best answer fields on the training 

and testing processing. 

 

Table 6.10. Yahoo! Answers data set samples. 

Class Question title/Question content/Best answer 

1 
what are the mining of 'jerban'or 'jarban'? 
i think this is a arabic or ibree word. 
You may have heard "juban" which means coward. 

2 

Why does Zebras have stripes? 
What is the purpose or those stripes? Who do they serve the Zebras in 
the wild life? 
this provides camouflage - predator vision is such that it is usually 
difficult for them to see complex patterns 

3 

Why is it desirable to have a 'grill' on your teeth in the hip-hop 
community? 
You know?...the gold caps and designs. They even have a whole song 
dedicated to this trend playing on Mtv. 
I think pearly whites are better vs putting any type of rare metal in your 
mouth. 

4 

What year did the stock market crash? 
That caused the so called GREAT DEPRESSION 
The stock market crashed in October 1929. This launched the "Great 
depression" Hope this helps! 

5 
Whos better, Yahoo or Google? 
Out of both email services which is better, Yahoo Mail or Gmail 
Though they are not comparable. Yahoo is the best. 

6 

what happen to Eddie Guerero? 
cause of his death 
He died of Heart failure do to his past use of drugs and of extensive 
exercising. 

7 

is it good habit to keep ur PC on when u r going somewhere for 5-10 
minutes? 
i dont like to on it again n again 
Yeah you can simply lock it, if you are using window XP. You can use 
Ctrl+Alt+del or WindosButton+L 
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Table 6.10. Yahoo! Answers data set samples. 

Class Question title/Question content/Best answer 

8 

Do someone know what is the origin of Lenore "the cute little dead  
girl"? 
I saw in the cartoon network, and I am think is disturber. 
it's inspired by the poem "lenore" by edgar allen poe. 

9 

i have an interview in a new state. my husband wants me to move there 
alone for it. should i just cancel it? 
i don't want a divorce or to live without/away from my husband. 
i say go he's letting you know that its over read between the lines you 
will see it to. 

10 

Have married a Chinese National.  What is the best visa option for her 
travel with me when I return to the USA 
Currently on overseas assignment in Beijing. Expected return date to US 
May 2006' 
Apply for a visa in Beijing 

 

Table 6.11 presents some statistics of the Yahoo answers data set documents. This 

statistics were acquired during the text encoding process. 

 

Table 6.11. Yahoo! Answers documents statistics. 

Data Set 
Sentences per sample Words per sentence 

Min Max Mean Stdev Min Max Mean Stdev 

Testing 1 129 7.05 6.63 1 765 15.04 13.05 

Training 1 650 7.03 6.69 1 1816 15.06 13.39 

6.1.6 Amazon Review Polarity 
The original Amazon reviews data set consists of product reviews and information about the 

users who rated the products. The data span a period of 18 years, including ~35 million 

reviews up to March 2013 [McAuley & Leskovec, 2013]. 

The Amazon reviews polarity data set was constructed by taking reviews with scores 

1 and 2 as negatives, and with scores 4 and 5 as positives. Samples with score 3 were ignored. 

In the Amazon reviews polarity data set, class 1 is the negative and class 2 is the positive. 
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Each class has 1,800,000 training samples and 200,000 testing samples [Zhang, Zhao, & 

LeCun, 2015]. 

Table 6.12 shows some samples of the Amazon reviews polarity data set. In our 

experiments, we concatenated the title and review text fields on the training and testing 

processing. 

 

Table 6.12. Amazon reviews polarity data set samples. 

Class Review title Review text 

1 DVD menu select problems 

I cannot scroll through a DVD menu that is 
set up vertically. The triangle keys will only 
select horizontally. So I cannot select 
anything on most DVD's besides play. No 
special features, no language select, nothing, 
just play. 

2 The Scarlet Letter 

I really enjoyed this book. It shows the 
judgmental tendencies in our human race 
and how one woman strove to live a life of 
service to others to gain redemption for her 
mistake. Can't go wrong with the classics. 

 

Table 6.13 presents some statistics of the Amazon reviews polarity data set documents. 

This statistics were acquired during the text encoding process. 

 

Table 6.13. Amazon reviews polarity documents statistics. 

Data Set 
Sentences per sample Words per sentence 

Min Max Mean Stdev Min Max Mean Stdev 

Testing 1 38 6.19 2.96 1 321 14.45 9.93 

Training 1 81 6.20 2.97 1 384 14.45 9.92 
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6.2 Experiments 

6.2.1 Methodology 
To evaluate the accuracy of our model, we used as the baseline the results reported in Zhang 

et al. [2015]. 

In all experiments, we used the same values for the hyperparameters of our model. 

Table 6.14 shows the names of the hyperparameters and the values used in the 

experiments. 

 

Table 6.14. Values of the model hyperparameters used in the experiments. 

Parameter Value 

model.minWordsSentence 1 

model.updateLookupTable true 

train.epoches 10 

train.batchSize 100 

train.learningRate 1e-2 

train.momentum 0.9 

train.parametersDecay 1e-19 

train.collectgarbage 100 

train.validationSize 0 

train.shuffle true 

 

The values of the hyperparameters were determined empirically training and testing 

the model using the first 200,000 samples of the Amazon reviews polarity data set and 

comparing the accuracy with the values reported in [Zhang, Zhao, & LeCun, 2015]. 

The text of the data sets samples were encoded with and without the use of WordNet 

synonyms. The vocabularies were constructed considering only the content of the training 

samples of each data set. 
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Table 6.15 shows the minimum vocable frequencies used to build the vocabularies for 

each data set. 

 

Table 6.15. Minimum vocable frequencies used in experiments. 

Data Set Minimum Vocable Frequency 

AG’s News 10 

DBPedia 12 

Yelp Review Polarity 5 

Yelp Review Full 5 

Yahoo! Answers 12 

Amazon Review Polarity 12 

 

The value showed for the Amazon Review Polarity data set corresponds to the 

vocabulary built using 2,400,000 training samples. The minimum vocable frequency values 

were determined empirically. 

The number of network parameters is affected by the vocabulary size that, in turn, is 

determined by the minimum vocable frequency parameter. 

Table 6.16 shows the number of distinct vocables, the vocabulary size, generated using 

the minimum vocable frequency showed in Table 6.15, and the total number of model 

parameters for each data set. 

 

Table 6.16. Vocabulary size and number of parameters of the model. 

Data Set Distinct Vocables Vocabulary Size Model Parameters 

AG’s News 100,039 21,028 8,552,404 

DBPedia 718,985 63,739 21,370,714 

Yelp Review Polarity 372,994 75,670 24,945,202 

Yelp Review Full 414,403 82,080 26,869,705 

Yahoo! Answers 1,450,085 104,775 33,680,710 

Amazon Review Polarity 1,146,245 108,810 34,887,202 
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The values showed for the Amazon Review Polarity data set corresponds to the 

vocabulary built using 2,400,000 training samples. 

In all experiments, we trained our model for 10 epochs. We did not use any validation 

data set. After each epoch, we tested the model using the data set testing samples. We 

reported the model accuracy for each data set as the best accuracy achieved among the 10 

epochs. 

We made an experiment with the purpose of evaluating the impact of the training size 

on the accuracy of our model. We chose the Amazon Review Polarity data set to make this 

experiment because of its huge size. We trained our model using 200,000 samples of the 

training data set and repeated the training adding up chunks of 200,000 samples up to the 

size of 2,400,000 training samples. The testing data set samples were used in the same 

proportion of the samples used in the training data set. We run the experiments encoding the 

text with and without the use of WordNet synonyms. 

Table 6.17 shows the minimum vocable frequencies used to build the vocabularies, the 

size of the vocabularies and the total number of model parameters for each size of the training 

set used. 

 
Table 6.17. Amazon reviews polarity training data set size experiment. 

Training Samples Minimum Frequency Vocabulary Size Model Parameters 

200,000 5 48,405 16,765,702 

400,000 5 70,070 23,265,202 

600,000 10 57,419 19,469,902 

800,000 10 67,131 22,383,502 

1,000,000 10 75,571 24,915,502 

1,200,000 10 83,300 27,234,202 

1,400,000 12 81,382 26,658,802 

1,600,000 12 87,373 28,456,102 

1,800,000 12 92,994 30,142,402 

2,000,000 12 98,535 31,804,702 

2,200,000 12 103,751 33,369,502 

2,400,000 12 108,810 34,887,202 
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The minimum vocable frequency values were determined by targeting the total number 

of parameters of the model to the 15~35 million interval. 

In this experiment, in addition to comparing the accuracy achieved by our model with 

the results reported in [Zhang, Zhao, & LeCun, 2015], we also trained the state of the art 

model implemented by the authors, named Crepe7, using 200K, 600K, 1,200K and 1,800K 

samples to evaluate the impact of the training size on the accuracy of their model. 

6.2.2 Hardware 
Table 6.18 shows the hardware specification for the computer used to run all the 

experiments. The Graphical Processing Unit (GPU) was donated by NVIDIA through the 

Academic Hardware Grant Program. 

 
Table 6.18. Computer hardware specification. 

Component Manufacturer Model 

Motherboard Gigabyte GA-X99-UD3 

CPU Intel Core i7-5820K @3.3GHz LGA 2011-v3 

RAM G.SKILL Ripjaws 4 - DDR4 - F4-2800C15Q-32GRBB 

Hard disk Seagate Barracuda ST2000DM001 

GPU NVIDIA Tesla K40 Accelerator Board 

Case Nilco NK211 EATX-TF 

Power supply EVGA 120-G2-1300-XR 

 

 

 

 

                                                           
7 https://github.com/zhangxiangxiao/Crepe 
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Chapter 7  
Results 
In this chapter, we report and analyze the results of the experiments we described in Chapter 

6. We initially report the results of the experiments carried out to evaluate the accuracy of 

our model, then we report the results of the experiments that we made to evaluate the impact 

of the training data set size on the accuracy of our model. 

7.1 Accuracy 
The accuracy of our model is compared with the models described in Zhang et al. [2015]. In 

their paper, the authors implemented 22 models divided into 4 classes. The first class 

encompasses 5 traditional models that use a handcrafted feature extractor and linear 

classifiers. In the second class, the authors implemented the common vanilla architecture of 

LSTM using Word2Vec as the initial representation for the words. The third class is 

composed by 8 variations of the word based Convolutional Neural Network (CNN) model. 

The architectures of this class models are the most comparable to our model. This class is 

subdivided into 2 classes based on the type of the initial representation used for the words. 

The names of the models make reference to these subclasses. The term “Lk.” stands for 

lookup table, which means that the model uses one-hot as the initial word representations. 

The models of the other subclass use the Word2Vec as the initial word representations. The 

models, whose names have the term “Th.”, make use of the thesaurus for data augmentation. 

The terms “Lg.” and “Sm.” designate the size of the upper fully connected layer and 

correspond respectively to the 2,048 and 1,024 sizes. The fourth class is composed by 8 
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variations of the character based CNN model. The models labeled “Full” are those that 

distinguish between lower and upper letters. 

Table 7.1 shows a summary of the results. The numbers are in percentage. The best 

accuracy for each data set is printed in bold face. The table is subdivided into model classes. 

 

Table 7.1. Accuracy results summary. 

Model Amazon 
Polarity 

Yelp 
Polarity 

Yelp 
Full 

DBPedia 
AG’s 
News 

Yahoo! 
Answers 

BoW 90.40 92.24 57.99 96.61 88.81 68.89 

BoW TFIDF 91.00 93.66 59.86 97.37 89.64 71.04 

ngrams 92.02 95.64 56.26 98.63 92.04 68.47 

ngrams TFIDF 91.54 95.44 54.80 98.69 92.36 68.51 

Bag-of-means 81.61 87.33 52.54 90.45 83.09 60.55 

LSTM 93.90 94.74 58.17 98.55 86.06 70.84 

Lg. w2v Conv. 94.12 95.40 59.84 98.58 90.08 68.03 

Sm. w2v Conv. 94.00 94.44 57.87 98.29 88.65 68.50 

Lg. w2v Conv. Th. 94.20 95.37 60.42 98.63 90.09 68.77 

Sm. w2v Conv. Th. 94.37 94.64 58.91 98.47 89.12 70.14 

Lg. Lk. Conv. 94.16 95.11 59.48 98.28 91.45 70.94 

Sm. Lk. Conv. 94.15 94.46 58.59 98.15 89.13 69.98 

Lg. Lk. Conv. Th. 94.48 94.97 59.48 98.42 91.07 71.16 

Sm. Lk. Conv. Th. 94.49 94.63 58.83 98.23 90.88 71.08 

Lg. Full Conv. 94.22 94.75 61.60 98.34 90.15 70.10 

Sm. Full Conv. 94.22 94.33 61.18 98.11 88.41 69.99 

Lg. Full Conv. Th. 94.49 95.12 61.96 98.45 90.49 70.42 

Sm. Full Conv. Th. 94.34 94.58 62.05 98.31 89.11 70.10 

Lg. Conv. 94.49 94.11 60.38 98.27 87.18 70.45 

Sm. Conv. 94.50 93.47 59.16 98.02 84.35 70.16 

Lg. Conv. Th. 95.07 94.18 60.70 98.40 86.61 71.20 

Sm. Conv. Th. 94.33 93.51 59.84 98.15 85.20 70.16 

Deep NLP 95.32 96.05 64.76 98.66 92.26 74.02 

Deep NLP WordNet 95.65 96.32 65.62 98.82 92.61 74.53 
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The Deep NLP WordNet model surpasses all other models in all tasks. The Deep NLP 

model surpasses all models of the other classes in all tasks with the exception of the DBPedia 

and AG’s News data sets, in which it is surpassed by the ngrams TFIDF model. 

This result can be explained by two facts. The first one is the fact that the amount of 

training samples per class on both data sets are the smallest among all data sets used. 

The second fact is that the sample documents of both data sets have less than three 

sentences on average. Because of our model explicitly creates intermediate representations 

for the sentences, texts with small number of sentences have a poorest semantic context. 

The worst performance of our model on these two data sets can be justified by the 

linguistic theory called Poverty of the Stimulus (POS) [Chomsky, 1980]. 

Table 7.2 shows a comparison between the number of training samples per class, the 

mean number of sentences per sample and number of model parameters of the data sets. 

Table 7.2. Training data sets comparison. 

Data Set Training Samples 
per Class 

Mean Number of 
Sentences per Sample 

Model 
Parameters 

AG’s News 30,000 2.64 8,552,404 

DBPedia 40,000 2.87 21,370,714 

Yelp Review Polarity 280,000 9.83 24,945,202 

Yelp Review Full 130,000 9.89 26,869,705 

Yahoo! Answers 140,000 7.03 33,680,710 

Amazon Review Polarity 1,200,000 6.20 34,887,202 

 

This adverse scenario helps to show why the use of the WordNet synonyms provides 

robustness to our model making it to surpass the accuracy of all other models. Table 7.3 

shows the number of vocables in the vocabulary whose initial Word2Vec representations 

were replaced and the number of words in the samples text replaced by WordNet synonyms 

in the AG’s News and DBPedia Ontology data sets. 

Table 7.3. Vocabulary generation and text encoding statistics using WordNet. 

Data Set Vocables Replaced 
Words Replaced in 
Training Samples  

Words Replaced in 
Testing Samples  

AG’s News 50 44,594 3,166 

DBPedia 239 107,477 14,651 
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7.2 Training Size 
Figure 7.1 summarizes the results of the experiment that we made to evaluate the impact of 

the Amazon Review Polarity data set size on the accuracy of our model. 

Figure 7.1. Experiments with the size of the Amazon Review Polarity data set. 
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This chart highlights the best accuracy achieve by each class of the models reported in 

[Zhang, Zhao, & LeCun, 2015]. Our model without the use of WordNet synonyms surpasses 

the state of the art model accuracy using half of the training samples. Our model using the 

WordNet synonyms surpasses the state of the art model accuracy using one third of the 

training samples. The accuracies achieved by the state of the art character based CNN model 

using these volumes of training are significantly lowers than the ones achieved by our 

models. 

This chart shows that the accuracy of our models consistently increases as the size of 

the training data set grows. It is also clear that the model that make use of the WordNet 

synonyms consistently achieved better accuracies than the ones achieved by the model that 

do not use the synonyms. 

The results presented on this chart suggest that the use of the WordNet synonyms not 

only decreases the demand for training samples, but also improves the accuracy of our 

model. 

Table 7.4 shows the time spent by the Deep NLP and Crepe models in the training of 

ten epochs for each Amazon Review Polarity data set size used in this experiment. The time 

is presented in hours. 

Table 7.4 Training times for the Amazon Review Polarity data set sizes. 

Data Set Size Deep NLP Crepe 

200,000 5 110 

400,000 10 - 

600,000 15 120 

800,000 20 - 

1,000,000 25 - 

1,200,000 30 130 

1,400,000 35 - 

1,600,000 40 - 

1,800,000 45 140 

2,000,000 50 - 

2,200,000 55 - 

2,400,000 60 - 
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Chapter 8  
Conclusions 
In this work, we proposed a robust deep learning CNN model for text categorization tasks. 

The model is robust in the sense that it can achieve the state of the art accuracy on different 

text categorization tasks without the need to adjust the model hyperparameters for each task. 

To achieve the robustness, we incorporated into the model many deep learning 

concepts and techniques. The concept of compositionality was used in the design of the deep 

CNN architecture to induce the creation of a hierarchical representation for the text. 

We employed the concept of prior knowledge when we used the word embeddings and 

semantic synonyms in the text encoding process. We used the concept of specialization when 

we allowed the initial word representations to be adjusted in the training process, considering 

them as parameters of the network. 

The concept of depth was used in the design of the feature extractor and label predictor 

components of the network. The parameter sharing and sparse connectivity techniques were 

used in the convolutional layers. The overfitting was tackled using the dropout technique 

during the training process. 

To accelerate the network convergence, we used the mini-batch momentum version of 

the SGD update algorithm and we randomly shuffled the training data set before each epoch. 

To accelerate the training, making viable the use of large datasets, we implemented our 

model using a language and framework that make effective use of the massively parallel 

processing power of the GPUs. 

We evaluated our model comparing its accuracy against the results reported by some 

traditional and deep learning models using six large-scale data sets. The results showed that 

our model outperformed the accuracy of the state of the art models in different text 

categorization tasks. The results also showed that the use of word embeddings and semantic 
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synonyms helped to generalize the representations learned by the model increasing its 

accuracy. 

The main contribution of our work is to show that, even when a large amount of 

training samples is available, the use of word embeddings is important to achieve a higher 

accuracy using less training data, and consequentially in a shorter processing time. 

Another contribution comes from the fact that the size of the input text is not limited 

by the network architecture of our model. The number of words and sentences in the input 

text is limited only by the amount of GPU’s memory. In similar works, the size of the input 

text is limited by the number of characters, words or sentences. 

Another contribution comes from the implementation of our model that makes an 

efficient use of the massively parallel processing power of the GPU, which makes it possible 

to train huge data sets in a shorter processing time. 
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Chapter 9  
Future Work 
The vocabulary size has a huge impact on the number of network parameters of our model. 

To limit the number of parameters, we only include in the vocabulary the vocables that have 

a minimum frequency in the training data set. If a vocable occurs only in a few training 

samples, it is difficult to the model to learn a good representation for it. To overcome this 

limitation, as a future work, we propose to employ a different frequency measure that also 

takes into account the number of training samples that the vocable occurs. 

Since our model does not limit the size of the input text, would be interesting to 

evaluate its performance on data sets that have larger documents. 

Deconvolution is a visualization technique used to show the patterns learned by each 

layer of a deep CNN in computer vision applications. As the design of the deep CNN 

architecture of our model induces the creation of a hierarchical representation for the input 

text, in a future work, we propose the use of the deconvolution technique to discover the 

words and sentences of the input text that most contributed to the class predicted by the 

model. 

Transfer learning is the process of learning new tasks using the experience gained by 

solving predecessor problems that are somewhat similar. In the context of supervised 

learning, transfer learning can be used to train a model using a data set and use the trained 

model to process the samples of a similar data set. In a future work, we intend to make 

experiments using our model trained on a given data set and evaluate its accuracy on testing 

samples of other data sets. 

Another interesting work would be to evaluate the impact on the accuracy of our model 

caused by the use of word embeddings obtained from factual texts of a specific domain. For 

example, we can train an unsupervised language model using documents having health, 
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drugs and other factual contents in the field of medicine. Then we can train our model using 

these word embeddings on a data set collected from patient’s posts in health forums and 

evaluate the accuracy of the model on the prediction of the rate given by the patients to a 

drug.  

The degree of agreement among humans is also known as human concordance. In 

experiments, this degree is measured using some coefficients and its quality is measure using 

inter-rater reliability techniques. There are some works saying that the rate of human 

concordance is between 70% and 79%, and that a good accuracy for sentiment analysis tools 

is 70% [Gwet, 2014]. Our model achieved an accuracy higher than 70%, in most of the 

experiments, using data sets whose documents were written by humans. How this can be 

explained? One hypothesis is that our model is able to learn the discourse used by the group 

of people who wrote the content of a given data set. Although deep learning models are 

inspired by the working principles of the human brain, they do not learn to reason. All they 

know about the world comes from the training samples presented to them. Differently from 

deep learning models, human beings reason about something using past experiences 

acquired in different contexts. In general, a data set is made up by documents published by 

a group of people expressing their experiences and opinions about some subject. Although 

people of the same group have different experiences and opinions, they must agree about the 

discourse used to express them. This can explain why our model has a better performance in 

some text categorization tasks that surpasses the human concordance. 

To verify this hypothesis, in a future work, we intend to train our model using a data 

set containing product reviews written by specialists and evaluate the accuracy of the trained 

model on a data set containing product reviews written by lay people. 
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