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Resumo

Novas tecnologias como a Internet das Coisas e Cloud Computing estão aumentando a

importância de técnicas para analisar e entender os Sistemas Embarcados com acesso

à Rede. Essa crescente relevância aumenta a necessidade de ferramentas capazes de

fornecer aos usuários sistemas corretos, con�áveis e seguros.

Neste trabalho, nós defendemos que as abordagens tradicionais para compilar e

analisar os programas dos sistemas distribuídos não são expressivas o su�ciente para en-

frentar este desa�o. Tal limitação decorre do fato de que atualmente os programadores

precisam compilar e analizar cada programa de um sistema distribuído individualmente;

falta, portanto, uma visão inter-programa do sistema.

Como solução para este problema, apresentamos o Distributed Systems Analysis

(DSA), um arcabouço para analisar sistemas em rede durante a compilação. Nossa ideia

chave é olhar para um sistema distribuído como uma única entidade e não como progra-

mas separados que trocam mensagens. Ao fazer isso, nós podemos cruzar informações

inferidas a partir de diferentes programas para aumentar a precisão de análises estáti-

cas tradicionais. Para construir uma visão inter-programa de um sistema distribuído

nós introduzimos um novo algoritmo que descobre ligações entre dois programas au-

tomaticamente. Essas ligações nos permitem construir uma visão das comunicações

entre programas, um conhecimento que pode ser transmitido para uma ferramenta

de análise estática tradicional. Provamos que nosso algoritmo sempre termina e que

modela corretamente a semântica do sistema distribuído.

Para validar a nossa solução, nós a implementamos como um arcabouço de análise

estática no topo do compilador LLVM. Este arcabouço possui diferentes aplicações e

nós implementamos duas destas aplicações. A primeira, uma ferramenta que chamamos

de SIoT, usa o arcabouço proposto para proteger seis aplicações do CointiOS contra

ataques de estouro de bu�er. SIoT produz código tão seguro quanto código garantido

por análises tradicionais, mas nossos binários são em média 18% mais e�cientes em

termos de energia. A outra, uma ferramenta que chamamos de DistViewer, usa os grafos

gerados pelo arcabouço para fornecer uma visão inter-programa do sistema distribuído.
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Abstract

New technologies such as the Internet of Things and Cloud Computing are increas-

ing the importance of techniques to analyze and understand Networked Embedded

Systems. This growing importance calls for tools able to provide users with correct,

reliable and secure systems.

In this work, we claim that traditional approaches to compile and analyze pro-

grams of distributed systems are not expressive enough to address this challenge. Such

limitation stems from the fact that nowadays the programmer needs to compile and an-

alyze each program of a distributed system individually; hence, missing a inter-program

view of said system.

As a solution to this problem, we present DSA � short for Distributed Systems

Analysis, a framework to analyze networked systems at compile phase. Our key insight

is to look at a distributed system as a single entity, and not as separate programs that

exchange messages. By doing so, we can crosscheck information inferred from di�erent

programs to increase the precision of traditional static analyses.

To construct this global view of a distributed system we introduce a novel al-

gorithm that discovers inter-program links automatically. Such links lets us build a

inter-program view of the distributed system, a knowledge that we can thus forward to

a traditional static analysis tool. We prove that our algorithm always terminates and

that it correctly models the semantics of a distributed system.

To validate our solution, we implemented it as a static analysis framework on top

of the LLVM compiler. This framework has di�erent applications, and we implement

two such applications. The �rst, a tool that we call SIoT, uses the proposed framework

to secure six ContikiOS applications against bu�er over�ow attacks. SIoT produces

code that is as safe as code secured by more traditional analyses; however, our binaries

are on average 18% more energy-e�cient. The other, a tool that we call DistViewer,

uses the graphs produced by the framework to furnish a inter-program visualization of

the distributed system.
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Chapter 1

Introduction

The emergence of the Internet of Things (IoT) and Cloud Computing has increased

the importance of Networked Embedded Systems (NES) [Ghosh, 2014]. This raise in

importance is due to the fact that, more than ever, the everyday person and �things�

are surrounded by NES in a most varied set of devices, which perform a very diverse list

of services [Borgia, 2014; Li et al., 2014; Macedo et al., 2012]. However, programming

these systems is more challenging, due, not only to their shear volume, but also to

this diversity. Above all, software embedded in appliances, cars and sensors scattered

throughout cities, running in hardware of di�erent capacities, and subject to very

di�erent natural conditions [Engoulou et al., 2014; Jabeen and Nawaz, 2015; Atzori

et al., 2010; Teixeira et al., 2014a].

An Embedded Systems (ES) is a combination of computer hardware and software

that is speci�cally designed for a particular function [Marwedel, 2010]. Industrial

machines, automobiles, medical equipment, cameras, household appliances, airplanes,

vending machines and toys (as well as the more obvious cellular phone and tablets)

are among the myriad possible hosts of an embedded system. Networked Embedded

Systems are distributed systems of Embedded Devices (ED) and have the potential to

change radically the way people interact with their environment by linking together a

range of devices and sensors that will allow information to be collected, shared, and

processed in the unprecedented ways [Marwedel, 2010].

The ability to connect embedded devices with limited CPU, memory and power

resources means contributed to leverage the development of the IoT paradigm [Atzori

et al., 2010]. IoT consists of a world of physical objects embedded with sensors and

actuators linked by wireless networks which communicate using the Internet, shaping

a network of smart objects able to capture environmental variables, and to react to

external stimuli [Delicato et al., 2013]. IoT promotes the connection of the virtual

1



2 Chapter 1. Introduction

and physical worlds by extending the existing interaction between men and machines

provided by the Internet to new dimensions of Human-to-Thing (H2T) and Thing-

to-Thing (T2T) communications [Pires et al., 2014]. According to Gartner, Inc. (a

technology research and advisory corporation), there will be nearly 26 billion devices

on the IoT by 2020 [Rivera and van der Meulen, 2013]. Besides, ABI Research estimates

that more than 30 billion devices will be connected to the IoT by 2020 [Intelligence,

2013].

Ensuring the security of such NES is a problem of increasing relevance [Kermani

et al., 2013; Ravi et al., 2004; Wu and Mueller, 2011; Heer et al., 2011]. In fact, DARPA

has elected security the central point in its Cyber Grand Challenges call1.

Two main factors, however, make NES security even more critical. First, things

act as bridges between user's physical and cyber worlds, and their exploitation can

potentially have more impact on users' daily lives. Secondly, the nature of things

makes the scale of attacks even larger. For instance, a botnet made up by one hundred

thousand things was recently launched2. Such bot had targets like home routers, set-

top boxes, smart TVs, and smart appliances.

NES faces a plethora of security problems [Kermani et al., 2013; Heer et al., 2011;

Ravi et al., 2004]. It su�ers from the same security issues as traditional Internet-based

and/or wireless systems, including jamming, spoo�ng, replay, and eavesdropping [Heer

et al., 2011; Babar et al., 2010]. In addition, it is more prone (as compared to traditional

systems) to other issues such as out-of-bound memory accesses.

NES increased vulnerability to out-of-bound memory accesses is due to a few

factors. Notably, ES devices costs must be kept as low as possible, and to meet this

requirement, they are usually endowed with the least amount of resources necessary

to accomplish their duties. Accordingly, applications for ES are commonly developed

using lightweight languages such as C. On the one hand, applications may run more ef-

�ciently, allowing for better end-user response time and slower power depletion. On the

other hand, the use of C in code development also makes applications more vulnerable

to attacks.

Language C is an inherently unsafe language [Chess and West, 2007]. For in-

stance, its semantics allows out-of-bound memory accesses. It is worth recalling that

an array access in C or C++, such as a[i], is safe if the variable i is greater than or

equal to zero, and its value is less than the maximum addressable o�set starting from

the base pointer a. This type of accesses are dangerous because they give room to

bu�er over�ow attacks [Cowan et al., 2000].

1http://cgc.darpa.mil
2http://slashdot.org/topic/datacenter/100k-thingbot-net-shows-risk-of-smart-devices/

http://cgc.darpa.mil
http://slashdot.org/topic/datacenter/100k-thingbot-net-shows-risk-of-smart-devices/
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1

2 #define BUFSIZE 512

3

4 int main() {

5 int buffer[BUFSIZE ];

6 int a;

7 int i,j;

8 ...

9 for(i;i<j;i++){

10 ...

11

12 buffer[i] = a;

13 ...

14 }

15 ...

16 }

1

2 #define BUFSIZE 512

3

4 int main() {

5 int buffer[BUFSIZE ];

6 int a;

7 int i,j;

8 ...

9 for(i;i<j;i++){

10 ...

11 if((i >= 0)&&(i < BUFSIZE))

12 buffer[i] = a;

13 ...

14 }

15 ...

16 }

Figure 1.1. Vulnerable (left-hand-side) and ABC protected (right-hand-side) C
code.

A Bu�er Over�ow takes place whenever a system allows data to be accessed out

of the bounds of an array. The Morris worm3 and the Heartbleed �aw4 illustrate how

e�ective these attacks can be. Back in 1988, the former made use of the then-novel

technique of bu�er over-write to compromise around 10% of computers connected to

the Internet. The latter exploited a bu�er over-read vulnerability, compromising half

a million web servers.

Much work has already been done to turn C into a safer language (e.g. SAFE-

Code [Dhurjati et al., 1996] and AddressSanitizer [Serebryany et al., 2012]). Many

existing proposals resort to Array-Bound Checks (ABC), which are tests done at run-

time to ensure that a particular array access is safe. For instance, see code without

ABC in Fig. 1.1 (right) � vulnerable version � versus the other one with ABC (left) �

ABC version. The "ABC version" checks if an index is within the bounds of the array

before accesses the memory (bu�er[i] = a). If the index i is less than zero or greater

than or equal to BUFSIZE, in the vulnerable version occurs a memory access violation,

while in the ABC version this problem not happen.

3http://www.cs.indiana.edu/docproject/zen/zen-1.0_10.html#SEC91
4http://heartbleed.com/

http://www.cs.indiana.edu/docproject/zen/zen-1.0_10.html#SEC91
http://heartbleed.com/


4 Chapter 1. Introduction

These proposals work in a two-pass fashion. They �rst scan programs' assembly

representation to �nd code snippets containing vulnerabilities; in a second step, they

return to the potential vulnerabilities and insert ABCs. While e�ective in preventing

out-out-bound memory accesses from taking place, these proposals impose a signi�cant

overhead on compiled programs, and are thus inadequate as-is to NES. As an example,

AddressSanitizer is known to slowdown programs by over 70%, and to increase their

memory consumption by over 200%. It is therefore paramount to develop more e�cient

techniques that can be used to protect NES.

1.1 The goal

The goals of this work are:

• Propose a framework for static analysis of distributed systems programs. We call

our framework Distributed Systems Analysis (DSA).

• Come up with a Bu�er Over�ow prevention mechanism tailor-made for NES,

secure against Bu�er Over�ow (BOF) and light enough to be run in battery-

powered devices.

To achieve this end, we have designed, implemented and tested an algorithm to

analyze the source code of NES. Our solution combines into a common framework dif-

ferent techniques which are already part of the programming languages literature (e.g.

classic control �ow graphs [Allen, 1970], points-to analyses [Andersen, 1994], depen-

dency graphs [Ottenstein et al., 1990]) and a new algorithm to �nd the communication

links between programs.

Our key insight is to look at a distributed system source code as a single entity,

rather than as multiple separate message-exchanging programs. Traditional approaches

see a distributed system as di�erent programs. For example, they analyze a client and

its respective server programs separately. In this way, all information received from

network must be considered unde�ned. However, if we analyze the inter-program

relationships we can use the information of a program PA to improve the analysis of

another program PB.(We discuss a detailed example in the Section 1.3).

Using a novel algorithm, we can infer the communication links between di�erent

programs that exchange messages through a network. This knowledge lets us model

how data �ows across distributed programs; hence, it gives us a inter-program view of

the NES. Such view can be coupled with traditional static analysis tools to improve



1.2. Contributions 5

their precision and to produce program slicing that helps developers to visualize and

analyze the NES.

To validate our claims, we have designed and implemented our framework as

an extension of the LLVM compiler. Using our framework, we have constructed two

new tools: Securing Internet of Things (SIOT) and Distributed System Code Viewer

(DistViewer).

SIOT uses the proposed framework to implement a Distributed Tainted Flow

Analysis (TFA) which is broad enough to secure ContikiOS [Dunkels et al., 2004]

applications against bu�er over�ow attacks in a more energy-e�cient manner. More

speci�cally, we applied TFA [Balzarotti et al., 2008] on the model we proposed, and

sanitized C programs against out-of-bound memory accesses. TFA tracks potentially

malicious data (i.e., data that can be in�uenced by attackers) �ows across the program.

Memory indexed by tainted data can then be guarded against invalid access during

runtime using ABCs. Because the analysis has a inter-program view of the system,

we can reduce the number of tainted �ows by cross-checking the dependencies between

data received by network and user inputs. Therefore our approach produces a smaller

number of false-positives than if each module of the system were analyzed individually.

This extra precision yields a smaller runtime overhead.

DistViewer builds programming slices of distributed systems. The DistViewer al-

lows the programmer to use the DSA as a tool to compile the programs of a distributed

system and receive, as output, visions in the form of graphs that summarize the inter-

actions via network. Therefore, through the DistViewer, the programmer can visually

check if there are bugs in the communication protocol. For example, the program-

mer can visually check if there are sending messages without a corresponding receiving

command or vice versa (sends without receives or receives without sends). Generally,

this type of defect is only discovered during the testing phase or after the system is

deployed. Using DistViewer the programmer can detect this type of defect during the

system build, reducing time and cost to remove this type of bug.

DistViewer and SIOT are available on line as an extension of DSA5.

1.2 Contributions

This work brings forth both theoretical and practical contributions. On the theoretical

side, we propose a way to model distributed systems as single entities. More speci�cally:

5http://cuda.dcc.ufmg.br/siot/

http://cuda.dcc.ufmg.br/siot/
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• We propose an extension to the standard CFG [Allen, 1970], called Distributed

Control Flow Graph (DCFG), that is expressive enough to model the control �ow

spanning multiple programs that communicate over a network.

• We propose an algorithm that infers communication links between di�erent pro-

grams from a distributed system, and prove that the algorithm (i) never misses

possible communication paths between programs; and (ii) always reaches a �xed

point, and hence always terminates.

• We propose the DSA as static analysis framework that has been customized to

the distributed environment. We de�ne the DSA framework architecture and

highlight its extensions points as interfaces.

On the practical side, we have implemented our algorithm, and showed that it can

protect NES against bu�er over�ows, and can do so more e�ciently than traditional

approaches. More speci�cally:

• We implemented our algorithm, our framework and its companion distributed

tainted �ow analysis in the LLVM compiler. (Our implementation is publicly

available6.)

• We applied this analysis to six pair of applications present in the Con-

tikiOS [Dunkels et al., 2004] (an operational system for IoT). The results show

that our proposal is 18% more energy-e�cient than a baseline solution.

• We implemented the DistViewer which uses the graphs produced by the frame-

work to furnish a inter-program visualization of the distributed system.

1.3 Overview of our Solution

In this section, we present an overview of our proposal using the SIOT framework

instance as example.

Many of existing proposals to secure code against Bu�er Over�ow attacks have

three phases: First, at compiling time, they �nd the tainted �ows, i. e., bu�ers reach-

able from untrusted sources (Fig. 1.2). They then insert array bounds checks � ABC �

to guard bu�ers. And, �nally, if an ABC is not satis�ed at execution time, they abort

the program.

6https://code.google.com/p/ecosoc

https://code.google.com/p/ecosoc
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Figure 1.2. Tainted �ow: paths between untrusted sources and sinks.

The main di�erence between our approach and traditional proposals are that

we see the programs of a distributed system as a single entity. We then can reduce

the number of user sources, the number of reachable arrays and the number of ABC.

Traditional approaches see a distributed system as di�erent programs. For example,

they analyze a client and its respective server programs separately. Their list of sources

include conventional sources, like scanf, but also network functions, like receives.

Therefore there are more sources than necessary. In consequence, many reachable

arrays are protected with ABC and then more energy overhead is introduced in the

application.

SIOT sees all programs of a distributed system as a single system. Network

functions are not system sources anymore but connections points between system's

programs7. As we mentioned above, existing proposals focus on each program sepa-

rately. We call existing proposals by Baseline approach.

To illustrate this point we have an Echo Distributed System in Fig. 1.3. It is

composed by Echo Client (Fig. 1.3a) and Echo Server (Fig. 1.3b). Echo Client try

to start the communication with the Echo Server. If the communication is successful

the Echo Client gets a character from user, sends to the Echo Server and wait for an

acknowledgment. The Echo Server receives the character, shows it up at screen and

send back an acknowledgment message. When the Echo Client receives the acknowl-

edgment, it gets one new character and repeats the process. This routine continues

until the user puts an enter to �nalize the message. In this way, all caracteres input

by the user are showed at server as an �echo�.

In Baseline approach (Fig. 1.4), we have seven input sources: two getc and �ve

receives. However if we look at the system as single entity, we can reduce the input

sources because the receive function is not a external input anymore. We then have

7We assume messages exchanged are authenticated (we discuss this in Section 2.4.2)
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1 send(1);

2 ack = recv();

3 if ( ack == 1 ){

4 s = getc();

5 while (s != '\0') {

6 send(s);

7 ack = recv();

8 if (ack != 1) {

9 break;

10 } else {

11 s = getc();

12 }

13 }

14 send(s);

15 }

1 msg = recv();

2 if (msg == 1){

3 send(1);

4 do {

5 msg = recv();

6 putc(msg);

7 if (msg != '\0')

8 send(1);

9 else

10 break;

11 }

12 } else {

13 send(0);

14 }

(a) (b)

Figure 1.3. Echo application's programs: (a) Echo Client and (b) Echo Server .

only two input sources � the getc functions (Fig. 1.5).

To construct this inter-program vision of distributed system we propose an algo-

rithm that infers communication links between di�erent programs from a distributed

system (Algorithm Elevator � Chapter 3 ). With this algorithm we can extend some

traditional standard compiler data structure that are not expressive enough to model

the control �ow spanning multiple programs that communicate over a network (Chap-

ter 2 and Chapter 3).

In order to validate our proposal we have: (i) proved that the Elevator algorithm

never misses possible communication paths between programs and always reaches a

�xed point, and hence always terminates (Chapter 3); (ii) implemented our algorithm

and its companion distributed tainted �ow analysis in the LLVM compiler8 (Chapter

4); and (iii) applied this analysis on six applications present in ContikiOS [Dunkels

et al., 2004]. The results show that our proposal is 18% more energy-e�cient than

existing solutions (Chapter 5).

8https://code.google.com/p/ecosoc

https://code.google.com/p/ecosoc
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Figure 1.4. Traditional approach: seven input sources (between {}) � getc and
receives

Figure 1.5. SIoT approach: two input sources (between {}) � getc. The
receives are connection points between programs and not external sources.

1.4 Organization

The remainder of this work is structured as follows.

In Chapter 2 we present the fundamental concepts of code analysis. We then

introduce some compiler fundamental concepts used as basis for this work, starting

with a brief description of language-base techniques to analyze code. After that, we

describe data structures used to code analysis and show their limitations to analyze
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more than one program.

In Chapter 3 we describe the DSA key insight, which is to look at a distributed

system as a single entity, and not as separate programs that exchange messages. To

construct such view of a distributed system, we introduce the concepts of Distributed

Control Flow Graph and Distributed Dependence Graph, two data structures that

would enable us to model control �ow and data �ow across di�erent programs in a

distributed system. We then introduce a novel algorithm that discovers inter-program

links e�ciently. Such links let us build a inter-program view of the distributed system,

a knowledge that we can thus forward to a traditional tool. We also prove that our

algorithm always terminates and that it correctly models the semantics of a distributed

system.

In Chapter 4 we describe the architecture and the implementation details of our

framework constructed on top of the LLVM compiler, and of the two applications that

uses it. We discuss the architecture of the framework core and of each instance (SIOT

and DistViewer). We also describe a second one instance � DistViewer. DistViewer

uses the graphs exported by our framework to generate a code view (programming

slices) that highlights the part of code that has dependency of network.

In Chapter 5 we show that to validate our solution, we have applied SIOT

and DistViewer on six ContikiOS [Dunkels et al., 2004] applications. SIoT secures six

ContikiOS applications against bu�er over�ow attacks. SIoT produces code that is as

safe as code secured by more traditional analyses; however, our binaries are on average

18% more energy-e�cient. In Chapter 5 also show that DistViewer can provide graphs

of sending and receiving messages of the programs and the interrelationship between

them, and provide program slices of distributed system with size equivalent to 5% of

the original program.

In Chapter 6 we present a review of related works about distributed system

code analysis. First, we explain the adopted literature review methodology. We then

review and characterize a set of works that verify memory access in distributed systems.

Finally, we discuss works about link inference that is an important step to do an inter-

program analysis of distributed system.

We conclude in Chapter 7 and present some future works that can be derived

from this thesis.

We also present in Appendix A a list of our publications.



Chapter 2

Background and Assumptions

In this chapter, we describe the fundamental concepts of system security and the attack

model used in this work. We start (Section 2.1) discuss Bu�er Over�ow (BOF). Next

(Section 2.2), we present a brief description of language-base techniques to deal with

BOF. We then (Section 2.3) describe two data structures used to code analyses �

Control Flow Graph (CFG) and Dependence Graph (DG), techniques used to analyze

memory accesses � Points-To, TFA, and literature proposals of Memory Safety tools �

AddressSanitizer, SAFECode. Finally, we present (Section 2.4) the assumptions and

the attack model used in this work.

2.1 The Anatomy of a Bu�er Over�ow Attack

The SIOT that we shall describe henceforth deal with a kind of software attack known

as Bu�er Over�ow (BOF). A bu�er, also called an array or vector, is a contiguous

sequence of elements stored in memory. Some programming languages, such as Java,

Python and JavaScript are strongly typed, which means that they only allow combina-

tions of operations and operands that preserve the type declaration of these operands.

As an example, all these languages provide arrays as built-in data structures, and they

verify if indices are within the declared bounds of these arrays. There are other lan-

guages, such as C or C++, which are weakly typed. They allow the use of variables in

ways not predicted by the original type declaration of these variables. C or C++ do

not check array bounds, for instance. Thus, one can declare an array with n cells in any

of these languages, and then read the cell at position n + 1. This decision, motivated

by e�ciency [Stroustrup, 2007], is the reason behind an uncountable number of worms

and viruses that spread on the Internet [Bhatkar et al., 2003].

Programming languages normally use three types of memory allocation regions:

11
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static, heap and stack. Global variables, runtime constants, and any other data known

at compile time usually stays in the static allocation area. Data structures created at

runtime, that outlive the lifespan of the functions where they were created are placed on

the heap. The activation records of functions, which contain, for instance, parameters,

local variables and return address, are allocated on the stack. In particular, once a

function is called, its return address is written in a speci�c position of its activation

record. After the function returns, the program resumes its execution from this return

address.

void function(char* str) {
   char buffer[16];
   strcpy(buffer,str);
}

void main() {
  ...
  function(evil_str);
  ...
}

Local
variables:

b
u
f
f
e
r

Frame
pointer
Return

address
Function

Parameters s
t
r

. .
 .

. .
 .

Fi
lli

ng
 g

ar
ba

ge
Ev

il 
ar

gs

. .
 .

.  
.  

.

...

...

<main>

<sensitive
 function>

call <function>

. .
 .

Program Stack Code Segment

evil_str: Hand crafted malicious input

push evil_str

Figure 2.1. An schematic example of a stack over�ow. The return address of
function is diverted by a maliciously crafted input to another procedure.

A bu�er over�ow consists in writing in a bu�er a quantity of data large enough

to go past the bu�er's upper bound; hence, overwriting other program or user data.

It can happen in the stack or in the heap. In the stack over�ow scenario, by carefully

crafting this input string, one can overwrite the return address in a function's activation

record; thus, diverting execution to another code area. The �rst bu�er over�ow attacks

included the code that should be executed in the input array [Levy, 1996]. However,

modern operating systems mark writable memory addresses as non-executable � a

protection mechanism known as Read⊕Write [Shacham et al., 2004, p.299]. Therefore,

attackers tend to divert execution to operating system functions such as chmod or sh,

if possible. Usually the malicious string also contains the arguments that the cracker

wants to pass to the sensitive function. Figure 2.1 illustrates an example of bu�er
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over�ow.

A bu�er over�ow vulnerability gives crackers control over the compromised pro-

gram even when the operating system does not allow function calls outside the memory

segments allocated to that program. Attackers can call functions from libc, for in-

stance. This library, which is share-loaded in every UNIX system, allows users to fork

processes and to send packets over a network, among other things. This type of attack is

called return to libc [Shacham et al., 2004]. Return to libc attacks have been further

generalized to a type of attack called return-oriented programming (ROP) [Shacham,

2007]. If a binary program is large enough, then it is likely to contain many bit se-

quences that encode valid instructions. Hovav Shacham [Shacham, 2007] has shown

how to derive a Turing complete language from these sequences in a CISC machine,

and Buchanan et al. [Buchanan et al., 2008] have generalized this method to RISC

machines.

The program in Figure 2.2 contains an example of a bu�er over�ow exploit, tested

on an Intel Core Duo running Linux Ubuntu 32-bits with stack protection disabled.

The function print is unreachable in this program; however, we are invoking it by

changing the return value of foo. Function foo is called at line 18 of our example, and

should, in principle, return to line 19. However, fun is copying a string of characters

into a local bu�er, which has only 10 cells. By carefully preparing this string, we

can overwrite its return value, as we have shown in Figure 2.2. In this example, we

are replacing this value with the address of print. Upon returning, foo diverts the

program �ow to print, which loops forever, causing the command at line 19 to never

execute.

2.2 Language-Based Techniques for Addressing

Bu�er Over�ow Vulnerabilities

Software code can harbor di�erent types of security vulnerabilities, and those suscep-

tible to bu�er over�ow attacks are the most exploited. Solutions to address this class

of vulnerabilities have long existed, and are largely based on static analysis [Chess and

West, 2007], dynamic analysis [Serebryany et al., 2012], or a combination of both.

In static analysis [Chess and West, 2007] (also known as code analysis), analysis is

performed without actually running the program; instead either the source code or the

object code is inspected, and vulnerabilities �agged. The advantage of this approach

is that it does not incur in runtime overhead. Its downside is that the analysis is not

able to use information that is only available at runtime, which can determine more
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void fun(char *s) {
  char t[10];
  strcpy(t, s);
}

  void print() {
    while (1) 
      printf(".");
  }

int main() {
  char s[27];
  strcpy(s, "AAAAAAAAAAAAAAAAAABBBB");
  sprintf(s + 22, "%c%c%c%c", (int)print & 0xFF, 
      ((int)print >> 8) & 0xFF, 
      ((int)print >> 16) & 0xFF, 
      ((int)print >> 24) & 0xFF); 
  fun(s);
  printf("Hello World\n");
  return 0;
}
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Figure 2.2. An example of C program vulnerable to a bu�er over�ow exploit.

accurately whether a code fragment indeed harbor a vulnerability. Left without runtime

information to help with the decision, static analysis usually �ags more vulnerabilities,

many of them false-positives.

Dynamic analysis [Serebryany et al., 2012], on the other hand, is performed during

system executions, and takes advantage of information that is available only at runtime.

Armed with runtime information, it is then able to accurately �ag problems in actual

runs of the system. (Often, with the same code, a system in execution may or may not

end up in an exploitable or insecure state, depending on its input.) Dynamic analysis

generates fewer false-positives, but incurs a higher runtime cost, and the results are

applicable to only those runs that were analyzed.

Due to their complementary nature, it is common to use hybrid analysis, i.e., the

combination of static and dynamic techniques. Usually, static analysis is used �rst,

to identify potential vulnerabilities; the vulnerable stretches are then instrumented

and monitored at runtime by dynamic analysis. Note that the higher the number of

(potential) vulnerabilities �agged by static analysis, the higher the overhead incurred at

runtime. Thus, for e�ciency, it is crucial that static analysis �ag as few false-positives

as possible.
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2.3 Code Analysis

In this subsection, we brie�y introduce two compiler data structures directed related to

our work � Control Flow Graph (CFG) and Dependence Graph (DG) � and point out

their limitations in modeling distributed systems. These data structures are very used

in code analysis for �agging bu�er over�ow vulnerabilities and to do code optimizations,

for example. We also explain two code analysis we have use PointsTo and TFA.

2.3.1 Control Flow Graph

The CFG [Allen, 1970] is a compiler data structure used to model the control �ow of

computer programs. The CFG of a program P is a directed graph de�ned as follows.

For each instruction i ∈ P , we create a vertex vi; we add an edge from vi to vj if

it is possible to execute instruction j immediately after instruction i. There are two

additional vertices, start and exit, representing the start and the end of control �ow.

Fig. 2.3 shows two examples of CFG.

One class of potential bu�er over�ow vulnerabilities we might be interested in

�agging is variables assignments where the data being assigned are originated externally

from user or environment input. If we assume that neither the data sent over the

network, nor the executable of the various distributed modules can be tampered with

(see Section 2.4.2 for a discussion of these assumptions), then we would see di�erently

the assignments in lines 1 and 5 of Echo Server (Fig. 2.3b). Even though they both

involve data coming from the network (through the RECV function), we would deem

the one in line 5 as vulnerable, but not the one in line 1. The assignment in line 5 is

vulnerable because the data being assigned to msg comes from getc (line 4, Fig. 2.3a),

which could provide malicious data from attackers (msg has been used in bu�er access).

The �rst assignment in server program (line 1, Fig. 2.3b) is not vulnerable because the

data being assigned is a hard-coded constant from the client program (line 1, Fig. 2.3a).

In its standard form, CFG is unable to model the overall control �ow of pro-

grams that span multiple distributed processes. Thus, they do not provide support

to distinguish the two assignments mentioned above. To be safe, both assignments

are usually �agged as vulnerable, yielding one true-positive (line 5, Fig. 2.3b) and one

false-positive (line 1, Fig. 2.3b). We present a proposal that addresses this issue in

Chapter 3.
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A: send(1)
 

send(1); 

ack = recv()
if (ack == 1) {
    s = getc();
    while (s != '\0') {
        send(s)
        ack = recv();
        if (ack != 1) {
            break;
        } else {
            s = getc();
        }
    }
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    do {
        msg = recv();
        putc(msg);
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            send(1);
        else
            break;
    } while (1);
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}
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Figure 2.3. Echo application's programs and their respective CFG. (a) Echo
client. (b) Echo server.

2.3.2 Dependence Graph

The Dependence Graph (DG) [Ottenstein et al., 1990] is a compiler data structure used

to model the dependency of data and instructions in a program. Given a program in

a format known as Static Single Assignment form [Cytron et al., 1991] (where each

variable has a single de�nition site), a Dependence Graph (DG) has a vertex for each

variable and each operation in the program. There is an edge from variable v to

operation i if i denotes an instruction that uses v. Similarly, there is an edge from i to

v if i de�nes variable v.

We show a DG example in Fig. 2.4. The pointer p is mapped toMemory 0 and p2

is mapped to Memory 1. There are direct dependences between Memory 0 and malloc
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1 int main(int argc, char** argv) {
2 int a = 0;
3 a++;
4 int* p = (int*) malloc(sizeof(int));
5 int* p2 = (int*) malloc(sizeof(int));
6 *p = a;
7 if (argc % 2) {
8 free(p2);
9 p2 = p;

10 } else {
11 *p2 = *p;
12 }
13 return 0;
14 }

1

0 1

4

Call malloc

Call malloc

add

inc

store
bitcast

load
tmp3

store

Memory 0

Memory 1

bitcast

bitcast
Call free

2argc

srem

rem

Figure 2.4. Dependence Graph (DG) example of a memory allocation code.

or store operations, for instance. The graph also shows that there is a dependency

between Memory 0 and Memory 1, because there is a path that link them (Memory 0,

load, tmp3, store and Memory 1).

The DG is a data structure frequently used with the CFG. While CFG model

the control �ow of a program, DGs focus on the data �ow, i.e., dependences between

instructions and data. Just like standard CFG, standard DGs are unable to model

the data �ow in programs that span multiple distributed processes, as discussed in the

next section.

To �nd the Memory nodes, the Points-to Analysis are used before the construction

of the DG.

2.3.3 Points-to Analysis

Points-to analysis is the problem of �nding, for each pointer p in a program, the

set of memory locations that can be addressed by p. The solution of a points-to
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analysis is a function P that maps pointer variables to a set formed by memory

locations in the program heap, plus other variable names. To solve it, we extract

a number of constraints from the program text. These constraints exist in four varieties:

v = &u {u} ⊆ P (v)

v = u P (u) ⊆ P (v)

v = ∗u ∀t ∈ P (u), P (t) ⊆ P (v)

∗v = u ∀t ∈ P (v), P (u) ⊆ P (t)

If we iterate these equations, then we are guaranteed to reach a �xed point. This

�xed point is a solution to points-to analysis. For instance, in Fig. 2.5, we have that

variables a and b are aliases. However, b and c are not.

1 int *a = (int*) malloc (40);

2 int *b, *c;

3 for (b = a; b < a + 20; b++) {

4 putc(*b);

5 }

6 for (c = a + 20; c < a + 40; c++) {

7 putc(*c);

8 }

Figure 2.5. Variables a and b are aliases, while b and c are not aliases.

The problem of conservatively estimating the points-to relations in a C-like pro-

gram has been exhaustively studied in the compiler literature [Andersen, 1994; Hard-

ekopf and Lin, 2007; Pereira and Berlin, 2009; Steensgaard, 1996]. For this work, we

use the points-to analysis available in LLVM to �nd a initial mapping P of point-

ers to locations. This mapping is used to add Memory vertices which are added to

Dependence Graph.

2.3.4 Tainted Flow Analysis

Tainted �ow analysis [Denning and Denning, 1977] is a well-known technique used

to point out paths in which information can move from the program inputs towards

sensitive operations. This kind of compiler analysis has been used with great success

to �nd vulnerabilities such as SQL Injection [Wassermann and Su, 2007], Cross-site

Scripting [Rimsa et al., 2010] and Bu�er Over�ows [Cowan et al., 2000; Levy, 1996].

For an overview of the �eld, see [Schwartz et al., 2010].
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In this work we are interested in �nding the set of taint-writable arrays in the

program to detect bu�er over�ows. An array is taint-writable if it can be �lled with

data that comes from a public channel that an adversary can manipulate. The paths

that link bu�ers reachable from untrusted sources are called tainted �ows. Any path

from an input node in this graph to a vertex that represents a sensitive operation

indicates a tainted �ow vulnerability. (We discuss an example in the Section 1.3).

There are many tools and frameworks to perform taint analyses in actual pro-

grams, including distributed systems such as web applications (e.g. [Tripp et al., 2009;

Sridharan et al., 2011; Jovanovic et al., 2006; Lam et al., 2008]). However, they all

model the distributed programs in a system as individual entities, and assume that data

coming from the network may be malicious. This is also the case of state-of-the-art

tools such as TAJ [Tripp et al., 2009], F4F [Sridharan et al., 2011] and Pixy [Jovanovic

et al., 2006]. This work crosscheck information inferred from di�erent network pro-

grams to improve the precision of taint �ow analysis [Denning and Denning, 1977]. We

have implemented our taint analysis using the Distributed Dependence Graph that we

describe in Chapter 3.

2.3.5 Memory Safety

The research community and the industry have spent a substantial amount of time and

energy to �nd ways to prevent bu�er over�ows in C programs. However, while there

are ways to hamper this kind of attack, the most e�ective protections tend to impose

a heavy burden on the guarded system.

The instance SIoT described in Section 4.2 detects memory accesses that are

vulnerable to bu�er over�ow attacks. The literature has a good number of solutions

to perform such detections in standalone programs. They are software-based (e.g.

[Criswell et al., 2009; Ghose et al., 2009; Serebryany et al., 2012; Nazaré et al., 2014]),

hardware-based (e.g. [Devietti et al., 2008; Nagarakatte et al., 2012]), or hybrid (e.g.

[Nagarakatte et al., 2014]).

As example of recent protection mechanisms againts bu�er over�ow we can high-

light the SAFECode [Criswell et al., 2007, 2009], and AdressSanitizer [Serebryany et al.,

2012]. Both tools protect a C program by instrumenting it. However, they provide this

instrumentation in very di�erent ways.

SAFECode replaces the standard malloc/free functions of stdlib.h by a cus-

tom storage allocator, which tracks the size of each block of memory that it allocates.

AddressSanitizer shadows every chunk of memory that it allocates. Each memory ac-

cess is matched against its shadow area, and an attempt to read or write unallocated
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data triggers a runtime exception. The main drawback of these tools is the overhead

that they impose on compiled programs. Nazaré et al. [2014] present a suite of static

analyses that removes part of this overhead.

We understand that both systems are too costly to be used in Networked Em-

bedded Systems. Our work di�ers from these existing solutions in that we target

distributed applications. In other words, none of these works is concerned about draw-

ing information from the network's communication structure to reduce the overhead of

solution.

2.4 System Assumptions & Security Model

In this section we discuss the assumptions of the work. We start by discussing the

Distributed System execution model and then we present the Security Model assumed

in this work.

2.4.1 Distributed System Execution Model

For the purpose of this work, we assume networks of distributed and embedded nodes.

We will use node or nodes to refer to embedded nodes, such as a sensor node, a RFID

network element or a smart TV, for example. We will use vertex or vertices to refer to

elements of graphs that represent the programs of each node. Each node can interact

with its environment through sensors, actuators, or user interfaces. And each node can

interact with another node via a communication channel.

Our work assumes a standard message passing execution model. Two nodes

execute in parallel and may exchange information using send (SEND) or receive (RECV)

operations. We have assumed that each node is identi�ed by a unique id, like IP or an

other identi�cation number. Each SEND and RECV takes an argument that uniquely

identi�es the ID of its communication partner. No RECV may match messages from

more than one node sender (i.e. no wildcard receives). We will use the word channel

to refer the communication channel between nodes and the word link to refer the links

between SENDs and RECVs of programs of di�erent nodes. For each pair of processes

there exists one or more bidirectional communication channels. All messages sent along

a channel are delivered in First In First Out (FIFO) order. SENDs program commands

are non-blocking and any number of messages may be in-�ight at the same time. When

a RECV command is reached, the program is blocked until the arrival of a SENDmessage.

Nodes may read arbitrary input data from user or environment, such as sensor

reads, GPS data, images in a smart video camera, internal machine commands (e.g.
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Figure 2.6. Attackers are not able to input data onto the system through the
network sources.

temperature actuators), other machine commands (e.g. RFID reader signal), or user

commands (e.g. television remote control signals, car break pedal sensor, refrigerator's

command buttons).

2.4.2 Security Model

We assume that both the system running at each node and the communication be-

tween di�erent nodes is protected against tampering. Di�erent security mechanisms

can be used to implement such protections. For example, Trusted Platform Module

(TPM) [Kinney, 2006; Boukerch et al., 2007; Seshadri et al., 2004] can be employed

to ensure the integrity of nodes systems and cryptographic solutions like [Perrig et al.,

2002; Kothmayr et al., 2011; Oliveira et al., 2008] can be used to establish a secure

communication channel.

Attackers can have control over the input data that the nodes receive from its

environment (Fig. 2.7). This includes data captured by the sensors or input from the

user interfaces, but excludes data coming from network interfaces (Fig. 2.6), we assume

a secure communication channel.

Though limited in the type of attacks they can launch, such attackers can poten-
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Figure 2.7. Attackers can have control over the input data that the nodes receive
from its environment.

tially cause security problems if the code running on the nodes harbors certain types

of vulnerabilities. For example, if the code does not check array bounds, certain in-

puts may cause bu�er over�ows. Attackers can then manipulate the environment (to

produce spurious sensor readings) or provide spurious user input to launch a bu�er

over�ow attack, leading the nodes to denial of service or malicious behavior. Because

these nodes are connected to the Internet, misbehaving nodes can be used as a proxy

to attack other nodes in the network. Note that malicious input injection attacks can

be most e�ectively exploited if the attacker has information of vulnerabilities in the

code. This information is readily available in case of open source programs, and can

also be obtained from code reverse engineering, and program fuzzing exercises.

2.5 Chapter Summary

In this chapter, we discuss BOF attacks and present the fundamental concepts of

code analysis used in our work. Code analysis works handle the system as standalone

programs. However, as we have shown in this chapter, a whole vision of the distributed

system can help improve the precision of the code analyses of bu�er over�ow, for

example.

We show that the CFG and DG are important data structures used in code
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analysis. We describe some techniques used to analyze memory accesses as Points-To

and TFA, and literature proposals of Memory Safety tools as AddressSanitizer and

SAFECode. However, they are not designed to handle more than one program (see

Chapter 6 for a discussion of other related works).

We also describe the distributed system execution and security models assumed

in this work. Our distributed models assumes that two nodes execute in parallel and

may exchange information using send (SEND) or receive (RECV) operations. When a

RECV command is reached, the program is blocked until the arrival of a SEND message.

Our model attack assumes that attackers are not able to input data onto the system

through the network sources, however attackers can have control over the input data

that the nodes receive from its environment.

In the next chapter (Chapter 3) we present our solution proposal to see a dis-

tributed system as whole and prove that our algorithm is correct and always termi-

nates.





Chapter 3

Communication Links Inference

In this chapter, we present our proposal for the analysis of distributed systems. We start

(Section 3.1) by introducing the concepts of DCFG and DDG (Section 3.3), two data

structures that would enable us to model control �ow and data �ow across di�erent pro-

grams in a distributed system. We then describe the Elevator algorithm (Section 3.2)

used to inference communication links between the programs. Finally (Section 3.4),

we formalize the level assignment algorithm brie�y described in Section 3.1, and prove

that the algorithm terminates, and is correct.

3.1 Distributed Control Flow Graph

To analyze an entire distributed system, we need to work with control �ow graphs that

transcend program boundaries. CFGs model the control �ow of individual programs.

We propose the notion of DCFG as a way to model the communication between two

programs in a system. We describe how DCFGs are built below.

Let {C1, C2} be a pair of CFGs that constitute a system and D the resulting

DCFG. D contains C1 and C2 as subgraphs. Inter-program edges connecting C1 and

C2 are then added to D: for each pair of SEND and RECV vertices (each from the two

di�erent CFGs) that may communicate, we add an edge from the former to the latter.

That is, for each pair of vertices si ∈ C1 and rj ∈ C2, if there is an execution sequence

in which a message issued by si reaches rj, we add to D an inter-program edge from

si to rj. And, for each pair of vertices sk ∈ C2 and rt ∈ C1, if there is an execution

sequence in which a message issued by sk reaches rt, we add to D an inter-program

edge from sk to rt.

In principle, we can add inter-program edges linking every send vertex in one

of the CFGs to every receive vertex in the other CFG in the system. However, the

25
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A: send(1) 

C: send(s) E: send(s) 

(a)                                                        (b)  

B: ack = recv() 

D: ack = recv() 

Figure 3.1. (a) Send-Graph and (b) Receive-Graph for echo client (Fig. 2.3a).

resulting DCFG would have inter-program edges linking sends and receives that could

not be the matching ends of a communication. For instance, in Fig. 2.3, sends from

vertex A are not received by vertex H; every send from A will be received by F before

H has a chance to execute. To de�ne a DCFG that better models the workings of a

system, we ( [Teixeira et al., 2015b]) propose the Elevator Algorithm (Algorithm 1).

3.2 Elevator Algorithm: Linking Distributed

Systems Programs' Codes

To explain the Elevator Algorithm, we introduce the notions of Send-Graph, Receive-

Graph, and levels. Given a CFG C of a program, we de�ne its associated Send-Graph S
and Receive-Graph R as follows. For each vertex v ∈ C labeled with a send operation,

we add a vertex v′ to S. We also add start′ and exit′ vertices, which correspond to

start and exit in C. Edges in S correspond to paths between sends in the original C.
For every pair of vertices u, v ∈ C, we add an edge

−→
u′v′ to S if, and only if: (i) there

exists a path p from u to v in C, and (ii) p does not contain any other sends. We create

R in a similar way, replacing sends by recvs in the procedure described above. Fig. 3.1

shows the S and R derived from the CFG in Fig. 2.3a.

Next, we move on to the concept of level. Given a Send-Graph, its level 0 contains

the start vertex. Level 1 contains the sends that are reachable, in one step, from the

root. More generally, level n+ 1 contains the immediate successors of vertices in level

n. The procedure is complete when the vertices in the just-generated level do not have

successors, or the just-generated level is a duplicate of a previously existing one. The

concept of level can be similarly de�ned for Receive-Graphs. We show an example in
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A: send(1)
 

 

C: send(s)
 

 

E: send(s)
 

 

F: ack = recv()
 

 

H: msg = recv()
 

level of Senders:
ord      level
 

0         {root}
 

1         {A}
 

2         {C, E}
 

3         {C, E}
 

4         {C, E}
 

5          ...

level of Receivers:
ord      level
 

0         {root}
 

1         {F}
 

2         {H}
 

3         {H}
 

4         {H}

Figure 3.2. Levels for echo client's SENDs (left-hand-side) and echo server's
RECVs (right-hand-side). Dashed boxes delineate L when solution(L) is true.
The predicate solution is de�ned by Rule [Sol] in Fig. 3.4.

Fig. 3.2.

Consider echo client program Send-Graph (Fig. 3.2 left-hand-side). Its level 0

contains the root of the graph. Its level 1 contains the immediate successors of root

node, i.e., {A}. Its level 2 contains the immediate successors of each send node of level

1, i.e., {C,E}. The successors of C is {C,E}, and E does not have successors. We

�nd ourselves in a cycle, and the traversal can now stop. The levels for echo server

Receive-Graph can be similarly determined.

Given the CFGs in Fig. 2.3, their resulting DCFG can be built by linking the

send vertices in one CFG with the receive vertices of the same level in the other. Links

are established between SENDs and RECVs that have the same level because they model

matching ends of message exchanges. Fig. 3.3 shows the links between the SENDs and

RECVs in our example. Links between the sends in echo server and the receives in

echo client are omitted for simplicity. The steps described above are captured in the

Elevator Algorithm (Algorithm 1).

3.3 Distributed Dependence Graph

Distributed Dependence Graph (DDG) can be built following similar steps. We �rst

create the DG of each program in the distributed system. For each instruction that ac-

cesses the network, we create a vertex in the graph to represent this operation. Finally,

we used the levels de�ned in the Send-Graph and Receive-Graph to decide which edges

should be inserted between SENDs and RECVs in a similar way as previously described.

Thus, the previously �nal graph contains the dependences of all the programs of the
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A: send  {1}
 

 

B: recv
 

 

C: send  {2}
 

 

D: recv
 

 

E: send  {2}
 

 

F: recv  {1}
 

 

G: send
 

 

H: recv  {2}
 

 

I: send
 

 

J: send
 

{0} {0}

Figure 3.3. Links between echo client's SENDs and echo server's RECVs of our
running example. Numbers next to vertices denote their respective levels.

distributed system as if they were a single program system. The DDG can be used for

di�erent security analyses like the detection of bu�er over�ow or integer over�ow [Ro-

drigues et al., 2013] vulnerabilities. For instance, in Chapter 5 we describe how we have

used the DDG to �nd dependences between user or environment inputs and memory

accesses that can be used for bu�er over�ow attacks and how to mitigate false positives

due to network access.

3.4 Formalization of Elevator Algorithm

Equation 3.1 de�nes the levels of either a Send-Graph or Receive-Graph graph, named

here as Message-Graph mg as follows:

level(mg, 0) = {start}
level(mg, n) = {v | −→uv ∈ mg ∧ u ∈ level(mg, n− 1)}

(3.1)

Equation 3.1 gives us a way to generate levels, which we formalize in Fig. 3.4.

To produce all the levels of a program, we continually generate new levels, until we

produce a set that has been created before. Rule [Suc] constructs the successor of a

level, following Equation 3.1. Rules [Lvr] and [Lvn] determine a recurrence relation

that generates levels. The �rst rule, [Lvr], gives us the base case. The second rule,

[Lvn], gives us the inductive step. Finally, Rule [Sol] de�nes a solution to the problem
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Algorithm 1: Elevator

Input: CFGs {C1, C2}, Send-Graphs {S1,S2} and Receive-Graphs {R1,R2}.
Output: a DCFG D
B Set the SEND and RECV levels

foreach Gi ∈ {S1,S2} ∪ {R1,R2} do
n← 0
LGi,n ← {root}
B While the new generated set LGi,n is unique

while LGi,n 6= LGi,0..n−1 do
foreach vertex v in LGi,n do

Ssuccs ← successors of v
LGi,n+1 ← LGi,n+1 ∪ Ssuccs

n← n+ 1

B Link SENDs and RECVs of the same level

D← C1 ∪ C2
for k ← 1 to n do

foreach vs ∈ LS1,k and vr ∈ LR2,k do
add an edge from vs to vr in D

foreach vs ∈ LS2,k and vr ∈ LR1,k do
add an edge from vs to vr in D

[Suc]
∀v ∈ V, (v ∈ S ′ ⇔ ∃u ∈ S ,−→uv ∈ E )

succs(S, S ′)

[Lvr] levels([start ])

[Lvn]
levels([L2 | L]) succs(L2, L1)

levels([L1, L2 | L])

[Sol]
levels([L1 | L]) L1 ∈ L

solution(L)

Figure 3.4. The �xed point computation of levels for a Message-Graph mg =
(V,E). We use Prolog syntax: [H1, H2 | T ] denotes a list of elements H1 (�rst),
H2 (second) and T (tail).

of producing levels to messages graphs. According to this rule, we stop generating levels

as soon as we produce a set of vertices that we had generated before. As we prove later,

in Lemma 3.4.6, this algorithm always terminates.

If solution(L) is true, we number the levels of a program according to the rules
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below:

[Zer] ord([ ], 0)

[Num]
ord(L,N)

ord([L1 | L], N + 1)

In other words, the last element of L is given number zero, and the �rst is given number

N − 1, given that L has N elements. This numbering is consistent with that used in

Equation 3.1. Fig. 3.2 (a) shows the sets of levels for the Send-Graph in the echo client

of our running example. Fig. 3.2 (b) shows the levels for the Receive-Graph of the echo

server.

3.4.1 Correctness

The essential property that we want to ensure with the idea of levels is the invariant

that only SENDs and RECVs in the same level can communicate. To prove that our

algorithm deliver us this property, we de�ne the semantics of a toy language that

abstracts message exchange between two processes.

Core Language Fig. 3.5 shows the semantics of a simple language [Nielson et al.,

1999], that allows us to de�ne communication protocols between two programs. These

two programs, P1 and P2, share two integer counters, N1 and N2, where Ni simulates

the input queue of Pi. Our language has �ve di�erent instructions: send, recv, choose,

jump and halt. A program is a list of such instructions, which is indexed by an integer,

henceforth called pc. The �rst instruction, send, lets Pi increase the counter N1−i;

hence, simulating the transit of data from Pi to its peer process P1−i. The command

recv gives process Pi the opportunity to read data, which we, concretely, translate to

a decrement of Ni. We do not simulate �waiting" in our language: if a process tries

to read an empty counter, e.g., N = 0, then the program is stuck. Given our simple

communication model, the correctness proofs that we present in the rest of this section

require only the existence of one execution in which no process is stuck. We incorporate

control �ow in our language via instructions choose and jump. The former is a non-

deterministic branch, the latter is an unconditional jump. A program terminates once

it reaches instruction halt. When both programs reach this instruction, we say that

the entire application terminates.
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((P1, eof, N1)/(P2, eof, N2))→ (N1, N2)

eval(P1, pc1, N1, N2)→ (pc′1, N
′
1, N

′
2) ((P1, pc

′
1, N

′
1)/(P2, pc2, N

′
2))→ (N ′′

1 , N
′′
2 )

((P1, pc1, N1)/(P2, pc2, N2))→ (N ′′
1 , N

′′
2 )

eval(P2, pc2, N2, N1)→ (pc′2, N
′
2, N

′
1) ((P1, pc1, N

′
1)/(P2, pc

′
2, N

′
2))→ (N ′′

1 , N
′′
2 )

((P1, pc1, N1)/(P2, pc2, N2))→ (N ′′
1 , N

′′
2 )

eval(P, pc, Nin, Nout)→



(pc+ 1, Nin, Nout + 1), if P [pc] = send

(pc+ 1, Nin − 1, Nout), if P [pc] = recv ∧Nin > 0

(l, Nin, Nout), if P [pc] = choose(pc1, pc2) ∧ l ∈ {pc1, pc2}
(pc′, Nin, Nout), if P [pc] = jump(pc′)

(eof, Nin, Nout), if P [pc] = halt

Figure 3.5. The semantics of our message passing language.

Essential Properties To prove that only SENDs and RECVs in the same level can

exchange messages, we introduce the notion of depth, which we de�ne as follows:

De�nition 3.4.1 Given a Send-Graph (or a Receive-Graph) mg, a vertex v has depth

d if there exists a path from start to v passing through d− 1 vertices. The same vertex

might have several depths.

Ifmgs is the Send-Graph inferred from a program P , written in our core language,

and si ∈ mgs is the vertex that corresponds to send operation i in P , we shall refer

to them as the pair i/si. The depth of si determines how many messages have been

sent by P once i is evaluated. We state this property in Lemma 3.4.2. There exists an

analogous result for receivers, which we omit, for the sake of brevity.

Lemma 3.4.2 Let mgs be the Send-Graph of program P , such that i/si is a pair. If si

has depth d, then there exists an execution of P in which i is evaluated after d messages

are sent.

Proof: The proof is by induction on d.

Base case: Let d = 0, which corresponds to the point before any instruction of P �

then vs = start . Because there is no send before the �rst instruction of P , the lemma

is vacuously true.

Induction hypothesis : the lemma is true until depth d.

Induction step : If a vertex s has depth d+1, then it is preceded by a vertex s′ of depth

d, by the de�nition of depth. If i′ ∈ P corresponds to s′, by induction it is reached
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after d messages are sent. Because instruction i ∈ P , that corresponds to s, is the �rst

send after i′, the lemma is true.

There exists a very close relationship between levels and depths. Lemma 3.4.3

makes this relationship explicit. According to this lemma, if two vertices belong into

the same level, then there exist paths of same length linking these vertices back to

the start vertex. In other words, the idea of levels group vertices that share common

depths. Notice that the same vertex can have di�erent depths. As an example, vertex

C in Fig. 3.1 (a) has in�nite di�erent depths, as it is part of a loop. Thus, it is possible

to have the same vertex in di�erent levels.

Lemma 3.4.3 If v ∈ level(mg, n), then there is a path of depth n from v to start.

Proof: The proof is by induction on n.

Base case: by the �rst case of Equation 3.1, only start is in level(mg, 0). The depth of

start to start is zero.

Induction hypothesis : the lemma is true until level n.

Induction step : All the vertices in level(mgs, n + 1) are successors of vertices in

level(mgs, n), by the second case of Equation 3.1, which, by induction, can be reached

after n hops. From the de�nition of depth, we conclude that vertices in level(mgs, n+1)

can be n+ 1 hops distant from start.

The concept of depth is key to prove the correctness of our method to build

distributed graphs, because only vertices with the same depth can communicate, as we

state in Lemma 3.4.4.

Lemma 3.4.4 Given a Send-Graph mgs, a Receive-Graph mgr, vertex s ∈ mgs and

vertex r ∈ mgr, if is/s and ir/r are pairs, then ir can receive a message sent by is if,

and only if, s and r share a common depth.

Proof: From Lemma 3.4.2, we know that the depth of a sender s corresponds to the

number of messages sent before is is executed. Similar result applies to the pair ir/r.

Necessity: If r and s do not share a common depth, then any path from starts, the

start of mgs to s will cause the issuing of a number k of messages that is di�erent than

the number of messages that can be received in any path from startr, the start of mgr

to r.

Su�ciency: If s and r share a common depth d, then there exists a path

(starts , s1, . . . , sd−1, s) in mgs, and another path (startr , r1, . . . , rd−1, r) in mgr in which

d messages are sent from senders corresponding to si to receivers corresponding to ri.
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As a corollary of Lemma 3.4.4, we have that two vertices can communicate if,

and only if, they belong into the same level. We state formally this property in Theo-

rem 3.4.5.

Theorem 3.4.5 Given a Send-Graph mgs and a Receive-Graph mgr, and pairs is/s,

ir/r, is can send a message to ir if, and only if, s and r belong into the same level.

Proof: Su�ciency: From Lemma 3.4.3, we know that two vertices at the same level

have a common depth, and by Lemma 3.4.4 we know that they can communicate.

Necessity: still by Lemma 3.4.4, if two vertices do not share a common depth, then

they cannot communicate.

3.4.2 The Computation of Levels Terminates

Equation 3.1 gives us an algorithmic way to compute the set of levels of messages

graphs. We can construct a level n from the de�nition of levels 1 . . . , n−1. Eventually

we will get two levels, e.g., n and n+1 which are the same. In this case, we know that

we will have a cycle of known levels, as we state in Lemma 3.4.6.

Lemma 3.4.6 If levels n and n+ k are the same, then the levels n+ 1 and n+ k + 1

are the same.

Proof: According to the recurrence relation seen in the second part of Equation 3.1,

level(k + 1) is totally de�ned by level(k).

Lemma 3.4.6 gives us an interactive way to build levels for a Send-Graph (or a

Receive-Graph) graph: it is enough to solve Equation 3.1 successively, until we �nd

two levels that are the same. This process is guaranteed to terminate, as we prove in

Theorem 3.4.7.

Theorem 3.4.7 The iterative construction of levels terminate.

Proof: The number of levels is �nite, because a graph with N vertices might have at

most 2N di�erent levels. Thus, successive applications of Equation 3.1 will eventually

produce two levels that are the same. From Lemma 3.4.6, we know that we have found

a cycle, and no new level will be discovered.
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3.4.3 Complexity

The complexity of our algorithm is the sum of the complexities of Rules Lvn and Sol.

The number of levels is upper bounded by 2N , where N is the number of vertices �

SEND or RECV � in the messages graph (Send-Graph or Receive-Graph).

The computation of successors, via Rule Suc, in Fig. 3.4 has an O(N2) worst

case. Hence, Rule Lvn might have an O(2N × N2) worst case. The pertinence test,

performed in Rule Sol is O(2N) × O(N), i.e., maximum number of levels multiplied

by the time to check if two levels are the same.

Therefore, our algorithm might have exponential complexity. We emphasize that

we have not found a graph that gives us the exponential number of levels, although we

can construct graphs that gives us a quadratic number.

For instance, mg = ({start, b, c, d, e}, {
−−−−→
start b,

−→
bc,
−→
cd,
−→
de,
−−−−→
e start,−→ec}) has �ve

vertices and yields 16 levels. As we show empirically (Section 5.4), our algorithm

seems to be polynomial in practice.

3.5 Chapter Summary

In this chapter, we have discussed how to obtain a inter-program vision of the dis-

tributed system by the creation of Distributed Control Flow Graph � DCFG, and De-

pendence Graph � DG as an extension of de data structures CFG and DG (discussed

in Chapter 2).

To construct this vision, we introduced the Elevator algorithm that link SENDs

and RECVs of two program using the concept of Level. We then have formalized Eleva-

tor algorithm, proved that its correctness and termination and discussed its complexity.

With this vision is possible improve the precision of distributed system code

analysis by crosschecking information between di�erent programs. For example, in

the Chapter 5 we will describe how we can improve the precision of bu�er over�ow's

analysis using this inter-program vision.

In the next chapter we show how we have implemented our Elevator algorithm

and the other compiler structures discussed in this chapter (e.g., DCFG, DG, Send-

Graph and Receive-Graph) as a framework on top of the LLVM compiler.
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Architecture and Implementation

In this chapter, we describe the architecture of our framework and some implementation

aspects. We start (Section 4.1) by describing how we have implemented our algorithm

and organize our framework using the LLVM compiler. We then present architecture

of two DSA instances: SIoT and DistViewer. Firstly (Section 4.2), we discuss the

SIoT architecture and how we have implemented its companion distributed tainted

�ow analysis. Finally (Section 4.3), we present the DistViewer tool, we de�ne the

Network Programing Slice (NetSlice) and we discuss architecture and implementation

of DistViewer.

4.1 DSA Architecture and Implementation

Our framework is a template for deriving static analyses tools, which we We have

implemented the DSA as an extension of the LLVM compiler. Therefore, the DSA

can be directly applied to distributed systems made in C. No change is required in

the source code of the programs that make up the distributed system, even to include

annotations in the code (as is required on many static analysis solutions). The source

code is available online.

A tool derived from DSA is composed of three layers: merging, linking and speci�c

analysis. Fig. 4.1 shows the DSA architecture.

The �rst layer, Merging, provides as output a program that is the junction of the

distributed system programs. This output is a program that represents the distributed

system as a whole. Through this output, it is possible to extend conventional static

analysis structures (as we did for the CFG and the DG) or create new structures (as

we did with the Send-Graph and Receive-Graph).
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Figure 4.1. DSA Architecture.

The second layer, Linking, provides structures used in conventional static analysis

extended to the context of distributed systems. Such structures can be used as a basis

to extend conventional analyzes for treating distributed systems. For example, the

Distributed Dependence Graph (DDG) and DCFG, supplied as the output of the second

layer, can be used to develop a distributed integer over�ow analysis or a distributed

range analysis. Another example: our DistViewer extends the �rst and second layers

to provide the programmer an overview of programs focusing on the interaction over a

network.

The third layer, DSA Instance, is composed by speci�c static analysis like the

SIoT. SIoT extends the DSA and performs a tainted �ow analysis in order to detect

bu�er over�ows. This layer can be extended or used for other types of analysis such
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as, for example, analysis of leakage of con�dential information. In order to create a

new speci�c static analysis tool, the developer must implement your analysis using the

support of DSA framework � we call the speci�c analysis the DSA instance.

In the next subsections we describe this architecture in more detail.

4.1.1 Merging

DSA Merging receives as input �les written in the LLVM IR called bytecodes. The

LLVM IR is a low-level programming language, formed by three-address instructions

called bytecodes, which manipulate typed operands. Usual types are integers of several

di�erent sizes, �oating-point numbers, program labels, bit vectors and arrays.

Merging combine two bytecode �les into a single �le. In this layer we must resolve

name con�icts, i.e., di�erent �les may de�ne the same names. We solve such con�icts

through renaming functions and variables.

Merging di�erent bytecode �les only requires the names of SEND and RECV func-

tions and parameters. Our tool analyzes all the network functions present in each

bytecode �le, based on usual libraries of the C language. If necessary, the user can

modify the setup �le to change or add others network functions. We then output this

list to the user, who determines which functions transmit, and which functions receive

data.

Based on the network functions information, DSA adds special tags to the LLVM

bytecode �les, identifying SEND and RECV and their data parameters. The annotated

bytecodes are then merged into a single unit (System Bytecode in Fig. 4.2) and ex-

ported to �le system to facilitate subsequent analyses. This output is a program that

represents the distributed system as a whole. Through this output, it is possible to

extend conventional static analysis structures (as we did for CFG and DG) or create

new structures (as we did with the Send-Graph and Receive-Graph). Notice that the

System Bytecode with the meta-informations inserted by DSA can be used as input to

static analysis focus on inter-program view.

Figure 4.2. DSA Architecture UML Component Diagram.
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In addition to this �le, we also produce, during the merging phase a �setup" �le,

containing meta-information to guide the automatic analyses. This meta-information

describes, for instance, which functions are send or recv operations.

4.1.2 Linking

In the linking layer we start extracting the Send-Graph and Receive-Graph for each

program, and, using the Elevator algorithm, we de�ne the level of each SEND and RECV

and produce the DCFG and DDG.

Firtly, MsgGraph extracts the Send-Graph and Receive-Graph for each program,

that are exported as interfaces to possible instances of DSA. Firstly, usingMsgGraph we

extract the CFG of each function using the LLVM infrastructure. Then we construct

the CFG of each program as whole (an Interprocedural Control Flow Graph (ICFG)).

Using this ICFG, we extract the Send-Graph and Receive-Graph and export them as

interfaces to be used by Elevator.

The Elevator then assigns levels to functions marked as SEND or RECV (using the

steps described in Section 3.2). After determining levels, Elevator creates the DCFG

by linking the SENDs and RECVs vertices in the same level. DCFG is also exported as

interface.

Finally, using the DCFG as input, a third component, DistDepGraph, builds the

DDG. DistDepGraph �rstly �nd the memory vertices using LLVM Points-to Analysis,

which maps the pointer to memory nodes in the DG (we discuss Points-to Analysis

in 2.3.3). Then DistDepGraph builds the DG for each program. Finally, using the

construct the DG of each program, DistDepGraph adds links between vertices marked

as SEND and RECV in the same level. This data structure is then exported as interface

to possible instances of DSA.

Notice that the compile structures exported by DSA framework (DDG, DCFG,

Send-Graph and Receive-Graph) are ready to be used to derived new analyses.

To validate our proposal, we have designed and implemented two instances: SIoT

and DistViewer. Fig. 4.3 shows framework's interface usage of the two instances de-

scribed in this work. The former uses the proposed framework to implement a dis-

tributed tainted �ow analysis to secure ContikiOS applications against bu�er over�ow

attacks in a more energy-e�cient manner. SIoT uses the System Bytecode and DDG

interfaces (Fig. 4.3). DistViewer uses the graphs generated by the framework to pro-

vide programing slices of distributed systems. DistViewer uses as input the following

DSA interfaces: Send-Graph, Receive-Graph, DCFG and DDG(Fig. 4.3).
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Figure 4.3. Instances of DSA: DistViewer and SIoT.

We describe SIoT (Section 4.2) and DistViewer(Section 4.3.1) architectures in

more detail in the following sections.

4.2 SIoT Architecture and Implementation

The DDG exported by DSA let us track the �ow of information throughout the pro-

gram, giving us a way to point out vulnerabilities. Fig. 4.4 summarizes SIoT architec-

ture. To detect program vulnerabilities, we �rstly �nd the untrusted sources. Input

Value Analisys component receives the System Bytecode exported by DSA framework

and search for program inputs. The inputs are classi�ed on user or network inputs.

The list of inputs values is, then, exported as an interface.

We then feed the DDG and the input list to the Tainted Flow Analysis component,

the pass which implements our Tainted Flow Analysis. This pass searches for paths,

within the DDG, between untrusted inputs and memory access operations.

After analyzing a program, our Tainted Flow Analysis component produces the

following outputs: (i) ABCs statistics, i.e., the number of true-positives, and potential

false-positives (if we had analyzed each program of a system independently); (ii) the

graph of vulnerable paths in the program (TFA Graph); and (iii) the ABC Lines which

list the lines of code which must receive ABCs.

Finally, the Instrumentator component return the System Bytecode to original

form (ProgramA and ProgramaB bytecodes) and inserts ABCs in the lines highlighted

by the TFA.
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Figure 4.4. SIoT Instance Architecture.

4.3 DistViewer - Distributed System Code Viewer

Using the DSA framework, we have designed, developed and tested a tool which we

call Distributed System Code Viewer (DistViewer). DistViewer receives as input two

C programs that communicate over the network, sets up and runs the DSA frame-

work and displays, via a web interface 1, graphs that summarize the results of the

communication links inference, namely: the Send-Graph, the Receive-Graph, the Dis-

tributed Dependence Graph, and the NetSlice � the latter, a graph that summarizes

the dependence between data and network). Fig. 4.5 shows the initial web screen of

DistViewer.

DistViewer can be used to to assist developers of distributed systems and/or de-

signers of network protocols. From the graphs of the distributed system generated

by DistViewer, the designer or developer can, for instance, (i) check for semantic er-

rors, aided by graphs that summarize and highlight the interaction over a network;

(ii) perform optimization in the code that take into account interaction among net-

work elements; and (iii) check paths from user inputs to memory nodes to �nd data

dependencies.

1DistViewer is available at http://cuda.dcc.ufmg.br/siot/
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Figure 4.5. DistViewer Initial Screen.

The current version of DistViewer takes as input two C programs that communi-

cate over a network (Fig. 4.5). The tool compiles these source codes using clang Lattner

and Adve [2004], analyzes the intermediate code using the DSA framework and renders

graphs. All these actions are performed automatically, i.e., without human interven-

tion. In other words, users can analyze their programs without the need to install or

con�gure compilers and other libraries. The �nal product of DistViewer is an online

interface to visualize the graphs it produces. These graphs can also be downloaded for

being further processed.

To summarize the modus operandi of our tool, we list a few of its key features:

it (i) reads source code in C; (ii) compiles them using the LLVM infrastructure; (iii)

merges bytecodes using the DSA framework; (iv) formats and displays, via a web inter-

face, the network graphs (Send-Graph and Receive-Graph); (v) formats and displays

the DDG; and (vi) extracts the DDG summary, which we call NetSlice. The NetSlice

highlights the interactions between data and network. We explain NetSlice below.

In the rest of this section, we shall use an example to illustrate how DistViewer

works. This example will use the programs PA and PB of Fig. 4.6. PA (Fig. 4.6a)

has �ve SENDs and two RECVs. PB (Fig. 4.6a) has �ve RECVs and two SENDs. To initiate

the generation of graphs, the user must list the name of functions � present in the C
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1 const size_t MAX = 100;
2

3

4 int main( ) {
5 char buf[MAX];
6 scanf ("%10s",buf);
7 size = strlen(buf);
8 send(1,buf,size,0);
9 if(buf[0]) {

10 send(2,buf,size,0);
11 }
12

13 if(buf[1]) {
14 send(3,buf,size,0);
15 } else {
16 send(4,buf,size,0);
17 }
18 send(5, buf, size, 0);
19 recv(1,&buf,MAX,0);
20 recv(2,&buf,MAX,0);
21 return 0;
22 }

1 const size_t MAX = 100;
2

3

4 int main( ) {
5 char buf[MAX];
6

7

8

9

10 recv(1,&buf,MAX,0);
11 if(buf[0]) {
12 recv(2,&buf,MAX,0);
13 } else {
14 recv(3,&buf,MAX,0);
15 }
16 recv(4,&buf,MAX,0);
17 recv(5,&buf,MAX,0);
18 int size = strlen(buf);
19 send(1,buf,size,0);
20 send(2,buf,size,0);
21 return 0;
22 }

(a) Program A (PA) (b) Program B (PB)

1
Figure 4.6. Network programs in C language.

source � that perform network accesses (Fig. 4.5). These functions will be regards by

DistViewer as either SENDs or RECVs.

The �rst output of DistViewer is a view of the control �ow graph of SENDs (Send-

Graph) and RECVs (Receive-Graph) of each program. For instance, Fig. 4.3 shows the

Send-Graph of PA and in the Fig. 4.3 we have the Receive-Graph of PB. Besides, the

Send-Graph of program PB is shown in Fig. 4.7; and Fig. 4.7 outlines the Receive-

Graph of the program PA. With these graphs, developers or protocol designers have

a whole view of the distributed program �ow, which allows them to abstract away

implementation details. Such abstraction not only makes the analysis of the protocol

easier, but also assist designers and developers to detect errors and/or optimize network

interactions.

The DistViewer therefore processes the raw DDG and, subsequently, extracts

the corresponding NetSlice. The NetSlice is a programming slice that summarizes the

DDG focusing on network interactions. This programming slice is represented by a

graph which highlights the vertices that represent the network operations (i.e., SENDs

and RECVs) or the memory addresses that contribute to the �ow of information across

the network. More formally, given a DDG G, we de�ne its associated NetSlice N as
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Figure 4.7. PA's Send-Graph (a) and PB's Receive-Graph (b).
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Figure 4.8. PB's Send-Graph (a) and PA's Receive-Graph (b).

follows: For each vertex v ∈ G, we add a vertex v to N if and only if: (i) v is labeled

as a SEND, or (ii) v is labeled as a RECV, or (iii) v is labeled as a memory data. Edges

in N correspond to paths in the original G. For each pair of vertex u, v ∈ G, we add
an edge

−→
u′v′ to N if, and only if: (i) there exists a path p from u to v in G, and (ii) p

does not contain any other vertex in G. Fig. 4.9 shows the NetSlice N of the programs

PA and PB (Fig. 4.6).

Note this view of the whole system enables the developer to tell which SENDs of a

program can exchange information with RECVs of its counterpart. Further, DistViewer

allows one to check dependencies between di�erent memory regions, even if they are

located in independent network nodes.



44 Chapter 4. Architecture and Implementation

Memory 1

Send
Line:8

Send
Line:10

Send
Line:14

Send
Line:16

Send
Line:18

Recv
Line:10

Recv
Line:14

Recv
Line:12

Recv
Line:16

Recv
Line:17

Memory 4

Recv
Line:19

Recv
Line:20

Send
Line:19

Send
Line:18

Figure 4.9. NetSlice of Program PA and Program PB. Vertices of PA are
represented with continuous salmon line and vertices of Program PB with dashed
cyan line.

4.3.1 DistViewer Architecture and Implementation

The DistViewer architecture comprises four componets (Fig. 4.10): (i) Compile, (ii)

DSA program inference links and generation of raw data graphs; (iii) Programming

Slices Constructor; and (iv) Transform and View.

Firstly, by the Compile component, the DistViewer processes the user input and

performs the necessary validations of the program source code.

Next, the DistViewer triggers the LLVM to compile the code and generate the

corresponding bytecode. DistViewer then generates the con�guration �les and uses the

DSA to obtain the raw data of graphs: Send-Graph, Receive-Graph, DCFG and DDG.

Using the raw data graphs as input, the Programming Slices Generator ex-

tracts the corresponding programming slices, namely: Send-Graph, Receive-Graph,

Distributed Dependence Graph and the NetSlice.

Finally, Transform View formats the program slices and generates pdf and html
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Figure 4.10. DistViewer Architecture.

�les which are therefore displayed as output to the user via web interface.

4.4 Chapter Summary

In this chapter we present the architecture and implementation aspects of our DSA

framework. The architecture of the DSA framework is organized in three layers to

enable the development of extensions of the framework as a whole or only part of it.

The �rst layer, Merging, provides as output a program that is the junction of the

distributed system programs. This output is a program that represents the distributed

system as a whole. Through this output, it is possible to extend conventional static

analysis structures (as we did for the CFG and the DG) or create new structures (as

we did with the Send-Graph and Receive-Graph).

The second layer, Linking, provides structures used in conventional static analysis

extended to the context of distributed systems. Such structures can be used as a basis

to extend conventional analyzes for treating distributed systems. For example, the
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DDG and DCFG, supplied as the output of the second layer, can be used to develop a

distributed integer over�ow analysis or a distributed range analysis. Another example:

our DistViewer extends the �rst and second layers to provide the programmer an

overview of programs focusing on the interaction over a network.

The third layer, DSA Instance, is composed by speci�c static analysis like the

SIoT. SIoT extends the DSA and performs a tainted �ow analysis in order to detect

bu�er over�ows. This layer can be extended or used for other types of analysis such

as, for example, analysis of leakage of con�dential information.

We have implemented the DSA as an extension of the LLVM compiler. Therefore,

the DSA can be directly applied to distributed systems made in C. No change is required

in the source code of the programs that make up the distributed system, even to include

annotations in the code (as is required on many static analysis solutions). The source

code is available online.

In next Chapter (Chapter 5) we show that, to validate our solution, we have

applied the SIoT and DistViewer on six applications present in Contiki OS. The results

show that SIoT is more energy-e�cient than existing solutions. The results also show

that DistViewer can provide graphs of sending and receiving messages of the programs

and the interrelationship between them, and provide program slices of distributed

system with size equivalent to 5% of the original program.

ï�¾
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Experiments

In the present section we describe the results of experimental evaluation of our proposal.

We start (Section 5.1) by introducing the applications used in the experiments and

the cost of the static analysis that we have implemented in terms of memory and

computational time.

We then (Section 5.2) compares the number of ABCs eliminated by SIoT versus

other approaches. Firstly (Section 5.2.1) we present a case study: the implementation

of udp-ipv6 that ContikiOS uses. This application lets us illustrate how false positives

can be avoided by our approach. After that (Section 5.2.2), we discuss the results of

experiments about the number of ABCs that we can reduce using our approach.To

demonstrate that each ABC that we eliminate represents a small saving in terms of

energy, we present (Section 5.3) the energy budget of the code that SIoT helps us to

produce due to reduction of ABCs.

Next (Section 5.4), we descibe experiments and results about Asymptotic Com-

plexity of the Elevator algorithm that we propose in Section 3.1. We have run the

Elevator on hundreds of C programs that we have generated randomly.

Finally (Section 5.5), we present results about the ability of DistViewer to process

real programs and the reduction of graphs sizes through the DistViewer slices.

5.1 Benchmark � Static Analysis Time and

Memory

To conducted our experiment we choose Contiki applications as benchmark. Contiki

is an open source operating system for the Internet of Things [Dunkels et al., 2004].

Contiki connects tiny low-cost, low-power microcontrollers to the Internet. Contiki

47
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applications are written in standard C, with the Cooja simulator Contiki networks

can be emulated before burned into hardware, and Instant Contiki provides an entire

development environment in a single download. There are plenty of applications ex-

amples in the Contiki source code tree. Some examples show how to program network

code, others show how to interact with the platform hardware, yet others demonstrate

di�erent aspects of the Contiki system.

Contiki provides a full IP network stack, with standard IP protocols such as

UDP, TCP, and HTTP, in addition to the new low-power IPv6 networking standards,

including the 6lowpan adaptation layer, the RPL IPv6 multi-hop routing protocol,

and the CoAP RESTful application-layer protocol. The Contiki IPv6 stack, developed

by and contributed to Contiki by Cisco, is fully certi�ed under the IPv6 Ready Logo

program.

Contiki runs on a wide range of tiny platforms, ranging from 8051-powered

systems-on-a-chip through the MSP430 and the AVR to a variety of ARM devices.

Among the applications of Contiki we choose six distributed applications (12

programs). We priorize applications that interacts with network and represent stan-

dard protocols for IoT or have academic documentation. The applications used in our

experiment was:

• NetDB � client and server

• Ping6 and New-ipv6

• Udp-ipv6 � client and server

• Ipv6-rpl-collect � udp-sender and sink

• Ipv6-rpl-udp � client and server

• Coap-client and Rest-server

NetDB consists of a client and a set of servers using Antelope [Tsiftes and Dunkels,

2011]. Antelope is a database management system for resource-constrained sensors.

Antelope provides a dynamic database system that enables run-time creation and dele-

tion of databases and indexes. The NetDB client runs on a sink node, and has a

command-line interface through which an operator can submit queries to any server.

The NetDB server forwards incoming queries from the radio to Antelope, and packs

the query result in packets that are streamed back to the client. NetDB uses the Mesh

module in the Rime communication stack, which provides best-e�ort, multi-hop com-

munication.
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Ping6, New-ipv6 and Udp-ipv6 are examples of Contiki OS applications that

exercices the use of IPv6 on IoT. IPv6 application to the IoT has been being researched

since many years [Zanella et al., 2014]. The research community has developed a

compressed version of IPv6 named 6LoWPAN [Hui et al., 2010]. It is a simple and

e�cient mechanism to shorten the IPv6 address size for constrained devices, while

border routers can translate those compressed addresses into regular IPv6 addresses.

In parallel, tiny stacks have been developed, such as Contiki, which takes no more

than 11.5 Kbytes. IPv6 provides an address self-con�guration mechanism (Stateless

mechanism). The nodes can de�ne their addresses in very autonomous manner. This

enables to reduce drastically the con�guration e�ort and cost. IPv6 is fully Internet

compliant. In other words, it is possible to use a global network to develop oneâs own

network of smart things or to interconnect oneâs own smart things with the rest of the

World. Thanks to its large address space, IPv6 enables the extension of the Internet

to any device and service. Experiments have demonstrated the successful use of IPv6

addresses to large scale deployments of sensors in smart buildings, smart cities and

even with cattle.

Coap-client and Rest-server are Contiki applications that demonstrate the

Constrained Application Protocol (CoAP) protocol. CoAP enables the constrained

devices to behave as web services easily accessible and fully compliant with REST

architecture [Shelby et al., 2014]. CoAP has been designed as a generic protocol for

Lowpower and Lossy Networkss (LLNs) taking into account the features of the underly-

ing architecture [Bormann et al., 2012]. The CoAP has de�ned by IETF Constrained

RESTful Environments (CORE) working group to address specialized requirements

such as: multicast support, very low overhead, and simplicity for constrained environ-

ments. The CORE working group, instead of blindly making a compression of HTTP,

de�ned a subset of the RESTful speci�cation, making it interoperable with HTTP but

also specializing it for so constrained environments. Main features addressed by CoAP

are:

• Constrained web protocol specialized to M2M requirements.

• Stateless HTTP mapping through the use of proxies or direct mapping of HTTP

interfaces to CoAP.

• UDP transport with application layer reliable unicast and best-e�ort multicast

support.

• Asynchronous message exchanges.
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Table 5.1. Size of applications and the DDG analyzed.

Application Instructions DDG Vertices DDG Edges

netdb client/server 57.877 95,656 139,763
ping / new-ipv6 47,422 75,899 113,900
ipv6-rpl-collect udp-sender/sink 48,800 78,365 117,416
ipv6-rpl-udp client/server 48,226 77,128 115,770
udp-ipv6 client/server 48,800 78,365 117,416
coap-client / rest-server 51,258 82,647 123,879

• Low header overhead and parsing complexity.

• URI and Content-type support.

• Simple proxy and caching capabilities.

• Optional resource discovery.

Ipv6-rpl-collect (upd-sender and sink) and Ipv6-rpl-udp are Contiki appli-

cations that use the IPv6 Routing Protocol for Lowpower and Lossy Networks (RPL).

RPL is an IPv6 routing protocol for LLN. Routing issues are very challenging for

6LoWPAN, given the low-power and lossy radio-links, the battery supplied nodes, the

multi-hop mesh topologies, and the frequent topology changes due to mobility. Suc-

cessful solutions should take into account the speci�c application requirements, along

with IPv6 behavior and 6LoWPAN mechanisms. RPL was proposed by the IETF

�Routing Over Low power and Lossy (ROLL) networks� working group. ROLL has

proposed the leading IPv6 Routing Protocol for LLN based on a gradient-based ap-

proach [Winter, 2012; Vasseur et al., 2011]. RPL can support a wide variety of di�erent

link layers, including ones that are constrained, potentially lossy, or typically utilized

in conjunction with host or router devices with very limited resources, as in build-

ing/home automation, industrial environments, and urban applications. It is able to

quickly build up network routes, to distribute routing knowledge among nodes, and to

adapt the topology in a very e�cient way.

Table 5.1 shows the size of applications used in SIoT experiments in terms of

instructions and DDG graph size (vertices and edges). Each of these applications

has more than 45,000 instructions, including code in the client and server side. On

average, our DDGs had approximately 75,000 nodes and 110,000 edges. These numbers

demonstrate that the applications have a considerable size to be used as benchmark of

our soluction.

SIOT statically analyze programs and pinpoint vulnerable loads and stores. Ta-

ble 5.2 shows that SIoT's static analysis took, on average, 66 seconds at compile time
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Table 5.2. Time and memory spent in SIoT's static analysis.

Application Instructions Time (s) Memory (MB)

netdb client/server 57.877 66.24 210.03
ping / new-ipv6 47,422 63.58 167.36
ipv6-rpl-collect udp-sender/sink 48,800 80.08 173.37
ipv6-rpl-udp client/server 48,226 66.31 169.90
udp-ipv6 client/server 48,800 80.08 167.39
coap-client / rest-server 51,258 54.36 179.68

and used 170MB when applied onto our benchmarks. We conducted experiments on

a laptop Intel Core i7 2.2GHz. Memory measurements have been obtained through

Valgrind [Nethercote and Seward, 2007]. These results demonstrate that SIoT takes

around 1 minute on average for programs of 50 thousand instructions which is a resan-

able time to compile programs of this size. Moreover, it's important to highlight that

this analysis is done o�ine, in a workstation, therefore no means represents a burden

for embedded devices.

5.2 Array-Bound Checks

Array-Bound Checks � ABCs � are an e�ective technique to prevent attacks that exploit

bu�er over�ows [Chess and West, 2007]. ABCs are tests performed at runtime to

ensure that a particular array access is safe. Bu�er over�ows tools �rst scan programs'

assembly representation to �nd code snippets containing vulnerabilities; in a second

step, they return to the potential vulnerabilities and insert ABCs. While e�ective in

preventing out-out-bound memory accesses from taking place, these proposals impose a

signi�cant overhead on compiled programs because ABCs have a cost, in terms of code

size, runtime and energy consumption. We have used the SIoT instance (described

in Section 4.2) to eliminate part of these checks from applications taken from the

ContikiOS operating system [Dunkels et al., 2004]. In the present section we describe

these results.

Section 5.2.1 describes a case study: the implementation of udp-ipv6 that Con-

tikiOS uses. This application lets us illustrate how false positives can be avoided by

our approach. Section 5.2.2 compares the number of ABCs eliminated by SIoT versus

other approaches.
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1 static void tcpip_handler(void){

2 char *str;

3 if(uip_newdata()){

4 str = uip_appdata;

5 str[uip_datalen()] = '\0';

6 printf("Response from the

7 server: '%s' \n", str);

8 }

9 }

10 static void timeout_handler(void){

11 static int seq_id;

12 printf("Client sending to: ");

13 PRINT6ADDR (& client_conn ->ripaddr);

14 sprintf(buf, "Hello %d from

the client", ++seq_id);

15 printf(" (msg: %s)\n", buf);

16 uip_udp_packet_send(client_conn,

buf, UIP_APPDATA_SIZE);

17 ...

18 }

1 static void tcpip_handler(void) {

2 static int seq_id;

3 char buf[MAX_PAYLOAD_LEN];

4 if(uip_newdata()) {

5 ((char*)uip_appdata)[uip_datalen()]=0;

6 PRINTF("Server received: '%s' from ",

(char *)uip_appdata);

7 ...

8 uip_ipaddr_copy (& server_conn ->ripaddr ,

&UIP_IP_BUF ->srcipaddr);

9 PRINTF("Responding with message: ");

10 sprintf(buf, "Hello from the server!

(%d)", ++seq_id);

11 PRINTF("%s\n", buf);

12 uip_udp_packet_send(server_conn,

buf, strlen(buf));

13 ...

14 }

15 }

Figure 5.1. ContikiOS udp-ipv6 client (left-hand-side) and server (right-hand-
side) code snippets.

5.2.1 Case Study: udp-ipv6

Udp-ipv61 is an open source application that runs in ContikiOS. It implements a UDP

6LoWPAN2 client and server. In the UDP Server, (Fig. 5.1 � left-hand-side), messages

are received via network by function uip_newdata() (line 4), and are used to index

the uip_appdata array. Traditional tools are likely to consider this array vulnerable,

in which case they must introduce an ABC to protect it. Similar approaches would

also lead to the insertion of ABCs to protect the arrays accesses of the client module

(line 4 and 5, Fig. 5.1 � right-hand-side).

On the other hand, once we analyze these two programs as a single body, we can

observe that none of these array accesses is vulnerable. This observation stems from

the fact that messages prepared by the client have no dependency from any external

data source (Fig. 5.1 � left-hand-side, lines 10-14). Because such messages are not

tainted at their origin, according to our attack model (Section 2.4.2), they are not

vulnerable at their destination. Similarly, the messages that the server sends to the

client do not depend on any input data (Fig. 5.1 � left-hand-side, lines 8-11). Thus, it

1http://github.com/contiki-os/contiki/tree/master/examples/udp-ipv6
2http://tools.ietf.org/html/rfc6282

http://github.com/contiki-os/contiki/tree/master/examples/udp-ipv6
http://tools.ietf.org/html/rfc6282
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is not necessary to insert ABCs on the client side. In other words, any alarm triggered

by a traditional static analysis would be a false positive in this example.

5.2.2 Number of ABCs that we insert

The inter-program view that SIoT gives to a static analysis lets it consider network

channels as links between modules instead of input operations. Therefore, all the

ABCs that depend exclusively on the network and do not reach user inputs can be

eliminated. The end result of this extra precision is a more e�cient executable code.

To validate this claim, we have used SIoT to improve the code that AddressSanitizer

(ASan) [Serebryany et al., 2012] generates. To give the reader some perspective on

our results, we compare SIoT to a hypothetical traditional tainted �ow analysis, i.e.,

a technique that treats distributed system as separate programs, and not as a single

entity. Henceforth, we refer to this technique as Baseline.

We perform the experiments in six pairs of ContikiOS applications (Table 5.1).

Each pair consists of a client and a server. For each of these pairs, we compare the

number of ABCs that ASan inserts without any optimization against the number of

ABCs that the Baseline and the SIoT-based approaches insert. We compare perfor-

mance of SIoT versus Baseline (Table 5.3) and ASan (Table 5.4) using the number of

ABCs necessaries in each approach.

Table 5.4 shows that ASan introduces between 3,736 ABCs (udp-ipv6 clien-

t/server) and 7,453 ABCs (ping6 / new-ipv6 ). This number is less than the total

number of memory accesses because LLVM, the compiler on top of which ASan exists,

already eliminates some redundant guards as a result of classic code optimization.

The Baseline approach reduces ASan's numbers substantially (Table 5.3, because

in this case we are eliminating every guard that is not in�uenced by data coming

from an external function. In this case, the number of ABCs varies between 170

(ipv6-rpl-udp client/server) and 214 (rest-server/coap-client). SIoT can further reduce

this number one order of magnitude more. In this case, contrary to what is done by

the Baseline approach, network functions are no longer marked as dangerous, unless

they read data that comes from genuine inputs. Notice that both, the Baseline and

the SIoT approaches are a form of tainted �ow analysis, as we explain in Section 2.

We conclude from these experiments that the automatic inference of links between

distributed programs improves the precision of static analyses tools in non-trivial ways.
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Table 5.3. ABCs inserted by Baseline versus SIoT.

Applications Memory Accesses
ABCs inserted % ABCs Reduction
Baseline SIoT SIoT vs Baseline

netdb client/server 22,819 172 16 90.70%
ping6 / new-ipv6 16,871 166 14 91.57%
ipv6-rpl-collect udp-sender / sink 17,301 168 14 91.67%
ipv6-rpl-udp client/server 17,162 170 14 91.76%
udp-ipv6 client/server 16,945 212 14 93.40%
coap-client / rest-server 18,693 214 14 93.46%

Table 5.4. ABCs inserted by ASan versus SIoT.

Applications Memory Accesses
ABCs inserted % ABCs Reduction
ASan SIoT SIoT vs ASan

netdb client/server 22,819 4,641 16 99.66%
ping6 / new-ipv6 16,871 7,453 14 99.81%
ipv6-rpl-collect udp-sender / sink 17,301 3,831 14 99.63%
ipv6-rpl-udp client/server 17,162 3,787 14 99.63%
udp-ipv6 client/server 16,945 3,736 14 99.63%
coap-client / rest-server 18,693 4,032 14 99.65%

5.3 Energy Saving

Each ABC that we eliminate represents a small saving in terms of energy consumption.

To back up this observation with data, we performed an experiment with six ContikiOS

applications. We have modi�ed the client side of each one of these applications to

initiate execution, send 6,000 messages within an interval of one minute, and then

stop. We tested three versions of each application: (i) without ABCs; (ii) with the

ABCs inserted by the Baseline; and (iii) with the ABCs inserted by SIoT. To carry out

this experiment, we have installed the applications in IRIS XM2110 sensors3 and have

measured the amount of energy that they consume. Each application was executed 10

times. This number of repetitions is enough to give us a con�dence interval of 95% in

every sample.

To determine the amount of energy consumed, we rely on a simple, yet robust

methodology, which we adapted from the work of Singh et al. [Singh and Kaiser, 2010].

The main di�erence between our approach and Singh et al.'s is in terms of electronics:

we probe small sensors; they work on Intel's Atom board. We use a DAQ4 (NI USB-

6009) power meter to measure the instantaneous current between the load and the

ground ports (Fig. 5.2). We then send the signal to a software that runs on a separate

PC. Since the voltage in the embedded system is constant, this software is able to

3http://www.memsic.com/wireless-sensor-networks/
4http://en.wikipedia.org/wiki/Data_acquisition

http://www.memsic.com/wireless-sensor-networks/
http://en.wikipedia.org/wiki/Data_acquisition
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Figure 5.2. Energy Measurement Setup.

calculate the instantaneous power and, by integrating it, the total amount of energy

that the program consumes.

A shunt resistor is used to probe the current. To determine the shunt resistance,

Rsen, it is necessary to calculate the load resistance. It is important that Rsen does not

in�uence the total system load. To ensure this non-interference, Rsen's value needs to

be 1% of RLoad's value. The DAQ actually measures a tension value that is linearly

proportional to the current (Vsen = IsenRsen). Since the Rsen value is known, it is

possible to calculate the current (Isen = Vsen/Rsen) and the consumed energy.

The consumed energy is �nally calculated with Equation 5.3. FilterData, included

on AutomatedDataAnalysis, implements a second order low-pass �lter (Butterworth)

to �lter the measured signal noise. It detects the cut-o� frequency automatically.

E =

∫ tf

ti

p(t)dt =

∫ tf

ti

v(t)i(t)dt = V

∫ tf

ti

i(t)dt (5.1)

RLoad =
PMean

I2Max

(5.2)

E = V

∫ tf

ti

i(t)dt = V
1

Rsen

∫ tf

ti

vsen(t)dt (5.3)

We manipulate this data using a signal processing software of our own craft. This

tool �lters the electric signal, identi�es the time when execution starts and ends, and

calculates the energy consumed by the application with a given con�dence interval.
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Figure 5.3. SIoT vs Baseline � energy overhead.
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SIoT Energy Savings

Figure 5.4. SIoT vs Baseline � energy savings.

Our tool is able to discriminate multiple executions of the same application by sending

signals to the sensor that we are sampling. These signals mark the moment when each

execution starts and �nishes.

Our results (Table 5.5, Fig. 5.3 and Fig. 5.4) show that SIoT outperforms Baseline

for all applications. The SIoT's savings range from 1.67% (rpl-udp-client) to 31.58%
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Table 5.5. Energy consumption for the unprotected (Plain) and protected (SIoT
and Baseline) versions of applications. CI: Con�dence Interval.

Application
Plain SIoT Baseline

Energy (J) CI Energy (J) CI Energy (J) CI

netdb client 1.941 0.025 2.452 0.014 2.486 0.011
ping6 0.109 0.001 0.111 0.001 0.151 0.002
ipv6-rpl-collect udp-sender 2.277 0.043 2.286 0.043 2.996 0.029
ipv6-rpl-udp udp-client 3.062 0.029 3.076 0.016 3.127 0.005
udp-ipv6 client 3.842 0.019 3.860 0.011 3.958 0.029
coap-client / rest-server 4.856 0.020 4.861 0.037 5.034 0.041

(ipv6-rpl-collect udp-sender). On average SIoT is 18% more energy e�cient than Base-

line. The amount of energy consumed is proportional to ABCs inserted that are exe-

cuted. This energy overhead is due to the fact that for each ABC the programs need

to execute at least six extra instructions. Moreover, while the original instruction cor-

respond a simple load or store, the new instructions sets has jumps and conditional

logic that increase the computational cost. In an embedded device where the program

is small and the instructions are optimized to save energy, this extra processing has a

signi�cant impact per inserted ABC. As the di�erence of inserted ABCs in Baseline

and SIoT approaches is signi�cant, the �nal di�erence of energy overhead is high.

5.4 Asymptotic Complexity

To estimate the asymptotic complexity of the algorithm that we propose in Section 3.1,

i.e., the �Elevator", we have run it on hundreds of C programs that we have generated

randomly. We generate these programs by successive applications of three rewriting

rules. These rules work on program points. Each program point contains either a SEND

or a RECV function.

Our rewriting rules may transform a program point into: (i) a sequence of two

program points; (ii) an �if-then-else" with a point in the �then" path and a point in

the �else" path; (iii) a �while" loop with one program point in its body.

We always generate two programs in tandem, a client and a server, in such a way

that there exists a valid path linking SENDs and RECVs. The randomized pieces of

code with RECVs come in nests of �while" and �if-then-else" blocks. We can produce

programs arbitrarily large by varying the number of program points. Therefore, the

worst case was approximated.

We run the Elevator 10 times on each synthetic program, reporting the average

of these samples. From these points, i.e., size versus runtime, we produced the chart
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Figure 5.5. Elevator � Runtime as a function of program size.

in (Fig. 5.5). This �gure suggests that our algorithm has cubic complexity, as its

coe�cient of cubic regression, given a universe of 160 samples, is 0.9955; hence, too

close of 1.0. Thus, even though we have determined an exponential upper bound to

the asymptotic complexity of our algorithm (Section 3.4), in practice it has polynomial

behavior, at least for programs with around 200 pairs of sends and receives. We have

not found a single benchmark among the actual applications that we have analyzed

with more than 20 such pairs.

These complexity results are directly related to the numbers that we have ob-

served when analyzing actual programs. Thus, the techniques that we describe in this

work seem feasible in practice.

5.5 DistViewer Graph Size Test

In order to evaluate the ability of DistViewer to process real programs we have con-

ducted tests on six ContikiOS [Dunkels et al., 2004] applications. The Table 5.6 sum-

marizes the results obtained. In addition to demonstrating the viability of running

DistViewer using real programs it was observed that the NetSlice was reduce the num-

ber of DDG vertices to around 5%. This reduction is made possible by the focus on

vertices of network-related operations (SENDs and RECVs) and vertex that manipulate

memory data.
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Table 5.6. DDG Vertices: Baseline versus DistViewer NetSlice graph

Program Baseline DistViewer %

netdb client/server 95,656 5,070 5.30%
ping / new-ipv6 75,899 3,719 4.90%
ipv6-rpl-collect udp-sender/sink 78,365 3,918 5.00%
ipv6-rpl-udp client/server 77,128 3,934 5.10%
udp-ipv6 client/server 78,365 3,918 5.00%
coap-client / rest-server 82,647 4,711 5.70%

5.6 Chapter Summary

In this chapter we have shown, as an example, the results of experimental evaluation

of our proposal. We describe the Contiki OS applications used as benchmarks in our

experiments and the cost of the static analysis that we have implemented in terms of

memory and computational time.

We have compared the number of ABCs eliminated by SIoT versus other ap-

proaches. We have presented a case study using the implementation of Contiki OS

udp-ipv6. This application lets us illustrate how false positives can be avoided by our

approach. We have discussed the results of experiments about the number of ABCs

that we can reduce using our approach. We then demonstrated that each ABC that we

eliminate represents a small saving in terms of energy, we present the energy budget

of the code that SIoT helps us to produce due to reduction of ABCs.

We also have descibed experiments and results about Asymptotic Complexity of

our Elevator algorithm. We have run the Elevator on hundreds of C programs that we

have generaterandomly and the results has shown that the Elevator is polynomial in

practice.

Finally, we have present results about the ability of DistViewer to process real

programs and the reduction of graphs sizes through the DistViewer slices.

In next chapter (Chapter 6) we present a review of related works.





Chapter 6

Related Work

In this chapter,we present a review of related works. We start explaining the literature

review methodology adopted (Section 6.1). We then (Section 6.2) discuss related work

breaking them into three categories: (i) Networked Embedded Systems Code Analysis

(Section 6.2.1), (ii) Inference of communication links (Section 6.2.2), and (ii) Runtime

Analyses (Section 6.2.3).

6.1 Literature Review Methodology

Our work permeates di�erent areas of research on computing such as Compilers (code

optimization, security of code), Distributed Systems, and System Security. Thus, our

research methodology was divided into two parts: (i) Compilers Literature Review;

and (ii) Systems Literature Review. Initially, we have reviewed the compilers literature

search for works related to code optimization security applied to computer networks,

parallel or distributed systems. We then reviewed the literature related to Systems

(distributed, parallel, and security) search of work related to code analysis. We then

obtained a list of works related to distributed systems' code analysis.

Related works of this research have been collected from electronic databases

(IEEE Xplore, ACM Digital Library, USENIX and Elsevier Science Direct) includ-

ing peer reviewed articles and papers describing research on Distributed System Code

Analysis published in journals, magazines or conferences with recognized reputation

in publishing high quality content and excluding short papers, technical reports and

posters.

We have de�ned our period of interest as Jan. 2004 to Aug. 2015, but we have

included some classical works with the fundamental compiler concepts used in this

work. In order to select the jobs directly related to this work, we de�ne selection

61



62 Chapter 6. Related Work

criteria relevant to systems security code, networked embedded systems, distributed

embedded systems, and inference links, as listed below:

1. Stand Alone Program Analysis: e.g., Bu�er Over�ows, Tainted Flow Analysis,

Memory Safety;

2. Network Embedded Systems Code Analysis: e.g., Code analysis of Embedded

Systems, Internet of Things, Wireless Sensor Network (WSN);

3. Distributed Systems Analysis: e.g., Static Analysis of Distributed and Parallel

System, Communication Links Inference, Message Passing Interface (MPI), MPI

Interprocedural CFG (MPI-ICFG).

As keywords used in the �rst stage of search we can cited as example: �Network�

& �Control Flow Graph�, �Distributed� & �Control Flow Graph�, �Distributed Systems

Compiler�, �Distributed Systems� & �Static Analysis �, �WSN� & �Static Analysis�,

�IoT� & �Static Analysis�, �Embedded Systems� & �Static Analysis�,�MPI-CFG�, �MPI-

ICFG�, �Petri Nets & Static Analysis�, �Security & Embedded Systems�, �Security &

IoT�, �Security� & WSN�, �Bu�er Over�ow & Network Embedded Systems�.

Using the search criteria we have retrieved the works with matches in title, ab-

stract or keywords using the search engine of each publisher (e.g., IEEE Xplore, ACM

Digital Library, USENIX and Elsevier Science Direct) or search via Google Scholar1.

For each keyword search we choose by title around 10 works. The selected papers,

around 350 works, were then �ltered by abstract. In order to validate the search,

we have conducted an investigative review in order to eliminate papers that match

only one criteria but is not direct related to our work. Moreover, some works were

found through the citations of works previously found. The related work were, then,

evaluated in depth and report in this work.

We split each category into groups of related work. The �g 6.1 shows the cat-

egories, groups and some examples of works of each group. We also have insert part

of our contributions to show where our work �ts in this scenario. The �rst category,

Stand Alone Program Analysis, includes the works with the fundamental concepts of

code analyses and has been subdivided in traditional and recent works. (For a dis-

cussion of Stand Alone Code Analysis please see Chapter 2). The second category,

Networked Embedded System Code Analysis, includes works about bu�er over�ow and

tainted �ow analysis applied to embedded systems or sensor networks (Section 6.2.1).

1http://scholar.google.com

http://scholar.google.com
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Figure 6.1. Related Works Categories. We have cited one work for each category
as an example. We also have inserted part of our contributions to show where our
work �ts (orange boxes with dashed lines).

Finally (Section 6.2), the third category, groups the works focus on Distributed or Par-

allel Systems and has been divided in Static Analysis and Runtime Analysis (analysis

of deployed systems and trace analysis).

6.2 Distributed Systems Analysis

In what follows, we �rst describe works on Network Embdded Systems Code (Sec-

tion 6.2.1) and then works on Inference Communication Links (Section 6.2.2).
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6.2.1 Network Embedded Systems Code Analysis

Cooprider et al. propose a memory safety solution for sensor nodes named Safe

TinyOS [Cooprider et al., 2007]. It handles array and pointer errors before they can

corrupt the RAM. Safe TinyOS check array bound for sensor nodes to detect memory

bugs for TinyOS 2 applications running on the Mica2, MicaZ, and TelosB platforms.

Safe TinyOS uses Deputy to insert annotations and cXprop as its static analyzer and

source-to-source optimizer for embedded C programs. Safe TinyOS is light enough

to be embedded in sensor nodes. However it also sees each program of a distributed

system individually, and the user needs to insert annotations in the code.

There are also proposals for constrained networks that analyze codes of dis-

tributed systems based on test generation. Among these, we highlight Kleenet [Sas-

nauskas et al., 2010] and T-Check [Li and Regehr, 2010].

Kleenet is a debugging environment for testing of sensor network applications

before deployment. Its goal is to enable the detection of bugs that result from interac-

tions of multiple nodes, nondeterministic events in the network, and unpredictable data

inputs. Kleenet is built on the symbolic virtual machine KLEE [Cadar et al., 2008]. It

considers symbolic input values from the environment and generates execution paths

of participating nodes at high-coverage. KleeNet injects symbolic, nondeterministic

events such as loss, duplication and corruption of packets and node failures automat-

ically. If an execution path violates an assertion, KleeNet automatically generates a

test case to reproduce the bug.

The goal of T-Check is similar to Kleenet, i.e., �nd safety and liveness errors

in sensor network applications but its focus on applications running on TinyOS. T-

Check employs model checking and random exploration, it uses random walks and

explicit state model checking to look for violations of safety and liveness properties in

TinyOS sensor network applications. T-check is building upon TOSSIM (the TinyOS

simulator). T-Check gains enough scalability to detect distributed errors such as a

collection tree protocol's failure to properly repair when a node dies.

These tools generates tests based on symbolic execution (Kleenet) or model check-

ing (T-check) to �nd software defects. Their goal is to explore automatically most of

the execution paths within programs. If an assertion fails, then the tool registers the

test case for repeatability. However in these solutions, the developer needs to add an-

notations to the code. This step is manual, and requires knowledge of the application

logic. Moreover, the solution's complexity depends on symbolic inputs, assertions and

the number of nodes. The authors of Kleenet, for example, report that even with rel-

atively small-sized symbolic inputs and few nodes, some applications have thousands
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of execution paths. SIoT is complementary to Kleenet and T-Check, and we consider

our link inference engine could be used to improve the accuracy of those tools.

Lai et al. [2008] propose a framework to test nesC applications based on construc-

tion of Inter-Context Flow Graphs. They �rstly model the potential execution orders

of tasks in a nesC application as task graphs. Based on task graphs, they propose Inter-

Context Flow Graphs to model the behaviors of nesC applications for testing purposes.

These graphs capture not only control transfers in individual subroutines, but also the

interactions among subroutines in concurrent calling contexts initiated by interrupts.

We further propose control-�ow and data-�ow test adequacy criteria based on ICFGs

to measure the coverage of test suites for testing the interactions among subroutines.

They have evaluate proposed testing criteria using an open-source structural health

monitoring application. Experimental results show that their criteria are on average

21 percent more e�ective in exposing faults than their conventional counterparts. This

proposal is close to ours in terms of to extract the CFG. Lai et al. [2008] proposal

has as advantage the fact to handle the behavior of nesC application as parallel tasks.

However it also sees each program of a distributed system individually and so do not

handle the communication among programs.

6.2.2 Inference of communication links

The inference of communication links between di�erent modules of a distributed sys-

tem is not a new problem, and there are solutions in literature. However, previous

approaches were either too costly or semi-automatic. For instance, Pascual and Has-

coët [Pascual and Hascoët, 2012] have de�ned a system of annotations which the user

can employ to point out to the compiler implicit communication channels in a dis-

tributed system. This approach, although precise � as long as the user correctly un-

derstands the application � has the main disadvantage of burdening programmers with

a task that, in our understanding, should be solved by the compiler.

6.2.2.1 Petri Nets

Petri Nets is also used to �nd represent the communication links between di�erent

programs. Petri nets (PNs) are formal models developed for modeling of concurrent

systems [Murata, 1989; Iordache and Antsaklis, 2009]. They are �rst introduced by

Carl Adam Petri in 1962. Petri Nets are based on strong mathematical foundation

and are very similar to State Transition Diagrams. Petri Nets are largely used as a

visual communication aid to model the system behavior [Murata, 1989]. Petri Nets can
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be used a diagrammatic tool to model concurrency and synchronization in distributed

systems [Murata, 1989].

Many works uses Petri Nets to analyze the distributed or parallel systems; see,

e. g., Balbo et al. [1992], Voron and Kordon [2008], Liao et al. [2013], and Fan

et al. [2012]. A review of the application of Petri Nets to computer programming is

presented by Iordache and Antsaklis [2009].

Although the Petri Nets can represent the distributed systems with more precision

and more details than our approach, the construction of Petri Nets need a signi�cant

burden placed on the analyst in order to specify complex models and the graphical

representation may become too complex to be useful. Another disadvantage is that

their representation of priorities or ordering is hard to manage.

For instance, Voron and Kordon [2008] propose an approach to perform trans-

formation of source code (C programs) into Petri nets, as a suitable speci�cation for

model checking. They use the CFG to derive Petri Nets. However, the authors report

that to overcome the complexity of the resulting speci�cation they need to focus on

speci�c aspects of the program. Several transformations must be performed to verify

each aspect of the processed program.

In the rest of this section we describe only automatic approaches to tackle with

the inference of communication links problem.

6.2.2.2 MPI-ICFG

Message passing via MPI is widely used in parallel programs [Strout et al., 2006; Fried-

ley et al., 2013; Gopalakrishnan et al., 2011; Bronevetsky, 2009]. Some works proposes

a way to construct a MPI-ICFG which is an ICFG augmented with communication

edges between possible send and receive pairs and partial context sensitivity [Strout

et al., 2006; Bronevetsky, 2009; Pellegrini, 2011].

Among the fully automatic solutions, the work that is the closest to ours is

Bronevetsky's analysis, which �nds a matching between sends and receives in an MPI

program [Bronevetsky, 2009]. His analysis is more precise than ours, for it takes the

semantics of MPI into consideration. It executes the program symbolically, separating

processes by their IDs.

This precision has a cost: the channel inference may take too long to converge,

as loops, for instance, may lead to the generation of many di�erent symbolic sets. As

a consequence of this cost, Bronevestsky's analysis has not, thus far, being applied on

large code bases. Our technique, on the other hand, trades precision for speed. Hence,

as we have demonstrated in Section 5.4, our asymptotic complexity in practice is cubic
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on the number of sends and receives present in the target system.

Pellegrini, in his PhD dissertation [Pellegrini, 2011], has expanded Bronevestsky's

ideas to deal with features of MPI programs that the latter could not handle. He relies

on the polyhedron model [Feautrier, 1996] to divide processes into matching sets, again

relying on the process ID as a symbol with semantic value within the programming

language. Pellegrini evaluates his technique on a suite of small MPI programs.

We believe that his technique is even more precise than Bronevestsky's; however,

we speculate that similar to it, Pellegrini's analysis may not scale up to very large

code bases. The di�culty is the same: the more processes we may have, and the more

complicated is the program's CFG, the higher the number of matches that are possible.

Instead of precise results, we provide an approximation of the possible commu-

nication links in a distributed program. Our results may present more false positives

than Bronevestsky's or Pellegrini's approaches, but we run faster. Additionally, con-

trary to these works, we bring forth formal proofs that our algorithm terminates, and

we describe an empirical study of its complexity.

6.2.3 Runtime Analyses

In addition to static analyses such as Bronevestsky's and Pellegrini's, the literature

also contains works that infer communication links between programs by studying the

traces of instructions that these programs produce during execution [Chen et al., 2006;

Shende and Malony, 2006; Preissl et al., 2008; Wu and Mueller, 2011]. We call such

approaches runtime analyses.

The solution can be subdivided in passive testing [Che and Maag, 2014; Sunyé

et al., 2014; Mouttappa et al., 2013], active testing of deployed applications [Yabandeh

et al., 2010; Liu et al., 2008] and dynamic analyses based on the evaluation of previous

executions traces [Nagaraj et al., 2012; Preissl et al., 2008; Ayers et al., 2005].

The main advantage of these approaches is precision: they never produce false

positives, as every link inferred over execution traces represents an actual exchange of

messages. On the other hand, post-mortem methods have a number of disadvantages.

In particular, they are unsound, given that they may not point out every implicit

communication link in a distributed system. In other words, their precision depends

on the inputs that are used to test a program, and these inputs may not cover every

possible path within the program's CFG. A second disadvantage is their computational

cost: programs can generate very large traces, which are di�cult to store and process.
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6.3 Chapter Summary

In this chapter, we present our literature review and discuss that even solutions for

network systems generally analyze the distributed programs separately.

We have described some studies that analyze the distributed systems as whole

through test generation and symbolic execution, however the strategy we propose re-

quires less computational resources.

We also have discussed works aimed at messaging passing in parallel systems.

These works are related to an important part of our work that is analyze di�erent

programs as one using inference of communication links between programs.

Finally, we have discussed works that infer communication links between pro-

grams in a distributed system during runtime. These works analyze traces of instruc-

tions that these programs produce during execution.

In the next chapter (Chapter 7) we present our �nal remarks and proposal of

future work.



Chapter 7

Conclusion

This work has presented a general framework for analysis of distributed systems pro-

grams, which has been customized for implement: (i) an e�cient solution to counter

bu�er-over�ow attacks in Networked Embedded Systems, and (ii) a tool to build pro-

gramming slices of distributed systems.

Our key insight is to look at a distributed system as a single entity, and not as

separate programs that exchange messages. By doing so, we can crosscheck informa-

tion inferred from di�erent programs. This crosschecking increases the precision of

traditional static analyses.

To validate this claim, we have implemented our framework on top of the LLVM

compiler, and have developed two instances. Firstly, we use our framework to instan-

tiate a version of tainted �ow analysis that points out which memory accesses need to

be guarded against bu�er over�ow attacks. Our experiments have demonstrated that

our approach is energy-e�ective and useful to make programs running over a network

safer. The other instance uses the graphs generated by the framework to generate a

code view that highlights the part of code that has dependency of network.

This work brings forth both theoretical and practical contributions, more specif-

ically:

1. We propose an extension to the standard Control Flow Graphs (CFGs) [Allen,

1970], called Distributed Control Flow Graph (DCFG), that is expressive enough

to model the control �ow spanning multiple programs that communicate over a

network.

2. We propose an algorithm that infers communication links between di�erent pro-

grams from a distributed system, and prove that the algorithm (i) never misses
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possible communication paths between programs; and (ii) always reaches a �xed

point, and hence always terminates.

3. We have implemented our algorithm and its companion distributed tainted �ow

analysis in the LLVM compiler [Lattner and Adve, 2004].

4. We have applied this analysis on six applications present in ContikiOS [Dunkels

et al., 2004], and the results show that our proposal is 18% more energy-e�cient

than existing solutions.

5. We have developed a tool to generate a code view (programming slices) that

highlights the part of code that has dependency of network.

7.1 Future Work

We believe that our framework and the techniques propose here can be used to enable

other security analysis, compiler optimizations and defects detection in distributed

system or network protocols.

In particular, we are interested in using it to secure programs against errors

caused by Integer Over�ow (IOF) [Rodrigues et al., 2013]. Saggioro et al. [2015] and

Paisante et al. [2014] have done the �rst steps. They use our framework to extend the

traditional range analysis to a new distributed range analysis. This is an important

step to adapt traditional IOF static analysis to distributed system programs.

Moreover, we believe that Paisante et al. [2014] segmentation messages also can

be used to improve our SIoT Tainted Flow Analysis. If we can segment the bu�er

using a distributed range analysis, we can use this information to reduce the number

of tainted �ows or the number of ABC in each tainted �ow.

We also want to use our framework to enable compiler optimizations. As an

example, if we go back to Figure 2.3, we see that the conditional test at line 2 of our

server is unnecessary if you have a inter-program view of the system.

Finally, we believe that the Send-Graph and Receive-Graph discussed in Chap-

ter 3 and Chapter 4 can be used to automatically pinpoints bugs in network protocols

implementation. For instance, with DistViewer programming slices is possible to warn

the protocol developer about RECV without SEND and vice-versa.
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History and publications

This section describes the publications produced during this doctorate. This doctorate

can be divided into two phases: (i) Research in Vehicular Networks with heterogeneous

wireless access (VANETs); and (ii) Security Code of Distributed Systems.

The �rst phase was carried out in parallel with the disciplines, stage in teach-

ing and qualifying examinations. Part of the second phase has been performed in

the context of Energy-E�cient Instrumentation to Secure Systems-on-a-Chip Devices

(eCoSoC)1 project in partnership with Intel.

From December 2012 the doctorate student started to work on the eCoSoC project

and the focus of research became the security code of embedded systems. This is

an interdisciplinary project involving security mechanisms, compilers and computer

networks.

In this phase the problem was de�ned, the �rst solution was proposed and initial

experiments have been performed to demonstrate that our approach had advantages

over state of the art approaches in terms of false positives and energy savings.

The problem and �rst idea of solution was published as part of the work [Silva

et al., 2013a]. Then, a �rst version of the SIoT with preliminary experiments was

published in SBRC 2014 [Teixeira et al., 2014c].

An extension of this work was published as an article at Latin American Trans-

actions [Teixeira et al., 2015a]. On November 2014, we present our solution in ISRA

workshop � Intel Strategic Research Alliance � sponsored by Intel in SBSeg 2014. Re-

cently, the work was published at the IPSN2 [Teixeira et al., 2015b]. The list of these

publications can be seen below:

• Silva, B., Cecilio, D., Souza, E. M., Teixeira, F. A., Wong, H. C., and Nazaré, H..

1eCoSoC project � http://www.ecosoc.dcc.ufmg.br/
2CAPES � Qualis A1, H-index = 88
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Segurança de Software em Sistemas Embarcados: Ataques & Defesas.

In Minicursos do XIII Simpósio Brasileiro em Segurança da Informação e de

Sistemas Computacionais. SBSEG'2013.

• Teixeira, F. A., Machado, G. V., Fonseca, P. M., Pereira, F. M. Q., Wong, H. C.,

Nogueira, J. M. S., and Oliveira, L. B. . Defending Code from the Internet

of Things against Bu�er Over�ow. In Brazilian Symposium on Computer

Networks and Distributed Sys- tems. SBRC'2014.

• Teixeira, F. A., Machado, G. V., Fonseca, P. M., Pereira, F. M. Q., Wong, H.

C., Nogueira, J. M. S., and Oliveira, L. B. . Defending Internet of Things

against Exploits. IEEE Latin America Transactions, 2015.

• Teixeira, F. A., Machado, G. V., Fonseca, P. M., Pereira, F. M. Q., Wong, H.

C., Nogueira, J. M. S., and Oliveira, L. B. . SIoT: Securing the Internet

of Things through Distributed System Analysis. In 14th International

Conference on Information Processing in Sensor Networks. IPSN'2015.

From our work was derived two undergraduate projects 3 and one master degrees4.

The undergraduate projects have �nished in 2014. The Saggioro's master project uses

our framework to create a Distributed Range Analyis, and it was conclude in the �rst

semester of 2015. Part of Saggioro's work was published at SBSeg 2014 [Paisante et al.,

2014] and at Latin American Transactions [Saggioro et al., 2015].

Before december 2012, the goal of the doctorate project was to propose protocols

and algorithms for the dissemination and data collection in Vehicular Ad Hoc Network

(VANET). In this phase, we have reviewed works about VANET and IoT in order to

propose new strategies to disseminate the information in this kind of network.

For instance, we have started to study the best way to interconnect a vehicle to

another vehicle or to distribution point in an urban center with the technologies that

are being made available in IoT.

In this subject, the doctorade student has obtained four national publica-

tions [Oliveira et al., 2013; Silva et al., 2013b,c; Teixeira et al., 2013] and three in-

ternational publications [Teixeira et al., 2014b; Macedo et al., 2012; Silva et al., 2014].

These publications are listed below:

• Macedo, D. F., de Oliveira, S., Teixeira, F. a., Aquino, A. L. L., and Rabelo,

R. A. (CIA)2 �ITS: Interconnecting mobile and ubiquitous devices for

3Gustavo Vieira Machado (Automation and Control Engineering � UFMG) and Pablo Marcondes
Mendes (Computer Science � UFMG)

4Luis Felipe Zafra Saggioro PPGCC � UFMG
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Intelligent Transportation Systems. In IEEE International Conference on

Pervasive Computing and Communications Workshops. PERCOM'2012.

• Oliveira, S. D., Teixeira, F. A., and Macedo, D. F. . Sistema de Coleta e

Disseminação de Dados de Trânsito. In Brazilian Symposium on Computer

Networks and Distributed Systems. SBRC'2013.

• Silva, C., Teixeira, F. A., Oliveira, S. D., and Aquino, A. L. L. . PMCP :

Uma Heurística Probabilística para Otimizar a Instalação de Pontos de

Disseminação em Redes Veiculares. In Simpósio Brasileiro de Computação

Ubíqua e Pervasiva. SBCUP'2013.

• Silva, M. J., Teixeira, F. A., and Rabelo, R. A. RouteSpray : Um algoritmo

de roteamento de múltiplas cópias baseado em rotas de trânsito. In

Simpósio Brasileiro de Computação Ubíqua e Pervasiva. SBCUP'2013.

• Silva, M. J., Teixeira, F. A., and Rabelo, R. A.. Combining the spray tech-

nique with routes to improve the routing process in VANETS. In 16th

International Conference on Enterprise Information Systems. ICEIS'2014.

• Teixeira, F. A., e Silva, V. F., Leoni, J. L., Macedo, D. F., and Nogueira, J. M. S..

Vehicular networks using the IEEE 802.11p standard: An experimental

analysis. Vehicular Communications, 2014. ISSN 22142096.

The doctorade student spent three months in France as a Visitor PhD Student

(sandwich doctorate), between December 2014 and March 2015. In this period, the

doctorade student interacted with local research group, studied local works [Raveneau

et al., 2014a; Mezghani et al., 2014; Raveneau et al., 2014b], and analyzed the [Raveneau

et al., 2014a] protocol with SIoT.
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