Universidade Federal de Minas Gerais
Instituto de Ciéncias Exatas
Programa de P6s-Graduacdo em Ciéncia da Computacao

A ROBUST DEEP CONVOLUTIONAL NEURAL

NETWORK MODEL FOR TEXT CATEGORIZATION

Edgard de Freitas Junior

VOLUME |

Belo Horizonte
Marco de 2016






A ROBUST DEEP CONVOLUTIONAL NEURAL

NETWORK MODEL FOR TEXT CATEGORIZATION






EDGARD DE FREITAS JUNIOR

A ROBUST DEEP CONVOLUTIONAL NEURAL

NETWORK MODEL FOR TEXT CATEGORIZATION

Dissertation presented to the Graduate
Program in Computer Science of the
Universidade Federal de Minas Gerais in
partial fulfilment of the requirements for the
degree of Master in Computer Science.

ADVISOR: ADRIANO ALONSOVELOSO

Belo Horizonte
Marco de 2016



© 2016, Edgard de Freitas Janior.
All rights reserved.

Ficha catalografica elaborada pela Biblioteca do IC  Ex - UFMG

Freitas Junior, Edgard de

F866r A robust deep convolutional neural nekvoodel for
text categorization. / Edgard de Feelténior. Belo
Horizonte, 2016.

xxv, 157f.:il.; 29 cm.

Dissertacdo (mestrado) - Univerdelkederal de Minas
Gerais — Departamento de Ciéncia da Ctagao.

Orientador: Adriano Alonso Veloso
1. Computacéo — Teses. 2. Apremidizito computador —
Teses. 3. Processamento da linguagemah&Gomputacao)

— Teses. |. Orientador. Il. Titulo.

CDU 519.682 (043’




UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIENCIAS EXATAS .
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

FOLHA DE APROVACAO

A robust deep convolutional neural network model for text categorization
EDGARD DE FREITAS JUNIOR

Dissertagdo defendida e aprovada pela banca examinadora constituida pelos Senhores:

S L

PROF. ADRIANO ALONSO VELOSO - Orientador

Departamento de Ciéncia da Computacdo - UFMG
4 7/ :

PROF MARCO ANTONIO PlNHEIRO DE CRl TO
Departamento de, Cigncia da Co utagéo -

Lo

p ]
/ I3
: AAG— AN,
ROP NmoZI ANI
mpulagao UFMG

é—r\_

PAOF. RENATO ANTONIO CELSO FERREIRA
epartamento de Ciéncia da Computacio - UFMG

PROF."WAGNER MEfRA JUNIOR
Departamento de Ciéncia da Computagio - UFMG

Belo Horizonte, 30 de margo de 2016.






Acknowledgments

I would like to thank my sister Anna Lee for heppart and exemplary life trajectory that
inspired my decision on taking this challenge.

This work would not have been possible without patience and support of my
girlfriend Denise and her family.

| would also like to thank my friends Andréia Maeiz, Saloméo Fraga and Paulo
Fernando for their encouragement and support #atke going along the way.

I would like to express my gratitude to Prof. AtleeLoureiro and Prof. Marcos André
Goncalves for their recommendation letters andidente.

| specially thank my longtime friend Prof. Wagneeikh for his support and advices.

My sincere thanks to Prof. Renato Ferreira and NXIDorporation for the donation
of the K40 GPU, without which would not been poksitio run all the experiments.

Thanks to Prof. Marco Cristo for the opportunityparticipate on a deep learning
course taught by LISA researches at UFAM.

| wish to specially thank my advisor, Prof. Adriavieloso, for his patience, optimism
and availability to participate in long discussiomisout deep learning and philosophy
matters.

I would also like to thank all the students frone thachine learning group at UFMG

for the interesting discussions and research thgg been done.






“Colorless green ideas sleep furiously.”
(Avram Noam Chomsky)

Vii






Resumo

Categorizacao de textos é uma das tarefas maigtanpes nas aplicacdes do dominio do
Processamento de Linguagem Natural (PLN), a quaiste em associar automaticamente
categorias pré-definidas a documentos escritosregundgem natural. Técnicas tradicionais

de aprendizado de maquina utilizam caracteristelaboradas manualmente para a
construcdo dos modelos, tais como, n-gramas, palale negacao, sinais de pontuacao,
simbolos representando emocgdes, palavras alongaligisnarios léxicos. Esta abordagem,

chamada de engenharia de caracteristicas, aléregderer um trabalho arduo, resulta

geralmente em modelos que apresentam uma perfoemant em tarefas para as quais nao
foram especificamente criados.

Neste trabalho, propomos um modelo robusto baseadama Rede Neural de
Convolucéo (RNC) profunda para aprendizado chandadBLN profundo. Nosso modelo
utiliza uma abordagem composicional, na qual ogboofla arquitetura da RNC profunda
induz a criacdo de uma representacdo hierarquiea @aexto através da descoberta de
representacdes intermediarias para as palavrastensas do texto. As representacdes
iniciais para as palavras, chamadas de incorpo@e@alavras, sao obtidas de um modelo
de linguagem neural treinado previamente de for@a supervisionada, as quais sao
ajustadas para o contexto da tarefa para a quadelmesta sendo treinado.

O nosso modelo foi avaliado em tarefas de categgiiz de textos comparando sua
acuracia com os resultados publicados para algmaelos tradicionais e de aprendizado
profundo utilizando seis conjuntos de dados dealagrala. Os resultados mostram que
nosso modelo € robusto no sentido de que, mesmmdguads utilizamos 0s mesmos
parametros globais, ele supera a acuracia dos o®dehsiderados estados da arte em
diferentes tarefas de categorizagéo de textoesd#tados também mostram que a utilizacao
de um dicionario de sinbnimos semanticos juntameaie as representacdes iniciais de
palavras ajuda na generalizacao das representgup@eslidas pelo modelo, aumentando sua

acuracia.

Palavras-chave Aprendizado Profundo, PLN, RNC, Categorizacad ebetos.






Abstract

Text categorization is the task of automaticallysigising pre-defined categories to

documents written in natural languages and it s @inthe most important tasks in Natural

Language Processing (NLP) domain applications. ificaél machine learning techniques

rely on handcrafted features such as ngrams, egatbrds, punctuation, emoticons, stop
words, elongated words and lexicons to build tieadels. This approach, called feature
engineering, in addition to being labor intensiresults in models that, in general, present
poor performance on tasks for what they have nenispecifically tailored.

In this work, we propose a robust deep learningv@htional Neural Network (CNN)
model named Deep NLP. Our model adopts a compnaltepproach, in which the design
of the deep CNN architecture induces the creatiom loierarchical representation for the
text, through the extraction of intermediate reprgations for the words and sentences of
the text. The initial word representations, calatd embeddings, are obtained from a pre-
trained unsupervised neural language model andateegdjusted for the context of the task
that the model is being trained.

We evaluated our model comparing its accuracy ag#e results reported by some
traditional and deep learning models in text catiegtion tasks using six large-scale data
sets. The results show that our model is robustarsense that, even when we use the same
hyperparameters, it surpasses the accuracy oftabeaf-the-art models in different text
categorization tasks. The results also show tleauge of a semantic synonyms dictionary
together with the word embeddings helps to germrdhe representations learned by the

model increasing its accuracy.

Keywords: Deep Learning, NLP, CNN, Text Categorization.
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Chapter 1

Introduction

Text categorization is one of the most importarsks$ain Natural Language Processing
(NLP). Text categorization is the task of autonmaticassigning pre-defined categories to
documents written in natural languages. Text categton can be used for, among others,
classifying a document in a set of topics, ratingr@duct review written by a costumer or
associating a sentiment with a text posted by a[i&nning & Schitze, 1999] [de Oliveira
Jr., et al., 2014] [Veloso, Jr., Cristo, Goncal\&Zaki, 2006].

Traditional machine learning techniques used tédomiodels for text categorization
rely on handcrafted features to succeed. Featwrels & ngrams, negation words, stop
words, punctuation, emoticons, elongated words larions are carefully chosen by a
domain specialist for a specific task. This appholads to models tailored for a specific
context and seldom achieve good performance irréifit tasks. This approach is called

feature engineeringBottou, et al., 2011].

1.1 Deep Learning Models

The deep learning paradigm adopts a different ambrdo find the model features. The
models built using the deep learning approach leatronly the parameters of the features
but also the features themselves for a given Tsk.approach, called feature learning, leads
to more general models that achieve good perforenandifferent tasks and domains . In
this scenario, the model specialist has to finetile model hyperparameters for the given
task [Goodfellow, Bengio, & Courville, 2016].
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Despite the good performance achieved by sometittadi machine learning NLP
techniques as Bag of Words (BoW) in text categtionatasks such as topic identification,
these models present poor performance in tasksavthersemantic of the text is sensitive to
the word positions. For example, a BoWw model wileghe same value for the expressions
“know a little bit about everything” and “know ewghing about a little bit”. Both
expressions have exactly the same words, but hdferetit meanings. The first one
designates a generalist and the second one dessgmapecialist. To be able to capture the
semantic of a sentence, a model has to take ictmuat the word positions in the sentence.

There are different deep learning models suitedpecific application domains. The
Recursive Neural Network (RecNN) model is claimebté well suited for NLP applications
because of its hierarchical structure. The weakoé#ss type of model is its dependency
on an external syntactic parse tree. This regtndimits the learning of semantic relations
between words to syntactically dictated phraseteritied models based on RecNN achieved
the state of the art in some NLP tasks using sipattta sets [Socher, et al., 2013].

The Recurrent Neural Network (RNN) model is a splexse of RecNN that is suited
for modeling sequential data. Despite its powerejpresenting sequential structures, it is
seldom being used for NLP tasks such as text cagagion because of its difficulty in
learning long-term dependencies. This limitationdige to the exploding and vanishing
gradients problems that occur in the training pjBsscanu, Mikolov, & Bengio, 2013].

To overcome the exploding and vanishing gradiemtsblpms, a type of RNN
architecture called Long Short Term Memory (LSTM}ptbeen used with success in some
application domains [Zaremba, Sutskever, & Vinyal4].

1.2 Convolutional Neural Network Models

Two-dimensional (2D) Convolutional Neural NetworlCNN) models have been
successfully applied in computer vision domain peots for some time [LeCun, Bottou,
Bengio, & Haffner, 1998]. More recently, the remele results achieved by deep CNN on
image classification challenges got the state efdtt to a new level and promoted the

renascence of the deep learning paradigm [Krizhg\8uktskever, & Hinton, 2012].
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It has been showed that deep CNN models are abtenhoto discover the features of
the data, but also they are able to learn a hilei@acrepresentation for the data through the
discovered features. The revealed features havearabies properties such as
compositionality, increasing invariance and classrimination as they ascend the network
layers [Zeiler & Fergus, 2013].

One-dimensional (1D) CNN models like Time-Delay K#uiNetworks (TDNN) have
been successfully used for some time in speeclgndtan applications such as phoneme
recognition [Waibel, Hanazawa, Hinton, Shikano, &lg, 1989]. More recently, deep 1D-
CNN models have been used in NLP tasks like languagdeling [Bottou, et al., 2011].

1.3 Data Representation

A central problem present in all NLP applicatioasow to represent the input text. Some
models view the input text as a stream of charag¢#rang, Zhao, & LeCun, 2015]. Other
models deal with the input text as a sequence ai@imes [dos Santos & Gatti, 2014]. Most
models make the natural choice of viewing the iriput as a sequence of words. In these
models, the problem is how to represent a word.slimplest way is to associate with each
vocable present in the text a unique id and usmkub table to encode the text's words.
Each id is represented as a vector that has theo$ithe vocabulary and only the bit that
identifies the vocable is set to one. That is wig type of word representation is called
one-hot.

The problem with the one-hot representation iglilreensionality of the word vectors.
For example, in a dataset with 30K vocables, eamtdw the text will be represented by a
vector of size 30K. Despite of this limitation, semmodels using one-hot representation have
achieved remarkable results in text categorizatisks [Johnson & Zhang, 2015].

A more sophisticated way of word representaticzalted word embedding. This type
of representation tries to create a mapping froensgfmbolic representation of a word into
a lower dimensional vector space. In addition featively dealing with the problem of the
dimensionality, it has been shown that word embegidare able to capture many semantic

relationships between the words they representgMik Chen, Corrado, & Dean, 2013].
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Intuitively, in the context of deep learning modéle use of word embeddings makes
sense. Like humans do, the model learns a semaptiesentation of a word in some context
and it adjusts this representation for the speciictext that it is being trained. The models
that make use of word embeddings are consideredssgrarvised models because the
initial word representations are learned in an pesused way and they fit these

representations for a specific task through a sugest training.

1.4 Compositionality

Another central problem present in all NLP taskBagv much syntax is needed to extract
semantics. As we have already mentioned, the Reoitdels depend on an external
syntactic parse tree to extract semantic from & {Exe performance of these models
degrades on NLP tasks where the input text iserrittsing an informal language style that
does not strictly follow syntactic rules.

Some models try to learn a representation in ampersised way not only for the
words but also for the whole paragraph. These nsaatel suited for NLP tasks where there
is not data sets with enough labeled data. [Le &ditiv, 2014]

Most of the deep CNN models used in NLP tasks clwegoa set of filters over the
sequence of text words. They do not explicitly talke account the syntactic information of
text sentence units. They consider the whole textsyntactic unit. These models are suited
for NLP tasks where the input text holds in oneeece. An example of this type of task is
sentiment classification of texts from a Twittertadset [Kalchbrenner, Grefenstette, &
Blunsom, 2014].

In some NLP tasks, it seems to make sense to appbynpositional approach. These
models explicitly consider a text made up by sergaimits that, in turn, are compounded
by words [Denil, Demiraj, Kalchbrenner, Blunsomd& Freitas, 2014].

Analogously to an image made up by different clasd®bjects in the computer vision
domain, a text is made up by sentence units timelhaae different semantics. It was showed,
in the computer vision domain, that forcing infotioa to pass through carefully chosen

bottlenecks makes it possible to control the tygfaatermediate representations learned by



CHAPTER1. INTRODUCTION 5

the model [Hinton, Krizhevsky, & Wang, 2011]. Tlsisategy helps on the generalization of
the representations learned by the model [GUlc&HBengio, 2013].

1.5 Depth

Another central question in the design of deemiegrmodels is how deep a network must
be. There is a consensus that shallow models ar@ieto extract complex features of the
data but there is not a rule of thumb to deternio& many layers suffice to extract the
required features for a specific task. In the corapuison domain, a deep CNN model that
achieved the state of the art in image classibcatasks was implemented using 22 layers
[Szegedy, et al., 2014].

Another critical issue on the design of deep CNNlet® is the relationship between
the number of parameters and the depth of the mbd#te specific case of NLP models,
the dimensionality of the data representation Hasge impact on the number of parameters
of the model.

1.6 Objectives of this Work

The objective of this work is to propose a robustm CNN model for text categorization
tasks, named Deep NLP. The design of this moded &mnevercome the limitations of other
models reported in the literature and to achiex@bastness in the sense that the model can
be used in different text categorization tasks @uaththe need of tuning the model
hyperparameters. To achieve these objectives, ptogra series of deep learning concepts
and techniques. We adopt a semi-supervised appredwtre the initial vocable
representations are obtained from a pre-trainedpersised neural language model publicly
availablé (Word2Vec). The vocable representations are agljusst a specific task context
during the training phase. The model implementsompositional approach explicitly
creating intermediate representations for the seete The size of the input text is not
limited by the model. The model is made up of seagrrs to extract complex features of

! https://code.google.com/archive/p/word2vec/
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the input text. We make use of the WordNet coruéintd semantic synonyms for the
vocables not found in Word2Vec and for the text agonot found in the generated
vocabulary [Miller, 1995].

1.7 Contributions of this Work

We evaluated our model comparing its accuracy agtie results reported by deep learning
models in text categorization tasks [Zhang, Zhad,e&un, 2015]. The model was trained
without and with the use of the WordNet synonyme &l60 made experiments to measure
how the data set size affects the accuracy andrgatime of our model.

The results show that our model is robust in tlesedhat, even when using the same
model hyperparameters, it can beat the state oaithemodels’ accuracy in different text
categorization tasks. The results also show tleausie of the WordNet semantic synonyms
helps to generalize the representation learnetidynbdel, thus increasing its accuracy. The
experiments made with the data set size show tiratnodel beat the accuracy of the state
of the art model using only one third of the dabssze.

Another contribution resultant from the designha proposed architecture is that our
model do not impose any limit on the size of thguirtext. The implementation of our model
makes an efficient use of the massively paralletgssing power of the GPU, which makes

it possible to train huge data sets in a shortecgssing time.

1.8 Organization

The remaining part of this work is organized asofwk. In Chapter 2, we introduce some
underlying concepts used in artificial neural natwoand deep learning models. In Chapter
3, we present the related work that apply or dgwsimilar concepts used in this dissertation.
In Chapter 4, we provide an in-depth descriptiothefarchitecture of our model. In Chapter
5, we discuss the implementation details of our ehodh Chapter 6, we describe the data
sets and experiments used to evaluate our mod@hépter 7, we report and analyze the
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results of the experiments. In Chapter 8, we dsthis main contributions of this work. In

Chapter 9, we address some future work.



Chapter 2

Background

In this chapter, we present the underlying conceetessaries for the understanding of this
work. We introduce some Artificial Neural NetworBasic concepts, then we present some
principles discovered by the neural science thapired the development of the

neurocomputing algorithms. Finally, we present agraew of the deep learning paradigm.

2.1 Neural Networks

The basic concepts used in the deep learning ppnadre inherited from the Artificial
Neural Networks (ANNs) models or Neural Network\N@Y for short. The aim of the NNs
paradigm is to develop computer programs capableolving abstract problems that are
hard to be described using formal rules, but asdyesolved by human beings.

The development of the NNs paradigm started irl8%9s [McCulloch & Pitts, 1943]
[Rosenblatt, 1962]. The NNs models were inspirethieyconcepts and principles of the way
the human brain works, which was discovered byntheal science.

The human cortex can be viewed as a complex netwiose nodes are neurons. Each
neuron receives input signals from other neuromsuth its dendrites. The neurons
connections are established through the synapdes.sirength of the input signals is
determined by the stimulus received. The inputalgare combined inside the neuron to
create an output signal. The output signal is tratted to other neurons through the axon if
its amplitude is greater than a pre-determinedevedlled action potential. The output signal
is called a spike. It is estimated that the hunmateg has 10 billion of neurons and 60 trillion

of synapses [Kandel, Schwartz, & Jessel, 2000].
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At the cell level, the human behavior adaptabibtylearning mechanism can be
explained by the plasticity hypothesis. The stirsukeceived from the environment and the
output produced by the network cause permanentgelsanon the neurons connections.
Figure 2.1 shows a node of a feedforward NN modgepted over a schematic view of a

typical neuron.

ol
Activation
Function

X3

Xm

Figure 2.1. Neuron model projected over a typical neuron cell.

In Haykin [1999], the author defines an ANN as &siely parallel distributed system
made up of simple processing units, which has aralbpropensity for storing experimental
knowledge. An ANN resembles the human brain in thatknowledge is acquired by the
network from its environment through a learning ga@ss and the strength of neuron
connections, known as synaptic weights, are usstbte the acquired knowledge.

In the context of ANNSs, learning is the processwidych the synaptic weights, or
network parameters, are adjusted through a pragfestsmulation known as training. The
type of learning is determined by the way the patans changes take place. There are many
types of learning mechanisms. In ANNs, the mostlusarning mechanism is the error-
correction algorithm.

The error-correction learning algorithm compares tietwork output with a target
value through an objective or cost function. Thetciunction associates the network
parameters with a measure of the error producelegetwork output. In feedforward NNs,

the most used error-correction learning algoriterthe backpropagation.
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Backpropagation is about understanding how adjgdtie weights and biases in a
network changes the error given by the cost functiecause the cost function depends on
the network output value, which in turn is a fuanotof the output layer activation function
that depends on the previous layers weights argland so on, we can recursively use the
chain rule to calculate the gradient of the cosicion with respect to the network
parameters. This way, we know how the changes om eatwork parameter contribute to
the error measured by the cost function.

The backpropagation algorithm is executed in féeps. In the feedforward step, the
network output is calculated. In the error step, ¢hst function gradient of with respect to
the network output is calculated. In the backwatebsthe error is back propagated
calculating the gradient with respect to the prasitayers outputs. In the update step, the
values of the network parameters are adjusted wsnge updating rule. In general, the
updating rule used is the gradient descent algariffhe network parameters are subtracted
from its gradient multiplied by a constant. Thisistant is called the learning rate.

The backpropagation algorithm was originally introdd in the 1970s, but it became
popular only in 1986 after the publication of a @am which the authors showed that the
speedup aroused from the use of the backpropagatgornthm made it possible to use NNs
to solve problems that had previously been insel{lRlumelhart, Hinton, & Wilson, 1986].

What is clever about the backpropagation algorihthat it enables us to compute all
the gradients partial derivatives simultaneouslngigust one forward pass through the
network, followed by one backward pass. Roughlyakpey, the computational cost of the
backward pass is about the same as the forward pass

Even in the late 1980s, people ran up against ctatipnal limits, especially when
attempting to use backpropagation to train deep.NXg backpropagation algorithm is
based on common linear algebraic operations liketove additions and matrix
multiplications. In 2006, the improvement of thgaithms and the popularization of the
use of the GPUs for scientific computation madeube of the backpropagation algorithm
feasible in deep NNs models [Hinton, Osindero, &,T2006] [Kirk & Hwu, 2010].
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Figure 2.2 shows the steps of the backpropagatgorithm in a small segment of a
typical feedforward neural network.
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Figure 2.2. Steps of the backpropagation algorithm.

2.2 Neocortex Deep Structure

Another concept used in ANNSs inspired by the huroariex structure is the concept of
hierarchy. Humans organize their ideas and condgptarchically first learning simpler
concepts and then composing them to representaabsioncepts. It is believed that this
behavior is due to the physical structure of thenéin neocortex.

The human neocortex is organized into regions la@tlpical neocortex tissue is made
up by six layers of neurons cells. The lower layesixth and fifth, have a higher

concentration of neurons than the upper layersy Téeeive input signals from other cortex
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regions and pass the extracted features to the laymes, which in turn pass the information
to other neocortex regions.

Within the neocortex, the information flows seryafitom one region to another. For
example, the visual cortex is built by a sequentceegions, each of which contains a
representation of the input and the signals floowfrone region to the next. Each level of
this feature hierarchy represents the input affardnt abstraction level, with more abstract
features further up in the hierarchy, defined irmte of the lower-level ones [Kandel,
Schwartz, & Jessel, 2000].

The upper layers and regions also have feedbaakections to the lower ones. For
many years, most scientists ignored these feedb@ukections. They are essential for the
brain to accomplish one of its most important fiores, which is to make predictions.
Predictions requires a comparison between what@gpéning and what you expect to
happen. What is actually happening flows up irileearchy, and what you expect to happen
flows down [Hawkins & Blakeslee, 2004].

Figure 2.3 shows on the left a histological struetf the human neocortex tissue and
on the right a schematic representation of somaasgnregions layers hierarchy. The
appearance of the histological structure dependgan was used to stain it. The Golgi stain
reveals the neuronal cell bodies and the dendries. The Nissl method shows the cell
bodies and the proximal dendrites. The Weigerinstar myelinated fibers reveals the

pattern of axonal distribution [Kandel, Schwartz)&ssel, 2000].

o i 4 Spatl.ally Slou{ Objects
v Invariant Changing
|

N AN NN
T7
B

i NV VvV

: Spatially Fast Features
v Specific Changing Details

=5 () (5 ()]
20—---—-—0C?>»
20-wvw-—-<

Figure 2.3. The six layers of the human neocortex.
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2.3 Deep Learning

2.3.1 Depth Matters

The deep learning paradigm can be characterizéladayse of two strategies inspired by the
working of the human brain. The first strategyhe tearning from experience, which was
already adopted in the ANNs. The second strategry isderstand the world in terms of a
deep hierarchy of concepts, with each concept defimgerms of its relation to simpler
concepts.

The approach of gathering knowledge from experievaeds the need to specify the
formal rules that allow the computer programs twvesabstract problems. The approach of
viewing an abstract problem as a hierarchy of cptscallows the computer programs to
learn complicated concepts by building them owtioifpler ones.

The building of a hierarchy of concepts is indubgdhe deep architecture of layers.
The use of a deep architecture can be viewed aslaok function factorization. The depth
of two layers may be enough to represent some ifssnilf functions with a given target
accuracy. Theoretical results showed that therefarelies of functions for which the
insufficient depth makes the number of parametsra/g exponentially with the input size
[Bengio, 2009]. The Kolmogorov's Mapping Neural etk Existence theorem assures
that an arbitrary continuous function, mapping ealfrom an n-dimensional compact set to
the real numbers vector space, can be implemengtaddedforward neural network with at
least three layers of depth [Hecht-Nielsen, 1990].

Figure 2.4 illustrates a classification problemaatiwo-class data set represented by
two curves. Each layer of the network transfornesdata, creating a new representation and

making the data easily separable by a linear ¢iessi
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Deeper models tend to perform better not only beedlbey are larger. Increasing the
number of parameters in models having less thaetlayers, called shallow models, does
not allow them to reach the same level of perforreaas deeper models. This is primarily
due to overfitting. Figure 2.5 presents a charhulite results of an experiment comparing
the number of parameters with the performance ofleiso having different depths
[Goodfellow, Bulatov, Ibarz, Arnoud, & Shet, 2014].
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Accuracy
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Figure 2.5. Effect of the number of parameters on the perfoiceaof models
with different depths.

It is clear that only the deepest models had theturacy increased with the growth

on the number of parameters.

2.3.2 The Renascence

Until 2006, attempts of training a deep supervigadiforward neural network architecture
yielded worse results then shallow architecturesBéngio et al. [2006], the authors
extended the pionner work done in Hinton et alORD showing that the initialization of
Deep Belief Networks (DBN) parameters with presieml unsupervised learned
representations values could improve its genetaizaSince then, the development of new
algorithms and techniques made possible the impl@atien of deeper architecutes and the
adoption of the deep learning paradigm to solvebleras in many domains [Bengio,

Learning Deep Architectures for Al., 2009].
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In 2012, a dramatic moment in the meteoric risdedp learning came when a deep
CNN architecture won the ImageNet Large-Scale ViRgcognition Challenge (ILSVRC)
for the first time and by a wide margin, bringingaaothe state-of-the-art error rate from
26.1% to 15.3% [Krizhevsky, Sutskever, & Hinton12( Since then, these competitions
are consistently won by deep CNNs and the advaincdsep learning have brought the
latest top-5 error rate in this contest down to3[&odfellow, Bengio, & Courville, 2016].

Two main facts, besides the development of new rdlgns and techniques,
contributed to the recent success of the deep itgamparadigm. The increase on the
massively parallel processing power of the GPUsdéantific computation made it possible
to implement deeper models having a huge numbeamimeters.

Figure 2.6 shows comparative charts between theepsing power of the GPUs, on
the left, and the number of neurons of ANNs impleted over time on the right
[Goodfellow, Bengio, & Courville, 2016].
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Figure 2.6. Evolution of GPUs and NNs over time.

The other fact that contributed to the recent ssecd the deep learning paradigm is
the increase on the data sets size. In the 19805280s, machine learning became statistical
in nature and began to leverage larger data setsintng tens of thousands of examples
such as the MNIST data set. As the models become coonplex, the number of parameters
increases and more data is required to train thaeimo
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Figure 2.7 shows a chart of the data sets size wver [Goodfellow, Bengio, &
Courville, 2016].
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Figure 2.7. Evolution of data sets size over time.

2.3.3 CNN Architecture

There are many types of ANN architectures. Eachit@cture has been developed for a
specific task. The Convolutional Neural Network (ONchitecture was developed for
computer vision tasks and it was inspired by tisealreries of the neurophysiologists about
how the mammalian vision system works [Hubel & Wled959]. They observed how
neurons in the cat’s brain responded to image®pi@gl in precise locations on a screen in
front of the cat. Their great discovery was thatroas in the early visual system responded
most strongly to very specific patterns of lightlsas precisely oriented bars, but responded
hardly at all to other patterns.

The visual cortex contains a complex arrangemenel$ that are sensitive to small
sub-regions of the visual field, called a recepfigll. The sub-regions are tiled to cover the
entire visual field. These cells act as local fdtever the input space and are well suited to
exploit the strong spatially local correlation mesin natural images. Simple cells respond
maximally to specific edge-like patterns within itheeceptive field. Complex cells have
larger receptive fields and are locally invarianttie exact position of the pattern.

The term convolutional comes from a mathematicaraton called convolution.
Convolution is a specialized kind of linear opeyati The convolution operation used in

ANNs does not correspond precisely to its definitianmathematics. Convolutional



CHAPTER 2. BACKGROUND 17

networks are simply ANNSs that use convolution iagal of general matrix multiplication in
at least one of their layers [Goodfellow, BengioC&urville, 2016].
Figure 2.8 shows a schematic view of a 2D convotutperation as it is used in

ANNSs. The small letters correspond to the valuesauwfh position of the input and of the

filter.
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Figure 2.8. 2D convolution operation.

It has been showed that deep CNN models are abtenhoto discover the features of
the data, but also they are able to learn a hilei@akcrepresentation for the data through the
discovered features. The revealed features haverades properties such as
compositionality, increasing invariance and classrimination as they ascend the network
layers [Zeiler & Fergus, 2013]. Figure 2.9 shows images generated by a visualization
technique called deconvolution. The images revealpatterns learned by each layer of a
deep CNN. In the lower layers, the discovered padtelike edges, correspond to small
regions of the image. In the upper layers, theadieed patterns, like objects, correspond to

larger regions of the image.

Low-Level| |Mid-Level| |High-Level Trainable
— — —>
Feature Feature Feature Classifier

Figure 2.9. Patterns learned by the layers of a deep CNN.
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Another key consideration about the architecturggiieof ANNS is the connection
between the layers. Traditional ANN layers use drisnanultiplication to describe the
interaction between each layer. This means thatyeslement of a layer is connected to
every element of the previous and next layers. CKhige sparse connections. This is
accomplished by making the filter smaller thanitiput. For example, when processing an
image, the input image might have thousands oranglof pixels, but we can detect small,
meaningful features such as edges with filters dleatipy only tens or hundreds of pixels.
This means that we need to store fewer parametdrgh both reduces the memory
requirements of the model and improves its statibteficiency. It also means that
computing the output requires fewer operations.s€hienprovements inféciency are
usually quite large.

Another strategy present in CNNs that helps redneanemory requirements is the
parameter sharing. Parameter sharing refers tg tisensame parameter for more than one
function in a model. In a traditional ANN, eachrakent of the weight matrix is used exactly
once when computing the output of a layer. It idtiplied by one element of the input and
then never revisited. As a synonym for parametaris, one can say that a network has
tied weights, because the value of the weight agpid one input is tied to the value of a
weight applied elsewhere. In a CNN, each elemetiefilter is used at every position of
the input. The parameter sharing used by the catieol operation means that rather than
learning a separate set of parameters for eveajitot the model learns only one set. CNNs
are thus dramatically moréfieient than dense matrix multiplication in termglef memory
requirements and statisticdfieiency [Goodfellow, Bengio, & Courville, 2016]. kigg 2.10
shows a schematic view of the sparse connectindyparameters sharing effects caused by

a 1D-convolution operation.

Figure 2.1C. 1D convolution sparse connectivity and parametbasing.
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Figure 2.11 shows the three stages of a CNN tyjagalr. In the first stage, the layer
performs several convolutions in parallel to praglacset of linear activations. In the second
stage, each linear activation is run through aineat activation function, such as the
rectified linear activation function. This stages@amnetimes called the detector stage. In the

third stage, we use a pooling function to modify tyer output further.
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Figure 2.11. A typical CNN layer.

A pooling function replaces the layer output ateatain location with a summary
statistic of the nearby outputs. For example, th& pooling operation reports the maximum
output within a rectangular neighborhood. The puaplioperation helps to make the
representation become approximately invariant tallstranslations of the input. Invariance
to translation means that if we translate the ifpua small amount, the values of most of
the pooled outputs do not change. Invariance i@l kanslation can be a very useful property

if we care more about whether some feature is ptekan exactly where it is.

2.4 Word Embedding

In the NLP domain, when we decide to consider thedw as the building blocks of a text,
we have to find a way to represent these words dlndice is a trade-off between robustness
and computational efficiency.

The most obvious choice is to use the one-hot septation. In this type of
representation, each vocable of the text is reptedeby a vector having the size of the

vocabulary. The position in the vector that corogsgs to the id of the vocable is set to one.
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There are two main problems with this type of reprgation. The first is the
dimensionality of the vectors. For example, fooaabulary with the size of 30K, each word
in the text will be represented by a vector of SB&. A sentence with 20 words will be
represented by an input having 600K parameters.

Another problem with the one-hot representatioth# it treats the words as atomic
units; there is no notion of similarity between therds. All words are equally distant from
each other. A way to solve this problem is to @emrepresentation based on a statistical
language model.

The goal of the statistical language modeling il&on the joint probability function
of word sequences in a language. This probabilitigfion can be used to create a distributed
representation where more statistically dependeoridsv are closer. In this distributed
representation, each word corresponds to a pomfeature space, so that similar words get
to be closer to each other in that space [Vindgangio, & Ducharme, 2000].

The main limitations of the statistical languagedelong approach are the curse of
dimensionality and the generalization of the repnéstion learned. As we increase the
number of words in a learned sequence from theitr@icorpus, the computational cost to
calculate the joint probability function becomepensive and it is likely that this sequence
will not occur again.

To overcome these limitations, neural network bdaeguage models are used to
modeling continuous variables that generate digteith representations that have some local
smoothness properties. For example, the sentefitescat is walking in the bedroom” and
“A dog was running in a room” should have similgpresentations because the words “dog”

and “cat”, “the” and “a”, “room” and “bedroom”, “Wing” and “running” have similar
semantic and grammatical roles [Vincent, Bengid&harme, 2000].
In our work, the initial vocable representationg abtained from a pre-trained

unsupervised neural language model proposed inIbiket al. [2013].
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Figure 2.12 shows the architecture of two neunagjleage models proposed by the
authors.
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Figure 2.12. Architectures of the CBOW and Skip-gram neural language models.
[Mikolov, Chen, Corrado, & Dean, 2013]

The Continuous Bag-of-Words (CBOW) neural languagplel predicts the current
word based on the context, and the Skip-gram nmuaelicts the neighborhood words given
the current word.

The similarity between the words whose distributggresentations are generated by
these models can be measured using a word-offsahitpie where simple algebraic
operations are performed on the word vectors. K slgown for example that the vector
("King”) minus vector ("Man”) plus vector ("Womanesults in a vector that is closest to
the vector representation of the word “Queen” [Ayydikolov, & tau Yih, 2013].

Figure 2.13 shows a pictorial representation of &xample.

MAN
QUEEN

QUEEN

WOMAN KING WOMAN

KING
MAN

Figure 2.13. Algebraic operations on word vectors.

In ANN models, the initial values of the network@aeters determine the quality of

the learned representations. The same model travitbdhe same data set using different
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initial values for the network parameters can yaifterent solutions that differ substantially
in quality. Different initial values will bias thiearning algorithm to develop some type of
feature detection units at the hidden layers, btibthers [Golden, 1996].

In the context of NLP, the use of word embeddimgshe models that consider the
words as the text building blocks, can be viewed psor knowledge information strategy
[Gulcehre & Bengio, 2013].

Although some controversies exist about the alilithe word embeddings to capture
semantics of word sequences, there are experirabotging that their use can improve the

performance of some models on NLP benchmarks [Kem, & Wolf, 2015].
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Related Work

In this chapter, we present the related work tipglyaor develop similar concepts used in
this work. In the course of our research, we madexdensive literature review including
tens of papers, books and online references, byiregent only the works that are closer
related to our work. We summarize five works thapiy CNN architectures to solve the
text categorization problem.

In Kalchbrenner et al. [2014], the authors propasei@ep CNN architecture to make
semantic modelling of sentences. The model is naBbythmic Convolutional Neural
Network (DCNN). It is based on the architectur@adfime Delay Neural Network (TDNN)
[Collobert & Weston, 2008]. The authors addresseel fimitations of TDNN while
preserving its advantages.

The proposed deep CNN architecture has four layarshe first layer, the input
sentences are represented using word embeddingslized using a pre-trained
unsupervised model that predicts the contexts afimence for the words [Turian, Ratinov,
& Bengio, 2010]. In the second and third layersg tRsulting representations from the
previous layers are convolved by a set of filt@tse convolution operators are followed by
dynamic k-max pooling and non-linearity operatorbe term dynamic means that the
number of the k maximum values selected by theipgalperators changes according to the
sentence size and to the layer level where theatiparhappens. The output of the third
layer is fully connected to a softmax non-linearigyer that predicts the probability
distribution over the classes given the input secge

The network was trained to minimize the cross-gntraf the predicted and true class
labels distributions by backpropagation using mbatches. The 1D convolution operator
was implemented using a Fast Fourier TransformtioncThe code was implemented in
Matlab and the experiments were processed on adgide.

23
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The authors tested the DCNN in four experimentslkstale binary and multi-class
sentiment prediction, six-way question classificatand Twitter sentiment prediction by
distant supervision. The network achieved excelpentormance in the first three tasks and
the error reduction with respect to the strongesebne was greater than 25% in the last
task.

Although their model deals only with sentences, dnehitecture proposed by the
authors inspired most of the works that use the GMbhitecture in the NLP domain,
including our work. Our model accepts input textamy size, which makes it usable in real
NLP applications.

In Kim [2014], the author proposed four variantad€NN architecture based on the
work of Bottou et al. [2011]. The proposed CNN atture has three layers. The four
architecture variants are created changing the thay the word representations are
initialized and updated during the training.

In the first variant, the word representations iaigalized randomly and updated
during the training. In the second variant, thedvapresentations are derived from Google
pre-trained vectors (Word2Vec) and they are notatg during the training. The third
variant is the same as the second one, exceptebfath that the word representations are
updated during the training. The fourth varianthis innovation proposed by the author. It
is a mixture from the second and third variantcréates the concept of channels. Each
channel has its own copy of pre-trained word regmm&dions. In one channel, the word
representations are updated during the trainind, anthe other channel, they are not
updated.

The author made experiments with seven data sets.df them are for sentiment
analysis tasks on user reviews. The performandkeomodels was compared with strong
base lines like DCNN [Kalchbrenner, Grefenstett&l&nsom, 2014]. The proposed models
improved upon the state of the art on four outevies tasks.

The results showed that unsupervised pre-trainfinggaryd vectors is an important
ingredient in deep learning models for NLP tasksavoid overfitting on one specific task,
one can use two channels for the word representat@ne is kept static and the other one
Is optimized for the specific task that the moddbeing trained.

Their model also deals only with sentences antlpafh it has three layers, it is not

considered a deep model because it has only oneoletional layer. The sentence
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representations learned by their model is limitedduse of the lack of depth. Our model
overcomes these limitations using a deep architectu

In Johnson & Zhang [2015], the authors proposedadiaav CNN architecture using
high dimensional word representations. The conwmiubperator is applied over sequences
of words called regions. Two variants of high dimienal word representations are used.
One of them is the traditional one-hot vector. Bliger one, is named bag of words CNN.
In this variant, the words of a region share theesaector representation, where each
position of the vector represents one index ofvibeabulary. This approach is a balance in
the trade off between the representations high misioeality and the order of the words. It
preserves the order of the regions in the sentkatthe order of the words in each region
is lost.

The models were implemented using the C++ prograngfainguage and they explore
the parallel processing power of the GPUs. Two data of user reviews and one of topic
classification are used to compare the performahtiee model with other strong baseline
algorithms. The results showed that the proposethitacture achieved an excellent
performance compared with the state of the artrdlgos that use low dimensional pre-
trained word representations.

Although the use of an efficient implementation tomed with a powerful GPU
makes it feasible the adoption of one-hot reprediemts, the lack of context of this type of
representation makes it harder to their model teaekgood semantics from the text. Our
model makes use of the word embeddings as thalirgpresentations for the vocables and
updates them in the training process. This stratetys our model to extract good semantics
from the text, starting with generic representatiand adjusting them to the context of the
specific task.

In Denil et al. [2014], the authors proposed a dE&IN architecture that explicitly
extract representations for the input text at #gr@ence and document levels. The network
has four layers and it is similar to the one présgin Kalchbrenner et al. [2014], except for
the fact that, in the third layer, the sentencaasgntations are concatenated to form the
document representation. The convolution, k-maxipg@and non-linearity operations are
the same used in Kalchbrenner et al. [2014].

The innovation introduced by the authors is theafssedeconvolution technique used

in the computer vision domain to generate integiiet visualizations of the deep layers
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activations in convolutional neural networks [TaylBergus, & Zeiler, 2011]. To generate
the saliency map for a given document, the authpmied the same technique used in
Simonyan et al. [2013].

The authors proposed a way to measure the extnagtiality of the most relevant
sentences using them as a summarization for thews\of the IMDB data set. The model
is trained using the whole text of the reviews Hralaccuracy of the predicted sentiment is
compared with the accuracy of the model trainedguenly the sentences extracted through
the deconvolution process. The results show thatpitoposed model outperforms the
baseline methods on the task of extracting the netstant sentences from text documents.

Although the architecture of their model inducege ttreation of a hierarchy of
representations, as our model does, the use of tardyconvolutional layers and the
restriction on the number of words of the input teake the use of their model restricted to
documents of small size. Our model has three comoolal layers and accepts input texts
of any size, which makes it usable in real NLP egapilons.

In Zhang et al. [2015], the authors proposed a deByN architecture for text
categorization using features extracted from chiardevel representations. The network has
nine layers composed of six convolutional and tlfiwseconnected layers.

In the input layer, it is created a representatmnthe input text using the one-hot
encoding of the 70 alphabet symbols that repredbettast 1014 text characters. The first
six layers are made up by a sequence of 1D conegnlubon-linearity and max pooling
operators. The last three layers are made up kg@esce of linear and dropout operators.
The last layer has a log softmax operator thatggilie class labels log probabilities for the
input text representation. The gradients are obthily backpropagation and the
optimization is done through Stochastic Gradiendd@at (SGD) using mini-batches.

To evaluate their model, the authors built eighydascale data sets. The model was
trained using these data sets to make sentimehtsaand topic classification tasks. The
authors implemented traditional models such asdfagords, n-grams and their TFIDF
variants, and deep learning models such as woredb@NNs and LSTM to be used as
baselines. The character-level CNN models achitdwedtate of the art performance on four
of the eight tasks.

The use of characters as semantic units demandgeartumber of samples to their

model to learn good representations for a sequeindgaracters. Our model adopts the prior
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knowledge principle making use of the word embegslias the initial representations for
the vocables. This strategy makes our model leaod gemantics using significantly less

training samples.



Chapter 4
Model

In this chapter, we detail the architecture of madel starting by presenting an overview of
the data flow and describing the text encoding rapm, then we exam the design of the
deep architecture and finally we talk about themoek optimization algorithm used to

update the network parameters.

4.1 Data Flow

Figure 4.1 presents a flowchart representing the filaw of our model. The data sets are
split in training and testing sets. The vocablesuaing in the training set are used to
generate the vocabulary in the text encoding pso¢Hse word embeddings are read from a

binary file obtained from a pre-trained model.

-------------- -
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Figure 4.1. Model data flow.
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We implemented two models. The WordNet semantitatiary corpus is used in the
Deep NLP WordNet model to get synonyms for the btesin the text encoding process.
The doted lines in the chart denote that the Wotdidepus is not used in the Deep NLP
model.

The vocabulary generated by the text encoding gsorseused to encode the texts of
the training and testing data sets and it is storea binary file that will be loaded by the
deep CNN. The encoded texts of the training anihtpslata sets are also stored in binary
files that will be used by the deep CNN in thertiag and testing process. The updating of
the vocabulary representations can be enablectitraining process.

The training state and the network parametersaredsin binary files, so they can be

loaded later in the testing process.

4.2 Text Encoding

The first step in the text encoding process istéx¢ tokenization. Because of our model
explicitly creates intermediate representationsstartences, we first tokenize the text into
sentences, then we tokenize the sentences intesword

The second step in the text encoding process igdbabulary generation. There are
two steps in the process of building the vocabul@ihe first step is to select the vocables
that will compose the vocabulary. In compliancehvilte principle that the content of the
testing samples should not be viewed by the moefgrb the testing phase, we take into
account only the vocables present in the trainenges to build the vocabulary. In this
step, there is an important decision to be madeydicabulary size.

Because our model learns its parameters in a sspdrway and the vocable initial
representations are considered parameters of tinme the vocabulary size has a huge
impact on the number of parameters that have tedyaed by the model.

Although there is not a rule of thumb to deterntime vocabulary size, one point that
must be considered is the equilibrium between threber of training samples per class and
the number of parameters that have to be learnedofistraint the vocabulary size, we use
the strategy of selecting only the vocables thaeapin the training samples at a minimum

frequency.
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The second step in the vocabulary generation psocgsto assign an initial
representation to the vocables. In our model, twable initial representations are obtained
from a pre-trained unsupervised neural languageeinpdblicly availablé (Word2Vec).
These initial representations are adjusted to geeiBc context of the training samples
during the training phase.

When a vocable is not found in the Word2Vec, wégasa random value to its initial
representation. In the model implemented usingWoedNet corpus, before assigning a
random value to the initial representation of aalbe, we first try to find a WordNet
synonym, lemma or stem whose vocable is presaheifVord2Vec.

The WordNet is a large lexical database of Englidbuns, verbs, adjectives and
adverbs are grouped into sets of cognitive synonfgyissets), each expressing a distinct
concept. Synsets are interlinked by means of canaépemantic and lexical relations. The
WordNet'’s structure makes it a useful tool for cat@pional linguistics and natural language
processing [Miller, 1995].

The last step in the text encoding process issoaate each text word of the training
and testing samples with its correspondent vocabtee vocabulary. This association is
made assigning to each text word an integer vdlaeis the index of its correspondent
vocable present in the vocabulary.

Instead of ignoring the words whose vocables ategresent in the vocabulary, we
assign to them the index of one of the generic blesaspecifically created for this purpose
(#NUMBER#, #SYMBOL#, #UNKNOWN#). In the model imptented using the
WordNet corpus, before assigning the index of aegernvocable to a unknown word, we
first try to find a WordNet synonym, lemma or stewhose vocable is present in the
vocabulary.

This strategy enhances the robustness of our ntbarigh the generalization of its
learned representations. Even when the model eteoariext with many vocables that it
cannot find in its vocabulary, it is able to re@abem by some cognitive synonym that is
present in the vocabulary. This is similar to wttee humans do when they encounter an

unknown word in a text. They search the unknowndaiara dictionary or thesaurus and

2 https://code.google.com/archive/p/word2vec/
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replace it by a word whose semantic is already knowa similar context [Gllcehre &
Bengio, 2013].
4.3 Deep Architecture

The design of the network architecture of our moidelinspired by the deep CNN
architectures used in the computer vision domagCiiin, Bottou, Bengio, & Haffner, 1998]

[Krizhevsky, Sutskever, & Hinton, 2012]. Figure 4shows a diagram with the main
components of our model architecture.

Q‘@ﬁ»i» »I»i»i»i»E

deep Feature Extractor deep La

Figure 4.2. Deep NLP model architecture.

Our model implements a sequential standard feed@if@harchitecture. The model is
made up by seven layers that can be grouped im&e tthnain components. The first
component is the lookup table. It stores the vaxalpresentations assigned by the
vocabulary building process. This component is oasjble for translating the word
encodings into word embeddings. The vocable inigplesentations are obtained from the
publicly availablé pre-trained Word2Vec binary file using 300-dimemsil vectors.
Because these representations are updated inanengy phase, this component has the
larger number of the network parameters.

The second component of our model architectureasdeep feature extractor. This
component is responsible for extracting complexuies from the text. Because we adopted
the sentence compositional approach, we forceettted pass through layers that explicitly
create intermediate representations for the seaserdd the upper layers of this component,

the sentence representations are concatenatede#te cthe text representation. This

3 https://code.google.com/archive/p/word2vec/
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component is made up by three layers. Each of tlag®es is arranged as a sequence of
temporal convolution, non-linearity and max poolmgdules. The temporal convolution
module is responsible for creating new words amtiesee representations.

At the sentence level layers, the temporal coni@iunhodule convolves a set of filters
through the words of each separated sentence.ilfdrs bf the same module have a fixed
size and they are shared among the input textrssege This approach reduces the number
of parameters that have to be learned by the matiel filter size does not depend on the
number of sentences. The main consequence of #sigrd decision is that there is no
restriction on the size of the input text that barmprocessed by our model.

At the document level layer, the temporal convolatinodule convolves a set of filters
through the concatenated sentence representatiesied in the previous layer. The output
of this layer is a set of features that repredemithole text.

The non-linearity modules are responsible for extng complex features from the
data and making them more easily separable [GdodfeBengio, & Courville, 2016].

The max pooling modules are responsible for selgdiie most important features
and consequently reducing the dimensionality of ldened representations [Boureau,
Ponce, & LeCun, 2010].

The third component of our model architecture ie tteep label predictor. This
component is made up by three fully connected f@lowed by a classifier. Each of these
layers is arranged as a sequence of linear tranaf@n, non-linearity and dropout modules.

The sequence of linear transformation modulessparsible for extracting features
that are more abstract. Each layer narrows the eurabfeatures from previous layer
reducing the dimensionality of the learned repredems.

The dropout modules are responsible for reduciegribdel overfitting. They induce
the network to learn features that are more roljdstton, Srivastava, Krizhevsky,
Sutskever, & Salakhutdinov, 2012]. They are acsidainly in the training phase.

The classifier module is responsible for assoajtan class label probability

distribution for the text representation producgdhe model.
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4.4 Optimization

Our model is trained to minimize the Negative Lagdlihood (NLL) loss function. The
gradients are accumulated using the backpropagatgorithm. [Rumelhart, Hinton, &
Wilson, 1986].

The network parameters are updated using a michbatrsion of the Stochastic
Gradient Descent (SGD) algorithm called momentuhatg [Sutskever, Martens, Dahl, &
Hinton, 2013]. This approach helps to acceleragdehrning of the network parameters.

We also randomly shuffle the training data set teef@ach epoch, which tends to

provide better convergence [LeCun, Bottou, Orr, &lMr, 2012].



Chapter 5

Implementation

In this chapter, we talk about the programming legges and packages used to implement
our model. We also give some details about the mesdused to implement the network

architecture presented in Chapter 4.

5.1 Programming Languages

We used the Python programming language to implemest of the text encoding process.
We chose this language because of its aptitud#afiarmanipulation and for the convenience
of the Natural Language Toolkit (NLTK) platform itemented in Python [Bird, Klein, &
Loper, 2009]. In the model implemented using tha®et corpus, we also used the Python
language to implement the vocabulary generationuieod

The Lua programing language was used to implemieatdeep CNN modules
[lerusalimschy, 2006]. In the model implemented nsing the WordNet corpus, we also
used Lua to implement the vocabulary generationuteodVe chose this language because

it is used to implement the computing frameworksgkected.

5.2 Computing Framework

We selected the Torch7 computing framework to immget our deep CNN model

[Kavukcuoglu, Farabet, & Collobert, 2011]. We chdisis framework because of its wide

34
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support for deep learning algorithms, its modwasnd its efficiency on the use of the
GPUs.

The Torch7 Neural Network (NN) package providegasy and modular way to build
and train neural networks. Each module implemehés findamental methods and the
necessary state variables for training a neuralvarét The modules are grouped into
containers that in turn can be assembled like lbegjding blocks to create complex models.

Figure 5.1 shows the main components of a Torchpbitkage module. The forward
method computes the module’s output from its irgmat it stores the result in a state variable.
The backward method computes the gradients withertgo the module’s input and with
respect to the module’s parameters. During thewaik pass, the gradient with respect to

the module’s parameters is accumulated and itrzezeafter being updated.

V i+

Forward l
Layer L [ Module J—’

Backward

Vi

Figure 5.1. Main components of a Torch7 NN package module.

The cuTorch and cuNN packages provide a GPU impitatien for many of the
Torch7 backend and NN package modules. They aremgnted using the CUDA APl and
they inherit all the CUDA'’s efficiency on the useMvidia’s GPUs.

These packages give total control over the RAMraoif GPU’'s memory data
transfers. This issue is critical for a succesgfutiplementation of deep learning models
that process huge data sets. In our experimermsirthlementation of our model sustains
the utilization rate of the Nvidia’s K40 GPU at 9584 average during the training and
testing processing. The transfer of a whole moaehfCPU to/from GPU is made merely
through the call of a single method.
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5.3 Modules

Figure 5.2 displays a Lua code fragment excerpteich the module that implements our
deep CNN model. The code fragment shows how thephitkage modules are stacked to

create the network architecture presented in Chdpte

-- First layer: input (encoded text: nSentences x nWords)
model.modules[1] = {name = "LookupTable", parameters = {vocabulary = model.config.vocabulary}}

-- Second layer.

model.modules[2] = {name = "TemporalConvolution", parameters = {inputFrameSize = 300,
outputFrameSize = 200, kW = model.config.minWordsSentence, dW = 1}}

model.modules[3] = {name = "Threshold", parameters = {}}

-- Third layer.

model.modules[4] = {name = "TemporalConvolution", parameters = {inputFrameSize = 200,
outputFrameSize = 200, kW = 3, dW = 1}}

model.modules[5] = {name = "Threshold", parameters = {}}

model.modules[6] = {name = "SpatialAdaptiveMaxPooling", parameters = {outputWidth = 200,
outputHeight = 3}}

-- Fourth layer.

model.modules[7] = {name = "View", parameters = {}}

model.modules[8] = {name = "TemporalConvolution", parameters = {inputFrameSize = 200,
outputFrameSize = 100, kW = 3, dW = 1}}

model.modules[9] = {name = "Threshold", parameters = {}}

model.modules[10] = {name = "View", parameters = {}}

model.modules[11] = {name = "SpatialAdaptiveMaxPooling", parameters = {outputWidth = 100,
outputHeight = 15}}

-- Fifth layer.

model.modules[12] = {name = "View", parameters = {}}

model.modules[13] = {name = "Linear", parameters = {inputDimension = 1500, outputDimension =
1000}

model.modules[14] = {name = "Threshold", parameters = {}}

model.modules[15] = {name = "Dropout", parameters = {probability = 0.5}}

-- Sixth layer.

model.modules[16] = {name = "Linear", parameters = {inputDimension = 1000, outputDimension = 500}}
model.modules[17] = {name = "Threshold", parameters = {}}

model.modules[18] = {name = "Dropout", parameters = {probability = 0.5}}

-- Seventh layer.

model.modules[19] = {name = "Linear", parameters = {inputDimension = 500, outputDimension =
model.config.outputClasses}}

-- Output layer.

model.modules[20] = {name = "LogSoftMax", parameters = {}}

Figure 5.2. Lua code fragment of the deep CNN model implententa
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Figure 5.3 displays an excerpt from the executagndf the code showed in Figure
5.2. The network layers were grouped using two seg@l modules that, in turn, were
grouped into a sequential container. This approaakes easy to disable the vocable initial

representations updating in the lookup table thindhg setting of a configuration parameter.

nn.Sequential {
[input -> (1) -> (2) -> output]
(1): nn.Sequential {
[input -> (1) -> output]
(1): nn.LookupTable

}
(2): nn.Sequential {
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) > (12) -> (13) -> (14) ->
(15) -> (16) -> (17) -> (18) -> (19) -> output]
(1): nn.TemporalConvolution

(2): nn.Threshold
(3): nn.TemporalConvolution
(4): nn.Threshold
(5): nn.SpatialAdaptiveMaxPooling
(6): nn.View
(7): nn.TemporalConvolution
(8): nn.Threshold
(9): nn.View
(10): nn.SpatialAdaptiveMaxPooling
(11): nn.View
(12): nn.Linear(1500 -> 1000)
(13): nn.Threshold
(14): nn.Dropout(0.500000)
(15): nn.Linear(1000 -> 500)
(16): nn.Threshold
(17): nn.Dropout(0.500000)
(18): nn.Linear(500 -> 10)
(19): nn.LogSoftMax
}
}

Figure 5.3. Execution log excerpt of the deep CNN model.

In the next subsections, we give some details ath@uNN package modules that we

used to implement our deep CNN model.
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5.3.1 Lookup Table

In the first layer of our model, we used a lookaplé module from the NN package. This
layer is responsible for decoding the input textdganto word embeddings. The first reason
for using a lookup table has to do with the efintiase of the GPU. The bus bandwidth is
one of the bottlenecks that prevents the efficies@ of the GPUs. Instead of decoding the
input text words in the host’s memory and send thethe GPU device, we make the input
text decoding directly in the GPU’s memory. Thigpegach saves the bus bandwidth of
sending 2,392 bytes per word when we use a 300rdiimieal word embedding.

The other reason for using a lookup table for degpthe input text has to do with the
updating of the vocable initial representations.eWkve enable the vocable representations
updating, they become part of the network pararagtieerefore they must stay together with
the other network parameters in the GPU’s memory.

The vocabulary is sent to the GPU device only aviven the model is instantiated for
the first time. The vocable initial representatiars stored in a matrix and become the
weight parameters of the lookup table.

The encoded input text is stored in a matrix. Thed of the matrix correspond to the
text sentences and the columns correspond to titers words. The number of lines is
unlimited. The number of columns is equal to thenhar of words in the largest sentence
of the input text. The smaller sentences are zada@d to the right.

Figure 5.4 shows a diagram of how the input texiiasoded through the forward
method of the lookup table module. The output efldokup table forward method is stored

in a 3D tensor.
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Figure 5.4. Input text decoding through the lookup table favanethod.
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5.3.2 Temporal Convolution

The temporal convolutional module applies a 1D atumon using a set of filters over an
input sequence made up of input frames. Each fikmerates an output frame. The size of
the filter is determined by the number of inputfies and by the width of the convolution.
Figure 5.5 shows a diagram of how the forward nmetthiothe temporal convolution
module operates over the decoded input text insgwnd layer of our model. In this
example, each embedding dimension correspondsitgpahframe. Each color represents a
different filter. The temporal convolution producas output with the same number of

dimensions of the input.

Filters

3D Tensor

(< 4

sentences
sentences

words

Figure 5.5. Temporal convolution over the decoded input text.

In our model, the temporal convolution module isduto extract new representations
for words and sentence sequences. At the docureeslt layer, the temporal convolution
module convolves a set of filters through the ctecated sentence representations created
in the previous layer.

The value of each element of the output producedhleytemporal convolutional

operation over a 3D input tensor can be preciselyndd as:

w N
A
Ox,y,z = Z Z Tz,j,k * jx,y—1+j,k (5 )
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where,F is the set of filters] is the 3D input tensoby is the width of the filters anlil is

the number of input frames.

5.3.3 Threshold

The non-linearity function used in our model is lempented by the threshold module. The
threshold function is similar to Rectified Lineanits (ReLUs) [Nair & Hinton, 2010]. It is
defined as:

f(x) = max{0, x} (5.2)

Figure 5.6 shows a plot of the threshold functiod @s derivative.
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Figure 5.6. Plot of the threshold function and its derivative.

5.3.4 Spatial Adaptive Max Pooling

The spatial adaptive max-pooling module is a 2Dsieer of the temporal max-pooling

operation, which adapts its parameters dynamiclth that the output has a fixed size.
Differently from the traditional max-pooling opeved that select the maximum values
among all the features of a dimension, the spatiaptive max pooling splits the dimension
into segments, according to the desired output aizé it selects the maximum value from

each segment.
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This approach helps to avoid the adverse effedarhby the sentences right padding
made in the input layer. When the number of wonds $entence is too small, depending on
the weights and biases values associated by thekdion operation to the paddings, the
traditional max-pooling operator could select othligse values as being the most important

features of the sentence.

5.3.5 View

The view module creates a new view for the inpaste using the sizes passed to the class
constructor. This module is used in the fourth tayfeour model to concatenate the sentence
representations created in the previous layes.dtso used in the fifth layer to flattening the

fourth layer output transforming it into an 1D tens

5.3.6 Linear

This module applies a linear transformation to Bnidput tensor. This module is used to

implement the fully connected layers of the deguiee extractor component of our model.

5.3.7 Dropout

The dropout module forwards the input masking liésnents using binary samples from a
Bernoulli distribution. The input elements assamibtvith a mask position that has a zero
value are dropped, that is the value of their goadent output elements are set to zero.
The input elements that are not dropped have the\d their correspondent output
elements scaled by a factor bf (1 — p), wherep is the probability of an element being
dropped. The dropout module is activated only entthining phase.
In our model, the dropout module is used in theouof the fully connected layers

and the drop out probability is set to 0.5.
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5.3.8 Log Softmax

The log softmax module implements the log normdlizxponential function. The log
softmax function is the gradient-log-normalizetioé categorical probability distribution. It
is defined as:

_ e*i filx) =0
fi(x) = log 5 v { C fa) =1 (5.3)

where,k is the number of classes afiflx) is the log-probability associated with the class
The log softmax module is used as the classifighénoutput layer of our model. It
associates a log-probability to each class labetHe text representation produced in the

seventh layer output.

5.3.9 ClassNLLCriterion

Differently from the modules presented above, thsdule belongs to a set of the NN
package’s modules called criterions. Criterionshegipful to train a neural network. Given
an input and a target, they compute a gradientrdowpto a given loss function.

This module implements the Negative Log-Likelih@dd L) loss function. It is used
in the training module of our model. The log-proitigbfor each class label, given by the
forward method of the log softmax module in thepotiof our network, is used as input to
the forward and backward methods of the ClassNuie@aon module. The computed

gradient is back propagated through the netwonkguie backward method.

5.4 Detailed Network

Figure 5.7, Figure 5.8 and Figure 5.9 show a dadaiiagram of a complete forward pass

through the entire deep CNN of our model.



CHAPTERS. IMPLEMENTATION

w
8 §
5 :
- a
»n —
Q
//@c, 3
I ) ’b‘o -
I b4
words
1 [ Threshold
Temporal convolution
Q
[&]
C
9 —
c <
L
O
- '
\ Y J Q'
words n
73
.
ﬂ Lookup table o
<
@
- -
1]
Q9
Q
(u —
(8]
o
>
- L J
T
embeddings B
@ =
o =1
5 . .
€ Encoded input text 2
2 )
» it

Figure 5.7. Detailed diagram of our deep CNN architecture.
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Figure 5.8. Detailed diagram of our deep CNN architecture.
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Figure 5.9. Detailed diagram of our deep CNN architecture.

The size of the data structures showed in theggalias are not scaled. In the input
layer, the number of sentences and words of thedattinput text are not fixed.

In the first layer, the number of vocables in thekiup table depends on the data set
and it is determined by the minimum vocable fregquyeparameter. The model does not
impose a limit on the size of the vocabulary, butnost of the cases, the number of vocables
is at least one hundred times greater than the aizthe word embeddings. In our
experiments, we used word embedding having a $i26@

In the second layer, the size of the word embeddisglecreased to 200 through a

temporal convolutional operation.
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In the third layer, the sentences width is decr@dse a temporal convolutional
operation, using a filter width of three, followbky a spatial adaptive max pooling operation
using a fixed output size of three. The synpotienotes the highest values selected by the
spatial adaptive max pooling operation.

In the fourth layer, a view operation concatenatke 3D tensor sentence
representations into a 2D tensor. The sentencethveidd the number of features are
decreased by a temporal convolutional operationguai filter width of three and output
frame size of one hundred, followed by a spatiapite max pooling operation using an
output size of fifteen.

In the fifth layer, a view operation concatenates2D tensor sentence representations
into a 1D tensor. The number of features is deexk&s 1000 by a linear operation. The
symbol ® means that the value of a feature is considereldeasy zero by the dropout
module in the training phase.

In the sixth layer, the number of features is dasee to 500 by a linear operation.

In the seventh layer, the number of features isedsed to the number of classes by a

linear operation.



Chapter 6

Evaluation

In this chapter, we describe the experiments achoig to evaluate our model. We initially
introduce the data sets used, then we talk abeun#ithodology and hardware used to run

the experiments.

6.1 Data Sets

To evaluate our model, we used several large-stalie sets, publicly availaiebuilt
specifically to assess deep CNN architectures [ghdhao, & LeCun, 2015]. The data sets
are used for topic classification and sentimentyesmatasks.

Table 6.1 presents the characteristics of the lacgée data sets used in our
experiments.

Table 6.1. Characteristics of the large-scale data sets insin@ experiments.

Data Set Classes Training Testing Task
Samples Samples

AG’s News 4 120,000 7,600 Topic

DBPedia 14 560,000 70,000 Topic
Yelp Review Polarity 2 560,000 38,000 Sentiment
Yelp Review Full 5 650,000 50,000 Sentiment

Yahoo! Answers 10 1,400,000 60,000 Topic
Amazon Review Polarity 2 3,600,000 400,000 Sentimen

4 http://goo.gl/JyCnZq
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6.1.1 AG’s News

The original AG data set is a collection of morartil million news articles. News articles
has been gathered from more than 2,000 news sdoyé@smeToMyHead in more than one
year of activity. ComeToMyHead is an academic neearch engine, which has been
running since July 2004. The dataset is providethkbyacademic community for research
purposes in data mining and information retrieval.

The AG's news data set was constructed by chodisenfpur largest classes from the
original AG corpus using only the title and destiap fields. Each class contains 30,000
training samples and 1,900 testing samples. Tlaéomber of training samples is 120,000
and testing is 7,600 [Zhang, Zhao, & LeCun, 2015].

The AG's news data set classes and their corresmpridbels used for topic

classification are:

1- World 2- Sports 3- Business 4- Science/Technplog

Table 6.2 shows some samples of the AG's newssdditdn our experiments, we

concatenated the title and description fields @nttaining and testing processing.

Table 6.2. AG's news data set samples.
Class Title Description

An industrial city northwest of Moscow
struggles as AIDS hits a broader
population.

1 On front line of AIDS in
Russia.

Michael Phelps won the gold medal in the
2 Giddy Phelps Touches Gold 400 individual medley and set a world

for First Time. record in a time of 4 minutes 8.26
seconds.
Unions representing workers at Turner
3 Fears for T N pension after Newall say they are 'disappointed' after
talks. talks with stricken parent firm Federal
Mogul.
4 IBM Chips May Someday New technology applies electrical fuses

Heal Themselves. to help identify and repair faults.
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Table 6.3 presents some statistics of the AG's matasset documents. This statistics

were acquired in the text encoding process.

Table 6.3. AG's news documents statistics.

Sentences per sample Words per sentence
Data Set . ]
Min Max Mean Stdev Min Max Mean Stdev
Testing 1 24 2.64 0.99 1 131 16.86 11.95
Training 1 19 2.64 0.99 1 128 16.92 11.97

6.1.2 DBPedia Ontology

The DBPedia is a large-scale data set emergedtfrerorowd-sourced community effort to
extract structured information from Wikipedia [Leamn, et al., 2015].

The DBPedia ontology classification data set wasstracted by picking 14 non-
overlapping classes from the original DBPedia 204#hg only the title and abstract fields
of each Wikipedia article. From each of these lblogy classes, 40,000 training samples
and 5,000 testing samples were randomly choserrefidre, the total size of the training
data set is 560,000 and testing data set is 7§AGhg, Zhao, & LeCun, 2015].

The DBPedia ontology data set classes and theiesmonding labels used for topic

classification are:

1- Company 2- Educational Institution 3- Artist

4- Athlete 5- Office Holder 6- Mean Of Transportati
7- Building 8- Natural Place 9- Village

10- Animal 11- Plant 12- Album

13- Film 14- Written Work
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Table 6.4 shows some samples of the DBPedia ontalata set. In our experiments,

we used only the abstract field on the training @sting processing.

Table 6.4. DBPedia ontology data set samples.

Class Title Abstract
1 Export-Import Bank of Exim Bank is The Export-Import Bank of
Romania. Romania based in Bucharest.
2 Strong Vincent High School. S_trong Vmcgnt H_|gh School is a public
high school in Erie Pennsylvania.
3 Lizzy Pattinson. Ellzabeth Lizzy Pa.ttlnson Is an English
singer and songwriter.
4 . . Henry Russell Nicoll (1883—-1948) was a
Henry Nicoll (cricketer). Scotfish cricketer.
Samuel Douglas (1781-July 8 1833) was
5 Samuel Douglas. a Pennsylvania lawyer and state Attorney
General.
6 INS Sharada (P55). INS Sharada (P55) is a Sukanya class
patrol vessel of the Indian Navy.
7 Chéateau de Sauveboeuf Chéateau de Sauveboceuf is a chateau in
(Aubas). Dordogne Aquitane France.
8 Lake Pacucha. Lake Pacucha is a lake in Peru.
9 Vindornyaslés. Vindornyassl6s is a village in Zala
county Hungary.
10 Bertula. Bertula is a genus of moths of the
Noctuidae family.
11 Dracula Polyphemus. Drac_ula Polyphemus is a species of
orchid.
12 O Corpo Sutil (The Subtle O Corpo Sutil (The Subtle Body) is an
Body). album by musician Arto Lindsay.
13 . Rahgir is a Bollywood film. It was
Rahgir. released in 1943.
14 Red Claw is a 2009 science fiction novel

Red Claw (novel).

by Philip Palmer.
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Table 6.5 presents some statistics of the DBPautialagy data set documents. This

statistics were acquired in the text encoding msce

Table 6.5. DBPedia ontology documents statistics.

Sentences per sample Words per sentence
Data Set . ]
Min Max Mean Stdev Min Max Mean Stdev
Testing 1 32 2.88 1.59 1 519 17.70 9.63
Training 1 39 2.87 1.58 1 1327 17.73 9.66

6.1.3 Yelp Review Polarity

The original Yelp reviews data set consists of 9,864 reviews extracted from the Yelp
Data Set Challenge 2015 data

The Yelp reviews polarity data set was construdigdconsidering stars 1 and 2
negative and stars 3 and 4 positive. For eachipglaB0,000 training samples and 19,000
testing samples were taken randomly. In total etlaee 560,000 training samples and 38,000
testing samples. Negative polarity is class 1 asitpe is class 2. [Zhang, Zhao, & LeCun,
2015].

Table 6.6 shows some samples of the Yelp reviewsaripo data set. In our

experiments, we used the whole review text fieldhentraining and testing processing.

Table 6.6. Yelp reviews polarity data set samples.

Class Review text

The food is good. Unfortunately, the service isyMat or miss. The
main issue seems to be with the kitchen, the veagrd waitresses are

1 often very apologetic for the long waits and itetfy obvious that some
of them avoid the tables after taking the initieder to avoid hearing
complaints.

Arrived around midnight and the front desk was yefad us, check in
was quick and we were able to turn in. The room ele@an, bed comfy,

2 the desk was huge...but the bathroom was smalhkiBast in the
morning was very convenient, several choices, haaotffee hit the
spot.

5 http://www.yelp.com/dataset_challenge
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Table 6.7 presents some statistics of the Yelgvrevpolarity data set documents. This

statistics were acquired in the text encoding Bsce

Table 6.7. Yelp reviews polarity documents statistics.

Sentences per sample Words per sentence
Data Set . ]
Min Max Mean Stdev Min Max Mean Stdev
Testing 1 105 9.80 8.21 1 545 15.33 10.25
Training 1 148 9.83 8.24 1 745 15.35 10.26

6.1.4 Yelp Review Full

The original Yelp reviews data set consists of 9,864 reviews extracted from the Yelp
Data Set Challenge 2015 data
The Yelp reviews full star data set was construdigdrandomly taking 130,000
training samples and 10,000 testing samples fdr eadew star from 1 to 5. In total, there
are 650,000 training samples and 50,000 testingpkesnizhang, Zhao, & LeCun, 2015].
Table 6.8 shows some samples of the Yelp revievlsstar data set. In our

experiments, we used the whole review text fieldhentraining and testing processing.

Table 6.8. Yelp reviews full star data set samples.

Class Review text

Don't waste your time. We had two different peagene to our house
1 to give us estimates for a deck (one of them theNBEWR)). Both times,
we never heard from them. Not a call, not the esnnothing.

Service was okay, at best. | wouldn't go thereragéey quoted me at
2 thousands of dollars of repairs for my car to paspection. | took it
somewhere else and had it done for a fractioneftiote.

The pizza is great. Other food items might disappdihey do deliver!

3 Service is hit and miss. There is one rude, sreés-bartender... | have
actually seen him through the window and decidegbtsomewhere
else because | was in the mood for good service.

5 http://www.yelp.com/dataset_challenge
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Table 6.8. Yelp reviews full star data set samples.

Class Review text

A good Starbucks. There is always a line at thissdwe to its location

4 but they do a great job of getting people servadkiyy Today | had a
salted camel mocha. It was pretty amazing. Thiatlon also has a
fireplace, which is a nice touch for cold days.

| am a big fan of Max's for their local flair, re@kerman food, and

5 authentic Pittsburgh feeling. They did not sell,@re not overly
commercialized, and should be supported for thg &anding quality
service to the city. Thanks, Max's.

Table 6.9 presents some statistics of the Yelgrevifull star data set documents. This

statistics were acquired in the text encoding Bsce

Table 6.9. Yelp reviews full star documents statistics.

Sentences per sample Words per sentence
Data Set _ .
Min Max Mean Stdev Min Max Mean Stdev
Testing 1 110 9.92 8.27 1 441 15.38 10.18
Training 1 131 9.89 8.20 1 796 1541 10.21

6.1.5 Yahoo! Answers

The original Yahoo! Answers Comprehensive Questiand Answers corpus contains
4,483,032 questions and their answers.

The Yahoo! Answers topic classification data ses wanstructed from the original
Yahoo! Answers Comprehensive Questions and Answa@nsus using the question title,
question content and best answer fields of thafdf&kt main categories. Each class contains
140,000 training samples and 6,000 testing sampleefore, the total number of training
samples is 1,400,000 and testing samples is 6(A&hg, Zhao, & LeCun, 2015].

The Yahoo! Answers data set classes and their soneling labels used for topic
classification are:

1- Society & Culture 2- Science & Mathematics
3- Health 4- Education & Reference

5- Computers & Internet 6- Sports
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7- Business & Finance 8- Entertainment & Music

9- Family & Relationships 10- Politics & Government
Table 6.10 shows some samples of the Yahoo! Ansslaesset. In our experiments,

we concatenated the question title, question com@ted best answer fields on the training

and testing processing.

Table 6.1C. Yahoo! Answers data set samples.

Class Question title/Question content/Best answer

what are the mining of ‘jerban’or 'jarban'?
1 i think this is a arabic or ibree word.
You may have heard "juban" which means coward.

Why does Zebras have stripes?

What is the purpose or those stripes? Who do tbeyeghe Zebras in
2 the wild life?

this provides camouflage - predator vision is stinett it is usually

difficult for them to see complex patterns

Why is it desirable to have a 'grill' on your teeththe hip-hop
community?

3 You know?...the gold caps and designs. They evea &avhole song
dedicated to this trend playing on Mtv.
| think pearly whites are better vs putting anyayy rare metal in your
mouth.

What year did the stock market crash?

4 That caused the so called GREAT DEPRESSION
The stock market crashed in October 1929. Thisdaed the "Great
depression” Hope this helps!

Whos better, Yahoo or Google?
S Out of both email services which is better, YahoailMr Gmail
Though they are not comparable. Yahoo is the best.

what happen to Eddie Guerero?

6 cause of his death
He died of Heart failure do to his past use of dragd of extensive
exercising.

is it good habit to keep ur PC on when u r goingewhere for 5-10
minutes?

7 i dont like to on it again n again
Yeah you can simply lock it, if you are using wimdXP. You can use
Ctrl+Alt+del or WindosButton+L
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Table 6.1C. Yahoo! Answers data set samples.

Class

Question title/Question content/Best answer

10

Do someone know what is the origin of Lenore "th&edittle dead
girl"?

| saw in the cartoon network, and | am think igutiser.

it's inspired by the poem "lenore" by edgar allee.p

I have an interview in a new state. my husband svarg to move there
alone for it. should i just cancel it?

i don't want a divorce or to live without/away frany husband.

I say go he's letting you know that its over reatiteen the lines you
will see it to.

Have married a Chinese National. What is the \aesatoption for her
travel with me when | return to the USA

Currently on overseas assignment in Beijing. Exgebceturn date to US
May 2006’

Apply for a visa in Beijing

Table 6.11 presents some statistics of the Yahswens data set documents. This

statistics were acquired during the text encodmggss.

Table 6.11. Yahoo! Answers documents statistics.

Sentences per sample Words per sentence
Data Set
Min Max Mean Stdev Min Max Mean Stdev
Testing 1 129 7.05 6.63 1 765 15.04 13.05
Training 1 650 7.03 6.69 1 1816 15.06 13.39

6.1.6 Amazon Review Polarity

The original Amazon reviews data set consists ofipct reviews and information about the

users who rated the products. The data span adpefi@8 years, including ~35 million
reviews up to March 2013 [McAuley & Leskovec, 2013]
The Amazon reviews polarity data set was constdulbtetaking reviews with scores

1 and 2 as negatives, and with scores 4 and 5sas/ps. Samples with score 3 were ignored.

In the Amazon reviews polarity data set, class thésnegative and class 2 is the positive.



56 CHAPTERG. EVALUATION

Each class has 1,800,000 training samples and @D@3ting samples [Zhang, Zhao, &
LeCun, 2015].

Table 6.12 shows some samples of the Amazon revplarity data set. In our
experiments, we concatenated the title and revesw fields on the training and testing

processing.
Table 6.12. Amazon reviews polarity data set samples.
Class Review title Review text
| cannot scroll through a DVD menu that is
set up vertically. The triangle keys will only
1 DVD menu select problems select horizontally. So | cannot select

anything on most DVD's besides play. No
special features, no language select, nothing,
just play.

| really enjoyed this book. It shows the
judgmental tendencies in our human race
2 The Scarlet Letter and how one woman strove to live a life of
service to others to gain redemption for her
mistake. Can't go wrong with the classics.

Table 6.13 presents some statistics of the Amaadaws polarity data set documents.

This statistics were acquired during the text enupg@rocess.

Table 6.13. Amazon reviews polarity documents statistics.

Sentences per sample Words per sentence
Data Set
Min Max Mean Stdev Min Max Mean Stdev
Testing 1 38 6.19 2.96 1 321 14.45 9.93

Training 1 81 6.20 2.97 1 384 14.45 9.92
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6.2 Experiments

6.2.1 Methodology

To evaluate the accuracy of our model, we usetieabdseline the results reported in Zhang
et al. [2015].

In all experiments, we used the same values fohyperparameters of our model.

Table 6.14 shows the names of the hyperparametetsttee values used in the
experiments.

Table 6.14. Values of the model hyperparameters used in therexents.

Parameter Value
model.minWordsSentence 1
model.updateLookupTable true

train.epoches 10
train.batchSize 100
train.learningRate le-2

train.momentum 0.9

train.parametersDecay le-19
train.collectgarbage 100
train.validationSize 0
train.shuffle true

The values of the hyperparameters were determimgarieally training and testing
the model using the first 200,000 samples of thea2on reviews polarity data set and
comparing the accuracy with the values reportddiang, Zhao, & LeCun, 2015].

The text of the data sets samples were encodedawdiwithout the use of WordNet
synonyms. The vocabularies were constructed comsglenly the content of the training
samples of each data set.
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Table 6.15 shows the minimum vocable frequencied ts build the vocabularies for

each data set.

Table 6.15. Minimum vocable frequencies used in experiments.

Data Set Minimum Vocable Frequency
AG’s News 10
DBPedia 12
Yelp Review Polarity
Yelp Review Full 5
Yahoo! Answers 12
Amazon Review Polarity 12

The value showed for the Amazon Review Polarityadset corresponds to the
vocabulary built using 2,400,000 training sampldge minimum vocable frequency values
were determined empirically.

The number of network parameters is affected bytuabulary size that, in turn, is
determined by the minimum vocable frequency paramet

Table 6.16 shows the number of distinct vocablesybcabulary size, generated using
the minimum vocable frequency showed in Table 6drf] the total number of model

parameters for each data set.

Table 6.16. Vocabulary size and number of parameters of theéaino

Data Set Distinct Vocables  Vocabulary Size  Model Parameters
AG’s News 100,039 21,028 8,552,404
DBPedia 718,985 63,739 21,370,714
Yelp Review Polarity 372,994 75,670 24,945,202
Yelp Review Full 414,403 82,080 26,869,705
Yahoo! Answers 1,450,085 104,775 33,680,710

Amazon Review Polarity 1,146,245 108,810 34,887,202
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The values showed for the Amazon Review Polaritia dset corresponds to the
vocabulary built using 2,400,000 training samples.

In all experiments, we trained our model for 10&® We did not use any validation
data set. After each epoch, we tested the modabubie data set testing samples. We
reported the model accuracy for each data seteabdst accuracy achieved among the 10
epochs.

We made an experiment with the purpose of evalgdkia impact of the training size
on the accuracy of our model. We chose the Amazone® Polarity data set to make this
experiment because of its huge size. We trainedrmdel using 200,000 samples of the
training data set and repeated the training addmghunks of 200,000 samples up to the
size of 2,400,000 training samples. The testing d&t samples were used in the same
proportion of the samples used in the training dataWe run the experiments encoding the
text with and without the use of WordNet synonyms.

Table 6.17 shows the minimum vocable frequencied tsbuild the vocabularies, the
size of the vocabularies and the total number afehparameters for each size of the training
set used.

Table 6.17. Amazon reviews polarity training data set sizeegipent.

Training Samples  Minimum Frequency  Vocabulary SizeModel Parameters

200,000 5 48,405 16,765,702
400,000 5 70,070 23,265,202
600,000 10 57,419 19,469,902
800,000 10 67,131 22,383,502
1,000,000 10 75,571 24,915,502
1,200,000 10 83,300 27,234,202
1,400,000 12 81,382 26,658,802
1,600,000 12 87,373 28,456,102
1,800,000 12 92,994 30,142,402
2,000,000 12 98,535 31,804,702
2,200,000 12 103,751 33,369,502

2,400,000 12 108,810 34,887,202
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The minimum vocable frequency values were deterdinygargeting the total number
of parameters of the model to the 15~35 millioeinéal.

In this experiment, in addition to comparing thewacy achieved by our model with
the results reported in [Zhang, Zhao, & LeCun, 30%e also trained the state of the art
model implemented by the authors, named Crapsing 200K, 600K, 1,200K and 1,800K

samples to evaluate the impact of the training sizéhe accuracy of their model.

6.2.2 Hardware

Table 6.18 shows the hardware specification for toenputer used to run all the
experiments. The Graphical Processing Unit (GPW da@nated by NVIDIA through the

Academic Hardware Grant Program.

Table 6.18. Computer hardware specification.

Component Manufacturer Model
Motherboard Gigabyte GA-X99-UD3
CPU Intel Core i7-5820K @3.3GHz LGA 2011-v3
RAM G.SKILL Ripjaws 4 - DDR4 - F4-2800C15Q-32GRBB
Hard disk Seagate Barracuda ST2000DM001
GPU NVIDIA Tesla K40 Accelerator Board
Case Nilco NK211 EATX-TF
Power supply EVGA 120-G2-1300-XR

7 https://github.com/zhangxiangxiao/Crepe
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Results

In this chapter, we report and analyze the resiiliise experiments we described in Chapter
6. We initially report the results of the experirteenarried out to evaluate the accuracy of
our model, then we report the results of the expents that we made to evaluate the impact

of the training data set size on the accuracy ohoadel.

7.1 Accuracy

The accuracy of our model is compared with the rsodescribed in Zhang et al. [2015]. In
their paper, the authors implemented 22 modelsddd/iinto 4 classes. The first class
encompasses 5 traditional models that use a hdtettréeature extractor and linear
classifiers. In the second class, the authors imeiged the common vanilla architecture of
LSTM using Word2Vec as the initial representatiamn the words. The third class is
composed by 8 variations of the word based Coniolat Neural Network (CNN) model.
The architectures of this class models are the cmwsparable to our model. This class is
subdivided into 2 classes based on the type oihthal representation used for the words.
The names of the models make reference to thesdassbs. The term “Lk.” stands for
lookup table, which means that the model uses oha@s$the initial word representations.
The models of the other subclass use the Word2¥ ¢eeainitial word representations. The
models, whose names have the term “Th.”, make e dhesaurus for data augmentation.
The terms “Lg.” and “Sm.” designate the size of tygper fully connected layer and

correspond respectively to the 2,048 and 1,024ssikbe fourth class is composed by 8

61
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variations of the character based CNN model. Théaisolabeled “Full” are those that
distinguish between lower and upper letters.

Table 7.1 shows a summary of the results. The ntsrdoe in percentage. The best

accuracy for each data set is printed in bold féibe.table is subdivided into model classes

Table 7.1. Accuracy results summary.

Model APEZfi?; P:)(I?;llrpi)ty T:ill? DBPedia GSWSS Xnasr\l/f/)ec:)r!s
Bow 90.40 92.24 57.99 96.61 88.81 68.89
BowW TFIDF 91.00 93.66 59.86 97.37 89.64 71.04
ngrams 92.02 95.64 56.26 98.63 92.04 68.47
ngrams TFIDF 91.54 95.44 54.80 98.69 92.36 68.51
Bag-of-means 81.61 87.33 52.54 90.45 83.09 60.55
LSTM 93.90 94.74 58.17 98.55 86.06 70.84
Lg. w2v Conv. 94.12 95.40 59.84 98.58 90.08 68.03
Sm. w2v Conv. 94.00 94.44 57.87 98.29

88.65 68.50

Lg. w2v Conv. Th. 94.20 95.37 60.42 98.63 90.09

768.
Sm. w2v Conv. Th. 94.37 94.64 58.91 98.47 89.12 140.
Lg. Lk. Conv. 94.16 95.11 59.48 98.28 91.45 70.94
Sm. Lk. Conv. 94.15 94.46 58.59 98.15 89.13 69.98
Lg. Lk. Conv. Th. 94.48 94.97 59.48 98.42 91.07 181.
Sm. Lk. Conv. Th. 94.49 94.63 58.83 98.23 90.88 091.
Lg. Full Conv. 94.22 94.75 61.60 98.34 90.15 70.10
Sm. Full Conv. 94.22 94.33 61.18 98.11

88.41 69.99

Lg. Full Conv. Th. 94.49 95.12 61.96 98.45 90.49

420
Sm. Full Conv. Th. 94.34 94.58 62.05 98.31 89.11 .100
Lg. Conv. 94.49 94.11 60.38 98.27 87.18 70.45
Sm. Conv. 94.50 93.47 59.16 98.02 84.35 70.16
Lg. Conv. Th. 95.07 94.18 60.70 98.40 86.61 71.20
Sm. Conv. Th. 94.33 93.51 59.84 98.15 85.20 70.16
Deep NLP 95.32 96.05 64.76 98.66 92.26 74.02
Deep NLP WordNet 95.65

96.32 65.62 98.82 92.61 74.53
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The Deep NLP WordNet model surpasses all other faadeall tasks. The Deep NLP
model surpasses all models of the other classabtasks with the exception of the DBPedia
and AG’s News data sets, in which it is surpasgetthé& ngrams TFIDF model.

This result can be explained by two facts. The firge is the fact that the amount of
training samples per class on both data sets aremiallest among all data sets used.

The second fact is that the sample documents ¢f data sets have less than three
sentences on average. Because of our model ekplio#ates intermediate representations
for the sentences, texts with small number of sex@e have a poorest semantic context.

The worst performance of our model on these twa dats can be justified by the
linguistic theory called Poverty of the StimuluO®) [Chomsky, 1980].

Table 7.2 shows a comparison between the numhteaiafng samples per class, the
mean number of sentences per sample and numbeyd#l parameters of the data sets.

Table 7.2. Training data sets comparison.

Data Set Training Samples  Mean Number of Model
per Class Sentences per Sample Parameters
AG’s News 30,000 2.64 8,552,404
DBPedia 40,000 2.87 21,370,714
Yelp Review Polarity 280,000 9.83 24,945,202
Yelp Review Full 130,000 9.89 26,869,705
Yahoo! Answers 140,000 7.03 33,680,710
Amazon Review Polarity 1,200,000 6.20 34,887,202

This adverse scenario helps to show why the usieeoVordNet synonyms provides
robustness to our model making it to surpass tearacy of all other models. Table 7.3
shows the number of vocables in the vocabulary ehoisial Word2Vec representations
were replaced and the number of words in the saanpie replaced by WordNet synonyms
in the AG’s News and DBPedia Ontology data sets.

Table 7.3. Vocabulary generation and text encoding statistsisg WordNet.

Words Replaced in Words Replaced in
Training Samples Testing Samples
AG’s News 50 44,594 3,166

DBPedia 239 107,477 14,651

Data Set Vocables Replaced




CHAPTER7.RESULTS

64

7.2 Training Size

Figure 7.1 summarizes the results of the experirtettwe made to evaluate the impact of

the Amazon Review Polarity data set size on theracy of our model.
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This chart highlights the best accuracy achievedwnh class of the models reported in
[Zhang, Zhao, & LeCun, 2015]. Our model without tlee of WordNet synonyms surpasses
the state of the art model accuracy using halhefttaining samples. Our model using the
WordNet synonyms surpasses the state of the arelnamduracy using one third of the
training samples. The accuracies achieved by #te ef the art character based CNN model
using these volumes of training are significantbyvérs than the ones achieved by our
models.

This chart shows that the accuracy of our modefsistently increases as the size of
the training data set grows. It is also clear that model that make use of the WordNet
synonyms consistently achieved better accuracass ttie ones achieved by the model that
do not use the synonyms.

The results presented on this chart suggest thaigl of the WordNet synonyms not
only decreases the demand for training samplesalsot improves the accuracy of our
model.

Table 7.4 shows the time spent by the Deep NLPGirge models in the training of
ten epochs for each Amazon Review Polarity dataigetused in this experiment. The time
Is presented in hours.

Table 7.4 Training times for the Amazon Review Polarity ds¢d sizes.

Data Set Size Deep NLP Crepe
200,000 5 110
400,000 10 -
600,000 15 120
800,000 20 -

1,000,000 25 -
1,200,000 30 130
1,400,000 35 -
1,600,000 40 -
1,800,000 45 140
2,000,000 50 -
2,200,000 55 -

2,400,000 60 -




Chapter 8

Conclusions

In this work, we proposed a robust deep learnindN@hbdel for text categorization tasks.
The model is robust in the sense that it can aeltiee state of the art accuracy on different
text categorization tasks without the need to adhesmodel hyperparameters for each task.

To achieve the robustness, we incorporated intontioglel many deep learning
concepts and techniques. The concept of compaoaliiprvas used in the design of the deep
CNN architecture to induce the creation of a higanal representation for the text.

We employed the concept of prior knowledge whemser the word embeddings and
semantic synonyms in the text encoding processus#d the concept of specialization when
we allowed the initial word representations to tgisted in the training process, considering
them as parameters of the network.

The concept of depth was used in the design detitere extractor and label predictor
components of the network. The parameter sharidgparse connectivity techniques were
used in the convolutional layers. The overfittingsatackled using the dropout technique
during the training process.

To accelerate the network convergence, we useahitiiebatch momentum version of
the SGD update algorithm and we randomly shuftiedtaining data set before each epoch.
To accelerate the training, making viable the usta@e datasets, we implemented our
model using a language and framework that maketefeeuse of the massively parallel
processing power of the GPUs.

We evaluated our model comparing its accuracy ag#e results reported by some
traditional and deep learning models using sixdasgale data sets. The results showed that
our model outperformed the accuracy of the statehef art models in different text

categorization tasks. The results also showedtileatse of word embeddings and semantic
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synonyms helped to generalize the representateaned by the model increasing its
accuracy.

The main contribution of our work is to show thaten when a large amount of
training samples is available, the use of word eddbwgys is important to achieve a higher
accuracy using less training data, and consequigntiaa shorter processing time.

Another contribution comes from the fact that tize ©f the input text is not limited
by the network architecture of our model. The nundievords and sentences in the input
text is limited only by the amount of GPU’s memadrysimilar works, the size of the input
text is limited by the number of characters, warsdsentences.

Another contribution comes from the implementata@nour model that makes an
efficient use of the massively parallel procesgiogrer of the GPU, which makes it possible

to train huge data sets in a shorter processing tim



Chapter 9
Future Work

The vocabulary size has a huge impact on the nuoflrestwork parameters of our model.
To limit the number of parameters, we only includée vocabulary the vocables that have
a minimum frequency in the training data set. Wagable occurs only in a few training
samples, it is difficult to the model to learn aodaepresentation for it. To overcome this
limitation, as a future work, we propose to empdoglifferent frequency measure that also
takes into account the number of training samgilasthe vocable occurs.

Since our model does not limit the size of the tnfaxt, would be interesting to
evaluate its performance on data sets that hagerldiocuments.

Deconvolution is a visualization technique usedhow the patterns learned by each
layer of a deep CNN in computer vision applicatioAs the design of the deep CNN
architecture of our model induces the creation bifesarchical representation for the input
text, in a future work, we propose the use of teeotivolution technique to discover the
words and sentences of the input text that mostribored to the class predicted by the
model.

Transfer learning is the process of learning neskgaising the experience gained by
solving predecessor problems that are somewhatasinin the context of supervised
learning, transfer learning can be used to trammodel using a data set and use the trained
model to process the samples of a similar datalised. future work, we intend to make
experiments using our model trained on a given skettand evaluate its accuracy on testing
samples of other data sets.

Another interesting work would be to evaluate thpact on the accuracy of our model
caused by the use of word embeddings obtained fiotual texts of a specific domain. For

example, we can train an unsupervised language Inuséiey documents having health,
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drugs and other factual contents in the field oflitiee. Then we can train our model using
these word embeddings on a data set collected fratent’'s posts in health forums and
evaluate the accuracy of the model on the prediatfothe rate given by the patients to a
drug.

The degree of agreement among humans is also kaswruman concordance. In
experiments, this degree is measured using sonfieceer@s and its quality is measure using
inter-rater reliability techniques. There are somerks saying that the rate of human
concordance is between 70% and 79%, and that aagmonlacy for sentiment analysis tools
iIs 70% [Gwet, 2014]. Our model achieved an accutagher than 70%, in most of the
experiments, using data sets whose documents waétenrby humans. How this can be
explained? One hypothesis is that our model is @blearn the discourse used by the group
of people who wrote the content of a given data Akhough deep learning models are
inspired by the working principles of the humanity#hey do not learn to reason. All they
know about the world comes from the training sasplesented to them. Differently from
deep learning models, human beings reason abouetBmg using past experiences
acquired in different contexts. In general, a datlis made up by documents published by
a group of people expressing their experiencesoaimdons about some subject. Although
people of the same group have different experieandpinions, they must agree about the
discourse used to express them. This can explagowhmodel has a better performance in
some text categorization tasks that surpassesauthar concordance.

To verify this hypothesis, in a future work, weeant to train our model using a data
set containing product reviews written by specialeéd evaluate the accuracy of the trained

model on a data set containing product reviewseavriby lay people.
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