
EXTRACTING RELATIVE THRESHOLDS FOR

SOURCE CODE METRICS

PALOMA MAIRA DE OLIVEIRA

EXTRACTING RELATIVE THRESHOLDS FOR

SOURCE CODE METRICS

Tese apresentada ao Programa de Pós-
-Graduação em Ciência da Computação do
Instituto de Ciências Exatas da Universi-
dade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Doutor em Ciência da Computação.

Orientador: Marco Tulio Valente

Belo Horizonte

Dezembro de 2015

PALOMA MAIRA DE OLIVEIRA

EXTRACTING RELATIVE THRESHOLDS FOR

SOURCE CODE METRICS

Thesis presented to the Graduate Program
in Ciência da Computação of the Univer-
sidade Federal de Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Doctor in Ciência da Computação.

Advisor: Marco Tulio Valente

Belo Horizonte

December 2015

c© 2015, Paloma Maira de Oliveira.
Todos os direitos reservados.

Oliveira, Paloma Maira de

O48e Extracting Relative Thresholds for Source Code
Metrics / Paloma Maira de Oliveira. — Belo Horizonte,
2015

xxiii, 106 f. : il. ; 29cm

Tese (doutorado) — Universidade Federal de Minas
Gerais

Orientador: Marco Tulio Valente

1. Computation - thesis. 2. Source Code Metrics.
3. Thresholds. 4. Heavy-tailed distribution. 5. Software
Quality. 6. Software Engineer. I. Título.

CDU 519.6*32(043)

This thesis is dedicated to my husband Arthur and my parents Ari and Clelia,
who has always supported me.

ix

Acknowledgments

This work would not have been possible without the support of many people.

I thank God to provide me the discipline and persistence to reach a Ph.D. degree.

I thank my dear husband Arthur, who has had patience in difficult moments and has
always been at my side.

I thank my whole family—especially my father Ari, my mother Clélia, and my sister
Fernanda—for having always supported me.

I thank my advisor M. T. Valente for his attention, motivation, patience, dedication,
and immense knowledge. I certainly could not complete my Ph.D study without him.

I thank A. Serebrenik for giving me the opportunity to work under his supervision in
The Netherlands.

I thank A. Bergel for the valuable collaboration in the case studies.

I thank my colleagues of the IFMG—especially A. F. Camargos, B. Ferreira, D. F.
Resende, E. Valadão, F. P. Lima, G. Ribeiro, M. P. Junior, and W. A. Rodrigues—for
the friendship and cooperation.

I thank the members of the ASERG research group—especially A. Hora, C. Couto, H.
Borges, and L. L. Silva—for the friendship and technical collaboration.

I would like to express my gratitude to the members of my thesis defense—D. Serey
(UFCG), E. Figueiredo (UFMG), E. S. Almeida (UFBA), K. A. M. Ferreira (CEFET-
MG) and M. A. S. Bigonha (UFMG).

xi

Resumo

Valores de referência confiáveis são necessários para promover o uso de métricas de soft-
ware como um efetivo instrumento de medida da qualidade interna de sistemas. Assim,
nesta tese de doutorado propõe-se o conceito de Valores de Referência Relativos (VRR)
para avaliar métricas que estão em conformidade com distribuições de cauda-pesada
(heavy-tailed). Os valores de referência propostos são ditos relativos, pois eles devem
ser seguidos pela maioria das entidades de código fonte, contudo tolera-se um número
de entidades acima do limite definido. Os VRR são extraídos a partir de um con-
junto de sistemas. Descreve-se também uma análise extensiva dos VRR: (i) aplicamos
nossos VRR em uma amostra de 308 repositórios disponíveis no GitHub. Conclui-se
que a maioria dos repositórios seguem os VRR; (ii) comparamos os VRR propostos
com valores de referência extraídos usando um método amplamente usado pela indús-
tria de software. Conclui-se que ambos os métodos transmitem informações similares.
Contudo, o método proposto detecta automaticamente sistemas que não seguem os
VRR; (iii) avaliamos a influência do contexto em nossos resultados e concluímos que
o impacto do contexto nos VRR é limitado; (iv) executamos uma análise histórica
a fim de verificar se as diferentes versões de um sistema seguem os VRR propostos.
Conclui-se que os VRR capturam propriedades de software duradouras; (v) verificamos
se classes que não seguem o limite superior de um VRR são importantes. Conclui-se
que essas classes são importantes em termos de atividade de manutenção; (vi) inves-
tigamos a relação entre presença de bad smells em um sistema e sua aderência com
os VRR. Nessa análise, nenhuma evidência foi encontrada; (vii) avaliamos a dispersão
dos valores de métricas em sistemas que seguem os VRR usando o coeficiente de Gini.
Os resultados mostraram que existem diferentes distribuições de métodos por classe;
e (viii) conduzimos um estudo qualitativo para avaliar nosso método com desenvolve-
dores. Os resultados indicam que sistemas bem projetados respeitam os VRR e que
desenvolvedores geralmente têm dificuldade para indicar sistemas de baixa qualidade.

Palavras-chave: Métricas de código fonte, Valor de referência, Cauda pesada.

xiii

Abstract

Meaningful thresholds are needed for promoting software metrics as an effective in-
strument to measure the internal quality of systems. To address this challenge, in this
PhD Thesis, we propose the concept of Relative Thresholds (RT) for evaluating metrics
data following heavy-tailed distributions. The proposed thresholds assume that metric
thresholds should be followed by most entities, but that it is also natural to have a
number of entities in the “long-tail” that do not follow the defined limits. We describe
an empirical method for deriving RT from a corpus of systems. We also perform an
extensive analysis of RT: (i) we apply RT on a sample of 308 GitHub repositories. We
found that most repositories follow the extracted RT; (ii) We compare the proposed
RT with thresholds extracted according to a method used by the software industry.
We concluded that both methods convey similar information. However, our method
derives RT that can be automatically used to detect noncompliant systems; (iii) we
evaluate the influence of context in our results and we concluded that the impact on
RT of context changes is limited; (iv) we perform a historical analysis to check whether
the proposed RT are followed by different versions of the systems under analysis. We
found that our RT capture enduring software properties; (v) we check the importance
of classes that do not follow the upper limit of a RT and we found these classes are
important in terms of maintenance activities; (vi) we investigate the relation between
the presence of bad smells in a system and its adherence to the proposed RT. We do
not found evidence that noncompliant systems have more density of bad smells; (vii)
we evaluated the dispersion of the metric values in the systems respecting the proposed
RT, using the Gini coefficient. We found that there are different distributions of meth-
ods per class among the systems that follow the proposed RT; and (viii) We conducted
a qualitative study to evaluate our method with developers. The results indicate that
well-designed systems respect the RT. In contrast, we observed that developers usually
have difficulties to indicate poorly-designed systems.

Keywords: Source code metrics, Thresholds, Heavy-tailed Distributions.

xv

List of Figures

1.1 (a) Histogram of the number of attributes(NOA) for the classes in FindBugs.
(b) Quantile plot for the same data. 3

1.2 Relative threshold method . 5

2.1 (a) histogram of the populations of all US cities with population of 10 000 or
more. (b) another histogram of the same data, but plotted on logarithmic
scales. The approximate straight-line form of the histogram in the right
panel implies that the distribution follows a heavy-tailed. Data from the
2000 US Census. Figure and caption originally used by Newman et al. [76] 15

3.1 ComplianceRate and ComplianceRatePenalty functions 30
3.2 Compliance Rate Function (NOA metric) 31
3.3 Compliance Rate Penalty Function (NOA metric) 32
3.4 RTTool stages . 37
3.5 Configuration window . 38
3.6 Final results — with thresholds and noncompliants systems for each metric 39
3.7 ComplianceRate function (FAN-OUT metric) 40
3.8 ComplianceRatePenalty function (FAN-OUT metric) 41

4.1 Size of the systems in the our Corpus . 44
4.2 Quantile functions . 47
4.3 Percentage of high and very-high risk classes for each system in the Qualitas

Corpus. Black bars represent noncompliant systems. 54
4.4 Contextual analysis . 56
4.5 Contextual analysis for noncompliant systems 57
4.6 Possible states of a class: following or not the upper limit of a relative

threshold . 58
4.7 Percentage of classes following the upper limit of a relative threshold (pa-

rameter k) during the systems’ evolution 60

xvii

4.8 Relation between creation and deletion of classes regarding the classes that
do not follow the relative thresholds . 62

4.9 Relation between creation and deletion of classes regarding the classes that
follow the relative thresholds. In this figure, the percentage of created
classes are represented by gray bars, while the percentage of deleted classes
are represented by white bars . 63

4.10 Percentage of changes in classes that do not follow the upper limits of the
relative thresholds proposed for NOM, SLOC, FAN-OUT, RFC, WMC, and
LCOM . 65

4.11 Number of changes per classes that follow and that do not follow the upper
limits of the relative thresholds proposed for NOM, SLOC, FAN-OUT, RFC,
WMC, and LCOM . 66

4.12 Rate of class-level and method-level bad smells in systems in the Tools
subcorpus. The black bars represent noncompliant systems and the gray
bars are compliant systems . 71

4.13 Inequality Analysis using Gini coefficients 72
4.14 Quantile functions for noncompliants regarding the Gini values 73

5.1 Size of the systems in the Pharo Corpus 79
5.2 FAN-OUT quantiles—dashed lines represent PetitParser, PharoLauncher,

Pillar, Roassal, and Seaside, which are systems perceived as well-written
but that do not follow the relative threshold for FAN-OUT 82

5.3 FAN-OUT example . 83
5.4 Gini coefficients . 84
5.5 Top-5 maintainers analysis in noncompliant systems 86
5.6 Effort to Maintain (EM) . 87

6.1 Percentile plots of scattering degrees (SD). Figure and caption originally
used by Queiroz et al. [87] . 93

xviii

List of Tables

2.1 Source code metric distributions . 19
2.2 Source code metric distributions . 20
2.3 Thresholds approaches . 25
2.4 Thresholds approaches . 26

3.1 Classes with highest NOA values . 33
3.2 Runtime of RTTool . 40

4.1 Number and percentage of systems with heavy-tailed metric values distri-
butions . 46

4.2 Relative Thresholds . 48
4.3 Top-10 popular GitHub Java repositories (ordered by # stars) 49
4.4 Repositories that follow the proposed relative thresholds 49
4.5 Percentage of classes in the top-10 popular Java repositories that respect

the upper limit k of a relative threshold (the underlined value is the only
case when a threshold is not respected). 50

4.6 Noncompliant repositories for at least three metrics 51
4.7 Relative vs SIG thresholds . 52
4.8 Subcorpus by Application Domain . 55
4.9 Subcorpus by size . 55
4.10 Systems used in the Historical Analysis . 59
4.11 Percentage of classes that changed from a state following the upper limit

of a threshold to a state not following this limit (ToViolate column) and
vice-versa (ToFollow column) . 61

4.12 Data on commits log . 64
4.13 Top-15 classes with the highest number of changes in Lucene. The table

also shows whether each class follow or not the proposed upper limits for
the relative thresholds of six metrics . 67

xix

4.14 Top-15 classes with the highest number of changes in Spring. The table
also shows whether each class follow or not the proposed upper limits for
the relative thresholds of six metrics . 68

4.15 Noncompliant systems in the Tools subcorpus 69
4.16 Evaluated bad smells . 69

5.1 Relative Thresholds for Pharo . 80
5.2 Main noncompliant systems . 81
5.3 Well-written systems . 81
5.4 Percentage of classes in the well-written systems that follow the upper limit

k of a relative threshold (underlined values show the cases when the thresh-
olds are not respected). 82

5.5 Poorly-written systems . 84
5.6 Percentage of classes in the poorly-written systems that follow the upper

limit k of a relative threshold (underlined values show the cases when the
thresholds are violated). 85

6.1 Relative thresholds derived by Vale et al. 92

xx

Contents

Acknowledgments xi

Resumo xiii

Abstract xv

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Goals and Contributions . 4
1.4 Thesis Outline . 6
1.5 Publications . 7

2 Background 9
2.1 Software Quality . 9

2.1.1 Software Process Quality . 9
2.1.2 Software Product Quality . 10

2.2 Source Code Metrics . 12
2.2.1 The CK Metrics Suite . 13

2.3 Statistical Properties of Source Code Metrics 15
2.3.1 Metrics Values Distributions . 17
2.3.2 Discussion . 19

2.4 Thresholds Definitions . 19
2.4.1 Extracting Thresholds using Traditional Techniques 20
2.4.2 Extracting Thresholds from Repositories 21

xxi

2.4.3 Extracting Thresholds using Error Models 23
2.4.4 Extracting Thresholds using Clustering Algorithms 24
2.4.5 Discussion . 25

2.5 Studies with Developers . 26
2.6 Final Remarks . 27

3 Proposed Method 29
3.1 Relative Thresholds . 29
3.2 Illustrative Example . 31
3.3 Method Properties and Characteristics 33

3.3.1 Adherence to Requirement of Metric Aggregation Techniques . . 33
3.3.2 Staircase Effects . 34
3.3.3 Tolerance to Bad Smells . 35
3.3.4 Statistical Properties . 35

3.4 RTTool . 36
3.4.1 Example of usage . 37
3.4.2 Performance . 39
3.4.3 Availability . 40
3.4.4 Related Tools . 41

3.5 Final Remarks . 41

4 Relative Thresholds for the Qualitas Corpus 43
4.1 Corpus and Metrics . 43
4.2 Study Setup . 45
4.3 Results . 45
4.4 Application on Popular GitHub Repositories 46

4.4.1 Study Setup . 48
4.4.2 Results . 49

4.5 Comparison with SIG Method . 51
4.5.1 Results . 52

4.6 Contextual Analysis . 53
4.6.1 Study Setup . 53
4.6.2 Results . 55

4.7 Historical Analysis . 57
4.7.1 Study Setup . 58
4.7.2 Results . 59

4.8 Change Analysis . 64

xxii

4.8.1 Study Setup . 64
4.8.2 Results . 65

4.9 Bad Smells Analysis . 68
4.9.1 Study Setup . 68
4.9.2 Results . 69

4.10 Inequality Analysis . 72
4.11 Threats to Validity . 73
4.12 Final Remarks . 74

5 Validating Relative Thresholds with Developers 77
5.1 Study Design . 77

5.1.1 Research Questions . 77
5.1.2 Corpus and Metrics . 78
5.1.3 Methodology and Participants 79

5.2 Results . 80
5.2.1 Relative Thresholds for the Pharo Corpus 80
5.2.2 RQ 9: Do systems perceived as well-written by the expert devel-

opers follow the derived relative thresholds? 80
5.2.3 RQ 10: Do systems perceived as poorly-written by the expert

developers do not follow the derived relative thresholds? 84
5.2.4 RQ 11: Do the noncompliant systems require more effort to main-

tain? . 85
5.3 Threats to Validity . 87
5.4 Final Remarks . 88

6 Conclusion 89
6.1 Summary . 89
6.2 Applications of Relative Thresholds . 91

6.2.1 A Comparative Study on Metric Thresholds for Software Product
Lines . 91

6.2.2 Extracting Relative Thresholds for Feature Annotations Metrics 92
6.2.3 Using Relative Thresholds in Industrial Context 94

6.3 Contributions . 94
6.4 Further Work . 95

Bibliography 97

xxiii

Chapter 1

Introduction

In this chapter, we start by presenting our motivation (Section 1.1). Next, we present
our problem statement (Section 1.2) and an overview of the proposed solution (Sec-
tion 1.3). Finally, we present the outline of the thesis (Section 1.4) and our publications
(Section 1.5).

1.1 Motivation

With software systems constantly growing in complexity and size, better support is re-
quired for measuring and controlling software quality [40]. Essentially, software quality
is the degree to which a software meets its requirements [47]. However, evaluating a
software system in order to improve its overall quality is not a trivial task. To this
purpose, Meyer proposed a set of properties that can be used to evaluate software
quality [73]. According to the author, software quality can be evaluated by external
factors, i.e., those factors perceived by users, and by internal factors, i.e., those factors
only perceived by the development team (developers and maintainers).

Since the inception of the first programming languages, we are witnessing
the proposal of a variety of metrics to measure both internal and external quality
factors [1, 22, 34, 45, 54, 61]. For example, internal quality factors can be measured by
source code metrics, including properties such as modularity, coupling, cohesion, size,
inheritance, and complexity. External quality factors include properties such as effi-
ciency, correctness, robustness, extensibility, reusability, and ease of use. These metrics
provide a quantitative measure of a wide spectrum properties of a software system
and they can be used to control the software development and maintenance process.
Particularly, software quality managers can rely on metrics to evaluate and control
the internal and external quality of a software system, e.g., to certify new components

1

2 Chapter 1. Introduction

or to monitor the degradation in quality that happens due to software aging. Metrics
can also be used to compare and rate the quality of software products, and thus help
to define acceptance criteria or service-level agreements between software producers
and clients [5, 58]. In spite of such potential benefits of metrics, they are rarely used
to control in an effective way the quality of software products [34]. To promote the
use of metrics as an effective measurement instrument, it is essential to establish cred-
ible thresholds [5, 35, 44, 92]. Metric thresholds are defined by Lorenz and Kidd [67] as:

“Heuristic values used to set ranges of desirable and undesirable metric values for mea-
sured software. These thresholds are used to identify anomalies, which may or may not
be an actual problem.”

Thresholds have been already defined for many metrics. For example, McCabe pro-
posed a threshold value of 10 for his complexity metrics, beyond which a subroutine is
deemed unmaintainable and untestable [72]. Another example is that industrial code
standards for Java recommend that classes should have no more than 20 methods and
that methods should have no more than 75 lines of code [18]. These threshold values
are inspired by personal experience and therefore they are not intended as univer-
sally applicable. Recently, Alves et al. proposed a more transparent method to derive
thresholds from benchmark data [5]. They illustrate the application of the method in
a large software corpus and derived, for example, thresholds stating that methods with
McCabe complexity above 14 should be considered as very-high risk. However, for
most metrics, thresholds are still missing or they do not generalize beyond the context
of their inception.

1.2 Problem Statement

The definition of thresholds for source code metric is not a trivial task, because metric
values usually follow right-skewed or heavy-tailed distributions [13, 64, 68, 86]. Heavy-
tailed distribution are found in many object-oriented properties, describing a common
behavior which states that there are few very complex modules while most modules
have low complexity [76].

To illustrate such distributions, we will use the distribution of the number of
attributes (NOA) for the FindBugs system. FindBugs is a system that uses static
analysis to search for bugs in Java code. Figure 1.1a plots the histogram of the NOA
values for the 1,047 classes in FindBugs. The x-axis represents the metric values and
the y-axis represents the number of classes that have the metric value (frequency).

1.2. Problem Statement 3

The histogram is highly right-skewed, meaning that while the bulk of the distribution
occurs for fairly small sizes—most classes have few attributes (NOA ≤ 10)—there is a
small number of classes with NOA much higher than the typical value, producing the
long tail to the right of the histogram. In order to allow an alternative visualization of
the full metric distribution, Figure 1.1b depicts the distribution of the NOA values for
FindBugs using a quantile plot. The x-axis represents the percentage of observations
(percentage of classes) and the y-axis represents the NOA metric values. In Figure 1.1b
we can observe that 90% of classes have NOA ≤ 10.

Number of Attributes

F
in

dB
ug

s

0 50 100 150 200

0
20

0
40

0
60

0
80

0

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

Quantiles (% of NOA)

N
um

be
r

O
f A

tr
ib

ut
te

s

(b)

Figure 1.1. (a) Histogram of the number of attributes(NOA) for the classes in
FindBugs. (b) Quantile plot for the same data.

4 Chapter 1. Introduction

Therefore, in this PhD thesis we assume that in most systems it is “natural” to
have source code entities not respecting the existing metric thresholds for several rea-
sons, including complex requirements, performance optimizations, machine-generated
code, etc. In the particular case of coupling for example, a recent study shows that
high coupling can never be entirely eliminated from software design and that in fact
some degree of high coupling might be quite reasonable [96].

Existing methods for extracting metric thresholds rely for example on the per-
sonal experience of software quality experts [18, 25, 72, 75], on standard statistical
measures (e.g., arithmetic mean and standard deviation) [32, 61], machine learning
algorithms [44], log transformations [92], and linear regression [14]. There also methods
that rely on benchmark for derive thresholds [5, 35]. Thus, a method to define metric
thresholds should consider the right-skewed behavior normally observed in source code
metric values, as widely reported in the literature.

1.3 Goals and Contributions

We claim in this PhD thesis that metric thresholds should be complemented by a
second piece of information, denoting the percentage of entities the upper limit should
be applied to. In this context, the main goal of this PhD thesis is to propose and to
validate the concept of relative thresholds for evaluating source code metrics. Basically,
we propose an empirical method to derive relative thresholds based on the analysis
of a software corpus. A relative threshold is represented by pairs [p, k] and have the
following format:

p% of the entities should have M ≤ k

where M is a source code metric calculated for a given software entity (method, class,
etc.), k is an upper limit, and p is the minimal percentage of entities that should follow
this upper limit. For example, a relative threshold can state that “80% of the classes
should have NOA ≤ 8”. Essentially, this threshold expresses that high risk classes
impact the quality of a system whenever they represent more than 20% of the whole
population of classes. In other words, the percentage of classes that exceeds the upper
limit k do not constitute a threat to the internal quality of the entire project nor an
indication of an excessive technical debt [29, 71].

Relative thresholds should constitute a trade-off between real design rules, widely
followed by the systems in the considered corpus, and the need to reflect idealized design
rules, based on accepted software quality principles [61]. Indeed, while a threshold

1.3. Goals and Contributions 5

stating that “99% of the classes should have less than 100 attributes” is probably
satisfied by most systems in any corpus, it is hardly useful or can be seen as reflecting
an acceptable quality principle.

Figure 1.2 presents an overview of our method. Initially, we assume that the
values of p and k that characterize a relative threshold for a metric M should emerge
from a curated set of systems, which we call our Corpus. A relative threshold [p, k]

is derived using two functions, called ComplianceRate and ComplianceRatePenalty.
The function ComplianceRate [p, k] returns the percentage of systems in the Corpus
that follow the relative threshold defined by the pair [p, k]. However, this function
on its own is not sufficient to optimize p and k. Hence, we introduce the notion of
penalties to find the values of p and k. We penalize a ComplianceRate function in two
situations. The first penalty fosters the selection of thresholds followed by at least 90%
of the systems in the Corpus. The goal is to derive thresholds that reflect real design
rules, which are widely common in the Corpus. Furthermore, ComplianceRate [p, k]

receives a second penalty whenever k is greater than metric values that are perceived
as being very high. Finally, the ComplianceRatePenalty function is the sum of
penalty1[p, k] and penalty2[k]. A derived relative threshold is the one with the lowest
ComplianceRatePenalty[p, k]. A detailed description of our method is presented in the
Chapter 3.

Figure 1.2. Relative threshold method

This PhD thesis makes five major contributions. First, we provide a review of
the state-of-the-art with respect to statistical properties of source code metrics and on
methods to derive metric thresholds. Second, we introduce a novel method to derive
source code metric thresholds based on the analysis of a software corpus. Third, we
implemented a prototype tool called RTTool that automates our method. Fourth, we
evaluate the use of the proposed method in 106 real-world Java systems, using six
source code metrics. Fifth, we describe a validation study with expert developers,

6 Chapter 1. Introduction

who are the right experts to check whether metric thresholds are indeed able to infer
maintainability and design problems.

1.4 Thesis Outline

This thesis is structured in the following chapters:

• Chapter 2 provides a general discussion on software quality and source code met-
rics. This chapter also presents related work to our research, such as statistical
properties of source code metrics and methods to derive source code metrics
thresholds.

• Chapter 3 presents our method to extract relative thresholds from the measure-
ment data of a benchmark of software systems. An illustrative example of the
proposed method is also presented. Finally, the chapter discusses some aspects
and properties of the proposed method. We conclude by presenting RTTool , an
open source tool that automates our method.

• Chapter 4 reports an extensive evaluation, through which we apply our method
to extract relative thresholds for six source code metrics using Qualitas Corpus.
Section 4.4 investigates whether popular open source Java repositories, avail-
able at GitHub, follow the relative thresholds; Section 4.5 compares our results
with thresholds extracted using a method proposed by the Software Improvement
Group (SIG method); Section 4.6 evaluates the influence of context in our results;
Section 4.7 checks how the proposed thresholds apply to different versions of the
systems under analysis; Section 4.8 investigates the importance of classes that
do not follow the upper limit of a relative threshold, by checking how often such
classes are changed; Section 4.9 investigates the relation between the presence of
bad smells in a system and its adherence to the proposed relative thresholds; Sec-
tion 4.10 evaluates the dispersion of the metric values in the systems respecting
the proposed thresholds, using the Gini coefficient.

• Chapter 5 reports the results of a final study designed to validate our method
to extract relative thresholds. We extract thresholds from a benchmark of 79
Pharo/Smalltalk systems, which are validated with five Pharo experts and 25
Pharo developers.

1.5. Publications 7

• Chapter 6 presents the final considerations of this PhD thesis, including applica-
tions of relative thresholds conducted by other authors, contributions, and future
work.

1.5 Publications

This PhD thesis generated the following publications and therefore contains material
from them:

1. Reference [80]: Paloma Oliveira, Marco Tulio Valente, Alexandre Bergel and
Alexander Serebrenik. Validating Metric Thresholds with Developers: an
Early Result. In 31th International Conference on Software Maintenance and
Evolution- Early Research Achievements (ICSME - ERA Track), pages 546—
550, 2015.

2. Reference [79]: Paloma Oliveira, Fernando Lima, Marco Tulio Valente and
Alexander Serebrenik. RTTool : A Tool for Extracting Relative Thresholds for
Source Code Metrics. In 30th International Conference on Software Maintenance
and Evolution (ICSME - Tool Demo Track), pages 629—632, 2014.

3. Reference [81]: Paloma Oliveira, Marco Tulio Valente and Fernando Lima. Ex-
tracting Relative Thresholds for Source Code Metrics. In IEEE Conference on
Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE),
pages 254—263, 2014.

4. Reference [78]: Paloma Oliveira, Hudson Borges, Marco Tulio Valente and Heitor
Costa. Metrics-based Detection of Similar Software. In 25th International Con-
ference on Software Engineering and Knowledge Engineering (SEKE), pages
447—450, 2013.

5. Reference [83]: Paloma Oliveira; Hudson Borges; Marco Tulio Valente; Heitor
Costa. Uma Abordagem para Verificação de Similaridade entre Sistemas Orien-
tados a Objetos. Em XI Simpósio Brasileiro de Qualidade de Software (SBQS),
pages 1—15, 2012.

Chapter 2

Background

In this chapter, we discuss background work related to our PhD thesis. First, Sec-
tion 2.1 provides a discussion about software quality. Second, Section 2.2 provides an
overview on source code metrics. Third, Section 2.3 describes different statistical dis-
tributions, which are used to describe source code metrics. Moreover, we also present
related work that use such distributions to study software metrics. Fourth, Section 2.4
discusses methods to extract thresholds. Finally, Section 2.6 concludes this chapter
with a general discussion.

2.1 Software Quality

The primary goal of software engineering is to produce high quality software. Many
definitions of software quality are proposed in the literature and the focus of most of
them is the attendance of the customer needs [54, 85, 95].

Software quality can be reach using two important concepts: Software Process
Quality and Software Product Quality [85]. In the next sections, we describe these two
concepts of software quality.

2.1.1 Software Process Quality

A software process is a set of activities, practices, methods, and transformations used
to develop and to maintain software and the associated products (e.g., project plans,
design documents, code, test cases, and user manuals) [85]. The adopted development
process reflects in productivity, cost, and in the software quality [45].

Currently, there are several reference models for improving the software pro-
cess that are widely accepted by software organizations and professionals. The most

9

10 Chapter 2. Background

known models are CMMI-DEV— Capability Maturity Model Integration for Develop-
ment [89], ISO/IEC 15504 or SPICE [50], ISO/IEC 9000 [51], and MR-MPS—Reference
Model for Software Process Improvement [94].

These reference models focus on processes improvement defining generic prac-
tices, requirements, and guidelines to help organizations to reach their goals in a more
structured and efficient way. They contain essential elements of effective processes
for one or more disciplines and they describe an evolutionary improvement path from
ad hoc, immature processes to disciplined, mature ones with improved quality and
effectiveness [23].

CMMI, SPICE, and MPS organizations are appraised to a certain compliance
level defining the extent to which the organization follows the defined guidelines. These
levels are called maturity level in CMMI and MPS, and capability level in SPICE.
Moreover, ISO/IEC 9000 organizations are certified via a certification body. A process
maturity model provides a indication of the process “maturity” presented by a software
organization [85]. A key aspect to the success of these models is the fact that they
provide foundations for measurement, comparison, and evaluation.

2.1.2 Software Product Quality

Software product quality has been given less importance when compared to other
areas of software quality, with exception for testing. For a long time, reliability (as
measured in number of failures) has been the single criteria for gauging software product
quality [49]. In this section, we present an overview about software product quality.

The recognition of the need of a well-defined criteria for software product quality
lead to the development of the standards ISO/IEC 91261 [49] and ISO/IEC 145982 [48].
ISO/IEC 9126 and 14598, which are closely related to each other. More recently, a
new standard was proposed named ISO/IEC 250003, also known as SQuaRE [52].
SQuaRe is a standard family that combines and replaces the older ISO/IEC 9126 and
the ISO/IEC 14598.

SQuaRe defines a complete evaluation process for a software product and it assists
in specifying and evaluating of the quality requirements [52]. SQuaRE recommends
the use of a quality model, which refines the required quality into characteristics and
sub-characteristics and clarifies the relationship among them. SQuaRE is divided into
five different divisions4, as follow [52]:

1ISO/IEC 9126—International Standard for Software Engineering—Product Quality.
2ISO/IEC 14598—International Standard for Software Engineering—Product evaluation.
3ISO/IEC 25000—Software Quality Requirements and Evaluation standard family.
4“n” indicates numbers stand for one of the 10 digits.

2.1. Software Quality 11

1. Quality Management Division (ISO/IEC 2500n): The standard proposed by this
division defines all common models, terms, and definitions referred further by all
other standards from SQuaRE. This division also provides requirements and guid-
ance for a support function which is responsible for the management requirement
specification and evaluation.

2. Quality Model Division (ISO/IEC 2501n): The standard proposed by this divi-
sion presents a detailed quality model including characteristics for internal and ex-
ternal software quality, and software quality in use. Furthermore, the internal and
external software quality characteristics are decomposed into sub-characteristics.

3. Quality Measurement division (ISO/IEC 2502n): The standard proposed by this
division includes a software product quality measurement reference model, math-
ematical definitions of quality measures, and practical guidance for their applica-
tion. Moreover, this division also defines general requirements for quality metrics
and guides the users to use those metrics.

4. Quality Requirements Division (ISO/IEC 2503n): The standard proposed by this
division helps specifying quality requirements. These requirements can be used
in the process of quality requirement elicitation for a software product or as input
for an evaluation process.

5. Quality Evaluation Division (ISO/IEC 2504n): The standard proposed by this
division defines general requirements for software quality specification and eval-
uation.

To summarize, the SQuaRE standard replaced the ISO/IEC 9126 and ISO/IEC
14598 standards. SQuaRE binds into one standard family providing best practices
and lessons learned from both ISO/IEC 9126 and ISO/IEC 14598 standards. The
differences between SQuaRE, ISO/IEC 9126, and ISO/IEC 14598 standards are as
follow: (i) the introduction of a reference model; (ii) the introduction of measurement
primitives; (iii) the introduction of quality requirement division; and (iv) an adapted
version of evaluation process [52].

Software products are getting larger in size and in number of components, where
different components exchange information using several interfaces to other compo-
nents. This means that the overall complexity of the systems grows. It is has been
estimated that 50-80% of costs of the software project goes to maintenance [54]. This
is the reason why it is important for a software company to understand the quality
of their products in order to increase efficiency of the software development. One of

12 Chapter 2. Background

the challenges of software quality research is to identify how to use metrics to drive
the development processes and to improve the software product. Then, Section 2.2
presents an insight to the most popular source code metrics suites. Next, Section 2.3
discuss some distinguishing statistical properties of source code metrics.

2.2 Source Code Metrics

Source code metrics can be used to identify possible problems or chances for improve-
ments in software quality [34, 85]. A variety of metrics to measure source code proper-
ties like size, complexity, cohesion, and coupling have been proposed [1, 10, 22, 58, 61].
However, source code metrics are rarely used to support decision making because they
are ultimately just numbers that are not easy to interpret [85, 95]. Usually, metrics are
classified into three categories: process, project, and product, as described next [45, 54]:

• Process metrics: enable the organization to evaluate the development process.
They can be used to improve software development and maintenance practices.
As examples of process metrics, we can mention function point, change metrics,
number of files involved in bug fixing, etc.

• Project or resources metrics: enable the organization to evaluate the progress
of a software project. Basically, they describe the project characteristics and
execution. As examples of project or resources metrics, we can mention number
of developers, cost, schedule, and productivity.

• Product metrics: enable software engineers to evaluate internal properties of a
software product. As examples of product metrics, we can mention size, com-
plexity, coupling, and cohesion.

Particularly, in this PhD thesis, we focus on product metrics, since they are most
adequate to the quantitative assessment of internal quality of software systems [5,
34, 85]. Whitmire describes nine distinct and measurable characteristics for product
metrics [106]:

1. Size: it is usually defined in terms of four views: population (static count of en-
tities), volume (dynamic count of entities), length, and functionality (an indirect
indication of the value delivered to the customer by a system).

2. Complexity: it is defined in terms of structural characteristics by examining how
classes of an object-oriented design are interrelated to each other.

2.2. Source Code Metrics 13

3. Coupling: it is the physical connections between entities of the system.

4. Sufficiency: it compares the abstraction from the point of view of the current
application.

5. Completeness: it has an indirect implication about the degree to which the ab-
straction or design component can be reused.

6. Cohesion: it is determined by examining the degree to which the set of properties
it possesses is part of the problem or design domain.

7. Primitiveness: it is the degree to which a method is atomic. It is related to
simplicity of entities.

8. Similarity: it is the degree to which two or more classes are similar in terms of
their structure, function, behavior, or purpose.

9. Volatility: it measures the likelihood that a change will occur.

Each characteristic is associated with a set of metrics, moreover, a particular metric
may be associated with more than one characteristic. In the following sections, we
discuss the CK metrics suite that provides an indication of quality at object-oriented
systems.

2.2.1 The CK Metrics Suite

Chidamber and Kemerer have proposed one of the most widely referenced sets of object-
oriented software metrics [21, 22]. Often referred to as the CK metrics suite, it includes
six class-based design metrics:

1. Weighted Methods per Class (WMC): represents the complexity of the class as
measured by its methods. The calculation of the metric is given by the sum of the
complexity of the methods in the class. According to Chidamber and Kemerer,
WMC is an indicator of how much time and effort are required to develop and
maintain a given class. Currently, some authors define WMC as the number of
methods in the class.

2. Depth of Inheritance Tree (DIT): indicates the depth of a class in the inheritance
tree, which is given by the length of the path from the class to the root of the
tree. DIT is nowadays considered an indicator of design complexity.

14 Chapter 2. Background

3. Number of Children (NOC): denotes the number of immediate subclasses of a
class. This metric is an indicator of the importance that a class has in the
system. If a class has a large number of children, it might, for example, require
more tests.

4. Coupling between Object Class (CBO): indicates the number of classes to which
a certain class is coupled to. For Chidamber and Kemerer, a coupling between
two classes exists when the methods implemented in one class use methods or
instance variables defined by other classes. This metric can be used to reveal
design problems. For example, it is widely accepted that excessive coupling is
harmful to modular design, because the more independent a class is, more easy
is to reuse it in other systems.

5. Response for a Class (RFC): indicates the number of methods that can be called
in response to a message received by a class, defined as the number of methods
of the class plus the number of methods invoked by them. RFC is considered an
indicator of coupling.

6. Lack of Cohesion in Methods (LCOM): indicates the lack of cohesion between
the methods in a class. Chidamber and Kemerer propose that cohesion between
methods can be captured by the use of common instance variables. In this way,
LCOM is usually computed as the number of method pairs that have no instance
variables in common minus the number of method pairs with common instance
variables. Therefore, the smaller the value of LCOM, the more cohesive is the
class.

In summary, CK metrics cover different internal properties of software systems,
such as complexity (WMC), coupling (CBO and RFC), inheritance (DIT and NOC),
and cohesion (LCOM). It is also important to state that, there are other object-oriented
metrics cited in the literature [1, 61, 67]. Among such metrics, we can mention number
of lines of code (SLOC), number of methods (NOM), number of attributes (NOA),
number of other classes referenced by a class (FAN-OUT), etc.

In order to use source code metrics as an effective instrument of measurement is
interesting to understand the statistical distribution that better describe their data.
Thus, in the Section 2.3, we discuss about statistical properties of source code metrics.

2.3. Statistical Properties of Source Code Metrics 15

2.3 Statistical Properties of Source Code Metrics

There are many studies on the distribution of source code metrics. However, usually
all of such studies indicate that source code metric values follow right-skewed or heavy-
tailed distributions [2, 9, 13, 64, 68, 84, 86, 105]. Heavy-tailed is a distribution that has
been found in many object oriented properties. A heavy-tailed describes a common
behavior which states that there are few very complex modules while most modules
have low complexity [76].

A classic example of this type of distribution is the size of towns and cities [76].
Figure 2.1 plots the histogram of the size of cities. In figure (a) is showed a simple
histogram of the distribution of US city sizes. The histogram is highly right-skewed,
meaning that while the bulk of the distribution occurs for fairly small sizes—most US
cities have small populations—there is a small number of cities with population much
higher than the typical value, producing the long tail to the right of the histogram.
Figure 2.1 (b) shows the histogram of city sizes again, but this time replotted using a
logarithmic scale in the horizontal and vertical axes. As can be observed, a remarkable
pattern emerges: the histogram follows a straight line [76, 110].

Figure 2.1. (a) histogram of the populations of all US cities with population
of 10 000 or more. (b) another histogram of the same data, but plotted on
logarithmic scales. The approximate straight-line form of the histogram in the
right panel implies that the distribution follows a heavy-tailed. Data from the
2000 US Census. Figure and caption originally used by Newman et al. [76]

There are many heavy-tailed distributions, which Power law is one of the more
cited in the literature on source code metrics analysis. Mathematically, a quantity x
follows a power law if it is drawn from a probability distribution

16 Chapter 2. Background

p(X = x) α Kx(−α) (1)

where α is a constant parameter of the distribution known as the exponent or scaling
parameter. The scaling parameter typically lies in the range 2 < α < 3, although there
are exceptions. In practice, few empirical phenomena obey power laws for all values of
x. More often the power law applies only for values greater than some minimum xmin.
In such cases, we state that the tail of the distribution follows a power law.

Another examples of heavy-tailed distributions are Pareto, Lognormal, Exponen-
cial, Caughy, and Weibull etc. [13, 35, 37, 76, 104]. There are several approaches to
check whether a population follow a heavy-tailed distribution, which we highlight four:

1. Histogram and doubly logarithmic plot: This is a visual approach and it
is most often used. This approach consists in plotting a histogram, applying
linear regression, and taking the logarithm of both sides of Equation 1. We
can see that the distribution obeys ln(p(x)) = K−α ln(x), implying that it
follows a straight line on a doubly logarithmic plot. A common way to check for
power-law behavior, therefore, is to measure a variable of interest x, construct
a histogram representing its frequency distribution, and plotting that histogram
on doubly logarithmic axes. If we discover a distribution that approximately falls
on a straight line, we can say that the distribution follows a heavy-tailed, with a
scaling parameter α given by the absolute slope of the straight line. Typically, this
slope is extracted by performing a least-square linear regression on the logarithm
of the histogram. Although this approach is frequently described in the literature,
it is subjected to systematic errors under relatively common conditions, and as a
consequence the results it provides might not be reliable [24, 103].

2. Statistical approach proposed by Clauset et al. [24]: this approach is a
statistical framework for discerning and quantifying heavy-tailed behavior in em-
pirical data. It combines maximum-likelihood fitting methods with goodness-of-
fit tests based on the Kolmogorov-Smirnov statistic and likelihood ratios. It also
uses numeric methods to estimate the parameters Xmin and α, where Xmin indi-
cates the start of the tail and α represents the scaling parameter of the dataset.
Next, the approach calculates the goodness-of-fit between the data and the power
law. If the resulting p-value is greater than 0.1 the heavy-tailed is a plausible
hypothesis for the data, otherwise it is rejected.

3. Quantile Function: this approach examines a distribution of values and plots
its Cumulative Density Function (CDF) or the CDF inverse, the Quantile func-
tion. The use of the quantile function is interesting to determine thresholds (the

2.3. Statistical Properties of Source Code Metrics 17

dependent variable) as a function of the percentage of observations (independent
variable). Also, by using the percentage of observations instead of the frequency,
the scale becomes independent of the size of the system making it possible to
compare different distributions. Moreover, the quantile function allows for better
visualization of the full metric distribution. Therefore, in this PhD thesis all dis-
tributions are depicted with quantile plots. Alves et al. also use this approach [5].

4. Adherence test: This approach is also frequently mentioned in the litera-
ture [13, 35]. It relies on rigorous best-fits to several distributions, and checks
first whether it is reasonable to fit a heavy-tailed, second whether a given distri-
bution is more reasonable than the others, third whether the data can be divided
into two or more groups according to which distribution fits “best”.

2.3.1 Metrics Values Distributions

Wheeldon and Counsell analyzed three Java systems: JDK (Java Development Kit),
Apache Ant, and Tomcat using 12 metrics related to object-oriented coupling, namely,
inheritance, aggregation, interface, parameter type and return type [105]. These met-
rics are: Number of methods(nM), Number of fields(nF), Number of constructors(nC),
Subclasses (SP), Implemented interfaces (IC), Interface implementations (IP), Refer-
ences to class as a member (AP), Members of class type (AC), References to class
as a parameter (PP), Parameter-type class references (PC), and References to class
as return type (RP). To identify the power laws the authors perform linear regres-
sion on log-log data plots. They concluded that all metric values follow Power Law
distributions.

Baxter et al. analyzed 17 metrics in 56 Java systems for verifying their internal
structure [13]. The authors performed adherence tests to identify three types of distri-
bution: Power Laws, Lognormal, and Exponential. The goal of this work is to extend
the work proposed by Wheeldon and Counsell [105] in order to check heavy-tailed
distribution in 17 object-oriented metrics. However, they added the following met-
rics: Methods returning classes (RC), Depends on (DO), Depends on inverse (DOinv),
Public method count (PubMC), Package size (PkgSize), and Method size (MS). The
authors report that, AP, PP, RP, SP, IC, and MS are metrics that follow heavy-tailed
distributions. But AC, PC, RC, PubMC, nF, nM, Do, IP, and DoInv do not follow
such distributions. Finally, the results for nC and Ms are not conclusive.

However, Louridas et al. analyzed coupling metrics using 11 systems developed
in multiple languages (C, Perl, Ruby, and Java) using coupling metrics: FAN-IN and
FAN-OUT [68]. The authors concluded that most metrics are in conformity with

18 Chapter 2. Background

heavy-tailed distributions, independently of programming language. These findings
are different than those of Baxter et al., which suggests that out-degree metrics are not
heavy-tailed [13]. Studies conducted by Potanin et al. [84], Gao et al. [41], and Taube-
shock et al. [96] confirm such results for coupling metrics. Potanin et al. analyzed
35 systems and they concluded that coupling metrics are in conformity with heavy-
tailed distributions [84]. Gao et al. analyzed four open source Java systems and they
also concluded that out-degree and in-degree metrics are in conformity with heavy-
tailed distributions [41]. Taube-shock et al. analyzed coupling metrics using 97 open
source Java systems from the Qualitas Corpus [96]. The goal of this work was checking
the following hypothesis: (i) the between-module connectivity network of source code
entities follows a heavy-tailed distribution; and (ii) The between-module connectivity
network of source code entities follows a heavy-tailed distribution, and the degree of left
skewness has some maximum level. The authors concluded that these two hypothesis
can be accepted and that high coupling is impracticable to eliminate entirely from
software design.

Concas et al. examined 10 source code metrics of three systems: one implemented
in Smalltalk (VisualWorks) and two implemented in Java (JDK e Eclipse) [26]. The
goal of this work was to check whether large object-oriented systems follow heavy-
tailed distributions. Jing et al. found heavy-tailed in the values of Weighted Methods
per Class (WMC) and Coupling Between Objects (CBO) for four open source software
systems [53]. Ichii et al. examined four source code metrics on six systems, finding
that in-degree follows a Power Law while out-degree follows other heavy-tailed distri-
bution [46].

Queiroz et al. analyzed the scattering degree of # ifdefs in five C-pre-processor-
based systems (vi, libxml2, lighttpd, MySQL, and Linux kernel) [86]. In the case of
four systems, they reported that feature scattering has characteristics of heavy-tailed
distributions, with a good-fit with power laws. Vasa et al. noted that many software
metrics have a skewed distribution, which makes the reporting of data using central
tendency statistics unreliable [100]. To address this, they recommended adopting the
use of the Gini coefficient, which has been used in the field of economics to characterize
the relative equality of distributions. They examined 50 systems developed in Java and
C# using 10 metrics. Landman et al. also found evidences of skewed distributions with
a long tail for two metrics: cyclomatic complexity and lines of source code. For this,
they used a corpus of 17.8M methods from 13K open source Java projects [60]. Lin and
Whitehead analyzed four object-oriented Java systems and they also found heavy-tailed
distributions in measures such as file size, change size, and in-degree of methods [64].

2.4. Thresholds Definitions 19

2.3.2 Discussion

In this section, we provided a discussion about source code metrics distributions, which
is summarized in Tables 2.1 and 2.2. We reported that source code metrics tend to
follow a heavy-tailed distribution. This means that, typically, software systems follow
this pattern: few software entities contain much of the complexity and functionality,
whereas the others define simple data abstractions and utilities [101]. Moreover, since
non-Gaussian distributions are common in the case of source code metric values de-
scriptive statistics, e.g., mean and variance, are not adequated to define thresholds for
such metric data. Although, the works reported in this section have theorical value,
they fall short in concluding how to use these distributions and their coefficients in
practical terms, to establish baseline values to judge systems. Therefore, the next
section presents methods to derive source code metric thresholds.

Table 2.1. Source code metric distributions

Authors # Systems Language

Wheeldon and Counsell [105] 3 Java
Baxter et al. [13] 56 Java
Louridas et al. [68] 11 C, Perl, Ruby, and Java
Potanin et al. [84] 35 Java
Gao et al. [41] 4 Java
Taube-Schock et al. [96] 97 Java
Concas et al. [26] 3 Java and Smalltalk
Jing et al. [53] 4 Java
Ichii et al. [46] 4 Java
Queiroz et al. [86] 5 C
Vasa et al. [100] 47 Java and C#
Landman et al. [60] 13K Java
Lin et al. [64] 4 Java

2.4 Thresholds Definitions

In this section, we present different methods to derive thresholds. These methods are
organized in four groups: (a) extracting threshold using traditional techniques (Sec-
tion 2.4.1); (b) extracting threshold from repositories (Section 2.4.2); (c) extracting
threshold using error models (Section 2.4.3); and (d) extracting threshold using clus-
tering algorithms (Section 2.4.4).

20 Chapter 2. Background

Table 2.2. Source code metric distributions

Authors Method Are heavy-tailed?

Wheeldon and Coun-
sell [105]

linear regression on log-log data plots All metrics

Baxter et al. [13] log-log data plots and adherence test Six out 15 metrics
Louridas et al. [68] linear regression on log-log data plots All metrics
Potanin et al. [84] linear regression on log-log data plots All metrics
Gao et al. [41] linear regression on log-log data plots All metrics
Taube-Schock
et al. [96]

linear regression on log-log data plots All metrics

Concas et al. [26] log-log data plots and adherence test All metrics
Jing et al. [53] linear regression on log-log data plots All metrics
Ichii et al. [46] linear regression on log-log data plots All metrics
Queiroz et al. [86] histogram and Clauset Method All metrics
Vasa et al. [100] Gini coefficient All metrics
Landman et al. [60] linear regression on log-log data plots All metrics
Lin et al. [64] linear regression on log-log data plots All metrics

2.4.1 Extracting Thresholds using Traditional Techniques

Erni and Lewerentz proposed the use of mean (µ) and standard deviation (σ) to derive a
threshold T from project data [32]. For this, the authors used coupling, complexity, and
cohesion metrics. A threshold T is calculated as Tlow = µ+σ or Thigh = µ−σ, indicating
that high or low values of a metric can cause problems, respectively. This method is
a common statistical technique which data are normally distributed. However, the
authors did not analyze the underlying distribution, and only applied it to one system,
using three releases. Lanza and Marinescu also proposed a method based on descriptive
statistics and experts experience [61]. They performed an experiment using source code
metrics related to inheritance, coupling, size, and complexity. For this, the authors
used 82 systems developed in C++ (37 systems) and Java (45 systems). This method
consisted of a intervals of thresholds, where the mean as typical value and standard
deviation as upper limit.

The problem with the use of these methods is that they assume that metric data
are assumed to be normally distributed, thus compromising their validity in general. As
mentioned in Section 2.3, software metrics generally follow heavy-tailed distributions.
Consequently, the use of means and standard deviation is not adequate.

2.4. Thresholds Definitions 21

2.4.2 Extracting Thresholds from Repositories

Alves et al. proposed an empirical method to derive threshold values for source code
metrics from a benchmark of systems [5]. Their ultimate goal was to use the extract
thresholds to build a maintainability assessment model [8, 27, 42]. Specifically, the
goal was to define quality profiles to rank entities according to four categories: low
risk (0 to 70th percentiles), moderate risk (70th to 80th percentiles), high risk (80th to
90th percentiles), and very-high risk (90th percentile). For this purpose, metric values
for a given program entity are first weighted according to the size of the entities in
terms of lines of code (SLOC), in order to generate a new distribution where variations
in the metrics values are more clear. They illustrated the method using as example
the McCabe complexity metric [72] and a benchmark of 100 object-oriented systems,
which it was implemented in C# (18 systems) and Java (82 systems), including both
proprietary (77 systems) and open source (23 systems). The method of Alves et al. is
summarized in six steps [5]:

1. Metrics extraction: the value of the metrics are extracted from a benchmark
of systems. For each system S and for each entity E (e.g., method or class),
they record a metric value and weight metric. They considered as weight the
SLOC of the entity. As example, for the Vuze system, there is a method (entity)
called MyTorrentsView.createTabs() with a McCabe value of 17 and
weight value of 119 SLOC;

2. Weight ratio calculation: in this step, for each entity E, they divide the en-
tity weight by the sum of all weights of the same system. For each sys-
tem, the sum of all entities WeightRatio must be 100%. As example, for the
MyTorrentsView.createTabs() method entity, the result is 119 SLOC di-
vided by 329,765 (total SLOC for Vuze) which represents 0.036% of the overall
Vuze system;

3. Entity aggregation: they aggregate the weights of all entities per metric value,
which is equivalent to computing a weighted histogram. As example, all entities
with a McCabe value of 17 represent 1.458% of the overall SLOC of the Vuze
system;

4. System aggregation: they normalize the weights for the number of systems and
then aggregate the weight for all systems. Hence, they have a histogram describ-
ing a weighted metric distribution. As example, a McCabe value of 17 corresponds
to 0.658% of all code in the benchmark they use to illustrate the method.

22 Chapter 2. Background

5. Weight ratio aggregation: in this step, a density function (or quantile function)
is computed, in which the x-axis represents the weight ratio (0-100%), and the
y-axis the metric scale. As example, in the benchmark they used, for 60% of the
overall code the maximal McCabe value is 2.

6. Thresholds derivation: thresholds are extracted by choosing the percentage of the
overall code we want to represent. For example, for McCabe metric the extracted
thresholds are 6, 8 and 14, which represents 70%, 80%, and 90% quantiles.

The authors claimed that the distribution of the metric values is preserved and
that the method is resilient to the influence of large systems or outliers. Thresholds
were derived using 70%, 80% and 90% quantiles and checked against the benchmark
to show that thresholds indeed represent these quantiles. This method was replicated
using four other metrics from the SIG quality model: unit size, unit interfacing, FAN-
IN, and module interface size. The method also was used by Luijten et al. to derive
thresholds to other metrics of the SIG group [69]. Luijten et al.also found empirical
evidence that systems with higher technical quality have higher issue solving efficiency.
In a more recent work, Alves et al. improved their method to include the calibration
of mappings from code-level measurements to system-level ratings, using an N-point
rating system [4].

Ferreira et al. defined thresholds for six source code metrics from a benchmark
with 40 open source Java systems. The analyzed metrics included coupling factor
(COF), number of public fields (NPF), number of public methods (NPM), lack of co-
hesion in methods (LCOM), depth of inheritance tree (DIT), and afferent couplings
(AC) [35]. The authors used EasyFit tool5 to fit the data to various probability distribu-
tions, such as Bernoulli, Binomial, Uniform, Geometric, Hypergeometric, Logarithmic,
Binomial, Poisson, Normal, t-Student, Chi-square, Exponential, Lognormal, Pareto,
and Weibull. For each metric, the data was collected and two graphics were gener-
ated: a scatter plot and the same data in doubly logarithmic scale. Using the EasyFit
tool, they concluded that the metric values, with exception of DIT, follow heavy-tailed
distributions. After this conclusion, the authors established three threshold ranks: (i)
good: refers to most common values; (ii) regular: refers to values with low frequency,
but that are not irrelevant; and (iii) bad: refers to values with rare occurrences. How-
ever, they do not predefined the percentage of classes tolerated in these categories. For
example, the LCOM threshold is: 0 (good cohesion), 1—20 (regular cohesion), and
greater than 20 (bad cohesion).

5http://www.mathwave.com/products/easyfit.html

2.4. Thresholds Definitions 23

The authors extracted general thresholds for object-oriented software metrics,
and thresholds by application domain, size, and system type (tool, library, and frame-
work). They did not find relevant differences among them. The identified thresholds
were evaluated in two case studies. The results of this evaluation indicated that the
proposed thresholds can help to identify classes that violate design principles. Recently,
Filo et al.extended and improved this work and they applied it to extract thresholds
to 17 source code metrics using a benchmark with 111 open source Java systems [36].

The goal of the methods proposed by Alves et al. [5] and Ferreira et al. [35] is
to rank entities, i.e., classes or methods. In the work of Alves et al., a new method
was proposed—the use of weighting by size using SLOC metric. The goal of weighing
by SLOC is to emphasize the metric variability when plotting the quantile function.
Ferreira et al. extracted three thresholds for each metric, which are used to rank the
classes as good, regular, or bad. In summary, this works extracted absolute thresholds,
meaning that all classes with high value metric are considered as presenting high risk
or bad quality. However, several works showed that source code metrics follow a heavy-
tailed distribution. Consequently, in this type of distribution is natural to find entities
with high values.

2.4.3 Extracting Thresholds using Error Models

Shatnawi et al. investigated the use of the ROC curves to extract thresholds for pre-
dicting the existence of bugs in different error categories [93]. They performed an
experiment using 12 source code metrics and applied the method to three releases of
Eclipse. The metrics analyzed were: number of attributes (NOA), number of operations
(NOO), lack of cohesion of methods (LCOM), weighted methods complexity (WMC),
coupling between objects (CBO), coupling through data abstraction (CTA), coupling
through message passing (CTM), response for class (RFC), depth of inheritance hi-
erarchy (DIT), number of child classes (NOC), number of added methods (NOAM),
and number of overridden methods (NOOM). Catal et al. developed a noise detection
approach that uses threshold values for software metrics in order to capture these noisy
instances [20]. The thresholds of Catal et al. were calculated using an adaptation of
the Shatnawi et al. [93] threshold calculation technique. They validated the proposed
noise detection technique on five public NASA datasets. The results showed that this
method is effective for detecting noisy instances. Although Shatnawi et al. and Catal
et al. extracted thresholds using ROC curves, this method resulted in three drawbacks
in their results. First, thresholds values can be not found. Second, for different re-
leases of a system, different thresholds were derived. Third, the methodology does not

24 Chapter 2. Background

succeed in deriving monotonic thresholds, i.e., lower thresholds were derived for higher
error categories than for lower ones.

Benlarbi et al. analyzed the relation of source code metric thresholds and software
failures using linear regressions [14]. This study was performed using five CK metrics
(WMC, DIT, NOC, CBO, and RFC) and two C++ systems. The authors compared two
error probability models, one with threshold and another without. For the model with
threshold, zero probability of error exists for metric values below the threshold. They
concluded that there was no empirical evidence supporting the model with threshold
as there was no significant difference among the models. However, this result is only
valid for this specific error prediction model and for the metrics the authors took into
account. Other models can, potentially, give different results.

Herbold et al. used a machine learning algorithm to define a method for the
calculation of metric thresholds [44]. For this, they analyzed 11 metrics related to size,
coupling, complexity, and inheritance. In this work, an entity is analyzed according
to a set of metrics and the global result is binary. This method is based on a given
metric set M and a set of software entities X with known classifications Y . As result,
the algorithm yields pairs of upper and lower bounds. Specifically, the thresholds T is
zero (bad) when at least one metric m exceeds its threshold t, and is one (good) when
none of the metrics exceeds its threshold. The authors performed four case studies
using eight systems including C functions, C++, C# methods, and Java classes. The
results showed that this method is able to improve the efficiency of existing metric sets.
The proposed method, however, produces a binary classification and can therefore only
differentiate between good and bad; further shades of gray are not possible. Another
point is that the extracted thresholds are in entities level. Therefore, system level
thresholds are not provided.

2.4.4 Extracting Thresholds using Clustering Algorithms

Yoon et al. investigated the use of the K-means clustering algorithm to identify out-
liers in the data measurements [108]. Outliers can be identified by observations that
appear either in isolated clusters (external outliers), or by observations that appear
far away from other observations within the same cluster (internal outliers). Oliveira
et al. proposed a quantitative approach based in source code metrics to determine sim-
ilarity in object-oriented systems [78, 83]. This approach also used K-means clustering
algorithm to derive thresholds. The thresholds generated by this approach represents
profiles of classes of a system. The authors performed two case studies using a dataset
with more than 100 Java systems and 23 metrics.

2.4. Thresholds Definitions 25

However, K-means suffers from important shortcomings: it requires an input
parameter that affects both the performance and the accuracy of the results. Thus,
different thresholds can be extracted for the same dataset and metric.

2.4.5 Discussion

In this section, we provided a discussion about threshold extraction methods, which are
summarized in Table 2.3 and 2.4. We observed that there are several methods for this
purpose. However, there is not a method that is widely recognized by researchers and
software engineers as an effective instrument to control the internal quality of software
systems. We also observed that using benchmark of systems is an interesting approach,
which tends to reflect the software development practice.

Table 2.3. Thresholds approaches

Authors Systems Languages Metrics

Erni and Lewer-
entz [32]

1 Smaltalk Complexity, coupling, and cohe-
sion

Lanza and Mari-
nescu [61]

82 C++
and
Java

Inheritance, coupling, size, and
complexity

Alves et al. [5] 100 C#
and
Java

McCabe complexity, unit size,
unit interfacing, module interface
size, and FAN-IN

Ferreira et al. [35] 40 Java LCOM, DIT, COF, Afferent cou-
pling, NOMP, and NOAP

Shatnawi et al. [93] 1 Java CBO, RFC, WMC, LCOM,
DIT, NOC, CTA, CTM, NOAM,
NOOM, NOA, and NOO

Catal et al. [20] 5 C and
C++

SLOC, MCave, EC, DC

Benlarbi et al. [14] 2 C++ WMC, DIT, NOC, CBO, and
RFC

Herbold et al. [44] 8 C,
C++,
C#
and
Java

Size, coupling, complexity, and
inheritance

Oliveira et al. [83] 86 Java Size metrics
Oliveira et al. [78] 103 Java Size, coupling, complexity, and

cohesion

26 Chapter 2. Background

Table 2.4. Thresholds approaches

Authors Method Weaknesses

Erni and Lewer-
entz [32]

mean and standard
deviation

It requires an input parame-
ter that affects both the per-
formance and the accuracy of
the results

Lanza and Mari-
nescu [61]
Alves et al. [5] quantile function

analysis
The goal is to create quality pro-
files to rank entities

Ferreira et al. [35] statistical distribution
analysis

do not establish the percentage of
classes tolerated in each category

Shatnawi et al. [93] ROC curves This methodology does not
succeed in deriving monotonic
thresholds and thresholds val-
ues can be not found

Catal et al. [20]

Benlarbi et al. [14] linear regression There is no empirical evidence
supporting the model

Herbold et al. [44] machine learning The methodology produces only a
binary classification

Oliveira et al. [83] K-means algorithm It requires an input parame-
ter that affects both the per-
formance and the accuracy of
the results

Oliveira et al. [78]

2.5 Studies with Developers

In this section, we conclude by presenting some works which explore how developers
rate different software quality attributes like readability [17], complexity [56], cohe-
sion [30], and coupling [12]. Buse and Weimer explored the concept of code readability
and investigate its relation to software quality [17]. This study involved 120 com-
puter science students and they found that readability metrics correlate strongly with
code changes, automated defects reports, and defect log messages. Katzmarski and
Koschke investigated whether metrics agree with complexity as perceived by develop-
ers [56]. For this, they collected opinions from 206 developers. The authors concluded
that data-flow metrics seem to better conform to developers opinions than control-flow
metrics. Bavota et al. investigated how coupling metrics based on structural, dynamic,
semantic, and logical information align with developers perception of coupling [12].
This study involved 64 developers, including students, academics, and industrial prac-
titioners. The authors concluded that coupling is not a trivial quality attribute that
can be captured and measured using only structural information. Silva et al. investi-
gated what kind of cohesion metrics aligns with developers perception [30]. This study

2.6. Final Remarks 27

involved 80 developers with different levels of experience and academic degree. They
found that most of the developers are familiar with cohesion and that developers per-
ceive cohesion as a measure of a class responsibilities. Moreover, the results showed
that conceptual cohesion metrics capture the developers notion of cohesion better than
traditional structural cohesion metrics. To the best of our knowledge, the study pre-
sented in Chapter 5 is the first on interviewing developers on metric thresholds.

2.6 Final Remarks

Measurement is a fundamental part of Software Engineering research and practice [95].
In this context, software metrics refer to measurements that can be applied to check
the quality of processes, projects, and software products. Evaluating software quality
through metrics allows to define quantitatively the success or failure of a particular at-
tribute, identifying the needs of improvement. In this chapter, we provided a discussion
about software quality and presented an overview of source code metrics, specifically,
we presented the CK metric suite. We discussed the importance of considering the sta-
tistical distribution of software metrics in order to extracted credible thresholds. Next,
we presented the state-of-the-art in methods to extract thresholds and we performed
a critical appraisal of related work. Finally, we presented related work which explore
how developers rate different software quality attributes.

In the next chapter, we introduce our method to derive relative thresholds. This
method explicitly indicates that thresholds should be valid for most, but not for all
classes in object-oriented systems.

Chapter 3

Proposed Method

This chapter presents the method to extract relative thresholds from a set of systems
(Section 3.1). An illustrative example of its usage is presented in Section 3.2. Sec-
tion 3.3 discuss some aspects and properties of the proposed method. Section 3.4
presents RTTool , an open source tool that automates our method.

3.1 Relative Thresholds

Software metrics have been proposed to analyze and evaluate software by quantitatively
capturing a specific characteristic or view of a software system. Despite much research,
the practical application of software metrics remains challenging.

We focus on source code metrics that follow heavy-tailed distributions, when
measured at the level of classes as long as low(er) metric values are considered to be
more desirable than the high(er) ones. Numerous metrics including NOA, NOM, FAN-
OUT, RFC, and WMC satisfy these conditions [81, 91, 105]. Examples of a metric
that does not follow the traditional heavy-tailed distribution and therefore should not
be subject to our method are DIT (Depth of Inheritance) [35] and Dn [90].

Our goal is to derive relative thresholds, i.e., pairs [p, k] such that at least p% of
the classes should have M ≤ k, where M is a given source code metric and p is the
minimal percentage of classes in each system that should respect the upper limit k. A
relative threshold tolerates, therefore, (100− p)% of classes with M > k.

We derive the values of p and k from a curated set of systems, which we call our
Corpus. Figure 3.1 defines the functions used to calculate the parameters p and k for
a given metric M . First, the function ComplianceRate [p, k] returns the percentage
of systems in the Corpus that follows the relative threshold defined by the pair [p, k].
The function ComplianceRate can be easily increased by increasing k or decreasing p.

29

30 Chapter 3. Proposed Method

Therefore, ComplianceRate on its own is not sufficient to optimize p and k. Hence,
we introduce the notion of a penalty to find the values of p and k. We penalize a
ComplianceRate function in two situations:

• A ComplianceRate [p, k] less than 90% receives a penalty proportional to its
distance to this percentile, as defined by function penalty1[p, k]. As mentioned,
the proposed thresholds should reflect real design rules that are widely common
in the Corpus. Therefore, this penalty formalizes this guideline, by fostering the
selection of thresholds followed by at least 90% of the systems in the Corpus. In
other words, this penalty punishes systems that are somehow “atypical” in the
Corpus.

• A ComplianceRate [p, k] receives the second penalty proportional to the distance
between k and the median of the 90-th percentiles, of the values of M in each
system in the Corpus, denoted as Median90, as defined by function penalty2[k].
We assume that Median90 is an idealized upper value for M , i.e., a value
representing classes that, although present in most systems, have very high
values of M1.

Figure 3.1. ComplianceRate and ComplianceRatePenalty functions

As defined in Figure 3.1, the final penalty of a given threshold is the sum of
penalty1[p, k] and penalty2[k], as defined by function ComplianceRatePenalty. Finally,

1We selected the 90-th percentiles after experimental testings and we usually observed a fast
growth of the metric values starting at the 90-th percentile.

3.2. Illustrative Example 31

the relative threshold is the one with the lowest ComplianceRatePenalty[p, k]. In case
of ties, we defined a tiebreaker criterion: we select the result with the highest p and
then the one with the lowest k.

3.2 Illustrative Example

To illustrate our method we derive a threshold for the Number of Attributes (NOA)
metric, based on the systems in the Qualitas Corpus [97]. Figure 3.2 plots the values
of the ComplianceRate function, for different values of p and k. As expected, for a
fixed value of p ComplianceRate is a monotonically increasing function, on the val-
ues of k. Moreover, as we increase p the function starts to present a slower growth.
This figure 3.2 shows the importance of penalty2. For example, we can observe that
ComplianceRate [85, 17] = 100%, i.e., in 100% of the systems at least 85% of the classes
have NOA ≤ 17. In this case Median90 = 9, i.e., the median of the 90th percentile
for the NOA values in the considered Corpus is nine attributes. Therefore, the relative
threshold defined by the pair [85, 17] relies on a high value for k (k = 17) to achieve
a compliance rate of 100%. To penalize a threshold like that, the value of penalty2 is
(17− 9) / 9 = 0.89. Since penalty1 = 0 (due to the 100% of compliance), we have that
ComplianceRatePenalty[85, 17] = 0.89.

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ●

5 10 15

0
20

40
60

80
10

0

k

C
om

pl
ia

nc
e

R
at

e

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ●

● ●
●

●

●

●

●

●

●
●

●

●

●
● ● ●

● ●

● ● ●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

p

75%
80%
85%
90%
95%

Figure 3.2. Compliance Rate Function (NOA metric)

32 Chapter 3. Proposed Method

As can be observed in Figure 3.3, ComplianceRatePenalty returns zero for
the following pairs [p, k]: [75,7], [75,8], [75,9], [80,8], [80,9]. Based on our tiebreaker
criteria, we select the result with the highest p and then the one with the lowest k,
i.e., [80, 8], which leads to the following relative threshold:

80% of the classes should have NOA ≤ 8

This threshold represents a balance between the two forces the method aims to handle.
First, it reflects a real design rule, followed by most systems in the considered corpus
(in fact, it is followed by 102 out of 106 systems). Second, it is not based on rather
lenient upper bounds. In other words, limiting NOA to eight attributes is compatible
with an idealized design rule. For example, there are thresholds proposed by experts
that recommend an upper limit of 10 attributes [18].

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

C
om

pl
ia

nc
e

R
at

e
P

en
al

ity

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●● ● ●
●

●

●
●

●

●
●

●
●

●

●

●
●

p

75%
80%
85%
90%
95%

Figure 3.3. Compliance Rate Penalty Function (NOA metric)

To illustrate the classes that do not follow the proposed relative threshold, Ta-
ble 3.1 presents the top-10 classes with the highest number of attributes in our Corpus
(considering the 102 systems that follow the proposed threshold and only the largest
class of each system). We manually checked the source code these classes and observed
that classes with high NOA values are usually Data Classes [39], used to store global
constants, like error messages in the AspectJ compiler or bytecode opcodes in the Jasml
disassembler.

3.3. Method Properties and Characteristics 33

Table 3.1. Classes with highest NOA values

System Class NOA

GeoTools gml3.GML 907
JasperReports engine.xml.JRXmlConstants 600
Xalan templates.Constants 334
Derby impl.drda.CodePoint 324
AspectJ core.util.Messages 317
Jasml classes.Constants 301
POI ddf.EscherProperties 275
DrJava ui.MainFrame 266
RSSOwl internal.dialogs.Messages 225
MegaMek ui.swing.RandomMapDialog 216

In the Qualitas Corpus there are four systems (3.8%) that do not follow the rel-
ative threshold, which are HSQLDB, IText, JMoney, and JTOpen. For example, we
manually checked that in the JMoney system 39.3% of the classes have more than 8
attributes. In this system, except for a single class, all other classes with NOA > 8

are related to GUI concerns: e.g., the AccountEntriesPanel class has 37 at-
tributes, including 25 attributes with types provided by the Swing framework. Another
non-compliant system is JTOpen, a middleware for accessing applications running in
IBM AS/400 hardware platforms. In this case, we counted 414 classes (25.2%) with
NOA > 8, which are classes that implement the communication protocol with the
AS/400 operating system. Therefore, the noncompliant behavior is probably due to
the complexity of JTOpen’s domain.

3.3 Method Properties and Characteristics

In this section, we discuss some properties and characteristics of the proposed method
to derive relative thresholds. Specifically, we analyze the adherence of our method to
requirement originally proposed to assess metric aggregation techniques, the robustness
of the proposed method to staircase effects, its tolerance to bad smells, and some
statistical properties.

3.3.1 Adherence to Requirement of Metric Aggregation

Techniques

Mordal et al. defined a set of requirements to assess software metrics aggregation tech-
niques [74]. We reused these categories to discuss our method mainly because metric

34 Chapter 3. Proposed Method

aggregation and metric thresholds ultimately share the same goal, i.e., to support
quality assessment at the level of systems. In the following discussion, we consider the
two most important categories in this characterization (must and should requirements).

Must Requirements:

• Aggregation: Relative thresholds can be used to aggregate low level metric values
(typically in the level of classes) and therefore to evaluate the quality of an
entire project.

Should Requirements:

• Highlight problems: By their very nature, relative thresholds can indicate design
problems under accumulation in the classes of object-oriented systems.

• Do not hide progress: The motivation behind this requirement is to reveal typical
problems when using aggregation by averaging. On one hand, averages may fail
due to a tendency to hide noncompliant systems. On the other hand, we argue
that our method automatically highlights the presence of noncompliant systems
above an expected value.

• Decomposability: Given a partition of the system under evaluation, it is straight-
forward to select the partitions that concentrate more classes not respecting the
proposed thresholds. Possible partition criteria include package hierarchy, pro-
gramming language, maintainers, etc.

• Aggregation Range: This requirement establishes that the aggregation should
work in a continuous scale, preferably left and right-bounded. In fact, our relative
thresholds can be viewed as predicates that are followed or not by a given system.
Therefore, we do not strictly follow this requirement. We discuss the consequence
of this fact in Section 3.3.2.

• Symmetry: Our final results do not depend on any specific order, i.e., the classes
can be evaluated in any order.

3.3.2 Staircase Effects

Staircase effects are a common drawback of aggregation techniques based on thresh-
olds [74]. In our context, these effects denote the situation where small refactorings in

3.3. Method Properties and Characteristics 35

a class may imply in a change of threshold level, while more important ones do not
elevate the class to a new category. To illustrate the scenario, suppose a system with
n classes not following a given relative threshold. Suppose also that by refactoring a
single class the system will start to follow the threshold. Although the scenarios be-
fore and after the refactoring are not very different regarding the global quality of the
system, after the refactoring the system’s status changes, according to the proposed
threshold. Furthermore, when deciding which class to refactor, it is possible that a
maintainer just selects the class more closer to the upper parameter of the relative
threshold (i.e., the “easiest” class to refactor).

Although subjected to staircase effects, we argue that any evaluation based on
metrics—including the ones considering continuous scales—are to some extent sub-
jected to quality treatments. In fact, treating values is a common pitfall when using
metrics, which can only be avoided by making developers aware of the goals motivating
their adoption [15].

3.3.3 Tolerance to Bad Smells

Because the thresholds tolerate a percentage of classes with high metric values, it is
possible that they in fact represent bad smells, like God Class, Data Class, etc. [39].
However, when limited to a small number of classes—as required by our relative
thresholds—our claim is that bad smells do not constitute a threat to the quality
of the entire project nor an indication of an excessive technical debt. Stated other-
wise, our goal is to raise quality alerts when bad smells change their status towards a
disseminated and recurring design practice.

3.3.4 Statistical Properties

In the method to extract relative thresholds, the median of a high percentile is used
to penalize upper limits that do not reflect the accepted semantics for a given metric
values. We acknowledge that the use of the median in this case is not strictly rec-
ommended, because we never checked whether the 90-th percentiles follow a normal
distribution. However, our intention was not to compute an expected value for the
statistical distribution, but simply to penalize compliance rates based on lenient upper
limits, i.e., limits that are not observed at least in half of the systems in our corpus.

36 Chapter 3. Proposed Method

3.4 RTTool

In this section, we describe RTTool , a tool supporting the proposed method to extract
relative thresholds [79]. RTTool can be used to help making decision in different way.
For example, a software quality manager can run the tool in its portfolio of systems.
The idea is to obtain its thresholds according with its development patterns, context,
team, and others. After, the manager can use these thresholds as pattern for its new
projects. Moreover, he also is able to identify systems with poor internal quality and
to help in systems re-engineering.

The proposed tool has the following features:

• RTTool is applicable to any software metric as long as low(er) metric values
are considered to be more desirable than the high(er) ones, and the metrics
distribution is heavy-tailed. However, RTTool does not check whether the metric
distribution is heavy-tailed.

• RTTool is flexible and independent of software metric collection tool.2 Indeed,
importance of differences between tools calculating “the same metrics” has been
observed in the past [65]: RTTool does not take a stance in this debate.

• RTTool can be configured for different contexts, e.g., system size or application
domain, since context is known to be crucial when deriving metrics thresholds [5].

• RTTool indicates the systems that do not follow the relative thresholds for a
given metric, which we called noncompliant systems.

• RTTool generates several partial results for user analyses, for example, the user
can to view the plot of the Cumulative Density Function (CDF) or the CDF
inverse, the Quantile function, to examine a distribution of values of a metric.

• RTTool includes graphs to visualize the results. These graphs includes different
perspectives of the results.

The execution of the RTTool is divided into three stages: configuration, pro-
cessing, and presentation (Figure 3.4). In the configuration stage, the user selects the
dataset, with the metric values collected for a given Corpus. The current version of
RTTool accepts CSV or XML files with metrics values as input. The processing stage
is responsible for deriving the p and k parameters of the relative threshold. In this

2Currently, there are several tools available for collecting software metrics. Therefore, collecting
metrics is not the aim of our tool.

3.4. RTTool 37

stage, RTTool also identifies the systems that do not respect relative thresholds. More
specifically, this stage calculates functions showed in Figure 3.1. Finally, in the pre-
sentation stage, the results are shown as spreadsheets and graphs. The spreadsheets
summarize the relative thresholds derived and the systems that do not respect the
relative thresholds. The presentation stage also plots a number of graphs including
ComplianceRate [p, k], ComplianceRatePenalty[p, k], and Quantile Function.

Figure 3.4. RTTool stages

3.4.1 Example of usage

In order to illustrate the usage of our tool, we derive relative thresholds for a number
of metrics collected for the 106 systems in Qualitas Corpus (version 20101126r) [97].
We used the Moose platform [77] and VerveineJ3 to compute the values of the metrics
for each class of each system and store them as CSV files.

First, to use the RTTool , the user must select the metrics to extract relative
thresholds. After uploading the CSV files generated by Moose, 20 metrics become
available for analysis (Figure 3.5) and the user selects four of them: FAN-OUT, NOA,
SLOC, and NOM.

Then, RTTool calculates the p and k values, that characterize relative thresholds
for each metrics and shows the number and the names of the noncompliant systems
(Figure 3.6). We can observe that the p values derived for different metrics are close
suggesting that the k thresholds derived hold for 75%-80% of the systems. Moreover,
we see that Weka, HSQLDB, and JTOpen appear as noncompliants for at least three
metrics.

Finally, by inspecting Figures 3.7 and 3.8 we can see how RTTool has selected
the relative thresholds. Indeed, by inspecting Figure 3.8 we observe that 80% is the

3http://www.moosetechnology.org/tools/verveinej, verified on 25/11/2014.

38 Chapter 3. Proposed Method

highest value of p such that there exists k satisfying ComplianceRatePenalty[p, k] = 0.
This k equals 15 and is denoted with a small black circle on Figure 3.8. By consulting
Figure 3.7 we observe that 90% of the Corpus systems follow the relative threshold
[80%, 15] derived.

Using the slide bar on the right the user can select the p values she would like
to inspect. The value on the slide bar indicates the lowest value to be visualized
together with the curves obtained for p with increments of 5%. As expected, relaxing
the relative threshold p value e.g., to 70% results in a lower k equals 10 and in a
comparable ComplianceRate of 82% (Figure 3.7).

Figure 3.5. Configuration window

3.4. RTTool 39

Figure 3.6. Final results — with thresholds and noncompliants systems for each
metric

3.4.2 Performance

To evaluate the performance of RTTool we have measured the runtime in four experi-
ments by varying the size of the corpus, i.e., the entire Qualitas Corpus (106 systems)
vs. Qualitas Corpus systems classified as Tools by the corpus curators (27 systems),
and the number of metrics (four metrics selected as in the example above vs. all twenty
metrics available in the dataset). Table 3.2 summarizes the runtime measurements as
reported by RTTool itself. The experiments have been run on a device with core i5
processor and 4GB DDR3 memory.

As expected, increasing the number of metrics or the size of the corpus results in
higher execution times. However, even for the largest corpus and the maximal number
of metrics the calculation time remains acceptable, slightly exceeding one minute (75949
milliseconds).

40 Chapter 3. Proposed Method

Figure 3.7. ComplianceRate function (FAN-OUT metric)

Table 3.2. Runtime of RTTool

Corpus # systems # metrics time (ms)

Qualitas Corpus—Tools 27 4 13753
Qualitas Corpus—Tools 27 20 35056
Qualitas Corpus 106 4 15867
Qualitas Corpus 106 20 75949

3.4.3 Availability

RTTool is an open source project, distributed under the MIT license. We have opted
for the MIT license since it permits reuse of the source code in the proprietary software:
in this way we hope that the relative threshold calculation implemented in RTTool can
find a way both to mainstream metrics calculation tools [19] and to research prototypes
focusing on software analytics [99]. The proposed tool is available at http://aserg.
labsoft.dcc.ufmg.br/rttool.

3.5. Final Remarks 41

Figure 3.8. ComplianceRatePenalty function (FAN-OUT metric)

3.4.4 Related Tools

Extraction of thresholds based on system corpus has been studied in the literature [5,
35, 44, 93]. Unfortunately, most of these approaches are not supported by tools, the
work of Alves, Ypma and Visser [5] being the only notable exception. The tool proposed
in this work focuses on extracting absolute thresholds, weights the metrics based on
SLOC of the corresponding entities and constructs four quality profiles corresponding
to low risk (0 to 70th percentiles), moderate risk (70th to 80th percentiles), high risk
(80th to 90th percentiles), and very-high risk (90th percentile). As opposed to this line
of work, RTTool derives relative thresholds, does not perform weighting and considers
only two “quality profiles” (adhering to the relative thresholds or not). Finally, the tool
of Alves, Ypma and Visser is proprietary, while RTTool is open source.

3.5 Final Remarks

In this chapter, we proposed the notion of relative thresholds to deal with such metric
distributions. Our approach explicitly indicates that thresholds should be valid for most

42 Chapter 3. Proposed Method

but not for all classes in object-oriented systems. We proposed a method that extracts
relative thresholds from a Corpus. Next, we described an illustrative example of the
our method, which we derive a threshold for the Number of Attributes (NOA) metric,
based on 106 systems of the Qualitas Corpus. Then, we discussed some properties
and characteristics of the proposed method to derive relative thresholds. Finally, we
describe RTTool , an open source tool capable of extracting relative thresholds for
software metrics based on benchmark collections.

Chapter 4

Relative Thresholds for the
Qualitas Corpus

In this chapter, we derive relative thresholds for six source code metrics, using the
Qualitas Corpus (version 20101126r). Next, we report an extensive study, which in-
clude: Section 4.4 investigates whether popular open source Java repositories, avail-
able at GitHub, follow the relative thresholds; Section 4.5 compares our results with
thresholds extracted using a method proposed by the Software Improvement Group
(SIG method), which also determines metric thresholds empirically from measurement
data [5]; Section 4.6 evaluates the influence of context in our results; Section 4.7 checks
how the proposed thresholds apply to different versions of the systems under analysis;
Section 4.8 investigates the importance of classes that do not follow the upper limit of
a relative threshold, by checking how often such classes are changed; Section 4.9 inves-
tigates the relation between the presence of bad smells in a system and its adherence
to the proposed relative thresholds; Section 4.10 evaluates the dispersion of the metric
values in the systems respecting the proposed thresholds, using the Gini coefficient;
Section 4.11 discusses possible threats to validity; and Section 4.12 presents the final
remarks.

4.1 Corpus and Metrics

In order to derive relative thresholds, we use a Qualitas Corpus (version 20101126r).
This Corpus is a curated dataset with 106 open source Java-based systems, specially
created for empirical research in software engineering [97]. Figure 4.1 describes the size
of the systems in our corpus in terms of classes.

For this study, we used source code metrics related to distinct factors affecting

43

44 Chapter 4. Relative Thresholds for the Qualitas Corpus

Number of classes

N
um

be
r

of
 s

ys
te

m
s

0 5000 10000 15000 20000 25000 30000

0
20

40
60

80
10

0

Figure 4.1. Size of the systems in the our Corpus

the internal quality of object-oriented systems, such as size, coupling, complexity, and
cohesion. To compute the values of the selected metrics for each class of each sys-
tem we use the Moose platform [77]. Particularly, we relied on VerveineJ1—a Moose
application—to generate MSE files, a Moose specific format for representing source
code models. Then, we use Moose to generate CSV files from MSE files. The following
metrics have been selected:

• Number of methods (NOM) [67]: NOM is an indicator of the size of a class. Moose
computes this metric by counting all methods in the class, including constructors,
getters, and setters.

• Number of Lines of Code (SLOC) [43]: SLOC is also an indicator of the size
of a class. Moose computes this metric by counting all lines of code with the
exception of comments.

• Number of Provider Classes (FAN-OUT) [77]: FAN-OUT is a coupling metric
that counts the number of other classes referenced by a class. Moose computes
this metric by considering all types of class dependencies (due to inheritance,
method calls, static accesses).

• Response For a Class (RFC) [22]: RFC is computed by Moose as the sum of the
NOM metric value and the number of methods invoked by each method of the
class.

1http://www.moosetechnology.org/tools/verveinej, verified 11/25/2014.

4.2. Study Setup 45

• Weighted Method Count (WMC) [22]: WMC is the sum of the cyclomatic com-
plexities of each method in a class.

• Lack of Cohesion in Methods (LCOM) [21]: This metric measures the cohesion
level of a class by evaluating the similarity of its methods. Moose computes
this metric by counting the number of disjoint sets of methods, according to
Chidamber and Kemerer, 1991.

4.2 Study Setup

Although the literature reports that object-oriented metrics usually follow heavy-tailed
distributions [13, 96], we checked ourselves whether the metric values we extracted
present this behavior. For this purpose, we used the EasyFit tool2 to reveal the
distribution that best describes our values. We configured EasyFit to rely on the
Kolmogorov-Smirnov Test to compare our metrics data against reference probability
distributions. Following a classification suggested by Foss et. al [37], we considered the
metric distributions extracted for a given classes as heavy-tailed when the “best-fit”
distribution returned by EasyFit is Power Law, Weibull, Lognormal, Cauchy, Pareto,
or Exponential. Table 4.1 reports the number of systems whose metric values are clas-
sified as heavy-tailed. The results show that the extracted values follow heavy-tailed
distributions in at least 100 systems (94.3%). The presence of a small number of non-
heavy-tailed distributions does not invalidate our results, since they are based on the
median of the 90-th percentiles. This median value is more robust the presence of other
distributions, e.g., a distribution with small values in the last percentiles.

Figure 4.2 shows the quantile functions for the considered metric values. In
this figure, the x-axis represents the quantiles and the y-axis represents the upper
metric values for the classes in a given quantile. The figure visually shows that the
extracted metric values follow heavy-tailed distributions, with most systems having
classes with very high metric values in the last quantiles. There are also systems with a
noncompliant behavior, due to the presence of high-metrics values even in intermediary
quantiles (e.g., 50th or 60th quantiles).

4.3 Results

Table 4.2 presents the relative thresholds derived by our method, considering all sys-
tems of the Corpus. For each metric, the table shows the values of p and k that char-

2http://www.mathwave.com/products/easyfit.html, verified 11/25/2014.

46 Chapter 4. Relative Thresholds for the Qualitas Corpus

Table 4.1. Number and percentage of systems with heavy-tailed metric values
distributions

Metrics # Systems % Systems

NOM 100 94.3
SLOC 102 96.2
FAN-OUT 105 99.0
RFC 105 99.0
WMC 106 100.0
LCOM 100 94.3

acterize the relative thresholds. For example, for NOM the proposed relative threshold
is “80% of the classes should have NOM ≤ 16”. The table also shows the number
and the names of the systems violating these thresholds. We call these as systems
noncompliant. Finally, Table 4.2 presents thresholds found in the literature. On the
one hand, we can observe that our k parameters are usually lower than such thresholds.
On the other hand, the proposed relative thresholds tolerate a percentage of classes in
each system that do not respect the upper limit, while traditional thresholds assume
that all classes adhere to them.

In Section 3.1, we suggest that relative thresholds should represent a commitment
between real and idealized design rules. In fact, the number of systems with a noncom-
pliant behavior ranges from five systems (NOM) to twelve systems (LCOM), i.e., from
4.7% to 11.3% of the systems in the Qualitas Corpus (real design rules). The proposed
thresholds seem also to represent idealized design rules, as can be observed by the
values of the upper limit k. For example, well-known Java code standards recommend
that classes should have no more than 20 methods [18, 44] and our method suggests
an upper limit of 16 methods. This balance between real and idealized design rules
is achieved by accepting that the thresholds are valid for a representative number of
classes, but not for all classes in a system. In fact, the suggested upper limits apply to
a percentage p of classes ranging from 75% (SLOC) to 80% (NOM, FAN-OUT, RFC,
WMC, and LCOM).

4.4 Application on Popular GitHub Repositories

In this section, we explore whether popular open source Java repositories, available
at GitHub, follow the proposed relative thresholds. For this analysis, we consider a
repository as popular if it has at least 1,000 GitHub stars (starring is a GitHub feature
that lets users show their interest on repositories). We assume that popular systems

4.4. Application on Popular GitHub Repositories 47

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

Quantiles

N
O

M

(a) NOM

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

Quantiles

FA
N

−
O

U
T

(b) FAN-OUT

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

Quantiles

W
M

C

(c) WMC

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

Quantiles

LC
O

M

(d) LCOM

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

Quantiles

R
F

C

(e) RFC

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0

Quantiles

S
LO

C

(f) SLOC

Figure 4.2. Quantile functions

have a good design and therefore most of them should follow the proposed thresholds.

48 Chapter 4. Relative Thresholds for the Qualitas Corpus

Table 4.2. Relative Thresholds

Metrics p k Noncompliant Systems Literature

NOM 80 16 Colt, Compiere, HSQLD, JTOpen, Weka
(5 systems)

20 methods [18,
44]

SLOC 75 222 Colt, Compiere, Derby, Galleon,
HSQLD, Ivatagroupware, JFreeChart,
JTOpen, Weka, Xalan, Xerces (11
systems)

500 lines [44]

FAN-OUT 80 15 Freecol, Galleon, JAG, JFreeChart,
JGraph, JMoney, JPF, SQuirrelSQL,
Weka (9 systems)

-

RFC 80 49 AspectJ, Compiere, Freecol, Galleon,
HSQLDB, JAG, JFreeChart, JGraph,
JMoney, SQuirrelSQL, Weka (11 sys-
tems)

50 methods [88],
27 methods [14],
100 methods [44],
44 methods [93]

WMC 80 32 AspectJ, Colt, Compiere, Derby,
HSQLD, IText, JTOpen, mvnForum,
Weka, Xerces (10 systems)

25 [88], 100 [44],
11 [14], 24 [93]

LCOM 80 36 ANTLR, AspectJ, Axion, Colt, Com-
piere, HSQLDB, Informa, IText,
JFreeChart, JTOpen, Xerces, Weka (12
systems)

-

4.4.1 Study Setup

We selected all repositories ranked with at least 1,000 stars at GitHub, whose sole
language is Java3. This search was performed on July, 2015 and resulted in 308 repos-
itories. We used again Moose software analysis platform to compute source code met-
rics4. Considering all systems, the dataset includes more than 531K files, 61 MLOC,
and 355K commits. After checking out the most recent version of each repository, we
automatically inspected their source code to remove test classes. These classes were
removed because they usually have a structure very different from functional code [55].
The number of stars of the selected systems range from 11,869 (Elasticsearch) to 1,005
(LDrawer). Table 4.3 shows the top-10 repositories selected for this study, including
a brief description and their number of stars. After downloading the repositories, we
evaluate their percentage of classes (p parameter) respecting the proposed upper limit
(k parameter) of the relative thresholds reported in Table 4.2.

3We use the query language=Java and stars>1,000.
4 http://www.moosetechnology.org

4.4. Application on Popular GitHub Repositories 49

Table 4.3. Top-10 popular GitHub Java repositories (ordered by # stars)

Systems Description # Stars

ElasticSearch Search engine built for the cloud 11,869
Universal Image Loader Images Android library 9,211
Storm Distributed realtime computation system 8,638
SlidingMenu Slide-in menus Android library 7,886
ActionBarSherlock Action bar design pattern Android library 6,766
Google I/O Android App Android app for the conference 6,488
GitHub Android App Source code for the GitHub Android 6,190
LibGDX Java game development framework 6,162
Asynchronous Http Client Http client for Android 5,981
Picasso Image library for Android 5,734

4.4.2 Results

Table 4.4 summarizes the results of this evaluation. This table shows the percentage of
repositories that follow the proposed relative thresholds for each metric. We can observe
that more than 90% of the repositories follow our thresholds, in all cases. FAN-OUT is
the metric with the highest percentage of repositories following its threshold (99%) and
NOM is the metric with the lowest percentage (93%). Moreover, Table 4.5 details the
results of this evaluation for the top-10 repositories. This table shows the percentage
of classes in each repository that follow the proposed relative thresholds. For instance,
the relative threshold for NOM is [80, 16] and we can observe that 95% of the classes
in Storm have 16 methods or less, i.e., Storm respects the relative threshold for NOM.
We can also observe that only libGDX does not follow the relative threshold proposed
to NOM.

Table 4.4. Repositories that follow the proposed relative thresholds

Systems # Repositories % Repositories

NOM 287 93
SLOC 297 96
FAN-OUT 305 99
RFC 289 94
WMC 290 94
LCOM 292 95

Finally, we analyzed the main noncompliant repositories, i.e., repositories that
do not follow the proposed thresholds for at least three metrics, as presented in
Table 4.6. We found 14 noncompliant repositories (4.6%). Only one repository

50 Chapter 4. Relative Thresholds for the Qualitas Corpus

Table 4.5. Percentage of classes in the top-10 popular Java repositories that
respect the upper limit k of a relative threshold (the underlined value is the only
case when a threshold is not respected).

Repositories NOM SLOC FAN-OUT RFC WMC LCOM
[80, 16] [75, 222] [80, 15] [80, 49] [80, 32] [80, 36]

ElasticSearch 93% 96% 92% 93% 94% 92%
Storm 95% 97% 94% 95% 96% 94%
Universal Image
Loader

94% 95% 98% 97% 94% 94%

SlidingMenu 82% 100% 100% 100% 100% 100%
ActionBarSherlock 90% 94% 99% 93% 92% 91%
Google I/O An-
droid App

96% 94% 98% 91% 94% 97%

GitHub Android
App

97% 98% 100% 94% 98% 99%

LibGDX 74% 90% 96% 85% 83% 82%
Asynchronous
Http Client

90% 93% 93% 90% 90% 93%

Picasso 97% 97% 97% 97% 97% 97%

violates all metrics (0.3%), five repositories violate five metrics (1.6%), six repositories
violate four metrics (2.0%), and two repositories violate three metrics (0.7%). NOM
has the highest number of violations (14 repositories) and FAN-OUT has the lowest
one (three repositories). We manually analyzed the noncompliant repositories and
found that they indeed have evidences of presenting a different structure than other
systems. First, 11 out of 14 noncompliant repositories are Android applications
and they have few classes (< 50), which typically have many methods and tend to
represent God Classes [39]. To illustrate, Smooth Progress Bar, Disk LRU Cache,
ListView MaterialEditText, and ContextMenu have four, nine, two, eight, and three
classes, respectively. Moreover, we found the following notes in the documentation of
HTTP-Request and Pull To Refresh for Android :

“The goal of this library (HTTP-Request) is to be a single class class with some inner
static classes.”

“This library (Pull To Refresh for Android) is deprecated, a swipe refresh layout is
available in the v4 support library.”

HTTP-Request is a library for using a HttpURLConnection to make requests, and it
violates the thresholds for all metrics. Pull To Refresh for Android is an application

4.5. Comparison with SIG Method 51

that provides a reusable pull to refresh Android widgets. The application violates the
thresholds for four metrics.

Table 4.6. Noncompliant repositories for at least three metrics

Repositories Metrics
NOM SLOC FAN-OUT RFC WMC LCOM

HTTP-Request X X X X X X
Smooth Progress Bar X X X X X
Disk LRU Cache X X X X X
Joda-Time X X X X X
Processing X X X X X
MySQL Performance Analyzer X X X X X
ListView X X X X
FQRouter X X X X
Pull To Refresh for Android X X X X
MaterialEditText X X X X
Material X X X X
OkHttp X X X X
Okio X X X
ContextMenu X X X

Summary of findings: We conclude that most popular GitHub repositories follow the
proposed relative thresholds. Regarding the main noncompliant repositories, they are
usually Android applications, with few classes that tend to follow a God Class structure.

4.5 Comparison with SIG Method

This section compares our results with thresholds extracted using a method proposed
by the Software Improvement Group (SIG method), which also determines metric
thresholds empirically from measurement data [5]. The thresholds extracted by this
method are used as input to a maintainability assessment model [8, 42]. We compare
our method with SIG because it is being used in industry to asses software quality for
more than five years.

In the SIG method, metric values for a given program entity are first weighted
according to the size of the entities in terms of lines of code (SLOC). After this step,
quality profiles are used to rank classes according to four categories: low risk (0 to
70th percentiles), moderate risk (70th to 80th percentiles), high risk (80th to 90th
percentiles), and very-high risk (> 90th percentile). In order to compare our results
with thresholds extracted using SIG method, we decide to implement ourselves SIG

52 Chapter 4. Relative Thresholds for the Qualitas Corpus

algorithm.5 We use this implementation to extract thresholds for the same metrics
and for the same systems used in Section 4.1, with exception of SLOC, since the SIG
method uses SLOC when deriving thresholds for other metrics.

4.5.1 Results

Table 4.7 shows the thresholds derived by both methods. The NOM thresholds derived
using the SIG method consist in the following profiles: classes up to 29 methods are
characterized as with low risk, from 29 to 42 methods are characterized as with moder-
ate risk, from 42 to 77 methods are characterized as with high risk, and classes having
more than 77 methods are characterized as with very-high risk. Using the method
proposed in this paper, the relative threshold derived for NOM is “80% of the classes
should have NOM ≤ 16”.

Table 4.7. Relative vs SIG thresholds

Metrics SIG Risk Profile Relative Thresholds
Low Moderate High Very-High p k

NOM 29 42 77 > 77 80 16
FAN-OUT 22 29 46 > 46 80 15
RFC 88 127 224 > 224 80 49
WMC 80 136 268 > 268 80 32
LCOM 180 361 3,654 > 3,654 80 36

In Table 4.7, we can observe that for all metrics the upper limit of a relative
threshold (k parameter) is lower than the upper limit of the low risk classes in the SIG
method. However, our method accepts that some classes exceed these upper limits (p
parameter), e.g., a system may have up to 20% of classes with more than 16 methods.
Moreover, in our method there are two penalties to optimize p and k parameters. Thus,
these penalties punishes systems that are somehow “atypical” in the Corpus.

Furthermore, we also investigate the percentage of high and very-high risk
classes for each system in the Corpus, as represented in Figure 4.3. In this figure,
the x-axis represents the 106 systems in our Corpus and the y-axis represents the
percentage of high and very-high risk classes in each system. The noncompliant
systems detected by our method are represented by black bars, while the remaining
systems are represented by white bars. First, we observe that for all systems and
metrics the percentage of classes characterized as high and very-high risk classes is
low (< 11%). Second, the noncompliant systems—according to our method— usually

5SIG does not provide an open source tool to derive their thresholds

4.6. Contextual Analysis 53

have the highest percentage of high and very-high risk classes, i.e., the black bars
are usually the ones with the highest percentage of high and very-righ risk classes.
This result shows that noncompliant systems—detected by our method— are ranked
among the systems with the highest percentage of problematic classes, as detected by
the SIG method.

Summary: We conclude that both methods convey similar information as showed in
the case of noncompliant systems. However, the goal of SIG method is to rank entities
according to four quality profiles. Thus, it does not indicate noncompliant systems
automatically and it does not indicate the percentage of classes that we should tolerate
in each risk profile. By contrast, our method derives relative thresholds that can be
automatically used to detect noncompliant systems. Moreover, we extract relative
thresholds that by construction tolerate high-risk classes, assuming they are natural in
heavy-tailed distributions. Nevertheless, these classes should not exceed a percentage
of the whole population of classes.

4.6 Contextual Analysis

Several works highlight the importance of contextual factors, such as application
domain, programming language, and size, when analyzing source code metrics
[31, 35, 38, 109]. Therefore, to evaluate the influence of context in our results,
specifically system’s size and system’s domain, we conduct a study to address the
following research questions:

RQ #1 — What is the impact of context changes in the extracted relative thresholds?
With this research question we aim to investigate how changes in context affect the
parameters p and k, from relative thresholds.

RQ #2 — Do systems change their noncompliant status when context change? With
this research question we aim to investigate how the context affects the systems clas-
sified as noncompliant.

4.6.1 Study Setup

To provide answers to these research questions, we recalculate the relative thresholds
for three subsets of the Qualitas Corpus representing different application domain:
Tools, Middleware, and Testing. The application domains are labeled by the curators

54 Chapter 4. Relative Thresholds for the Qualitas Corpus
%

 h
ig

h
an

d
ve

ry
−

hi
gh

 r
is

k
cl

as
se

s

0

2

4

6

8

10

Systems

(a) NOM

%
 h

ig
h

an
d

ve
ry

−
hi

gh
 r

is
k

cl
as

se
s

0

2

4

6

8

10

(b) FAN-OUT

%
 h

ig
h

an
d

ve
ry

−
hi

gh
 r

is
k

cl
as

se
s

0

2

4

6

8

10

Systems

(c) RFC

%
 h

ig
h

an
d

ve
ry

−
hi

gh
 r

is
k

cl
as

se
s

0

2

4

6

8

10

Systems

(d) WMC

%
 h

ig
h

an
d

ve
ry

−
hi

gh
 r

is
k

cl
as

se
s

0

2

4

6

8

10

12

Systems

(e) LCOM

Figure 4.3. Percentage of high and very-high risk classes for each system in the
Qualitas Corpus. Black bars represent noncompliant systems.

of the Qualitas Corpus; indeed, Tools, Middleware, and Testing are the three largest
domains in Qualitas. Table 4.8 shows the number and the percentage of systems in
each application domain subcorpus.

We also recalculate the relative thresholds for three subsets of systems with different

4.6. Contextual Analysis 55

Table 4.8. Subcorpus by Application Domain

Subcorpus # Systems % Systems

Tools 26 26%
Middleware 17 16%
Testing 12 11%

size: up to 300 classes, from 301 to 1,000 classes, and with more than 1,000 classes.
These categories are used because they generate subsets with similar number of systems,
as in Table 4.9.

Table 4.9. Subcorpus by size

Subcorpus # Systems % Systems

≤ 300 37 35%
301 to 1, 000 36 34%
> 1, 000 33 31%

4.6.2 Results

RQ #1 — What is the impact of context changes in the extracted relative thresholds?

Figure 4.4 shows the percentage of changes in the values of p (black bar chart)
and k (gray bar chart) parameters, when comparing the thresholds obtained in the
whole Qualitas Corpus with the thresholds derived in the proposed subcorpus. First,
by observing the results in this figure, we conclude that variations in p are small. They
are observed only for three metrics: SLOC, FAN-OUT, and WMC, and are generally
less than 10%. In contrast, the variations in the k parameter are more common, but
usually restricted to at most 20%. In fact, changes in this parameter (> 20%) happen
when restricting the analysis to two subcorpora: Tools (for FAN-OUT and WMC)
and Testing (for SLOC and LCOM). In Tools, for example, there is an increase of
more than 30% in k when deriving a threshold for FAN-OUT. In Testing, there is a
decrement of more than 20% in k when extracting SLOC thresholds. In other words,
systems in Tools tend to present higher coupling measures, than systems in the whole
Corpus. Moreover, Testing classes tend to be smaller than the ones in the whole Corpus.

RQ #2 — Do systems change their noncompliant status when context change?

56 Chapter 4. Relative Thresholds for the Qualitas Corpus

LCOM WMC RFC SLOC FAN−OUT NOM

(a) Tools

%

−
30

−
10

0
10

20
30

LCOM WMC RFC SLOC FAN−OUT NOM

Changes in p
Changes in k

(b) Middleware

%

−
30

−
10

0
10

20
30

LCOM WMC RFC SLOC FAN−OUT NOM

(c) Testing

%

−
30

−
10

0
10

20
30

LCOM WMC RFC SLOC FAN−OUT NOM

(d) < 300 classes

%

−
30

−
10

0
10

20
30

LCOM WMC RFC SLOC FAN−OUT NOM

(e) From 300 to 1000 classes

%

−
30

−
10

0
10

20
30

LCOM WMC RFC SLOC FAN−OUT NOM

(f) > 1000 classes

%

−
30

−
10

0
10

20
30

Figure 4.4. Contextual analysis

To answer this RQ, we analyze three categories of systems: (i) New Noncom-
pliant—systems that follow the thresholds in the whole Corpus, but turned to be
noncompliant when analyzing a restricted subcorpus; (ii) Still Noncompliant—systems
that are noncompliant in the whole Corpus and that keep this status in the subcor-
pus; and (iii) No Longer Noncompliant—systems that are noncompliant in the whole
Corpus, but that are no longer classified as such when analyzing the subcorpus.

Figure 4.5 shows the results for this question. With the exception of Testing,
the presence of New Noncompliant (represented by white bars) is rare. Particularly,
Testing has three New Noncompliant, which are Cobertura (NOM, SLOC and
WMC), JMeter (FAN-OUT and RFC), and HTMLUnit (LCOM). Furthermore, most
considered systems are classified as Still Noncompliant (represented by black bars).
However, the number of No Longer Noncompliant is also considerable (represented by
gray bars), which shows that the proposed method is able to reclassify the systems.
Therefore, when moving from a general to a more homogeneous Corpus some systems
are reclassified, but predominantly changing their status from noncompliant to
compliant.

4.7. Historical Analysis 57

LCOM WMC RFC FAN−OUT SLOC NOM

(a) Tools

of

 n
on

co
m

pl
ia

nt
 s

ys
te

m
s

0
1

2
3

4

LCOM WMC RFC FAN−OUT SLOC NOM

New Noncompliant
Still Noncompliant
No Longer Noncompliant

(b) Middleware

of

 n
on

co
m

pl
ia

nt
 s

ys
te

m
s

0
1

2
3

4

LCOM WMC RFC FAN−OUT SLOC NOM

(c) Testing

of

 n
on

co
m

pl
ia

nt
 s

ys
te

m
s

0
1

2
3

4

LCOM WMC RFC FAN−OUT SLOC NOM

(d) < 300 classes

of

 n
on

co
m

pl
ia

nt
 s

ys
te

m
s

0
1

2
3

4

LCOM WMC RFC FAN−OUT SLOC NOM

(e) From 300 to 1000 classes

of

 n
on

co
m

pl
ia

nt
 s

ys
te

m
s

0
1

2
3

4

LCOM WMC RFC FAN−OUT SLOC NOM

(f) > 1000 classes

of

 n
on

co
m

pl
ia

nt
 s

ys
te

m
s

0
1

2
3

4

Figure 4.5. Contextual analysis for noncompliant systems

Summary of findings: The impact of context changes on the relative thresholds is lim-
ited. This impact changes is more common in k (upper limit) than p (percentage of
classes that should follow the upper limit). Regarding the noncompliant systems, it
is more common that noncompliants in the whole Corpus keep this status in the sub-
corpus. However, contextual changes may have a deep impact when other contextual
factors are considered, e.g., programming languages, proprietary systems, and number
of changes.

4.7 Historical Analysis

In this section, we check how the proposed thresholds apply to different versions
of the systems under analysis. Next, we verify whether classes migrate during the
evolution of these systems, from a state that follow the proposed upper limits of a

58 Chapter 4. Relative Thresholds for the Qualitas Corpus

relative threshold to a state that does not follow this limit and vice-versa. We also
check the percentage of added and deleted classes that follow and that do not follow
the proposed thresholds. Specifically, we address three research questions:

RQ #3 — Are the relative thresholds valid in different versions of the systems under
analysis? Our motivation is to investigate whether the relative thresholds capture
enduring design practices, which are valid in different versions of a system.

RQ #4 — Along the history of versions, do classes change their status? Our motivation
is to check whether the evolution of the systems causes changes in the states of their
classes. As illustrated in Figure 4.6, we analyzed two profiles of classes: (i) classes
initially created not following the relative thresholds, but that no longer follow them;
(ii) classes created following the relative thresholds, but that turned to do not follow
them. In other words, we monitor the history of versions to check how often classes
change their states.

Figure 4.6. Possible states of a class: following or not the upper limit of a
relative threshold

RQ #5 — What is the relation between created and deleted classes along the history
of versions? Our motivation is to investigate in classes that follow and not follow the
proposed thresholds which is more common: addition or deletion of classes.

4.7.1 Study Setup

To provide answers to our research questions, we consider the history of versions of
five systems. Table 4.10 describes the systems, the number of classes (NOC), and the
number of versions considered in this analysis. To create this historical dataset, we
selected four systems that follow our thresholds for all metrics (Lucene, Hibernate,
Spring, and PMD), which are systems included both in the Qualitas Corpus and in the
COMETS dataset, a dataset for empirical studies on software evolution [28]. COMETS
provides time series for metric values in intervals of bi-weeks. We extend this dataset
to include time series on a new system (Weka), to also analyze a noncompliant system
for all metrics. In Table 4.10, the time frame considered in the extraction ends exactly
in the bi-week just before the version available in the Qualitas Corpus, i.e., the version

4.7. Historical Analysis 59

we considered to extract the relative thresholds. The number of classes also refers to
the version in the Qualitas Corpus.

Table 4.10. Systems used in the Historical Analysis

System Period # Versions NOC

Lucene 01/01/2005—10/04/2008 99 946
Hibernate 06/13/2007—10/10/2010 82 1,216
Spring 12/17/2003—11/25/2009 156 1,845
PMD 06/22/2002—08/14/2009 175 1,425
Weka 11/16/2008—07/09/2010 48 1,181

4.7.2 Results

RQ #3 — Are the relative thresholds valid in different versions of the systems under
analysis?

Figure 4.7 shows plots with the percentage of classes in each version and system
considered in this analysis that respect the upper limit (k parameter) in the proposed
relative thresholds. The four systems respecting the proposed thresholds (PMD,
Spring, Lucene, and Hibernate) present the same behavior since the first considered
version, for all metrics. In other words, they have never been a noncompliant system
in the past. An opposite observation holds in the case of Weka. Along the extracted
versions, Weka is always a noncompliant system for all metrics. Hence, we claim that
the proposed thresholds are able to capture enduring design practices in the considered
systems.

RQ #4 — Along the history of versions, do classes change their status?

To answer this RQ, we analyzed two profiles of classes: (i) classes initially created
not following the upper limits of a relative threshold, but that turned to follow them
in a given version; (ii) classes created following these upper limits, but turned to do
not follow them.

Table 4.11 shows the percentage of classes that adhere to each of these profiles.
We can observe that the percentage of classes with changes in their states tends to
zero. Furthermore, when a change in a class’ state occurs, it is usually towards not
following the upper limit k of a relative threshold. Such changes range from 0.0%
(Hibernate, NOM, SLOC, RFC, and LCOM) to 1.1% (Weka, SLOC). On the other

60 Chapter 4. Relative Thresholds for the Qualitas Corpus

0 50 100 150

50
60

70
80

90
10

0

bi−weeks

%
 o

f c
la

ss
es

 w
ith

 N
O

M
 <

=
 1

6

p%
PMD
Spring
Lucene
Hibernate
Weka

(a) NOM (p = 80, k = 16)

0 50 100 150

50
60

70
80

90
10

0

bi−weeks

%
 o

f c
la

ss
es

 w
hi

th
 S

LO
C

 <
=

 2
22

p%
PMD
Spring
Lucene
Hibernate
Weka

(b) SLOC (p = 75, k = 222)

0 50 100 150

50
60

70
80

90
10

0

bi−weeks

%
 o

f c
la

ss
es

 w
ith

 F
A

N
−

O
U

T
 >

=
 1

5

p%
PMD
Spring
Lucene
Hibernate
Weka

(c) FAN-OUT (p = 80, k = 15)

0 50 100 150

50
60

70
80

90
10

0

bi−weeks

%
 o

f c
la

ss
es

 w
hi

th
 R

F
C

 <
=

 4
9

p%
PMD
Spring
Lucene
Hibernate
Weka

(d) RFC (p = 80, k = 49)

0 50 100 150

50
60

70
80

90
10

0

bi−weeks

%
 o

f c
la

ss
es

 w
ith

 W
M

C
 <

=
 3

2

p%
PMD
Spring
Lucene
Hibernate
Weka

(e) WMC (p = 75, k = 32)

0 50 100 150

50
60

70
80

90
10

0

bi−weeks

%
 o

f c
la

ss
es

 w
hi

th
 L

C
O

M
 <

=
 3

6

p%
PMD
Spring
Lucene
Hibernate
Weka

(f) LCOM (p = 80, k = 36)

Figure 4.7. Percentage of classes following the upper limit of a relative threshold
(parameter k) during the systems’ evolution

side, changes in a class to make it follow the proposed upper limits are very rare. We
only found these changes for FAN-OUT, in the case of three systems (Spring, PMD,
and Weka). Finally, Weka (a noncompliant system) has the highest ratio of changes
towards not following the proposed upper limits (≈ 1%).

4.7. Historical Analysis 61

(a) NOM

System ToViolate ToFollow

Lucene 0.1 0.0
Hibernate 0.0 0.0
Spring 0.1 0.0
PMD 0.1 0.0
Weka 0.9 0.0

(b) SLOC

System ToViolate ToFollow

Lucene 0.2 0.0
Hibernate 0.0 0.0
Spring 0.1 0.0
PMD 0.1 0.0
Weka 1.1 0.0

(c) FAN-OUT

System ToViolate ToFollow

Lucene 0.1 0.0
Hibernate 0.1 0.0
Spring 0.2 0.1
PMD 0.2 0.1
Weka 0.8 0.1

(d) RFC

System ToViolate ToFollow

Lucene 0.1 0.0
Hibernate 0.0 0.0
Spring 0.1 0.0
PMD 0.1 0.0
Weka 0.8 0.0

(e) WMC

System ToViolate ToFollow

Lucene 0.2 0.0
Hibernate 0.1 0.0
Spring 0.1 0.0
PMD 0.2 0.0
Weka 0.9 0.0

(f) LCOM

System ToViolate ToFollow

Lucene 0.1 0.0
Hibernate 0.0 0.0
Spring 0.1 0.0
PMD 0.2 0.0
Weka 1.0 0.0

Table 4.11. Percentage of classes that changed from a state following the upper
limit of a threshold to a state not following this limit (ToViolate column) and
vice-versa (ToFollow column)

RQ #5 — What is the relation between created and deleted classes along the history
of versions?

To provide answers to this question, we analyzed the percentage of classes that
are created and deleted along the extracted versions. We analyzed this percentage in
classes that follow and do not follow the proposed thresholds. Figures 4.8 and 4.9
present these results. In these figures, the percentage of created classes are represented
by gray bars, while the percentage of deleted classes are represented by white bars.

Initially, we analyzed the relation between created and deleted classes that do not
follow the proposed thresholds (Figure 4.8). The percentage of created classes varies
from 3.2% (Spring for NOM) to 26% (Weka for NOM) and the percentage of deleted

62 Chapter 4. Relative Thresholds for the Qualitas Corpus

classes varies from 3.1% (Spring for LOC and RFC) to 39.9% (Weka for NOM). We
observed that in classes that do not follow the thresholds, for all systems and metrics,
the percentage of deleted classes is generally greater than the percentage of created
classes. There is one small exception in the case of Spring for NOM, LOC, FAN-OUT,
RFC, and LCOM. This means that regarding classes that do not follow the thresholds
is more common to delete classes than to create.

Weka PMD Spring Hibernate Lucene

(a) NOM

%

0
10

20
30

40

Weka PMD Spring Hibernate Lucene

% created classes
% deleted classes

(b) LOC

%

0
10

20
30

40

Weka PMD Spring Hibernate Lucene

(c) FAN−OUT

%

0
10

20
30

40

Weka PMD Spring Hibernate Lucene

(d) RFC

%

0
10

20
30

40

Weka PMD Spring Hibernate Lucene

(e) WMC

%

0
10

20
30

40

Weka PMD Spring Hibernate Lucene

(f) LCOM

%

0
10

20
30

40

Figure 4.8. Relation between creation and deletion of classes regarding the
classes that do not follow the relative thresholds

We also analyzed the relation between created and deleted classes among
the classes that follow the proposed thresholds (Figure 4.9). We observed that for
all systems and metrics, most classes are created and deleted in compliance with
the proposed thresholds, as expected. The percentage of created classes varies
from 73.9% (Weka for LOC) to 96.8% (Spring for LOC) and the percentage of
deleted classes varies from 60.1% (Weka for LOC) to 97.0% (Spring for RFC).
We observed that in classes that follow the thresholds, the percentage of created

4.7. Historical Analysis 63

classes is similar with the percentage of deleted classes. However, when occur
differences, the percentage of deleted classes (represented by white bars) is lower
than the percentage of created classes (represented by gray bars). There is one
exception in the case of Spring for FAN-OUT, RFC, and LCOM. This means
that regarding classes that follow the thresholds the percentage of delete classes is
similar to create. However, in some cases to create classes is more common than delete.

Weka PMD Spring Hibernate Lucene

(a) NOM

%

0
20

40
60

80
10

0

Lucene Hibernate Spring PMD Weka

(b) LOC

%

0
20

40
60

80
10

0

Lucene Hibernate Spring PMD Weka

(c) FAN−OUT

%

0
20

40
60

80
10

0

Lucene Hibernate Spring PMD Weka

(d) RFC

%

0
20

40
60

80
10

0

Lucene Hibernate Spring PMD Weka

(e) WMC

%

0
20

40
60

80
10

0

Lucene Hibernate Spring PMD Weka

(f) LCOM

%

0
20

40
60

80
10

0

Figure 4.9. Relation between creation and deletion of classes regarding the
classes that follow the relative thresholds. In this figure, the percentage of created
classes are represented by gray bars, while the percentage of deleted classes are
represented by white bars

Summary of findings: We observed that the proposed thresholds are able to capture
enduring design practices in the considered systems. Next, we found that the per-
centage of classes with changes in their states tends to zero. Moreover, we found that
the percentage of class deletions is generally greater among classes that do not follow
the thresholds. In contrast, when we analyzed the percentage of classes that follow

64 Chapter 4. Relative Thresholds for the Qualitas Corpus

the thresholds, we found that the percentage of class deletions is generally similar to
percentage of created classes.

4.8 Change Analysis

In this section, we aim to check the importance of classes that do not follow the upper
limit of a relative threshold, by checking how often such classes are changed. Thereby,
we designed a study to address two research questions:

RQ #6 — What is the percentage of changes in classes that do not follow the upper
limit of a relative threshold? Our motivation is to investigate whether these classes
are important in terms of maintenance activities or if they are stagnant classes.

RQ #7 — Are changes in classes that follow and classes that do not follow the upper
limit of a relative threshold proportional to their number in the evaluated systems? Our
motivation is to check which type of classes have the highest rate of changes: classes
that follow or classes that do not follow the proposed upper limits.

4.8.1 Study Setup

To provide answers to our research questions, we analyzed the same metrics and systems
used in Section 4.7. Table 4.12 shows general information on the commits we considered
in this analysis, the total number of different classes found in the extracted commit
logs (column #Classes), and the total number of changes in such classes (column
#Changes).

Table 4.12. Data on commits log

System #Commits #Classes #Changes

Lucene 702 1,618 15,284
Hibernate 861 3,562 3,819
Spring 1,767 3,818 3,628
PMD 1,414 682 6,054
Weka 329 1,112 8,496

4.8. Change Analysis 65

4.8.2 Results

RQ #6 — What is the percentage of changes in classes that do not follow the upper
limit of a relative threshold?

Figure 4.10 shows plots with the percentage of changes in classes that do not
follow the upper limit of a relative threshold, for each system and metric considered
in this analysis. These classes concentrate a considerable percentage of maintenance
activities, ranging from 20% (PMD, SLOC) to 73% (Weka, SLOC). In other words,
73% of the changes detected in the analyzed commits are in classes that have more
than 222 SLOC, in the case of Weka (as reported in Section 4.3 the upper limit of
the proposed relative threshold for SLOC is 222). This result is explained by the fact
that Weka is a noncompliant system, and therefore it has more classes with metric
values greater than the parameter k. Hence, RQ #7 analyzes changes per class for
each system and metric considered.

Lucene Hibernate Spring PMD Weka

(a) NOM

%

0
20

40
60

80

Lucene Hibernate Spring PMD Weka

(b) SLOC

%

0
20

40
60

80

Lucene Hibernate Spring PMD Weka

(c) FAN−OUT

%

0
20

40
60

80

Lucene Hibernate Spring PMD Weka

(d) RFC

%

0
20

40
60

80

Lucene Hibernate Spring PMD Weka

(e) WMC

%

0
20

40
60

80

Lucene Hibernate Spring PMD Weka

(f) LCOM

%

0
20

40
60

80

Figure 4.10. Percentage of changes in classes that do not follow the upper limits
of the relative thresholds proposed for NOM, SLOC, FAN-OUT, RFC, WMC, and
LCOM

RQ #7 — Are changes in classes that follow and classes that do not follow the upper

66 Chapter 4. Relative Thresholds for the Qualitas Corpus

limit of a relative threshold proportional to their number in the evaluated systems?

To answer this second research question, we calculated the number of changes
per classes that follow and that do not follow the upper limits of the analyzed relative
thresholds, as reported in Figure 4.11. In all cases, the rate of changes in classes that
do not follow the proposed upper limits is greater than the rate of changes in the other
classes (the gray columns are always higher than the black ones). PMD is the system
with the highest rate of changes in the classes that do not follow the proposed upper
limits. In PMD, this rate ranges from 23 changes/class (LCOM) to 44 changes/class
(RFC and WMC). Regarding the results for classes that follow the upper limits, Lucene
is the system with the highest rate of changes per classes. This rate ranges from 6.82

changes/class (NOM) to 8.0 changes/class (FAN-OUT).

Lucene Hibernate Spring PMD Weka

(a) NOM

C
ha

ng
es

 p
er

 c
la

ss

0
10

20
30

40
50

Lucene Hibernate Spring PMD Weka

(b) SLOC

C
ha

ng
es

 p
er

 c
la

ss

0
10

20
30

40
50

Lucene Hibernate Spring PMD Weka

(c) FAN−OUT

C
ha

ng
es

 p
er

 c
la

ss

0
10

20
30

40
50

Lucene Hibernate Spring PMD Weka

(d) RFC

C
ha

ng
es

 p
er

 c
la

ss

0
10

20
30

40
50

Lucene Hibernate Spring PMD Weka

(e) WMC

C
ha

ng
es

 p
er

 c
la

ss

0
10

20
30

40
50

Lucene Hibernate Spring PMD Weka

Changes in class that follow the upper limits
Changes in classes that do not follow the upper limits

(f) LCOM

C
ha

ng
es

 p
er

 c
la

ss

0
10

20
30

40
50

Figure 4.11. Number of changes per classes that follow and that do not follow
the upper limits of the relative thresholds proposed for NOM, SLOC, FAN-OUT,
RFC, WMC, and LCOM

We also inspected classes with the highest number of changes in two systems:
Lucene and Spring. These systems are selected because Lucene has the highest

4.8. Change Analysis 67

number of changes per classes (9.5) and Spring has the smallest number of changes
per classes (1.0), as showed in Table 4.12. Tables 4.13 and 4.14 present the top-15
classes with the highest number of changes in these systems. The tables also report
whether each class follow, represented by “yes”, or do not follow, represented by “-”,
the upper limits of the relative thresholds for six metrics. The number of changes in
Lucene and Spring are very different, ranging from 174 to 966 changes per classes in
Lucene, and from 22 to 59 changes per classes in Spring. However, the results for both
systems show that most highly-changed classes do not follow the upper limits for all
metrics. For example, in Spring all top-15 classes do not follow the proposed upper
limit for SLOC. In contrast, LCOM is the metric with the highest number of classes
that follow the upper limit (four classes in Lucene and five classes in Spring).

Summary of findings: We conclude that classes that do not follow the upper limits are
important in terms of maintenance activities. We also observed that the noncompliant
system (Weka) does not have more changes per class than compliant systems.

Table 4.13. Top-15 classes with the highest number of changes in Lucene. The
table also shows whether each class follow or not the proposed upper limits for
the relative thresholds of six metrics

Follow upper limits?
Class Changes NOM SLOC FAN-OUT RFC WMC LCOM

IndexWriter 966 - - - - - -
IndexReader 472 - - - - - -
SegmentReader 412 - - - - - -
DocumentsWriter 304 - - - - - yes
SegmentMerger 296 - - - - - yes
CheckIndex 282 yes - - - - yes
FSDirectory 262 - - - - - -
MemoryIndex 256 yes - - - - yes
IndexSearcher 246 - - - - - -
BooleanQuery 220 - yes - - - -
DirectoryReader 198 - - - - - -
Field 182 - - yes yes - -
QueryParser 180 - - - - - -
SegmentInfo 180 - - yes - - -
FieldCacheImpl 174 - yes - - yes -

68 Chapter 4. Relative Thresholds for the Qualitas Corpus

Table 4.14. Top-15 classes with the highest number of changes in Spring. The
table also shows whether each class follow or not the proposed upper limits for
the relative thresholds of six metrics

Follow upper limits?
Class Changes NOM SLOC FAN-OUT RFC WMC LCOM

TypeDescriptor 59 - - yes - - -
HandlerMethodInvoker 38 - - - - - yes
AbstractBeanFactory 35 - - - - - -
RestTemplate 35 - - - - - -
AbstractApplicationContext34 - - - - - -
BeanWrapperImpl 33 - - - - - -
DefaultListableBeanFactory31 - - - - - -
Indexer 27 yes - - - - yes
TypeConverterDelegate 27 yes - - - - yes
StandardTypeConverter 26 yes - yes yes yes yes
ConstructorResolver 26 yes - - - - yes
AutowireCapableBeanFctory24 - - - - - -
ExpressionState 24 - - yes - yes -
MethodHandlerAdapter 22 - - - - - -

4.9 Bad Smells Analysis

Duplicated code, overly complex methods, non-cohesive classes, and long parameter
lists are possible signs of degradation in the design of software system [62, 71]. These
signs are usually known as design flaws [70], bad smells [39], or anti-patterns [16].
To investigate the relation between the presence of bad smells in a system and its
adherence to the proposed relative thresholds, we designed a study to address the
following research question:

RQ #8 — Do noncompliant systems have more bad smells? Our motivation is to
investigate whether the proposed relative thresholds can be used to reveal systems
with high number of bad smells.

4.9.1 Study Setup

For this study, we used the Tools subset of the Qualitas Corpus, which has 26 systems of
different size. Table 4.15 presents the noncompliant systems. To detect the presence of
bad smells in this subcorpus, we use the inCode tool6. InCode is an Eclipse plug-in

6https://www.intooitus.com/products/incode, verified 11/25/2014.

4.9. Bad Smells Analysis 69

that automatically detects bad smells using metric-based rules that capture deviations
from good design principles [70]. We relied on a subset of Qualitas Corpus because
we need to manually perform inCode in each system (from Java files). Table 4.16
shows the design and code anti-patterns (bad smells) detected by inCode for object-
oriented systems. The smells are reported for classes (e.g., Data Class) or methods
(e.g., Feature Envy)

Table 4.15. Noncompliant systems in the Tools subcorpus

Metrics Outliers Systems

NOM Compiere, Weka
SLOC Compiere, Weka
FAN-OUT JAG, JMoney
RFC Compiere, Weka
WMC Compiere, Weka
LCOM Compiere, JFreeChart, Weka

Table 4.16. Evaluated bad smells

Class-Level Method-Level

Data Class Feature Envy
Tradition Breaker Data Clumps
Schizophrenic Class Sibling Duplication
God Class Internal Duplication

External Duplication
Message Chains

4.9.2 Results

RQ #8 — Do noncompliant systems have more bad smells?

To answer this research question, Figure 4.12 presents plots with: (a) the number
of class-level bad smells per classes in each system and (b) the number of method-level
bad smells per methods in each system. The x-axis shows the 26 systems considered
in this analysis. The y-axis represents the rate of bad smells. The black bars represent
noncompliant systems and the gray bars represent compliant systems. As we can
observe, the rate of bad smells per method is smaller than the rate of bad smells
per classes. The former ranges from 0.01 (JGraphPad) to 0.22 (JASML) and the later
ranges from 0.00 (JGrapht) to 0.08 (MVNForum). More importantly, in the considered

70 Chapter 4. Relative Thresholds for the Qualitas Corpus

subcorpus there is no evidence that noncompliant systems have more density of bad
smells. For example, for both class-level and method-level smells, the top-5 systems
with the highest density of bad smells follow the proposed thresholds.

4.9. Bad Smells Analysis 71

(a) Bad smells per classes

(b) Bad smells per methods

Figure 4.12. Rate of class-level and method-level bad smells in systems in the
Tools subcorpus. The black bars represent noncompliant systems and the gray
bars are compliant systems

72 Chapter 4. Relative Thresholds for the Qualitas Corpus

4.10 Inequality Analysis

We evaluated the dispersion of the metric values in the systems respecting the proposed
thresholds, using the Gini coefficient. Gini is a coefficient widely used by economists to
express the inequality of income in a population [102]. The coefficient ranges between 0
(perfect equality, when everyone has exactly the same income) to 1 (perfect inequality,
when a single person concentrates all the income). Gini has been applied in the context
of software evolution and software metrics [100, 102], although not exactly to evaluate
the reduction in inequality achieved by following metric thresholds.

In the analysis we consider the distributions of NOM values in the original Corpus.
First, we calculated the Gini coefficient considering the whole population of classes in
each system. Next, we recalculated the coefficient for the classes respecting the upper
threshold of 16 methods. In both cases, we excluded the systems with a noncompliant
behavior, since our goal is to reveal the degree of inequality in systems respecting our
method. The boxplots in Figure 4.13 summarizes the Gini results in our systems. As
we can observe, the median Gini coefficient considering the whole population of classes
in each system is 0.5. By considering only classes with 16 or less methods, the median
coefficient is reduced to 0.5. In fact, this reduction in dispersion is expected, since we
removed the high values in the long tail.

Figure 4.13. Inequality Analysis using Gini coefficients

We also analyzed the noncompliants in the sample filtered by the proposed thresh-
old. As observed in the right boxplot in Figure 4.13, we have noncompliants due to very
equal distributions (Gini < 0.4) and also noncompliants due to very unequal distribu-
tions (Gini > 0.6). For example, JParser is an example of the first case (Gini=0.3) and

4.11. Threats to Validity 73

CheckStyle is an example of the second case (Gini=0.6). Figure 4.14 shows the quantile
functions for these two systems. We can see that most classes in JParser respecting
the proposed threshold have between 5 to 10 methods, while in CheckStyle we have a
representative number of classes with less than five methods, between 5 to 10 methods,
and also with more than 10 methods.

0.2 0.4 0.6 0.8 1.0

0
5

10
15

Quantiles

N
O

M

JParser
Checkstyle

Figure 4.14. Quantile functions for noncompliants regarding the Gini values

Although JParser and CheckStyle have very different Gini coefficients, we can
not claim they are noncompliants in terms of software quality. In other words, a system
with classes ranging from 5 to 10 methods (JParser) seems to be not very different
than a system having classes with 1 to 16 methods (Checkstyle), at least in terms of
their internal software quality.

Therefore, as revealed by the Gini coefficients, the inequality analysis shows that
there are different distributions of methods per class among the systems that follow
the proposed thresholds. However, such differences do not seem to have major impacts
in terms of software quality. More specifically, at least in our Corpus, we have not
found degenerate distributions, both in terms of equality or inequality, e.g., a system
with all classes having exactly a single method or a system with half of the classes
having k− 1 methods and half of the classes having very few methods. Although such
distributions may respect our thresholds, they would certainly reveal serious design
problems. However, it is hard to believe that distributions like that are possible in
practice.

4.11 Threats to Validity

In this section, we discuss possible threats to validity, following the usual classification
in threats to external and internal validity:

74 Chapter 4. Relative Thresholds for the Qualitas Corpus

Threats to External Validity: The main threat is the representativeness of our Corpora.
The Qualitas Corpus may not be representative to capture relative thresholds in
different domains, including systems in other programming languages, proprietary
systems, etc. However, it is important to note that we do not aim to propose universal
relative thresholds, but instead we just claim that the relative thresholds proposed
in this paper apply at least to open-source Java systems. Moreover, we consider in
our studies six metrics, covering important source code properties, like size, coupling,
complexity, and cohesion. Despite these observations, we cannot guarantee—as usual
in empirical software engineering—that our findings apply to other metrics.

Threats to Internal Validity : A possible internal validity threat is related to the fact
that we did not inspect the systems in the Qualitas Corpus to remove for example
classes generated automatically by tools like parsers generators [3]. However, our cen-
tral goal with these studies is not establishing an industrial software quality benchmark,
but to illustrate the use of our method in a real software corpus, including a discus-
sion on its main properties. Moreover, most systems usually do not have many classes
generated automatically.

4.12 Final Remarks

In this chapter, we initially derive relative thresholds for six source code metrics, using
the Qualitas Corpus. Next, we report an extensive relative threshold analysis divided
in seven studies, as follows:

1. We investigated whether 308 Java repositories, available at GitHub, follow the
proposed relative thresholds (Section 4.4). We found that most popular GitHub
repositories indeed follow our thresholds.

2. We compared the proposed relative thresholds with thresholds extracted using
the SIG method [5] (Section 4.5). We concluded that both methods convey
similar information. However, our method derives relative thresholds that can be
automatically used to detect noncompliant systems.

3. We evaluated the influence of the context in our results and we concluded that
the impact on relative thresholds of context changes is limited (Section 4.6).

4. We investigated how the proposed thresholds apply to different versions of the sys-
tems under analysis. In this study, we also investigated whether classes migrate

4.12. Final Remarks 75

from a compliant to a noncompliant state (or vice-versa) during their evolution
(Section 4.7). We observed that the proposed thresholds capture enduring design
practices. Moreover, we also found that the percentage of classes with changes
in their states tends to zero.

5. We investigated the importance of classes that do not follow the upper limit of a
relative threshold, by checking how often such classes are changed (Section 4.8).
We concluded that classes that do not follow the upper limits are important in
terms of maintenance activities.

6. We investigated the relation between the presence of bad smells in a system and
its adherence to the proposed relative thresholds (Section 4.9). We found that in
the considered subcorpus there is no evidence that noncompliant systems have a
higher density of bad smells.

7. Finally, we evaluated the dispersion of the metric values in the systems respecting
the proposed thresholds, using the Gini coefficient (Section 4.10). This inequality
analysis showed that there are different distributions of methods per class among
the systems that follow the proposed thresholds. However, such differences do
not seem to have major impacts in terms of software quality.

Chapter 5

Validating Relative Thresholds with
Developers

In this chapter, we report results of a study designed to validate our method to extract
relative thresholds. We extract thresholds from a benchmark of 79 Pharo/Smalltalk
systems, which are validated with five Pharo experts and 25 Pharo developers. This
chapter is organized as follows. Section 5.1 describes the design of our empirical study.
Next, Section 5.2 reports our results. Section 5.3 presents a critical analysis and Sec-
tion 5.4 reports final remarks.

5.1 Study Design

In this section we present the questions that motivated this chapter (Section 5.1.1).
Next, we present the Corpus and the considered source code metrics (Section 5.1.2).
Finally we describe the methodology and participants of our study (Section 5.1.3).

5.1.1 Research Questions

Our goal is to validate with expert developers the relative thresholds derived. To
achieve this goal, we pose three research questions:

RQ #9 Do systems perceived as well-written by expert developers follow the derived
relative thresholds?

RQ #10 Do systems perceived as poorly-written by expert developers do not follow
the derived relative thresholds?

77

78 Chapter 5. Validating Relative Thresholds with Developers

RQ #11 Do the noncompliant systems require more effort to maintain? By main
noncompliant we refer to systems that do not respect the relative thresholds on
multiple metrics.

5.1.2 Corpus and Metrics

In order to validate our notion of relative thresholds with software developers, we use
a Corpus of 79 Pharo systems1. We initially select 39 systems found in the Pharo stan-
dard distribution. From these 39 systems, 18 may be considered as legacy, although
they are intensively in use, covered by unit tests, and have received numerous contribu-
tions by the community. In addition, we select 40 systems from the Pharo forge2. These
additional systems are selected based on their size, popularity, activity, and relevance
for the Pharo ecosystem. Most of these systems are part of specialized distributions
of Pharo (namely Moose and Seaside), confirming their relevance and maturity. Fig-
ure 5.1 describes the size of the systems in our corpus in terms of classes. We report
the size after excluding unit tests (which are also implemented as classes). Tests classes
are removed because they usually have a structure radically different from production
code. Specifically, presence of unit test code, which usually has very little complexity,
will result in lower threshold values. For this study, tests classes were removed because
they usually have a structure radically different from production code.

In this study, we validate relative thresholds for the following four source code
metrics computed by the Moose software analysis platform3: (a) Number of Attributes
(NOA)—Moose computes this metric by counting all attributes in the class; (b) Num-
ber of Methods (NOM)—Moose computes this metric by counting all methods in the
class, including constructors, getters, and setters; (c) Number of Provider Classes
(FAN-OUT)—Moose computes this metric by considering all types of class dependen-
cies (due to inheritance, method calls, static accesses, etc.); and (d) Weighted Method
Count (WMC)—Moose computes this metric as the sum of the cyclomatic complex-
ity of each method in a class. We selected these metrics because they covey distinct
factors affecting the internal quality of object-oriented systems, such as size, coupling,
and complexity.

1A detailed description is available at http://aserg.labsoft.dcc.ufmg.br/pharo-dataset.
2http://smalltalkhub.com, verified on 06/15/2015.
3http://www.moosetechnology.org/, verified on 06/15/2015.

5.1. Study Design 79

Number of classes

N
um

be
r

of
 s

ys
te

m
s

0 50 100 150 200 250 300

0
10

20
30

40
50

Figure 5.1. Size of the systems in the Pharo Corpus

5.1.3 Methodology and Participants

Recall that our goal is to validate the notion of relative thresholds with Pharo practi-
tioners. To achieve this goal, we follow a mixed-method approach [7, 57]. We initially
conducted an interview involving five Pharo experts (i.e., people deeply committed to
the Pharo development and success) and a broader survey with 25 Pharo maintainers
(i.e., people in charge of incorporating system improvements and producing new re-
leases). A mixed-method approach is chosen to counter-balance the shortcomings of
each one of the methods and to ensure that the results are valid and representative in
the Pharo ecosystem.

Specifically, to answer RQ #9 and RQ #10, we asked five experts in Pharo, which
are members of the Pharo board, to provide examples of systems that are “well-written”
and “not well-written”. The choice of these terms is based on the outcome of a pilot
study, which indicated that “well-written” and “not well-written” are largely understood
by practitioners as opposed to terms such as “maintainability”, that practitioners had
difficulty on interpreting.

To answer RQ #9, we focus on systems that do not respect the derived relative
thresholds for at least two metrics4. We call such systems main noncompliant and we
interviewed the top maintainers of each one. A top maintainer is a developer that has
written most of the methods found in the last release of the system. Specifically, we
identified the five top maintainers in each noncompliant system by ranking authors of

4We did not consider a single metric to avoid the “One-track metric” anti-pattern, which occurs
when a single metric is used to measure software quality [15].

80 Chapter 5. Validating Relative Thresholds with Developers

each system according to the number of contributed methods (i.e., defined or modified
methods). We asked these maintainers the following question: Compared to other
systems you work with, the system in question requires (a) more effort to maintain; (b)
a comparable effort to maintain; (c) less effort to maintain.

5.2 Results

In this section, we first present the relative thresholds for the source code metrics
considered in this chapter, derived using the Pharo Corpus (Section 5.2.1). Next, we
describe the results of our research questions (Sections 5.2.2 to 5.2.4).

5.2.1 Relative Thresholds for the Pharo Corpus

Table 5.1 presents the relative thresholds derived by our method. For each metric, the
table shows the values of p and k that define a relative threshold and the number of
noncompliant systems. We can observe that the upper limit k of the derived relative
thresholds are valid for a large number of classes (parameter p), but not for all classes in
a system. In fact, the value of p ranges from 75% to 80%. The number of noncompliant
systems range from six (FAN-OUT) to 14 (WMC), i.e., from 7.6% to 17.7% of the
systems in the Corpus.

Table 5.1. Relative Thresholds for Pharo

Metrics p k # noncompliant systems

NOA 75 5 9
NOM 75 29 11
FAN-OUT 80 9 6
WMC 75 46 14

Table 5.2 presents nine systems considered as main noncompliant, i.e., systems
that do not respect the relative thresholds for two or more metrics, as described in
Section 5.1.3.

5.2.2 RQ 9: Do systems perceived as well-written by the

expert developers follow the derived relative thresholds?

To answer this question, we asked five Pharo experts to indicate well-written Pharo
systems. Table 5.3 presents these systems, including a brief description, and the experts
that elected the system. Among the seven systems named by the experts, Roassal and

5.2. Results 81

Table 5.2. Main noncompliant systems

Main noncompliant Metrics
NOA NOM FAN-OUT WMC

Collections X X
ComandShell X X X
Files X X
Graphics X X X X
Kernel X X
Manifest X X X
Morphic X X
Shout X X X X
Tools X X X X

Zinc belong to the Corpus. We claim that this overlap does not affect validity of
our analysis. In fact, benchmark-based methods to derive thresholds depend on a
balanced corpus, including both well and poorly-written systems. In other words, the
overlapping shows that our Corpus includes well-written systems, but as expected the
Pharo ecosystem also has other well-written systems.

Table 5.3. Well-written systems

Systems Description Voted by Corpus

PetitParser Parser framework Expert #1
PharoLauncher Platform to manage Pharo images Expert #2
Pillar Markup language and tools Expert #2
Roassal Visualization engine Expert #3 X
Seaside Web framework Expert #4
SystemLogger Log framework Expert #5
Zinc HTTP framework Expert #5 X

For each voted system, we evaluate their percentage of classes respecting the k-
value of the proposed relative threshold for each metric. The results are summarized
in Table 5.4. For instance, the relative threshold for NOA is [75, 5] and the table shows
that 100% of the classes of PetitParser have five attributes or less, i.e., PetitParser
respects the relative threshold for NOA.

As can be observed in Table 5.4, the well-written systems respect the proposed
relative thresholds for all metrics with the notable exception of FAN-OUT. The only
systems that respect the relative threshold for FAN-OUT are SystemLogger and Zinc.
To explain this fact, we investigated the distribution of the FAN-OUT values in the
Corpus and in the well-written systems reported by the Pharo experts. Figure 5.2 shows

82 Chapter 5. Validating Relative Thresholds with Developers

Table 5.4. Percentage of classes in the well-written systems that follow the
upper limit k of a relative threshold (underlined values show the cases when the
thresholds are not respected).

Systems Metrics
NOA NOM FAN-OUT WMC

[p,k] [75,5] [75,29] [80,9] [75,46]

PetitParser 100 97 41 97
PharoLauncher 97 97 74 99
Pillar 97 94 62 95
Roassal 91 90 24 93
Seaside 97 96 41 96
SystemLogger 100 92 100 92
Zinc 91 82 81 82

the quantile functions for the FAN-OUT values, i.e., the x-axis represents the quantiles
and the y-axis represents the upper metric values for the classes in the quantile. The
noncompliant systems for FAN-OUT, i.e., PetitParser, PharoLauncher, Pillar, Roassal,
and Seaside, are represented by dashed lines, while the remaining systems (Corpus and
well-written systems that follow the thresholds) are represented by solid lines. We can
observe that the noncompliant systems have very different distribution of FAN-OUT
values than systems in our Corpus.

0.0 0.2 0.4 0.6 0.8 1.0

0
10

30
50

Quantiles (% of FAN−OUT)

FA
N

−
O

U
T

Applications in our Corpus
Well−designed applications that do not respect FAN−OUT

Figure 5.2. FAN-OUT quantiles—dashed lines represent PetitParser, Pharo-
Launcher, Pillar, Roassal, and Seaside, which are systems perceived as well-
written but that do not follow the relative threshold for FAN-OUT

Furthermore, we took a closer look at the way Moose computes FAN-OUT. When
determining this metric, Moose considers all types of class dependencies introduced,

5.2. Results 83

e.g., by means of inheritance, method calls, static accesses, etc. Therefore, one way for
a class to have a high FAN-OUT is to be a client of an extensive inheritance hierarchy
with many instances of overridden methods, as exemplified in Figure 5.3. In this figure,
ClassC is a subclass of ClassB, which is a subclass of ClassA. The former implements
a method m1, which is overridden in ClassB and ClassC. ClassD has a method m2

that calls method m1 of ClassA. In this case, ClassD has FAN-OUT equal to three.
This occurs because it is not possible to infer the exact implementation of m1 that it is
called. A preliminary inspection in the source code shows that this is exactly the case
of PetitParser, PharoLauncher, Pillar, Roassal, and Seaside.

Figure 5.3. FAN-OUT example

We also evaluate the distribution of the FAN-OUT values using the Gini coeffi-
cient. Initially, we calculate the Gini coefficient considering the whole population of
classes in each system, as summarized in the left boxplot in Figure 5.4. This box-
plot shows that there are two noncompliant systems in the Corpus: ProfStef and
HelpSystem-Core with Gini equals 0.24 and 0.25, respectively. Next, we calculate the
coefficient for the systems with good design quality, as indicated by the Pharo experts.
The results are presented in the right boxplot of Figure 5.4. We can observe that the
Gini coefficients of these systems are similar to the ones of the systems in the Corpus.
They range from 0.41 (PetitParser) to 0.58 (Pillar). In the Corpus, the median Gini
coefficients is 0.49; for the well-designed systems it is 0.48. We should interpret such
results as follows. In the Corpus, most classes have small FAN-OUT values. In the
expert’s systems, most classes have higher FAN-OUT values. Despite that the Gini co-
efficients are similar because this coefficient measures relative and not absolute wealth
(which is represented in our case by FAN-OUT values).
Summary of findings: We observe that systems perceived as well-written by the in-
terviewed experts follow the proposed relative thresholds for NOA, NOM, and WMC.

84 Chapter 5. Validating Relative Thresholds with Developers

●●

Corpus Well−designed applications

0.
3

0.
4

0.
5

0.
6

G
in

i C
oe

ffi
ci

en
t

Figure 5.4. Gini coefficients

However, this does not happen for FAN-OUT, as SystemLogger and Zinc are the only
systems that follow the relative threshold for this metric. The reason for “too many
high FAN-OUT” values being present in five well-written systems seems to be the pres-
ence of extensive inheritance hierarchies with many instances of overridden methods.
This finding stresses the importance of considering multiple metrics when determining
whether a system might be problematic from the point of view of its internal quality.

5.2.3 RQ 10: Do systems perceived as poorly-written by the

expert developers do not follow the derived relative

thresholds?

To answer this research question, we asked the five experts to indicate poorly-written
systems. This question turned out to be much more difficult, since only two experts
answered it. Table 5.5 presents these systems, including a brief description, and the
experts that suggested the system. This difficulty to identify poorly-written systems
might be explained by the respondents being rather optimistic than pessimistic, or by
them not being comfortable with admitting that some systems are not well-written.

Table 5.5. Poorly-written systems

Systems Description Voted by Corpus

Metacello Versioning system Expert #4 X
Morphic Graphical interface framework Experts #2 and #4 X

For Metacello and Morphic, Table 5.6 shows the percentage of classes respecting
the k-value of the relative thresholds proposed in this work.

5.2. Results 85

Table 5.6. Percentage of classes in the poorly-written systems that follow the
upper limit k of a relative threshold (underlined values show the cases when the
thresholds are violated).

Systems Metrics
NOA NOM FAN-OUT WMC

[p,k] [75,5] [75,29] [80,9] [75,46]

Metacello 93 82 86 79
Morphic 77 74 83 71

On the one hand, we found that Morphic is a main noncompliant system, i.e.,
it does not follow the proposed relative thresholds for two metrics: NOM and WMC.
For example, Expert #2 made the following comments about Morphic:

“Morphic is an old system and there is no test and sparse documentation”.

On the other hand, Metacello follows the relative thresholds for all metrics. This
system supports a complex domain-specific language to express intricate relations
between different versions of Pharo packages (e.g., this language allows a developer to
define that package X depends on version v1 and v2 of package Y , only on a platform
P). It also takes care of determining cyclic dependencies and identifying proper
versions required in presence of multiple dependencies. One Pharo expert argued that
the complexity of the versioning domain makes Metacello very hard to understand,
and there is an on-going effort to replace the system. Therefore, we claim that the
perception of Metacello as poorly written is more likely to be caused by the inherent
complexity of the versioning domain rather than by a problematic design.

Summary of findings: Violation of two relative thresholds in Morphic agrees with its
design being perceived as problematic. However, this is not the case of Metacello.
Probably, Metacello was cited as poorly-written due to the complexity of its domain.

5.2.4 RQ 11: Do the noncompliant systems require more

effort to maintain?

Before answering this RQ, we analyze the importance of the Top-5 maintainers in the
noncompliant systems. Figure 5.5(a) presents the number of maintainers of each non-
compliant. We can observe that this number ranges from three (ComandShell) to 169
(Kernel). Six out of nine noncompliant systems have more than 50 maintainers, which
reinforces the relevance of these systems in the Pharo Ecosystem. Figure 5.5(b) shows

86 Chapter 5. Validating Relative Thresholds with Developers

the percentage of contributions by the considered top maintainers. Recall that we
ranked the maintainers according to the percentage of their contributions in each non-
compliant system. We can observe that the top-5 maintainers contributions range from
37% (Kernel) to 100% (ComandShell). In five out of nine systems the contributions
of these maintainers exceed 60% of the total of the contributions.

C
ol

le
ct

io
ns

C
om

an
dS

he
ll

F
ile

s

G
ra

ph
ic

s

K
er

ne
l

M
an

ife
st

M
or

ph
ic

S
ho

ut

To
ol

s

of

 m
ai

nt
ai

ne
rs

0

50

100

150

200

(a) Number of maintainers

C
ol

le
ct

io
ns

C
om

an
dS

he
ll

F
ile

s

G
ra

ph
ic

s

K
er

ne
l

M
an

ife
st

M
or

ph
ic

S
ho

ut

To
ol

s

%
 o

f c
on

tr
ib

ut
io

ns

0

20

40

60

80

100

(b) Percentage of contributions by the top-
5 maintainers

Figure 5.5. Top-5 maintainers analysis in noncompliant systems

To answer RQ #11, we sent out a survey to the 25 maintainers represented in
Figure 5.5(b) and we obtained 11 answers (44%). Based on these answers we calculate
the following score expressing the Effort to Maintain (EM) a system S:

EM =M − L

where M is the number of maintainers that answered that S is more difficult to main-
tain, when compared to the systems the respondent work with, and L is the number
of maintainers that answered that it requires less effort to maintain.

Figure 5.6 shows the EM values for the nine noncompliant systems. Four out
of nine systems require more effort to maintain (EM > 0). To illustrate this fact, we
reproduce comments made by a Graphics developer:

“Graphics is a sum of patches over patches without a clear direction on design, with
tons of duplicates and several design errors/conflicts. So is a pain to introduce any
change there.”

Figure 5.6 shows that three systems have a maintenance effort that is comparable
to other systems our respondents work with (EM = 0). We also observe that EM < 0

for two systems. We hypothesize two reasons for these noncompliant systems require

5.3. Threats to Validity 87

C
ol

le
ct

io
ns

C
om

an
dS

he
ll

F
ile

s

G
ra

ph
ic

s

K
er

ne
l

M
an

ife
st

M
or

ph
ic

S
ho

ut

To
ol

s

E
M

−2

−1

0

1

2

Figure 5.6. Effort to Maintain (EM)

less maintenance effort: (a) the metrics used to classify a system as noncompliant
do not cover the whole spectrum of properties and requirements the maintainers
considered when ranking systems in terms of internal quality; (b) maintainers are
usually more wary when judging a system as presenting low quality, as we have learned
when investigating the second research question.

Summary of findings: We found that four out of nine noncompliant systems are harder
to maintain. Therefore, noncompliant systems are not largely viewed as requiring more
effort to maintain than other systems.

5.3 Threats to Validity

In this section, we present possible threats to validity. First, our study participants
might not be representative of the whole population of Pharo developers and, in more
general terms, of general software developers. Anyway, we interviewed expert develop-
ers, with large experience and who are responsible for the central architectural decisions
in their systems. Second, our Corpus and metric selections may not be representative
to evaluate the quality of Pharo systems. However, we at least strive to include well-
known and large Pharo systems in the Corpus. Moreover, the metrics used in this
chapter cover important dimensions of a system implementation (size, coupling, and
complexity).

88 Chapter 5. Validating Relative Thresholds with Developers

5.4 Final Remarks

This chapter reported the results of an empirical study aimed at validating relative
thresholds with professional developers. The study has been conducted with 79 Pharo
systems and four source code metrics. The results indicate that well-designed systems
mentioned by expert respect the relative thresholds. In contrast, we observed that
developers usually have difficulties to indicate poorly-designed systems. We also found
that four out of nine noncompliant systems are harder to maintain. Therefore, non-
compliant systems are not largely viewed as requiring more effort to maintain than
other systems.

Chapter 6

Conclusion

In this chapter, we summarize the outcome of this PhD thesis (Section 6.1). Next,
we report on three recent works conducted by other authors that used our method
to extract relative thresholds (Section 6.2). We also review our main contributions
(Section 6.3). Finally, we present the further work (Section 6.4).

6.1 Summary

Source code metrics can be used to find possible problems or chances for improvements
in software quality [34, 85]. A variety of metrics to measure source code properties like
size, complexity, cohesion, and coupling have been proposed [1, 10, 22, 58, 61]. How-
ever, source code metrics are rarely used to support decision making because they are
not easy to interpret [85, 95]. To promote the use of metrics as an effective measure-
ment instrument, it is essential to establish credible thresholds [5, 35, 44, 92]. However,
the definition of thresholds for source code metric values is not a trivial task, because
these values usually follow heavy-tailed distributions [13, 64, 68, 86]. Therefore, in most
systems it is “natural” to have source code entities not respecting the proposed thresh-
olds for several reasons, including complex requirements, performance optimizations,
etc.

To tackle this problem, we proposed and described an empirical method to derive
relative thresholds from a Corpus. The proposed thresholds are relative because they
should be valid for most but not for all entities in object-oriented systems. A relative
thresholds is a pair [p, k] such that at least p% of the classes should have M ≤ k, where
M is a given source code metric and p is the minimal percentage of classes in each
system that should respect the upper limit k. Therefore, a relative threshold tolerates
(100 − p)% of classes with M > k. We also designed a tool—called RTTool—that

89

90 Chapter 6. Conclusion

implements our method and hence derives relative thresholds for metrics that follow
heavy-tailed distributions.

We performed an extensive analysis of relative thresholds. Initially, we derive
relative thresholds for six source code metrics, using the Qualitas Corpus. Next, we re-
port seven studies using these thresholds. Specifically, we investigate whether 308 Java
repositories, available at GitHub, follow the proposed relative thresholds (Section 4.4).
We found that most popular GitHub repositories indeed follow our thresholds. We
also compare the proposed relative thresholds with thresholds extracted using the SIG
method [5] (Section 4.5). We concluded that both methods convey similar information.
However, our method derives relative thresholds that can be automatically used to de-
tect noncompliant systems. We evaluated the influence of the context in our results
and we concluded that the impact on relative thresholds of context changes is limited
(Section 4.6). We investigate how the proposed thresholds apply to different versions of
the systems under analysis. In this study, we also investigate whether classes migrate
from a compliant to a noncompliant state (or vice-versa) during their evolution (Sec-
tion 4.7). We found that the proposed thresholds capture enduring design practices
and we also fount that the percentage of classes with changes in their states tends to
zero. We check the importance of classes that do not follow the upper limit of a rela-
tive threshold, by checking how often such classes are changed (Section 4.8). We found
that classes that do not follow the upper limits are important in terms of maintenance
activities. We investigated the relation between the presence of bad smells in a system
and its adherence to the proposed relative thresholds (Section 4.9). We found that
there is no evidence that noncompliant systems have a higher density of bad smells.
Finally, we evaluated the dispersion of the metric values in the systems respecting the
proposed thresholds, using Gini coefficients (Section 4.10). This inequality analysis
showed that there are different distributions of methods per class among the systems
that follow the proposed thresholds. However, such differences do not seem to have
major impacts in terms of software quality.

Finally, we performed a study to validate our method to extract relative thresh-
olds (Chapter 5). We extract thresholds from a Corpus with 79 Pharo/Smalltalk sys-
tems, which were validated with five Pharo experts and 25 Pharo developers. The re-
sults indicate that well-designed systems mentioned by expert often respect the relative
thresholds. In contrast, developers usually have difficulties to indicate poorly-designed
systems. We also found that four out of nine systems are harder to maintain.

6.2. Applications of Relative Thresholds 91

6.2 Applications of Relative Thresholds

In this section, we report on three recent works conducted by other authors that used
our method to extract relative thresholds. Section 6.2.1 report a comparison of methods
to derive thresholds. Section 6.2.2 describes the use of the proposed method to derive
thresholds for three annotation metrics. Section 6.2.3 presents experiences on using
relative thresholds from performing software quality evaluations.

6.2.1 A Comparative Study on Metric Thresholds for Software

Product Lines

A software product line (SPL) is a configurable set of systems that share a common,
managed set of features in a particular market segment [66]. Features can be defined as
modules with consistent, well-defined, independent, and combinable functions [6]. In
this context, Vale et al. provide a comparison of methods to derive thresholds, using a
Corpus of 33 software product lines [98]. They focus on three methods that consider the
heavy-tailed distribution of source code metrics: SIG method [5], the method proposed
by Ferreira et al. [35], and relative thresholds method. This study involved four main
steps [98]:

• the authors built a benchmark of SPLs to explore the characteristics of each
analyzed method. To build these benchmarks, they focus on SPLs developed
using Feature-Oriented Programming (FOP) [11];

• they selected four metrics that capture different attributes of a SPL design,
which are lines of code (LOC), coupling between Objects classes (CBO), weighted
method per class (WMC), and number of constant refinements (NCR);

• they re-grouped the systems, based on their size, to compose two additional
benchmarks and the three methods were used to derive thresholds for the four
metrics in each of benchmarks;

• they verified whether the derived thresholds were appropriated, for example to
detect God Classes.

The relative thresholds obtained are presented in the Table 6.1. The authors
observed that there is a difference between the thresholds (among the benchmarks).
The table shows that, in almost cases, the thresholds remained the same or have a
slight growth. LOC was an exception, since presents a small decrease. The authors

92 Chapter 6. Conclusion

claim that, this decrease is probably impacted by the penalties applied when deriving
metric thresholds. Specifically, when the thresholds are used to identify code smells,
our method outperforms SIG method both on precision (57% vs 47%, on average) and
recall (90% vs 71%, on average).

Table 6.1. Relative thresholds derived by Vale et al.

Benchmark LOC CBO WMC NCR
p k p k p k p k

1 55% 91 50% 6 70% 11 30% 1
2 80% 86 70% 13 80% 21 75% 2
3 75% 78 70% 13 80% 21 75% 2

6.2.2 Extracting Relative Thresholds for Feature Annotations

Metrics

Feature annotations (e.g., code fragments guarded by ifdef C-preprocessor directives)
are widely used to control code extensions related to features [33, 59]. Feature annota-
tions have long been said to be undesirable. For example, when maintaining features
guarded by # ifdefs, there is a high risk of ripple effects. Also, excessive use of feature
annotations may lead to code clutter, hinder program comprehension and harden main-
tenance [86]. To prevent such problems, developers should monitor the use of feature
annotations, for example, by setting acceptable thresholds. However, little is known
about how to extract such thresholds in practice, and which values are representative
for feature-related metrics.

To address this issue, Queiroz et al. analyzed the statistical distribution of three
feature-related metrics collected from a Corpus of 20 open source systems that use
C preprocessor directives to annotate feature code [87]. The metrics they consider
are [63]: (i) scattering degree of feature constants (SD); (ii) tangling degree of feature
expressions (TD); and (iii) nesting depth of preprocessor annotations (ND). After
collecting the metrics, the authors inspected the histograms and descriptive statistics
describing the distributions of SD, TD, and ND for each system in the Corpus. Next,
they performed a test for heavy-tailed distributions. They found 14 out of 20 systems
show strong evidence that SD is heavy-tailed. They also found that TD and ND
have a more uniform distribution for all subject systems, with most values equal to
one. Then, the authors computed relative thresholds for SD metric, using the RTTool
proposed in this thesis obtaining the following result:

6.2. Applications of Relative Thresholds 93

85% of the feature constants in a system should have SD ≤ 6

According to Queiroz et al. all systems in the Corpus, with exception of VI and
SYLPHEED, follow the proposed threshold for SD. VI and SYLPHEED exceed the
threshold only marginally. In VI, they observed that 83% of the feature constants have
SD ≤ 6 and, in SYLPHEED, this percentage was 82%. However, the proposed relative
threshold holds for large and complex systems, such as the Linux Kernel, GCC, and
MySQL. Figure 6.1 shows the percentile functions for the SD values of each system in
the Corpus. The x-axis represents the percentiles and the y-axis represents the upper
SD values of the feature constants matching the percentile. The plot nicely illustrates
that SD values are heavy-tailed. However, there are two systems whose SD values start
to grow earlier, around the 85th percentile, which are exactly VI and SYLPHEED.

The authors conclude that the proposed relative thresholds reflect the most com-
mon scattering distributions found in the Corpus. Moreover, they expect that different
corpora would not produce radically different thresholds, because they selected a repre-
sentative sample of C-preprocessor-based systems, including small, medium, and large
systems.

Figure 6.1. Percentile plots of scattering degrees (SD). Figure and caption
originally used by Queiroz et al. [87]

94 Chapter 6. Conclusion

6.2.3 Using Relative Thresholds in Industrial Context

Yamashita reports her experience on using relative thresholds in an international lo-
gistics company [107]. She describes a method and a mix-and-match of state of art
research (RTTool), open source (SchemaSpy1) and industrial strength tools (Sonar-
Qube2 and NDepend3), that can be used to perform system quality assessments. She
first explores how Corpus from open source repositories can be created and used in or-
der to provide more explicit and objective baselines for metrics based software quality
evaluations. Next, she reinforces the advantages of benchmark-based methods (which
provides a “factual and more neutral approach to assess the status quo of a system”,
according to one of the company employees). However, she also reports the challenges
to define a curated Corpus, which does not include for example many libraries and
testing code.

She mentioned that the evaluation assisted to disclose some development practices
that in some areas were acceptable, but that in some areas was not aligned with the
expectations of the company. She also reports that the study assisted the company
to be in a better position for negotiating changes and improvements with the external
contributors of the software.

6.3 Contributions

This PhD thesis makes five major contributions:

1. We provide a review of the state-of-the-art with respect to statistical properties
of source code metrics and on methods to derive metrics thresholds (Chapter 2).

2. We introduce a novel method to derive source code metric thresholds based in a
set of a systems (Chapter 3). This method derives relative thresholds, i.e., pairs
(p, k) such that p% of the classes should have M ≤ k, where M is a source code
metric and p is the minimal percentage of classes in each system that should
respect the upper limit k.

3. We implemented a prototype tool called RTTool that implements our method.
This tool is publicly available at http://aserg.labsoft.dcc.ufmg.br/rttool
(Section 3.4).

1http://schemaspy.sourceforge.net, verified 11/11/2015.
2http://www.sonarqube.org, verified 11/11/2015.
3https://www.ndepend.com, verified 11/11/2015.

6.4. Further Work 95

4. We evaluate the use of the proposed method in 106 real-world Java systems and
in six source code metrics (Chapter 4).

5. We describe a validation study with expert developers, who are the right experts
to check whether metric thresholds are indeed able to infer maintainability and
design problems(Chapter 5). To the best of our knowledge, this is the first time
that metric thresholds are validated with professional software developers.

6.4 Further Work

This work must be complemented by the following future work:

• By conducting in-depth interviews with at least some of the Pharo experts and
maintainers considered in the study. These interviews will help to strength our
findings (e.g., to confirm that frameworks are usually noncompliants in terms of
FAN-OUT) and also to clarify why some noncompliant systems are not perceived
as being more difficult to maintain.

• By considering data from other sources, like mailing lists and bug tracking sys-
tems. These sources can help us to better asses the quality of both compliant
and noncompliant systems.

• By evaluating the proposed method with other Corpus, possibly using the port-
folio of a software development organization.

• By considering other software metrics, including non-source code based metrics,
such as process metrics.

Bibliography

[1] Abreu, F. B. and Carapuça, R. (1994). Object-oriented software engineering: Mea-
suring and controlling the development process. In 4th International Conference of
Software Quality (ICSQ), pages 3–5.

[2] Albert, R., Jeong, H., and Barabási, A. L. (1999). Diameter of the world-wide web.
Nature, 401(6749):130–131.

[3] Alves, T. L. (2011). Categories of source code in industrial systems. In 5th Inter-
national Symposium on Empirical Software Engineering and Measurement (ESEM),
pages 335–338.

[4] Alves, T. L., Correia, J. P., and Visser, J. (2011). Benchmark-based aggregation
of metrics to ratings. In 21th International Workshop on Software Measurement
(IWSM), pages 20–29.

[5] Alves, T. L., Ypma, C., and Visser, J. (2010). Deriving metric thresholds from
benchmark data. In 26th IEEE International Conference on Software Maintenance
(ICSM), pages 1–10.

[6] Apel, S., Kastner, C., and Lengauer, C. (2009). Featurehouse: Language-
independent, automated software composition. In 31st International Conference
on Software Engineering (ICSE), pages 221–231.

[7] Bacchelli, A. and Bird, C. (2013). Expectations, outcomes, and challenges of mod-
ern code review. In 35th International Conference on Software Engineering (ICSE),
pages 712–721.

[8] Baggen, R., Correia, J. P., Schill, K., and Visser, J. (2012). Standardized code qual-
ity benchmarking for improving software maintainability. Software Quality Journal,
20(2):287–307.

97

98 Bibliography

[9] Barabasi, A.-L. and Albert, R. (1999). Emergence of scaling in random networks.
Science, 286:509–520.

[10] Basili, V. R., Briand, L. C., and Melo, W. L. (1996). A validation of object-oriented
design metrics as quality indicators. IEEE Transactions on Software Engineering,
22(10):751–761.

[11] Batory, D., Sarvela, J. N., and Rauschmayer, A. (2003). Scaling step-wise re-
finement. In 25th International Conference on Software Engineering (ICSE), pages
187–197.

[12] Bavota, G., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., and De Lucia, A.
(2013). An empirical study on the developers’ perception of software coupling. In
35th International Conference on Software Engineering (ICSE), pages 692–701.

[13] Baxter, G., Frean, M., Noble, J., Rickerby, M., Smith, H., Visser, M., Melton,
H., and Tempero, E. (2006). Understanding the shape of Java software. In 21th
Conference on Object Oriented Programming, Systems, Languages and Applications
(OOPSLA), pages 397–412.

[14] Benlarbi, S., Emam, K. E., Goel, N., and Rai, S. (2000). Thresholds for object-
oriented measures. In 11th International Symposium on Software Reliability Engi-
neering (ISSRE), pages 24–38.

[15] Bouwers, E., Visser, J., and van Deursen, A. (2012). Getting what you measure.
Communications of the ACM, 55(7):54–59.

[16] Brown, W. J., Malveau, R. C., McCormick, H. W. S., and Mowbray, T. J. (1998).
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis. John
Wiley & Sons, 1 edition.

[17] Buse, R. and Weimer, W. (2010). Learning a metric for code readability. IEEE
Transactions on Software Engineering, 36(4):546–558.

[18] California Institute of Technology (2010). JPL institutional coding standard for
the Java programming language. Technical report.

[19] Campbell, G. A., Papapetrou, P. P., and Gaudin, O. (2013). SonarQube in Action.
Manning Publications Company.

[20] Catal, C., Alan, O., and Balkan, K. (2011). Class noise detection based on software
metrics and ROC curves. Information Sciences, 181(21):4867–4877.

Bibliography 99

[21] Chidamber, S. and Kemerer, C. (1991). Towards a metrics suite for object oriented
design. In 6th Conference proceedings on Object-oriented programming systems, lan-
guages, and applications (OOPSLA), pages 197–211.

[22] Chidamber, S. and Kemerer, C. (1994). A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493.

[23] Chrissis, M., Konrad, M., and Shrum, S. (2006). CMMI: Guidelines for Pro-
cess Integration and Product Improvement. The SEI Series in Software Engineering.
Addison-Wesley, 2 edition.

[24] Clauset, A., Shalizi, C. R., and Newman, M. E. J. (2009). Power-law distributions
in empirical data. Physics, 51(4):661–703.

[25] Coleman, D. M., Lowther, B., and Oman, P. W. (1995). The application of
software maintainability models in industrial software systems. Journal of Systems
and Software, 29(1):3–16.

[26] Concas, G., Marchesi, M., Pinna, S., and Serra, N. (2007). Power-Laws in a Large
Object-Oriented Software System. IEEE Transactions on Software Engineering,
33(10):687–708.

[27] Correia, J. P., Kanellopoulos, Y., and Visser, J. (2009). A survey-based study of
the mapping of system properties to ISO/IEC 9126 maintainability characteristics.
In 25th IEEE International Conference on Software Maintenance (ICSM), pages
61–70.

[28] Couto, C., Maffort, C., Garcia, R., and Valente, M. T. (2013). COMETS: a
dataset for empirical research on software evolution using source code metrics and
time series analysis. Software Engineering Notes, 38(1):1–3.

[29] Cunningham, W. (1992). The wycash portfolio management system. ACM SIG-
PLAN OOPS Messenger, 4(2):29–30.

[30] da Silva, B. C., Sant’Anna, C. N., and Chavez, C. v. F. (2014). An empirical study
on how developers reason about module cohesion. In 13th International Conference
on Modularity (MODULARITY), pages 121–132.

[31] Dybå, T., Sjøberg, D. I., and Cruzes, D. S. (2012). What works for whom,
where, when, and why?: On the role of context in empirical software engineering. In
6th International Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 19–28.

100 Bibliography

[32] Erni, K. and Lewerentz, C. (1996). Applying design-metrics to object-oriented
frameworks. In 3rd IEEE International Software Metrics Symposium (METRICS),
pages 64–74.

[33] Favre, J.-M. (1996). Preprocessors from an abstract point of view. In 18st IEEE
International Conference on Software Maintenance (ICSM), pages 329–339.

[34] Fenton, N. E. and Neil, M. (2000). Software metrics: roadmap. In 22th Interna-
tional Conference on Software Engineering (ICSE), pages 357–370.

[35] Ferreira, K., Bigonha, M., Bigonha, R., Mendes, L., and Almeida, H. (2011).
Identifying thresholds for object-oriented software metrics. Journal of Systems and
Software, 85(2):244–257.

[36] FilÃş, T. G. S., Bigonha, M. A. S., and Ferreira, K. A. M. (2015). A catalogue
of thresholds for object-oriented software metrics. In First International Conference
on Advances and Trends in Software Engineering (SOFTENG), pages 48–55.

[37] Foss, S., Korshunov, D., and Zachary, S. (2011). An Introduction to Heavy-Tailed
and Subexponential Distributions. Springer-Verlag.

[38] Foucault, M., Palyart, M., Falleri, J.-R., and Blanc, X. (2014). Computing con-
textual metric thresholds. In 29th ACM Symposium On Applied Computing (SAC),
pages 1–10.

[39] Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D. (1999). Refactoring:
Improving the Design of Existing Code. Addison Wesley.

[40] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley.

[41] Gao, Y., Xu, G., Yang, Y., Niu, X., and Guo, S. (2010). Empirical analysis of
software coupling networks in object-oriented software systems. In 1th International
Conference on Software Engineering and Service Sciences (ICSESS), pages 178–181.

[42] Heitlager, I., Kuipers, T., and Visser, J. (2007). A practical model for measuring
maintainability. In 6th International Conference on the Quality of Information and
Communications Technology (QUATIC), pages 30–39.

[43] Henderson-Sellers, B. (1996). Object-oriented Metrics: Measures of Complexity.
Prentice-Hall.

Bibliography 101

[44] Herbold, S., Grabowski, J., and Waack, S. (2011). Calculation and optimization of
thresholds for sets of software metrics. Journal of Empirical Software Engineering,
16(6):812–841.

[45] Humphrey, W. S. (1995). A Discipline for Software Engineering. Addison-Wesley,
1 edition.

[46] Ichii, M., Matsushita, M., and Inoue, K. (2008). An exploration of power-law in
use-relation of java software systems. In 19th Australian Conference on Software
Engineering (ASWEC), pages 422–431.

[47] IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology.
Technical report.

[48] ISO/IEC (2001a). International standard ISO/IEC 14598: International standard
for software engineering-product evaluation.

[49] ISO/IEC (2001b). International standard ISO/IEC tr 9126: Software engineering
- product quality.

[50] ISO/IEC (2003). International standard ISO/IEC 15504: Information technology
- process assessment.

[51] ISO/IEC (2005). International standard ISO/IEC 9000:2005 - quality management
systems - fundamentals and vocabulary.

[52] ISO/IEC (2008). International standard ISO/IEC 25000:software quality require-
ments and evaluation standard family.

[53] Jing, L., Keqing, H., Yutao, M., and Rong, P. (2006). Scale free in software metrics.
In 30th Annual International Conference on Computer Software and Applications
(COMPSAC), volume 1, pages 229–235.

[54] Kan, S. H. (2002). Metrics and Models in Software Quality Engineering. Addison-
Wesley, 2 edition.

[55] Kaner, C., Falk, J. L., and Nguyen, H. Q. (1999). Testing Computer Software.
John Wiley & Sons, 2nd edition.

[56] Katzmarski, B. and Koschke, R. (2012). Program complexity metrics and pro-
grammer opinions. In 20th International Conference on Program Comprehension
(ICPC), pages 17–26.

102 Bibliography

[57] Kerzazi, N., Khomh, F., and Adams, B. (2014). Why do automated builds break?
an empirical study. In 30th International Conference on Software Maintenance and
Evolution (ICSME), pages 41–50.

[58] Kitchenham, B. (2009). What is up with software metrics?-A preliminary mapping
study. Journal of Systems and Software, 83(1):37–51.

[59] Krone, M. and Snelting, G. (1994). On the inference of configuration structures
from source code. In 16th IEEE International Conference on Software Maintenance
(ICSM), pages 49–57.

[60] Landman, D., Serebrenik, A., and Vinju, J. J. (2014). Empirical analysis of the
relationship between CC and SLOC in a large corpus of Java methods. In 30th IEEE
International Conference on Software Maintenance and Evolution (ICSME), pages
221–230.

[61] Lanza, M. and Marinescu, R. (2006). Object-Oriented Metrics in Practice: Us-
ing Software Metrics to Characterize, Evaluate, and Improve the Design of Object-
Oriented Systems. Springer.

[62] Lehman, M. M. (1996). Blaws of software evolution revisited. In 5th European
Workshop on Software Process Technology (EWSPT), pages 108–124.

[63] Liebig, J., Kästner, C., and Apel, S. (2011). Analyzing the discipline of prepro-
cessor annotations in 30 million lines of c code. In Tenth International Conference
on Aspect-oriented Software Development (AOSD), pages 191–202.

[64] Lin, Z. and Whitehead, J. (2015). Why power laws? an explanation from fine-
grained code changes. In The 12th Working Conference on Mining Software Repos-
itories (MSR), pages 01–08.

[65] Lincke, R., Lundberg, J., and Löwe, W. (2008). Comparing software metrics tools.
In International Symposium on Software Testing and Analysis (ISSTA), pages 131–
142.

[66] Loesch, F. and Ploedereder, E. (2007). Restructuring variability in software prod-
uct lines using concept analysis of product configurations. In 11th European Con-
ference on Software Maintenance and Reengineering (CSMR), pages 159–170.

[67] Lorenz, M. and Kidd, J. (1994). Object-oriented software metrics: a practical
guide. Prentice-Hall.

Bibliography 103

[68] Louridas, P., Spinellis, D., and Vlachos, V. (2008). Power laws in software. ACM
Transactions on Software Engineering and Methodology, 18(1):1–26.

[69] Luijten, B. and Visser, J. (2010). Faster defect resolution with higher technical
quality of software. In 4th International Workshop on Software Quality and Main-
tainability (IWSQM), pages 1–10.

[70] Marinescu, R. (2004). Detection strategies: Metrics-based rules for detecting
design flaws. In 20th International Conference on Software Maintenance (ICSM),
pages 350–359.

[71] Marinescu, R. (2012). Assessing technical debt by identifying design flaws in
software systems. IBM Journal of Research and Development, 56(5):1–9.

[72] McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software
Engineering, 2(4):308–320.

[73] Meyer, B. (2000). Object-Oriented Software Construction. Prentice-Hall, 2nd
edition.

[74] Mordal, K., Anquetil, N., Laval, J., Serebrenik, A., Vasilescu, B., and Ducasse, S.
(2013). Practical software quality metrics aggregation. Software Maintenance and
Evolution: Research and Practice, pages 1–19.

[75] Nejmeh, B. A. (1988). Npath: A measure of execution path complexity and its
applications. Communications of the ACM, 31(2):188–200.

[76] Newman, M. E. J. (2005). Power laws, pareto distributions and zipf’s law. Con-
temporary Physics, 46(5):223–351.

[77] Nierstrasz, O., Ducasse, S., and Gı̌rba, T. (2005). The story of Moose: an agile
reengineering environment. Software Engineering Notes, 30(5):1–10.

[78] Oliveira, P., Borges, H., Valente, M. T., and Costa, H. (2013). Metrics-based de-
tection of similar software. In 25th International Conference on Software Engineering
and Knowledge Engineering (SEKE), pages 447–450.

[79] Oliveira, P., Lima, F., Valente, M. T., and Serebrenik, A. (2014a). RTTool: Ex-
tracting relative thresholds for source code metrics. In 30th International Conference
on Software Maintenance and Evolution, (ICSME), pages 629–632.

104 Bibliography

[80] Oliveira, P., Valente, M. T., Bergel, A., and Serebrenik, A. (2015a). Validat-
ing metric thresholds with developers: an early result. In 31st IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 1–5.

[81] Oliveira, P., Valente, M. T., and Lima, F. (2014b). Extracting relative thresholds
for source code metrics. In IEEE Conference on Software Maintenance, Reengineer-
ing and Reverse Engineering (CSMR-WCRE), pages 254–263.

[82] Oliveira, P., Valente, M. T., and Serebrenik, A. (2015b). Corpus-based derivation
of relative metrics thresholds. Journal of Systems and Software, pages 1–34.

[83] Oliveira, P. M., Borges, H. S., Valente, M. T., and Costa, H. A. X. (2012). Uma
abordagem para verificaï£¡ï£¡o de similaridade entre sistemas orientados a objetos.
In XI Simpósio Brasileiro de Qualidade de Software (SBQS), pages 1–15.

[84] Potanin, A., Noble, J., Frean, M., and Biddle, R. (2005). Scale-free geometry in
OO programs. Communications of the ACM, 48:99–103.

[85] Pressman, R. S. (2009). Software Engineering: A Practitioner’s Approach.
McGraw-Hill Science, 7 edition.

[86] Queiroz, R., Passos, L., Valente, M. T., Apel, S., and Czarnecki, K. (2014).
Does feature scattering follow power-law distributions? an investigation of five
pre-processor-based systems. In 6th International Workshop on Feature-Oriented
Software Development (FOSD), pages 23–29.

[87] Queiroz, R., Passos, L., Valente, M. T., Hunsen, C., Apel, S., and Czarnecki,
K. (2015). The shape of feature code: An analysis of twenty C-preprocessor-based
systems. Journal on Software and Systems Modeling, 1(1):1–20.

[88] Rosenberg, L. H. (1998). Applying and interpreting object oriented metrics. In
10th Annual Software Technology Conference (STC).

[89] SEI (2006). CMMI for development, version 1.2. Technical report, Software En-
gineering Institute.

[90] Serebrenik, A., Roubtsov, S. A., and van den Brand, M. (2009). Dn-based archi-
tecture assessment of java open source software systems. In 17th IEEE International
Conference on Program Comprehension (ICPC), pages 198–207.

[91] Serebrenik, A. and van den Brand, M. G. J. (2010). Theil index for aggregation
of software metrics values. In 26th IEEE International Conference on Software
Maintenance (ICSM), pages 1–9.

Bibliography 105

[92] Shatnawi, R. (2015). Deriving metrics thresholds using log transformation. Journal
of Software: Evolution and Process, 27(2):95–113.

[93] Shatnawi, R., Li, W., Swain, J., and Newman, T. (2010). Finding software metrics
threshold values using ROC curves. Journal of Software Maintenance and Evolution:
Research and Practice, 22(1):1–16.

[94] SOFTEX (2009). MPS.BR - Melhoria de Processo do Software Brasileiro - Guia
Geral v1.2.

[95] Sommerville, I. (2010). Software Engineering. Addison-Wesley, 9 edition.

[96] Taube-Schock, C., Walker, R., and Witten, I. (2011). Can we avoid high coupling?
In 25th European Conference on Object-Oriented Programming (ECOOP), pages
204–228.

[97] Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H.,
and Noble, J. (2010). The Qualitas corpus: A curated collection of Java code for
empirical studies. In Asia-Pacific Software Engineering Conference (APSEC), pages
336–345.

[98] Vale, G., Albuquerque, D., Figueiredo, E., and Garcia, A. (2015). Defining metric
thresholds for software product lines: A comparative study. In 19th International
Conference on Software Product Line (SPLC), pages 176–185.

[99] van den Brand, M. G. J., Roubtsov, S. A., and Serebrenik, A. (2009). SQuAVisiT:
A flexible tool for visual software analytics. In 13th European Conference on Software
Maintenance and Reengineering (CSMR), pages 331–332.

[100] Vasa, R., Lumpe, M., Branchand, P., and Nierstrasz, O. (2009). Comparative
analysis of evolving software systems using the Gini coefficient. In 25th IEEE Inter-
national Conference on Software Maintenance (ICSM), pages 179–188.

[101] Vasa, R., Schneider, J. G., and Nierstrasz, O. (2007). The inevitable stability of
software change. In 23rd IEEE International Conference on Software Maintenance
(ICSM), pages 4–13.

[102] Vasilescu, B., Serebrenik, A., and van den Brand, M. (2011). You can’t control
the unfamiliar: A study on the relations between aggregation techniques for software
metrics. In 27th IEEE International Conference on Software Maintenance (ICSM),
pages 313–322.

106 Bibliography

[103] Walker, R. J., Rawal, S., and Sillito, J. (2012). Do crosscutting concerns cause
modularity problems? In 20th International Symposium on the Foundations of
Software Engineering (ACM SIGSOFT), pages 1–11.

[104] Weibull, W. (1951). A statistical distribution function of wide applicability.
Journal of Applied Mechanics, 18:293–297.

[105] Wheeldon, R. and Counsell, S. (2003). Power law distributions in class relation-
ships. In 3rd IEEE International Workshop on Source Code Analysis and Manipu-
lation (SCAM), pages 45–54.

[106] Whitmire, S. A. (1997). Object-Orientend Design Measurement. John Wiley &
Sons, 1 edition.

[107] Yamashita, A. (2015). Experiences from performing software quality evaluations
via combining benchmark-based metrics analysis, software visualization, and expert
assessment. In 31st IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 421–428.

[108] Yoon, K.-A., Kwon, O.-S., and Bae, D.-H. (2007). An approach to outlier de-
tection of software measurement data using the k-means clustering method. In 1st
Symposium on Empirical Software Engineering and Measurement (ESEM), pages
443–445.

[109] Zhang, F., Mockus, A., Zou, Y., Khomh, F., and Hassan, A. E. (2013). How
does context affect the distribution of software maintainability metrics? In 29th
International Conference on Software Maintainability (ICSM), pages 1–10.

[110] Zipf, G. K. (1949). Human Behavior and the Principle of Least Effort. Addison-
Wesley.

