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Resumo

Modularidade é um conceito chave em projeto de sistemas de software complexos. No
entanto, decomposição modular ainda é um desafio após décadas de pesquisas para
prover novas formas de modularização de sistemas de software. Uma razão é que mod-
ularização pode não ser vista com uma única perspectiva devido às múltiplas facetas
que um software tem que lidar. Pesquisas em linguagens de programação ainda ten-
tam definir novos mecanismos de modularização que sejam capazes de lidar com essas
diferentes facetas, tal como aspectos e features. Adicionalmente, a estrutura modu-
lar tradicional definida pela hierarquia de pacotes sofre do problema de decomposição
dominante e sabe-se que alternativas de modularização são necessárias para aumen-
tar a produtividade dos desenvolvedores. Para contribuir com uma solução para esse
problema, nesta tese nós propusemos um visão modular alternativa para compreender
e avaliar modularidade em pacotes baseada em co-change clusters, que são arquivos
de código inter-relacionados considerando relações de co-change. Os co-change clus-
ters são classificados em seis padrões considerando suas projeções sobre a estrutura de
pacotes: Encapsulated, Well-Confined, Crosscutting, Black-Sheep, Octopus e Squid. A
abordagem foi avaliada em três estágios diferentes: (i) uma análise quantitativa em
três sistemas do mundo real, (ii) uma análise qualitativa em seis sistemas, implemen-
tados em duas linguagens, para revelar a percepção dos desenvolvedores em relação
aos co-change clusters, (iii) um estudo em larga escala em uma base de 133 proje-
tos hospedados no GitHub implementados em seis linguagens de programação. Por
meio dessas análises pode-se concluir que Encapsulated Clusters são geralmente vistos
como bons módulos e Crosscutting Clusters tendem a ter associação com anomalias de
projeto quando eles representam interesses entrelaçados. Octopus Clusters tem uma
associação estatística significante com efeito em cascata (ripple effect), que de acordo
com desenvolvedores, não são fáceis de implementar de maneira encapsulada.
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Abstract

Modularity is a key concept to embrace when designing complex software systems.
Nonetheless, modular decomposition is still a challenge after decades of research on
new techniques for software modularization. One reason is that modularization might
not be viewed with single lens due to the multiple facets that a software must deal
with. Research in programming languages still tries to define new modularization
mechanisms to deal with these different facets, such as aspects and features. Addition-
ally, the traditional modular structure defined by the package hierarchy suffers from
the dominant decomposition problem and it is widely accepted that alternative forms
of modularization are necessary to increase developer’s productivity. In order to con-
tribute with a solution to this problem, in this thesis we propose a novel technique to
assess package modularity based on co-change clusters, which are highly inter-related
source code files considering co-change relations. The co-change clusters are classified
in six patterns regarding their projection to the package structure: Encapsulated, Well-
Confined, Crosscutting, Black-Sheep, Octopus, and Squid. We evaluated our technique
in three different fronts: (i) a quantitative analysis on four real-world systems, (ii) a
qualitative analysis on six systems implemented in two languages to reveal developer’s
perception of co-change clusters, (iii) a large scale study in a corpus of 133 GitHub
projects implemented in six programming languages. We concluded that Encapsu-
lated Clusters are often viewed as healthy designs and that Crosscutting Clusters tend
to be associated to design anomalies when they represent tangled concerns. Octopus
Clusters have a significant statistical association with ripple effect but they are nor-
mally associated to expected class distributions, which are not easy to implement in
an encapsulated way.
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Chapter 1

Introduction

In this chapter, we first introduce the main problem investigated in this thesis (Sec-
tion 1.1). Next, we present our objectives, contributions (Section 1.2), and an overview
of our technique for assessing modularity of software systems using co-change depen-
dencies (Section 1.2). Section 1.3 presents the publications derived from this thesis.
Finally, we present the thesis outline (Section 1.4).

1.1 Problem

Software systems must continuously support changes to requirements, otherwise they
become progressively useless [Lehman, 1984; Parnas, 1994]. Nonetheless, the original
program modularization may degrade over time, then, reducing its quality [Bavota
et al., 2014]. Thus, the software complexity tends to increase unless attempts to limit
the degradation effect of the changes are performed [Lehman, 1984]. If the complexity
is mismanaged, software maintenance become increasingly hard [Sarkar et al., 2009]
and developers may need to spend significant effort to comprehend and apply changes.
Consequently, maintenance activities can become extremely expensive [Sarkar et al.,
2009]. It is estimated that change costs tend to exceed 70 percent of the software total
cost [Meyer, 2000; Seacord et al., 2003].

In recent years much attention has been focused on reducing software cost [Zim-
mermann et al., 2005; Abdeen et al., 2011; Bavota et al., 2014; Palomba et al., 2013]. A
software implementation that reduce the effort to comprehend and apply changes is cru-
cial for reducing maintenance costs. Particularly, software complexity is an important
factor that affects program comprehension [Curtis et al., 1979]. However, comprehen-
sibility can improve depending on how the system is designed. The common strategy
to reduce complexity is to obtain a modular design. Modularity is a key concept to

1
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embrace when designing complex software systems [Baldwin and Clark, 2003]. The
central idea is to organize the system into manageable parts—named modules—that
can be easily understood.

Dijkstra [1974] introduced the notion of separation of concerns, which is an essen-
tial principle in software development and architecture design. More specifically, this
principle advocates that one module should represent a single concern. Separation of
concerns can be achieved through modular design that involves the software decompo-
sition in encapsulated units [Laplante, 2003]. However, some concerns cannot be easily
encapsulated and, consequently, their scattering over the system’s modules may be a
signal of modularity flaws [Kiczales et al., 1997a; Walker et al., 2012]. For instance,
bad design decisions on separating concerns can increase the amount of structural
dependencies between the modules of a system (high coupling).

In his seminal paper on modularity and information hiding, Parnas [1972] de-
veloped the principle that modules should hide “difficult design decisions or design
decisions which are likely to change”. Similarly, DeRemer and Kron [1975] defined
that, in a modular design, the modules must implement distinct parts of the system
and work together as a whole. The modules should be designed and then implemented
independently from each other. Furthermore, modularity should accommodate future
uncertainty because the specific elements in a modular design may change in latter
stages [Baldwin and Clark, 2006]. In addition, according to Meyer [2000], modularity
covers the combination of extensibility and reusability, which are major factors to assess
external software quality. Consequently, the maintenance and evolution tasks become
easier because the modules can be understood and changed individually [Parnas, 1972;
DeRemer and Kron, 1975]. For instance, eventually a system evolves, new modules
may be replaced for older ones at low cost and in an effortless way. The recommended
practice to decompose a system in packages keeps the classes that have to change to-
gether as close as possible. Therefore, it is fundamental to consider modularity when
assessing the internal quality of software systems [Martin, 2003; Meyer, 2000; Kiczales
et al., 1997a].

Parnas’ principle has deeply impacted the way that systems were designed and
implemented in the last forty years. Nowadays, any developer with a minimal training
on software engineering try to follow Parnas’ insights, consciously or by using pro-
gramming languages and tools that foster information hiding principles. However, the
criteria proposed by Parnas to decompose systems into modules are not widely used to
assess whether — after years of maintenance and evolution — the modules of a system
are indeed able to confine changes. In other words, developers typically do not eval-
uate modular designs using historical data on software changes. Instead, modularity
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is evaluated most of the times from a structural perspective, using static measures of
size, coupling, cohesion, etc [Mitchell and Mancoridis, 2006; Chidamber and Kemerer,
1994; Anquetil et al., 1999; Chidamber and Kemerer, 1991; Stevens et al., 1974].

Specifically, the standard approach to assess modularity relies on structural de-
pendencies established between the modules of a system (coupling) and between the
internal elements from each module (cohesion). Usually, high cohesive and low-coupled
modules are desirable because they ease software comprehension, maintenance, and
reuse. However, structural cohesion and coupling metrics measure a single dimen-
sion of the software implementation (the static-structural dimension). Moreover, it is
widely accepted that traditional modular structures and metrics suffer from the dom-
inant decomposition problem and tend to hinder different facets that developers may
be interested in [Kersten and Murphy, 2006; Robillard and Murphy, 2002, 2007]. The
tyranny of the dominant decomposition refers to the problem of decomposing a system
into modular units. Typically, there are concerns—most of them are non-functional
ones—that crosscut modules on the system, reducing software quality in terms of com-
prehension and evolution [Mens et al., 2004].

In order to mitigate the limitation of structural dependencies, several attempts
have been made for assessing software modularity. Diverse approaches rely on different
dimensions, such as use cases [Ratiu et al., 2009], dynamic information [Ostermann
et al., 2005], software evolution [Mileva and Zeller, 2011; D’Ambros et al., 2009a], and
semantic relations—normally extracted from source code vocabularies using informa-
tion retrieval algorithms [Santos et al., 2014; Kuhn et al., 2005, 2007]. Less frequently,
some works combine static information with evolutionary [Beck and Diehl, 2010] and
semantic relations [Kagdi et al., 2013; Bavota et al., 2014, 2013]. These distinct mod-
ularity views can detect effects of coupling not captured by structural metrics. In
the context of the dynamic view, call relationships between classes that occur dur-
ing program execution are captured to measure software coupling [Arisholm et al.,
2004]. In contrast, under an evolutionary dimension, logical coupling can be extracted
from sets of files that often change together without being structurally close to each
other [Schwanke et al., 2013]. Therefore, to improve current modularity views, it is
important to investigate the impact of design decisions concerning modularity in other
dimensions of a software system, as the evolutionary one.

Despite the large effort in research aiming to define an effective technique for
assessing software modularity, there is no solution widely accepted. This thesis aims
to address the logical dimension by offering an in-depth investigation on the capability
of the modules in a software system to confine changes after years of maintenance and
evolution. Typically, the evolutionary approaches are centered on association rules to
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detect co-change relations [Zimmermann et al., 2005]. Nonetheless, they do not con-
sider the projection of code file sets that usually change together in the traditional
decomposition of a system in modules, such as packages. Our hypothesis for assess-
ing the degree of modularity follows Parnas’ principle, i.e., the greater the number of
changes localized in modules, the better the modularity. However, some changes prop-
agate to other modules but they are associated to expected class distributions due to
the complexity to implement in an encapsulated way. Therefore, we propose a modu-
larity assessment technique that allows developers to investigate how often changes are
localized in modules and to check whether crosscutting changes reveal design problems.

1.2 Research Contributions

Since the first attempts to understand the benefits of modular programming, the
relevance of evolutionary aspects are highlighted. Despite that, we still lack widely
accepted and tested techniques to assess modularity under an evolutionary perspective.
Therefore, the main goal of this PhD work is to propose a new technique to assess
modularity centered on sets of software artifacts that usually changed together in the
past, which we term co-change clusters [Silva et al., 2014b, 2015a]. The proposed
technique also classifies co-change clusters in recurrent patterns regarding their
projection to the package structure.

The contributions proposed in this thesis can be organized in seven specific ones
that together achieved the overall goal of our work, as follows:

1. We propose and evaluate of a technique based on logical dependencies for as-
sessing modularity at the class level. Particularly, we contrast the co-change
modularity with the standard package decomposition. The technique and results
are described in Chapter 3.

2. We define recurrent patterns of co-change clusters denoting Encapsulated, Well-
confined, Crosscutting, Black-sheep, Octopus, and Squid Clusters. These co-
change patterns are presented in Chapter 4.1.

3. We design and implement a prototype tool for the visual exploration and analysis
of co-change cluster patterns, named ModularityCheck [Silva et al., 2014c]. This
tool is presented in Chapter 4.2.

4. We collect the perception of expert developers on co-change clusters, aiming to
answer two central questions: (i) what concerns and changes are captured by the
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extracted clusters? (ii) do the extracted clusters reveal design anomalies?( [Silva
et al., 2015b]) This study design, results, and lessons learned are described in
Chapter 5.

5. We conduct a series of empirical analysis in a large corpus of the most popular
software projects in GitHub, aiming to answer two central questions: (i) Are
co-change patterns detected in different programming languages? (ii) How do
different co-change patterns relate to rippling, activity density, ownership, and
team diversity on clusters? The dataset, study design, quantitative and qualita-
tive results are described in Chapter 6.

The technique proposed in this thesis is directly inspired by the common criteria
used to decompose systems in modules, i.e., modules should confine implementation
decisions that are likely to change [Parnas, 1972]. Figure 1.1 summarizes our technique.
We first extract co-change graphs from the change history in software systems [Beyer
and Noack, 2005]. In such graphs, the nodes are classes and the edges link classes that
were modified together in the same commit transaction. After that, co-change graphs
are automatically processed to produce a new modular facet: co-change clusters, which
abstract out common changes made to a system, as stored in version control platforms.
Thus, co-change clusters represent sets of classes that frequently changed together in
the past.

Figure 1.1. Co-change cluster extraction and visualization

Furthermore, our technique relies on distribution maps [Ducasse et al., 2006]
— a well-known visualization technique (Figure 1.1)—to reason about the projection
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of the extracted clusters in the traditional decomposition of a system in packages.
We then rely on a set of metrics defined for distribution maps to characterize the
extracted co-change clusters. We use six recurrent distribution patterns of co-change
clusters (five patterns were borrowed from distribution map technique). Our technique
allows developers to visualize distribution maps for the system (clusters projected over
packages) and investigate whether the co-change relations represent the expected class
distribution. The patterns guide developers to localize change propagation between
packages and analyze whether such changes represent design problems, e.g., a concern
is not well encapsulated or a class is in the wrong package. Figure 1.2 depicts examples
of projected co-change clusters on distribution maps.

• Encapsulated Clusters (Cluster 1) - clusters that when projected over the package
structure match all co-change classes of their packages.

• Well-Confined Clusters (Clusters 6 and 7) - clusters whose classes are confined
in a single package.

• Crosscutting Clusters (Cluster 4) - clusters whose classes are spread over several
packages, touching few classes in each one.

• Black-Sheep Clusters (Cluster 5) - similar behavior to Crosscutting, but they
touch fewer classes and packages.

• Octopus Clusters (Cluster 2) - clusters that have most classes in one package and
some “tentacles” in other packages.

• Squid Clusters (Cluster 3) - similar to Octopus, the difference is in the body’s
size, which is smaller than Octopus’ body.

Figure 1.2. Co-change pattern examples.

Three patterns—Encapsulated, Crosscutting, and Octopus Clusters—emerged af-
ter an investigation to assess the modularity of four real-world systems [Silva et al.,
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2015a] and the others, after our qualitative study on six systems [Silva et al., 2015b].
For instance, in our first study, most co-change clusters in two systems are Encapsu-
lated, suggesting that the system’s package are well-modularized. In counterpart, the
co-change clusters in another system contains types of patterns that may suggest modu-
larity flaws: several co-change clusters present a Crosscutting behavior and some follow
the Octopus pattern, which may indicate a possible ripple effect during maintenance
activities. Moreover, we also evaluated the semantics of the obtained clusters using
information retrieval techniques. The goal in this particular case was to understand
how similar the issues whose commits were clustered together are.

To reveal developers’ view on the usage of Co-Change Clustering, we conducted
an empirical study with experts on six systems. One system is a closed-source and
large information system implemented in Java and six systems are open-source software
tools implemented in Pharo (a Smalltalk-like language). Our goal in this analysis is
to investigate the developer’s perception of co-change clusters for assessing modular
decompositions. We mined 102 co-change clusters from the version histories of such
systems, which were then classified in three patterns regarding their projection over
the package structure. From the initially computed clusters, 53 clusters (52%) are
covered by the proposed co-change patterns. We analyze each of these clusters with
developers, asking them two questions: (a) what concerns and changes are captured
by the cluster? (b) does the cluster reveal design flaws? Our intention with the
first question is to evaluate whether co-change clusters capture concerns that changed
frequently during the software evolution. With the second question, we aim to evaluate
whether co-change clusters—specially the ones classified as Crosscutting and Octopus
clusters—reveal design (or modularity) flaws.

To conclude our work, we conducted a series of empirical analysis in a large
corpus of 133 popular projects hosted in GitHub implemented in six languages. In
this last study, we considered all six patterns observed in our previous works. We
mined 1,802 co-change clusters from the version histories of such projects, which were
then categorized in six patterns regarding their projection over the package structure.
From the initially computed clusters, 1,719 co-change clusters (95%) are covered by the
proposed co-change patterns. Our goal in this final study is to evaluate whether the
occurrence of certain co-change patterns are associated to programming language and
how different co-change patterns relate to ripple effects, level of activity on clusters, the
number of developers working on the clusters, and the level of ownership on clusters.
Finally, we also analyze clusters with high level of activity to understand the rationale
behind the considered co-change patterns and how they evolve overtime.
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1.3 Publications

Much of the work contained in this thesis was published in conferences and journals
listed below. Each publication is noted in parenthesis for the corresponding chapters.

1. Silva, L. L., Valente, M. T., and Maia, M. (2014). Assessing modularity using
co-change clusters. In 13th International Conference on Modularity, pages 49–60.
Best Paper Award. (Chapter 3)

2. Silva, L. L., Felix, D., Valente, M. T., and Maia, M. (2014). ModularityCheck:
A tool for assessing modularity using co-change clusters. In 5th Brazilian Con-
ference on Software: Theory and Practice, pages 1–8. 3rd Best Tool Award.
(Chapter 4.2)

3. Silva, L. L., Valente, M. T., and Maia, M. (2015). Co-change clusters: Extraction
and application on assessing software modularity. In Transactions on Aspect-
Oriented Software Development XII, volume 8989 of Lecture Notes in Computer
Science, pages 96–131. Springer. (Chapter 3)

4. Silva, L. L., Valente, M. T., Maia, M., and Anquetil, N. (2015). Developers’
perception of co-change patterns: An empirical study. In 31st IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME), pages 21–
30. (Chapters 4.1 and 5)

1.4 Thesis Outline

This thesis is structured in the following chapters:

• Chapter 2 provides basic concepts on co-change graphs, hierarchical clustering
techniques, Latent Similarity Analysis (LSA), software modularity, and distri-
bution maps. This chapter also presents the state-of-the-art on techniques of
assessing modularity.

• Chapter 3 describes the modularity assessment technique proposed in this work,
as well its evaluation.

• Chapter 4 presents six co-change pattern definitions evaluated in this thesis.
This chapter also presents the ModularityCheck tool for the visual exploration
and analysis of co-change clusters.
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• Chapter 5 presents a qualitative evaluation of our technique with experts on six
systems, implemented in two languages (Pharo and Java).

• Chapter 6 presents a large scale study using projects hosted in GitHub with a
series of empirical analyses.

• Chapter 7 concludes this PhD thesis.





Chapter 2

Background

In this chapter, before discussing related work, we present fundamental concepts re-
lated to our thesis. We begin by introducing concepts related to clustering techniques
and the clustering algorithm used in this work (Section 2.1). Next, we present concepts
of information retrieval based on Latent Semantic Analysis (LSA) and linguistic pre-
processing, which can be used to reason about the vocabulary of a system (Section 2.2).
Furthermore, we describe a visualization technique—distribution maps—used in this
work (Section 2.3). Additionally, we review works related to version history analysis
(Section 2.4). Then, we present an overview on different modularity views related to
our work (Section 2.5). Finally, we conclude with a general discussion (Section 2.6).

2.1 Clustering Techniques

This section provides a background on the clustering techniques. We present the tradi-
tional techniques available, such as hierarchical and partitioning clustering. We use
clustering techniques to retrieve clusters of software artifacts that tend to change
together—co-change clusters.

2.1.1 Data and Clustering Concepts

Clustering techniques aim to support the automated and non-trivial extraction of im-
plicit, unknown and potentially useful information from large databases [Tan et al.,
2006]. In general, data mining tasks can be classified as predictive and descriptive.
The former constructs models, with the goal to predict the behavior of unknown data
sets; whereas the later finds interpretable patterns and relationships that describe the
underlying data. Unlike predictive task, a descriptive task does not predict new proper-
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ties but it guides the exploration of properties of the target data set. Particularly, this
section covers the Clustering concepts, a specific descriptive task, since our technique
currently plays upon clustering analysis extracted from co-change graphs.

The understanding of clustering approaches is relevant to our study, since our ap-
proach relies on graph clustering to find co-change clusters. In this section, we present
data preprocessing and partitioning and hierarchical clustering techniques (Section
2.1), a graph clustering algorithm called Chameleon (Section 2.1.2), and agglomerative
merging schemes used to adapt Chameleon to our purpose (Section 2.1.3).

Knowledge mining from data can be described as a process that consists of several
steps. Below we present the major steps in data preprocessing:

• Data cleaning — remove noise and outlier data. There are data objects that
are referred as outliers and noise [Han et al., 2011]. A data object is considered
an outlier when it deviates significantly from the normal objects. It violates the
source that generates the normal data objects. Some application examples: credit
card fraud detection and medical analysis. Outliers are different from noisy data,
in which a measured variable contains random errors or variance, i.e., incorrect
attribute values such as faulty data collection instruments, duplicated records,
and incomplete or inconsistent data.

• Data integration — merge multiple data sources.

• Data reduction — retrieve important data from the database, such as dimension-
ality reduction by removing unimportant attributes.

• Data transformation — apply functions that map the entire set of values of given
attribute to a new set, such as normalization techniques.

• Data mining — apply techniques to extract data patterns, such as clustering
approaches.

Our technique combines data cleaning, data reduction, and data mining steps.
Firstly, we eliminate outliers and noisy data. Then, we reduce the dimensionality by
discarding infrequent attributes. Finally, we use a clustering algorithm to retrieve
co-change clusters.

Cluster analysis [Tan et al., 2006] is the process of grouping data objects into sub-
sets, where a subset is a collection of objects that are similar to each other. Clustering
techniques, as illustrated in Figure 2.1, should produce high quality clusters by ensuring
that intra-cluster distances are minimized (high similarity) and inter-cluster distances
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are maximized (low similarity). Commonly, distance functions, such as the Euclidean
Distance function, and similarity functions are used to compute similarity. To support
software analysis and maintenance activities, several clustering algorithms have been
used to automatically partition a system into semantic clusters [Wu et al., 2005]. Soft-
ware clustering has been applied to decompose systems into meaningful modules, usu-
ally to support system re-modularization [Vanya et al., 2008], comprehension [Kothari
et al., 2006; Robillard and Dagenais, 2010], and architecture recovery [Anquetil and
Lethbridge, 1999; Maqbool and Babri, 2007].

Figure 2.1. Euclidean distance based clustering in a 3-D space.

Clustering techniques are broadly classified in partitioning and hierarchical. A
partitioning approach divides the set of data objects into K clusters such that each data
object is in exactly one cluster. On the other hand, hierarchical clustering technique
yields a tree of clusters, known as a dendrogram. It is further subdivided into agglomer-
ative (bottom-up) and divisive (top-down). An agglomerative clustering process starts
with each data object being a single cluster and repeatedly merges two or more most
appropriate clusters. A divisive clustering starts with a single cluster containing all
data objects and repeatedly splits the most appropriate cluster. The process continues
until a stop criterion is achieved, usually the requested number of K clusters.

2.1.2 Chameleon: A Graph Clustering Algorithm

Chameleon [Karypis et al., 1999] is an agglomerative hierarchical clustering algorithm
designed to handle sparse graphs in which nodes represents data object, and weighted
edges represent similarities among the data objects. Figure 2.2 provides an overview
of the approach, which is divided into the steps described as follows:
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Figure 2.2. Chameleon phases [Karypis et al., 1999].

Input. Chameleon requires as input a matrix whose entries represent the similarity
between data objects. A sparse graph representation is created following a k-nearest-
neighbor graph approach. Each vertex represents a data object and there is an edge
between two vertices u and v if v is among the k most similar points to u or vice-versa.

Constructing a Sparse Graph. In this step, data objects that are far away are com-
pletely disconnected in order to reduce noise. As Chameleon operates on a sparse graph,
each cluster is a subgraph of the sparse graph. The sparse graph allows Chameleon to
deal with large data sets and to successfully use data sets in similarity space.

The clustering algorithm consists of two-phases: i) Partition the Graph and ii)
Merge Partitions.

First Phase - Partition the Graph: A min-cut graph partitioning algorithm is used
to partition the k-nearest-neighbor graph into a pre-defined number of subclusters M .
If the graph contains a single connected component, then the algorithm returns k
subclusters. Otherwise, the number of subclusters after this phase is M plus C, where
C is the number of connected components. Since each edge represents similarity among
objects, a min-cut partitioning is able to minimize the connection among data objects
through the partitions.

Second Phase - Merge Partitions: This phase uses an agglomerative hierarchical
algorithm to merge the small clusters, created by the first phase, repeatedly. Clusters
are combined to maximize the number of links within a cluster (internal similarity)
and to minimize the number of links between clusters (external similarity). Chameleon
models similarity based on the Relative Interconnectivity (RI) and Relative Closeness
(RC) of the clusters. A pair of clusters Ci and Cj are selected to merge when both
RI and RC are high, suggesting that they are well interconnected as well as close
together. RI(Ci, Cj) is their absolute interconnectivity normalized regarding their
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internal interconnectivity. To retrieve the internal interconnectivity of a cluster, the
algorithm sums the edges crossing a min-cut bisection that splits the cluster into two
equal parts. The absolute closeness of clusters is the average weight of the edges that
connect vertices between Ci and Cj. To retrieve the internal closeness, the algorithm
takes the average of the edge weights across a min-cut bisection that splits the cluster
into two equal parts. Similarly to RI, RC(Ci, Cj) is the absolute closeness normalized
regarding the internal closeness of two clusters Ci and Cj.

User-specified Thresholds. In this step, those pairs of clusters in which the user-
specified thresholds exceed relative interconnectivity (TRI) and relative closeness (TRC)
are merged. For each cluster Ci, Chameleon searches for clusters Cj that exceed RI
and RC thresholds.

2.1.3 Agglomerative Merging Function

Chameleon’s authors implemented a software package, named Cluto1, which allows to
use different agglomerative merging schemes in the Chameleon’s second phase. As our
goal is to find co-change clusters in a sparse graph, Chameleon is an appropriated algo-
rithm to cluster data objects — in our case, software artifacts — in a co-change graph
because they are robust concerning to noisy data. The software artifacts discarded
by Chameleon are considered noisy data by the algorithm because they do not belong
to any cluster. The Cluto package includes both traditional and novel agglomerative
merging schemes as follows [Manning et al., 2008; Sneath and Sokal, 1973]:

SLINK - Single-link hierarchical clustering. This scheme merges in each step the
two clusters which have the smallest distance. In other words, the distance between
clusters Ci and Cj is the minimum distance between any data object in Ci and any
data object in Cj. The SLINK scheme is recommended to handle non-globular shapes,
but it is sensitive to noise and outliers producing long clusters. Mahmoud and Niu
[2013] proposed an approach which uses change transactions (commits) to evaluate
clustering algorithms in the context of program comprehension. They analyzed par-
titioning, hierarchical agglomerative, and comprehension-based clustering algorithms.
Their results showed that hierarchical algorithms are the most suitable in recovering
comprehension decompositions, with the exception of the Single-link scheme. More-
over, instability analysis showed that hierarchical algorithms are more stable than other
clustering algorithms.

1http://glaros.dtc.umn.edu/gkhome/views/cluto.
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CLINK - Complete-link hierarchical clustering. This scheme merges in each step
the two clusters whose union has the smallest diameter. In other words, the distance
between clusters is defined by the two most distant objects in the distinct clusters.
CLINK yields balanced clusters, with equal diameter and it is less susceptible to noise.
However, it usually breaks large clusters because all clusters tend to have an equal
diameter, and the small clusters are merged with the larger ones.

UPGMA - Unweighted Pair Group Method with Arithmetic Mean. This scheme
first identifies among all subclusters the two clusters that are more similar to each other
and then consider them as a single cluster, which is referred as a composite cluster.
Subsequently, among the new group of clusters it repeatedly identifies the pair with
the highest similarity, until we reach only two clusters. This is the default merging
scheme in the Cluto package.

I1 - Cohesion based on graphs. This scheme maximizes the sum of the average
pairwise similarities between the objects assigned to each cluster, weighted according
the size of the clusters, as follows:

maximize
k∑

i=1

∑
v ,u∈Si

sim(v , u)

ni

where

k = number of subclusters defined in the first phase.
ni = number of objects in the i -th cluster.
Si = set of objects assigned to the i -th cluster.
sim(v , u) is the similarity between vertices v and u.

I2 - Cohesion based on graphs. This function searches for subclusters to combine,
maximizing the similarity by evaluating how close are the objects in a cluster, as follows:

maximize
k∑

i=1

√ ∑
v ,u∈Si

sim(v , u)

After an exhaustive experiment, we selected the scheme I2 because it represents
better our goals. In other words, it increases cluster densities while maximizing the
internal similarity.
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2.2 Latent Similarity Analysis

This section provides a background on information retrieval techniques. We present
the traditional techniques available, such as linguistic preprocessing and LSA. We use
linguistic preprocessing, LSA, and cosine similarity techniques to evaluate the meaning
of issue reports related to software maintenance activities.

The discussion of Latent Similarity Analysis (LSA) [Deerwester et al., 1990] is
relevant to our technique, since our work evaluates the semantic similarity of issue
reports that are related to a specific cluster in order to improve our understanding of
the clusters’ meaning. LSA is a statistical approach for extracting and representing
the meaning of words. The semantic information is retrieved from a word-document
co-occurrence matrix, where words and documents are considered as points in an
Euclidean space. LSA is based on the Vector Space Model (VSM), an algebraic
representation of documents frequently used in information retrieval [Salton et al.,
1975]. The vector space of a text collection is constructed by representing each
document as a vector with the frequencies of its words. The document vectors add to
a term-by-document matrix representing the full text collection. First, the vocabulary
of terms is determined using feature selection techniques such as tokenization, stop
words removal, domain vocabulary, case-folding, stemming and weighting schemes
(TF-IDF, binary weight) before representing the text data in a numerical form.
Moreover, LSA applies singular value decomposition (SVD) to the term-by-document
matrix as a way of factor analysis. Singular value decomposition is performed on the
matrix to determine patterns in the relationships between the terms and concepts
contained in the text. In SVD, a rectangular matrix is decomposed into the product
of three other matrices—an orthogonal matrix U, a diagonal matrix Σ, and the
transpose of an orthogonal matrix V. Suppose an original term-document matrix
CM×N , where M is the number of terms and N is the number of documents. The
matrix C is then decomposed via SVD into the term vector matrix U , the docu-
ment vector matrix V, and the diagonal matrix Σ (consisting of eigenvalues) as follows:

CM×N = UM×MΣM×NV T
N×N

where U TU = I and V TV = I . The columns of U are the orthogonal eigenvectors of
CCT and I is the identity matrix. The columns of V are the orthogonal eigenvectors
of CTC, and Σ is a diagonal matrix containing the square roots of eigenvalues from U
or V in descending order.

In Subsection 2.2.2 we present a detailed example of how LSA works on docu-
ments.
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2.2.1 Text Pre-processing Tasks

When analyzing text documents, an adequate pre-processing step is crucial to achieve
good results [Manning et al., 2008]. After collecting the documents to be analyzed,
some steps are usually performed as follows:

Tokenization. The tokenization process is applied on the text chopping character
streams into tokens, discarding special characters, such as punctuation and numbers.
Furthermore, in software artifacts, the CamelCase identifiers are also split into tokens.
Figure 2.3 shows an example of tokenization.

Figure 2.3. Tokenization example from Lucene’s issues.

Stop words removal. In this step, common words which are irrelevant when selecting
documents matching an end-user needs are removed from the vocabulary. Figure 2.4
shows an example of a stop word list.

Figure 2.4. A stop word list.

Case-folding. It is a common strategy by reducing all letters to lower case.

Stemming. Due to grammatical reasons, documents usually contain different forms
of a word, such as walk, walks, walking. The goal of stemming is to reduce the possible
inflectional forms of a word to a common base form.

2.2.2 Applying LSA and Pre-processing Tasks

In order to illustrate how LSA and the aforementioned pre-processing tasks work, we
selected a small sample of documents, as presented in Figure 2.5. The terms in the
figure were stemmed, the stopwords were dropped, and the letters were reduced to
lower case. Figure 2.6 shows the term-by-document matrices with binary frequency (1
if the term is present in the document and 0 otherwise). The matrix in the left side is
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[1] facet lucen taxonomy writer reader
[2] lucen index facet taxonomy
[3] lucen index
[4] facet java lucen search taxonomy reader searcher manag
[5] facet java apach lucen taxonomy directory
[6] facet java lucen children array parent
[7] core lucen index commit
[8] facet lucen index
[9] facet lucen taxonomy
[10] facet lucen taxonomy directory array parallel reader

Figure 2.5. Ten issue reports (documents) after applying the text pre-processing
tasks.

Figure 2.6. An example of term-document matrices.

the term-document matrix representing the documents in Figure 2.5. In the right side,
we have a matrix after pruning terms which appeared only once in all documents. The
goal is to select important words to a issue report in a collection.

Figure 2.7 shows the LSA space of the Figure 2.6 after pruning non frequent
terms. The matrix $tk represents the term vector matrix U , the matrix $dk represents
the document vector matrix V , and $sk represents the diagonal matrix Σ. The result-
ing latent semantic space can be converted back to text format matrix, as shown in
Figure 2.8. Rows are terms, columns are documents. This allows to make comparisons
between terms and documents.
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Figure 2.7. The LSA space.

Figure 2.8. The LSA space in text format matrix.

2.2.3 Cosine Similarity

Cosine similarity measures the cosine of the angle between two vectors −→vi and −→vj
corresponding to the documents di and dj in the semantic space constructed by LSA,
sim(−→vi ,−→vj ) ∈ [−1, 1]:

sim(−→vi ,−→vj ) =
−→vi • −→vj
|−→vi | × |−→vj |

where −→v is the vector norm and • is the vector internal product operator.
Figure 2.9 shows the document-document matrix obtained from LSA space de-

picted in Figure 2.7.

2.3 Distribution Map

Distribution map [Ducasse et al., 2006] has been used in analysis of bugs [Hora et al.,
2012] and cluster semantic analysis [Kuhn et al., 2007; Santos et al., 2014]. It is
a generic technique to make easier the visualization and analysis of how a property
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Figure 2.9. Document-document matrix after applying cosine similarity.

crosscuts several parts of the system or whether it is well-encapsulated. Distribution
maps are typically used to compare two partitions P and Q of the entities from a
system S. Moreover, entities are represented as small squares and the partition P

groups such squares into large rectangles. Finally, partition Q is used to color the
squares. Figure 2.10 shows an example of a distribution map containing 5 packages,
37 classes, and 4 semantic clusters.

Figure 2.10. An Example of a Distribution Map [Ducasse et al., 2006].

Reference partition. The partition P refers to a well defined partition. It represents
the intrinsic structure of the system, e.g., the package structure or the result of a data
clustering. Large squares in Figure 2.10 represent reference partition.

Comparison partition. The partition Q is the result of a specific analysis. Mostly,
it refers to a set of clusters or mutually exclusive properties. To distinguish the
comparison partition from the reference partition, we refer to the former using the
term cluster. The colors in Figure 2.10 represent comparison partition.
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In addition to visualization, distribution maps can be used to quantify the focus
of a given cluster q in relation to the partition P , as follows:

focus(q, P ) =
∑
pi∈P

touch(q, pi) ∗ touch(pi, q)

where
touch(p, q) =

|p ∩ q|
|q|

In this definition, touch(q, pi) is the number of elements of cluster q located in the
partition pi divided by the number of elements in pi that are included in at least a
cluster. Similarly, touch(pi, q) is the number of elements in pi included in the cluster
q divided by the number of elements in q. Focus ranges between 0 and 1, where
the value one means that the cluster q dominates the parts that it touches, i.e., it is
well-encapsulated in such parts.

Furthermore, distribution maps can be used to quantify the spread of a given
cluster q in relation to the partition P , as follows:

spread(q ,P) =
∑
pi∈P

{
1 , touch(q , pi) > 0

0 , touch(q , pi) = 0

Ducasse et al. [2006] proposed a vocabulary with various recurring patterns, but
we present below only patterns which aim at characterizing co-change clusters retrieved
in this work.

Well-encapsulated. This kind of cluster is similar to the reference partition. In our
case, a reference partition represents a package structure. The cluster can be spread
over one or multiple packages, but it should include almost all elements within those
modules. In Figure 2.10, the cluster blue is well-encapsulated, since it dominates the
package 5.

Cross-Cutting. This kind of cluster is spread over several partitions, but only touches
them superficially. In Figure 2.10, the cluster yellow cross-cuts packages 2, 3, and 4.

Octopus. This kind of cluster dominates one package, but also spreads across other
packages, like cross-cutting cluster. In Figure 2.10, the cluster green covers the package
1 and also spread over packages 2, 3, and 4.
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Black Sheep. This kind of cluster crosscuts the system, but it touches very few
elements.

Table 2.1 shows examples of spread and focus extracted from [Ducasse et al.,
2006]. These values were obtained from Figure 2.10.

Table 2.1. Examples of spread and focus calculus.

Color Size Spread Focus Description
red 15 2 0.80 main property
blue 11 1 1.0 well-encapsulated
green 9 4 0.75 octopus
yellow 3 3 0.25 crosscutting

2.4 Version History Analysis

In this section, we review some works on version history analysis that reveal some
concerns they should be taken into account in this kind of data analysis (set of software
artifacts that usually change together). A recent study by Negara et al. [2012] reveals
that the use of data from version history present many threats when investigating source
code properties. For example, developers usually fix failing tests by changing the test
themselves, commit tasks without testing, commit the same code fragment multiple
times (in different commits), or take days to commit changes containing several types
of tasks.

Kawrykow and Robillard [2011] developed a tool for detecting non-essential dif-
ferences in change sets extracted from version histories. Non-essential differences are
defined as low-level code changes that are cosmetic and usually preserve the behavior of
the code. For example, a non-essential modification can be local a rename refactoring,
where all methods that contain references to the renamed element will also be textually
changed. They claimed that such non-essential code modifications can lead approaches,
that are based on historical data, to induce inaccurate high-level interpretations of
software development effort. Their detection technique works on a level of granularity
finer than statement differences because non-essential differences occur within state-
ments or expressions. The results showed that between 2.6% and 15.5% of all method
updates were non-essential modifications. To analyze whether non-essential differences
would interfere in the result obtained by change-based approaches, they implemented
a method to mine association rules similar to the one proposed by Zimmermann et al.
[2005]. They evaluated the quality of the recommendations produced when all method



24 Chapter 2. Background

updates were used to retrieve rules against their quality considering only essential up-
dates. Their approach improved the overall precision of the recommendations by 10.5%
and decreased their recall by 4.2%.

Tao et al. [2012] conducted a large-scale study at Microsoft to investigate the
role of understanding code change processes. The quantitative result was obtained
from an online survey, determining that understanding code changes is a frequent
practice in major development phases. The qualitative result was obtained from a
series of follow-up email interviews, investigating how to improve the effectiveness and
efficiency of the practice in understanding code changes. For example, they concluded
that it is difficult to acquire important information needs to assess quality of a change
such as completeness and consistency because it lacks tool support. Moreover, they
investigated the effect of tangled changes (they refer to it as “composite changes”)
in the context of change understanding. For understanding a tangled change, it is
fundamental to decompose it into sub-changes aligned with their respective issue report.
They provided evidence that understanding such changes requires non-trivial efforts
and a tool support for change decomposition.

Herzig and Zeller [2013] investigated five open-source Java programs and man-
ually classified more than 7,000 change sets as being tangled code changes (group of
distinct changes implemented in a single commit). Such tangled changes can lead ap-
proaches based on version history to consider all changes to all modules as being related,
compromising the resulting analysis. The result of the manual classification shows that
15% of all bug fixing change sets are tangled changes and these can introduce noise
in change data sets. They also proposed a multi-predictor untangling algorithm and
showed that on average, at least 16.6% of all source files are incorrectly associated
with bug reports. Dias et al. [2015] improved the algorithm proposed by Herzig and
Zeller [2011] to untangle changes that were submitted in the same commit transaction.
Their approach relies on three machine learning algorithms to train models that would
predict whether two changes should be in the same cluster. Then, the train models
that consist of pair of changes are clustered to be presented to the user. Their results
reached 88% of accuracy in determining whether two changes should belong to the
same cluster. Finally, they also evaluated the approach by deploying it to 7 developers
during 2 weeks and automatically created clusters of untangled changes with a median
success rate of 91% and average of 75%.

In this work, we propose pre-processing and post-processing tasks to tackle some
threats concerning the use of data from version history. For instance, to discard com-
mits associated to non-essential changes we can remove commits that modify a massive
number of classes [Walker et al., 2012]. As another example, if the project provides bug
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reports we can ease the problem concerning fragmented maintenance tasks in multiple
commits and tangled changes. For the first problem, we can merge commits related to
the same maintenance Issue-ID and the second we can discard commits associated to
multiple maintenance issues.

2.5 Software Modularity Views

In this section, we briefly present some relevant concepts of modular software design,
since our goal in this thesis relies on assessing modularity using co-change clusters. Fur-
ther, we discuss the state-of-the-art on different modularity views, such as traditional
package decomposition, concern-driven, co-change, and hybrid approaches.

According to Parnas [1972], a module represents a responsibility assignment.
During software development, changes are performed constantly in tasks related to
new features, code refactoring, and bug fixing. In a modular software, when one of
these tasks needs to be made, it should change a single module with minimal impact
in other modules [Aggarwal and Singh, 2005]. The benefits of a modular software
are flexibility improvement, comprehensibility, and reduction of system development
time [Parnas, 1972]. These benefits are described as follows:

• Flexibility. Well-designed modules enables drastic changes in one module with
no need to change others.

• Comprehensibility. Assuming that modules represent concerns, the compre-
hension of the system can be achieved by studying a module at a time.

• Managerial. Well-designed modules should be as independent as possible.
Therefore, the development time shortened by allowing distinct groups to work
in different modules independently.

A module has high cohesion if it contains concerns related to each other and
keeps out other concerns. High-cohesive modules make the system as a whole easier to
understand and to make changes. On the other hand, two modules with high coupling
occurs when there are interdependencies between them. As a result, a change in one
module can require changes in other modules. Besides, the strong interdependencies
among modules makes it hard to understand at a glance how modules work.
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2.5.1 Traditional Package Decomposition

Abdeen et al. tackled the problem of assessing modularity in large legacy object-
oriented systems [Abdeen et al., 2011]. They provided a set of coupling and cohesion
metrics to assess packages organization related to package changeability, reusability,
and encapsulation. The metrics were defined considering the types of inter-class de-
pendencies, method call and inheritance relationships. They presented a theoretical
validation of their proposed coupling and cohesion metrics by demonstrating that their
metrics satisfy the mathematical properties.

Wang et al. proposed two quality metrics (succinctness and coverage) to measure
the quality of mined usage patterns of API methods [Wang et al., 2013]. They also
proposed UP-Miner, a tool to mine succinct and high-coverage API usage patterns from
source code. They evaluated their approach quantitatively on a Microsoft code base and
compared the results with those obtained from MAPO [Zhong et al., 2009]. Moreover,
they also conducted a qualitative study with Microsoft developers and observed that
UP-Miner is more effective and outperforms MAPO.

2.5.2 Textual Approaches

Maletic and Marcus [2000] used LSA to retrieve relevant clusters of files using only tex-
tual analysis. The clusters were used to assist in the comprehension of complex systems.
They evaluated a system with 95 KLOC with no external documentation available and
analyzed how the clusters help in comprehension and maintenance activities. Kuhn
et al. [2007, 2005] have proposed an approach to retrieve the linguistic topics in the
source code vocabulary to help program comprehension. The authors introduced Se-
mantic Clustering—a technique based on Latent Semantic Index (LSI)—and clustering
to group software artifacts with similar vocabulary. These clusters denote linguistic
topics, such as identifier names and comments, that reveal the intention of the code.
They applied LSI again to label automatically each cluster with its most important
terms to represent it. Finally, they used the distribution maps to visualize the spread
of the semantic clusters over the system.

Recently, Santos et al. [2014] proposed an approach based on Semantic Clustering
to evaluate software re-modularization. They adapted semantic clustering to help in
software re-modularization. The process to extract semantic clusters differs from Kuhn
et al. [2007] on stop criteria. Kuhn et al. fixed a number of nine clusters independently
of the system size. On the other hand, Santos et al. [2014] replaced the stop criteria by
a threshold, where the agglomerative hierarchical clustering algorithm merges clusters
until all pairs have similarity lower than the threshold value. Moreover, their approach
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relies on a set of metrics that measure conceptual cohesion, spread, and focus. Finally,
they used distribution maps to visualize how the semantic clusters are distributed over
the system.

Semantic Clustering is a technique based on Latent Semantic Analysis (LSA)
and clustering to group source code artifacts that use similar vocabulary. Therefore,
Co-change and Semantic Clustering are conceptually similar techniques, sharing the
same goals. However, they use different data sources (commits vs vocabularies) and
processing algorithms.

2.5.3 Concern Approaches

Several approaches were proposed to help developers and maintainers to manage con-
cerns and features. For example, concern graphs model the subset of a software system
associated with a specific concern [Robillard and Murphy, 2002, 2007]. The main pur-
pose is to provide developers with an abstract view of the program fragments related
to a concern. FEAT is a tool that supports the concern graph approach by enabling
developers to build concern graphs interactively, as result of program investigation
tasks. Aspect Browser [Griswold et al., 2001] and JQuery [Janzen and Volder, 2003]
are other tools that rely on lexical or logic queries to find and document code fragments
related to a certain concern. ConcernMapper [Robillard and Weigand-Warr, 2005] is
an Eclipse Plug-in to organize and view concerns using a hierarchical structure similar
to the package structure. However, in such approaches, the concern model is created
manually or based on explicit input information provided by developers. Moreover, the
relations between concerns are typically syntactical and structural. On the other hand,
in the approach proposed in this thesis, the elements and relationships are obtained by
mining the version history. Particularly, relationships express co-changes and concerns
are retrieved automatically by extracting co-change clusters. Indeed, we could feed
ConcernMapper with co-change concerns defined by the co-change clusters.

Radiu et al. presented a technique based on use-cases to assess logical modularity
of programs [Ratiu et al., 2009]. They mapped the domain knowledge to the program
modules that implement it. Their approach captures the structural decomposition to
represent the program abstraction. They also extracted semantic domain assuming
that a program can be divided into categories such as, persistence, user interfaces,
and business domain. Finally, they analyzed the similarities between the concepts
(e.g., the concepts of the class Dog should embrace the behavior of a dog, nothing
else) and program element names. Several heuristics were used to assess the program
logical modularization identifying a concern scattered along modules, different concerns
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referenced in the same module, and misplacement of classes in packages. In contrast,
our technique bases on issue reports and evolutionary information to assess modularity.

Dit et al. provided a set of benchmarks from Java programs to support evaluation
of several software engineering tasks, such as feature location, developer recommenda-
tions, and impact analysis [Dit et al., 2013]. The datasets contain textual description of
issue reports, method names that were modified when a issue report was implemented,
and execution traces. In addition, they introduced the idea of gold set, where for each
IssueID, it contains the full qualified method names (i.e., package name, class name,
and method name and signature) that were changed when a bug was fixed or when a
feature was added. The gold sets contain only SVN commits that explicitly address
in their log messages the IssueIDs. Similarly, in this thesis our technique uses issue
reports to detect co-change relations that represent maintenance tasks. However, our
goal is not provide a set of benchmarks but mining co-change clusters to support on
modularity assessment.

2.5.4 Co-change Approaches

Co-change mining is used to predict changes [Zimmermann et al., 2005; Robillard and
Dagenais, 2010], to support program visualization [Beyer and Noack, 2005; D’Ambros
et al., 2009a], to reveal logical dependencies [Alali et al., 2013; Oliva et al., 2011],
to improve defect prediction techniques [D’Ambros et al., 2009b], and to detect bad
smells [Palomba et al., 2013].

Ball et al. [1997] introduced the concept of co-change graphs and Beyer and
Noack [2005] improved this concept and proposed a visualization of such graphs to
reveal clusters of frequently co-changed artifacts. A co-change graph is an abstraction
for a version control system (VCS). Suppose a set of change transactions (commits)
in a VCS, defined as T = {T1, T2, . . . , Tn}, where each transaction Ti changes a set of
software artifacts. Conceptually, a co-change graph is an undirected graph G = {V,E},
where V is a set of artifacts and E is a set of edges. An edge (Ci, Cj) is defined between
artifacts (vertices) Ci and Cj whenever there is a transaction Tk, such that Ci, Cj ∈ Tk,
for i 6= j. Finally, each edge has a weight that represents the number of transactions
changing the connected artifacts. Figure 2.11 depicts an example of co-change graph.
The edge between Artifact1 and Artifact2 denotes that such artifacts frequently change
together. In fact, as represented by the edge’s weight, there are 20 transactions that
change both artifacts. Their approach clusters all co-change artifacts (source code files,
configuration scripts, documentation, etc). The vertex color represents its respective
cluster. These vertices are displayed as circles and their area is proportional to the
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frequency that the file was changed. In this work we use the concept of co-change
graphs presented by Ball et al. [1997] to extract co-change clusters. Their technique
differs from ours because we propose preprocessing and post-processing steps, and our
focus is not on software visualization but on modularity analysis.

Figure 2.11. Co-change graph example.

Oliva et al. mined association rules from version histories to extract logical depen-
dencies between software artifacts for identifying their origins [Oliva et al., 2011]. They
conducted a manual investigation of the origins of logical dependencies by reading revi-
sion comments and analyzing code diffs. They conclude that the logical dependencies
involved files which changed together for different reasons, like Java package renamed,
refactoring elements pertaining to a same semantic class, changes in header of Java files,
and annotations package created. Their technique differs from ours because we use is-
sue reports and several preprocessing steps to filter out commits that do not represent
recurrent maintenance tasks, e.g., package rename and refactoring tasks. Moreover,
we mine and classify co-change clusters in recurrent patterns regarding their package
decomposition.

Zimmermann et al. [2005] proposed ROSE, an approach that uses association
rule mining on version histories to suggest possible future changes and to warn missing
changes. Basically, they rely on association rules to recommend further changes, e.g.,
if class A usually co-changes with B, and a commit only changes A, a warning is
given suggesting to check whether B should be changed too. ROSE pre-processes the
system’s version history to extract changes at file level from commit transactions and
also parse these files to find which entities (functions and fields) were changed. As
a final pre-processing step, the large transactions are discarded to remove noise data.
In their evaluation, they extracted association rules from the pre-processed data and
considered only the top ten single-consequent rules ranked by confidence, assuming that
the user does not work with a endless list of suggestions. On average, ROSE can predict
33% of all changed entities. In 70% of all transactions, the three topmost suggestions
contain a correct entity. On the other hand, for rapidly evolving systems, the most
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useful suggestions of ROSE are at the file level. For example, ROSE predicted 45% of
all changed files for the system KOFFICE against 24% for finer granularity. Kagdi and
Maletic mined document repositories (web pages) that frequently co-change in a single
language or multiple languages [Kagdi and Maletic, 2006]. Their approach searches for
documents that co-change in a specific temporal order by mining sequential-patterns.
These patterns were used to define groups of entities that need to be changed together in
a single or multiple versions. They used the revision numbers to determine the order in
which the documents changed, i.e., change-sets with greater revision numbers occurred
after those with lower revision numbers. The recovered patterns provided information
about the documents that are likely to be re-translated or updated in a single version
and in a series of versions. For example, the pattern {kexi.po} → {krita.po} indicates
that these documents were changed in two successive versions in the open-source KDE
system. This pattern was found in the change history of 506 translated documents
across 44 languages, where it can be used to analyze the impact of changes related to
translation. However, co-change clusters are coarse-grained structures, when compared
to the set of classes in association rules or sequential-patterns. They usually have
more classes—at least, four classes according to our thresholds—and are detected less
frequently. Moreover, our goal is not recommend changes or analyze change impact
concerning translation but to use co-change clusters to evaluate whether classes in
terms of co-change are confined in modules.

Wong et al. presented CLIO, an approach that detects and locates modular-
ity violations [Wong et al., 2011]. CLIO compares how components should co-change
according to the modular structure and how components usually co-change retriev-
ing information from version history. A modularity violation is detected when two
components usually change together but they belong to different modules, which are
supposed to evolve independently. First, CLIO extracts structural coupling that repre-
sents how components should change together. Then, it extracts change coupling that
represents how components really change together by mining revision history. Finally,
CLIO identifies modularity violations by comparing the results of structural coupling
with the results of change coupling. They evaluated CLIO using Hadoop Common
and Eclipse JDT. Their results suggested that the detected modularity violations show
various signs of poor design, some of which are not detectable through existing ap-
proaches. In contrast, our technique relies on logical coupling to extract co-change
clusters and then classify them in recurrent patterns regarding their projection to the
package structure. Finally, developers can detect modularity violations by analyzing
the categorized clusters that reveal scattered changes and ripple effects.

D’Ambros et al. [2009a] presented Evolution Radar, a technique to integrate and
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visualize logical coupling information at module and file level, in a single visualization.
Their visualization technique shows the dependencies between a module in focus and
all the other modules of a system. A file is placed according to the logical coupling that
it has with the module in focus. Their tool helps to understand about the evolution of
a system (when modules are removed or added), the impact of changes at both file and
module levels, and the need for system re-modularization. For example, they were able
to detect design issues such as God classes, module dependencies not described in the
documentation, and misplaced files. Similarly, our technique also enables developers
to locate issues that were detected by Evolution Radar. Their technique differs from
ours because some patterns of co-change clusters warn change propagation to support
developers on modularity assessment.

Kothari et al. [2006] proposed an approach to characterize the evolution of sys-
tems by using change clusters to classify different code change activities (e.g., feature
addition, maintenance, etc.) in a time period. First, they identified changes that are
as dissimilar as possible and best represent the modifications activities within a period
of time. Then, the change clusters were obtained by using clustering techniques, classi-
fying all other changes in a time period as being similar to one of the changes selected
previously. The number of changes and the number of change clusters show how much
change occurred in a system and the areas where changes have been occurred can be
identified, allowing managers see when developers has focused on several or few tasks.
In contrast, our goal is not to classify code change activities but allowing developers
to comprehend whether changes in the system are often localized in packages or scat-
tered over several packages. For example, developers can inspect clusters which reveal
change propagation to analyze whether such changes represent design anomalies.

Alali et al. [2013] provided two measures to improve the accuracy of logical cou-
plings by using frequent pattern mining on version history. The existing approaches
suffer from high false-positive rates (i.e., they generate many inaccurate or non rele-
vant claims of coupling). They investigated the problem of reducing the number of
false-positive by ranking the mined patterns. It was introduced two measures, namely
the age of a pattern and the distance among items within a pattern. The distance
describes the position of several files relative to one another within the directory tree.
They mined frequent patterns from eleven open-source systems. The results showed
that patterns usually denote localized changes (above 75%) with 0 and 2 distances
between co-change files. This fact may be an indicative of hidden dependencies and it
can help developers in unusual couplings. About the age of a pattern, they observed
that there is a chance of 40% that a pattern will occur again within four days. In
contrast, we reduce the number of false-positive by considering issue reports to retrieve
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commits that represent maintenance activities. Oliva et al. [2013] proposed an ap-
proach to assess design decay based on commits in version histories. They focused on
the assessment of two particular design smells: rigidity and fragility. The former refers
to ripple effect in which changes in a module can propagate to dependent modules;
whereas the later refers to designs with tendency to break the change in different parts
every time a change is performed. Similar to our work, their approach discard commits
that do not change class files and highly scattered commits. After data collection pro-
cess, they measured rigidity by calculating the number of changed files per commit and
fragility by calculating the distance among file paths contained in a commit. Moreover,
we do not consider distance between co-change files as used by Alali et al. [2013] and
Oliva et al. [2013]. Instead, we classify co-clusters in recurrent patterns regarding their
projection to the package structure (some patterns reveal the presence of ripple effect
and scattered changes between co-change classes).

Vanya et al. [2008] used co-change clusters to support the partitioning of system,
reducing the coupling between parts of a system. Their approach detects co-change
clusters in which a group of files from one part of the system often changes with a group
from another part. They applied the technique in a real industrial system containing
more than 7 MLOC, evolved during more than a decade. First, change sets that
are considered to have a common concern were identified by grouping modifications
based on developer and time stamp. After clustering the change sets, they pruned
clusters containing files from the same part of the system. The remaining clusters
are sorted in decrease order of their cohesion that means how frequently a set of files
co-changed. The ordered list of clusters is a suggestion to developers as to which
potential evolution issues should be addressed first. Their approach differs from ours
because co-change clusters containing files from the same part of the system are not
discarded. Moreover, we categorize co-change clusters to warn co-change relations that
reveal change propagation.

Robillard and Dagenais [2010] evaluated on seven open-source systems whether
change clusters can support developers in their investigation of a software. A change
cluster consists of change sets with a certain amount of elements (fields and methods)
in common. Their approach discards commit transactions that contain too few or too
many changed elements before clustering the transactions. The remaining transactions
are clustered by applying a nearest-neighbor clustering algorithm based on the number
of overlapping elements. Furthermore, they retrieved clusters that matched to a query
and filtered out these clusters by applying four heuristics. A quantitative analysis re-
vealed that less than one in five tasks overlapped with a change cluster. The qualitative
analysis of the recommended clusters showed that only 13% of the recommendation for
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applicable change tasks were feasible to be useful. Kouroshfar [2013] investigated the
impact of co-change dispersion on software quality. His results revealed that co-changes
localized in the same subsystem involve fewer bugs than co-changes crosscutting the
distinct subsystems. In contrast, in this thesis our goal is not to recommend changes
or associate scattered changes to bugs but supporting modularity analysis.

Palomba et al. [2013] proposed HIST, a technique that uses association rule min-
ing on version histories to detect the code smells: Divergent Change, Shotgun Surgery,
Parallel Inheritance, Blob, and Feature Envy. HIST bases on changes at method level
granularity. For each smell, they defined a heuristics to use the association rules dis-
covery or analyze co-changed classes/methods for detecting the distinct bad smells.
For example, the association rules between methods of the same class identify classes
affected by Divergent Change. They evaluated HIST performances in terms of pre-
cision and recall against a manually-produced oracle, and compared with code smell
detection techniques based on static source code analysis [Moha et al., 2010; Tsan-
talis and Chatzigeorgiou, 2009; Fokaefs et al., 2011]. Their technique differs from ours
because our goal is not detect code smell but use co-change clusters—coarse grained-
structures—to support developers to evaluate the package decomposition of the system.

Breu and Zimmermann [2006] proposed an approach (HAM) that defines their
notion of transaction, which is the set of methods inserted by the developer to com-
plete a single development task. They consider that method calls inserted in eight or
more locations (method bodies) define aspect candidates. Although this threshold was
justified based on their previous experience on finding common error patterns from
revision histories, the authors agree that for some projects lower thresholds may be
required. The approach ranks the aspect candidates based on three criteria: 1) the
size of the set of locations where method calls were inserted, 2) penalization in case of
method calls that appears in many transactions, 3) benefit candidates that were intro-
duced in one transaction and extended to additional locations in other transactions.
They consider not only methods that were changed together, but also those changes
that were the same, i.e., the same method call was inserted. Moreover, this is a more
fine-grained notion of change that is interested in finding methods calls to define aspect
candidates. One important difference from their work and ours is that they consider
not only methods that were changed together, but also those changes that were the
same, i.e., the same method call was inserted. Moreover, this is a more fine-grained
notion of change that is interested in finding methods calls to define aspect candidates,
while our approach is interested in evaluate the current modular structure on the point
of view of co-changes.

Adams et al. [2010] proposed a mining technique (COMMIT) to identify concerns



34 Chapter 2. Background

from functions, variables, types, and macros that were changed together. Similarly to
HAM, COMMIT is based on the idea that similar calls and references that are added
or removed into different parts of the program are candidates to refer to the same
concern. This information produces several seed graphs which are concern candidates
because nodes in the graph represent program entities to which calls or references have
been co-added or co-removed. They enhance the quality of the seed graphs as concern
candidates using a filter based on how intentional co-additions and co-removals are. In
other words, they quantify how closely related two entities are measuring how often
the addition or removal of a dependency on one entity matches the addition or removal
of similar dependency on the other. Finally, they rank the seed graphs on the graph
dimension and on the scattering. Their technique differs from our technique because
they generate independent seed graphs, while our technique is centered on a unique
graph.

Mileva and Zeller [2011] mined evolution patterns (changes in the usage of a
module) to assess modularity. An evolution pattern is a code change pattern that
happened during the software evolution from one version to another. They observed
that if a module is present in many evolution patterns, this indicates that its usage
had a significant change. Code changes of this module that change its usage are not
desired to the module’s client. In addition, such changes can lead to potential defects
in the module. In contrast, our technique helps to analyze whether software artifacts
that usually change together are confined in packages.

2.5.5 Hybrid Approaches

Kagdi et al. [2013] combined conceptual and evolutionary couplings for impact analy-
sis in source code, using information retrieval and version history mining techniques.
Gethers et al. [2011] proposed an impact analysis that adapts to the specific mainte-
nance scenario using information retrieval, historical data mining, and dynamic analysis
techniques. However, they did not use any kind of documentation such as issue reports
to discard noisy commits.

Misra et al. [2012] extracted high level component architecture from the underly-
ing source code by combining both syntactic and semantic features. They presented a
clustering approach which combines multiple features for determining the strength of
relatedness between code elements. In the first instance, they extracted the semantic
and syntactic features. Semantic features consist of textual feature, feature based on
class names, public method names, and packaging. Syntactic features include feature
based on inheritance and dependency. In a further step, a class-to-class similarity es-
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timation was computed to estimate a combined similarity score. Next, a clustering
process was applied to discover components of the system. The clusters generated and
the source code were used to identify public methods of all classes in each cluster that
are called by classes in other clusters. These methods represent the interfaces for each
cluster. The clusters were automatically labeled through the selection of meaningful
words, such as class names and textual features for the classes contained in the clus-
ter. They used the public methods to generate the inter-component interactions. The
extracted clusters in the first step were submitted to a clustering hierarchy process.
This last clustering process allowed to group the packages instead of classes at the first
level. It could be achieved by considering the packages as the clusters of classes and
then proceeding further.

Bavota et al. [2014] proposed R3, an automated technique to support re-
modularization based on both structural and semantic information extracted from the
source code. R3 identifies candidate move class refactoring solutions through latent
topics in classes and packages and structural dependencies. It uses RTM (Relational
Topic Models), a statistic topic modeling technique used to represent and analyzing
textual documents and relationship among them [Chang and Blei, 2010]. R3 bases
on the RTM similarity matrix to determine the degree of similarity among classes in
the system and detect classes similar to a specific class for move class refactoring op-
eration. Their evaluation was based on analysis whether the move class operations
suggested by R3 were able to reduce the coupling among packages of nine software
systems. They noted that R3 provides a coupling reduction from 10% to 30% among
software modules. Their technique differs from our technique because they base on
RTM similarity matrix to support re-modularization, while our technique is centered
on co-change clusters to assess modularity.

Beck and Diehl [2010] combined evolutionary and syntactic dependencies to re-
trieve the modular structure of a system. The software clustering approach was used to
recover the architecture based on static structural source code dependencies, evolution-
ary co-change dependencies, and combined structural and evolutionary dependencies.
Evolutionary data on software clustering can produce meaningful clustering results,
since an extensive historical data is available. However, evolutionary dependencies of-
ten cover an insufficient set of classes and it seems to be the major reason structural
dependencies overcome the performance of evolutionary data. Finally, their results
showed that the integration of both kind of data increases the clustering quality. In
contrast, our goal is not recover the architecture but using categorized co-change clus-
ters to support developers for modularity analysis.

Bavota et al. [2013] investigated how different types of coupling aligns with devel-
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oper’s perceptions. They conducted an empirical study with 76 developers including
developers of three open-source projects, students, academic, and industry profession-
als. They considered coupling measures based on structural, dynamic, semantic, and
logical information and evaluate how developers rate the identified coupling links (pairs
of classes). Furthermore, they analyzed if the four measures are able to reproduce a
modularization similar to the original decomposition. Their results showed that a high
number of the coupling relations are captured by semantic and structural measures
that seems to complement each other. Moreover, the semantic measure shows to be
the most appropriate to reconstruct the original decomposition of a system because it
seems to better reflect the developers’ mental model that represents interactions be-
tween entities. However, the developers interviewed in the study evaluated only pairs
of classes. In contrast, in this thesis we retrieve co-change clusters having at least four
classes to evaluate developer’s perceptions.

2.5.6 Critical Analysis

For years, several attempts have been developed aiming to evaluate software modular-
ity [Beyer and Noack, 2005; Zimmermann et al., 2005; Bavota et al., 2014; Palomba
et al., 2013]. Despite modularity being an essential principle in software development,
effective approaches to assess modularity still remain an open problem. Table 2.2 sum-
marizes the most closest empirical studies to our work. In this thesis, we propose
a modularity assessment technique centered on co-change relations. This technique
differs from the presented studies with respect to the follow central aspects:

• Typically, most co-change approaches use association rules; which are a extracted
from version histories. For instance, to evaluate the feasibility of using associ-
ation rules to assess modularity, we performed the Apriori2 algorithm [Agrawal
and Srikant, 1994] several times to extract rules for Lucene system.3 We mined
almost one million association rules with minimum support threshold set to four
transactions, confidence threshold to 50%, and the maximum size to 10 classes for
each rule. Nonetheless, this massive number of rules is a strong limitation to use
such technique to assess modularity. Differently, the technique proposed in Chap-
ter 3 relies on sets of co-changes to assess modularity by comparing co-change
relations with the system’s packages.

2To execute apriori, we relied on the implementation provided in,
http://www.borgelt.net/apriori.html.

3An information retrieval library, http://lucene.apache.org.
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Table 2.2. Summary of empirical studies on recommendation and modularity
analysis.

Study Goal Technique Results Data Source

[Santos et al., 2014] Software re- Semantic project semantic clusters Vocabularymodularization clustering on distribution maps
Robillard and Weigand-Warr Manage concerns Create concern concern relations Developer2005 and features model manually Syntactical and structural

[Beyer and Noack, 2005] Software Co-change clusters of Commitsvisualization clustering co-change artifacts

[Zimmermann et al., 2005] Predict Association Warning after Commitsfurther changes rules applying changes

[Wong et al., 2011] Detect modularity Association Identify Commits and
violations rules and DSM Discrepancies source code

[D’Ambros et al., 2009a] Visualize co-change Association Show logical coupling Commitsinformation rules between modules

[Kothari et al., 2006] Characterize the Change Classify code Commitsevolution of systems clustering change activities

[Vanya et al., 2008] Support the Co-change Listing of clusters Commitspartitioning of system clustering as suggestions

[Robillard and Dagenais, 2010] Recommend changes Change Selected clusters that Commitsclustering matched to a query

[Palomba et al., 2013] Detect code Association Detection of five types Commitssmells rules of code smells

[Misra et al., 2012] Extract high level Clustering Clusters labeled Syntactic and
component architecture Technique automatically Semantic data

[Bavota et al., 2014] Support re- RTM Similarity Identify candidate Structural and
modularization matrix move class refactoring semantic

• Unlike previous works related to cluster extraction to assess modularity, the tech-
nique proposed in this thesis does not extract component architecture or recom-
mend re-modularization. Instead, our technique allows a developer to investigate
how often changes in the system are confined in packages and whether changes
that crosscut the system’s packages can reveal poor design.

2.6 Final Remarks

In this chapter, we presented clustering concepts commonly used in data mining. We
emphasized the difference between existent clustering approaches and the contribution
of the clustering technique used in this work. After that, we discussed several informa-
tion retrieval techniques to preprocess textual documents. We focused on the semantic
information extracted from issue reports, which are used in Chapter 3 to characterize
the semantic similarity of clusters. Next, we provided the concepts of distribution maps
and the recurrent patterns which are used in this thesis to compare the actual package
modularization with co-change clusters. Finally, we presented the state-of-the-art in
version history analysis and approaches based on different software modularity views,
such as textual and co-change aproaches. Nonetheless, the studies do not investigate
whether modules are indeed able to confine changes.





Chapter 3

Co-Change Clustering

This chapter is organized as follows. Section 3.1 presents a technique, called Co-Change
Clustering to extract co-change graphs and co-change clusters from version control
systems. Section 3.2 presents the preliminary results of using co-change clustering, on
four systems. Section 3.3 analyzes the modularity of such systems under the light of
co-change clusters. Section 3.4 analyzes the semantic similarity within the set of issues
related to the extracted clusters. Section 3.5 discusses our results and Section 3.6
presents threats to validity.

3.1 Proposed Technique

This section presents the technique we propose for retrieving co-change graphs and
then for extracting the co-change clusters.

3.1.1 Extracting Co-Change Graphs

In this thesis we rely on the concept of co-change graph proposed by Beyer et al. [Ball
et al., 1997; Beyer and Noack, 2005]. Our technique relies on two inputs: issue reports
available in issue trackers, e.g., Jira, Bugzilla, and Tigris; and commit transactions
retrieved from version control repositories (SVN or GIT). In a further step, several
processing tasks are applied and then a co-change graph is build. Finally, sets of
classes that frequently change together are retrieved, called co-change clusters.

3.1.1.1 Pre-processing Tasks

When extracting co-change graphs, it is fundamental to preprocess the considered
commits to filter out commits that may pollute the graph with noise. We propose the

39
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following preprocessing tasks:

Removing commits not associated to maintenance issues: In early implementation
stages, commits can denote partial implementations of programming tasks, since the
system is under construction [Negara et al., 2012]. When such commits are performed
multiple times, they generate noise in the edges’ weights. For this reason, we consider
just commits associated to maintenance issues. More specifically, we consider as
maintenance issues those that are registered in an issue tracking system. Moreover,
we only consider issues labeled as bug correction, new feature, or improvement. We
followed the usual procedure to associate commits to maintenance issues: a commit is
related to an issue when its textual description includes a substring that represents a
valid Issue-ID in the system’s bug tracking system [D’Ambros et al., 2010; Śliwerski
et al., 2005; Zimmermann et al., 2007].

Removing commits not changing classes: The co-changes considered by our technique
are defined for classes. However, there are commits that only change artifacts like
configuration files, documentation, script files, etc. Therefore, we discard such commits
in order to only consider commits that change at least one class. Finally, we eliminate
unit testing classes from commits because co-changes between functional classes and
their respective testing classes are usually common and therefore may dominate the
relations expressed in co-change graphs.

Merging commits related to the same maintenance issue: When there are multiple
commits referring to the same Issue-ID, we merge all of them—including the changed
classes—in a single commit. Figure 3.1 presents an example for the Geronimo
system.1 The figure shows the short description of four commits related to the issue
GERONIMO-3003. In this case, a single change set is generated for the four commits,
including 13 classes. In the co-change graph, an edge is created for each pair of classes
in this merged change set. In this way, it is possible to have edges connecting classes
modified in different commits, but referring to the same maintenance issue.

Removing commits associated to multiple maintenance issues: We remove commits
that report changes related to more than one maintenance issue, which are usually
called tangled code changes [Herzig and Zeller, 2013]. Basically, such commits are
discarded because otherwise they would result on edges connecting classes modified to

1Geronimo is an application server, http://geronimo.apache.org.
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------------------------------------
Revision: 918360
Date: Wed Mar 03 05:07:00 BRT 2010
Short Description: GERONIMO-3003 create karaf command wrpaper for encryptCommand
Changed Classes: [1 class]
------------------------------------
Revision: 798794
Date: Wed Jul 29 03:54:50 BRT 2009
Short Description: GERONIMO-3003 Encrypt poassoreds and morked attributes in serialized
gbeans and config.xml. Modified from patch by [developer name], many thanks.
Changed Classes: [9 new classes]
------------------------------------
Revision: 799023
Date: Wed Jul 29 16:13:02 BRT 2009
Short Description: GERONIMO-3003 Encrypt poassoreds and morked attributes in serialized
gbeans and config.xml. Modified from patch by [developer name], many thanks. 2nd half
of patch.missed adding one file and several geronimo-system changes earlier.
Changed Classes: [3 new classes]
------------------------------------
Revision: 799037
Date: Wed Jul 29 16:49:52 BRT 2009
Short Description: GERONIMO-3003 Use idea from [developer name] to encrypt config.xml
attributes that are encryptable but reset to plain text by users
Changed Classes: [1 class, also modified in revision 799023]

Figure 3.1. Multiple commits for the issue GERONIMO-3003

implement semantically unrelated maintenance tasks (which are included in the same
commit just by convenience, for example). Figure 3.2 presents a tangled code change
for the Geronimo system.

Revision: 565397
Date: Mon Aug 13 13:21:44 BRT 2007
Short Description: GERONIMO-3254 Admin Console Wizard to auto
generate geronimo-web.xml and dependencies GERONIMO-3394,
GERONIMO-3395, GERONIMO-3396, GERONIMO-3397,
GERONIMO-3398
- First commit of "Create Plan" portlet code. ....
Changed Classes: [25 classes]

Figure 3.2. Single commit handling multiple issues (3254, 3394 to 3398)

Removing highly scattered commits: We remove commits representing highly scattered
code changes, i.e., commits that modify a massive number of classes. Typically, such
commits are associated to refactorings (like rename method) and other software quality
improving tasks (like dead code removal), implementation of new features, or minor
syntactical fixes (like changes to comment styles) [Walker et al., 2012]. Figure 3.3 illus-
trates a highly scattered commit in Lucene. This commit changes 251 classes, located
in 80 packages. Basically, in this commit redundant throws clauses are refactored.

Recent research shows that scattering in commits tends to follow heavy-tailed
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Revision: 1355069
Date: Thu Jun 28 13:39:25 BRT 2012
Short Description: LUCENE-4172: clean up redundant throws clauses
Changed Classes: [251 classes]

Figure 3.3. Highly scattered commit (251 changed classes)

distributions [Walker et al., 2012]. Therefore, the existence of massively scattering
commits cannot be neglected. Particularly, such commits may have a major impact
when considered in co-change graphs, due to the very large deviation between the
number of classes changed by them and by the remaining commits in the system.
Figure 3.4 illustrates this fact by showing a histogram with the number of packages
changed by commits made to the Lucene system.2 As we can observe, 1,310 commits
(62%) change classes in a single package. Despite this fact, the mean value of this
distribution is 51.2, due to the existence of commits changing for example, more than
10 packages.

Figure 3.4. Packages changed by commits in the Lucene system

Considering that our goal is to model recurrent maintenance tasks and considering
that highly scattered commits typically do not present this characteristic, we decided
to remove them during the co-change graph creation. For this purpose, we define that
a package pkg is changed by a commit cmt if at least one of the classes modified by
cmt are located in pkg. Using this definition, we ignore commits that change more

2An information retrieval library, http://lucene.apache.org.
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than MAX_SCATTERING packages. In Section 3.2, we define and explain the values
for thresholds in our method.

3.1.1.2 Post-processing Task

In co-change graphs, the edges’ weights represent the number of commits changing the
connected classes. However, co-change graphs typically have many edges with small
weights, i.e., edges representing co-changes that occurred very few times. Such co-
changes are not relevant considering that our goal is to model recurrent maintenance
tasks. For this reason, there is a post-processing phase after extracting a first co-
change graph. In this phase, edges with weights less than a MIN_WEIGHT threshold
are removed. In fact, this threshold is analogous to the support threshold used by
co-change mining approaches based on association rules [Zimmermann et al., 2005].

3.1.2 Extracting Co-Change Clusters

After extracting the co-change graph, our goal is to retrieve sets of classes that fre-
quently change together, which we call co-change clusters. We propose to extract
co-change clusters automatically, using a graph clustering algorithm designed to han-
dle sparse graphs, as is typically the case of co-change graphs [Beyer and Noack, 2005].
More specifically, we decided to use the Chameleon clustering algorithm, which is an
agglomerative and hierarchical clustering algorithm recommended to sparse graphs.

As reported in Section 2.1.2, there are several clustering criterion functions that
can be applied in the agglomerative phase available in Cluto package. We conducted
pre-experiments with those functions to find which one produces clusters with higher
internal similarity, lower external similarity and higher density. The function i2 (Co-
hesion based on graphs) is the one that best fitted to our goal. We observed that
other functions retrieved several clusters with low density. The i2 function searches
for subclusters to combine, maximizing the similarity by evaluating how close are the
objects in a cluster, as follows:

maximize
k∑

i=1

√ ∑
v ,u∈Si

sim(v , u)

3.1.2.1 Defining the Number of Clusters

A critical decision when applying Chameleon—and many other clustering algorithms—
is to define the number of partitions M that should be created in the first phase of the
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algorithm. To define the “best value” forM we execute Chameleon multiple times, with
different values of M , starting with a M_INITIAL value. Furthermore, in the sub-
sequent executions, the previous tested value is decremented by a M_DECREMENT
constant.

After each execution, we discard small clusters, as defined by a MIN_CLUS-
TER_SZ threshold. Considering that our goal is to extract groups of classes that may
be used as alternative modular views, it is not reasonable to consider clusters with only
two or three classes. If we accept such small clusters, we may eventually generate a
decomposition of the system with hundreds of clusters.

For each execution, the algorithm provides two important statistics to evaluate
the quality of each cluster:

• ESim - The average similarity of the classes of each cluster and the remaining
classes (average external similarity). This value must tend to zero because mini-
mizing inter-cluster connections is important to support modular reasoning.

• ISim - The average similarity between the classes of each cluster (average internal
similarity).

After pruning small clusters, the following clustering quality function is applied
to the remaining clusters:

coefficient(M) =
1

k
∗

k∑
i=1

ISimCi
− ESimCi

max (ISimCi
, ESimCi

)

where k is the number of clusters after pruning the small ones.
The proposed coefficient(M) combines the concepts of cluster cohesion (tight

co-change clusters) and cluster separation (highly separated co-change clusters). The
coefficient ranges from [-1; 1], where -1 indicates a very poor round and 1 an excellent
round. The selected M value is the one with the highest coefficient(M). If the highest
coefficient(M) is the same for more than one value of M , then the highest mean(ISim)

is used as a tiebreaker. Clearly, internal similarity is relevant because it represents how
often the classes changed together in a cluster.

3.2 Co-Change Clustering Results

In this section, we report the results we achieved after following the methodology
described in Section 3.1 to extract co-change clusters for four systems.
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Table 3.1. Target systems (size metrics)

System Description Release LOC NOP NOC

Geronimo Web application server 3.0 234,086 424 2,740
Lucene Text search library 4.3 572,051 263 4,323
JDT Core Eclipse Java infrastructure 3.7 249,471 74 1,829
Camel Integration framework 2.13.1 964,938 828 11,395

Table 3.2. Initial commits sample

System Commits Period

Geronimo 9,829 08/20/2003 - 06/04/2013 (9.75 years)
Lucene 8,991 01/01/2003 - 07/06/2013 (10.5 years)
JDT Core 24,315 08/15/2002 - 08/21/2013 (10 years)
Camel 13,769 04/18/2007 - 06/14/2014 (7 years)

3.2.1 Target Systems and Thresholds Selection

Table 3.1 describes the systems considered in our study, including information on their
function, number of lines of code (LOC), number of packages (NOP), and number of
classes (NOC). We selected these Java projects because they provide a significant num-
ber of commits linked to issue reports, i.e., more evolutionary information to conduct
our experiment. Table 3.2 shows the number of commits extracted for each system and
the time frame used in this extraction.

In order to run the approach, we define the following thresholds:

• MAX_SCATTERING = 10 packages, i.e., we discard commits changing classes
located in more than ten packages. We based on the hypothesis that large transac-
tions typically correspond to noisy data, such as changes in comments formatting
and rename method [Zimmermann et al., 2005; Adams et al., 2010]. However,
excessive pruning is also undesirable, so we adopted a conservative approach
working at package level.

• MIN_WEIGHT = 2 co-changes, i.e., we discard edges connecting classes with
less than two co-changes because an unitary weight does not reflect how often
two classes usually change together [Beyer and Noack, 2005].

• M_INITIAL = NOCG ∗ 0 .20 , i.e., the first phase of the clustering algorithm
creates a number of partitions that is one-fifth of the number of classes in the
co-change graph (NOCG). The higher the M , the higher the final clusters’ size
because the second phase of the algorithm works by aggregating the partitions. In
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this case, the ISim tends to be low because subgraphs that are not well connected
are grouped in the same cluster. We performed several experiments varying M ′s

value, and observed that wheneverM is high, the clustering tends to have clusters
of unbalanced size.

• M_DECREMENT = 1 class, i.e., after each clustering execution, we decrement
the value of M by 1.

• MIN_CLUSTER_SZ = 4 classes, i.e., after each clustering execution, we remove
clusters with less than 4 classes.

We defined the thresholds after some preliminary experiments with the target
systems. We also based this selection on previous empirical studies reported in the lit-
erature. For example, Walker et al. [2012] showed that only 5.93% of the patches in the
Mozilla system change more than 11 files. Therefore, we claim that commits changing
more than 10 packages are in the last quantiles of the heavy-tailed distributions that
normally characterize the degree of scattering in commits. As another example, in the
systems included in the Qualitas Corpus—a well-known dataset of Java programs—the
packages on average have 12.24 classes [Terra et al., 2013; Tempero et al., 2010]. In our
four target systems, the packages have on average 15.87 classes. Therefore, we claim
that clusters with less than four classes can be characterized as small clusters.

3.2.2 Co-Change Graph Extraction

We start by characterizing the extracted co-change graphs. Table 3.3 shows the per-
centage of remaining commits in our sample, after applying the preprocessing filters
described in Section 3.1.1.1: removal of commits not associated to maintenance is-
sues (Pre #1), removal of commits not changing classes and also referring to testing
classes (Pre #2), merging commits associated to the same maintenance issue (Pre #3),
removal of commits denoting tangled code changes (Pre #4), and removal of highly
scattering commits (Pre #5).

As can be observed in Table 3.3, our initial sample for the Geronimo, Lucene, JDT
Core, and Camel systems was reduced to 14.3%, 22.4%, 20.1% and 21.3% of its original
size, respectively. The most significant reduction was due to the first preprocessing
task. Basically, only 32.6%, 39.2%, 38.4%, and 45.0% of the commits in Geronimo,
Lucene, JDT Core, and Camel are associated to maintenance issues (as stored in the
systems issue tracking platforms). Moreover, we analyzed the commits discarded in
first preprocessing task. We observed a substantial number of commits changing a
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Table 3.3. Percentage of unitary commits (i.e., changing a single class) discarded
in the first phase and commits discarded after each preprocessing filters

System Pre #1 Unitary Pre #2 Pre #3 Pre #4 Pre #5
Commits

Geronimo 32.6 39.6 25.2 17.3 16.1 14.3
Lucene 39.2 35.3 34.6 23.6 23.3 22.4
JDT Core 38.4 58.1 32.8 21.7 20.3 20.1
Camel 45.0 44.5 39.7 25.7 21.7 21.3

single class, 39.6% of Geronimo’s, 35.3% of Lucene’s, 58.1% of JDT’s, and 44.5% of
Camel’s commits. These unitary commits may contain configuration or/and script files,
for instance. In addition, as some of these commits are not linked to issue reports, we
cannot assume they represent a complete maintenance task. We also had not analyzed
if these unitary commits are partial implementations of maintenance tasks. This could
be done by inspecting their time frame, for instance. However, these unitary commits
are not useful anyway to evaluate a system in terms of co-changes. There are also
significant reductions after filtering out commits that do not change classes or that
only change testing classes (preprocessing task #2) and after merging commits related
to the same maintenance issue (preprocessing task #3). Finally, a reduction affecting
3% of the Geronimo’s commits, 4% of the Camel’s commits, and nearly 1% of the
commits of the other systems is observed after the last two preprocessing tasks.

After applying the preprocessing filters, we extracted a first co-change graph for
each system. We then applied the post-processing filter defined in Section 3.1.1.2, to
remove edges with unitary weights. Table 3.4 shows the number of vertices (|V |) and
the number of edges (|E|) in the co-change graphs, before and after this post-processing
task. The table also presents the graph’s density (column D).

Table 3.4. Number of vertices (|V |), edges (|E|) and co-change graphs’ density
(D) before and after the post-processing filter

System
Post-Processing

Before After
|V| |E| D |V| |E| D

Geronimo 2,099 24,815 0.01 695 4,608 0.02
Lucene 2,679 63,075 0.02 1,353 18,784 0.02
JDT Core 1,201 75,006 0.01 823 25,144 0.04
Camel 3,033 42,336 0.01 1,498 15,404 0.01

By observing the results in Table 3.4, two conclusions can be drawn. First, co-
change graphs are clearly sparse graphs, having density close to zero in the evaluated
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systems. This fact reinforces our choice to use Chameleon as the clustering algorithm,
since this algorithm is particularly well-suited to handle sparse graphs Karypis et al.
[1999]. Second, most edges in the initial co-change graphs have weight equal to one
(more precisely, around 81%, 70%, 66%, and 64% of the edges for Geronimo, Lucene,
JTD Core, and Camel graphs, respectively). Therefore, these edges connect classes that
changed together in just one commit and for this reason they were removed after the
post-processing task. As result, the number of vertices after post-processing is reduced
to 33.1% (Geronimo), 50.5% (Lucene), 68.5% (JDT Core), and 49.4% (Camel) of their
initial value.

3.2.3 Co-Change Clustering

We executed the Chameleon algorithm having as input the co-change graphs created for
each system (after applying the pre-processing and post-processing filters).3 Table 3.5
shows the value of M that generated the best clusters, according to the clustering
selection criteria defined in Section 3.1.2.1. The table also reports the initial number
of co-change clusters generated by Chameleon and the number of clusters after elim-
inating the small clusters, i.e., clusters with less than four classes, as defined by the
MIN_CLUSTER_SZ threshold. Finally, the table shows the ratio between the final
number of clusters and the number of packages in each system (column %NOP).

Table 3.5. Number of co-change clusters

System M # clusters %NOPAll |V| ≥ 4
Geronimo 108 46 21 0.05
Lucene 68 98 49 0.19
JDT Core 100 35 24 0.32
Camel 251 130 47 0.06

For example, for Geronimo, we achieved the “best clusters” for M = 108, i.e., the
co-change graph was initially partitioned into 108 clusters, in the first phase of the
algorithm. In the second phase (agglomerative clustering), the initial clusters were
successively merged, stopping with a configuration of 46 clusters. However, only 21
clusters have four or more classes (|V | ≥ 4) and the others were discarded, since they
represent “small modules”, as defined in Section 3.2.1. We can also observe that the
number of clusters is considerably smaller than the number of packages. Basically, this

3To execute Chameleon, we relied on the CLUTO clustering package,
http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview.
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fact is an indication that the maintenance activity in the systems is concentrated in
few classes.

Figure 3.5 shows the distribution regarding the size of the extracted co-change
clusters for each system, in terms of number of classes. The extracted clusters have
8.8± 4.7 classes, 11.7± 7.0 classes, 14± 10.4 classes, and 10.2± 11.48 (average ± stan-
dard deviation) in the Geronimo, Lucene, JDT Core, and Camel systems, respectively.
Moreover, the median size is 8 (Geronimo), 11 (Lucene), 10 (JDT Core), and 6 (Camel)
and the biggest cluster has a considerable number of classes: 20 classes (Geronimo),
27 classes (Lucene), 43 classes (JDT Core), and 74 classes (Camel).

Figure 3.5. Co-change clusters size (in number of classes)

Figure 3.6 presents the distribution of the densities of the co-change clusters
extracted for each system.. The clusters have density of 0.80±0.24 (Geronimo), 0.68±
0.25 (Lucene), 0.54± 0.29 (JDT Core), and 0.77± 0.25 (Camel). The median density
is 0.90 (Geronimo), 0.71 (Lucene), 0.49 (JDT Core), and 0.83 (Camel). Therefore,
although co-change graphs are sparse graphs, the results in Figure 3.6 show they have
dense subgraphs with a considerable size (at least four classes). Density is a central
property in co-change clusters, because it assures that there is a high probability of
co-changes between each pair of classes in the cluster.

Figure 3.7 presents the distribution regarding the average weight of the edges in
the extracted co-change clusters for each system. For a given co-change cluster, we
define this average as the sum of the weights of all edges divided by the number of
edges in the cluster. We can observe that the median edges’ weight is not high, being
slightly greater than two in Geronimo, Lucene, and Camel. Whereas, in the JDT Core
it is about four.
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Figure 3.6. Co-change clusters density

Figure 3.7. Cluster average edges’ weight

3.3 Modularity Analysis

In this section, we investigate the application of co-change clusters to assess the quality
of a system’s package decomposition. Particularly, we investigate the distribution of the
co-change clusters over the package structure. For this purpose, we rely on distribution
maps [Ducasse et al., 2006], which are a well-known visualization and comprehension
technique.

Figures 3.8 and 3.9 show the distribution regarding focus and spread of the co-
change clusters for each system. We can observe that the co-change clusters in Geron-
imo and Camel have a higher focus than in Lucene and JDT Core. For example, the
median focus in Geronimo and Camel is 1.00, against 0.55 and 0.30 in Lucene and
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JDT Core, respectively. Regarding spread, Camel has a lower value than the others,
on average the spread is 2.96 against 3.50 (Geronimo), 3.35 (Lucene), and 3.83 (JDT
Core). Figure 3.10 shows a scatterplot with the values of focus (horizontal axis) and
spread (vertical axis) for each co-change cluster. In Geronimo and Camel, we can see
that there is a concentration of clusters with high focus. On the other hand, for Lucene,
the clusters are much more dispersed along the two axis. Eclipse JDT tends to have
lower focus, but also lower spread.
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In the following sections, we analyze examples of clusters which dominate the
packages they touch and clusters scattered over packages, using distribution maps.4

Section 3.3.1 emphasizes clusters with high focus (focus ≈ or = 1.0), since they are
4To extract and visualize distribution maps, we used the Topic Viewer tool [Santos et al., 2014],

available at https://code.google.com/p/topic-viewer.
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Figure 3.10. Focus versus Spread

common in Geronimo. On the other hand, Section 3.3.2 emphasizes scattered concerns,
which are most common in Lucene. Section 3.3.3 reports on both types of clusters in
Eclipse JDT. Finally, analogous to Geronimo, Section 3.3.4 emphasizes clusters with
high focus, since they are common in Camel.

3.3.1 Distribution Map for Geronimo

Figure 3.11 shows the distribution map for Geronimo. To improve the visualization,
besides background colors, we use a number in each class (small squares) to indicate
their respective clusters. The large boxes are the packages and the text below is the
package name.

Considering the clusters with high focus in Geronimo, we found three package
distribution cases:

• Clusters that touch a single package (spread = 1) and dominate it (focus = 1.0).
Four clusters have this behavior. As an example, we have Cluster 2, which
dominates the co-change classes in the package main.webapp.WEBINF.view.-

realmwizard (line 2 in the map, column 3). This package implements a wizard
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Figure 3.11. Distribution map for Geronimo

to configure or create security domains. Therefore, since it implements a specific
functional concern, maintenance is confined in the package. As another example,
we have Cluster 5 (package mail, line 2 in the map, column 4) and Cluster 11
(package security.remoting.jmx, line 6, column 3).

• Clusters that dominate the packages (focus = 1.0) they touch (spread > 1).
We counted eight clusters with this behavior. As an example, we have Clus-
ter 18 (spread = 4), which touches all co-change classes in the following pack-
ages: security.jaas.server, security.jaas.client, security.jaas, and
security.realm (displayed respectively in line 2, columns 1 and 2; line 6, col-
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umn 6; and line 8, column 6). As suggested by their names, these packages
are related to security concerns, implemented using the Java Authentication and
Authorization Service (JAAS) framework. Therefore, the packages are concep-
tually related and their spread should not be regarded as a design problem.
In fact, the spread in this case is probably due to a decision to organize the
source code in sub-packages. As another example, we have Cluster 20 (spread
= 5), which touches all classes in connector.outbound, connector.work.pool,
connector.work, connector.outbound.connectiontracking, and timer.jdbc

(displayed respectively in line 1, column 4; line 6, column 5; line 8, column 4; line
9, column 3; line 11 and column 1). These packages implement EJB connectors
for message exchange.

• Clusters that dominate a package partially (focus ≈ 1.0) and touching some
classes in other packages (spread > 1).5 As an example, we have Cluster 8
(focus = 0.97, spread = 2), which dominates the co-change classes in the pack-
age tomcat.model (line 1 and column 1 in the map), but also touches the class
TomcatServerGBean from package tomcat (line 3, column 4). This class is re-
sponsible for configuring the web server used by Geronimo (Tomcat). Therefore,
this particular co-change instance suggests an instability in the interface provided
by the web server. In theory, Geronimo should only call this interface to configure
the web server, but the co-change cluster shows that maintenance in the model

package sometimes has a ripple effect on this class, or vice-versa. As another
example, we have Cluster 14 (focus = 0.92 and spread = 2), which dominates the
package tomcat.connector (line 1 and column 6 in the map) but also touches
the class TomcatServerConfigManager from package tomcat (line 3, column 4).
This “tentacle” in a single class from another package suggests again an instability
in the configuration interface provided by the underlying web server.

3.3.2 Distribution Map for Lucene

We selected for analysis clusters that are scattered (focus ≈ 0.0), since they are much
more common in Lucene. More specifically, we selected the three clusters in Lucene
with the lowest focus and a spread greater than two. Figure 3.12 shows a fragment of
the distribution map for Lucene, containing the following clusters:

5These clusters are called octopus, because they have a body centered on a single package and
tentacles in other packages [Ducasse et al., 2006].
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Figure 3.12. Part of the Distribution map for Lucene

• Cluster 12 (focus = 0.06 and spread = 3) with co-change classes in the following
packages: index, analysis, and store. Since the cluster crosscuts packages
that provide different services (indexing, analysis, and storing), we claim that it
reveals a modularization flaw in the package decomposition followed by Lucene.
For example, a package like store that supports binary I/O services should hide
its implementation from other packages. However, the existence of recurring
maintenance tasks crosscutting store shows that the package fails to hide its
main design decisions from other packages in the system.

• Cluster 13 (focus = 0.2 and spread = 3), with co-change classes in the following
packages: search, search.spans, and search.function. In this case, we claim
that crosscutting is less harmful to modularity, because the packages are related
to a single service (searching).

• Cluster 28 (focus = 0.21 and spread = 6), with co-change classes in the fol-
lowing packages: index, search, search.function, index.memory, search.-
highlight, and store.instantiated. These packages are responsible for im-
portant services in Lucene, like indexing, searching, and storing. Therefore, as in
the case of Cluster 12, this crosscutting behavior suggests a modularization flaw
in the system.

We also analyzed the maintenance issues associated to the commits responsible for
the co-changes in Cluster 28. Particularly, we retrieved 37 maintenance issues related to
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this cluster. We then manually read and analyzed the short description of each issue,
and classified them in three groups: (a) maintenance related to functional concerns
in Lucene’s domain (like searching, indexing, etc); (b) maintenance related to non-
functional concerns (like logging, persistence, exception handling, etc); (c) maintenance
related to refactorings. Table 3.6 shows the number of issues in each category. As can
be observed, the crosscutting behavior of Cluster 28 is more due to issues related to
functional concerns (59.5%) than to non-functional concerns (8%). Moreover, changes
motivated by refactorings (32.5%) are more common than changes in non-functional
concerns.

Table 3.6. Maintenance issues in Cluster 28

Maintenance Type # issues % issues

Functional concerns 22 59.50
Non-functional concerns 3 8.00
Refactoring 12 32.50

Finally, we detected a distribution pattern in Lucene that represents neither well-
encapsulated nor crosscutting clusters, but that might be relevant for analysis:

• Clusters confined in a single package (spread = 1). Although restricted to a single
package, these clusters do not dominate the colors in this package. But if merged
in a single cluster, they dominate their package. As an example, we have Cluster
20 (focus = 0.22) and Cluster 29 (focus = 0.78) that are both confined in package
util.packed (line 1, column 3). Therefore, a refactoring that splits this package
in sub-packages can be considered, in order to improve the focus of the respective
clusters.

3.3.3 Distribution Map for JDT Core

Figure 3.13 shows the distribution map for JDT Core. We selected three distinct types
of clusters for analysis: a scattered cluster (focus ≈ 0.0 and spread >= 3), clusters
confined in a single package, and a cluster with high spread.

• Clusters with crosscutting behavior. We have Cluster 4 (focus = 0.08 and spread =
4) with co-change classes in the following packages: internal.compiler.lookup,
internal.core, core.dom, and internal.core.util. The core.util pack-
age provides a set of tools and utilities for manipulating .class files and Java
model elements. Since the cluster crosscuts packages providing different services
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Figure 3.13. Part of the Distribution map for JDT Core

(document structure, files and elements manipulation, population of the model,
compiler infrastructure), we claim that it reveals a modularization flaw in the
system.

• Clusters confined in a single package (spread = 1). We have Cluster 0 (focus =
0.48), Cluster 5 (focus = 0.35), and Cluster 6 (focus = 0.07) in the core.dom

package (line 1, column 1).

• Clusters that dominate a package partially (focus ≈ 1.0) and touching some
classes in other packages (spread > 1). We have Cluster 3 (focus = 0.87 and
spread = 8), which dominates the co-change classes in the packages search.jdt.-
internal.core.search.matching and search.jdt.core.search. These pack-
ages provide support for searching the workspace for Java elements matching a
particular description. Therefore, a maintenance in this of the cluster usually has
a ripple effect in classes like that.

3.3.4 Distribution Map for Camel

Figure 3.14 shows the distribution map for Camel. We selected two types of cluster for
analysis: a cluster that dominates the packages it touches (focus = 1.0) and a partially
dominant cluster (focus ≈ 1.0).
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Figure 3.14. Distribution map for Camel

• Clusters that touch a single package (spread = 1) and dominate it (focus = 1.0) .
Twelve clusters have this behavior. As an example, we have Cluster 0, which dom-
inates the co-change classes in the package component.smpp (line 3 in the map,
column 5). This package provides access to a short message service. Therefore,
since it implements a particular functional concern, the maintenance is confined
in the package.

• Clusters that dominate the packages (focus = 1.0) they touch (spread > 1).
We counted 13 clusters with this behavior. As an example, we have Clus-
ter 17 (spread = 9), which touches all co-change classes in the following
packages: component.twitter, component.twitter.data, component.twit-

ter.producer, component.twitter.consumer.streaming, component.twit-

ter.consumer.directmessage, component.twitter.consumer.search, com-

ponent.twitter.util, component.twitter.consumer, and component.twit-

ter.consumer.timeline. As revealed by their names, these packages are related
to the Twitter API. Therefore, these packages are conceptually related and their
spread should not be regarded as a design problem. In fact, the spread in this
case is probably due to a decision to organize the code in sub-packages.
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• Clusters that dominate a package partially (focus ≈ 1.0) and touching some
classes in other packages (spread > 1). We counted 11 clusters with this be-
havior. As an example, we have Cluster 10 (focus = 0.94, spread = 3), which
dominates the co-change classes in the packages api.management and api.man-

agement.mbean (line 5, column 3; line 1, column 6 in the map), but also touches
the class MBeanInfoAssembler from package management (line 2, columns 2).
This class is responsible for reading details from different annotations, such as
ManagedResource and ManagedAttribute. This co-change cluster shows that
maintenance in api.management and api.management.mbean packages some-
times have a ripple effect on this class, or vice-versa.

3.4 Semantic Similarity Analysis

The previous section showed that the package structure of Geronimo and Camel has
more adherence to co-change clusters than Lucene’s and JDT Core’s. We also observed
that patterns followed by the relation clusters vs. packages can help to assess the
modularity of systems. This section aims at evaluating the semantic similarity of the
issues associated to a specific cluster in order to improve our understanding of the
clusters’ meaning. We hypothesize that if the issues related to a cluster have high
semantic similarity, then the classes within that cluster are also semantically related
and the cluster is semantically cohesive. We assume that an issue is related to a cluster
if the change set of the issue contains at least a pair of classes from that cluster, not
necessarily linked with an edge. In our strategy to evaluate the similarity of the issues
related to a cluster, we consider each short description of an issue as a document
and the collection of documents is obtained from the collection of issues related to a
cluster. We use Latent Semantic Analysis - LSA [Deerwester et al., 1990]—presented
in Section 2.2—to evaluate the similarity among the collection of documents related to
a cluster because it is a well-known method used in other studies concerning similarity
among issues and other software artifacts [Poshyvanyk and Marcus, 2008], [Poshyvanyk
and Marcus, 2007].

3.4.1 Pre-processing Issue Description

When analyzing text documents with Information Retrieval techniques, an adequate
pre-processing of the text is important to achieve good results. We define a domain
vocabulary of terms based on words found in commits of the target system. The
first step is stemming the terms. Next, the stop-words are removed. The final step
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produces a term-document matrix, where the cells have value 1 if the term occurs
in the document and 0 otherwise. This decision was taken after some qualitative
experimentation, in which we observed that different weighting mechanisms based on
the frequency of terms, such as td-idf [Manning et al., 2008], did not improve the
quality of the similarity matrix.

3.4.2 Latent Semantic Analysis

The LSA algorithm is applied to the binary term-document matrix and produces an-
other similarity matrix among the documents (issues) with values ranging from -1 (no
similarity) to 1 (maximum similarity). The LSA matrix should have high values to
denote a collection of issues that are all related among them. However, not all pairs
of issues have the same similarity level, so it is necessary to analyze the degree of sim-
ilarity between the issues to evaluate the overall similarity within a cluster. We used
heat maps to visualize the similarity between issues related to a cluster. Figure 3.15
shows examples of similarity within specific clusters. We show for each system the two
best clusters in terms of similarity in the left, and the two clusters with several pairs
of issues with low similarity in the right. The white cells represent issues that do not
have any word in common, blue cells represent very low similarity, and yellow cells
denote the maximum similarity between the issues. We can observe that even for the
cluster with more blue cells, there is still a dominance of higher similarity cells. The
white cells in JDT’s clusters suggest that there are issues with no similarity between
the others in their respective cluster.

3.4.3 Scoring clusters

We propose the following metric to evaluate the overall similarity of a cluster c:

similarity score(c) =

∑
0<i,j<n−1

j<i

similar(i, j)

(n
2

2
− n)

where

similar(i, j) =

{
0, if LSA_Cosine(i, j) < SIM_THRS

1, Otherwise
n = number of issues related to cluster c
SIM_THRS = 0.4
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Figure 3.15. Examples of heat maps for similarity of issues

The meaning of the similarity score of a cluster is defined upon the percentage
of similar pair of issues. Therefore, a cluster with score = 0.5, means that 50% of pairs
of issues related to that cluster are similar to each other.

In this work, we defined a threshold to evaluate if two issues are similar or
not. We consider the semantic similarity between two issue reports, i and j, as the
cosine between the vectors corresponding to i and j in the semantic space created
by LSA. After experimental testing, we observed that pairs of issues (i, j) that had
LSA_Cosine(i , j ) ≥ 0 .4 had a meaningful degree of similarity. Nonetheless, we agree
that this fixed threshold is not free of imprecision. Similar to our study, Poshyvanyk
and Marcus [2008] used LSA to analyze the coherence of the user comments in bug re-
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ports. The system’s developers classified as high/very high similar the comments with
average similarity greater than 0.33. For this reason, our more conservative approach
seems to be adequate. Moreover, because our goal is to provide an overall evaluation
of the whole collection of co-change clusters, some imprecision in the characterization
of similarity between two issues would not affect significantly our analysis.

Figure 3.16 shows the distribution of score values for Geronimo’s, Lucene’s,
JDT’s, and Camel’s clusters. We can observe that the systems’ clusters follow a similar
pattern of scoring, with 100% (for Lucene, JDT, and Camel) and more than 90% (for
Geronimo) of clusters having more than half pairs of issues similar to each other. Only
two Camel’s clusters have score less than 50% of similarity. Interestingly, one of these
two clusters have 226 issue reports and their similarity is very low.
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Figure 3.16. Distribution of the clusters’ score

3.4.4 Correlating Similarity, Focus, and Spread

Another analysis that we carried out with clusters’ scores was to evaluate the degree of
correlation between the score, focus and spread. Table 3.7 shows the results obtained by
applying the Spearman correlation test. For Geronimo, we observed a strong negative
correlation between spread and score. In other words, the higher is the number of
similar issues in a cluster, the higher is the capacity of the cluster to encompass a
whole package in Geronimo. Interestingly, Lucene does not present the same behavior
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as Geronimo. We observe a weak correlation between focus and score, but we encounter
no significant correlation between spread and score. In the case of Lucene, the higher is
the number of similar issues in a cluster, the lower is the number of packages touched by
the cluster. In the case of Eclipse JDT Core, there is no significant correlation between
focus and score. Although, there is a moderate negative correlation between spread
and score, it is only significant at p-value 0.074. For Camel, we observed a moderate
negative correlation between spread and score. Similar to Geronimo, the higher is the
number of similar issues in a cluster, the higher is the capacity of the cluster to enfold a
whole package in Camel. Considering that the clusters of the analyzed systems follow a
similar pattern of similarity, this result suggests that the similarity between co-changes
induces different properties in the clusters, either in spread or in focus.

Table 3.7. Correlation between score, focus and spread of clusters for Geronimo,
Lucene, JDT Core, and Camel

Correlation Coefficient Score Score Score Score
p-value Geronimo Lucene JDT Camel

Focus 0.264 0.308 −0.015 0.067
0.131 0.016 0.473 0.327

Spread −0.720 −0.178 −0.304 −0.337
0.000 0.111 0.074 0.010

3.5 Discussion

3.5.1 Practical Implications

Software architects can rely on the technique proposed in this chapter to assess modu-
larity under an evolutionary dimension. More specifically, we claim that our technique
helps to reveal the following patterns of co-change behavior:

• When the package structure is adherent to the cluster structure, as in Geronimo’s
and Camel’s clusters, localized co-changes are likely to occur.

• When there is not a clear adherence between co-change clusters and packages,
a restructuring of the package decomposition may improve modularity. Particu-
larly, there are two patterns of clusters that may suggest modularity flaws. The
first pattern denotes clusters with crosscutting behavior (focus ≈ 0 and high
spread). For example, in Lucene and JDT Core, we detected 12 and 10 clusters
related to this pattern, respectively. The second pattern is the octopus cluster
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that suggest a possible ripple effect during maintenance tasks. In Geronimo,
Lucene, and Camel, we detected four, five, and eleven clusters related to this
pattern, respectively.

Nonetheless, we have no evidence that the proposed co-change clusters can fully
replace traditional modular decompositions. Indeed, a first obstacle to this proposal is
the fact that co-change clusters do not cover the whole population of classes in a system.
However, we believe that they can be used as an alternative modular view during
program comprehension tasks. For example, they may provide a better context during
maintenance tasks (similar for example to the task context automatically inferred by
tools like Mylyn [Kersten and Murphy, 2006]).

3.5.2 Clustering vs Association Rules Mining

Our technique is centered on the Chameleon hierarchical clustering algorithm, which
is an algorithm designed to handle sparse graphs [Karypis et al., 1999]. In our case
studies, for example, the co-change graphs have densities ranging from 1% (Camel) to
4% (Eclipse JDT Core).

Particularly, in traditional clustering algorithms, like K-Means [MacQueen, 1967],
the mapping of data items to clusters is a total function, i.e., each data item is allocated
to a specific cluster. Likewise K-Means, Chameleon tries to cluster all data items.
However, it is possible that some vertices are not allocated to any cluster. This may
happen when some vertices do not share any edge with the rest of the vertices or when a
vertice share edges to other vertices that belong to different clusters with no significant
discrepancy among weights.

We also performed an algorithm to detect communities (clusters) [Blondel et al.,
2008], provided by the Gephi Tool6, to compare with our co-change clusters. Similar
to K-Means, this algorithm also allocates each vertice to a particular cluster. Thus,
vertices with few or even one edge are assigned to a cluster leading these clusters to
have lower density than Chameleon’s. Nonetheless, we could define a pos-processing
task to prune such vertices from clusters detected by the community algorithm to
increase their densities. In spite of clusters with lower density, the result suggested the
same pattern we presented in this section, e.g., for Geronimo the package structure is
adherent to the cluster structure and for Lucene, there is not a clear adherence between
co-change clusters and packages.

6http://gephi.github.io/.
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An alternative to retrieve co-change relations is to rely on association rules min-
ing [Agrawal and Srikant, 1994]. In the context of evolutionary coupling, an association
rule Cant ⇒ Ccons expresses that commit transactions changing the classes Cant (an-
tecedent term) also change Ccons classes (consequent term), with a given probability.

However, hundreds of thousands of association rules can be easily retrieved from
version histories. For example, we executed the Apriori7 algorithm [Agrawal and
Srikant, 1994] to retrieve association rules on Lucene’s pre-processed dataset. By defin-
ing a minimum support threshold of four transactions, a minimum confidence of 50%,
and limiting the size of the rules to 10 classes, we mined 976,572 association rules,
with an average size of 8.14 classes. We repeated this experiment with the confidence
threshold of 90%. In this case, we mined 831,795 association rules, with an average
size of 8.23 classes. This explosion in the number of rules is an important limitation
for using association rules to assess modularity, which ultimately is a task that re-
quires careful judgment and analysis by software developers and maintainers. Another
attempt to reduce the number of rules is to select the more interesting ones. There
are several alternative measures available to complement the support and confidence
measures [Piatetsky-Shapiro, 1991], [Omiecinski, 2003]. One of the most well-known
is the lift [Brin et al., 1997]. However, if the rules present high values of lift, it is very
hard to make a precise selection. Another way to reduce the number of rules is to
combine association rules and clustering [Lent et al., 1997].

3.6 Threats to Validity

In this section, we discuss possible threats to validity, following the usual classification
in threats to internal, external, and construct validity:

Threats to External Validity: There are some threats that limit our ability to
generalize our findings. The use of Geronimo, Lucene, JDT Core, and Camel may not
be representative to capture co-change patterns present in other systems. However,
it is important to note that we do not aim to propose general co-change patterns,
but instead we just claim that the patterns founded in the target systems show the
feasibility of using co-change clusters to evaluate modularity under a new dimension.

Threats to Construct Validity: A possible design threat to construct validity is that
developers might not adequately link commit with issues, as pointed out by Herzig and

7To execute apriori, we relied on the implementation provided in,
http://www.borgelt.net/apriori.html.
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Zeller [2013]. Moreover, we also found a high number of commits not associated to
maintenance issues. Thus, our results are subjected to missing and to incorrect links
between commits and issues. However, we claim that we followed the approach com-
monly used in other studies that map issues to commits [D’Ambros et al., 2010],[Zim-
mermann et al., 2007], [Couto et al., 2012], [Couto et al., 2014]. We also filtered out
situations like commits associated to multiple maintenance issues and highly scattered
commits. Another possible construction threat concerns the time frame used to collect
the issues. We considered maintenance activity during a period of approximately ten
years, which is certainly a large time frame. However, we did not evaluate how the
co-change clusters evolved during this time frame or whether the systems’ architecture
has changed.

Finally, our technique only handles co-changes related to source code artifacts
(.java files). However, the systems we evaluated have other types of artifacts, like
XML configuration files. Geronimo for example has 177 Javascript files, 1,004 XML
configuration files, 19 configuration files, and 105 image files. Therefore, it is possible
that we missed some co-change relations among non-Java based artifacts or between
non-Java and Java-based artifacts. However, considering only source code artifacts
makes possible the projection of co-change clusters to distribution maps, using the
package structure as the main partition in the maps.

Threats to Internal Validity: Our technique relies on filters to select the commits used
by the co-change graphs and clusters. Those filters are based on thresholds that can be
defined differently, despite of our careful pre-experimentation. We also calibrated the
semantic similarity analysis with parameters that define the dimensionality reduction
in the case of LSA, and with a threshold in the case of the LSA_Cosine coefficient that
defines when a pair of issues is similar. Although this calibration has some degree of
uncertainty, it was not proposed to get better results favoring one system instead of the
other. We defined the parameters and constants so that coherent results are achieved
in all systems. Moreover, we observed that variations in the parameters’ values would
affect the results for all systems in a similar way.

3.7 Final Remarks

In this chapter, we presented technique to extract an alternative view to the pack-
age decomposition based on co-change clusters. We applied our technique to four
real software systems (Geronimo, Lucene, JDT Core, and Camel). Our results show
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that meaningful co-change clusters can be extracted using the information available
in version control systems. Although co-change graphs extracted from repositories are
sparse, the co-change clusters are dense and have high internal similarity concerning
co-changes and semantic similarity concerning their originating issues. We showed
that co-change clusters and their associated metrics are useful to assess the modular
decomposition of the evaluated systems.





Chapter 4

Co-Change Patterns

In this chapter, we start first by characterizing co-change patterns commonly detected
in co-change clusters (Section 4.1). In Section 4.2, we present ModularityCheck, a tool
for assessing modularity. We also present an example of usage, where ModularityCheck
computes co-change clusters, present metrics values, and categorize recurrent patterns
in Geronimo system.

4.1 Proposed Co-Change Patterns

In this section, we describe in detail six co-change patterns—five patterns were bor-
rowed from distribution map technique, see Section 2.3—aiming to represent common
instances of co-change clusters. The patterns are defined by projecting clusters over
the package structure of an object-oriented system, using distribution maps. Distribu-
tion maps contain classes as small squares in large rectangles, which represent packages.
The color of the classes represent a property; in our specific case, the co-change cluster.

Co-change patterns are defined using two metrics originally proposed for distribu-
tion maps: focus and spread. First, spread measures how many packages are touched
by a cluster q. Second, focus measures the degree the classes in a co-change cluster
dominate their packages. For example, if a cluster touches all classes of a package, its
focus is one. The formal terms are presented in Section 2.3.

Using focus and spread, we describe six patterns of co-change clusters, as follows:

Encapsulated: An Encapsulated co-change cluster q dominates all classes of the pack-
ages it touches, i.e.,

Encapsulated(q), if focus(q) == 1
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Figure 4.1 shows two examples of Encapsulated Clusters.1 All classes in Cluster 9
(blue) are located in the same package, which only has classes in this cluster. Similarly,
Cluster 10 (green) has classes located in three packages. Moreover, these three packages
do not have classes in other clusters.

Figure 4.1. Encapsulated clusters (Glamour)

Well-Confined: Conceptually, the cluster q touches a single package and does not
dominate it. In other words, a co-change cluster q is categorized as Well-Confined
Cluster if:

WellConfined(q), if focus(q) < 1.0 and spread(q) == 1

Figure 4.2 shows a Well-Confined Cluster, this cluster touches a single package
and shares the package it touches with other clusters (its focus is 0.43).

Figure 4.2. Well-Confined cluster (Intellij-Community)

Crosscutting: Conceptually, a Crosscutting Cluster is spread over several packages but
touches few classes in each one. In practical terms, we propose the following thresholds
to represent a Crosscutting cluster q:

Crosscutting(q), if spread(q) ≥ 4 ∧ focus(q) ≤ 0.3

Figure 4.3 shows an example of Crosscutting cluster. Cluster 8 (red) is spread
over seven packages, but does not dominate any of them (its focus is 0.14).

1All examples used in this section are real instances of co-change clusters, extracted from the
subject systems used in this paper, see Section 6.1.2.



4.1. Proposed Co-Change Patterns 71

Figure 4.3. Crosscutting cluster (SysPol)

Black Sheep: whenever a cluster is spread over some packages but touching very few
code files in each one, it is classified as Black Sheep Cluster. The following thresholds
are set to represent a Black Sheep Cluster:

BlackSheep(q) = if spread(q) > 1 ∧
spread(q) < 4 ∧
focus(q) ≤ 0 .10

Figure 4.4 shows an example of Black Sheep Cluster. The cluster red is spread
over three directories and touch very few files in each one (its focus is 0.09).

We also define two co-change patterns with similar behavior. Basically, a cluster
q has a body B and a set of arms T. Most source code files are confined in the body
and the arms have few files, i.e., very low focus.

The following thresholds are set to represent a cluster q with these properties,
which we name Octopus Cluster:

Octopus(q ,B ,T ) = if touch(B , q) > 0.60 ∧
focus(T ) ≤ 0 .25 ∧
focus(q) > 0 .30

Figure 4.5 shows an Octopus cluster, whose body has 22 classes, located in one
package. The cluster has a single tentacle class. When considered as an independent
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Figure 4.4. Black Sheep cluster (Ruby)

sub-cluster, this tentacle has focus 0.005. Finally, the whole Octopus has focus 0.78,
which avoids its classification as Crosscutting or Black-Sheep.

Figure 4.5. Octopus cluster (Moose)

The following thresholds are set to represent a cluster q with these properties,
which we name Squid Cluster:

Squid(q ,B ,T ) = if touch(B , q) > 0.30 ∧
touch(B , q) ≤ 0.50 ∧
focus(T ) ≤ 0 .25 ∧
focus(q) > 0 .3

Figure 4.6 shows a Squid cluster (light blue). The body has two files confined
in a single package and the cluster has one tentacle. The touch of the body is 0.5
and the tentacle has focus 0.11. Finally, this cluster has focus 0.31, which avoids its
categorization as Crosscutting or Black Sheep.
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Figure 4.6. Squid cluster (Platform Frameworks)

We defined focus(q) > 0 .3 to ensure a cluster does not be classified as Crosscut-
ting and Octopus or Squid, simultaneously.

As usual in the case of metric-based rules to detect code patterns [Marinescu,
2004; Lanza and Marinescu, 2006], the proposed strategies to detect co-change patterns
depend on thresholds to specify the expected spread and focus values. To define such
thresholds we based on our previous experiences with co-change clusters extracted for
open-source Java-based systems [Silva et al., 2014b, 2015a]. Typically, low focus values
are smaller than 0.3 and high spread values are greater or equal to four packages.

4.2 ModularityCheck

There is a growing interest in tools to enhance software quality [Kersten and Murphy,
2006; Zimmermann et al., 2005]. Specifically, several tools have been developed for
improving software modularity [Rebêlo et al., 2014; Vacchi et al., 2014; Bryton and
Brito e Abreu, 2008; Schwanke, 1991]. Most of such tools help architects to understand
the current package decomposition. Basically, they extract information from the source
code, using structural dependencies or the source code text [Robillard and Murphy,
2007, 2002].

In this section, we present ModularityCheck tool for understanding and support-
ing package modularity assessment using co-change clusters. The proposed tool has
the following features:

• The tool extracts commits automatically from the version history of the target
system and discards noisy commits by checking their issue reports.

• The tool retrieves set of classes that usually changed together in the past, which
we termed co-change clusters, as described in Chapter 3.

• The tool relies on distribution maps to reason about the projection of the ex-
tracted co-change clusters in the tradition decomposition of a system in packages.
It also calculates a set of metrics defined for distribution maps to support the
characterization of the extracted co-change clusters.
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4.2.1 ModularityCheck in a Nutshell

ModularityCheck supports the following stages to asses the quality of a system package
modularity: pre-processing, post-processing, co-change clusters retrieval, and cluster
visualization. Figure 4.7 shows the process to retrieve co-change clusters. A detailed
presentation of this process is described in Section 3.1.

Figure 4.7. ModularityCheck’s overview.

In the first stage, the tool applies several preprocessing tasks which are responsible
for selecting commits from version history to create the co-change graph. After that,
the co-change graph is automatically processed to produce a new modular facet: co-
change clusters, which abstract out common changes made to a system, as stored in
version control platforms. Finally, the tool uses distribution maps to reason about
the projection of the extracted clusters in the traditional decomposition of a system
in packages. ModularityCheck also provides a set of metrics defined for distribution
maps. Particularly, it is possible to detect recurrent distribution patterns of co-change
clusters listed by the tool.

4.2.2 Architecture

ModularityCheck supports package modularity assessment of systems implemented in
the Java language. The tool relies on the following inputs: (i) the issue reports saved
in XML files; (ii) URL of the version control platform (SVN or GIT). (iii) maximum
number of packages to remove highly scattered commits. (iv) minimum number of
classes in a co-change cluster. We discard small clusters because they may eventually
generate a decomposition of the system with hundreds of clusters. Figure 4.8 shows
the tool’s architecture which includes the following modules:

Co-Change Graph Extraction: As illustrated in Figure 4.8, the tool receives the
URL associated to the version control platform of the target system and the issue
reports. When extracting co-change graphs, it is fundamental to preprocess the con-
sidered commits to filter out commits that may pollute the graph with noise. Firstly,
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Figure 4.8. ModularityCheck’s architecture.

the tool removes commits not associated to maintenance issues because such commits
may denote partial implementations of programming tasks. Secondly, the tool removes
commits not changing classes because the co-changes considered by ModularityCheck
are defined for classes. Thirdly, commits associated to multiple maintenance issues are
removed. Finally, the last pruning task removes highly scattered commits, according
the Maximum Scattering threshold, an input parameter.

Co-Change Cluster Retrieval: After extracting the co-change graph, a post-
processing tasks is applied to prune edges with small weights. Then, in a further
step, Chameleon is performed to retrieve subgraphs with high density. The number of
clusters is defined by executing Chameleon multiple times. After each execution, small
clusters are discarded according to the Minimum Cluster Size threshold informed by
the user. The default value considered by the tool is four classes, i.e., after the clus-
tering execution, clusters with less than four classes are removed.

Metric Set Extraction: The tool calculates the number of vertices, edges, and co-
change graph’s density before and after the post-processing filter. After retrieving the
co-change clusters, the tool presents the final number of clusters and several standard
descriptive statistics measurements. These metrics describes the size and density of
the extracted co-change clusters, and cluster average edges’ weight. Moreover, the
tool presents metrics defined for distribution maps, like focus and spread. Modularity-
Check also allows developers to inspect the distribution of the co-change clusters over
the package structure by using distribution maps. In the package structure, we only
consider classes that are members of co-change clusters, in order to improve the maps
visualization. Finally, all classes in a co-change cluster have the same color.

After measuring focus and spread, the tool classifies recurrent distribution pat-
terns of co-change clusters as previously presented in this chapter. In order to
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Figure 4.9. Filters and metric results.

present ModularityCheck, we provide a scenario of usage involving information from
the Geronimo Web Application Server system, extracted during 9.75 years (08/20/2003
- 06/04/2013). Figure 4.9 shows the results concerning co-change clustering. A detailed
discussion of such results is presented in Section 3.

4.3 Final Remarks

In this chapter, we described six co-change patterns that represent common instances
of co-change clusters. We relied on focus, touch, and spread metrics to characterize
such patterns detected in the clusters. We also described a tool (plugin for Eclipse)
that provides visualizations about co-change clusters. The ultimate goal of Modular-
ityCheck is to extract recurrent patterns to support the comprehension and analysis
of classes that usually change together. This tool can be used as an alternative view
during maintenance tasks to improve developers’ comprehension and detect possible
design anomalies. The proposed tool and information on how to execute it is available
at: http://aserg.labsoft.dcc.ufmg.br/modularitycheck.



Chapter 5

Developers’ Perception on
Co-change Clusters

In this chapter, we report an empirical study with experts on six systems to reveal
developers’ view on the usage of Co-Change Clustering for assessing modular decom-
positions. We start by presenting the research method and steps followed in the study
(Section 5.1). Then, we report the developers’ view on co-change clusters and the
main findings of this study (Section 5.2). In Section 5.3, we put in perspective our
findings and the lessons learned from the study. Finally, we discuss threats to validity
(Section 5.4).

5.1 Study Design

In this section we present the questions that motivated our research (Section 5.1.1).
We also present the dataset (Section 5.1.2), the threshold selection (Section 5.1.3), and
the steps we followed to extract the co-change clusters (Section 5.1.4), and to conduct
the interviews (Section 5.1.5).

5.1.1 Research Questions

With this research, our goal is to investigate from the point of view of expert developers
and architects the concerns represented by co-change patterns. We also evaluate
whether these patterns are able to indicate design anomalies, in the context of Java
and Pharo object-oriented systems. To achieve these goals, we pose three research
questions in the paper:
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RQ #1: To what extent do the proposed co-change patterns cover real instances of
co-change clusters?

RQ #2: How developers describe the clusters matching the proposed co-change
patterns?

RQ #3: To what extent do the clusters matching the proposed co-change patterns in-
dicate design anomalies?

With RQ #1, we check whether the proposed strategy to detect co-change pat-
terns match a representative set of co-change clusters. With the second and third RQs
we collect and organize the developers’ view on co-change patterns. Specifically, with
the second RQ we check how developers describe the concerns and requirements im-
plemented by the proposed co-change patterns. With the third RQ, we check whether
clusters matching the proposed co-change patterns—specially the ones classified as
Crosscutting and Octopus—are usually associated to design anomalies.

5.1.2 Target Systems and Developers

To answer our research questions, we investigate the following six systems: (a) SysPol,
which is a closed-source information system implemented in Java that provides many
services related to the automation of forensics and criminal investigation processes; the
system is currently used by one of the Brazilian state police forces (we are omitting
the real name of this system, due to a non-disclosure agreement with the software
organization responsible for SysPol’s implementation and maintenance); (b) five open-
source systems implemented in Pharo Nierstrasz et al. [2010], which is a Smalltalk-like
language. We evaluate the following Pharo systems: Moose (a platform for software
and data analysis), Glamour (an infrastructure for implementing browsers), Epicea (a
tool to help developers share untangled commits), Fuel (an object serialization frame-
work), and Seaside (a framework for developing web applications). These systems were
selected due to the availability of systems’ developers to participate of the study.

Table 5.1 describes these systems, including information on number of lines of
code (LOC), number of packages (NOP), number of classes (NOC), number of commits
extracted for each system, and the time frame considered in this extraction.

5.1.3 Thresholds Selection

For this evaluation, we use the same threshold selections of our previous experience in
Chapter 3.2. The thresholds are as follows:
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Table 5.1. Target systems

System LOC NOP NOC Commits Period
SysPol 63,754 38 674 9,072 10/13/2010 - 08/08/2014
Seaside 26,553 28 695 5,741 07/17/2013 - 12/08/2014
Moose 33,967 36 505 2,417 01/21/2013 - 11/17/2014
Fuel 5,407 6 136 2,009 08/05/2013 - 12/03/2014
Epicea 26,260 9 222 1,400 08/15/2013 - 11/15/2014
Glamour 21,076 24 452 3,213 02/08/2013 - 11/27/2014

• MAX_SCATTERING = 10 packages, i.e., we discard commits changing classes
located in more than ten packages.

• MIN_WEIGHT = 2 co-changes, i.e., we discard edges connecting classes with
less than two co-changes.

• M_INITIAL = NOCG ∗ 0 .20 , i.e., the clustering algorithm starts with a number
of partitions that is one-fifth of the number of classes in the co-change graph
(NOCG).

• MIN_CLUSTER_SZ = 4 classes, i.e., after each clustering execution, we remove
clusters with less than 4 classes.

SysPol is a closed-source system developed under agile development guidelines.
In this project, the tasks assigned to the development team usually have an estimated
duration of one working day. For this reason, we set up the time window threshold used
to merge commits as one day, i.e., commits performed in the same calendar day by the
same author are merged. Regarding the Pharo systems, developers have more freedom
to select the tasks to work on as common in open-source systems. Moreover, they
usually only commit after finishing and testing a task (as explained to us by Pharo’s
leading software architects). However, Pharo commits are performed per package. For
example, a maintenance task that involves changes in classes located in packages P1 and
P2 is concluded using two different commits: a commit including the classes located
in P1 and another containing the classes in P2. For this reason, in the case of the five
Pharo systems, we set up the time window used to merge commits as equal to one hour.
On the one hand, this time interval is enough to capture all commits related to a given
maintenance task, according to Pharo architects. On the other hand, developers usually
take more than one hour to complete a next task after committing the previous one.
Finally, we randomly selected 50 change sets from one of the Pharo systems (Moose)
to check manually with one of system’s developer. He confirmed that all sets refer to
unique programming task.
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5.1.4 Extracting the Co-Change Clusters

We start by preprocessing the extracted commits to compute co-change graphs. Ta-
ble 5.2 presents four measures: (a) the initial number of commits considered for each
system; (b) the number of discard operations targeting commits that do not change
classes or change a massive number of classes; (c) the number of merge operations
targeting commits referring to the same Task-ID in the tracking system or performed
under the time window thresholds; (d) the number of change sets effectively used to
compute the co-change graphs. By change sets we refer to the commits used to create
the co-change graphs, including the ones produced by the merge operations.

Table 5.2. Preprocessing filters and Number of co-change clusters

System Commits Discard Ops Merge Ops Change Sets
SysPol 9,072 1,619 1,447 1,951
Seaside 5,741 1,725 1,421 1,602
Moose 2,417 289 762 856
Fuel 2,009 395 267 308
Epicea 1,400 29 411 448
Glamour 3,213 2,722 1,075 1,213

After the preprocessing phase, we extracted a co-change graph for each system.
Then, we applied the post-processing filters to remove edges with unitary weights
and connected components smaller than 4, as defined by the MIN_CLUSTER_SZ
threshold. Table 5.3 shows the number of vertices (|V |) and the number of edges
(|E|) in each co-change graph, before and after pruning edges with weight 1 and their
densities, respectively. It also presents the number of connected components before
and after the post-processing task for each co-change graph.

Table 5.3. Number of vertices (|V |), edges (|E|), co-change graphs’ density (D),
and number of connected components before and after the post-processing filter

System
Post-Processing

Before After
|V| |E| D |V| |E| D

SysPol 514 35,753 0.27 505 25,613 0.20
Seaside 1,042 100,415 0.18 797 25,272 0.08
Moose 484 9,610 0.08 217 1,313 0.06
Fuel 299 4,184 0.09 64 222 0.11
Epicea 301 3,336 0.07 153 805 0.07
Glamour 659 7,616 0.03 287 1,380 0.03



5.1. Study Design 81

As can be observed in Table 5.3, co-change graphs are sparse graphs, having
low density in Pharo and 0.2 in SysPol systems after the pruning phase. Moreover,
the graphs had a substantial reduction in number of edges. About 28.4% (SysPol),
74.8% (Seaside), 86.3% (Moose), 94.7% (Fuel), 75.9% (Epicea), and 81.9% (Glamour)
of the edges have unitary weights, i.e., these edges connect classes that changed to-
gether just once. Finally, the vertice number after graph pos-processing was reduced to
98% (SysPol), 76.5% (Seaside), 45% (Moose), 21.4% (Fuel), 51% (Epicea), and 43,5%
(Glamour).

After applying the preprocessing and post-processing filters, we use the Modular-
ityCheck tool to compute the co-change clusters [Silva et al., 2014a]. This tool relies
on the Chameleon algorithm to compute co-change clusters, as described in Chapter 3.
Table 5.4 shows the initial number of co-change clusters retrieved by the clustering
algorithm and the number of clusters after discarding the small clusters, as defined by
the MIN_CLUSTER_SZ threshold. Finally, the table also presents the ratio between
the number of clusters after prunning small clusters and the number of packages (as
shown in column %NOP). Table 5.4 shows the number of co-change clusters computed
for each system (102 clusters, in total).

Table 5.4. Number of co-change clusters

System # clusters %NOPAll |V| ≥ 4
SysPol 21 20 0.05
Seaside 30 25 0.19
Moose 24 20 0.55
Fuel 24 8 0.19
Epicea 24 16 0.19
Glamour 24 15 0.62

The initial number of clusters retrieved was 21, 30, 24, 24, 24 and 24 for SysPol,
Seaside, Moose, Fuel, Epicea, and Glamour systems, respectively. After extracting
co-change clusters by Chameleon, we discarded clusters smaller than four, since they
represent very small modules. As an example, for the Glamour system was selected 15
clusters, since the others have less than four classes.

Figure 5.1 shows the distribution of cluster sizes, in terms of class number. As an
example, the co-change clusters have 25± 11.5 classes, 31.2± 17.6 classes, and 9± 1.4

classes (average ± standard deviation) in the SysPol, Seaside, Epicea systems, respec-
tively. Furthermore, the biggest cluster for SysPol (53 classes), Seaside (63 classes),
and Glamour (44 classes) systems contain a significant number of classes.
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Figure 5.1. Co-change cluster sizes

Figure 5.2-a shows the distribution of the densities of the co-change clusters
extracted for each system. Density is a key property in co-change clusters, because it
assures that there is a high probability of co-changes between each pair of classes in the
cluster. The clusters on SysPol have a median density of 0.62, whereas the co-change
graph extracted for this system has a density of 0.20. The clusters of the Pharo systems
have a median density ranging from 0.39 (Glamour) to 1.00 (Fuel), whereas the highest
density of the co-change graphs for these systems is 0.11 (Fuel).

We interviewed Pharo’s developers personally and the SysPol developer by Skype.
In the interviews, we presented each co-change cluster that matched one of the proposed
co-change patterns to the developers. For each cluster we showed to the developers
its classes and in some particular cases the commits responsible by the co-changes
represented by the cluster. We then asked the developers to elaborate on the concerns
implemented by the clusters and on possible design anomalies evidenced by them.

(a) Co-change cluster density (b) Co-change cluster average edges’ weight

Figure 5.2. Distribution map metrics
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(a) Focus (b) Spread

Figure 5.3. Distribution map metrics

Figure 5.2-b shows standard descriptive statistic measurements for edge’s average
weight in the extracted clusters. The average weight in a cluster is the sum of all edge’s
weights divided by the number of edges. We can observe that the median edges’s weight
is not high, being 5 in SysPol’s and a bit greater than 2 in Pharo’s systems. Moreover,
we analyzed the edge’s weight range in several co-change graphs. As an example, for
SysPol system, there are classes in a cluster that changed together massively (more
than 300 times) and most class pairs changed 20 times on average (edges’ weight),
displayed as an outlier in Figure 5.2-b.

Figure 5.3 show the distribution regarding focus and spread of the co-change
clusters for each system. We can observe that the co-change clusters in Seaside, Moose,
and Fuel have a higher focus than the others. For example, the median focus in Seaside
is 0.88, against 0.29 in SysPol. Regarding spread, Moose, Fuel, and Epicea have a
lower value than the others, the median is 1 against 6.5 (SysPol) and 2 for Seaside and
Glamour.

5.1.5 Interviews

Table 5.5 describes the number of expert developers we interviewed for each system
and how long they have been working on the systems. In total, we interviewed seven
experienced developers. In the case of SysPol, we interviewed the lead architect of
the system, who manages a team of around 15 developers. For Moose, we interviewed
two experts. For the remaining Pharo systems, we interviewed a single developer per
system.

We conducted face-to-face and Skype semi-structured interviews with each devel-
oper using open-ended questions [Flick, 2009]. During the interviews, we presented all
co-change clusters that matched one of the proposed co-change patterns to the devel-
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Table 5.5. Expert Developers’ Profile

System Developer ID Experience (Years) # Emails/Chats
SysPol D1 2 44
Seaside D2 5 0
Moose D3;D4 4.5 6
Fuel D5 4.5 0
Epicea D6 2.5 2
Glamour D7 4 1

opers. We used Grounded Theory [Corbin and Strauss, 1990] to analyze the answers
and to organize them into categories and concepts (sub-categories). The interviews
were transcribed and took approximately one and half hour (with each developer; both
Moose developers were interviewed in the same session). In some cases, we further con-
tacted the developers by e-mail or text chat to clarify particular points in their answers.
Table 5.5 also shows the number of clarification mails and chats with each developer.
For Moose, we also clarified the role of some classes with its leading architect (D8) who
has been working for 10 years in the system.

5.2 Results

In this section, we present the developer’s perceptions on the co-change clusters, col-
lected when answering the proposed research questions.

5.2.1 To what extent do the proposed co-change patterns

cover real instances of co-change clusters?

To answer this RQ, we categorize the co-change clusters as Encapsulated, Crosscutting,
and Octopus, using the definitions proposed in Chapter 4.1. The results are summa-
rized in Table 6.3. As we can observe, the proposed co-change patterns cover from 35%
(Epicea) to 72% (Seaside) of the clusters extracted for our subject systems. We found
instances of Octopus Clusters in all six systems. Instances of Encapsulated Clusters are
found in all systems, with the exception of SysPol. By contrast, Crosscutting Clusters
are less common. In the case of four systems (Seaside, Moose, Fuel, and Epicea) we
did not find a single instance of this pattern.

In summary, we found 53 co-change clusters matching one of the proposed co-
change patterns (52%). The remaining clusters do not match the proposed patterns
because their spread and focus do not follow the thresholds defined in Chapter 4.1.
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Table 5.6. Number and percentage of co-change patterns

System Encapsulated Crosscutting Octopus Total
SysPol 0 (0%) 8 (40%) 5 (25%) 13 (65%)
Seaside 7 (28%) 0 (0%) 11 (44%) 18 (72%)
Moose 5 (25%) 0 (0%) 1 (5%) 6 (30%)
Fuel 3 (37%) 0 (0%) 1 (13%) 4 (50%)
Epicea 3 (21%) 0 (0%) 2 (14%) 5 (35%)
Glamour 4 (27%) 1 (7%) 2 (20%) 7 (47%)
Total 22 (41.5%) 9 (17%) 22 (41.5%) 53 (52%)

Table 5.7. Concerns implemented by encapsulated clusters
System Cluster Packages Codes

Seaside

1 Pharo20ToolsWeb Classes to compute information such as memory and space status
2 ToolsWeb Page to administrate Seaside applications
3 Pharo20Core URL and XML enconding concerns
4 Security, PharoSecurity Classes to configure security strategies
5 JSONCore JSON renderer
6 JavascriptCore Implementation of JavaScript properties in all dialects
7 JQueryCore JQuery wrapper

Glamour

8 MorphicBrick Basic widgets for increasing performance
9 MorphicPager Glamour browser

10 SeasideRendering, SeasideExamples, Web renderer implementation
SeasideCore

11 GTInspector Object inspector implementation

Moose

12 DistributionMap Classes to draw distribution maps
13 DevelopmentTools Scripts to use Moose in command line
14 MultiDimensionsDistributionMap Distribution map with more than one variable
15 MonticelloImporter Monticello VCS importer
16 Core Several small refactoring applied together

Fuel
17 Fuel Serializer and materializer operations
18 FuelProgressUpdate Classes that show a progress update bar
19 FuelDebug Implementation of the main features of the package

Epicea
20 Hiedra Classes to create vertices and link them in a graph
21 Mend Command design pattern for modeling change operations
22 Xylem Diff operations to transform a dictionary X into Y

5.2.2 How developers describe the clusters matching the

proposed co-change patterns?

To answer this RQ, we presented each cluster categorized as Encapsulated, Crosscut-
ting, or Octopus to the developer of the respective system and asked him to describe
the central concerns implemented by the classes in these clusters.

Encapsulated Clusters: The codes extracted from developers’ answers for clusters
classified as Encapsulated are summarized in Table 5.7. The table also presents the
package that encapsulates each cluster. The developers easily provided a description
for 21 out of 22 Encapsulated clusters. A cluster encapsulated in the Core package
of Moose (Cluster 16) is the only one the developers were not able to describe by
analyzing only the class names. Therefore, in this case we asked the experts to inspect
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the commits responsible to this cluster and they concluded that the co-change relations
are due to “several small refactorings applied together”. Since these refactorings are
restricted to classes in a single package, they were not filtered out by the threshold
proposed to handle highly scattered commits.

Analyzing the developers’ answers, we concluded that all clusters in Table 5.7
include classes that implement clear and well-defined concerns. For this reason, we
classify all clusters in a single category, called Specific Concerns. For example, in
Seaside, Cluster 4 has classes located in two packages: Security and PharoSecurity.
As indicated by their names, these two packages are directly related to security
concerns. In Glamour, Cluster 10 represents planned interactions among Glamour’s
modules, as described by Glamour’s developer:

“The Rendering package has web widgets and rendering logic. The Presenter classes
in the Rendering package represent an abstract description for a widget, which is trans-
lated into a concrete widget by the Renderer. Thus, when the underlying widget library
(Core) is changed, the Renderer logic is also changed. After that, the Examples classes
have to be updated.” (D7)

Crosscutting Clusters: Table 5.8 presents the codes extracted for the Crosscutting
Clusters detected in SysPol, which concentrates 8 out of 9 Crosscutting Clus-
ters considered in our study. We identified that these Crosscutting Clusters usually
represent Assorted Concerns (category) extracted from the following common concepts:

Assorted, Mostly Functional Concerns. In Table 5.8, 7 out of 8 Crosscutting Clusters
express SysPol’s functional concerns. Specifically, four clusters are described as a
collection of several concerns (the reference to several is underlined, in Table 5.8).
In the case of these clusters, the classes in a package tend to implement multiple
concerns; and a concern tend to be implemented by more than one package. For
example, SysPol’s developer made the following comments when analyzing one of the
clusters:

Table 5.8. Concerns implemented by Crosscutting clusters in SysPol
ID Spread Focus Size Codes
1 9 0.26 45 Several concerns, search case, search involved in crime, insert conduct
2 9 0.22 29 Several concerns, seizure of material, search for material, and create article
3 10 0.20 31 Requirement related to the concern analysis, including review analysis and analysis in flagrant
4 12 0.15 31 Several classes are associated to the task and consolidation concerns
5 15 0.29 35 Subjects related to create article and to prepare expert report
6 9 0.22 24 Several concerns in the model layer, such as criminal type and indictment
7 7 0.14 24 Features related to people analysis, insertion, and update
8 4 0.30 12 Access to the database and article template
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“CreateArticle is a quite generic use case in our system. It is usually imported by
other use cases. Sometimes, when implementing a new use case, you must first change
classes associated to CreateArticle” (D1, on Cluster 2)

“These classes represent a big module that supports Task related features and that
contain several use cases. Classes related to Agenda can change with Task because
there are Tasks that can be saved in a Agenda” (D1, on Cluster 4)

We also found a single Crosscutting Cluster in Glamour, which has 12 classes
spread across four packages, with focus 0.26. According to Glamour’s developer “These
classes represent changes in text rendering requirements that crosscut the rendering
engine and their clients” (D7).

Assorted, Mostly Non-functional Concerns. Cluster 8 is the only one which expresses
a non-functional concern, since its classes provide access to databases (and also
manipulate Article templates).

Therefore, at least in SysPol, we did not find a strong correspondence between
recurrent and scattered co-change relations—as captured by Crosscutting Clusters—
and classical crosscutting concerns, such as logging, distribution, persistence, security,
etc. [Kiczales et al., 1997b, 2001]. This finding does not mean that such crosscutting
concerns have a well-modularized implementation in SysPol (e.g., using aspects), but
that their code is not changed with frequency.

Octopus Clusters: The codes extracted from developers’ answers for clusters clas-
sified as Octopus are summarized in Table 5.9. From the developers’ answers, we
observed that all Octopus represent Partially Encapsulated Concerns (category), as
illustrated by the following clusters:

• In Moose, there is an Octopus (see Figure 5.4-a) whose body implement browsers
associated to Moose panels (Finder) and the tentacle is a generic class for visu-
alization, which is used by the Finder to display visualizations inside browsers.

• In Glamour, there is an Octopus (see Figure 5.4-b) whose body implement a
declarative language for constructing browsers and the tentacles are UI widgets.
Changes in this language (e.g., to support new types of menus) propagate to the
Renderer (to support the new menu renderings).
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Table 5.9. Concerns implemented by Octopus clusters
System ID Focus Spread Size Codes

SysPol

1 0.67 6 23 Pagination of the searches
2 0.45 8 23 Creation, insertion, and grouping of articles in a proceeding
3 0.67 16 53 The functionality searching and validating
4 0.75 3 19 Task validation
5 0.55 5 13 Material functionality

Seaside

6 0.56 4 25 Tool for development applications
7 0.90 2 18 Welcome to seaside page
8 0.41 3 63 Core configuration of Seaside
9 0.95 2 34 Widgets to develop applications
10 0.83 5 57 Interface between Seaside and different dialects
11 0.61 9 45 Developer was not able to describe this cluster
12 0.75 11 58 Generation of XHTML markup, administration tools, sending of emails, encapsulation of parts in a page
13 0.77 5 35 Enable Seaside runs on the Comanche HTTP and Swazoo Web server, stream events from the server to client
14 0.45 8 42 Widget features based on AJAX, development and debugging support, rendering configuration
15 0.88 5 38 Tool related to code browser
16 0.82 2 16 Developer was not able to describe this cluster

Moose 17 0.55 3 27 Model that parses classes of a O.O. system
18 0.78 2 23 Interface update of the Moose Panel

Fuel 19 0.80 4 4 Different ways of serializing samples

Epicea 20 0.81 2 17 Change sets extraction from commits and training of the classifier
21 0.43 2 12 Persistence services

Glamour 22 0.77 2 8 Theme implementation for Glamour
23 0.40 2 10 Browser implementation

5.2.3 To what extent do clusters matching the proposed

co-change patterns indicate design anomalies?

We asked the developers whether the clusters are somehow related to design or modu-
larity anomalies, including bad smells, misplaced classes, architectural violations, etc.

Encapsulated Clusters: In the case of Encapsulated Clusters, design anomalies are
reported for a single cluster in Glamour (Cluster 9, encapsulated in the MorphicPager
package, as reported in Table 5.7). Glamour’s developer made the following comment
on this cluster:

“The developer who created this new browser did not follow the guidelines for packages
in Glamour. Despite of these classes define clearly the browser creation concern, the
class GLMMorphicPagerRenderer should be in the package Renderer and the class
GLMPager should be in the package Browser” (D7, on Cluster 9)

(a) Moose (b) Glamour

Figure 5.4. Octopus cluster
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Interestingly, this cluster represents a conflict between structural and logical (or
co-change based) coupling. Most of the times, the two mentioned classes changed
with classes in the MorphicPager package. Therefore, the developer who initially
implemented them in this package probably favoured this logical aspect in his decision.
However, according to Glamour’s developer there is a structural force that is more
important in this case: subclasses of Renderer, like GLMMorphicPagerRenderer

should be in their own package; the same for subclasses of Browser, like GLMPager.

Crosscutting Clusters: SysPol’s developer explicitly provided evidences that six
Crosscutting clusters (67%) are related to Design Anomalies (category), including
three kind of problems (concepts):

Low Cohesion/High Coupling (two clusters). For example, Cluster 2 includes a class,
which is “one of the classes with the highest coupling in the system.” (D1)

High Complexity Concerns (two clusters). For example, Cluster 4 represents “a
difficult part to understand in the system and its implementation is quite complex,
making it hard to apply maintenance changes.” (D1)

Package Decomposition Problems (two clusters). For example, 27 classes in Cluster 1
“include implementation logic that should be in an under layer.” (D1)

SysPol’s developer also reported reasons for not perceiving a design problem
in the case of three Crosscutting Clusters (Clusters 6, 7, and 8). According to the
developer, these clusters have classes spread over multiple architectural layers (like
Session, Action, Model, etc), but implementing operations related to the same
use case. According to the developer, since these layers are defined by SysPol’s
architecture, there is no alternative to implement the use cases without changing these
classes.

Octopus Clusters: SysPol’s developer provided evidences that two out of five
Octopus Clusters in the system are somehow related to design anomalies. The design
anomalies associated to Octopus Clusters are due to Package Decomposition Problems.
Moreover, a single Octopus Cluster among the 17 clusters found in the Pharo tools
is linked to this category. For example, in Epicea, one cluster includes “some classes
located in the Epicea package, which should be moved to the Ombu package”. It is
worth mentioning that these anomalies were unknown to the developers. They were
detected after inspecting the clusters to comprehend their concerns.

In contrast, the developers did not find design anomalies in the remaining
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16 Octopus clusters detected in the Pharo systems. As an example from Moose,
the developer explained as follows the Octopus associated to Cluster 18 (see Figure 4.5):

“The propagation starts from RoassalPaintings to Finder. Whenever something is
added in the RoassalPaintings, it is often connected with adding a menu entry in the
Finder.” (D8)

Interestingly, the propagation in this case happens from the tentacle to the body
classes. It is a new feature added to RoassalPaintings that propagates changes to
the body classes in the Finder package. Because Roassal (a visualization engine)
and Moose (a software analysis platform) are different systems, it is more complex to
refactor the tentacles of this octopus.

5.3 Discussion

In this section, we put in perspective our findings and the lessons learned with the
study.

5.3.1 Applications on Assessing Modularity

On the one hand, we found that Encapsulated Clusters typically represent well-designed
modules. Ideally, the higher the number of Encapsulated Clusters, the higher the qual-
ity of a module decomposition. Interestingly, Encapsulated Clusters are the most
common co-change patterns in the Pharo software tools we studied, which are gener-
ally developed by high-skilled developers. On the other hand, Crosscutting Clusters
in SysPol tend to reveal design anomalies with a precision of 67% (at least in our
sample of eight Crosscutting Clusters). Typically, these anomalies are due to concerns
implemented using complex class structures, which suffer from design problems like
high coupling/low cohesion. They are not related to classical non-functional concerns,
like logging, persistence, distribution, etc. We emphasize that the differences between
Java (SysPol) and Pharo systems should not be associated exclusively to the program-
ming language. For example, in previous studies we evaluated at least two Java-based
systems without Crosscutting Clusters [Silva et al., 2015a]. In fact, SysPol’s expert
associates the modularity problems found in the system to a high turnover in the de-
velopment team, which is mostly composed by junior developers and undergraduate
students.

Finally, developers are usually skeptical about removing the octopus’ tentacles,
by for example moving their classes to the body by inserting a stable interface between
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the body and the tentacles. For example, Glamour’s developer made the following
comments when asked about these possibilities:

“Unfortunately, sometimes it is difficult to localize changes in just one package. Even
a well-modularized system is a system after all. Shielding changes in only one package
is not absolutely possible.” (D7)

5.3.2 The Tyranny of the Static Decomposition

Specifically for Crosscutting Clusters, the false positives we found are due to main-
tenance tasks whose implementation requires changes in multiple layers of the soft-
ware architecture (like user interface, model, persistence, etc). Interestingly, the ex-
pert developers usually view their static software architectures as dominant structures.
Changes that crosscut the layers in this architecture are not perceived as problems,
but as the only possible implementation solution in face of their current architectural
decisions. During the study, we referred to this recurrent observation as the tyranny
of the static decomposition. We borrowed the term from the “tyranny of the dominant
decomposition” [Tarr et al., 1999], normally used in aspect-oriented software develop-
ment to denote the limitations of traditional languages and modularization mechanisms
when handling crosscutting concerns.

In future work, we plan to investigate this tyranny in details, by arguing develop-
ers if other architectural styles are not possible, for example centered on domain-driven
design principles [Evans, 2003]. We plan to investigate whether information systems
architected using such principles are less subjected to crosscutting changes, as the ones
we found in SysPol.

5.3.3 (Semi-)Automatic Remodularizations

Modular decisions deeply depend on software architects expertise and also on particular
domain restrictions. For example, even for SysPol’s developer it was difficult to explain
and reason about the changes captured by some of the Crosscutting Clusters detected
in his system. For this reason, the study did not reveal any insights on techniques or
heuristics that could be used to (semi-)automatically remove potential design anomalies
associated to Crosscutting Clusters. However, co-change clusters readily meet the
concept of virtual separation of concerns [Apel and Kästner, 2009; Kästner et al., 2008],
which advocates module views that do not require syntactic support in the source code.
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In this sense, co-change clusters can be an alternative to the Package Explorer, helping
developers to comprehend the spatial distribution of changes in software systems.

5.3.4 Limitations

We found three co-change clusters that are due to floss refactoring, i.e., programming
sessions when the developer intersperses refactoring with other kinds of source code
changes, like fixing a bug or implementing a new feature [Murphy-Hill et al., 2009].
To tackle this limitation, we can use tools that automatically detect refactorings from
version histories, like Ref-Finder [Prete et al., 2010] and Ref-Detector [Tsantalis et al.,
2013]. Once the refactorings are identified, we can remove co-change relations including
classes only modified as prescribed by the identified refactorings.

Furthermore, 49 co-change clusters have no matched the proposed patterns (48%).
We inspected them to comprehend why they were not categorized as Encapsulated,
Crosscutting, or Octopus. We observed that 32 clusters are well-confined in packages,
i.e., they touch a single package but their focus is lower than 1.0. This behavior does
not match Encapsulated pattern because these clusters share the packages they touch
with other clusters. Moreover, we also identified 14 clusters similar to Octopus, i.e.,
they have bodies in a package and arms in others. However, some clusters have bodies
smaller and others have arms tinier than the threshold settings. The remaining three
clusters touch very few classes per package but their spread is lower than the threshold
settings.

Finally, we did not look for false negatives, i.e., sets of classes that changed
together, but that are not classified as co-change clusters by the Chameleon graph
clustering algorithm. Usually, computing false negatives in the context of architec-
tural analysis is more difficult, because we depend on architects to generate golden
sets. Specifically in the case of co-change clusters, we have the impression that expert
developers are not completely aware of the whole set of changes implemented in their
systems and on the co-change relations established due to such changes, making it
more challenging to build a golden set of co-change clusters.

5.4 Threats to Validity

First, we evaluated six systems, implemented in two languages (Java and Pharo) and
related to two major domains (information systems and software tools). Therefore,
our results may not generalize to other systems, languages, and application domains
(external validity). Second, our results may reflect personal opinions of the interviewed
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developers on software architecture and development (conclusion validity). Anyway,
we interviewed expert developers, with large experience, and who are responsible for
the central architectural decisions in their systems. Third, our results are directly im-
pacted by the thresholds settings used in the study (internal validity). We handled this
threat by reusing thresholds from our previous work on Co-Change Clustering, which
were defined after extensive experimental testings. Furthermore, thresholds selection is
usually a concern in any technique for detecting patterns in source code. Finally, there
are threats concerning the way we measured the co-change relations (construct valid-
ity). Specifically, we depend on pre and pos-processing filters to handle commits that
could pollute the co-change graphs with meaningless relations. For example, during
the analysis with developers, we detected three co-change clusters (6%) that are mo-
tivated by small refactorings. Ideally, it would be interesting to discard such commits
automatically. Finally, we only measured co-change relations for classes. However,
SysPol has other artifacts, such as XML and XHTML files, which are not considered
in the study.

5.5 Final Remarks

One of the benefits of modularity is managerial, by allowing separate groups to work
on each module with little need for communication [Parnas, 1972]. However, this is
only possible if modules confine changes; crosscutting changes hamper modularity by
making it more difficult to assign work units to specific teams. In this chapter, we
evaluate in the field the technique proposed in this thesis to assess modularity using
logical (or evolutionary) coupling, as captured by co-change relations. We concluded
that Encapsulated Clusters are very often linked to healthy designs and that around
50% of Crosscutting Clusters are associated to design anomalies. Octopus Clusters are
normally associated to expected class distributions, which are not easy to implement
in an encapsulated way, according to the interviewed developers.





Chapter 6

A Large Scale Study on Co-Change
Patterns

In this chapter, we report a large scale study using projects hosted in GitHub. We start
by presenting the steps followed to collect this corpus (Section 6.1). Then, we evaluate
the clustering quality by comparing with another clustering measures (Section 6.2).
Section 6.3 characterizes co-change clusters and analyzes the pattern distribution con-
cerning programming languages. In Section 6.5, we conduct a series of empirical anal-
ysis based on regression modeling and semantic analysis. Finaly, we discuss threats to
validity (Section 6.6).

6.1 Study Design

In this section we present the research questions (Section 6.1.1) and the criteria followed
to select the projects used in this study (Section 6.1.2). We also present the criteria
used to select the threshold used for preprocessing commits and extracting co-change
clusters (Section 6.1.3).

6.1.1 Research Questions

We formulate four research questions to evaluate whether the proposed co-change clus-
ter patterns have different impacts on some software engineering output of interest,
such as, the level of co-changeness, the level of activity on clusters, the number of
developers working on clusters, and the level of ownership on clusters.

RQ #1: How do the different patterns relate to co-change bursts?

95
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The level of co-change bursts (bursts of commits used to create co-change graphs)
can be interpreted as the level of ripple effect. The term ripple effect was first used by
Haney [1972] to describe changes in one module that require changes in any another
module. When assessing modularity using co-change clustering, all clusters emerge due
to co-changes, and therefore, they express ripple effects in the system. Nonetheless, we
aim in this RQ, we investigate if co-change patterns relate differently to the number of
co-change bursts.

RQ #2: How do the different patterns relate to density of activity on clusters?

The density of activity on clusters may be measured by the number of commits
performed on them controlled by clusters’ size (number of classes) or by the number
of developers that perform commits in the clusters’ classes. In other words, the higher
the number of commits performed in a cluster, the higher the density of activity in this
cluster. With this RQ, we aim at investigating whether the different cluster patterns
relate to different activity levels.

RQ #3: How do specific patterns of co-change clusters relate to the number of devel-
opers per cluster?

The number of developers who work on the classes of a cluster may indicate
different points, e.g., the heterogeneity of the team working on a piece of the systems
or the effort (manpower).

RQ #4. How do specific patterns of clusters relate to different number of commits of
the cluster’s owner?

To answer this RQ, we first compute the clusters’ owners. The owner of a cluster
A is the developer with the highest number of commits performed on classes in A.
Our hypothesis is that the work of a clusters’ owner may indicate different points.
For example, the clusters with a dominant owner may be more error-prone for other
programmers [Bird et al., 2011].

6.1.2 Dataset

We describe the projects in GitHub that we collected, the selection criteria to generate
the corpus and the analysis methods we use to answer our research questions. We
aim at conducting a large scale experiment on systems implemented in six popular
languages as follows: C, C++, Java, JavaScript, Ruby, PHP, and Python. First, we
rank the top-100 most popular projects in each language concerning their number of
stars (a GitHub feature that allows users to favorite a repository). For each language,
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Figure 6.1. The overall number of commits and number of files by language

we analyze all the selected systems considering the first quartile of the distribution
according to three measures: number of commits, number of files, and number of
developers. Second, we choose the systems which are not in any measures of the first
quartiles as presented in Figure 6.1. The first quartile of the distributions measures
for number of commits range from 241 (Java systems) to 788 (Ruby systems), number
of files ranges from 39 (Python systems) to 133 (C/C++ systems), and number of
developers ranges from 18 (Java systems) to 72 (Ruby systems). Therefore, our goal
is to select large projects with large number of commits and a significant number of
developers.

We also discard projects migrated to GitHub from a different version control
system (VCS). Specifically, we discarded systems whose initial commits (around 20)
include more than 50% of their files. This scenario suggests that more than half of
development life of the system was implemented in another VCS. Finally, all selected
systems were inspected manually on their respective GitHub page. We observed that
raspberrypi/linux project is very similar to torvalds/linux project. To avoid re-
dundancy, we removed the this project.

We included 133 systems in our dataset. Table 6.1 presents a summary of the
selected systems after the discarding step described previously. In this table, we
presented C/C++ projects separately. For each language, we selected 18 (C/C++),
17 (PHP), 21 (Java), 22 (JavaScript and Python), and 33 (Ruby) systems. As a
result, we considered in our experiment more than 2 million commit transactions. The
overall sizes of the systems in number of files and line of code are 375K files and 41
MLOC, respectively.

Preprocessing files. In our technique we only consider co-change files that represent
the source code. For this reason, we discard documentation, images, files associated
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Table 6.1. Projects in GitHub organized by language

Language Projects Commits Developers Files LOC
C 4 650,953 18,408 69,979 14,448,147
C++ 14 196,914 2,631 37,485 5,467,169
Java 21 418,003 4,499 140,871 10,672,918
JavaScript 22 108,080 5,740 24,688 3,661,722
PHP 17 125,626 3,329 31,221 2,215,972
Python 22 276,174 8,627 35,315 2,237,930
Ruby 33 307,603 19,960 33,556 2,612,503
Total 133 2,083,353 63,194 373,115 41,316,361

to tests, and vendored files. We used Linguist tool1 to generate language breakdown
graphs. Linguist is a tool used by GitHub to compute the percentage of files by pro-
gramming language in a repository. We follow Linguist’s recommendations to remove
files from our dataset. The tool classified automatically 129,455 files (34%), including
image, xml, txt, js, php, and c files. Finally, we inspected manually the first two top-
level directories for each system searching for vendored libraries and documentation
files not detected by Linguist. In this last step, we discarded 10,450 files (3%).

6.1.3 Threshold Selection

First, we preprocess the commit transactions of each system to compute co-change
graphs. For this evaluation, we use the same thresholds of our previous experiences
with Co-Change Clustering, as presented in Chapters 3 and 5, with the exception of
the time window threshold to merge commits. This threshold aims to group commits
by the same developer that happen more than once in some period of time. This
concept also called “change bursts” is applied in the literature [Nagappan et al., 2010].
Figure 6.2 shows the reduction rate of unitary commits after applying the time frame
threshold to merge commits. We range this threshold from five to fifteen minutes. The
figure presents only three thresholds to ease the analysis. While the threshold set in
five minutes, the mean is 0.14 and the median is 0.15, for 10 minutes the mean and
median slightly increase to 0.19 and 0.2, respectively. However, for the threshold set for
thirteen and fifteen minutes, we observed significant reduction rate compared to others,
e.g., the reduction rate ranged from 45% to 60% of unitary commit. Furthermore, in
some cases we observed low reduction rate compared five and ten minutes. In addition,
we also noted an increase of unitary commit (reduction rate lower than zero) for three
projects and this goes against our focus—reduce the number of unitary commits but

1https://github.com/github/linguist
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only merging commits associated to the same task. For these reasons, in our study we
set up the time frame threshold to ten minutes because it does not cause great impact.
Moreover, we preferred to adopt a conservative method to not have commit merging of
different tasks. Finally, we manually inspected several log messages to check whether
the changes concern the same maintenance task.
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Figure 6.2. Commit reduction rate for 5, 10, and 15 minutes

Finally, ten systems do not provide enough commits to mine co-change clusters
and they are discarded, thus, we extract co-change clusters for 123 projects. Our selec-
tion includes well-known systems, such as torvalds/linux, php/php-src, ruby/ruby,
rails/rails, and webscalesql/webscalesql-5.6.

6.2 Clustering Quality

To increase the strength of our experiment, we use a sliding time window of three years
for each of the 123 projects in GitHub. We defined three years because is too costly
conduct the experiment for all projects in shorter period. Moreover, the projects’ age
differ from each other, e.g., as commits in torvalds/linux project started in 2002,
then we have time frames like 2002—2004, 2003—2005, 2004—2006, 2005—2007, ...,
2012-2014, 2013-2014, 2014 (13 time windows, where each time window contributes
with one clustering). Thus, for torvalds/linux project we have 13 clusterings. If we
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consider all projects, the outcome of this experiment consists of 600 final clusterings
(600 time windows).

The goal in considering the sliding time window is to analyze whether co-change
clusters are stable concerning their commit densities, i.e., number of commits divided
by the number of source code files. As some projects are older than others, they do not
have all time windows. We considered a range to have better uniformity, i.e., to consider
old and recent projects in the same way. Thus, we analyzed the four most recent time
windows from 2009—2011 to 2012—2014, resulting in 325 out of 600 clusterings. For
this range, we extracted 5,229 co-change clusters and only 241 clusters (5%) have not
matched any of the six proposed patterns (Encapsulated, Well-defined, Crosscutting,
Black-sheep, Squid, and Octopus). Figure 6.3 shows the evolution of commit densities
per co-change pattern. Note that for all patterns, there is no significant difference of
commit density.

Figure 6.3. Evolution of commit density (source code files) per co-change pattern

6.2.1 Analysis of the Co-Change Cluster Extraction

This thesis proposes the function Coefficient (Chapter 3.1.2) to select the best number
of partitions that is created in the first phase of the Chameleon algorithm. The goal
of this quality function is to find the best clustering, in our case, combining cohesion
and separation. However, selecting an adequate clustering metric to evaluate clusters
is a well-known challenging issue [Almeida et al., 2011]. For this reason, in this section
we evaluate the stability of co-change clusters extracted from the evaluated projects.

We analyze the clustering quality using a sliding time window of three years
for each of the 123 projects—for all projects we have 600 time windows (clusterings).
We run again the Chameleon algorithm for each system in our dataset to define the
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best number of partitions but this time using another metric, called Coverage met-
ric [Almeida et al., 2011]. Coverage values also ranges from 0 to 1, higher values mean
that there are more edges inside the clusters than edges linking distinct clusters. In
summary, the difference between Coefficient and Coverage measures is that the former
takes into account edges’ weight and the latter number of edges.

We use MoJoFM [Wen and Tzerpos, 2004], a metric based on MoJo distance to
evaluate the effectiveness of co-change clusters.2 MoJo distance compares two cluster-
ings of the same software system as the minimum number of Move or Join operations
needed to transform a clustering A into B or vice versa. When A and B are very sim-
ilar, there are few moves and joins. For instance, if two clusterings are identical, MoJo
yields a quality of 100%. In this study, our clusterings are obtained from Coefficient
and Coverage measures.

Figure 6.4 shows the MoJoFM values for all 600 clusterings. As we can observe,
471 clusterings (78.5%) have a match of 100%, i.e., they are identical. Furthermore, 553
clusterings (92%) have MoJoFM values greater than 90% and 581 (97%) greater than
80%. The mean value is 98% and the median value is 100%. This result shows that
the co-change clusters are in most case well-defined sub-graphs in co-change graphs.
In other words, most of co-change clusters are stable ones, i.e., their shapes are easily
detected by Chameleon because the inter-clusters edges are minimized. Nonetheless,
there are some systems with clusters’ boundaries difficult to identify. While Coefficient
considers the frequency of co-changing, Coverage measure does not. As we deal with
recurrent maintenance task, Coefficient is more appropriated because it seeks for set
of classes that frequently change together.

6.3 Classifying Co-Change Clusters

We classify the extracted co-change clusters into six patterns: Encapsulated, Well-
Confined, Crosscutting, Black-Sheep, Squid, and Octopus Clusters. Table 6.2 sum-
marizes the co-change clusters by pattern. In summary, the six co-change patterns
cover 1,719 out of 1,802 (95%) of the extracted clusters. We can observe a significant
difference—concerning number of categorized clusters—from the results obtained in
Chapter 5. The number of co-change patterns considered in this study is the reason
for the high percentage of categorized clusters.

Nonetheless, we group these clusters to ease the analysis, as follows: (i) clusters
with localized changes: Encapsulated and Well-Confined Clusters, (ii) clusters which

2To calculate MoJoFM, we relied on the MoJo 2.0, http://www.cs.yorku.ca/ bil/downloads/.



102 Chapter 6. A Large Scale Study on Co-Change Patterns

●

●

●

●
●

●
●

●

●
●

●●
●●

●

●●●●
●●

●●
●
●●●

●●●●
●
●●
●
●●●●●

●●
●
●●●●

●●
●
●●

●●
●●●
●●●
●●●●
●●●●●●●●●

●●●●●●●●●●●●
●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1 2 5 10 20 50 100 200 500

60

70

80

90

100

Systems

M
oJ

oF
M

 V
al

ue
s

Figure 6.4. MoJoFM values for 600 clusterings

Table 6.2. Number and percentage of categorized co-change clusters

Pattern # Systems # Clusters
Encapsulated 76 (61.8%) 464 (25.7%)
Well-Confined 56 (45.5%) 227 (12.6%)
Crosscutting 51 (41.5%) 106 (5.9%)
Black-Sheep 18 (14.6%) 51 (2.8%)
Octopus 114 (92.7%) 805 (44.7%)
Squid 44 (35.8%) 66 (3.7%)
No Pattern 38 (31%) 83 (4.6%)
Total Coverage of Co-Change Patterns 1,719 (95.39%)
Total of Extracted Clusters 1,802 (100%)

present crosscutting behavior: Crosscutting and Black-Sheep Clusters, (iii) clusters
with body and arms: Squid and Octopus Clusters. Table 6.3 summarizes the co-
change clusters as grouped in these three major patterns: clusters with confined changes
are named Encapsulated (Encapsulated and Well-Confined), clusters with crosscutting
behavior as Crosscutting (Crosscutting and Black-Sheep), and clusters with body and
arms as Octopus (Squid and Octopus). As we can observe, instances of Octopus
Clusters are quite common, since they are present on 114 systems (93%), representing
48.33% of all co-change clusters. Furthermore, 38.35% of the clusters are Encapsulated
Clusters, which are covering 95 systems (77%). By contrast, Crosscutting Clusters are
detected in only 57 systems (46%) and they represent 8.71% of the co-change clusters.

Figure 6.5 depicts the percentage of co-change clusters by system in stacked
bar plots. The bars are grouped by pattern (dashed bars) or pattern absence (solid
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Table 6.3. Number and percentage of categorized co-change clusters grouped in
three major patterns

Pattern # Systems # Clusters
Encapsulated 95 (77%) 691 (38.35%)
Crosscutting 57 (46%) 157 (8.71%)
Octopus 114 (93%) 871 (48.33%)
No Pattern 38 (31%) 83 (4.61%)
Total Coverage of Co-Change Patterns 1,719 (95.39%)
Total of Extracted Clusters 1,802 (100%)
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Figure 6.5. Relative number of identified and classified clusters for each system

purple bars). We found instances of co-change patterns in all 123 systems. Specifically,
all systems have Encapsulated or Octopus Clusters. Octopus are present in most
systems and the average percentage of such clusters by system is 57% (dashed red
bars). The number of systems with Encapsulated Clusters is smaller than Octopus but
it is significant, 30% on average (dashed green bars). By contrast, clusters that present
Crosscutting behavior are relatively rare. On average, the percentage of Crosscutting
is 9% (dashed blue bars).

We identify eight systems that have all co-change clusters categorized as En-
capsulated (dashed green bars). Furthermore, all clusters in 10 systems are Octopus
(dashed red bars). In addition, 85 projects have all co-change clusters categorized and
54 projects have only Encapsulated and/or Octopus Patterns. By contrast, Cross-
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cutting Clusters do not dominate any system, e.g., 58% of the systems with clus-
ters categorized as Crosscutting have only one cluster and 72% have two clusters.
JetBrains/intellij-community and torvalds/linux are the top two systems con-
cerning absolute number of Crosscutting Clusters, with 13 and 29 clusters, respectively.
Crosscutting Clusters in Intellij-Community represent 9% of extracted clusters, while
in Linux they represent only 8%.

Figure 6.6 depicts the percentage of co-change clusters by programming language.
As can be observed, the three patterns are detected independently of implementation
language. The results also show that few clusters match the Crosscutting Pattern.
For instance, PHP and C++ projects have 9% and 12% of their respective clusters
categorized as Crosscutting Clusters, respectively. Conversely, Octopus Pattern is very
common. The percentage of Octopus Clusters is more than 50% on average, with
exception for C projects (28%). Encapsulated is also common in all languages (36%
on average).
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Figure 6.6. Relative Co-Change Pattern coverage by Programming Language

6.4 Statistical Methods

We use regression modeling to describe the relationship of a set of predictors against
a response. To answer the research questions proposed in Section 6.5, we model either
the number of co-change commits or the number of commits in clusters against other
factors. Because this kind of count data is over-dispersed, negative binomial regression
(NBR) is used to fit the models, which is a type of generalized linear model used to
model count responses. NBR can also handle over-dispersion [Cohen et al., 2003]. For
example, there are cases where the response variance is greater than the mean. For
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this reason, we control for several factors that are likely to influence the outcome.
Specifically, NBR models the log of the expected count as a function of the predictor
variables. We can interpret the NBR coefficient as follows: for a one unit change in
the predictor variable, for a coefficient βi, a one unit change in βi yields an expected
change in the response of eβi , given the other predictor variables in the model are
held constant. We also measure how much a predictor variable accounts for the total
explained deviance.

To check whether excessive multi-collinearity is an issue, we compute the variance
inflation factor (VIF) of each dependent variable in all models. Although there is no
particular value of VIF that is always considered excessive, our VIF values do not exceed
5 which is a widely acceptable cut-off [Cohen et al., 2003]. To help the interpretation
of the models for a wider audience, we also provide Fox’s effect plots [Fox, 2003]. In
effect plots, predictors in a term are allowed to range over their combinations of values,
while other predictors in the model are held to “typical” values.

6.5 Analysis of the Results

In this section, we conduct a series of statistical analysis and an investigation underlying
natural language topics in commit messages.

6.5.1 Statistical Results

Prior to analyzing the rationale behind a co-change pattern classification, we begin
with four research questions to evaluate co-change clusters quantitatively.

RQ #1: How do the different patterns relate to co-change bursts?

To answer this RQ, we analyze the number of categorized clusters to investigate
whether the patterns are associated differently to the number of co-change bursts.
Table 6.4 shows the NBR model for number of co-change bursts per system. We include
some variables as controls for factors that influence co-change bursts. For example, the
number of source code files in a project is included because size may induce a greater
number of co-change relations. Moreover, project age may also impact the analysis
because older projects have substantial evolutionary data available. The number of
co-change clusters by pattern allows us to investigate the ripple effect level in each
pattern. For instance, torvalds/linux has 65,433 co-change bursts, 48,948 source
code files, 161 months of commits, 211 Encapsulated, 29 Crosscutting, and 88 Octopus
Clusters.
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Table 6.4. NBR model for number of co-change bursts per system.

Estimate Std. Error z value Pr(> |z|)
(Intercept) 4.967e+00 1.408e-01 35.286 < 2e-16 ***
nFiles 6.173e-05 1.653e-05 3.734 0.000188 ***
nMonths 1.159e-02 1.784e-03 6.500 8.03e-11 ***
nEncapsulated -3.549e-02 1.615e-02 -2.197 0.028008 *
nOctopus 1.154e-01 1.587e-02 7.271 3.58e-13 ***
nCrosscutting 1.602e-01 3.523e-02 4.546 5.46e-06 ***

Table 6.5 shows that all variables are significant, with the exception of Encapsu-
lated Clusters, i.e., those factors account for some of the variance in the ripple effect.
The number of source code files in a project accounts for the majority explained de-
viance (61%), i.e., nFiles divided by the sum of the Deviance column. In the analysis
of this deviance table, we can also see that the next closest predictor is project age
which accounts for 20%. The number of Octopus Clusters accounts for 11% of the total
explained deviance, and the number of Crosscutting Clusters accounts for 7% of the
deviance. Therefore, these relationships—Octopus and Crosscutting—are statistically
significant with an important effect.

The column Estimate in the model presented in Table 6.4 relates the predictors
to the result. The coefficients are compared among the respective variables to the
different co-change patterns. Note that all intercepts are positive, with exception of
nEncapsulated variable. A significant result is that for each added Octopus and Cross-
cutting, the increase is 1.12 (e1.154e−01) and 1.17 (e1.602e−01), respectively. This outcome
can also be noted in Figure 6.7, which presents the effects on co-change bursts for all
variables included in the NBR model.

Conclusion RQ #1: An increase in the number of Crosscutting and Octopus Clus-
ters is associated with an increase in the number of co-change bursts. In contrast, the
association with Encapsulated Clusters is not significant.

RQ #2: How do the different patterns relate to density of activity on clusters?

To answer this RQ, we analyze clusters with different patterns and their activity
levels (number of commits per cluster). Table 6.6 details the NBR model for number
of commits per cluster—variable of response. The lines in the table represent clusters
and each cluster has a type and its respective factor represents this type (Crosscutting,
Octopus, or No Pattern). The idea is to analyze which type of commit has more impact
on the variable of response (activity). As clusters with greater sizes tend to have more
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Table 6.5. Deviance table for NBR model on the number of co-change bursts
per system.

Df Deviance Res. Df Res. Dev. Pr(>Chi)
NULL 121 466.55
nFiles 1 204.974 120 261.58 < 2.2e-16 ***
nMonths 1 67.733 119 193.85 < 2.2e-16 ***
nEncaps. 1 2.559 118 191.29 0.1097 .
nOctopus 1 37.385 117 153.90 9.698e-10 ***
nCrosscut. 1 23.584 116 130.32 1.195e-06 ***
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1

activity, we included the size variable in the model because some co-change patterns
tend to follow a particular structure concerning their size. For instance, Octopus
Clusters have more source code files than the others.

Table 6.6. NBR model for number of commits per cluster. C - Crosscutting
Clusters, NP - Clusters with no Pattern, O - Octopus Clusters

Estimate Std. Error z value Pr(> |z|)
(Intercept) 4.7181253 0.0426703 110.572 < 2e-16 ***
size 0.0212170 0.0002399 88.448 < 2e-16 ***
factor(C) 0.9521920 0.0989228 9.626 < 2e-16 ***
factor(NP) 0.4957564 0.1300395 3.812 0.000138 ***
factor(O) 1.0119010 0.0580520 17.431 < 2e-16 ***

Figure 6.7. Effects on Co-change Bursts
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Figure 6.8. Effects on Activity of Clusters. E - Encapsulated, C - Crosscutting,
O - Octopus, and NP - Clusters with no Pattern

The result shows that compared to the Encapsulated Clusters, the other clusters
have higher activity level. For instance, the Octopus Clusters increase the intercept
(Encapsulated Clusters) in 1.0119010 and the Crosscutting Clusters in 0.9521920. This
means that the intercept for Encapsulated Clusters is e4.7181253 ≈ 112; for Octopus Clus-
ters is e4.7181253+1.0119010 ≈ 308, and for Crosscutting Clusters is e5.67 ≈ 290. Figure 6.8
shows that Encapsulated Clusters have much lower level of activity than the other kind
of clusters. Moreover, in Figure 6.9, we can observe a difference between the clusters
activity in different programming languages. However, Encapsulated Clusters consis-
tently have lower level of activity compared to Octopus and Crosscutting Clusters,
except for Java and Ruby, where Crosscutting and Encapsulated seems to present no
significant difference.

Table 6.7 shows that size variable accounts for the majority explained deviance.
In the analysis of deviance, we see that the factor pattern of clusters on the system
accounts for 9.11% of the total explained deviance, i.e., pattern divided by the sum
of the Deviance columns. Therefore, the results presented in Table 6.6 show that
Octopus and Crosscutting Clusters are statistically significant with an important effect.

Conclusion RQ #2: There is a moderate and significant relationship between
clusters of a given co-change pattern and the level of activity on the clusters. Octopus
Clusters have a greater association with the activity level than Crosscutting Clusters,
i.e., Octopus have more changes than Crosscutting. Octopus and Crosscutting Clus-
ters have the activity level substantially higher than Encapsulated Clusters, with the
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Figure 6.9. Effects on Activity of Clusters. E - Encapsulated, C - Crosscutting,
O - Octopus, and NP - Clusters with no Pattern

Table 6.7. Deviance table for NBR model on the number of commits per cluster

Df Deviance Res. Df Res. Dev. Pr(>Chi)
NULL 1801 5008.3
size 1 2616.93 1800 2391.4 < 2.2e-16 ***
pattern 3 262.42 1797 2128.9 < 2.2e-16 ***
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1

exception for Crosscutting Clusters in Java and Ruby. In other words, Encapsulated
Clusters are the ones with the lowest level of changes.

RQ #3: How do specific patterns of co-change clusters relate to the number of
developers per cluster?

To answer this RQ, we analyzed the number of developers who changed classes
in each cluster. Table 6.8 details the NBR model for number of developers per cluster.
The size variable is included in the model for the same reason as in RQ #2. The result
shows that compared to the Encapsulated Clusters, the other clusters have more devel-
opers working on. For instance, Octopus Clusters increase the intercept (Encapsulated
Clusters) in 0.7448908. This means that the intercept for Encapsulated Clusters is
e2.6240082 ≈ 14 and the intercept for Octopus Clusters is e2.6240082+0.7448908 ≈ 29. As
another example, the intercept for Crosscutting Clusters is e3.303 ≈ 27. Figure 6.10
depicts the difference among the cluster patterns concerning number of developers.
Encapsulated Clusters usually have much less developers than clusters categorized in
the other patterns.
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Table 6.8. NBR model for number of developers per cluster

Estimate Std. Error z value Pr(> |z|)
(Intercept) 2.6240082 0.0387607 67.698 < 2e-16 ***
size 0.0074887 0.0002114 35.420 < 2e-16 ***
factor(C) 0.6793003 0.0887683 7.653 1.97e-14 ***
factor(NP) 0.4141105 0.1170532 3.538 0.000403 ***
factor(O) 0.7448908 0.0523115 14.240 < 2e-16 ***

Figure 6.10. Effects on Number of Developers of Clusters. E - Encapsulated, C
- Crosscutting, O - Octopus, and NP - No Pattern

Similar to RQ #2, Table 6.9 shows that the size variable accounts for the ma-
jority of explained deviance. Furthermore, the pattern factor of clusters accounts for
10.73% of the total explained deviance, i.e., pattern divided by the sum of the Deviance
column. Therefore, Octopus and Crosscutting Clusters are statistically significant with
important effect.

Conclusion RQ #3: There is a moderate and significant relationship between co-
change pattern and number of developers per cluster. Octopus Clusters usually have
more developers working on them than Crosscutting Clusters. Encapsulated Clusters
are usually the ones with the lowest number of developers.

RQ #4. How do specific patterns of clusters relate to different number of commits of
the cluster’s owner?
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Table 6.9. Deviance table for NBR model on the number of developers per
cluster

Df Deviance Res. Df Res. Dev. Pr(>Chi)
NULL 1801 3636.7
#classes 1 1458.17 1800 2178.5 < 2.2e-16 ***
pattern 3 175.21 1797 2003.3 < 2.2e-16 ***
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1

We also analyze owners of the co-change clusters per pattern. Table 6.10 details
the NBR model for number of commits related to cluster’s owner. We include two
control variables: number of commits and developers. Number of commits provide
information concerning the frequency of changes in a cluster. Additionally, number of
developers in a cluster and how much they had worked on it are both important in
this analysis. As we can observe in Table 6.10, in Octopus Clusters the clusters’ owner
are more important, i.e., concentrate more commits than Encapsulated Clusters. Inter-
estingly, Crosscutting Clusters do not show a significant difference from Encapsulated
Clusters. Octopus Clusters increase the intercept (Encapsulated Clusters) in 0.847 and
Crosscutting Clusters increase the intercept only in 0.152. This means that the inter-
cept for Encapsulated Clusters is e3.005 ≈ 20; the intercept for Crosscutting Clusters
is e3.005+0.152 ≈ 23.5, and the intercept for Octopus Clusters is e3.005+0.8472 ≈ 47. In
other words, the commits performed by the owner have higher importance in Octopus
Clusters than in Encapsulated Clusters, also illustrated in Figure 6.11.

Table 6.11 shows that the variables and the pattern factor are significant. The
number of commits in a cluster accounts for the majority of explained deviance. As
we can observe, the pattern factor of clusters on the system accounts for 10.61% of the
total explained deviance, i.e., pattern divided by the Deviance column.

Conclusion RQ #4: There is a moderate and significant relationship between co-
change patterns and commits performed by the clusters’ owner. Octopus Clusters usu-

Table 6.10. NBR model for commit number of cluster’s owner

Estimate Std. Error z value Pr(> |z|)
(Intercept) 3.005e+00 5.778e-02 52.006 <2e-16 ***
#commits 1.413e-04 5.393e-06 26.198 <2e-16 ***
log #devs 4.772e-01 2.081e-02 22.933 <2e-16 ***
factor(C) 1.524e-01 8.545e-02 1.784 0.0745 .
factor(NP) 1.158e-01 1.116e-01 1.038 0.2991
factor(O) 8.472e-01 5.227e-02 16.207 <2e-16 ***
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1
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Figure 6.11. Effects on Commits of Owners. E - Encapsulated, C - Crosscutting,
O - Octopus, and NP - Clusters with no Pattern

ally have more commits related to cluster’s owner than the remaining clusters. In con-
trast, Encapsulated and Crosscutting Clusters have no significant difference concerning
number of commits.

6.5.2 Semantic Analysis

In this part of our work we focus on co-change cluster analysis in a qualitative perspec-
tive. Our goal is to investigate clusters which have source code files massively changed,
i.e., co-change clusters with high level of activity. We analyze natural language topics
in log messages of commits aiming at retrieving conceptual information to describe ac-
tivities frequently performed on co-change clusters and key words that may reveal their
concerns. For this purpose, we apply topic model technique to automatically infer the
rationale behind a co-change pattern classification. Specifically, we use topic model-
ing [Blei et al., 2003; Griffiths and Steyvers, 2002; Rosen-Zvi et al., 2004] to gain sense
of what semantic meaning co-change clusters present and what maintenance activity
type had been applied frequently. We intend to comprehend whether the maintenance
tasks differ in clusters with distinct patterns.

Table 6.11. Deviance table for NBR model on the commit number of cluster’s
owner

Df Deviance Res. Df Res. Dev. Pr(>Chi)
NULL 1801 4662.8
#commits 1 1695.39 1800 2967.4 < 2.2e-16 ***
log #devs 1 654.89 1799 2312.5 < 2.2e-16 ***
pattern 3 274.83 1796 2037.6 < 2.2e-16 ***
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1
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6.5.2.1 Topic Extraction

Cluster Selection Process. For each pattern, we rank the 10 most massively changed
clusters detected for 123 projects in GitHub. Table 6.12 describes the systems which
contains such clusters. We apply some preprocessing steps, such as lowercase, tokenize,
stopwords removal, and punctuation removal. To search the number of topics threshold,
we explore the range of values from 5 to 45 and analyze how the text messages break
down.3 The number of topics which better organizes the text messages ranges from 20
to 40. Small number of topics end up in generic topics, i.e, they do not describe enough
detailed information to comprehend cluster’s semantics. In contrast, large number of
topics result in null topics and very similar ones.

Table 6.12. The projects with the most massively changed clusters
System Description
Haml Markup Language
Git Version Control System
Odoo ERP and CRM System
Pandas Python Data Analysis Lib.
Homebrew Apple App Installation
Celery Distributed Task Queue
PHP-src Scripting Language
Twitter Ruby Interface to the Twitter API
Linux Operational System
Webscalesql-5.6 Relational Database Management System
V8 JavaScript Compiler
Ruby Programming Language
WordPress Content Management System
JQuery JavaScript Library
io.js NPM Compatible Platform
Beets Music Media Organizer

Encapsulated Clusters: Table 6.13 shows the 10 most massively changed clusters
classified as Encapsulated. We rely on the number of commits per file and cluster size
to rank such clusters, i.e., #commits divided by cluster size. The column score in the
table shows the ranking of the clusters, e.g., the highest score is the first top ten. The
table also reports key words retrieved from topics to describe clusters semantically. To
comprehend the meaning of these clusters, we analyzed the summary of the topics and
inspected their distribution maps. We could easily detect the concerns implemented
by the clusters. For example, the Haml cluster describes engines of templates (Haml
and Sass) for HTML and CSS documents. As another example, in Odoo, the listed key
words for the cluster describes user interface requirements of the system associated
to Kanban view and web graph. Moreover, Homebrew’s cluster describes formulas
for database management systems and programming language, such as Postgresql
and Python. Similarly, the cluster PHP (score 117) is encapsulated in the directory
ext.phar. The phar is an extension in the PHP system responsible to wrap entire

3To extract and evaluate topics, we relied on the Mallet topic model package and guidelines,
http://mallet.cs.umass.edu/topics.php.
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PHP projects into a single phar file (PHP archive) for helping in the distribution and
installation. Furthermore, the source code files in this directory describe compressing
format, such as zip and tar.

Table 6.13. Ranking of Encapsulated Clusters

Score System # Commits Size Topic Summary
per File

148 Haml 1,477 10 rails sass haml html engine
129 Odoo 7,733 60 kanban view addon web graph
126 Homebrew 884 7 pypy python mongodb postgresql formula
117 PHP-src 2,346 20 phar zip zlib tar stream
112 PHP-src 5,935 53 mysql mysqli mysqlnd libmysql ext
101 Linux 811 8 net emulex driver ethtool pci
100 Homebrew 697 7 mysql mariadb pcre lua tools
85 PHP-src 340 4 pcntl process control support signal
84 Linux 839 10 staging xgi chipsets driver video
80 PHP-src 5,872 73 extension library libgd ibase odbc xmlwriter

Crosscutting Clusters: Table 6.14 shows the 10 most massively changed clusters
with crosscutting behavior. The table also reports the number of commits per file,
cluster size, and key words retrieved from topics to describe clusters semantically. The
column score in the table shows the ranking of the clusters, e.g., the highest score is
the first top ten. As can be observed in Table 6.14, V8 system contains four crosscut-
ting clusters in the ranking list. This system compiles JavaScript to specific machine
code, such as arm and MIPS. Specifically, the first three clusters in the table present
similar behavior. They touch directories containing machine-independent (src) and
machine-dependent (arm, arm64, x64, ia32, and mips) source code files. We analyzed
distribution maps of these clusters, extracted topics, and inspected the source code files
to ease the comprehension about their concepts. For example, the first V8 cluster has
source files to generate code in different platforms. The second V8 cluster has files of
the machine-independent optimizer (hydrogen) and the low-level machine-dependent
optimizer (lithium). Similarly, the third V8 cluster contains files responsible for code
stub generation. Particularly, the specific architecture directories confine source code
files concerning lithium optimizer and generators of stub and code. In contrast, the
directory src contains source code concerning hydrogen, lithium, and generators.
Apparently, the design decision to decompose the system in directories by hardware
architecture scattered these concerns over the directories. Thus, if requirements related
to these concerns change, the several directories may have to be updated. Instead, if
concerns were centralized in their respective directories, the change would be confined
in just one location.

Octopus Clusters: Table 6.15 shows the 10 most massively changed clusters classified
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Table 6.14. Ranking of Crosscutting Clusters

Score System # Commits Size Topic Summary
per File

334 V8 4,009 12 mips arm ast code generator
253 V8 9,877 39 arm lithium allocation hydrogen instructions
194 V8 3,107 16 generate code stub arm hydrogen
158 WP 4,596 29 theme admin user customizer props
143 io.js 4,446 31 node stream child process dns
112 Git 8,106 72 sha gitweb git gui daemon
104 Twitter 1,452 14 middleware development dependency gemspec version
92 V8 1,746 19 log cpu profiler generator utils
90 Pandas 454 5 plot series boxplot dataframe hist
89 Celery 627 7 platform canvas log built task

as Octopus. The table also reports the number of commits per file, cluster size, and key
words retrieved from topics to describe clusters semantically. The column score in the
table shows the ranking of the clusters. The top one Octopus Cluster was detected in
WebscaleSQL system and the second and third positions are WordPress’ clusters. We
analyzed their distribution maps, the extracted topics, source code, and documentation
to understand which concerns these clusters implements. Their concerns are presented
as follow:

• In WebscaleSQL’s cluster most part of its body is centered on the core folder
(sql). The body implements low level functionality, such as the parser, state-
ment routines, global schema lock for ndb and ndbcluster in mysqld (MySQL
embedded), binary log, and the optimizer code. The tentacles touch low level
routines for file access, performance schema (private interface for the server),
MySQL binary log (file reading), and client-server protocol (libmysql).

• WordPress’s cluster (score 226) the body is the core which implements the Word-
Press frontend (themes, comments, post) and the tentacles are utility and admin
functions.

• WordPress’s cluster (score 215) the body defines plugins and themes. Specifically,
the body implements the default theme for WordPress in 2015 (Twenty Fifteen
theme) and the tentacles are administration APIs (post, template, scheme, dash-
board widget, media).

6.5.2.2 Timeline for Clusters

We also analyze the evolution of the top one cluster for each pattern in terms of
maintenance activities from 2008 to 2014 (6.5 years). The three clusters contain a
collection of 1,168 (Haml), 1,602 (V8), and 16,737 (Webscalesql-5.6) commits. We
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Table 6.15. Ranking of Octopus Clusters

Score System # Commits Size Topic Summary
per File

255 Webscalesql-5.6 42,680 167 ndb ndbcluster binlog table mysql
226 WordPress 10,184 45 blog comment theme login post
215 WordPress 14,021 65 twenty fifteen theme css menu
210 Ruby 24,570 117 bignum time strftime sprintf encoding
189 JQuery 3,036 16 ajax xhr attribute css core
176 PHP 20,839 118 zend api library zval class
144 V8 9,217 64 regexp bit assembler debug simulator
138 Beets 2,913 21 album art fetchart lastgenre logging
127 Pandas 8,636 68 timedelta dataframe series groupby sql
123 PHP 22,910 186 ext zend openssl pcre zlib libmagic stream

Table 6.16. Timeline for the top one Encapsulated Cluster

Period Encapsulated Topics (Freq %)
2-2008 Method Add Option Util 16
1-2009 Haml docs Yard Fix Sass 34
2-2009 Haml docs Yard Fix Sass 16
1-2010 Rails Make Test 21
2-2010 Haml docs Yard Fix Sass 12
1-2011 Rails Make Test 17
2-2011 Sass Rails Support Update Add 29
1-2012 Remove Code Unused Dead 28
2-2012 Method Add Option Util 20
1-2013 Version Bump Beta 4
2-2013 Rails Preserve Check Find Automatically 22
1-2014 Method Add Option Util 38
2-2014 HTML Escape Strings foo Character 17

consider the time frame of six months for all three clusters and extract the most frequent
topic (mode statistics measurement) in each semester. This allows us to observe which
maintenance activities are most common in each cluster and how they evolve over time.

Encapsulated Cluster - Haml project. Table 6.16 shows the timeline of the Encapsulated
Cluster with the most frequent topics by semester. In this co-change cluster, the source
code files had improvement tasks, such as dead code removal, testing, and updating. As
this cluster contains engines of template, we can observe in Table 6.16 topics describing
the cluster concern and maintenance tasks. The topic “Haml docs yard fix sass” appears
in three semesters as the most frequent topic in the whole year 2009 and in 1-2010. We
inspected the log messages and changes applied concerning this topic to understand
whether the key word fix is associated with bug fixing. Only 4% of topic’s commits
applied changes which modify the system behavior. The remaining (96%) just change
comments in source code files, e.g, the log message “Fix a minor anchor error in the
docs”.
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Table 6.17. Timeline for the top one Crosscutting Cluster

Period Crosscutting Topics (Freq %)
2-2008 fix bug error 17
1-2009 Code review chromium 27
2-2009 ast node expression 27
1-2010 Code review chromium 21
2-2010 Code review chromium 18
1-2011 Fix bug error 10
2-2011 Compile mips crankshaft 11
1-2012 Remove mips profiler 10
2-2012 Remove array descriptor 12
1-2013 Add arm type feedback 11
2-2013 Revert mode stub 9
1-2014 Fix type feedback 8
2-2014 Add mips support 21

Crosscutting Cluster - V8 project. Table 6.17 shows the timeline of the Crosscutting
Cluster with the most frequent topics by semester. In this co-change cluster, the
source code files had different maintenance tasks, such as code review, new feature, and
removal functionality. This cluster had frequent commits associated to bugs only in
its initial semester (2-2008) and in (1-2011). However the absolute number of commits
fixing bugs in these two semesters is quite small, only 27 commits. Finally, we analyzed
the log messages related to the topic “Fix type feedback” to check if the term fix was
related to some commits associated to bug fixing. We could observe there are no
commits associated to bug correction.

Octopus Cluster - Webscalesql-5.6 project. Specifically, the topic model technique used
in this work extracted 30 topics from all cluster’s log messages and 19 topics describe
bug fixing. An amount of 12,742 (76%) commits in this cluster were classified to
topics concerning bug fixing. We grouped these topics by semester to comprehend
the concentration of bug fixing tasks. Table 6.18 shows the timeline of the Octopus
Cluster with the most frequent topics by semester. In contrast to the other clusters,
topics which dominate the timeline of the most changed cluster are concerning to bugs
(10 out of 13 semesters). In Chapter 5, we investigated how co-change patterns align
with developers’ perception [Silva et al., 2015b]. Our results suggested that concerns
implemented by Octopus Clusters tend to be very difficult to localize changes. To
comprehend the findings in this Chapter, a deep investigation is needed to analyze
whether the high occurrence of bugs comes from the complexity of these concerns and
their implementation. More specifically, if their complexities increase the difficult to
maintain and evolve, consequently, increasing the chances to insert bugs. A possible
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Table 6.18. Timeline for the top one Octopus Cluster

Period Octopus Topics (Freq %)
2-2008 fix bug warning build 12
1-2009 fix bug warning build 15
2-2009 mysql backport revno timestamp 15
1-2010 join table outer pushed 11
2-2010 fix bug warning build 10
1-2011 ndb ndbcluster remove binlog 13
2-2011 fix merge bug post 10
1-2012 bug log binlog transaction 9
2-2012 bug select result fix 9
1-2013 bug select result fix 16
2-2013 slave log master bug 11
1-2014 slave log master bug 15
2-2014 slave log master bug 19

solution to answer this question, it would be to define a method for detecting whether
these bugs are concerning changes applied between body and tentacles or between
tentacles.

6.5.2.3 Discussion

We discuss here our findings related to the semantic analysis performed in the outlier
clusters, i.e., the most changed clusters. Encapsulated Clusters seem to implement
well-defined and confined concerns. The results obtained in this section reaffirm the
conclusion presented in the study conducted with experts in Chapter 5. Furthermore,
the most frequent maintenance activities in the top one cluster are associated to im-
provement tasks.

Similarly, the Crosscutting Clusters detected in projects hosted in GitHub also
seem to implement well-defined concerns. In other words, they seem to implement one
concern. This outcome differs from most Crosscutting Clusters obtained with experts
in Chapter 5. While Crosscutting Clusters detected in the projects implement a single
concern but scattered across directories (organized in different directories), SysPol’s
Crosscutting Clusters implement several concerns (tangled concerns). Specifically, the
interviewed experts (Chapter 5) defined the majority of clusters’ implementation as
“several concerns”. In fact, the perception presented by the expert was associated to
high turnover in the development team, composed by junior developers and under-
graduate students. In contrast, the selected projects considered in this study were
selected concerning their number of stars, a quality criterion we followed. A change
made by a developer who is not a committer is only applied permanently after the
committer checks and authorizes it. Nonetheless, there are Crosscutting Clusters eval-
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uated in this chapter that apparently implement concerns scattered over the directory
structures. Additionally, the most frequent maintenance activities in the top one Cross-
cutting Cluster are related to improvement. Concerning bug fixing tasks, such problem
occurred only in the two periods of the cluster’s timeline. In the later stages of the
cluster’s life we could observe an absence of frequent commits associated to bugs.

Finally, we observed in the timeline of the most changed Octopus Cluster the ma-
jority of activities relies on bug fixing tasks (76% of commits). The empirical evidences
found in this study concerning Octopus need further investigation. To comprehend the
reason of high occurrence of bugs, we should detect whether these bugs tend to arise
from changes performed between the body and tentacles or between tentacles.

6.6 Threats to Validity

First, we evaluated 123 distinct projects implemented in different languages, with a
large variety regarding size and domains. Despite attempts to cover several variables
which may impact our conclusions, we may not generalize to other systems even for
those implemented in programming languages considered in our study (external va-
lidity). Second, there are some factors that could influence our results and they are
directly related to the threshold settings used in the experiment (internal validity). For
co-change clusters and patterns, we reused thresholds defined in our previous work due
to the extensive investigation to define them. As another internal threat to validity is
the threshold set to define the number of topics. To tackle this problem, we followed
the guidelines suggested by Mallet tool’s documentation 4. Third, there are also some
possible threats due to imprecision of the co-change relation measurements performed
in our study (construct validity). More specifically, our technique relies on pre and pos
processing steps of commits to build co-change graphs. For the time window frame
parameter, we performed the calibration in all projects used in our study to compute
co-change bursts (see Section 6.1.3).

6.7 Final Remarks

In this chapter, we conduct a large scale study in projects hosted in GitHub to evaluate
the modularity assessment technique using logical coupling. We considered projects
implemented in different languages, size, and domains aiming to generalize our findings.
First, we measure the clustering quality using sliding time window to evaluate the

4http://programminghistorian.org/lessons/topic-modeling-and-mallet.
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evolution of commit density and the effectiveness of co-change clusters. We concluded
that the co-change patterns remain stable overtime and most co-change clusters are
well-defined sub-graphs in the co-change graph.

Concerning co-change patterns, in our investigation we observed that Octopus
Clusters are indeed proportionally numerous regarding to the other patterns. Further-
more, such clusters have significant association statistically with ripple effect, activity
density, diversity in the development team, and ownership.

In the semantic analysis, we concluded that Encapsulated Clusters implement
well-defined and confined concerns. The most frequent maintenance activities in the
top one Encapsulated Cluster are related to only improvement tasks. Similar to En-
capsulated, Crosscutting Clusters evaluated in this study also implement well-defined
concerns. However, these concerns are scattered over the directory structures. The
most frequent maintenance activities are related to improvement and bug fixing tasks.
Concerning bug fixing tasks, such problem occurred only in the two periods of the
cluster’s timeline. Finally, Octopus Clusters seem to implement concerns difficult to
confine in packages. This result is similar to our findings in Chapter 5. We could also
observe in the timeline analysis that the most common activities rely on bug fixing
tasks (76% of commits).
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Conclusion

In this chapter, we summary the outcome of this thesis (Section 7.1) and review our
main contributions (Section 7.2). Finally, we present further work (Section 7.3).

7.1 Summary

Modular decomposition is still a challenge after decades of research on new forms
of software modularization. One reason is that modularization might not be viewed
with single lens due to the multiple facets that a software must deal with. Research
in programming languages still tries to define new modularization mechanisms that
deals with such facets, such as aspects and features [Kiczales et al., 1997a; Robillard
and Weigand-Warr, 2005]. In order to contribute with a solution to this problem,
we proposed and evaluated a new technique to assess module decompositions. This
technique relies on co-change relations to assess modularity under evolutionary (or
logical) dimension. Our technique captures co-change clusters and categorizes them in
co-change patterns.

After the study reported in Chapter 3, we concluded by feasibility of the tech-
nique for extracting meaningful co-change clusters using historical information. We
applied Co-change Clustering to four real software systems that have approximately
ten years of changes. The co-change clusters and their associated metrics were useful
to assess the hierarchical modular decomposition of these systems. In Chapter 5, we
reported a study with experts on six systems implemented in Java and Pharo languages
to reveal the developer’s perception of co-change clusters. The results show that En-
capsulated Clusters are often viewed as healthy designs. Furthermore, around 50%
of clusters classified as Crosscutting are associated to design anomalies. According to
the interviewed developers, Octopus Clusters are usually associated to expected class
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distributions which are hard to implement in an encapsulated way. Finally, Chapter 6
reports a large scale study of 123 popular software projects in GitHub. The findings
reaffirm several evidences found in Chapter 5, such as the fact that Encapsulated Clus-
ters implement well-defined concerns. Additionally, most co-change clusters are stable
sub-graphs, i.e., well-defined sub-graphs (in some cases they are connected components,
in others, subgraphs with few edges connecting others). Thus, the bias of the clustering
measure used in this thesis is decreased because same clusters were extracted by the
two different measures. Another finding from this final study is that Octopus Clusters
have a significant statistical association with ripple effect, activity density, ownership,
and heterogeneous development teams.

Nonetheless, we were not able to recommend modularity improvements for Cross-
cutting and Octopus Clusters. Seemingly, changes in a module that propagate to
others—captured by Octopus Clusters—are part of planned designs, specially when it
is difficult to localize concerns in a single module. Regarding Crosscutting Clusters we
detected two scenarios: tangled and scattered concerns. When a Crosscutting Cluster
implements tangled concerns, they tend to reveal design anomalies. Otherwise, the
co-change relations seems to implement a single concern but scattered across several
packages—these scatterings may represent the intended package decomposition.

7.2 Contributions

This thesis makes the following contributions:

• Co-change Clustering technique to systematically preprocess commits, mine co-
change clusters, and assess the quality of a system’s package decomposition
(Chapter 3). This technique relies on distribution maps to reason about the
projection of extracted co-change clusters in the decomposition of a system in
packages.

• Co-change Patterns: a set of six patterns that represent common instances of co-
change clusters (Chapter 4.1). We rely on a set of metrics defined for distribution
maps to characterize these patterns. After using co-change patterns to assess
modularity, we were able to detect tangled, scattered, partially-encapsulated,
and encapsulated concerns. Furthermore, the proposed patterns presented that
most concerns in a system tend to be difficult to localize their implementation in
a package (Octopus pattern). Particularly, Crosscutting clusters tend to reveal
bad design.
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• ModularityCheck: a prototype tool for extracting co-change clusters, co-change
patterns, and their visual exploration using distribution maps (Section 4.2). Mod-
ularityCheck is publicly available on GitHub.1

• Empirical results: an evaluation of the proposed technique in several projects
in different programming languages, with a large variety on size, age, and do-
mains. Our findings revealed that Encapsulated Clusters tend to denote health
modules. Furthermore, Octopus Clusters have significant statistical association
with ripple effects (Chapter 6), but apparently they tend to represent concerns
difficult do localize in modules (Chapter 5). By contrast, Crosscutting Clusters
tend to reveal design anomalies when they implement tangled concerns. In addi-
tion, we evaluated the effectiveness of the co-change clusters and the evolution of
commit densities per co-change pattern (Section 6.2). Our comparison revealed
that co-change clusters are generally well-defined sub-graphs, consequently, differ-
ent clustering measures can guide Chameleon reachs similar clusters on average.
Furthermore, commit densities do not show significant difference during software
evolution.

7.3 Further Work

We follow list possible future work on Co-change Clustering:

• An investigation on the effects that architecture styles, e.g., architectures based
on domain-driven principles, have on co-change patterns. Specifically, this in-
vestigation can check whether such architectures can contribute to reduce the
number of clusters matching Crosscutting or Octopus patterns. For example,
in Geronimo we observed that the package structure is adherent to the cluster
structure, i.e., localized changes usually have localized effects. We searched for
Geronimo’s documentation and we found out that Geronimo uses Inversion of
Control (IoC) techniques to decouple services and components to a high degree.2

• To compare and contrast the results of Co-Change Clustering with the ones
generated by Semantic Clustering [Santos et al., 2014; Kuhn et al., 2005].

• In our experience with Co-Change Clustering, we found that several vertices are
discarded by the algorithm. These vertices usually have high degree and they

1https://github.com/aserg-ufmg/ModularityCheck.
2http://www.ibm.com/developerworks/library/os-ag-mashup-rest/ —description about ar-

chitecture style used by Geronimo.
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change with several distinct clusters. Therefore, a future work may include an
investigation on whether these vertices (source code files) reveal evidences of
design anomalies.

• As reported in Chapter 6, Octopus Clusters usually have a significant association
with ripple effects, activity density, ownership, and heterogeneous development
teams. In addition, in the semantic analysis we observed a high occurrence of
commits related to bug fixing. One possible future work is to investigate the
feasibility to build a bug prediction model. These models should combine logical
coupling with other dimensions, such as structural and semantic relations.
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