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Resumo

Detecção de anomalias é uma tarefa relevante e amplamente aplicada em diferentes
cenários. Com os avanços em gerenciamento de saúde e tecnologia da informação,
a detecção de anomalias em saúde se consolidou como um importante tópico na co-
munidade científica. Porém, o funcionamento dos métodos tradicionais se baseia na
estrutura dos hospitais e em regras médicas, informações que, além de serem escassas,
podem ser modificadas com o objetivo de se esconder evidências de fraudes.

Neste trabalho, propomos um método para detecção de anomalias em saúde que
se baseia na demanda das cidades para detectar hospitais anômalos. Para isso, usamos
informações que geralmente são abertas a consultas. Nosso método é composto de
duas etapas: análise de anomalias e transferência de escore. Na etapa de análise de
anomalias é realizada uma análise contextual das cidades com o objetivo de atribuir
um escore para cada uma. Na etapa de transferência de escore, cada hospital recebe
um escore considerando sua relação com as cidades.

Nós aplicamos o método em uma base de dados real do Sistema Único de Saúde do
Brasil - SUS - considerando dez tipos de procedimentos que custaram mais de 8 bilhões
e meio de dólares entre 2008 e 2012. Os resultados mostram que o método foi capaz de
identificar casos de anomalias que não seriam encontrados sem as informações sobre as
cidades e que a análise contextual de anomalias melhora os resultados em comparação
com a análise pontual. Além disso, apresentamos exemplos de hospitais anômalos,
ressaltando como o método foi capaz de identificá-los.

As principais contribuições deste trabalho são: I) um método simples e efetivo
para detecção de anomalias em saúde pública. II) Nosso método não requer informações
sobre os provedores de saúde e nem regras médicas. III) A análise sob a perspectiva
dos consumidores possibilitou a identificação de anomalias que não seriam encontradas
pelos métodos tradicionais. IV) Aplicamos o método em uma base de dados real e
apresentamos um estudo de caso detalhado.

Palavras-chave: Detecção de anomalias, Mineração de dados, Saúde pública.
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Abstract

Anomaly detection is an important task that has been largely applied to different
scenarios. The improvements of technology for healthcare management and information
storage has been enabling anomaly detection in healthcare. Traditional methods are
based on the capacity of the hospitals and on medical rules. However, these information
are rarely available and sometimes they are modified in order to hide evidences of
fraudulent activities.

In this work we propose a simple method for anomaly detection in healthcare
which is based on the analysis of the cities demand in order to detect anomalous and
potentially fraudulent hospitals. We require only information that is usually available.
The method consists of two steps: anomaly analysis and score transfer. In the anomaly
analysis we perform a contextual analysis of the cities in order to assign an anomaly
score to each one. In the score transfer, each hospital receives a score considering its
relation with the cities.

We applied the method to a real database from the Brazilian public healthcare
considering medical procedures that cost more than 8.5 billion dollars to the Brazilian
government from 2008 to 2012. The results show that the method is able to find anoma-
lous cases that may not be found if the features about the cities were not considered.
Comparing the current method with our work with punctual anomalies, we verified
an improvement caused by the analysis of contextual anomalies. We also performed a
case study in which we show some evident examples of potential fraudulent hospitals,
highlighting how our method was able to detected them.

Our main contributions are I) a simple and effective method for anomaly detection
in healthcare. II) Our method does not require information about the providers nor
medical rules. III) The analysis from the consumer perspective allows the detection of
anomalies that could not be detected with traditional methods. IV) We applied the
method to a real database and performed a detailed case study.

Keywords: Anomaly detection, data mining, healthcare.
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Chapter 1

Introduction

Anomaly detection is an important task that has been applied to several scenarios and
largely studied in many fields related to Data Analysis and Data Mining. The term
anomaly refers to observations or patterns that are so unusual that it is important or
interesting to understand its origin, especially if it presents a real life relevance.

Among many existing definitions, the definition of anomaly by Hawkins [1980]
is probably the most adopted since its publication: An anomaly is an observation
which deviates so much from the other observations as to arouse suspicious that it was
generated by a different mechanism.

Another similar term and also important in Data Analysis and Data Mining is the
concept of noise. However, despite the fact that both anomaly and noise are outliers
objects, it is important to highlight that anomalies are observations more unusual than
noise according to the subjective judgment of the analyst. Figure 1.1 represents these
concepts according to the deviation degree.

Figure 1.1. Representation of the concepts of noise, anomalies and outliers
according to the deviation degree.

Figure 1.2 shows some examples of anomalies that can be easily identified given
their patterns that strongly deviate from the other observations.

1



2 Chapter 1. Introduction

Figure 1.2. Examples of anomalies.

In the next section, we briefly describe the current scenario of anomaly detection
and discuss its application in healthcare.

1.1 Context

Although the problem of anomaly detection is not new, there has been some changes
in the last years. Recently, it was observed a huge increase of the contribution by the
Computer Science community to the problem, especially by the communities of data
mining, machine learning, data visualization and databases. According to Aggarwal
[2013], most of the first works were performed by the statistics communities. While
the first statistical methods are mathematically precise and formal, they lack some
important aspects to enable the analysis in the current scenario, though.

In the recent years, it was observed a huge increase in the amount of data pro-
duced in all sectors of the society, especially due to the popularization of mobile devices,
sensors for multiple activities (such as described in Surdak [2014]) and improvements
in our capacity of storing and dealing with huge datasets. This phenomenon, known
as Big Data, can be described by the huge amounts of data generated randomly and
spontaneously throughout the world, in numberless ways and supported by the fast in-
troduction of technology and the continuous reduction of IT infrastructural costs such
as storage, transmission, and many other components, as stated by Jamil and Car-
valho [2015]. Given this scenario, the problem of anomaly detection in real datasets is
crucial and must follow the pace of the technological development of data generation
and storage.

Among many others, we present some examples of important applications. The
first one is the task of detecting frauds, that represents a specific type of anomaly.
Nowadays, not only almost all financial transactions are recorded and stored, but they
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can also be easily performed by anyone with a mobile device. Thus, quick detection
of patterns related to fraudulent activities is a key requirement in such applications.
Another important task is the detection of failures and defects. With the improvements
of sensors and computer vision devices, the factories can detect instantly defective
product, avoiding losses and further errors. This problem is known as industrial damage
detection.

In spite of its importance and all previous efforts, anomaly detection is still a
challenging problem. Besides the challenge involving the huge amount of data, some
other core challenges are:

• Anomaly is a subjective judgment: it is not easy to define the boundary between
anomalies and regular observations. In addition, it is also hard to distinguish
anomalies from noise.

• Anomalies are rare and correspond to a very small part of the occurrences. Deal-
ing with this unbalance is not trivial.

• When the anomaly is a consequence of designed malicious activities, such as
frauds, the authors are usually concerned about hiding or modifying all the clues
that would help the detection.

• In some scenarios, the definition of regular and non-regular behaviour is not
static. It may change for different periods, for example.

• In most of the applications, there is neither labeled datasets nor ground truth for
describing or modeling anomalies.

1.2 Anomaly detection in healthcare

Anomaly detection in records of healthcare is an important task that may reveal logistic
problems, overloads, regional lack of professionals or services, disease outbreaks, errors
in the data and suspicious activities. Hence, it is a key task to support cost reduction,
improve records quality, support investments planning and especially to reduce fraud
occurrence. This last task is crucial and can avoid loss of huge amounts of money.
For example, according to the FBI, although 17% of the GDP of the United States
was invested in healthcare in 2013, from 3% to 10% of the activities were fraudulent1,

1U.S. Federal Bureau of Investigation. Financial crime report 2010-2011. www.fbi.gov/stats-
services/publications/financial-crimes-report-2, 2012.
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resulting in a waste of 125 to 175 billion dollars2.
However, despite its importance, detecting anomalies in healthcare systems is

challenging due to many reasons, such as the poor quality of data, lack of data, com-
plexity and dynamism of the field, restricted access to data due to privacy issues and
the lack of a global standardization for healthcare organizations. In addition, even if
a complete and reliable database is available, it is not feasible to manually analyze all
values and records declared by the healthcare providers once that auditing processes
are usually expensive and complex. Thus, it is necessary to automatically select (or
rank) those entities to be audited in order to reduce the rate of false positives. Predic-
tive models are popular solutions for this purpose, but for the best of our knowledge
there is no labelled dataset for anomaly detection in healthcare. Building one is not
trivial due to the complexity and dynamism of the problem. As it is also hard to
define the expected pattern for all entities, the most appropriate solution is the use of
unsupervised learning.

Popular solutions for anomaly detection in healthcare are based on either super-
vised learning [He et al., 1997] or predefined medical rules [Major and Riedinger, 2002;
Li et al., 2008]. Supervised learning demands a labelled dataset, which is rarely avail-
able, whereas medical rules may overfit to some specific scenario, such as one type of
medical procedure. Furthermore, both approaches are expensive as they require man-
ual work: a labelled dataset and medical rules are manually built by healthcare experts.
The dynamic nature of the problem is also leverages the accuracy of these methods,
since covering all types of anomalies is complex and new types appear frequently.

Another drawback of existing works, such as Ortega et al. [2006], is their de-
pendency on specific data about healthcare providers. In many scenarios there is not
enough information to support such analysis and, even when it is available, it is usu-
ally not reliable, since the providers, themselves, generate it. Further, some anomalous
patterns can only be determined through the analysis of the entities associated with
their activities. In these cases, although the providers are the targets, a strategy for
identifying the anomalous ones is to find unexpected patterns in their consumers. In
this work we investigate this latter approach.

1.3 Goal and contribution

The goal of this work is a method for anomalous providers detection in healthcare
and its application to a real database. The method deals with two types of entities:

2R. Kelley. Where can $700 billion dollar in waste be cut annually from the us healthcare system?
http://www.larson.house.gov/images/pdf/700billioninwaste.pdf, 2013.
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hospitals (providers) and cities (consumers). From the information about the cities,
the method detects anomalous hospitals considering the amount of procedures that
each hospital performed in the population of each city.

The anomaly projection from cities to hospitals is justified by the lack of infor-
mation about the hospitals structure and by the fact that the cities patterns enable
the anomaly analysis from a new perspective, which is usually not possible if only
information about the hospitals is employed.

The main contributions of this work are:

• A simple and effective method for anomaly detection in healthcare. In our model,
the goal is to find anomalous hospitals through score transfer from cities. For the
best of our knowledge, this is the first method for anomaly detection in healthcare
that is based on score transfer concerning different entity types.

• Unlike traditional methods, our method requires neither medical rules nor fea-
tures about the healthcare providers. In addition, it allows anomaly detection
in scenarios where traditional methods usually do not work: when no features
about the hospitals are available and when their anomalous behaviour can only
be identified through anomaly analysis of the consumers.

• We applied the method to a real database of the Brazilian public healthcare
system. We investigated ten types of procedures that cost more than 8.5 bil-
lion dollars between Jan/2008 and Dec/2012. We present some evident cases of
anomaly and also an analysis over the amount of money that could have been
saved if no anomaly occurred.

• The method is divided into two steps: anomaly analysis and score transfer. As
our method can be implemented with many combinations of algorithms, we dis-
cuss approaches and algorithms that could be applied on each step considering
different aspects of the application. We performed a comprehensive number of
experiments with multiple algorithms for anomaly analysis, score transfer and
score normalization. We also compare the results produced by contextual and
punctual anomaly detection.

1.4 Document organization

The rest of this thesis is organized as follows. In Chapter 2 we present the main concepts
related to the problem and review some related works. Chapter 3 presents a general
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view of the method, the modeling and the implementation proposed. Chapter 4 shows
the database, the experiments and the results. In Chapter 5 we present a case study
with some evident cases of anomaly and a financial analysis of the results. Finally,
Chapter 6 concludes the work and presents the future work.



Chapter 2

Background

In the recent years, many relevant works were produced to tackle the problem of
anomaly detection in many fields.

For a complete view of the most important existing techniques and applications,
we recommend the surveys by Chandola et al. [2009]; Hodge and Austin [2004], which
also organize and compare the existing works.

Next we list the most relevant books that cover all the core issues and works
related to anomaly detection. Hawkins [1980] was the first book to define the prob-
lem and cover the existing work, which is basically related to statistical methods,
such as Bayesian and Distribution-based approaches. In Barnett and Lewis [1994] and
Rousseeuw and Leroy [2005], which can be considered so far the most popular books
about the topic, most of the content also rely on the relation between regression and
outlier analysis. Recently, Aggarwal [2013] was published covering both the statistical
methods and all the relevant works proposed by the Computer Science community.

We believe that in the next years a significant effort will be performed to adapt
the existing solutions to the current scenario of Big Data following the new models and
paradigms, such as the Map Reduce (Dean and Ghemawat [2008]) for massive volume
of data.

Next we present a background about the problem of anomaly detection: the types
of anomalies, the main types of algorithms, the main applications and a discussion
about anomaly detection in healthcare.

2.1 Types of anomalies

According to the nature of the unusual observations, the anomalies may be classified
as punctual, contextual or collective, as stated in Chandola et al. [2009].

7
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Punctual anomalies: punctual anomalies are those instances that present ex-
treme or rare values when compared to the other instances. In order to detect punctual
anomalies, it is not necessary to analyze the context or the situation in which they oc-
cur. For example, if the age of students of a school is measured, the very extreme values
are punctual anomalies as the only information used is their ages, without grouping or
selecting the students to which each student is compared. This example is shown in the
left most image of Figure 2.1: the boxplot indicates the median, the first quartile, the
third quartile and the extreme values. The anomaly is far above the second greatest
value. Punctual anomalies can also occur when multiple features are considered. For
example, as illustrated in the right most image of Figure 2.1, if we measure the stu-
dents height and weight, the extreme instances are also punctual anomalies, once that
no context is established. Instead, all students are compared considering only these
measures.

Figure 2.1. Example of punctual anomalies.

Contextual anomalies: contextual anomalies are those unusual observations
when the context is considered. A contextual anomaly within a context can be a regular
instances in others. In order to detect contextual anomalies two sets of features should
be used: one to define the context and one to evaluate the behaviour.

For example, lets suppose that a study aims to find anomalous regions according
to pressure and temperature. If the values of all regions are compared, the anomalies
found could not be relevant to the study, as they are punctual anomalies. However, if
the latitude and longitude are considered in order to establish the context, the anoma-
lies would be relevant cases of unexpected occurrences. Figure 2.2 shows an example.
In the left most image, the context of the red instance is defined according to the lati-
tude and longitude: the green instances compose its neighbourhood. The middle image
shows an example of regular instance: the red point is located close to its contextual
neighbours in the behavioural space. However, the red instance in the right most ex-
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ample is anomalous: although it is not isolated in the behavioral space, its behaviour
is not in accordance with its contextual neighbourhood.

Figure 2.2. Example of contextual anomalies.

The work by Song et al. [2007] proposes a method for contextual anomaly
detection and compares the observation of punctual anomalies, referred as the clearest
outliers, with contextual anomalies, referred as conditional anomalies. In Kou et al.
[2006] two methods are proposed for contextual anomaly detection considering
spatial properties and their impact. In Schubert et al. [2014] the concept of spatial
neighborhood is applied on a contextual anomaly detection for multiple applications:
spatial, video, and networks.

Collective anomalies: collective anomalies are those instances that are anoma-
lous when occur together, although each one of these instances is not an anomaly by
itself. In order to identify collective anomalies, it is required a relationship among data
instances which can be expressed as graphs or sequential data, for example.

In Vatanen et al. [2012], it is proposed a framework for semi-supervised anomaly
detection of collective anomalies. The method assumes a fixed mixture model to de-
scribe the background in order to detect collective anomalies. The work in Jiang et al.
[2014] presents a scalable framework for real time detection of collective anomaly over
a collection of data streams.

2.2 Types of algorithms

The problem of anomaly detection can be solved by unsupervised or supervised al-
gorithms. Unsupervised algorithms do not require labeled instances while supervised
algorithms build classification models based on known instances.
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2.2.1 Unsupervised algorithms

The main assumption of unsupervised algorithms is that the regular behaviour is more
frequent than the anomalous behaviour. Thus, according to one or more criteria, the
instances are analyzed in order to detect patterns that are isolated from the majority.
Next, we present the main classes of algorithms for unsupervised anomaly detection:
probabilistic, linear and proximity-based.

2.2.1.1 Probabilistic models

The key assumption of probabilistic models is that normal instances occur in high
probability regions of the data distribution whereas anomalies occur in low probability
regions. Next we present some popular approaches that show the principles of these
methods.

The most simple approach consists of choosing a probabilistic distribution and
trying to fit the data to it. The key idea is to assign anomaly probability inversely
proportional to the probability of the observation of the instances in the distribution.
The most common model is the Gaussian model. The parameters are chosen using
techniques for finding the Maximum Likelihood Estimator, such as the iterative method
of Expectation Maximization [Dempster et al., 1977]. Then, the data is fit to the
model with the most likely parameters and the instances with less likely are considered
anomalous. A pioneer study in Shewhart [1931] proposes that instances that differ from
the mean with a magnitude of three times the standard deviation should be considered
anomalous.

A basic approach that does not require parameters estimation is based on his-
togram analysis, such as the method in Goldstein and Dengel [2012]. It can be per-
formed in multiple ways but one of the most common strategy is to assign anomaly
degree inversely proportional to the frequency of the observation. The challenge in this
case is to control granularity associated with the size of the bins. If they are too small,
some regular instances may be considered rare. If they are too large, there may be a
precision problem.

Next we discuss the main advantages of probabilistic and statistical models for
anomaly detection. First of all, the score values produced by such methods are usually
associated with a confidence interval that provide reliability and additional information
for the decision in the results analysis. In addition, if the distribution estimated for the
data is good, it is not necessary to have labelled instances and it is possible to justify
statistically the results.
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The main disadvantage of these methods is the assumption of one particular
distribution. Besides the fact that it is not trivial to find such distribution, it is usually
incorrect and approximated. It also raises the challenge of calibrating the model. If
the model is too general, many parameters should be learned and set, resulting in an
overfitted model. On the contrary, if the model is too restrictive, it is likely that the
data would not fit the model, producing bad results.

2.2.1.2 Linear models

The main assumption of linear models is that there is correlation between the dimen-
sions. The goal is to detect those lower dimensional subspaces in which the anomalous
patterns are more different from regular data.

A trivial linear approach consists of fitting the instances in a linear regression
model and assigning degrees of anomaly proportionally to their residual value. The
key aspect to be observed in this approach is the trade-off between overfitting and
generality of the model. If the model is too general, it would not represent correctly
the data and then the anomalies found might not be real anomalies. If the model is too
fit to the data, it would incorporate the anomalies so that they could not be detected.

This class of methods is largely used and usually present good results for a vast
range of applications. However, they present poor quality when its main assumption,
the existence of linear correlation among the dimensions, is not true. In some cases,
such correlations exist only in some specific regions of the data. In addition, it is
usually hard to justify the anomalies based on empirical evidences.

2.2.1.3 Proximity-based methods

Proximity-based methods assume that anomalies occur in sparse and isolated areas
whereas typical instances are located in dense regions.

These methods require a notion of distance and similarity in order to compare
the instances against each other. Although there are multiple metrics for computing
these values, as shown in Pang-Ning et al. [2006], the most popular are the Euclidean
distance, Jaccard index and Cosine similarity.

This class of methods can be divided into three sub-classes: cluster-based,
distance-based and density-based.

The main assumption of cluster-based algorithms is that regular instances belong
to a cluster whereas anomalies do not belong to any cluster. Some methods can be
based on further aspects to define anomalies, such as the size of the clusters. The most
popular method for cluster-based anomaly detection is DBSCAN, published by Ester
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et al. [1996] which aims to cluster noisy data. Other clustering algorithms that are
able to identify anomalies, as they do not assign all instances to a cluster, are ROCK
proposed by Guha et al. [1999] and SNN proposed by ErtÃ¶z et al. [2004].

Distance-based algorithms exploit the distance of the instances to their neigh-
bours. The main assumption is that anomalies are far from their neighbours whereas
regular points are close to them. In Ramaswamy et al. [2000], it is proposed a for-
mulation for distance-based anomaly detection based on the classic algorithm KNN :
the anomaly degree of an instance I is proportional to the distance between I and its
kth closest neighbour. The method of reverse nearest neighbour, proposed in Hauta-
maki et al. [2004], assumes that instances that are not in the neighbourhood of their
neighbours are likely to be anomalous.

Density-based methods define that anomalies occur in regions with low instance
density. The main difference between cluster-based and density-based algorithms is
that in the former the instances are partitioned into groups whereas in the latter the
partition is based on the data space. The Local Outlier Factor - LOF, proposed by
Breunig et al. [2000], detects anomalies that present density distributions significantly
different from their neighborhood, even when the neighborhood of instances are lo-
cated in areas of different densities. The method Connectivity-based outlier factor -
COF Tang et al. [2002] treats low density and isolation differently. There is an im-
provement compared to the LOF effectiveness when dealing with instances with similar
neighbourhood density as an outlier. In Jin et al. [2006], the method Influenced Out-
lierness is proposed. It applies the concept of symmetric neighborhood relationship
in order to improve the local outlier approach for cases in which clusters of different
densities are not clearly separated.

The main advantage of proximity-based methods is the fact that they are data
driven and do not depend on any assumption about the data distribution. In addition,
it is relatively easy to apply such algorithms in most of the databases.

According to Kriegel et al. [2010], the computational complexity of these algo-
rithms limits their scalability: they can present quadratic computational complexity
due to the nested loop to compute the distance between all pairs of instances. How-
ever, some works have been proposed in order to enhance scalability in large datasets.
The method ORCA proposed in Bay and Schwabacher [2003] applies pruning and
randomization for avoiding the quadratic cost and making possible near linear time
performance. The method RBRP proposed in Ghoting et al. [2008] applies a powerful
pruning approach based on micro cluster partitions. The RBRP scales log-linearly as
a function of the number of data points and linearly as a function of the number of
dimensions.
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However, the assumptions of this class of algorithms may lead to failures in some
cases. For example, it is possible that groups of anomalies exist close to each other,
resulting in a cluster (or a close neighbourhood or a dense region) that cannot be
detected by the algorithms. The method can also detect wrong anomalies or miss true
anomalies if the parameters are not correctly chosen, such as the number of neighbours
or the neighbourhood radius.

2.2.2 Supervised algorithms

The general goal of the methods based on classification is to learn how to distinguish
instances of each class (regular and anomalies) given the features and a set of labeled
instances. The process is divided into two phases: training, when the model for classi-
fication is created using the labeled instances and test, when the model is applied to
classify the unknown instances.

There are many algorithms for classification that can be divided into many cat-
egories: Neural Networks-based (such as Zhang [2000], Freund and Schapire [1999]),
Bayesian-based (John and Langley [1995], Webb et al. [2005]), Rule-based (Kohavi
[1995], Veloso et al. [2006]) and those based on decision trees (Breiman [2001], Quinlan
[1993]). We believe that the One Class SVM [Schölkopf et al., 1999], is one of the best
algorithms for dealing with anomaly detection. Its basic idea is to map the training
data into the kernel space and to separate them from the origin with maximum margin.

If accurate labels are available, this class of algorithms usually provides good and
fast solutions. However, the availability of labels is a core issue in many data mining
problems. When dealing with the problem of anomaly detection, the issue becomes
more complex due to the reasons discussed next. First of all, the dynamic nature of the
problem might change the labels over different places, time, legislation or other aspects.
For example, the behaviour of a tracked bird can be anomalous in the hot season but
regular in the cold season. In these situations, the labels should be carefully analyzed
to make sure that they are consistent with the reality. In addition, it is usually very
hard and expensive to obtain correct labels for anomaly detection, once that in most
situations not only the process is performed manually, but also it is complex to cover
all the possible unusual cases.

Even if reliable labels are available, applying supervised techniques for dividing
the instances into regular and anomalous is challenging, though. The main reason is
the problem of class imbalance, as the anomalous class usually represents a very small
portion of the instances.

According to the perspective of labels availability, another possible approach is the
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semi-supervised anomaly detection. Semi-supervised algorithms usually require only
a small and strategic amount of labeled records for training. Given all the challenges
related to the labels, semi-supervised methods are more feasible solutions than the
supervised learning, however it is also not possible in many cases due to the problem
of covering all the possible type of anomalies.

2.3 Output format

The solution provided by an algorithm for anomaly detection can be output in two
formats: labels or score values. In the first case, each instance is assigned as either
regular or anomaly. This format does not allow any distinction concerning the degree
of exceptionally of the instances. We observe that although it is also possible to classify
the instances to subclasses informing the type of anomaly, it does not quantify the level
of abnormality.

On the other hand, the assignment of a score value for each instance allows the
comparison of anomaly degrees, to rank the instances and also to label the instances
through the application of a threshold. In addition, the scores may present different
meaning depending on the method applied to produce them. If probabilistic models
are applied, the score might represent how likely an instance is an anomaly. If the
method is based on neighbourhood comparison, the scores could be computed as the
distance to them. In the case of linear methods, it could be the deviation. Thus, this
output format represents a more challenging but more meaningful and precise solution.

2.4 Applications

The problem of anomaly detection is important in an uncountable number of applica-
tions and scenarios. However, there are some core applications of anomaly detection
that have been attracting efforts of several works. Among others, we present here four
important applications: fraud detection, detection of intrusion, medical anomalies and
textual anomalies.

Fraud detection is one of the most popular type of anomaly in the research com-
munity and presents increasing importance with the popularization of web/mobile
transactions and e-commerce. Next we discuss some relevant works concerning the
problem. The work in Fawcett and Provost [1997] proposes an adaptive system for
fraud detection based on user profiling. The target application is the identification of
fraud in mobile phone, which is one of the most popular applications of the problem. In
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Gaber et al. [2013] it is presented a synthetic log generator for this application of mobile
phone frauds. Recently, Tseng et al. proposed the Framework FrauDetector in Tseng
et al. [2015] for fraud detection in phone calls through information propagation in the
graph of users and phone numbers. With the popularization of the e-commerce and
web applications for reviews, some new types of frauds have emerged, such as frauds in
reviews, approached by Hu et al. [2011] and frauds in clicks on the Web [Pearce et al.,
2014].

Intrusion detection is usually related to network and systems security. The goal is
to identify malicious activities, such as malicious programs, hackers invasion, unautho-
rized behaviour and policy violations. The problem is not trivial if we observe that, in
most cases the volume of data to be analyzed is huge and the detection must occur in
real time to avoid damages. Next we list some relevant work concerning the problem of
intrusion detection. The work Denning [1987] describes a pioneer, popular and generic
model for system intrusion detection which is based on statistical models and rules for
detecting abnormal patterns. In Hofmeyr et al. [1998], it is shown that the sequences
of system calls represent a good discriminator between regular and invasive activities
and systems. The work in Portnoy et al. [2001] apply clustering techniques for intru-
sion detection in networks environments. Recently, Tamersoy et al. [2014] presented
a solution for malware detection that is based on information propagation on a huge
graph built with real information of users files.

Medical anomaly detection is an important problem that helps the improvement
of disease diagnosis and treatment. Some of the most popular related approaches are
based on time series and image analysis. The main challenge is related to the damage
in case of errors: in this case, the occurrence of false negative must be zero. The work
in Lin et al. [2005] proposes the detection of time series discords aiming at a fast alert of
unusual medical conditions in health monitor techniques, such as electrocardiograms.
In Wong et al. [2003] a Bayesian network is applied to quick detect disease outbreaks.
In Laurikkala et al. [2000] it is presented an analysis of outlier detection on medical data
through the use of box plot, referred by the authors as informal anomaly detection.

The detection of textual anomalies is not a new task, however its importance has
been growing with the popularization of social networks and with the increase of the
amount of new documents in the Web, which demands automatic solutions for opinion
and topic mining. The core challenges of the problem are the volume and sparsity of
the data and temporal issues related to the information. In Baker et al. [1999] the
anomaly detection is performed aiming the detection of new class of text through a
framework that combines multiple models. The work in Srivastava [2006] shows how
the NASA solved the specific problem of detecting anomalies in aerospace problem
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reports through clustering techniques.
Other important and popular applications of anomaly detection are: industrial

damage and image processing. In the next section, we present a general view and some
relevant works related to our main topic: anomaly detection in healthcare.

2.5 Anomaly and fraud detection in healthcare

Anomaly detection is a crucial task in healthcare management that can improve the
conditions and avoid loss of huge amounts of money, especially if the fraud occurrence
is reduced.

A complete description of the popular types of healthcare frauds is presented in
Fabrikant et al. [2014]. In spite of the existence of aspects that contrast healthcare
systems of different countries and states, there are some recurrent types of frauds in
most of them:

• Billing for services not rendered: this is the most common fraud in health-
care and occurs when the provider charges the government for medical procedures
that were not performed.

• Up-coding: the up-coding fraud consists of charging for a medical procedure
that is more expensive and complex than the procedure that was truly performed.

• Duplicate billing: occurs when the provider charge two or more times for the
same medical procedure that was performed once.

• Un-bundling of claims: in this type of fraud, the provider charges individually
for a group of procedures that would cost less if they were paid together.

• Medically unnecessary services or excessive services: these frauds are
hard to detect as they involve charges of procedures that were truly performed
but should not have been performed from a medical point of view.

In addition, these frauds can occur in different degrees of intensity that require
different approaches for detection. If the frauds are committed in a slow pace, it is
usually harder to detect them, but it is easier to identify the authors when the frauds
are detected. According to Capelleveen [2013], this approach is known as Steal a little
all the time. On the other hand, the approach of Hit and run consists of an intense
fraudulent activity. Although it is trivial to identify the frauds, it is hard to identify
the authors as they forge documents and go out of business in order to not be punished.
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In the research community, the most popular approaches for fraud detection
in healthcare are: Peer Group Analysis, Clustering Analysis, Break Point Analysis
and Single Anomalies. The Peer Group Analysis (Bolton and Hand [2002]) approach
aims to identify entities that started to present different behaviour from other entities
that used to be similar. As previously discussed, the Clustering Analysis is based on
identification of isolated entities or groups of entities. The Break Point Analysis is
similar to Peer Group Analysis, however, in this approach, the entities are compared
to its own past behaviour in order to identify points of change. As defined by Chandola
et al. [2009], Single Anomalies are entities whose behaviour do not conform with an
expected behaviour defined as regular. This definition is usually based on medical rules
or providers capacity.

With the improvements of management systems for healthcare observed in the
past years, many works have been developed to deal with the produced data and extract
knowledge from it. The pioneer work in He et al. [1997] applies records labelled by
experts to create a neural network to identify medical frauds. In Yang and Hwang
[2006] the generic frameworkMCI HCFAD is introduced for healthcare fraud and abuse
detection. In Aral et al. [2012], the problem of unnecessary services is investigated
through the identification of frauds on medical prescription.

2.6 Discussion

As presented in section 1.2, existing works deal with the profile of the patients and
with the analysis of the providers capacity. Although these information can provide
good results, they usually are not available or not correct.

In addition, the existing works about fraud detection in healthcare deal with the
two public healthcare systems of the U.S: theMedicare and theMedicaid. Most of these
works, such as Agrawal et al. [2012] and Becker et al. [2005], consider all the details and
peculiarities of the American systems in their definition. However, the legislation and
rules of the countries and states have great impact in healthcare. Thus, the differences
between the Medicare/Medicaid and the healthcare systems of other countries make it
very hard to apply and adapt the existing methods to other countries.

For the best of our knowledge, our method for anomaly detection in healthcare
is the first one to:

• allow the detection of anomalous healthcare providers from the consumers anal-
ysis. This approach allows the discovery of anomalies (and potential frauds) that



18 Chapter 2. Background

could not be found by traditional methods that consider only information about
the providers.

• discover anomalies in the Brazilian public healthcare system. Although the
database with records of all transactions is available on the Web, for the best
of our knowledge, there is no work able to identify the anomalous providers and
justify their anomaly through evidences based on such database. Although our
case study was focused only on the Brazilian healthcare system, we believe that
the method can be applied to most of the healthcare systems in the world.

As we show in the next chapter, we apply the method to identify anomalous
amounts of a procedure type. Thus, among the popular types of frauds in healthcare,
we believe that we are able to identify anomalies caused by I) billing for services not
rendered, II) up-coding, III) duplicate billing, IV) medically unnecessary services and
V) excessive services.

Our method can be applied for detecting punctual and contextual anomalies. The
detection of collective anomalies is beyond the scope of this work. In our experiments,
we compare the results produced by punctual and contextual anomaly detection.

We believe that it is crucial to output the degree of abnormality of the instances.
Thus, as detailed in the next chapter, the method outputs a score value for each
instance. In addition, our method is generic. As we show in the next chapter, it can
be implemented with different types of unsupervised algorithms for anomaly detection.
In our experiments, we show that we were able to achieve good results using simple
and intuitive algorithms, such as the KNN, as we employ transfer learning.
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Method

In this chapter we describe our method, detail its modeling for public healthcare, show
the steps and their implementation and discuss other aspects: temporal granularity
and normalization. We conclude the chapter with a discussion about its effectiveness,
cost and limitations.

3.1 Overview

In this section we describe our method: the provider/consumer model and our method-
ology.

3.1.1 Provider/consumer model

Providers and consumers are actors in most, if not all, services. It is not different for
healthcare. Thus, although we apply the method for anomaly detection in healthcare,
it can be described as method for anomaly detection in services. The providers are
those entities that perform and sell the services whereas the consumers use the services
and pay for them. The relation between these two types of entities can be represented
through a bipartite graph as shown in Figure 3.1. Each provider can be linked with
multiple consumers and vice versa. The weight of each edge measures the number (or
amount of money) of services performed between each pair.

The anomaly detection is performed through capacity analysis for providers and
demand analysis for consumers. Anomalous providers are those performing anoma-
lous amounts of services compared to the other providers considering their capacities.
Likewise, if the demand is analyzed, the anomalous consumers are those instances that
consume abnormal amounts of services.

19
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Figure 3.1. Bipartite graph representing the relation between providers and
consumers.

Detecting anomalous providers is a trivial task if features about their capacities
are available. The same occurs if the target entity are the consumers and features about
their demand are available. However, in both cases, it is not possible to evaluate directly
the abnormality of the entities without the features about them. Our method addresses
this problem: instead of estimating directly the anomaly in the target entity type, we
determine anomalies in the other entity type and then we estimate the abnormality of
the target type considering the relation between pairs of entities.

Thus, the method can be applied to scenarios in which:

• the goal is to detect anomalous entities of one type (providers or consumers)
without having information about it (or the information is not reliable);

• it is available features to estimate anomalies of the other type;

• it is known the amount of services concerning each pair of provider and consumer.

3.1.2 Methodology

As shown in Figure 3.2, after modeling, the method can be divided in two steps:
anomaly analysis and score transfer. In the anomaly analysis step, an anomaly score is
assigned to the entities of the type that we have features about. In the score transfer,
it is assigned a score for the instances of the other type.

Figure 3.2. Steps of the method for anomaly detection.

If the goal is to detect anomalous providers and there are features only about
the consumers, the step of anomaly analysis would consist of assigning anomaly scores
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to consumer instances through the consumers demand analysis. Then, in the step of
score transfer, the anomalous providers are estimated considering the consumer scores
and the weight of the edges. Otherwise, if we want to detect anomalous consumers and
there are features only about the providers capacity, we estimate the anomaly degree
of the providers and then we transfer the score from providers to consumers.

Next, we detail how we modeled the problem and how we implemented these two
steps of anomaly analysis and score transfer.

3.2 Modeling anomalies in public healthcare

In this section we show how we design a method for applying to public healthcare
systems. Our assumption is that the public healthcare operates as: each hospital
performs medical procedures in the population and these procedures are paid by the
government upon request.

From the assumption that fraudulent entities present anomalous patterns, our
goal is to detect anomalous hospitals that declared and charged for unexpected amounts
of procedures. Although it does not imply that the anomalies found are cases of frauds,
they are more likely to be fraudulent and their investigation should be priority.

We assume that there is no information about the hospitals capacity to evaluate
whether the amount of procedures is unusual given their capacity. In addition, even
if we had a database on their capacity, we should not trust it because the real values
could be modified without affecting the amount of money received by each hospital.
On the other hand, if we analyze the number of procedures that each hospital declared
to have done, we are dealing directly with the key information that affects the amount
of money received by them.

Usually, each procedure that a hospital performs has to be declared and some
information about the patient are demanded by the government in order to pay for it.
A basic information that is demanded is the city where the patient lives. If a hospital
declares more procedures than the usual, the aggregated amount of procedures in the
population of one or more cities is going to be greater than the actual amount.

As different cities have different sizes, we cannot compare them considering the
absolute number of procedures. Instead, for evaluating the cities behaviour, we consider
the rate of procedures computed as the number of procedures of each city divided by
its population size.

Therefore, we model the method as a bipartite graph between hospitals and cities,
as illustrated in Figure 3.3. An edge represents the number of procedures performed
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by the hospital in the population of the city. In addition, it is required some additional
features about the cities in order to compute their rates of procedures.

Figure 3.3. Modeling of the method considering hospitals and cities.

Based on this modeling, our problem can be defined as: How to estimate the
anomaly degree of all hospitals given: (I) a dataset with features about the cities and
(II) the number of procedures performed by each hospital in the population of each city?

Toy example: suppose three cities: A, B and C. Their population are served
by four hospitals: 1, 2, 3 and 4. Given the number of occurrences of a procedure in
each pair of hospital and city, we want to detect the anomalous hospitals. Suppose
that the score assignment was performed based on the cities demand. Table 3.1 shows
the score of each city.

Table 3.1. Anomaly scores for cities A, B and C.

City A City B City C
0.21 1 0.82

As city A presents low anomaly score, we consider that it is not anomalous
whereas cities B and C present high anomaly degree. The fraction of people from each
city treated in each hospital is shown in Figure 3.4.

Figure 3.4. Amount of the population of each city treated in each hospital.
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It is possible to conclude that hospitals 3 and 4 are more likely to be anomalous
because they are the healthcare providers more related to the more anomalous cities.

3.3 Anomaly analysis

The anomaly analysis is the first step of the method. The goal is to assign, for each
city C, an anomaly score S(C) considering its behaviour, represented by the rate of
procedures performed on its population.

This step can be implemented through several algorithms for anomaly detection.
The key aspect of this step is the definition of the type of anomaly: as shown in the
previous chapter, our method is able to identify punctual or contextual anomalies.

3.3.1 Punctual analysis implementation

If we look for punctual anomalies, almost all algorithms for anomaly detection may
be applied. Next we briefly describe two simple algorithms that we implemented for
a punctual analysis in Carvalho et al. [2015]: the Reverse nearest neighbour and the
LOF, described in Section 2.2.1.3. These algorithms can be applied for detecting
punctual anomalies, but not for contextual anomalies, as they use the same feature to
group the instances and measure their behaviour.

Reverse nearest neighbour: the assumption of this algorithm is that if an
object is not among the closest neighbours of its K closest neighbours, it is isolated
and then it is an anomaly.

The main step of the algorithm is the construction of a directed graph in which
the nodes represent the instances and the edges link an instance to its K closest
neighbours. Thus, each node has outdegree equal to K. The anomaly score S(C) of
each instance C is assigned as S(C) = 1

IN(C)
, being IN(C) the indegree of its node.

Local Outlier Factor: the LOF is a density-based algorithm described in Sec-
tion 2.2.1.3. According to this algorithm, anomalies are those instances located in
regions with density of instances significantly different from their neighbors.

The neighbourhood of an instance C is composed of those instances located in
a distance smaller than or equal to the distance DK(C) from C to its K nearest
neighbour. The size |N | of the neighbourhood N(C) can be greater than K in the case
of ties.
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The algorithm is based on three concepts: Reachability, Average Reachability and
LOF Value.

For each instance C, the Reachability(O, ni) between C and each one of its
neighbours ni is defined as:

Reachability(C, ni) = max(dist(C, ni), DK(ni))

The AverageReachability(C) is the average Reachability of C to all of its neigh-
bours:

AR(C) =

∑
ni∈N(C) Reachability(C, ni)

|N(C)|

The value of LOF (C) is the anomaly degree S(C) of C and is defined as:

S(C) = LOF (C) =

∑
ni∈N(C)

AR(C)
AR(ni)

|N(C)|

If an instance is not isolated, we expect that its average reachability is similar to
the average reachability of its neighbours, so the expected value for the LOF in this
case is 1. If the LOF of an instance is much larger than 1, it is likely to be anomalous.

3.3.2 Contextual analysis implementation

If the goal is to detect contextual anomalies, the options are restricted to those algo-
rithms that can be modeled with two types of features: contextual and behavioural.
The contextual feature defines the neighbourhood of the instances whereas the be-
havioural feature is applied for computing their anomaly degree within their context.
As previously shown, we apply the rate of procedures as the behavioural feature. Thus,
after grouping the cities according to their context, we compare them by considering
their distance in terms of rates of procedures.

In the current work, we deal with contextual anomalies as detailed in the next
chapters. We implemented the anomaly analysis step with two algorithms: one is a
simple statistical solution referred to as distribution-based solution and the other is the
KNN algorithm. The choice of the algorithm is based on simplicity and effectiveness.
In addition, they employ different approaches for anomaly detection: the first is
probabilistic while the second is based on proximity.

Distribution-based solution: this solution applies a t-test in order to assign
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the score to each city. For each city, two distributions of distances are analyzed. The
first is a random distribution composed of behavioural distances between random pairs
of cities. The second distribution is composed of the behavioural distances between
the city and its contextual neighbours.

For each city C, its score S(C) is given by the p-value produced by the t-test
with these two distributions. The p-value indicates the probability of observing the
same distributions if no correlation exists between them.

If the behavioural distances from a city to its contextual neighbours are similar
to the random distribution, the p-value is high and the city is likely to be anomalous
as it does not behaviour according to its contextual neighbours. On the other hand,
if the behavioural distances are smaller than the random case, the p-value is small,
indicating that the city presents similar behaviour to its contextual neighbours.

The only parameter of this algorithm is the number K of cities in the neighbour-
hood of each city. The size of the random distribution was fixed at 5, 000 in order to
provide a reliable sampling between random pairs of cities. The distribution-based
algorithm is presented in Algorithm 1.

Algorithm 1 Distribution-based solution for anomaly analysis in the cities.
random_distribution ← new_array(5000)

{Generate the random distribution.}
while (iteration 6= 5000) do

random_position_1 ← random_int(0, number_cities)
c1 ← cities[random_position_1]
random_position_2 ← random_int(0, number_cities)
while (random_position_2 = random_position_1) do

random_position_2 ← random_int(0, number_cities)
end while
c2 ← cities[random_position_2]
random_distribution.append(distance(c1.rate, c2.rate))
iteration += 1

end while
iteration ← 0

{For each city, perform the t-test and assign the score.}
for all (current_city in cities) do

neighbourhood_distribution ← new_array(K)
for all (neighbour in current_city.neighbourhood) do

neighbourhood_distribution.append(distance(current_city.rate, neighbour.rate))
end for
current_city.score ← ttest.pvalue (random_distribution, neighbourhood_distribution)

end for

KNN: TheKNN algorithm is a popular algorithm in data analysis and consists,
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basically, of evaluating the behaviour of the K closest neighbours of an instance for
voting. Applying the KNN to the contextual analysis, the score of a instance is given
by its behavioral distance to its K contextual neighbours.

The KNN also takes only the parameter K of the contextual neighbourhood
size. Its implementation is shown in Algorithm 2.

Algorithm 2 KNN algorithm for anomaly analysis in the cities.
{For each city, assign as score the behavioural distance to the neighbours.}
for all (current_city in cities) do

for all (neighbour in current_city.neighbourhood) do
current_city.score += distance(current_city.rate, neighbour.rate)

end for
end for

In Section 4.2 we present an experimental comparison between the distribution-
based solution and the KNN .

3.4 Score transfer

The score transfer step consists of assigning an anomaly score S(H) to each hospital H.
The inputs are the anomaly degree S(C) of each city C and the number of procedures
W (H,C) between each pair city and hospital.

3.4.1 Transfer approach

The main aspect to be considered is the transfer approach. Here we present three po-
tential options: linear transfer, propagation or optimization. The meaning of the score
transfer in the real application should be observed for choosing the transfer approach,
so we also discuss their applicability in healthcare.

Without loss of generality, we assume here that we want to transfer the score
from consumers to providers.

Linear transfer: this is a simple and intuitive solution for the score transfer
that can be applied on almost all scenarios. It consists of applying a function f to
perform a linear combination between the consumer scores and edges weight:

S(P ) =
∑

Ci ∈ Consumers

f(S(Ci),W (Ci, P ))
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Propagation-based: the score propagation can be seen as a loop of score
transfer between providers and consumers. This approach should be implemented in
scenarios where it makes sense to penalize a provider P1 if it is connected to the same
consumers of an anomalous provider P2. Although there are multiple algorithms to
implement this approach, all of them are based on the same mechanism. Initially, the
score of all providers are the same whereas the score of each consumer is the value
received in the step of anomaly analysis of the method. The link between each pair
(P,C) of provider and consumer defines the propagation intensity. The propagation
loop is performed alternately from consumers to providers and from providers to
consumers until the stop condition is reached. The propagation approach can be
implemented with several algorithms such as Page Rank (Page et al. [1999]), Hits
(Kleinberg [1999]) and Salsa (Lempel and Moran [2001]).

Optimization-based: the key idea of the optimization solution is the opposite
of the propagation. The goal is to concentrate the high score only in those providers
that cover better the anomalous consumers. The main challenge of this approach
is the high cost: despite the quality of the results, solving the transfer problem as
an optimization problem is usually NP-hard. One of the most popular and generic
method for optimization problems is the Simplex method as described by Dasgupta
et al. [2006]. In order to achieve good and fast results to complex optimization
problems, a popular solution is the use of Genetic Algorithms, as described in Mitchell
[1998], or other bio-inspired algorithms, such as Ant colony optimization, described
by Dorigo et al. [2006].

Score transfer in healthcare: we implemented two of these approaches to solve
the score transfer problem: the linear transfer due to its simplicity and intuitiveness,
and a genetic algorithm in order to experiment a optimization-based solution without
dealing with the exponential cost. Next we detail the implementations.

Although the propagation-based solution could be an useful approach for score
transfer in many scenarios, we do not believe that this solution conforms to the health-
care scenario due to the repeated propagation. The anomalous behaviour are caused
by few hospitals that infect the cities related to them. Thus, there is no reason for
keeping propagating high scores beyond the anomalous hospitals and the infected cities.
For instance, if a regular hospital H1 is linked to a city that has been affected by an
anomalous hospital H2, H1 should not receive a high score, but it would happen if a
solution based on propagation were applied.
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3.4.2 Linear transfer implementation

For the linear transfer we implemented two different functions to control the score
transfer: simple linear transfer and proportional linear transfer.

The first function is the simple linear transfer. For each pair of hospitalH and city
C, the score S(Ci) of C is multiplied by the amount of procedures W (H,C) performed
by H on population of C:

S(H) =
∑

Ci ∈ Cities

S(Ci) ∗W (H,Ci)

The practical meaning of this solution is that each hospital receives the score of each
city weighted by the absolute amount of procedures performed by the hospital in the
population of the city. Thus, if a city is anomalous and the hospital is strongly related
to it, it is likely that the hospital is the responsible for the city behaviour, then the
hospital receives significant score from the city.

The implementation of the simple linear transfer is shown in Algorithm 3.

Algorithm 3 Simple linear transfer algorithm for score transfer.
for all (hospital in hospitals) do

hospital.score ← 0
for all (city in hospital.related_cities) do

hospital.score += city.score * amount(hospital,city)
end for

end for

The second function is the proportional linear transfer : the score of each city Ci

is weighted by the fraction of procedures performed by H on its population. W (Ci)

represents the whole amount of procedures in Ci and W (H,Ci) represents only the
amount performed by H:

S(H) =
∑

Ci ∈ Cities

S(Ci) ∗
W (H,Ci)

W (Ci)

The practical meaning of this solution is that the score of each city is propor-
tionally divided among the hospitals. The score transferred from a city to a hospital
depends only on the fraction that the hospital represents for the city. As the absolute
amount of procedures is not considered, a big city Cbig and a small city Csmall may
transfer the same portion of their scores to a hospital H if the percentage of procedures
in Cbig and Csmall performed by H is the same.

The proportional linear transfer implementation is shown in Algorithm 4.
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Algorithm 4 Proportional linear transfer algorithm for score transfer.
for all (hospital in hospitals) do

hospital.score ← 0
for all (city in hospital.related_cities) do

hospital.score += city.score * (amount(hospital,city) / amount(city))
end for

end for

3.4.3 Genetic algorithm implementation

In order to apply the optimization-based solution, we also implemented the score trans-
fer with a genetic algorithm. Genetic algorithm is a type of evolutionary algorithm in-
spired by the natural selection process. It implements heuristics in order to find good
solutions for complex problems, specially optimization and search problems.

The algorithm takes as input the amount of procedures between each pair of
hospital and city (W (H,C)) and the score of each city (S(C)) and outputs the best
score assignment for each hospital S(H).

In this section we present the basic concepts related to genetic algorithms and
show how they were implemented.

Generation: genetic algorithms simulate the evolution of a population over the
generations. The core of such algorithms is a loop in which each iteration simulates
a generation with a different population. In our implementation, the parameter G

defines the number of generations.

Individual and population: each individual in a genetic algorithm represents
a candidate solution for the problem. The individuals are defined by a genotype and a
fitness value. In each generation, a set of individuals, called population, is created and
evaluated. The parameter P defines the number of individuals in each population.

Genotype and Phenotype: The genotype of an individual codes its genetics
and usually is a binary string. The map of this genetic code generates its phenotype,
that is the solution that the individual represents to the problem.

In our implementation there is no difference between the genotype and the
phenotype of the individuals. The solution to the problem represented by each
individual is an array with a score value for each hospital. For example, if only 4
hospitals HA, HB, HC and HD were active, an individual would be [0.23,0.45,0.87,0.12]
indicating the respective score for each hospital.
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Fitness function: the fitness function evaluates the quality of the results pro-
duced by each individual according to an objective function. According to the meaning
of anomalies in our application, our fitness function should assign low fitness values to
good individuals, in which

• anomalous hospitals have high scores,

• regular hospitals have low scores.

Otherwise, the fitness value should be high. Next we detail the fitness function imple-
mented.

The fitness function of each individual I considers its contextual neighbourhood
of size K and it is based on two metrics: the ideal amount of procedures of the cities
and the expected amount of procedures of the cities based on the individual scores.

The ideal amount of procedures of each city Ci estimates the whole amount of
procedures in the population of Ci if no anomalies existed. We estimate the ideal
amount of procedures in each city Ci as the number of procedures performed in its
population according to the average behaviour of its neighbours. The algorithm to
compute the ideal amount of procedures in each city is shown in Algorithm 5.

Algorithm 5 Algorithm to compute the ideal amount of procedures in each city.
for all (city in cities) do

average_rate ← 0
for all (neighbour in city.neighbourhood) do

average_rate += neighbour.rate / size(city.neighbourhood)
end for
city.ideal_amount ← city.population * average_rate

end for

In order to compute the expected amount of procedures of the cities, we consider
that the score assigned by each individual I to each hospital H estimates the amount of
procedures that should not have been done by H. For each hospital H, the complement
of its score (1− S(H)) estimates the regular amount of procedures associated with it.
For instance, if the score of H is 0.9 according to I, we estimate that 90% of the
procedures are anomalous and only 10% of its real amount should have been done if
H were not anomalous. The application of this operation in all hospitals gives us the
expected amount in each city.

For each individual I, the fitness is computed as the sum of the difference between
the ideal and expected amount in each city. It means that we evaluate the quality of
each individual as the difference, expressed in number of procedures, between the ideal
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scenario (in which no anomaly exists) and the expected scenario if the anomalous
procedures according to I did not exist.

The fitness function is represented in Algorithm 6.

Algorithm 6 Fitness computation to measure the quality of an individual.
for all (hospital in hospitals) do

expected_rate ← 1 - individual.score(hospital)
for all (city in cities) do

expected_amount(city) += amount(hospital,city) * expected_rate
end for

end for

for all (city in cities) do
fitness += absolute(ideal_amount(city) - expected_amount(city))

end for

Initial population: in genetic algorithms, the initial population is usually ran-
domly generated. However, we have to consider our scenario before generating a score
distribution for the hospitals: our assumption is that most of hospitals are regular
whereas just rare cases represents anomalies. As a solution, the initial population
follows an exponential distribution.

Figure 3.5 presents the score distribution of four examples of individuals generated
with the exponential distribution.

Figure 3.5. Examples of individuals generated following an exponential distri-
bution.

After the first generation, the populations are generated through reproduction
operations, which are not based on the score distribution.

Reproduction: the reproduction consists of operations performed over the pop-
ulation of a generation in order to create the population of the next generation. We
applied two types of reproduction operations: crossover and mutation.
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The first step of the reproduction consists of selecting good individuals for the
operation. The strategy applied is the tournament. In this strategy, some individuals
are randomly chosen and the one with best fitness is selected. The parameter TS

(tournament size) indicates the number of individuals in each tournament.

The crossover simulates the reproduction between two individuals of a generation
Gi resulting in two new individuals for generation Gi+1. During the crossover, the
genetic of the parents’ individuals are combined. In our implementation, we choose at
random a position p of the genotype array. The range 0 to p of the genotype of the first
child comes from the first parent whereas the remaining come from the second parent.
The second child is generated in the opposite way: genes 0 to p come from the second
parent and the remaining genes come from the first parent, as illustrated in Figure 3.6.

Figure 3.6. Crossover operation.

The mutation consists of a random change in the individual’s genotype. Our
mutation approach consists of changing the score of one hospital in one individual by a
random number between 0 and 1. This new value is generated according to an uniform
distribution.

The parameters CP and MP defines the probability of occurrence of crossover
and mutation, respectively.

Elitism: the elitism is an operation which consists of reproducing the individual
with best fitness of generation Gi in the generation Gi+1. The elitism occurrence is
defined by a binary parameter E in our implementation.

Algorithm: Algorithm 7 presents the genetic algorithm that we implemented
for the score transfer step.

The records can be aggregared by different temporal units, such as days, weeks
or months. The next section shows how the method can be adjusted in order to deal
with different temporal granularity.
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Algorithm 7 Genetic algorithm implemented to find the best score assignment for the
hospitals.

generation ← 0
Population0 ← random_population(P )

while (generation 6= G) do
for all (individual ∈ populationgeneration) do

compute_fitness(individuals)
end for
populationgeneration+1 ← empty_population(P )
if (E) then

populationgeneration+1 ← elitism(populationgeneration)
end if
while (size(populationgeneration+1) 6= P ) do

if (random_float(0,1) < crossover_probability) then
Ia ← tournament(populationgeneration)
Ib ← tournament(populationgeneration)
populationgeneration+1 ← crossover(Ia, Ib)

end if
if (random_float(0,1) < mutation_probability) then

Ic ← tournament(populationgeneration)
populationgeneration+1 ← mutation(Ic)

end if
end while
populationgeneration ← populationgeneration+1

generation ← generation + 1
end while

3.5 Dealing with variable temporal granularity

When the data is aggregated in one period, such as week or month, the analysis can
be applied as described above. However, the records are usually represented as time
series concerning multiple blocks of period U .

In order to deal with different temporal granularity, the analysis is performed
in periods called windows. The parameter W defines the number of time blocks in
each window and S defines the sliding distance between two adjacent windows. For
instance, if the value of W and S are respectively 6 and 3, each window has size 6U

and there are 3 blocks (3U) separating two adjacent windows, as illustrated in Figure
3.5.

Applying such concept in our modeling, in each window w, each city C receives
an anomaly score S(C)w considering its behaviour within w. Then, in the next step
of the method, each hospital H receives an anomaly score S(H)w considering both the
score S(C)w of each city and the amount of procedures between each pair W (H,C)w.

The values of W and S have great impact on the results. If the value of W is too
small, the result becomes too sensitive to small variations and loses its reliability. On
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Figure 3.7. Example of time division with window 6U and sliding 3U .

the contrary, if W is too large, the score tends to lose its significance as the anomalous
behaviours would be smoothed. A good value for W would enable us to distinguish
the anomalous from regular cities in a reliable way.

The value of S defines the number of windows in the analysis and the overlapping
between them. If S is low, we produce many windows with great overlapping. In this
case, each period U is analyzed in multiple windows. If S is close or equal to the
window size, we reduce the number of windows and the overlapping, and each window
tend to be independent from the others. The value of S cannot be greater than the
window size, otherwise one or more months are skipped in the analysis.

3.6 Score normalization

Different algorithms analyzing different types of procedure produce different score
ranges. Thus, after assigning a score for each city in each window, we perform a
normalization step to set the score range from 0 to 1. There are two issues related to
this normalization process: the normalization moment and the normalization method.

The normalization moment refers to the decision of normalizing separately the
scores values of each window or normalizing all the values of all windows. In the first
case, in each window, at least one city would present maximum score. In the second,
the maximum score refers to the most anomalous city in the whole period and it is
possible that no city receives high score in one or more windows.

The disadvantage of normalizing the scores for the whole period is that the anal-
ysis can be affected by isolated events and occurrences: one occurrence in one window
would affect the scores of all windows. However, despite of this disadvantage, we adopt
this solution for three reasons. First, although it is possible that all the high scores
occur in the same window, we can still rank the cities of the other windows. Second,
normalizing all the scores of all windows together makes it possible to rank and com-
pare all the cases of anomalies, even in different windows. And, most important, if
we normalize each window separately, we cannot measure which entities are the most
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anomalous for the whole period: all the most anomalous cities of each window would
be equally anomalous. It would affect the score transfer and reduce the precision of
the results.

For the normalization method we implemented two algorithms: the trivial nor-
malization approach in which all the scores are divided by the greatest score value and
the Unified method described in Erich and Zimek [2011]. The last one consists of a
method that, given a set of instances and their values, assigns scores between 0 and 1
indicating the probability of the instances being anomalies.

3.7 Discussion and limitations

In this section we discuss the effectiveness, the cost and the limitations of the method
and our modeling.

Effectiveness: our goal is to detect anomalous hospitals that claimed for more
procedures than expected. Our approach consists of detecting cities with anomalous
rate of procedures in order to infer which hospitals caused such anomalies. We believe
that it is an effective solution due to the following assumptions:

• If a hospital claims the payment of a procedure, it has to be informed the city
where the patient lives.

• If the amount of procedures claimed by a hospital is greater than the expected,
it will eventually affect the amount of procedures in one or more cities.

• If we have some features about the cities, such as the population size, it is possible
to estimate the rate of procedures of each city in order to analyze them and
identify anomalies. It is performed in the step of anomaly analysis.

• Once that we know the anomaly degree of the cities and the amount of procedures
performed by each hospital in the population of each city, it is possible to infer
the anomaly degree of the hospitals in the score transfer step.

In addition, we believe that the amount of people from each city attended by
each hospital is a trivial information that is included in most of healthcare databases.
Moreover, as most of the countries or cities perform demographic surveys, it is usually
easy to find reliable features about the cities. Thus, we conclude that this analysis
can be performed in a vast range of healthcare databases.
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Cost: we implemented two algorithms for each step of the method: distribution-
based and KNN for the anomaly analysis and the linear transfer and genetic algorithm
for the score transfer. The step of anomaly analysis is the most expensive step as the
computation of the nearest neighbours of each city is the most expensive operation of
the method.

The two algorithms implemented for the anomaly analysis require information
about the neighbourhood of each city. We precompute the contextual neighbourhood
of each city through a nested loop with quadratic cost in order to find the distance
between all pairs of cities. Although this solution is not scalable to very large datasets,
we do not believe that scalability is an important requirement for the application as
we deal with pairs of cities: the size of the databases would not scale to very large
amounts.

If the method would be applied for large dataset, it could be applied some
strategies for cost reduction in the K-nearest neighbour computation, as described in
Section 2.2.1.3.

Limitations: there are two scenarios in which the modeling may not be effective:
when we deal with very small or big cities and when the additional procedures is
distributed in many cities.

In small cities few procedures might represent big variations in the rate: the
confidence in these cities is small. However, we could solve this problem applying the
Empirical Bayes Estimator on the cities rates as described in Section 4.2.1.1. There
is also a problem with big cities: if the population is too big, the rate of procedures
performed in the city is hardly affected by the anomalous hospitals. Hence, even if a
hospital is fraudulent, the results of its activities is smoothed by the big population and
the rate of procedures of the city does not indicate occurrence of anomaly. However,
the solution for this problem is not in the scope of this work and as a future work, we
plan to repeat this experiment dividing big cities in districts according to the census
division to avoid the analysis over huge populations. Therefore, it is very unlikely that
big cities receive high scores in our analysis.

Although the method is able to find anomalous providers that causes relevant
changes in the cities rate, detecting providers related to many low-score cities is unlikely.
For example, if a hospital keeps small fraudulent activities in many cities, the hospital
is going to receive a low score from each city and its final score it is also going to
be low. In order to detect hospitals with such behaviour, an effective approach is
verifying the number of cities related to the hospital or their geographical distances
from it. If the hospital is related to many cities or they are too far, it is possible that
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the hospital is performing many smalls frauds. Evaluating the anomaly detection with
this perspective is also a future work.





Chapter 4

Experiments

In this chapter we show the experiments performed in order to evaluate our method
in the real database of the Brazilian public healthcare system. Besides describing the
database, we divide our experiments into the two steps of the method: anomaly analysis
and score transfer. The goal is to find the best algorithm/setup for each step and to
evaluate the results.

Although all cities and hospitals have a unique identifier number in the database,
we modified these identifiers in all results and examples shown in this document due
to ethical and privacy issues.

4.1 Dataset

We apply our analysis to a real database from the Brazilian public healthcare system
composed of five years of data, from January of 2008 until December of 2012. For
each medical procedure type, we know the monthly amount of procedures performed
by each hospital in the population of each city. These values represent the amount of
procedures paid by the government. For the best of our knowledge, this is one of the
most complete databases from public healthcare in the world. The dataset is available
in the Datasus web page1.

In addition to the database quality, we believe that improving the efficiency of
the Brazilian Public Healthcare is a core task given the current situation. Despite
being one of the countries with largest percentage of GDP spent in healthcare, its life
expectancy is still low compared with other countries. According to the Bloomberg

1http://www2.datasus.gov.br/DATASUS/index.php
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ranking, Brazil presents a bad score for healthcare efficiency2. The problem gets even
more severe if we consider that the cost with healthcare in Brazil will increase a lot
as the average age of the Brazilian population will increase fast in the next years,
according to the United Nations3.

This section presents information about the procedures selected for the analysis,
about the entities (hospitals and cities) existing in the dataset, and about the features
of the cities.

4.1.1 Procedures

In order to perform our experiments, we selected ten types of procedures with help
of two public healthcare experts according to two criteria: seasonality and volume.
Among the types of procedures for which it is not expected significant variation in the
frequency nor sensibility to outbreaks, we selected ten types with great frequency in
order to maximize the results’ reliability. Table 4.1 presents the ten selected procedures
with their frequency and the whole cost in Dollars for the period of analysis (Jan/2008-
Dec/2012).

Table 4.1. List of selected procedures with the amount and the cost during the
five-years period.

Procedure Amount Price ($)

Arteriography 12,153,229 39,538,117

Cardiovascular Surgery 12,235,183 2,234,856,750

Glaucoma Surgery 14,711,471 123,305,700

Highly Complex Orthopedic 12,072,615 253,134,000

Neurosurgery 12,082,015 265,739,775

Obstetrics 19,671,176 4,096,538,250

Oncology 12,165,030 428,805,300

Scintigraphy 12,945,508 226,140,600

Transplant 12,093,000 495,531,225

Ultrasonography 30,833,909 401,291,100

Total 150,963,136 8,564,880,817

Next, we give a brief description of each type of procedures selected for analysis:
2Bloomberg. Most efficient health care 2014. http://www.bloomberg.com/visual-data/best-and-

worst/most-efficient-health-care-2014-countries
3United Nations. The consequences of the fast olding of Brazilian population.

https://nacoesunidas.org/rapido-envelhecimento-da-populacao-levara-brasil-a-sofrer-pressoes-fiscais-
a-partir-de-2040-diz-onu/
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1. Arteriography: it is a class of medical imaging procedure of high complex-
ity. The goal is to visualize blood vessels such as arteries, veins, and the heart
chambers in order to locate anomalies and diseases.

2. Cardiovascular Surgery: involves all surgical procedures performed in the
heart.

3. Glaucoma Surgery: involves all types of surgical procedures to restore the eyes
conditions against the glaucoma disease.

4. Highly Complex Orthopedic: orthopedic procedures of high complexity.
Most of them are related to treatments in the spine.

5. Neurosurgery: involves all types of surgical procedures in the nervous system.

6. Obstetrics: involves procedures related to pregnancy, childbirth, and the post-
partum period.

7. Oncology: procedures related to the treatment of tumors and cancer.

8. Scintigraphy: form of diagnostic and medical imaging procedure that aims
at the identification of tumors and diseases through radiation. In this class of
procedure, radioisotopes are ingested to produce internal radiation that can be
analyzed with gamma cameras.

9. Transplant: procedures that aims the replacement of an organ with a disease
by a healthy one. It is usually performed to replace the heart, kidneys, liver,
lungs, pancreas, intestine or thymus.

10. Ultrasonography: consists of a class of medical imaging procedures that apply
high frequency waves to diagnose diseases, injuries and to monitor pregnancy
conditions.

4.1.2 Entities

There are 5,566 different cities and 8,502 different hospitals in the dataset related to
these ten procedures. Table 4.2 presents, for each type of procedure, the number of
hospitals that performed the procedure at least once during the five years period. It
also shows the number of cities for which the procedure was performed at least once
in their population. The last column presents the number of different pairs of hospital
and city (H,C) such that H performed at least one procedure in the population of C.
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Table 4.2. Number of existing entities for each procedure: cities, hospitals and
different pairs of city and hospital.

Procedure # Cities # Hospitals # Pairs
Arteriography 5,007 786 18,651

Cardiovascular Surgery 5,479 374 31,742
Glaucoma Surgery 3,775 299 8,198

Highly Complex Orthopedic 5,089 1,211 20,850
Neurosurgery 5,335 680 22,894
Obstetrics 5,555 4,737 78,631
Oncology 5,474 292 22,400

Scintigraphy 5,406 517 25,758
Transplant 4,561 539 19,670

Ultrasonography 5,566 6,405 150,796

4.1.3 Cities features

In addition to the database about the procedures, we also employed a dataset with
some features about the cities provided by the Brazilian Institute of Geography and
Statistics - IBGE 4. For each city, we have:

• the population size per year from 2008 to 2012,

• the geographic coordinates of the city center in 2010,

• the Human Development Index - HDI in 20105.

4.2 Anomaly analysis

This section describes the step of anomaly analysis of our experiments which consists
of assigning an anomaly score for each city. We present the experimental setup and
the results. In addition, we compare the results of the current contextual analysis with
our punctual analysis described in Carvalho et al. [2015].

4.2.1 Experimental setup

The goal of our experimental setup is to investigate the best configuration for the
anomaly analysis considering the algorithms, the parameter K of neighbourhood size
and the normalization algorithm. As shown in Chapter 3, the contextual algorithms
implemented are the distribution-based solution and the KNN. For the normalization

4http://www.ibge.gov.br
5HDI is a metric that indicates the quality of the city according to three information: income

per person, education level and healthcare quality.
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method we tested the trivial normalization and the Unified method. For the parameter
K we applied four values: 4, 8, 12 and 16.

4.2.1.1 Parameter calibration

In this section we present some directives for calibrating the parameters of experiments.

Temporal granularity: as shown in Section 3.5, it is possible to control the
temporal granularity with two parameters: the window size and windows sliding. As
we have data about five complete years, we created one window for each year. Hence,
our value for both W and S are equal to 12: the first window considers the 12 months
of 2008, then we perform a sliding of 12 months to start the next window in January
of 2009 and so on.

This approach comprises a complete year in each window, avoiding casual effects
of seasonality. In addition, we believe that the information produced (the anomaly
degree of each city in each year) becomes robust to small variations and easier to
analyze for auditing processes, since that the accounting is usually organized per year.

Thus, in the step of anomaly analysis the information produced by the algorithms
is the anomaly score of each city in each year from 2008 to 2012.

Cities unbalancing issue: as we compare rates of procedures in population
of all cities, it is a problem dealing with unbalancing cities size. As described in
Section 3.7, solving the issue of big cities rates is not in the scope of this work.

In small cities few procedures might represent big variations in the rate: the
confidence in these cities is small. To tackle this problem, for each month, after
computing the rate of procedure, we applied an Empirical Bayes Estimator as
described in Marshall [1991] to smooth their variations towards the average. The
lower the confidence in the cities rate, the greater the approximation to the average.
Therefore, if a population of a city is too small, the method approximates the rate to
the average in order to reduce the variation impact.

Contextual and behavioural features: As we deal with contextual anomalies,
we apply two different types of features in the analysis: the contextual feature and
the behavioural feature. The contextual feature adopted is the HDI weighted by the
geographical distance, according to the experiments described in Appendix A. As shown
in Section 3.2, the behavioural feature is the rate of procedures.

As we have the HDI only for the year 2010 and the cities location are static
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information, the contextual neighbourhood of each city do not change from 2008 to
2012.

On the other hand, we have the monthly number of procedures and the population
size of the cities during this period. Thus, the behaviour of each city, computed as rate
of procedures, changes every month. In order to compute one behaviour value for each
city in each window (each year), we compute the Euclidean Distance of the rate of
procedures in all months within w.

4.2.1.2 Choosing the algorithms

In order to choose one algorithm for anomaly analysis and one for score normalization,
we run the experiments with all the algorithms combinations fixing the value of K as
8. Then, we perform a ranking comparison and an analysis of the scores distribution.

For the ranking analysis, it is not necessary to perform score normalization as we
do not consider the score values, only the positions in the rankings. We are interested
in the top positions of the rankings: the practical goal of the method is to identify the
most anomalous cities. Thus, if most anomalous cities in both rankings are the same,
we consider that the results are similar. In addition, only the cities with great score
values present relevant impact in the score transfer step.

Figure 4.1 presents the number of cities in common in the top positions of the
rankings of both algorithms. The results show that for all procedures and all windows,
the top 100 cities are the same in both rankings and they are also disposed in the
same order. As both algorithms produce the same practical results, the algorithm to
be applied on our experiments should be the one presenting the best score distribution
considering that anomalies are rare.

In the score distribution analysis we verified that the distribution produced by
the four combinations between the two algorithms for anomaly analysis and the two
algorithms for score normalization. Figure 4.2 presents the distribution of the scores
produced by the distribution-based solution and normalized by the trivial normalization
method. In Figure 4.3 we show the score distribution produced by the distribution-
based solution normalized by the unified method. Figures 4.4 and 4.5 present the score
distribution for the KNN results normalized by the trivial method and unified method,
respectively. In all the figures, the y-axis is in the log scale and the values are the scores
of all cities in all windows.

As we apply an unsupervised approach, our assumption is that anomalies are rare
instances presenting isolated behaviour. According to this assumption, we consider that
the results provided by the distribution-based solution are not good. In the execution
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Figure 4.1. Number of cities that occur in the top positions of both rankings.
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Figure 4.2. Score distribution produced with the distribution-based solution
and the trivial normalization.

Figure 4.3. Score distribution produced with the distribution-based solution
and normalized with the Unified method.

Figure 4.4. Score distribution produced with the KNN and the trivial normal-
ization.
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Figure 4.5. Score distribution produced with the KNN and normalized with the
Unified method.

of the distribution-based solution normalized with the trivial normalization, most of
the cities were assigned the maximum score. Besides the problem of precision that it
would cause to find the anomalous hospitals, it does not conform with the definition
of anomaly. The problem with the distribution-based solution normalized with the
unified method is that no city was considered anomalous.

On the other hand, the score distribution provided by the KNN is more suitable
to the goal of identifying few isolated instances. The difference between the KNN

results normalized with the trivial solution and the unified method is that the trivial
solution produced less anomalies then the unified method.

Figure 4.6 compares the cumulative distribution function - CDF of the score
produced by the KNN and normalized with both algorithms. We observe that the
curves produced with the trivial solution present a fast increasing and a long tail,
indicating that just a few instances receive high scores. The curves produced with the
unified method increase slowly and constantly as the scores values are more equally
distributed.

Adopting a conservative decision, we consider that the normalization with the
trivial solution is better: just a few anomalies while almost all cities are regular. In
addition, if many cities receive high scores, it causes a loss of precision in the score
transfer step, as many hospitals would also receive high scores.

Therefore, although the ranking produced with both algorithms are the same in
the top positions, we adopt the KNN algorithm and the trivial normalization for our
experiments due to the score distribution.
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Figure 4.6. Cumulative probability of the scores produced with the KNN and
normalized with both algorithms.

4.2.1.3 Choosing K

The parameter K indicates the number of contextual neighbours to be considered in
the analysis. If K is too small, the algorithm becomes vulnerable to small variations.
If K is too large, it may suffer from undesirable smoothing effects. We present the
experiments to choose the value of K among four values: 4, 8, 12 and 16.

The experiment consists of executing the anomaly analysis for all procedures with
these four values of K. Then we compare the produced rankings with the Kendall Tau
metric Kendall [1938]. This metric computes the rate of pairs of items with different
relative position in two rankings. Thus, the higher the distance, the more pairs of
elements (A,B) exists such that A is more anomalous than B in one ranking while B

is more anomalous than A in the other ranking.

Table 4.3 shows the Kendall Tau distances for the ten procedures. We note
that, although each pair of ranking is compared in each one of the five windows, we
show only the average distance. We verified statistically that there is no significant
difference among the values of the five windows: the average variance is equal to 0.02.
The greatest variance of 0.038 occurs when we compared the values of K = 4 and
K = 16 for the Obstetrics procedure.

According to the results, there is little difference between the rankings produced
by the four values of K. As we performed the previous experiments with K = 8, we
verified that this value produced good results for the cities analysis. Thus, we believe
that it is a good value to be adopted in the experiments.
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Table 4.3. Kendall Tau distances between the rankings generated with different
values for K.

K values Art. C.S. Glauc. H.C.O Neuro. Obst. Onco. Scint. Trans. Ultra.
4 x 8 0.091 0.076 0.109 0.079 0.091 0.122 0.091 0.079 0.099 0.115
4 x 12 0.109 0.090 0.143 0.093 0.108 0.143 0.107 0.094 0.117 0.137
4 x 16 0.118 0.096 0.160 0.099 0.117 0.153 0.115 0.102 0.125 0.150
8 x 12 0.060 0.048 0.076 0.050 0.059 0.076 0.057 0.050 0.063 0.075
8 x 16 0.077 0.059 0.106 0.062 0.075 0.094 0.072 0.066 0.079 0.099
12 x 16 0.046 0.035 0.058 0.036 0.046 0.055 0.043 0.039 0.047 0.059

4.2.2 Results and evaluation

So far, we defined that:

• the algorithm to be applied is the KNN with K equal to 8;

• the window size W and the sliding S are both set to 12;

• the normalization is performed for the whole period with the trivial approach of
dividing the scores by the largest value;

• and that the Bayesian rates are applied as behavioural feature to reduce the
impact of variations in small cities.

Next, we present the results produced with this setup through visual analysis and
manual labelling.

Visual analysis: as the normalization is performed considering all five windows,
the maximum score of each procedure occurs in one city in one window. Table 4.4
presents the city with largest score for each type or procedure and also shows in which
window the maximum score occurred.

Table 4.4. Cities with largest score for each procedure type.

Procedure City Window Year
Arteriography 2536 3 2010

Cardiovascular Surgery 2536 3 2010
Glaucoma Surgery 4240 4 2011

Highly Complex Orthopedic 3515 3 2010
Neurosurgery 4131 5 2012

Obstetrics 2193 3 2010
Oncology 2536 3 2010

Scintigraphy 1198 5 2012
Transplant 5030 2 2009

Ultrasonography 4296 5 2012

Next we show the rate and the amount of procedures in the city that received the
maximum score for each procedure type. In each of the ten plots, the x-axis indicates
the month while the y-axis indicates the rate of procedures. The red line shows the
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rate in the target city and the numbers close to the red line indicate the amount
of procedures in the city. The gray line represents the average rate in the country
considering only the cities in which the procedure was performed at least once.

Figure 4.7 shows the time series of rate in City 2536, which received the highest
score for the procedure of Arteriography. As shown in Table 4.4, the highest score was
assigned in window 3 (year 2010). For example, in the month 07/2010 the number of
procedures in the city was 213, which represents a rate of 115 procedures per 100,000
people. The country average rate in the same month was about 4 procedures per
100,000 people. In windows 1, 2, 4 and 5 this city received scores 0.45, 0.40, 0.72 and
0.55, respectively, being in the ranks 2, 3, 5 and 20 of these windows.

Figure 4.7. Rate and number of procedures in the most anomalous city according
to Arteriography procedure.

City 2536 also received the maximum score for the Cardiovascular Surgery pro-
cedure. Figure 4.8 presents its behaviour. Although the maximum score of City 2536

occurs in window 3, this city is also in the first rank of all windows.
For the procedure of Glaucoma Surgery, the maximum score occurs in City 4240

in window 4. As shown in Figure 4.9, although the number of procedures in this city
is null in most of months, in November of 2011, the rate of procedures in this city is
53,816 per 100,000 people, meaning that according to the records, more than 50% of
its population performed Glaucoma Surgery. In this same month, the country average
was about 200 procedures per 100,000 people.

City 3515 received high scores in all windows for the procedure type of Highly
Complex Orthopedic. The score 1.0 occurs in the year 2010. Figure 4.10 shows that,
during this year, the country average was about 1.7 procedures per 100,000 people
whereas the rate in the city was more than 21 procedures per 100,000 people.
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Figure 4.8. Rate and number of procedures in the most anomalous city according
to Cardiovascular Surgery procedure.

Figure 4.9. Rate and number of procedures in the most anomalous city according
to Glaucoma Surgery procedure.

For the Neurosurgery procedure, the most anomalous case was in 2012 in city
4131, when the rate in the city was about 12 times larger than the average, as shown
in Figure 4.11. This same city was also anomalous in the other years.

Figure 4.12 shows the time series of city 2193, which was the most anomalous for
Obstetrics procedures in 2010. This city is also anomalous in the other windows. The
number of procedures is significant, i.e., the rate is not susceptible to small variations.
Therefore, as the rate is above the country average during almost the whole period,
city 2193 presents anomalous behaviour according to Obstetrics claims.

For the Oncology procedure, city 2536, which also presented the highest scores for
Arteriography and Cardiovascular Surgery, was the most anomalous. The maximum
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Figure 4.10. Rate and number of procedures in the most anomalous city ac-
cording to Highly Complex Orthopedic procedure.

Figure 4.11. Rate and number of procedures in the most anomalous city ac-
cording to Neurosurgery procedure.

score occurs in 2010, when its average rate was about 5 times the country average rate.
Figure 4.13 presents the behaviour of city 2536 according to Oncology procedure.

For the Scintigraphy procedure, city 1198, shown in Figure 4.14, received score
equal to 1.0 in 2012. The month with the highest rate was September/2011, when the
rate in the city was 725 procedures per 100,000 people, whereas the country average
was 14 procedures per 100,000 people.

For the Transplant procedure, the highest score occurred in 2009 in City 5030,
shown in Figure 4.15. In June/2009 the rate in this city was almost 25 times the
country average rate.
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Figure 4.12. Rate and number of procedures in the most anomalous city ac-
cording to Obstetrics procedure.

Figure 4.13. Rate and number of procedures in the most anomalous city ac-
cording to Oncology procedure.

Finally, we show the city with highest score for Ultrasonography, which occurred
in 2012 in city 4296. According to Figure 4.16 it is possible to see that the monthly
number of procedures was smaller than 15 until the end of 2011. However, it presented
anomalous behaviour in the end of 2011 and beginning of 2012: the number of
procedures increased to about 2,000. During this period, the rate of procedures was
about 20,000 per 100,000 people.

Manual evaluation: after showing the most anomalous city for each procedure,
we present now a manual evaluation of the results performed by an expert in health-
care management. As we are dealing with a non-labeled dataset, the evaluation is a
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Figure 4.14. Rate and number of procedures in the most anomalous city ac-
cording to Scintigraphy procedure.

Figure 4.15. Rate and number of procedures in the most anomalous city ac-
cording to Transplant procedure.

challenging task. Although it is not the ideal strategy for the evaluation, the manual
evaluation gives us a notion of the results quality with a feasible cost. Our methodology
for the manual evaluation is described next.

For each procedure type, we choose one window and evaluate the top 10 cities
of the ranking. We assume that the solution quality would not vary so much among
the windows of the same procedure type. The window evaluated of each procedure
followed the alphabetical and numerical order as shown next. Arteriography: window 1
(year 2008); Cardiovascular Surgery: window 2; Glaucoma Surgery: window 3; Highly
Complex Orthopedic: window 4; Neurosurgery: window 5 (year 2012); Obstetrics:
window 1; Oncology: window 2; Scintigraphy: window 3; Transplant: window 4;
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Figure 4.16. Rate and number of procedures in the most anomalous city ac-
cording to Ultrasonography procedure.

Ultrasonography: window 5.

Although this labeling depends on subjective interpretation, we usually consider
that an anomalous city presents both significant difference from the country average
and a representative number of procedures. According to our judgment, if the amount
of procedures is smaller than 20, it is likely that the city is small and fluctuations are
acceptable.

Table 4.5 shows the results: for each position and each procedure, we indicate
if the city is anomalous (letter A and red color) or regular (letter R and the blue
color). We conclude that the majority of the top 10 ranked cities are occupied by true
anomalies: about 80%. For all procedures, the top 4 positions are anomalous cities.

There are two types of ranking configurations that we consider correct for the
top 10 cities: when all of them are anomalies and when there is no other anomaly from
the occurrence of the first case of non-anomalous city. The only procedure that do not
conform to this expected behaviour is the Obstetric Surgery, in which the fifth and
sixth positions are occupied by non-anomalous cities whereas the remaining positions
are anomalous cities. Therefore, for the top 10 positions of the ranking, we consider
that we were able to achieve good rates of true positives.

As it is impractical to analyze manually all the cities, in order to analyze the
occurrence of false negatives, we select at random 30 cities among the remaining posi-
tions of the ranking (from the eleventh position) of each procedure and manually label
them. In this analysis we did not found any case of anomaly. Although it is not a
reliable strategy to measure the false negative rate, this analysis indicates that it is not
easy to find an anomalous city at random: from 300 observations (30 from each of the
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Table 4.5. Results of the manual evaluation of the top ten cities in the ranking
of each procedure type.

Position Art. C.S. Glau. H.C.O Neur. Obs. Onc. Sci. Tra. Ult.
1st A A A A A A A A A A
2nd A A A A A A A A A A
3rd A A A A A A A A A A
4th A A A A A A A A A A
5th A A A A A R A A A A
6th R A A A A R R A A A
7th R R A A A A R A A A
8th R R A A A A R A A A
9th R R A A A A R A R A
10th R R A R A A R A R A

ten procedures), none of them was anomalous.
In order to show that the rate of procedures tends to be anomalous in the top

ranked cities whereas it is regular in the remaining positions, we show in Figure 4.17
the time series of average rate for three ranges of the ranking:

1. The top 10 positions.

2. From 11th to 100th position.

3. From 100th to the end of the ranking.

According to the result, cities in the first position tend to present high rates of proce-
dures occurrence. Cities from positions 11th to 100th also present high rates but lower
than the top ranked cities. Finally, the remaining cities present low rates of procedures
occurrence.

4.2.3 Comparison between punctual and contextual anomalies

Recently, we published the work in Carvalho et al. [2015] describing the progress of
the method and some results. The core differences between the current work and this
previous work are shown in Table 4.6.

We consider that the main improvement of this current work compared to the
published work is the change from punctual anomalies to contextual anomalies. We
believe that this change represents a significant improvement in the detection of anoma-
lous cities, which eventually also improves the detection of anomalous hospitals. The
main reason for this change is the fact that it is much more consistent to compare rates
of procedures of cities with similar profile, especially if we deal with cities of a huge
country, such as Brazil.
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Figure 4.17. Average rate of procedures for three ranges of the ranking of each
procedure.

As the work in Carvalho et al. [2015] deals with punctual anomalies, the rate of
procedures in the cities is both the contextual and behavioural feature. It means that
the cities are compared with cities most similar rates of procedures. We perform a
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Table 4.6. Core differences between the current work and the published version.

Aspect Carvalho et al. [2015] Current work
Anomaly analysis Punctual anomalies Contextual anomalies

Database Three procedures types (total
cost of $3.5 billion)

Ten procedures types (total
cost of $8.5 billion)

comparison between the results produced by both works. Although in Carvalho et al.
[2015] we only use 3 procedure types, we repeated the analysis with punctual anomalies
for the other seven procedures in order to perform this comparison.

4.2.3.1 Neighbourhood intersection

First of all, we want to verify if the neighbourhood of the cities are similar in the
contextual and punctual analysis. For each procedure and for each window, we measure
the number of common cities in the neighbourhood of each city. As we use K = 8, the
intersection can range from 0 to 8.

Figure 4.18 shows the distribution of the intersection size in the neighbourhood of
the punctual and contextual anomalies. The results indicate that, for the vast majority
of the cities, the intersection between the punctual and contextual neighbourhood are
empty.

Therefore, punctual and contextual anomalies produce very different neighbour-
hood for the cities. It means that, for each city C, the 8 cities with most similar rates
of procedures of C are not the same cities with similar HDI and location.
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Figure 4.18. Distribution of the intersection of the cities neighbourhood con-
sidering punctual and contextual anomalies for all procedures and windows.
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4.2.3.2 Contextual difference in the neighbourhood

Our goal in this analysis is to compare the punctual and contextual results according
to the HDI and location distances between each city and its neighbours. As these
features compose the set of contextual features in the contextual analysis, we expect
that the difference between cities and neighbours are larger in the punctual analysis.

HDI: in Figure 4.19 we show the distribution of HDI difference between the
cities and their neighbours in all windows of each procedure type. As expected, the
HDI between punctual neighbours is less similar than between contextual neighbours.
Thus, in the contextual analysis, we compare the cities with neighbours that are more
similar according to education, healthcare and economics aspects.

Location: Figure 4.20 shows the distribution of the differences between cities
and neighbours according to the geographic distance. The results show a huge dif-
ference between the geographic distance in the cities neighbourhood of both analysis.
Therefore, the punctual neighbourhood is composed of cities that can be physically
distant. From the healthcare perspective, it is not consistent to compare cities that are
so far from each other.
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Figure 4.19. Distribution of the HDI distance between cities and their neigh-
bourhood of the contextual and punctual analysis..
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Figure 4.20. Distribution of the geographic distance between cities and their
neighbourhood of the contextual and punctual analysis..
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4.2.3.3 Behavioral difference in the neighbourhood

We also compared the behavioural distances between the cities and their neighbours,
which is expressed by the Euclidean distance in the rate of procedures. The behavioral
distances in the punctual analysis are minimal, once that the neighbours of the cities
are those cities with smaller behavioural distances. In this comparison, we want to
check whether the behavioural distances of the contextual analysis are significantly
greater than the behavioural distances of the punctual analysis.

Figure 4.21 shows the distribution of the behavioural distance between the cities
and their 8 neighbours in all windows of each procedure. It is interesting to observe
that theX scale of the plots depends on the rate of the procedures: frequent procedures
present large values whereas the opposite situation is observed in rare procedures.

Although the distances are smaller in the punctual analysis, we consider that the
contextual analysis also produces small behavioural distances.
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Figure 4.21. Distribution of the behavioural distance between cities and their
neighbourhood of the contextual and punctual analysis.
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4.2.3.4 Ranking difference

We have shown so far that punctual and contextual neighbourhood are very different:
besides the rare intersection, the profile of the neighbourhood is very different according
to contextual and behavioural features. Next we discuss the impact of these difference
in the ranking of the cities.

Figure 4.22 shows the number of cities that appear in the top positions of both
rankings. The set of top positions is ranged from 1 to 500. The dotted line show the
expected behaviour if the two rankings were identical. The results show that for all
procedures there is a significant difference between the rankings, as expected.
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Figure 4.22. Number of cities that occur in the top positions of the punctual
and contextual analysis.

4.2.3.5 Examples

Next we present some examples of cities that were ranked better with the contextual
analysis than with the punctual analysis.

In the year 2009, city 3666 occupied the second position of the punctual ranking.



4.2. Anomaly analysis 67

However, as shown in Figure 4.23, the city is not anomalous in that year (shaded area),
when it is in position 68 in the contextual analysis.

Figure 4.23. Rate and number of procedures in city 3666.

City 4599 is the city in the second position of the ranking produced with the
contextual analysis in 2009. Figure 4.24 shows that this city is anomalous since its
rate is high and the number of procedures is significant. However, according to the
punctual analysis, this city is not anomalous occupying position 1228 of the ranking of
the same year.

Figure 4.24. Rate and number of procedures in city 4599.

Thus, there is a significant difference between the neighbourhood produced with
punctual and contextual analysis.

We have shown that the neighbourhood produced with the contextual analysis is
much more consistent than the punctual neighbourhood. According to the behavioural
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distance, we have shown that the difference between contextual pairs and punctual
pairs of neighbours is not so significant. However, pairs of contextual neighbours are
significantly more closer than punctual neighbours according to the geographic loca-
tion, economics, educational and healthcare aspects. In addition, we presented some
examples of cities that were properly ranked by the contextual analysis.

As the next step of score transfer depends on the anomaly analysis, the employ-
ment of contextual analysis also improves the evaluation of the hospitals.

4.3 Score transfer

The step of score transfer consists of assigning a score for each hospital in each window
considering

• the score received by each city in each window, and

• the amount of procedures performed by each hospital in the population of each
city in each window.

In this section we detail the experimental setup to choose the algorithms param-
eters for the score transfer and present the results.

4.3.1 Experimental setup

As described in Section 3.4, we implemented two algorithms for score transfer: the
linear combination and the genetic algorithm. In this section we detail how we cal-
ibrate and compare the algorithms in order to produce the better ranking and score
assignment to the hospitals.

4.3.1.1 Linear transfer

In Section 3.4.2 we show two implementations of the linear transfer algorithm: simple
linear transfer and proportional linear transfer. We compared both options considering
the aspects involved in healthcare (qualitative analysis) and considering the results
(empirical analysis).

Qualitative analysis: in the simple linear transfer, for each pair (H,C) of
hospital and city, the score is weighted by the absolute amount of procedures performed
by H in the population of C. For instance, even if C is a very anomalous city and H

is the only hospital related to it, C might transfer low score to H if C is a small city
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with few procedures. Hence, according to this strategy, the key aspect is the absolute
number of procedures: anomalies in pairs linked by many procedures are more relevant
than in pairs linked by few procedures.

In the proportional linear transfer, the score is weighted by the fraction of pro-
cedures in C performed by H. It focus on the responsibility of the hospitals: if H is
the only hospital related to an anomalous city C, the score transferred from C to H is
going to be high, regardless of the absolute amount of procedures.

According to an analysis with help of two healthcare experts, we concluded that
the proportional linear transfer is more appropriate because our method would hardly
detect an anomalous big city. As we are able to detect small and medium cities, it is
better to point as anomalous the hospitals that are the top responsible for extreme
anomalous cities than hospitals related to anomalous big cities.

Empirical analysis: in our empirical analysis we compared the rankings and
the score distribution produced by both approaches of linear transfer.

First, we compared the rankings produced by both solutions. Figure 4.25 shows
the number of entities in common within the top positions of both rankings. It is
possible to see that the rankings are very different, so the function of the linear transfer
has great impact on the results.

Then, we verified the scores distribution for the hospitals after the score transfer.
Figures 4.26 and 4.27 show the distribution produced by the simple linear transfer and
the proportional linear transfer, respectively. The y-axis is in the log scale. Although
both solutions produced similar score distribution, we believe that the distribution
produced by the proportional linear transfer is more appropriate for anomaly detection:
few hospitals received high score whereas many hospitals received low score.

Hence, we adopt the proportional linear transfer due to to qualitative and empir-
ical reasons.
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Figure 4.25. Comparison between the rankings produced by the two linear
transfer approaches.
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Figure 4.26. Hospitals score distribution produced with the simple linear trans-
fer.

Figure 4.27. Hospitals score distribution produced with the proportional linear
transfer.

4.3.1.2 Genetic algorithm

As shown in Section 3.4.3, we implemented a genetic algorithm in order to apply an
optimization-based solution for the score transfer, without dealing with the exponential
computational cost. For each window of each procedure, we run the algorithm in order
to produce a ranking. Next we show how we defined the values for the parameter
of population size P , number of generations G, crossover probability CP , mutation
probability MP , tournament size TS and elitism E.

The core aspect to be observed in genetic algorithms is the selection pressure
which determines the compromise between the speed of convergence of the solution
and the search space exploitation. If the selection pressure is too strong, the best
fitness is reached too fast before the required search space exploitation, so it is likely
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that a local optimal solution will be output. On the other hand, if the selection pressure
is too weak, it might not converge to a good solution or take a long time for it.

Each parameter affects the selection pressure. Next, we show our experiments to
find the best values for each parameter. We believe that the parameters of the genetic
algorithm have the same effect in all procedure types and in all windows. Thus, in
our analysis to define the parameters we present only the results for Cardiovascular
Surgery in the third window (year of 2010).

The basic assumption of the algorithm is that, during the generations, it is ex-
pected a gradual improvement in the fitness of the best individual. In order to verify
the existence of convergence, we empirically fixed the values of the parameters as:

P = 70, G = 50, CP = 0.6, MP = 0.1, TS = 3, E = TRUE

Figure 4.28 shows the value of the best fitness of each generation. As expected,
there is convergence: the best solution is about 44, 000 in the first generation and the
fitness of the last generation is about 40, 500. As we employ elitism, the solution of
one generation is never worse than the previous generation.

Figure 4.28. Convergence of the best solution in a first execution.

Next we present the experiments to find the best values for the parameters. For
each parameter, following the decreasing importance order: P , G, CP and MP , TS
and E, we vary the values and measure the best solution while the others parameters
are kept fixed. Once that we find the best value for one parameter, we apply this
value for the remaining experiments. All experiments were repeated 7 times and only
the averages are shown in the results in order to ensure reliability.
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Population size: first, we verified the best value for the population size. We
change the population size and keep fixed the other parameters. We expect that the
greater the population, the better the solution because bigger populations allow more
diversity and vast exploitation of the search space. As each hospital may assume
many score values, the search space is huge, then we include big populations in our
experiments: P is ranged from 50 to P = 800 with step equal to 30.

Figure 4.29 shows the best fitness value of the executions with different popu-
lation sizes. As expected, the best solutions were provided with great values for P .
From P = 300, the fitness improvement is slower than the improvement for small
values of P . Although it was verified that the solution quality is proportional to the
size of P , the execution cost is too high when P is big. Thus, we believe that 320

is a good value for the remaining experiments considering the trade off between the
execution cost and the results quality.

Figure 4.29. Best fitness values for different values of population size.

Number of generations: using the value of P = 320 and fixing the other
parameters, we varied the number of generations to find the best value. As the search
space is huge, we also tried large values for G: from 50 to 440 with step equal to 30.
Again, we expect that the greater the value, the better the solution.

The results shown in Figure 4.30 indicate that the quality of the results is
proportional to the number of generations. The best solutions found are those
associated with large values of G. Thus, we adopt the value of G = 400 for the
remaining experiments.
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Figure 4.30. Best fitness values for different number of generations.

Reproduction probabilities: Adopting the values of P = 320 and G = 400,
we verified the solution provided by different combinations of values for the crossover
probability CP and mutation probability MP . The crossover is the most important
operation in genetic algorithms and usually receives high probability. The mutation
is an important operation to expand the search space of genetic algorithms, however
it has to be performed with lower probability in order not to disturb the evolution
convergence. The values applied for CP are 0.6, 0.7 and 0.8 and the values for MP

are 0.05, 0.1 and 0.15. Table 4.7 presents the results produced by the combination of
these probabilities values for the reproduction operations.

Table 4.7. Best fitness for multiple combinations of crossover and mutation
probabilities.

CP/MP 0.05 0.1 0.15
0.6 34,702 34,374 34,412
0.7 35,066 34,588 34,152
0.8 35,219 35,198 34,106

We adopt the values of CP = 0.8 and MP = 0.15, which generated the best
fitness, although the results were very similar. According to the usual mutation
probability applied on genetic algorithms, our MP is high, however it depends on the
application. In our application in healthcare, this value of 0.15 is not causing strong
change in the convergence while helps the search space exploitation.

Tournament size: The tournament size has also great impact in the selection
pressure of the algorithm. If the tournament is small, the pressure is reduced as we
select the best individual in a small group. Although it is good for the search space
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exploration, it reduces the convergence of the solution, as the individuals selected for
reproduction might be not so good. On the other extreme, if the value of TS is too
high, we tend to repeat more the same individuals selected for reproduction and it
might cause a premature convergence of the solution. Figure 4.31 shows the solution
produced with four values for TS: 2, 3, 4 and 5.

Figure 4.31. Best fitness values for different tournament sizes.

Again, the results were very similar. We assign the value of TS = 5 for the next
experiments. Besides producing the best solution, we believe that this large value for
TS is suitable if we observe that the population of 320 can be considered large as well.

Elitism: Finally, we evaluate the quality of the results with and without elitism.
Although the elitism avoid worsening the results between two adjacent generations,
it increases the selection pressure and sometimes it may result in worse results. The
effect of the elitism cannot be predicted and varies according to the application.

As shown in Figure 4.31 the execution with TS = 5 and with elitism produced
solutions with average fitness 34, 403. Keeping the parameters, we executed the genetic
algorithm without elitism and obtained an average solution equal to 34, 492. Although
the results are very similar, we adopt the elitism in order not to loose the best solutions
generated.

Figure 4.32 shows the evolution of the best fitness with E = TRUE and E =

FALSE in one of the executions. It is possible to see that in the execution without
elitism is sometimes worse than the previous generation whereas it never happens when
it is employed .



76 Chapter 4. Experiments

Figure 4.32. Evolution of the best fitness with and without elitism.

Hence, for our experiments we assign the following values for the parameters.

P = 320, G = 400, CP = 0.8, MP = 0.15, TS = 5, E = TRUE

Using the values found in the parameter calibration step, we executed the ge-
netic algorithm in all windows of all procedures types. Figure 4.33 shows the score
distribution for each procedures types considering all windows in each one.

Figure 4.33. Score distribution generated with the genetic algorithm.

Next, we compare the results produced by the linear transfer and the genetic
algorithm.



4.3. Score transfer 77

4.3.2 Results and evaluation

In this section we compare and evaluate the results produced by the two algorithms
for score transfer. First, we compare the rankings of the linear transfer and genetic
results. Next, we present a manual evaluation of the top positions of each ranking to
define which algorithm produced the best results.

The first analysis is the ranking comparison in the top positions. Figure 4.34
shows, for each procedure and window, the number of hospitals in common in the top
positions of the linear transfer and genetic rankings. The results show that the two
algorithms produce very different rankings.

We also evaluate manually the quality of the results produced by the linear trans-
fer and genetic algorithms for score transfer. The manual evaluation was performed
with help of a public healthcare expert and was designed as following.

• For each procedure type, we manually evaluated a specific window. We believe
that the solution quality would not vary so much among the windows of the same
procedure type. In the future we want to evaluate all windows of all procedure
types when more healthcare experts are available for helping us.

• The window evaluated of each procedure followed the alphabetical and numerical
order as described in Section 4.2.2.

• For each procedure we evaluate the top 7 hospitals in the rankings of both algo-
rithms.

• The manual labelling is based on visual analysis: for each hospital H, we analyze
the time series of number of procedures performed by H, the rate of procedures in
each city CH with strong relation to H, the time series of amount of procedures in
CH and the amount of score transferred from CH to H. Basically, we use images
and plots to judge if the hospital is anomalous based on the cities affected by
them. All types of visual information used in the manual labeling are shown in
the case study of the next chapter.

We do not define a score threshold nor a position in the ranking for separating
anomalies hospitals from regular ones as it is not possible to predict the number of real
anomalies. Therefore, our evaluation of true positives is merely qualitative. Although
it is not the best approach for evaluation, it is the only feasible approach. In addition,
as the anomalies are very rare, having anomalies in the first positions shows that the
method could meet the goals.
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Figure 4.34. Number of hospitals in common in the top positions of the linear
transfer and genetic rankings.

Again, as the anomalies are very rare, we have not estimated the true negative as
well. The experiment to measure the true negative rate would consist of selecting hos-
pitals with low scores and verifying whether they are indeed non-anomalous. However,
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with some initial experiments we manually verified that all randomly selected hospitals
with low scores are non-anomalous. Thus, unless we manually label all the hospitals,
we do not believe that it is possible to estimate the true negative rate in a reliable way.

Table 4.8 shows the result of the manual evaluation for the top 7 hospitals in
the ranking produced by the algorithms in the window associated with each procedure
type, as shown before. For each hospital, we labeled it as either anomalous (red color)
or regular (blue color).

Table 4.8. Results of the manual evaluation of the top seven hospitals in the
rankings produced by the linear transfer and genetic algorithms.

Algorithm/Position Art. C.S. Glau. H.C.O Neur. Obs. Onc. Sci. Tra. Ult.
Linear 1st A A A A A A A A A A
Linear 2nd A R A A R A A A A A
Linear 3rd A A A R R A R R A A
Linear 4th R R A R A A R A R A
Linear 5th A A A R R A A A R A
Linear 6th A R A R A R R A R A
Linear 7th A R A R A R R R R A
Genetic 1st R R R R R A R R R R
Genetic 2nd R R R R R R R R R R
Genetic 3rd R R R R R R R R R R
Genetic 4th R A R R R R R R R R
Genetic 5th R R R R R R R R R R
Genetic 6th R R R R R R R R R R
Genetic 7th R R R R R R A R R R

The results show that the linear transfer algorithm produced better results: most
of the top positions of the ranking produced by it are anomalous hospitals whereas in
the top positions of the genetic most of the hospitals are regular.

The best results occur in the procedures of High Complex Orthopedic, Obstetric
and Transplant. For these procedures, the first positions of the ranking are anomalous
hospitals and starting at the first position with a regular hospital, no anomalies occur.
A more detailed analysis is necessary to confirm if this pattern occurs in the complete
ranking.

For the procedures of Glaucoma Surgery and Ultrasonography, the 7 top positions
are anomalous hospitals. For these procedures, we also analyzed further positions in
the ranking. For Glaucoma Surgery the hospitals in positions 8, 9, 10, 11, 12, 13 and
15 are also anomalous. For Ultrasonography there is no anomalous hospital between
positions 8 and 15. We believe that these are good results as well.

For the five remaining procedures, the first positions are occupied by both anoma-
lous and regular hospitals. Although it is not the ideal scenario, we verified that in
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the first positions of these rankings there are very anomalous hospitals. Some of these
cases are shown in the case study of Chapther 5.

Finally, we want to understand why the genetic algorithm was not able to produce
good results. One possible reason is that, although we applied big populations and
many generations, the algorithm was not able to converge to a good solution. The other
possible reason is that our fitness function might not be good for the optimization.

As we consider that the ranking produced by linear transfer is good, we expect
that its fitness function is good as well. Otherwise, we can conclude that out fitness
function is not appropriate for the goal in the application. In order to verify this issue,
we check the value of the fitness function of the solution provided by the linear transfer
and by the genetic algorithms. For each procedure, we analyze the same windows
analyzed in the manual labeling.

Table 4.9. Comparison of the fitness of the linear transfer and the genetic
solution.

Procedure Window Fitness (genetic) Fitness (linear)
Arteriography 1 23,451 40,833

Cardiovascular Surgery 2 32,217 43,012
Glaucoma Surgery 3 812,178 1,169,837

Highly Complex Orthopedic 4 13,324 179,13
Neurosurgery 5 18,572 26,549

Obstetrics 1 395,366 514,402
Oncology 2 35,274 44,014

Scintigraphy 3 88,624 160,112
Transplant 4 13,735 19,856

Ultrasonography 5 3,688,832 3,920,244

Table 4.9 presents the fitness values. As the fitness values of the linear transfer
are not good compared to the genetic solution, we conclude that the fitness function is
not appropriate for producing good rankings and score assignments.

This conclusion does not discard the other possibility of insufficient population
size and generations for the convergence. However, it is necessary to apply a good
fitness function to perform correctly such analysis.

Hence, the linear transfer provided the best results. As a future work, we want
to develop a good fitness function able to evaluate correctly the quality of a solution
according to our notion of anomaly.

In the next chapter we present some likely anomalies that we were able to found
by executing the score transfer with the linear transfer algorithm.
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Case study

We executed the method with the KNN for the anomaly analysis and with the linear
transfer for the transfer score step as described in Chapter 4. In this chapter we present
a detailed analysis over the most likely anomalous hospitals found focusing on how and
why our method was able to identify them. We also present some analysis concerning
the financial cost of the procedures. Hospitals 8199, 7857, and 5213 are the three
anomalous hospitals selected for the case study. We observe that auditing steps are
necessary to either conclude that they have committed fraud or the anomalies were
caused by genuine reasons that may be justified by other aspects.

5.1 Financial analysis

Besides the number of procedures, information about the cost is also available in the
DATASUS database. Considering these information, we have performed some analysis
in order to estimate how much money was involved in anomalous activities. Next we
describe our methodology to estimate the financial information and show the results.

5.1.1 Methodology

The goal of the financial analysis is to compute the difference between the actual cost
of the procedures and the the ideal cost of the procedures if no anomalies has occurred.
We refer to this difference as the residual cost. The actual cost of the procedures is
available in the dataset and expressed as the cost of the procedures performed by each
hospital in the population of each city per month. The ideal cost of the procedures
is estimated considering the average price of the procedures and the ideal number of
procedures in the cities, as detailed next.

81
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Given a procedure type, we estimate the ideal number of procedures ideal(C,W )

in each city C during window W as the average rate of procedures of its contextual
neighbourhood N(C) applied to its population pop(C,W ). The neighbourhood size is
8.

ideal(C,W ) =

∑
n ∈ N(C) rate(n,W

|N(C)|
∗ pop(C,W )

After we compute the ideal amount ideal(C,W ) of procedures in each city C,
we also estimate the ideal number of procedures ideal(H,C,W ) that each hospital
H should have performed in the population of C during window W . The value of
ideal(H,C,W ) is estimated considering the fraction that H represents in the total
number of procedures in C.

ideal(H,C,W ) = ideal(C,W ) ∗ actual(H,C,W )

actual(C,W )

Once that it is known the actual amount actual(H,C,W ) and the ideal amount
ideal(H,C,W ) of procedures between each pair (H,C), we estimate the residual num-
ber of procedures residual(H,C,W ) that indicates the number of extra procedures
between the ideal and the actual number.

residual(H,C,W ) = actual(H,C,W )− ideal(H,C,W )

As the cost vary among hospitals, in order to estimate the financial cost, we
estimate the average price avg_cost(H,W ) per procedure in H as the total cost in H

divided by the total number of procedures performed by H during W .
Finally, we compute the residual cost residual_cost(H,C,W ) that indicates the

amount of money that could have been saved if no anomalies existed between each pair
H,C during W .

residual_cost(H,C,W ) = residual(H,C,W ) ∗ avg_cost(H,W )

5.1.2 Results

We performed the financial analysis over all ten types of procedures from 2008 to 2012.
The results are shown in Figure 5.1 in which the bars show the real and the ideal

cost of the procedures and the numbers above the bars indicate the residual cost 1.
1The original values were expressed in the Brazilian currency (Real). The Real value ranged from

0.40 to 0.65 US dollars approximately from 2008 to 2012. In this paper we adopt an exchange rate of
0.525.
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Figure 5.1. Real and ideal cost of the procedures. The numbers above the bars
indicate the residual cost.

The total residual cost considering all procedures is about one billion dollars.
Although the Obstetric procedure presents the largest cost, we estimate that the

procedure of Cardiovascular Surgery presents the largest residual cost. As the average
cost of each Obstetric procedure (208 dollars in the average) is also greater than each
Cardiovascular Surgery (183 dollars in the average) procedure, we believe that the only
reason for these results of residual analysis is that there are more anomalies concerning
the Cardiovascular Surgery than the Obstetric procedure.

Table 5.1. Hospitals with largest residual cost for each procedure.

Procedure Hospital ID Residual cost ($)
Arteriography 2462 1,695,112

Cardiovascular Surgery 6824 57,086,700
Glaucoma Surgery 5463 7,731,363

Highly Complex Orthopedic 4173 8,956,014
Neurosurgery 8286 6,665,048
Obstetrics 6211 26,765,865
Oncology 1276 4,823,486

Scintigraphy 7266 4,412,882
Transplant 3600 19,434,974

Ultrasonography 3110 1,822,442
TOTAL - 139,393,886

Table 5.1 shows, for each procedure type, the hospital with largest residual costs.
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This table also shows the total amount of money that could have been be saved if these
ten hospitals performed the ideal number of procedures.

5.2 Detailed analysis

In this section we present three hospitals likely to be anomalous and detail how the
method was able to detect them.

5.2.1 Hospital 8199

Hospital 8199 is in the top positions of the anomaly ranking for the procedures of Arte-
riography, Cardiovascular Surgery, Neurosurgery, Obstetrics, Scintigraphy, Transplant
and Ultrasonography. In this analysis we present the hospital behaviour considering
the procedure of Cardiovascular Surgery, in which its anomaly is the most likely. For
this procedure, hospital 8199 was the first in the anomaly ranking of all windows.

Figure 5.2. Monthly number of procedures of Cardiovascular Surgery in hospital
8199.

First of all, we show in Figure 5.2 the monthly amount of Cardiovascular Surgery
procedures performed by hospital 8199. Considering only the number of procedures,
hospital 8199 does not look anomalous as the amount does not vary much. However,
if we look to the cities related to the hospital, we can verify its anomaly.

Figure 5.3 presents the graphical view of hospital 8199 and the cities related to
it. The blue node is the hospital. The nodes connected to the hospital are the cities
most related to it between 2008 and 2012. The color of each city represents its average
anomaly degree during the five years of analysis. The edges indicate the number of
procedures performed by 8199 in the population of each city in the whole period.
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Figure 5.3. Hospital 8199 and its connection to the most served cities from 2008
to 2012.

From the bipartite graph we conclude that, among the cities that are strongly
served by hospital 8199, cities 2536 and 1208 are the most anomalous. Next we analyze
both cities and their relation to hospital 8199.

Figure 5.4. Rate and number of procedures of Cardiovascular Surgery in city
2536.

Figure 5.4 presents the rate of Cardiovascular Surgery procedures in city 2536

(red line) compared to the country average rate (gray line). For each month, we also
show the number of procedures. From this analysis, it is possible to conclude that city
2536 is anomalous.

So far, we have shown that city 2536 is the main city served by hospital 8199
and that city 2536 is anomalous. In order to show that the anomaly in city 2536 is
caused by hospital 8199, we show in Figure 5.5 that this hospital is the main healthcare
provider for Cardiovascular Surgery in this city: in all windows, the hospital performed
almost all the procedures in its population.
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Figure 5.5. Whole number of procedures in city 2536 and amount performed by
hospital 8199.

Analyzing the relation between city 1208 and hospital 8199, we verified that the
number of procedures relating these entities reduced from the year of 2011. As city
1208 is the most related city to hospital 8199, we would expect that the amount in
8199 were also reduced. However, the overall number of procedures in 8199 does not
vary much (Figure 5.2). This gap can be explained if we analyze city 1208, that was
also target of anomaly activities of hospital 8199.

Figure 5.6. Rate and number of procedures of Cardiovascular Surgery in city
1208.

Figure 5.6 shows the rate and number of procedures in city 1208. The city is
anomalous as the number of procedures grew dramatically from the end of 2010.

According to Figure 5.7, which shows the number of procedures in city 1208

performed by hospital 8199, we conclude that from the moment that 8199 started to
be a healthcare provider of 1208 population, the city started to present anomalous rate
of procedures. Therefore, city 1208 is anomalous and hospital 8199 is the responsible
for the anomaly.
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Figure 5.7. Whole number of procedures in city 1208 and amount performed by
hospital 8199.

From 2008 to 2012, hospital 8199 performed procedures of Cardiovascular Surgery
in the population of 324 cities. As shown, the amount in the hospital is constant so that
we would not discover its anomaly without applying a method for anomaly detection
which considers the cities related to it. We have found two cities that illustrate such
behaviour: from the moment that hospital 8199 reduced its activities in the population
of city 2536, it started to perform an anomalous number of procedures in the population
of city 1208.

Table 5.2. Real, ideal and residual cost (in Dollars) in hospital 8199 for all
procedures.

Procedure Real cost ($) Ideal cost ($) Residual ($)
Arteriography 1,690,235 1,318,349 371,886

Cardiovascular Surgery 66,954,175 53,566,887 13,387,288
Glaucoma Surgery 214 179 35

Highly Complex Orthopedic 3,582,055 3,509,521 72,535
Neurosurgery 4,350,941 3,001,968 1,348,973
Obstetrics 9,419,764 5,077,617 4,342,147
Oncology 3,817,857 3,130,901 686,956

Scintigraphy 1,463,997 1,334,323 129,674
Transplant 3,554,757 2,371,259 1,183,498

Ultrasonography 1,440,512 1,043,252 397,261
TOTAL 96,274,507 74,354,255 21,920,253

Table 5.2 shows the money received by hospital 8199 and the money that it
should have received if the number of procedures performed were regular according
to our methodology for financial analysis. The procedure of Cardiovascular Surgery
presents the largest difference between the real and the ideal money produced in the
period between 2008 and 2012. Considering all the procedures, the hospital could
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have saved almost 22 million dollars from the government if the regular number of
procedures were performed.

5.2.2 Hospital 7857

Hospital 7857 is one of the most anomalous hospitals concerning the procedure of
Glaucoma Surgery. In the years of 2010 and 2011, it is in the first position of the
ranking.

Figure 5.8. Number of procedures of Glaucoma Surgery in hospital 7857.

Figure 5.8 shows the monthly number of procedures in the hospital. On the
contrary of the previous case, the time series of hospital 7857 indicates the anomalous
behaviour since the amount suffer drastic changes in 2010 and 2011.

Figure 5.9. Hospital 7857 and its connection to the most related cities from
2008 to 2012.
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The cities that are most related to hospital 7857, their anomaly degree and the
number of procedures concerning the pairs are indicated in the graph of Figure 5.9.
Next we present a detailed analysis over the cities 5071, 4936, 3357, 497 and 3768.

Figures 5.10, 5.11, 5.12, 5.13 and 5.14 show the rate, the amount and the con-
tribution of hospital 7857 of procedures in termos of Glaucoma Surgery in cities 5071,
4936, 3357, 497 and 3768, respectively. Not only it is possible to conclude that all these
five cities are anomalous in the years of 2010 and 2011, but also that the anomaly is
caused by hospital 7857. Thus, hospital 7857 is a case of anomaly detected through
the analysis of the rate of procedures in the cities as modeled with our method.

Among the ten analyzed procedures, hospital 7857 performs only the procedure
of Glaucoma Surgery and the real cost of the procedures between 2008 and 2012 was
9,946,218 dollars, which is 121,329 dollars smaller than the ideal amount of 10,067,567
dollars. Although the hospital presented anomalous behaviour in some cities, in the
general, the amount of money received was not anomalous. Thus, if a financial analysis
were performed, hospital 7857 would not be detected as anomaly.
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Figure 5.10. Rate and amount of Glaucoma Surgery procedures in city 5071
and the amount performed by hospital 7857.
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Figure 5.11. Rate and amount of Glaucoma Surgery procedures in city 4936
and the amount performed by hospital 7857.

5.2.3 Hospital 5213

Hospital 5213 is an evident anomaly concerning the procedure of Scintigraphy being
in the first position of the ranking of all five windows.

Figure 5.15 shows the amount of Scintigraphy procedures in hospital 5213 in each
month. The variations are not frequent and not significant. Thus, we can conclude
again that the proposed method helped finding anomalies that would not be found if
only data about the hospitals were applied.

The five cities most related to hospital 5213 and their anomaly degrees are indi-
cated in Figure 5.16.

Figures 5.17, 5.18, 5.19, 5.20 and 5.21 show that cities 1695, 3506, 3356, 744 and
4279 are anomalous and that hospital 5213 is responsible for the anomalous behaviour
identified in the cities.

Table 5.3 shows the real, ideal and residual cost of the procedures in hospital
5213. Although the difference is positive for some procedures types and negatives for
others, in the total, it received more than 1.5 million dollars above the expected value
if the number of procedures were regular. Again, we believe that hospital 5213 would
not be so anomalous if a financial analysis were performed. However, considering the
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Figure 5.12. Rate and amount of Glaucoma Surgery procedures in city 3357
and the amount performed by hospital 7857.

Table 5.3. Real, ideal and residual cost in hospital 5213 for all procedures.

Procedure Real cost ($) Ideal cost ($) Residual ($)
Arteriography 271 304 -33

Cardiovascular Surgery 153,154 178,997 -25,844
Glaucoma Surgery 217,596 239,831 -22,235

Highly Complex Orthopedic 2,872,410 3,223,415 -351,005
Neurosurgery 19,053,345 21,843,198 -2,789,853
Obstetrics 13,660,514 12,963,456 697,058
Oncology 7,135,795 4,445,261 2,690,535

Scintigraphy 1,239,647 1,416,557 -176,910
Transplant 3,554,757 2,371,259 1,183,498

Ultrasonography 1,440,512 1,043,252 397,261
TOTAL 49,328,002 47,725,529 1,602,473

number of procedures, especially Scintigraphy procedures, the hospital is anomalous.
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Figure 5.13. Rate and amount of Glaucoma Surgery procedures in city 497 and
the amount performed by hospital 7857.
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Figure 5.14. Rate and amount of Glaucoma Surgery procedures in city 3768
and the amount performed by hospital 7857.

Figure 5.15. Monthly number of procedures of Scintigraphy in hospital 5213.
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Figure 5.16. Hospital 5213 and its connection to the most related cities from
2008 to 2012.

Figure 5.17. Rate and amount of Scintigraphy procedures in city 1695 and the
amount performed by hospital 5213.
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Figure 5.18. Rate and amount of Scintigraphy procedures in city 3506 and the
amount performed by hospital 5213.
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Figure 5.19. Rate and amount of Scintigraphy procedures in city 3356 and the
amount performed by hospital 5213.
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Figure 5.20. Rate and amount of Scintigraphy procedures in city 744 and the
amount performed by hospital 5213.
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Figure 5.21. Rate and amount of Scintigraphy procedures in city 4279 and the
amount performed by hospital 5213.





Chapter 6

Conclusion

In this work we propose an effective solution for the problem of detecting anomalous
hospitals in healthcare systems. According to this goal, the main challenge is the lack of
information about the hospitals in order to perform the capacity analysis. In addition,
this information could be modified in order to disguise the anomalies. Instead, we deal
with the key information that impacts in the money paid by the government for the
hospitals: the number of procedures that they claim as done. Our method models the
two entities, hospitals and cities, as a bipartite graph in which the edges represent the
number of medical procedures that each hospital performed in the population of each
city. In the first step of the method each city receives an anomaly score considering
its demand analysis. In the second step of score transfer, each hospital receives an
anomaly score based on the consumers score and in the number of procedures between
each pair of consumer and provider.

The goal in the step of anomaly analysis is to detect contextual anomalies. The
contextual feature applied is the HDI weighted by the geographic location of each city
whereas the behavioural distance is the rate of procedures of the cities. In order to
assign an anomaly score for each city we applied the KNN algorithm, although we
also tried a probabilistic solution. For the score transfer, we tried a solution based
on linear combination and a genetic algorithm. The best results were provided by the
version of the linear combination in which each hospital H receives the score of each
city C weighted by the fraction that H represents in the whole amount in C.

We perform the experiments considering 10 different types of medical procedures
from the Brazilian public healthcare system, which is considered a reliable and complete
database. The total cost of the procedures analyzed from 2008 to 2012 is over 8 billion
dollars. Evaluating the results is not a trivial task as there is no labeled dataset nor
any type of ground truth. Based on our visual analysis with help of experts in public
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healthcare management, we concluded that our results were good and that we were able
to detect anomalous hospitals. Our case study shows some evident cases of anomalies.
We also estimated that about one billion dollars could have been saved if all hospitals
performed the regular amount of procedures.

We believe that our method can be applied to a large range of public healthcare
systems in the world since it depends on two trivial information: the population of
each city (or region) and the number of people from each city (or region) cared in each
hospital.

6.1 Future work

In this section we present future works for anomaly detection in healthcare systems
and discuss some other potential application of the method.

6.1.1 Future work in healthcare

Considering the application in the healthcare, we want to perform experiments in
further procedures types and develop solutions for dealing with procedures vulnerable
to seasonality. In addition, we want to design, implement and evaluate solutions for
the scenarios in which the method presents limitations:

• Big cities issue: we want to divide big cities into smaller regions using geocoding
and perform the experiments again so that we may be able to detect anomaly in
big cities. This is a challenging task because instead of dealing with the cities of
the patients, we have to deal with their full address in order to map the regions.
The access to this database is also a challenge as it is not available and it involves
privacy issues.

• Distributed anomalies: we intent to develop a method to detect anomalies in
cases in which a hospital performs small anomalous activities in many cities.
The most trivial solution is to evaluate how likely it is the relation between the
hospitals and cities. This analysis can be based on the amount of cities served
by the hospitals and on their geographical distances.

We also want to apply the method for detecting anomalies in healthcare of other
countries and to implement and evaluate it with further unsupervised algorithms and
ensemble techniques.

The results evaluation is also a challenging task of the work. In addition to the
visual analysis and manual labeling, we want to design a model to simulate synthetic



6.1. Future work 103

anomalies in the database. The evaluation with synthetic anomalies would give us the
opportunity of measuring precisely the precision and the recall. However, this is not an
easy task. Next we discuss some of the aspects that should be considered in such model.

Duration: the longer the duration of the anomaly, the easier is to identify it.
For example, consider that each window is related to one year. If the anomaly exists
for one or two months, the behavioural difference does not change significantly, as it
is computed through Euclidean Distance among all months. On the other hand, if
the anomaly persists for many months, it has great impact on the behavioural distance.

Anomaly intensity: the greater the anomaly intensity, the easier is to detect it.
In order to define the amount of additional procedures, it is important to consider the
likelihood of the amount based on the entities sizes. In addition, it is also important to
not bias the number of additional procedures on the method operation. For instance,
we cannot compute the intensity based on the cities rate.

Anomaly concentration in the cities: a hospital may perform anomalous
activities either in few cities or divide the additional procedures into many cities.
When the additional procedures are distributed among many cities, it is more difficult
to detect them, as the city rates are not so affected.

Size of the anomalous cities: the size of the cities where the synthetic anoma-
lies are inserted has great impact on the results. If the cities are small, it easy to detect
them. On the other hand, if the cities are big, the rate of procedures in the city is not
so affected.

We present above a suggestion of algorithm to create the synthetic anomalies
considering these aspects.

1. Select at random one hospital and the duration of the anomalies.

2. Estimate the amount of additional procedures in of the hospital.

3. Distribute the synthetic anomalies among the cities related to the hospital ac-
cording to the concentration level and the cities sizes.

6.1.2 Further scenarios

We aim to investigate the effectiveness of the method in other scenarios. For this
purpose, the main challenge is to obtain a reliable and complete database. Next we
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describe some potential applications of our method for anomaly detection in services.
Engineering: the method could be used to detect anomalies concerning part-

nership between government and private companies, such as engineering companies.
For example, suppose that a government hired private companies to build and fix

roads. The goal is to detect potential incidents of corruption in the government. The
providers are the engineering companies, the consumers are the government entities
and the services are amount of roads, represented in square meter.

The obvious way to detect abuse or other anomalous activities by the government
would be estimating whether the amount of services hired are really necessary or if it
was really performed. However, it is not trivial to estimate these information. On the
other hand, it is trivial to evaluate the capacity of the companies using features such
as number of workers and number of machines. Thus, the method could be applied to
detect anomalies considering the capacity of the companies and then the anomalous
government entities could be also identified.

Food supply: another application for the method is to detect anomalies in
companies which supply food for public schools. The food providers might change
information about their capacity in order to charge for more food than necessary.
However, if the demand of the schools is analyzed considering the number of students,
it is possible to transfer the scores from schools to the companies in order to detect
anomalous companies of food supply.

Healthcare through trajectories analysis: The method can be also applied
to healthcare considering the trajectory of the patients (consumers). The goal is to
detect anomalous doctors, hospitals or other providers through the identification of
anomalous trajectories of patients.

The analysis of patients trajectory might reveal unreal or unnecessary procedures
even if the provider patterns are regular. For example, suppose that a patient performed
multiple hemodialysis procedures due to a disease in the blood. From the moment that
this patient performed a kidney transplant, it is not expected further occurrences of
hemodialysis procedures. Otherwise, it may represent an anomalous activity. One
possible solution for discovering these potential cases of frauds in patients trajectory
is applying rule-based algorithms in the anomaly analysis step of the method.
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Appendix A

Feature analysis

In this chapter, we present our experiments to choose the contextual features to be
applied on the anomaly analysis step.

As discussed in Section 2.1, there are two types of anomalies: punctual and
contextual. The punctual anomalies are those that present extreme or isolated patterns
when compared to all instances. On the contrary, contextual anomalies are those
with isolated behaviour within a context. Hence, two set of features are necessary:
one to define the context and other to evaluate the behaviour. The context of an
instance is defined by similar instances, called contextual neighbours. The behaviour
is estimated through the comparison of the behavioural features of the instances with
their contextual neighbours. The assumption is that the instances should present
similar behaviour to their contextual neighbours in the behavioural space.

We want to analyze the healthcare demand of the Brazilian cities. As the country
is huge and the cities are very different in many aspects, we believe that the context is
very important. Thus, in this current work we perform contextual analysis.

As shown in Chapter 3, the behavioural feature is the rate of procedures due to its
practical meaning: according to our goal in the anomaly analysis, a city is anomalous
if the number of procedures performed in its population is unusual. As we have the
population size of each city, we divide the number of procedures by the population so
that we can compare cities of different sizes.

Once that we defined the behavioural feature, we need to choose the contextual
feature. The chosen feature must satisfy the basic assumption that contextual neigh-
bours should have small behavioural distance. Hence, the contextual analysis must
create neighbourhoods with similar rates of procedures. As shown in Section 4.1, the
information available about the cities are: location, population size, and HDI. These
three information are the potential contextual features for our analysis.
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Next we show how we use the three information for estimating the contextual
distances between the cities.
Location: we have the location of each city expressed as (latitude, longitude). From
this information, we computed the Euclidean Distance of all pairs of cities. We refer
to this distance as the geographical distance. For example, if two cities are located in
coordinates (−19,−43) and (−18,−44), their geographical distance is 2.
Population: As we have the population of each city in each year, the population
distance of each pair of cities is computed as the Euclidean Distance between their
population considering each year between 2008 and 2012.
HDI: as we only have the cities HDI of the year of 2010, the HDI distance between
two cities is estimated by the simple absolute difference in their HDI values.

We performed a statistical experiment to verify if the behavioural distance of
the neighbourhoods produced with these contextual distances are significantly smaller
than random neighbourhoods. The experiment consist of generating two distributions
of behavioural distances: a random distribution and a contextual distribution. Both
distribution are composed of 50,000 values of behavioural distances. The experiment
implementation is shown in Algorithm 8.

The random distribution is composed of values of behavioural distance between
random pairs of cities. The neighbourhood distribution is generated as described next.
In each iteration, one city c1 is chosen and its K contextual neighbours are computed
according to the candidate contextual feature. Then, one of these K contextual neigh-
bours, c2, is chosen at random and the behavioural distance of the pair (c1,c2) is
appended to the distribution.

Therefore, K represents the size of the neighbourhood from which we choose at
random one neighbour. If K is small, it is likely that a close contextual neighbour is
chosen. If K is large, a distant neighbour can be chosen and the contextual similarity
might not be so small.

After generating the two distributions, a t-test is performed to evaluate their
similarity: the p-value produced by the test is inversely proportional to the similarity
of the two distributions. The p-value indicates the probability of observing the same
results if no correlation exists. If the p-value is smaller than 0.05 and the average value
of the neighbourhood distribution is smaller, we conclude that the behavioural distance
between contextual neighbours is significantly smaller than random neighbours. If the
p-value is greater than 0.05, we conclude that the contextual neighbours produced do
not present similar behaviour.

When we increase K, we get closer to the random case. A good candidate feature
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Algorithm 8 Experiment to check if the candidates of contextual feature produce
contextual neighbourhood with small behavioural distance.
number_cities ← 5566
random_distribution ← new_array(50,000)
contextual_distribution ← new_array(50,000)

{Generate the random distribution.}
while (iteration 6= 50,000) do

{Choose at random the first city.}
random_position_1 ← random_int(0, number_cities)
c1 ← cities[random_position_1]
{Choose at random the second city which must be different from the first city.}
random_position_2 ← random_int(0, number_cities)
while (random_position_2 = random_position_1) do

random_position_2 ← random_int(0, number_cities)
end while
c2 ← cities[random_position_2]
{Append their behavioural distance to the distribution.}
random_distribution.append(Euclidean_distance(c1.rates, c2.rates))
iteration += 1

end while
iteration ← 0

{Generate the contextual distribution.}
while (iteration 6= 50,000) do

{Choose at random the first city.}
random_position_1 ← random_int(0, number_cities)
c1 ← cities[random_position]
contextual_distances ← new_array(K)
{Iterate over all cities to look for the k closer cities.}
for all (candidate in cities) do

distance ← distance(c1.contextual_feature, candidate.contextual_feature)
if (distance < max(neighbourhood_distances)) then

contextual_distances.remove(max(neighbourhood_distances))
contextual_distances.insert(distance)

end if
end for
{Choose at random one of the k distance to append to the contextual distribution.}
random_position_2 ← random_int(0,K)
contextual_distribution.append(contextual_distances[random_position_2])
iteration += 1

end while

for the contextual analysis should present ascending p-value as we increase the value of
K: close neighbours should present smaller behavioural distances compared to random
cities.

Tables A.1, A.2 and A.3 present the p-values produced in the experiment for the
ten procedures with three different contextual features: population size, geographical
distance and HDI, respectively. The neighbourhood size K was set to 5, 50, 500, 3000
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Table A.1. P-value considering the population size as the contextual feature.

Procedure / K 5 50 500 3000 All cities
Arteriography 0.003535 0.002757 1.186e-05 0.03763 0.8436

Cardiovascular Surgery 3.852e-11 6.431e-11 < 2.2e-16 0.002195 0.7373
Glaucoma Surgery 0.5281 0.3004 0.2658 0.2621 0.9694

Highly Complex Orthop. 6.191e-15 1.021e-15 < 2.2e-16 0.06554 0.3534
Neurosurgery < 2.2e-16 < 2.2e-16 < 2.2e-16 0.0005257 0.8096

Obstetrics < 2.2e-16 < 2.2e-16 < 2.2e-16 9.124e-08 0.5498
Oncology 2.577e-10 4.99e-13 < 2.2e-16 0.07692 0.1384

Scintigraphy 0.002151 0.001949 0.01419 0.9136 0.4142
Transplant 1.09e-07 1.031e-12 5.014e-13 0.6769 0.6507

Ultrasonography 2.279e-09 2.102e-07 1.718e-09 4.111e-05 0.8198

Table A.2. P-value considering the geographical location as the contextual
feature.

Procedure / K 5 50 500 3000 All cities
Arteriography < 2.2e-16 < 2.2e-16 0.1027 0.09721 0.928

Cardiovascular Surgery < 2.2e-16 < 2.2e-16 < 2.2e-16 2.09e-15 0.6609
Glaucoma Surgery < 2.2e-16 < 2.2e-16 5.287e-08 6.597e-16 0.01972

Highly Complex Orthop. < 2.2e-16 < 2.2e-16 0.0003484 0.0022 0.2356
Neurosurgery < 2.2e-16 < 2.2e-16 0.06736 0.5762 0.6601

Obstetrics < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 0.9025
Oncology < 2.2e-16 < 2.2e-16 3.058e-12 0.0001262 0.4049

Scintigraphy < 2.2e-16 < 2.2e-16 < 2.2e-16 0.2673 0.1265
Transplant < 2.2e-16 < 2.2e-16 0.434 0.06133 0.5515

Ultrasonography < 2.2e-16 < 2.2e-16 4.523e-16 0.8387 0.05987

Table A.3. P-value considering the HDI as the contextual feature.

Procedure / K 5 50 500 3000 All cities
Arteriography 0.02297 0.1501 0.01645 0.8827 0.9752

Cardiovascular Surgery < 2.2e-16 < 2.2e-16 < 2.2e-16 3.652e-10 0.1006
Glaucoma Surgery 3.177e-05 0.003674 0.0225 0.1856 0.5353

Highly Complex Orthop. 4.505e-11 3.481e-15 2.963e-15 0.3465 0.5083
Neurosurgery 0.0102 0.0003325 7.586e-05 0.4703 0.4437

Obstetrics < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 0.8728
Oncology < 2.2e-16 < 2.2e-16 3.32e-14 0.3674 0.01136

Scintigraphy < 2.2e-16 < 2.2e-16 < 2.2e-16 4.112e-11 0.3939
Transplant 9.278e-07 1.703e-06 3.628e-07 0.2257 0.1463

Ultrasonography < 2.2e-16 < 2.2e-16 1.311e-15 1.976e-07 0.6152
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and to all the cities according to the number of cities that performed each procedure
as shown in Table 4.2. In all executions, the average value of the random distribution
is greater than the average in the neighbourhood distribution. Thus, we can interpret
the results as how significantly smaller is the behavioural distance between neighbours
compared to random pairs.

From the results, we conclude that all the three features are good candidates:
with just few exceptions, the p-value is small when K is small and it increases when
the value K becomes large. The meaning of these results is that cities with similar
distance according to population size, geographical location or HDI have also similar
rates of procedures.

As we could not choose the contextual feature with this experiment, we also
created two new features to repeat the experiment, as shown next. With these new
features, we avoid that geographically distant cities are considered contextual neigh-
bours due to their similar HDI or population.

1. HDI distance weighted by the geographical distance: the contextual neighbours
are those cities that are both geographic close and with similar development
index.

2. population distance weighted by the geographical distance: contextual neigh-
bours are close cities with similar population size.

Table A.4. P-value considering the HDI weighted by the geographical distance
as the contextual feature.

Procedure / K 5 50 500 3000 All
Arteriography < 2.2e-16 1.457e-11 0.395 0.03827 0.5243

Cardiovascular Surgery < 2.2e-16 < 2.2e-16 < 2.2e-16 1.095e-13 0.641
Glaucoma Surgery < 2.2e-16 < 2.2e-16 2.722e-05 3.802e-06 0.8633

Highly Complex Orthop. < 2.2e-16 < 2.2e-16 7.078e-06 0.03083 0.8115
Neurosurgery < 2.2e-16 < 2.2e-16 0.01423 0.1478 0.02954

Obstetrics < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 0.02294
Oncology < 2.2e-16 < 2.2e-16 1.415e-12 0.01213 0.9162

Scintigraphy < 2.2e-16 < 2.2e-16 < 2.2e-16 5.108e-06 0.2444
Transplant < 2.2e-16 8.111e-12 0.005658 0.7929 0.6275

Ultrasonography < 2.2e-16 < 2.2e-16 < 2.2e-16 1.066e-05 0.4717

The results of the experiment with these new features are shown in Tables A.4
(HDI weighted by the geographical distance) and A.5 (population size weighted by the
geographical distance). Again, in all experiments the average distance of the neigh-
bourhood distribution was smaller than in the random distribution. Thus, they show
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Table A.5. P-value considering the population size weighted by the geographical
distance as the contextual feature.

Procedure / K 5 50 500 3000 All
Arteriography < 2.2e-16 0.001629 0.66 0.009262 0.3301

Cardiovascular Surgery < 2.2e-16 < 2.2e-16 2.775e-16 0.3044 0.9485
Glaucoma Surgery < 2.2e-16 7.858e-14 2.481e-05 0.2144 0.9127

Highly Complex Orthop. < 2.2e-16 < 2.2e-16 9.447e-07 0.001916 0.1976
Neurosurgery < 2.2e-16 < 2.2e-16 0.05109 3.593e-10 0.7829

Obstetrics < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 0.9713
Oncology < 2.2e-16 < 2.2e-16 5.656e-06 0.00408 0.2188

Scintigraphy < 2.2e-16 < 2.2e-16 8.87e-05 0.0003631 0.5979
Transplant < 2.2e-16 7.286e-11 0.006763 1.966e-10 0.4098

Ultrasonography < 2.2e-16 < 2.2e-16 7.207e-10 0.3893 0.6106

how significantly smaller is the behavioural distance between neighbours compared to
random pairs.

Again, all the candidates for the contextual features are good and have great
correlation with the behavioural distance. As all of them are similar in the quanti-
tative analysis, our decision is based on the qualitative analysis: we believe that the
geographic distance and the HDI are the most relevant features to set the cities context.

The HDI is generic and measure the overall situation of the cities according to the
education, healthcare and economics aspects. The location is also important because
cities located in the same region tends to present similar culture. Hence, the contextual
distance between each pair of cities is given by the HDI distance weighted by their
geographic distance.

After choosing the two features applied on the contextual analysis, we verified
whether or not these two information are correlated. If the location and HDI present
high correlation, it would not be necessary to combine them to generate the contex-
tual feature. Otherwise, they complement each other and both are important to be
considered.

Figure A.1 shows the relation between these two information: each point is a
Brazilian city and its color indicates the HDI level. Although in the North the HDI
tends to be smaller than in the south, it is possible to see that for most of the cities
the geographic neighbours present varied HDI levels. Thus, we conclude that the two
information complement each other.

Therefore, we shown that the contextual neighbours of a city should be the geo-
graphical close cities with similar development index.
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Figure A.1. HDI of the Brazilian cities.
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