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Resumo

Neste trabalho, dois estudos de casos que relacionam Ciências da Computação e Nan-
otecnologia são objeto de estudo, a través de duas recentes áreas de pesquisa: Nan-
otecnologia Computacional e Nanocomputação.

No primeiro caso, um algoritmo genético (GA) é utilizado para otimizar um tipo
de estruturas conhecidas como superredes com poço quântico central. A otimização
dessas estruturas é realizada variando a geometria que a compoe, com o intuito de
encontrar sistemas que em sua configuração energética, os estados discretos de ener-
gia estejam o mais próximo possível do inicio das minibandas. Isto, dado o fato de
que estruturas com essas particularidades apresentam alta capacidade de detecção e
fotodetetores mais eficientes podem ser desenvolvidos. A variação geométrica consiste
em modificar: o número de poços; largura do poço central, dos poços da superrede e
das barreiras e altura das barreiras, o que gera inumeráveis configurações energéticas
que são difíceis de prever. Desta forma, o processo de otimização se torna um dominio
desconhecido, complexo e que demanda um amplo conhecimento de especialistas, por
tanto, técnicas de otimização como os GAs são alternativas eficazes que podem auxiliar
na solução deste tipo de problemas.

Os resultados obtidos mostram que o GA aplicado neste trabalho é uma tecnica
adequada que se adaptou corretamente para o processo de otimização e as melhores
estruturas descobertas apresentam características interessantes e grande potencial para
serem sintetizadas experimentalmente.

No segundo caso de estudo, os cristais fotônicos são estudados para desenhar e
projetar portas lógicas inteiramente óticas, visando o desenvolvimento de uma ger-
ação de computadores que opere com alta velocidade de procesamento de dados, baixo
consumo energético e baixa dissipação de calor. Isto, motivado pelo fato de que os tran-
sistores baseados na tecnologia CMOS estão próximos do seu limite físico de miniatur-
ização, além de que os dispositivos computacionais atuais, tem alto consumo energético
e alta dissipação de energia em forma de calor.

Neste trabalho são utilizados as guias de onda em cristais fotônicos para contolar
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o fenômeno de interferência de luz e desta forma projetar portas lógicas. Duas novas
portas lógicas inteiramente óticas utilizando cristais fotônicos foram projetadas, a porta
da Maioria e a porta de Feyman. A primeira é muito importante para o desenvolvimento
de circuitos otimizados e simplificados, a segunda é uma porta reversível que permite
a criação de circuitos no limite mínimo de consumo energético. Adicionalmente, foi
aplicada uma metodologia para analisar a robustez destes dispositivos com o objetivo
de avaliar a tolerância às falhas ante possíveis erros no processo de crescimento físico.
Os resultados obtidos mostram que os dispositivos projetados com essa abordagem são
robustos e têm a capacidade de suportar grandes erros no processo de síntese com 95%
de confiança.

Palavras-chave: Nanodispositivos Semicondutores, Superredes com Poço Quântico
Central, Algoritmo Genético, Cristais Fotônicos, Portas Logicas Fotônicas, Análise de
Robustez..
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Abstract

In this work, two study cases linking Computer Science and Nanotechnology are stud-
ied, through two recent research areas: Computational Nanotechnology and Nanocom-
puting.

In the first case, a genetic algorithm (GA) is applied to optimize one type of
structures known as superlattices with central quantum well. The optimization of
these structures is accomplished varying the geometry that compose it, aiming to find
systems in that their energetic configuration, the discrete energy levels must close
of the beginning of the minibands. This, due to the that structures with these fea-
tures exhibit high capacity detection and efficient photodetectors can be development.
The geometrical variation consist in modify: the number of quantum wells; width of
the central well, wells of the supperlattice and the barriers and hight of the barriers,
generating countless energetic configurations difficult to predict. Consequently, the
optimization process becomes a unknown domain, complex and demanding extensive
knowledge and intuition of experts, then, optimization techniques such as GAs are
effective alternatives to aid in the solution of these problems.

The results obtained here show that the GA is an adequate techniques for the
optimization of this kind of structures and the better structures discovery present
interesting features and great potential to be synthesized experimentally.

In the second study case, photonic crystals are studied to design and project all-
optical logic gates, aiming the development of a computers generation operating with
high data processing speed, low power consumption and low dissipation of energy.
This, motivated by the reason that the transistor based on CMOS technology is close
to its physical limit of miniaturization as a result of various effects that are not found
at larger scales, such as current leakage. Also, the computational devices today have
high power consumption and dissipation of energy to heat.

In this project, photonic crystals waveguides are used to control the light beam
interference effect focusing in the design of all-optical logic gates. Two new logic devices
in photonic crystals were proposed in this work, the Majority and Feynman gates. The
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former is very important to develop simplified and optimized circuits, the latter is a
reversible logic gate that allows the creation of computational circuits in the minimum
limit of energy consumption. Additionally, a methodology to analyse the robustness
of these devices is applied with the goal to evaluate the fault tolerance in the physical
growth. The results obtained show that the devices projected with this approach are
robust and have the capacity to tolerate high disorders in the physical growth process
with 95 % of confidence level.

Palavras-chave: Semiconductors nanodevices, Superlattices With Central Quantum
Well, Genetic Algorithm, Photonic Crystals, Photonic Logic Gates, Robustness Anal-
ysis.
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Chapter 1

Introduction

1.1 Motivation

In recent years, two research areas that link computer science and nanotechnology have
been gaining ground. These are: computational nanotechnology and nanocomputing.

The first focusses on the application of computational tools and algorithms to
support the evolution of the nanoscience and nanotechnology, specifically to develop
and discover new materials and devices at the nano scale. On the other hand, nanocom-
puting investigates materials and devices at nano scale as alternatives technologies to
develop new generations of computers with low power consumption and high data
processing speed.

In this work, two study cases related with computational nanotechnology and
nanocomputing are investigated.

The first motivated by the difficulty found by scientists to optimize one kind
of quantum structures known as superlattices with central quantum well (SPQW).
These are periodic structures formed by the repetition of quantum wells with thin
barriers separating them and a quantum central well. Consequently, discrete energy
states and minibands are present in their energy-band configuration. Modifications in
the geometry of it, such as: number of quantum wells, width of quantum wells and
barriers, height of the barriers, cause different energy-band configurations.

The localization of the discrete energy states and minibands in SPQW is accom-
plished through a visual observation by an expert, demanding extensive knowledge and
intuition. In addition, finding structures with specific energy-band configuration is a
hard, empirical and slow optimization process.

For this reason, the use of robust, effective and efficient computational techniques
and optimization algorithms to support this process is necessary. Thus, a genetic al-
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4 Chapter 1. Introduction

gorithm is an adequate optimization approach to find SPQW structures with desired
energy-band configuration in order to develop new optoelectronic devices such as pho-
todetectors.

The second study case is inspired by the reason that the silicon transistor is
close to its physical limit of miniaturization as a result of various effects that are not
found at larger scales, such as current leakage. Consequently, smaller computers with
greater data processing speed and high capacity of data storage might not be developed.
Also, the computational devices today have high power consumption and dissipation
of energy to heat. Then, it is necessary to explore new materials and technologies to
find the successor of silicon transistor.

One possible alternative is the optical technology. In this, the information pro-
cessing is realized using all-optical devices. For optical technology is expected consider-
able reduction of dissipation, low power consumption and high speed of data processing.

In this way, photonic crystals are materials with low absorption and periodic
refractive indices. The periodicity can be in one, two or three dimensions. Two di-
mensional photonic crystals can be designed to create a complete photonic band gap,
preventing light from propagating in certain directions with specified frequencies. This
phenomena is used to create a photonic crystal waveguide. A waveguide is a con-
trolled defect in the crystal, able to guide the light in desired directions of propagation,
Joannopoulos et al. [2008]. Then, a photonic crystal waveguide is a perfect platform
to design all-optical logic devices aiming the creation of photonic integrated circuits.

1.2 Goals

For the superlattice with central quantum well optimization, the goal is to find struc-
tures with a desired energy-band configuration through a genetic algorithm by varying
the geometry parameters that compose them. This, aiming to develop and discover
new optoelectronic devices such as photodetectors with high detection capacity. The
parameters to be modified are: number of quantum wells, width of the central quantum
well, width of the quantum wells that form the superlattice, width of the barriers and
height of the barriers.

In the work with photonic crystals, the goal is to project new all-optical logic gates
controlling the light beam interference effect through the photonic crystals waveguide.
Additionally, a methodology for the robustness analysis of all-optical logic devices in
photonic crystals will be performed to evaluate the fault tolerance of these devices.
This, focusing on the development of a new generation of computers that operate with



1.3. Contributions 5

low power consumption and high speed of data processing.

1.3 Contributions

The main contributions of this project are: for the superlattices with central quantum
well optimization, an approximated method was developed to achieve automatically
the energy-band configuration of these structures. This method in conjunction with
a genetic algorithm are applied to find superlattices of quantum wells with desired
energy states. The best structures found in this work have great potential to be grown
experimentally in order to develop optoelectronic devices such as photodetectors.

In the work with photonic crystals, two all-optical logic gates were projected
using the light beam interference effect. These are: the Majority and Feynman gates.
The first is very important to develop simplified and optimized circuits, the second
is a reversible logic gate that allows the creation of circuits in the minimum limit of
energetic consumption. Additionally, a robustness analysis methodology was proposed
and demonstrated that the all-optical logic devices designed with photonic crystals
waveguide are robust and can tolerate high errors in the growth physical process.

1.4 Roadmap

This manuscript is organized as follows: Chapter 2 presents an overview of semicon-
ductors, superlattices of quantum wells and photonic crystals. Chapter 3 discusses the
main works in optimization of nanostructures and nanodevices, also, the recent works
with all-optical logic gates using photonic crystals. Chapter 4 describes the optimiza-
tion process and the simulation results of the superlattice of quantum wells structures.
In Chapter 5 are presented the all-optical logic gates proposed here and the robust-
ness analysis of logic devices. Finally, Chapter 6 gathers the main conclusions and the
future work.





Chapter 2

Background

Nanocomputing and Computational Nanotechnology are two recent research areas link-
ing Computer Science and Nanotechnology, so, in order to better understand this work,
this section gives an introduction to what Semiconductors, Superlattices of Quantum
Wells Structures, Photonic Crystals and Genetic Algorithms are, and how they work.

2.1 Semiconductors

In solid state physics, crystals are defined as periodic arrangements of atoms or
molecules characterized by a crystal lattice, which has the geometrical information
of the periodic pattern. Consequently, an atomic crystal determines a periodic poten-
tial which produces fascinating consequences in the electron transport throughout the
crystal, and characterizes the electric properties of the material, Rezende [2004].

Electrons suffer scattering in crystals when the size of the scatterers (atoms or
molecules) are of the order of the De Broglie wavelength, giving rise to interference
phenomena between the multiple scattered electron waves. Such interference can be
constructive, determining allowed states known as bands, e.g., valence and conduction
bands; or destructive, determining forbidden states known as band gaps. Each crystal
has its own energy-band configuration. Thus, there are several possible energy-band
conditions to consider, Neamen [2003].

First, when the material is an insulator, the last energy band with electrons
is completely filled with electrons. Then, if an electric field is applied, there are no
particles to move, so there will be no current, as shown in Figure 2.1a, Neamen [2003].

In the second case, the crystal has the characteristics of a conductor, exhibiting a
very high electrical conductivity. For this condition, the last energy band with electrons

7
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Figure 2.1: Energy band configuration for (a) Insulator and (b) Conductor

is not completely filled, so an electric field can put electrons in movement, thus, allowing
conduction, as illustrated in Figure 2.1b, Neamen [2003].

Finally, when the material is a semiconductor, the last energy band of a crystal
is completely filled, only at temperature T = 0 K. When the temperature is higher
than zero, valence band electrons can gain enough thermal energy to reach the next
band, called conduction band, which was empty at T = 0. The migration of electrons
to the conduction band leaves, in the valence band, states that behave such as positive
charge carriers, called holes. The electrons in the conduction band and holes in the
valence band produce electrical current under the action of an external field. The
conductivity of the material depends on the number of electrons that passes into the
conduction band, which can be calculated probabilistically. This amount of electrons
is proportional to the temperature and the inverse of the energy gap between the two
bands. This energy is represented by Eg, where g is the gap index. The materials
which are insulators at T = 0 K, but have an Eg relatively small, on the order of 1

eV or less at room temperature, have significant conductivity and, therefore, are called
semiconductors. Figure 2.2 shows the occupation of the valence and conduction bands
in a semiconductor.

In these materials, the number of electrons in the conduction band can be higher
in relation to an insulator, but it is still much less than the number of free electrons in
a metal. Therefore, the conductivity of the semiconductor is much smaller than that
of metals. The main difference between an insulator and a semiconductor is the value
of Eg. For example, silicon has Eg = 1.1 eV and is a semiconductor, while diamond
which has the same structure of Silicon (Si), but comprised of atoms of Carbon (C)
has Eg = 5 eV , and behaves as a good insulator. The Silicon Oxide, SiO2, has an
Eg ' 8 eV and is also an insulator. The difference in the values of Eg may not seem
so great to produce radical change in conductivity, however, the occupation of the
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Figure 2.2: Energy band configuration for (a) Semiconductor at T = 0K and (b)
Semiconductor at T > 0K

conduction band decreases exponentially with the increase of the Eg
kBT

ratio, where kB
is the Boltzmann constant, as described in Rezende [2004].

2.2 Superlattice of Quantum Wells

A semiconductor quantum well is a sandwich structure, in which a piece of narrow-gap
material (well) is placed between two pieces of wider-gap material (barriers), as shown
in Figure 2.3. This is a kind of quantum-confined structure in which the motion of the
electrons (and/or holes) are confined in one directions by the potential barriers, Duan
and Guojun [2005].

The quantum confinement is provided by the discontinuity in the band gap at
the interfaces, which leads to a spatial variation of the conduction and valence bands,
as shown in the lower half of the Figure 2.3.

Quantum Well Barrier Barrier 

Conduction Band 

Valence Band 

Eg QW Eg Barrier 

Figure 2.3: Quantum Well Structure. Dashed lines represent discrete energy levels.
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Thus, the motion of the electrons and holes will be quantized in the growth (z)
direction, giving rise to a series of discrete energy levels, as indicated by the dashed
lines inside the quantum well in Figure 2.3. The motion in the other two directions (i.
e. the x-y plane) is still free, and so we have quasi two-dimensional (2-D) behaviour,
Kasap and Capper [2007].

A superlattice of quantum wells structure consists of many repeated quantum
wells with thin barriers separating them, as illustrated in Figure 2.4. Superlattices
behave like artificial one-dimensional periodic crystals, in which the periodicity is de-
signed into the structure by the repetition of the quantum wells. The electronic states
of superlattices form delocalised minibands as the wave functions in neighbouring wells
couple together through the thin barrier that separates them, Kasap and Capper [2007].

CQW B QW B 

Single QW Superlattice QW 

Valence Band 

Conduction Band 

c b s 

h 

Figure 2.4: Superlattice of Quantum Wells Structure. Dashed lines represents discrete
energy levels and the shaded areas minibands.

Quantum wells and superlattices of quantum wells structures in general have
many uses. They can be used for advanced electronic devices (e.g., modulation-doped
field-effect transistors, heterojunction bipolar transistors, resonant tunneling devices),
optical components (e.g., waveguides, mirrors, fiber-optic communication, laser print-
ing, compact disc, CD-ROM, scientific instruments), and optoelectronic devices and
structures (e.g., laser diodes, photodetectors, optoelectronic devices). Although het-
erostructures may be useful in electronics, they are crucial in many optoelectronic
devices. Perhaps, their most important technological aspect may be that they can be
used for all of these electronic, optical, and optoelectronic purposes, and hence may
allow the integration of all of these, Gossard et al. [2000].
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2.3 Photonic Crystals

The optical analogue of an atomic crystal semiconductor is known as a photonic crystal,
which is a material whose dielectric function is periodic and they are described by an
underlying crystal lattice. As electrons in periodic potential, electromagnetic waves in
a photonic crystal undergo scattering when their wavelengths are of the order of the
size of the dielectrics forming the crystal, Joannopoulos et al. [2008].

Photonic bands (allowed states) arise as a consequence of constructive interference
phenomena, and photonic band gaps arise as a consequence of destructive interference
phenomena. Defects in the periodic structure can be introduced in a photonic crystal
and they can induce the localization of the electromagnetic field around the defect,
and these localized states can have associated frequencies inside the photonic band gap
region. Photonic crystals can be periodic in one, two or three dimensions, each of these
offering particular functionalities and applications, Joannopoulos et al. [2008].

Two dimensional photonic crystals, as shown in Figure 2.5, can be designed to
create a complete photonic band gap, preventing light from propagating in certain
directions with specified frequencies (i.e., within a certain range of wavelengths of light
colors).

Figure 2.5: Two dimensional photonic crystal. Taken from Joannopoulos et al. [2008].

In particular, there are two types of defects that can be introduced in two-
dimensional photonic crystals: point defects and line defects. The former are known
as cavities, illustrated in Figure 2.6, and the latter as waveguides, as shown in Figure
2.7.

Cavities in photonic crystals are used to localize the electromagnetic radiation,
usually in a small volume with very small losses. On the other hand, waveguides are
used to guide the electromagnetic radiation with very high efficiency, as shown in Figure
2.7b. One of the big advantages of photonic crystal cavities and waveguides is that
electromagnetic waves at optical frequencies are only weakly absorbed by dielectric
materials, different from metallic materials where the absorption at these frequencies
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(a) (b)

Figure 2.6: Photonic Crystal Cavity. (a) Dielectric distribution of the structure and
(b) Electric field distribution.

is usually high. In this way, photonic crystals allow optical devices working in the low
losses and low energy-consumption regime, Joannopoulos et al. [2008].

(a) (b)

Figure 2.7: Photonic Crystal Waveguide. (a) Dielectric distribution of the structure
and (b) Electric field distribution.

Photonic crystals have become very promising systems to achieve the desired all-
optical information processing in photonic circuits. In particular, cavities and waveg-
uides embedded in photonic materials can be used to design efficient all-optical com-
putational devices with flexible functionalities.

2.4 Genetic Algorithm

Computational Intelligence is a branch of Computer Science that uses algorithms and
techniques that mimic some cognitive abilities such as recognition, learning and devel-
opment, to create programs, somehow intelligent. The best-known and used algorithms
are: Genetic Algorithm, Artificial Neural Networks and Fuzzy Logic, Neto [2014].

Essentially, Genetic Algorithms are search and optimization methods, highly par-
allel, inspired by the principles of Darwinian natural selection and genetic reproduction,
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which favor the fittest individuals living longer and therefore more likely to reproduce.
Typically, the GAs operate as explained in Algorithm 1, Mitchell [1998].

Algorithm 1 Genetic Algorithm
1: procedure GA(Fitness, n, p, r, m)
2: Fitness: A function that assigns an evaluation score, given a hypothesis.
3: n: The number of generations.
4: p: The number of hypotheses to be included in the population.
5: r: The fraction of the population to be replaced by Crossover at each step.
6: m: The mutation rate.
7: Initialize population: P ← Generate p hypotheses at random.
8: Evaluate: For each h in P , compute Fitness(h).
9: while Stop condition is not satisfied do

10: Create a new generation, Ps:
11: Select: Probabilistically select (1− r)p members of P to add to Ps.
12: Crossover: Probabilistically select pair of hypotheses from P .

For each pair, (h1, h2) , produce two offspring by applying the
crossover operator.
Add all offspring to Ps.

13: Mutate: Choose m percent of the members of P , with uniform probability.
For each, invert one randomly selected bit in its representation.

14: Update: P ← Ps.
15: Evaluate: for each h in P , compute Fitness(h).
16: speed ← computeSpeed(

gpx.track(i).segment(j).delta_s(q),
gpx.track(i).segment(j).delta_t(q));

17: end while
18: Return the hypothesis from P that has the best fitness.
19: end procedure

These algorithms are inspired by the genetic processes of biological organisms to
search for optimal solutions. To do so, it proceeds as follows: each potential solution to
a problem can be encoded in a structure called chromosome, which consists of a string
of bits or symbols, Michalewicz [2013]. So these chromosomes represent individuals
that are evolved over several generations, similar to living beings, according to the
principles of natural selection and survival of the fittest, as described by Darwin [1859].
Simulating these processes, Genetic Algorithms are able to evolve solutions to real world
problems.

The evolution process starts with the creation of random individuals (solutions)
that will form the initial population. From a selection process based on the fitness
of each individual, individuals are chosen for reproduction phase, which creates new
solutions using for this a set of genetic operators (crossover and mutation basically).



14 Chapter 2. Background

These new solutions will be evaluated and their skills will determine your probability
of staying in subsequent generations, Golberg [1989].

The stop condition of the algorithm can be determined in several ways: the num-
ber of generations, the number of individuals created, getting a given evaluation value,
i.e., an optimum, the processing time, and the degree of similarity among individuals
in a population (indicating convergence).



Chapter 3

Related Work

3.1 Semiconductor Nanodevices Optimization

Computational Nanotechnology (or Computational Nanoscience) focuses in the appli-
cation and development of algorithms and computational systems to aid the advances
of nanoscience and nanotechnology. In this scenario, many computational techniques
have been applied to support several studies researching the development and discovery
of new materials and devices in the nano-scale.

In a work developed by Singulani et al. [2008] two computational intelligence
techniques were applied, namely, Artificial Neural Network (ANN) and Genetic Algo-
rithm to the growth of self-assembled quantum dots. The ANN was used to associate
the growth input parameters with the mean height of the deposited quantum dots. The
six different growth parameters used as input to create the ANN are: the indium flux
in the reactor, the growth temperature, the deposition time, the width of the layer on
top of which the dots are nucleated, the aluminum and indium contents of this layer
material. Once the Neural Network was created, validated and tested, it has combined
with the GA, enabling us to obtain the growth parameters which are, in principle, most
suitable for minimizing the quantum dot mean height. This is accomplished by using
an ANN to infer the behavior of the quantum dots, and after that, the GA technique to
obtain the parameters configuration which leads to the minimum quantum dot mean
height possible, given the growth parameters ranges used as input to the ANN.

Passaro et al. [2010] present a self-consistent optimization of multi-quantum well
based nanostructured semiconductors. Two study cases are evaluated, to known: sym-
metric MQW of three wells with a larger one in the middle and MQW of ten wells and
electric contacts. A Genetic Algorithm is used for the search module, based on the
solution of the coupled Schrödinger and Poisson equation.

15
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In another work, Deb et al. [2010] applied Genetic Algorithm (GA) and particle
swarm optimization (PSO) techniques to determine the optimized system parameters
for modulation doped AlxGa1−xAs/GaAs quantum well nanostructures. Electrical
characteristics of carrier in quantum well are controlled by system parameters like
quantum well width, spacer layer thickness, doping concentration, lattice temperature,
external dc biasing field and frequency of applied ac field. All these parameters are
related in such a way that it is very difficult to predict optimized parameter values
for desired electrical characteristics. Optimized parameters computed with both tech-
niques are analyzed to predict the flexibility in terms of parameters which may be
utilized during the fabrication of better nanodevices. The authors showed that PSO
achieved slightly better results.

Cotta et al. [2014] use a genetic algorithm for the the first quantitative study of
parameters optimization for semiconductor microcavities synthesis under uncertainty.
In this, optimal parameter set (aluminum concentrations x, thickness and the number of
the layers) were found based on the reflectance spectra of a AlxGa1−xAs semiconductor
microcavity. These parameters may offer increased robustness in the growth process,
while providing a considerable Quality Factor and the desired position of the cavity
resonance.

Also, evolutionary optimization has been used by Feichtner et al. [2012], to find
improved nanoantenna structures and Chen et al. [2007] optimized the focusing qual-
ity of integrally gated Carbon Nanotube (CNT) field emission devices by numerical
methods that include GAs. Ginzburg et al. [2011] presented a method for designing
plasmonic particles with desired resonance spectra by exploiting the interaction of lo-
cal geometry with surface charge distribution and applying an evolutionary algorithm.
Forestiere et al. [2010] used GAs to design metal nanoparticle arrays that produce
broadband plasmonic field enhancement over the entire visible spectral range.

In this project a genetic algorithm is applied to find superlattices of quantum
wells structures restricted to a condition on their energy-band configuration. This
condition dictates that the discrete energy levels must be close to the beginning of the
minibands, because the detection capacity of the device increases. To achieve this,
variations in the geometry of the structure are performed through the GA in order to
produce different energy-band configurations. The geometry parameters altered are:
number of quantum wells, width of the quantum central well, width of the quantum
wells forming the superlattice, width and height of the barriers.
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3.2 All-Optical Logic Gates

The first step for development of photonic computational circuits is the design and
creation of all-optical logic gates. Recently, many schemes have been proposed to
realize all-optical logic gates.

Rani et al. [2013] report an AND optical logic gate, shown in Figure 3.1, based
on two dimensional triangular lattice of air holes in Si. The design of the structure
consists of Y-branch waveguide without nonlinear materials and optical amplifiers. A
point defect was inserted in the central rod of the structure to decrease the output
power, when one of the inputs is set in 1. When both inputs are 1, the output power
was increased so that a high transmission is obtained and an AND gate is accomplished.

Port A 

Port B 

Output Y 

Figure 3.1: Schematic structure for AND logic gate proposed by Rani et al. [2013].

In another recent work, Yang et al. [2013] propose an all-optical AND gate based
on a two-dimensional photonic crystal, illustrated in Figure 3.2. The device is com-
posed of a ring resonator waveguide with two input-port waveguides and one output-
port waveguide in triangular-lattice photonic crystals. The logic AND gate proposed
can operate at various wavelengths such as 1.30, 1.43, 1.45, 1.49, 1.51, and 1.55 µm,
considering the definitions of logic 0 and 1 being less than 35% and more than 95%,
respectively.

All-optical logic gates, including OR, XOR, NOT, XNOR, and NAND gates, are
realized theoretically by Fu et al. [2013] in a two-dimensional silicon photonic crystal
using the light beam interference effect. The ingenious photonic crystal waveguide
component design, the precisely controlled optical path difference, and the elaborate
device configuration ensure the simultaneous realization of five types of logic gate with
low-power and a contrast ratio between the logic states of 1 and 0 as high as 20 dB.
High power is not necessary for operation of these logic gate devices. As shown in
Figure 3.3, the schematic structure for the logic devices offers a simple and effective
approach for the realization all-optical logic gates.
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Figure 3.2: Schematic structure for AND logic gate proposed by Yang et al. [2013].
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Figure 3.3: Schematic structure for the (a) OR and (b) XOR logic gates proposed by
Fu et al. [2013].

Younis et al. [2014] propose two novel designs of compact, linear, and all-optical
OR and AND logic gates based on photonic crystal architecture. The proposed devices
are formed by the combination of the ring cavities and Y-shape line defect coupler
placed between two waveguides. The suggested design for AND gate offers ON to OFF
logic level contrast ratio of not less than 6 dB and the suggested design for OR gate
offers transmitted power of not less than 0.5. On top of that, the proposed OR and
AND logic gates can operate at bit rates of around 0.5 and 0.208 Tb/s, respectively.
Further, the calculated fabrication tolerances of the suggested devices show that the
rods radii of the ring cavities need to be controlled with no more than ±10% and ±3%

fabrication errors for optical OR and AND gates, respectively. The schematic structure
of these all-optical logic gates is shown in the Figure 3.4

More recent, Goudarzi et al. [2016] proposed an all-optical logic gate structure
based on line and point defects created in the two dimensional square lattice of silicon
rods in air photonic crystals (PhCs), shown in Figure 3.5. Line defects are embedded
in the ΓX and ΓY directions of the momentum space. The device has two input and
two output ports. It has been shown analytically whether the initial phase difference
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(a) (b)

Figure 3.4: Schematic structure for the (a) OR and (b) AND logic gates proposed by
Younis et al. [2014].

between the two input beams is π
2
, they interfere together constructively or destruc-

tively to realize the logical functions. The authors reported that the device can acts
as an XOR and an OR logic gate. The frequency operation range of the device is 0

to 0.45 ( a
λ
), this ratio was set 0.419 for low dispersion condition, correspondingly the

lambda is equal to 1.55 µm. The maximum delay time to response to the input signals
is about 0.4 ps, hence the speed of the device is about 2.5 THz. Also 6.767 dB is the
maximum contrast ratio of the device.

A 

B 

Q2 

Q1 

Figure 3.5: Schematic structure proposed by Goudarzi et al. [2016]. The output in Q1
is the XOR function and in Q2 is the OR function.

In this work, two new optical logic gates are proposed: the Majority gate and the
Feynman gate. The former allows the creation of simple and optimized computational
circuits and the latter is a reversible logic device projected to design circuits in the
thermodynamic limit of computation. Additionally, a robustness analysis methodology
is applied to evaluate the performance and fault tolerance of these devices.





Chapter 4

Optimization of Superlattices With
Central Quantum Well

This chapter presents the methodology to apply the genetic algorithm, the problem
definition, the optimization model and the simulation results of the optimization of the
superlattices with central quantum well.

4.1 Problem Definition

4.1.1 Superlattice With Central Quantum Well Structures

Desired

The design and search of superlattices of quantum wells with desired energy-band
configuration behaviour is a very difficult process. However, this is an important step
for the development and discovery of new optoelectronic devices.

The structures of our interest are geometrically composed by a central quantum
well, n quantum wells to the left and right of the CQW and (2 ∗ (n+ 1)) barriers, see
Figure 4.1. Modifications in the geometry of the structure produce different energy-
band configuration, i.e, variations in the number of quantum wells, the width of the
central quantum well, width of the quantum wells forming the superlattice, width and
height of the barriers, are responsible for these effects.

The target here is to find structures restricted to the following condition:
The discrete energy levels must be close of the beginning of the minibands in the

energy-band configuration of the structure, as illustrated in the Figure 4.2a. The main
reason is that when an electric field is applied on the structure, the discrete energy
level comes into the miniband, increasing the detection capacity of a photodetector.

21
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Figure 4.1: Superlattice of quantum wells geometry.
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Figure 4.2: Example of a energy-band configuration desired (a) and not desidred (b).

In this project, only the discrete energy levels and minibands of the structure
with energy above the barriers are investigated. The upper boundary of energy to be
considered is 1600 meV , being the energy range of interest.

4.1.2 Detection of Energy States

As detailed in Section 2.2, a superlattice with central quantum well, like the one de-
picted in Figure 4.1, generates discrete energy levels and minibands.

Consider the structure with the parameters displayed in Table 4.1 and illustrated
in Figure 4.3.

Number of Quantum Wells 5

Central Quantum Well Width 70 Ang.

Superlattices of Quantum Wells Width 20 Ang.

Barriers Width 70 Ang.

Barriers Height 500 meV

Table 4.1: Parameters of superlattice of quantum wells structure.

The first step to achieve the energy-band configurations of this kind of structures
is to calculate and plot the transmission coefficient using the method described in
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Figure 4.3: Superlattice of quantum wells structure example.

Degani and Maialle [2010]. After this, a visual observation by an expert is made to
localize the discrete energy levels and minibands using the transmission plot. Figure 4.4
shows the transmission plot of the superlattice of quantum wells example. The discrete
energy levels (in red), and the minibands (the regions inside the green rectangles) are
shown.

Figure 4.4: Transmission of superlattice of quantum wells structure example.

Obviously, this task is empirical, prone to errors and slow, demanding an extensive
knowledge and intuition of experts.

For this reason, an approximate method to accomplish automatically the energy-
band configuration of the superlattices of quantum wells was developed and imple-
mented, as described below.

Firstly, the energy points of the maxima in the transmission coefficient are ob-
tained and the wave function is recalculated for each point. Also, the square module
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of the wave function is computed in the quantum wells of the superlattice and in the
central quantum well, see Figure 4.5, to verify its localization, according to:

PSR =
∫

Superlattice

| ψ(x) |2 dx (4.1)

PCQW =
∫

CQW

| ψ(x) |2 dx (4.2)

where PSR and PCQW are the square modules of the wave function, ψ(x), in the super-
lattice and in the central quantum well, respectively.

Figure 4.5: Localization of the wave function.

Once this is done, the ratio r =
PCQW
PSR

is calculated. Note that when the wave
function is localized closer to the quantum central well, r has a greater value than that
when localized in the superlattice, therefore, the maximum point can be considered as
a discrete energy level.

Finally, the mean and the standard deviation are computed, and the following
factor is calculated:

f = µ+ λσ (4.3)

where µ is the mean, λ is an empirical parameter and σ is the standard deviation. At
this instance, if the r ratio of a maximum energy point is greater than the factor f ,
this point is considered a discrete energy level, otherwise is part of a miniband. Figure



4.1. Problem Definition 25

4.6a shows the simulation result of the above procedure. Each point represents the
ratio of the maximum points, red line the mean and the blue line the factor f . Figure
4.6b illustrates the energy-band configuration with the localized energy levels and the
transmission coefficient of the SPQW example.

(a) (b)

Figure 4.6: Simulation result of superlattice example. The aproximate method result
in (a) and (b) the final energy-band configuration.

Table 4.2 exhibits the energy values of the discrete energy levels and minibands
detected by the algorithm.

Energy Value Localizated State

555.25 Beginning of Miniband

615.07 End of Miniband

628.22 Discrete Energy Level

697.35 Beginning of Miniband

845.08 End of Miniband

879.46 Discrete Energy Level

924.12 Beginning of Miniband

1354.92 End of Miniband

1414.28 Discrete Energy Level

Table 4.2: Fitness calculation example.

To set the λ value, it was used a dataset with 200 examples, provided by profes-
sor Marcelo Maialle. Each example is a superlattice of quantum wells with different
geometry. For each structure, λ was tight to achieve the correct identification of the
energy-band configuration. Then, the mean of the set of λ obtained, when all examples
were correctly detected, was computed. This value was used to set the final λ value,
1.2.
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4.2 Optimization Model

To accomplish the correct function of the GA, two fundamental details are important:
the chromosome and the fitness function.

The chromosome of an individual is the abstraction of the parameters to be
optimized in the real world problem. Thus, the chromosome to achieve the SPQW
optimization is composed by 5 genes as illustrated in the Figure 4.7 and detailed in
Table 4.3. For the structures studied in this work the numbers of quantum wells is a
symmetrical parameter, i.e, the number of the quantum wells to the right of the central
quantum well are the same in the left. For example, 5 quantum wells indicate that the
structure will be composed by the central quantum well and 5 quantum wells to the
right and to left of it, as detailed in the example of the Section 4.1.2.

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Figure 4.7: Chromosome representation.

Table 4.3 explains the boundary conditions of the individual parameters, these
ranges were defined in talks with professor Marcelo Maialle.

Gene Description Ranges

g1 Number of Quantum Wells [ 5 , 15 ]

g2 Central Quantum Well Width (Ang.) [ 10 , 40 ]

g3 Barriers Width (Ang.) [ 20 , 90 ]

g4 Barriers Height (meV) [ 400 , 600 ]

g5 Superlattice of Quantum Wells Width (Ang.) [ 20 , 70 ]

Table 4.3: Individual parameters and their boundary conditions.

In order to simplify the optimization process all variables are limited to real num-
bers ranging from 0 to 1 which are latter interpolated to match superlattice attributes.

To evaluate each individual the method described in Section 4.1.2 is used and the
following fitness function is computed:

Fitness(E(g1,g2,g3,g4,g5), X(g1,g2,g3,g4,g5)) =
∑

(1− xi) · (ei− ei−1) + x · θ(ei− ei−1) (4.4)

where E is the set with the energy values obtained for the specific structure configu-
ration, X a is a set indicating if the energy value is a discrete state, ei is the energy
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value of the ith beginning of miniband detected, xi = 0 if the energy value ei−1 is a
discrete level, or xi = 1 if ei−1 is the end of a miniband, θ is an empirical parameter to
penalize the error when not desired structures are found.

Thus, the fitness calculation for the same structure example explained in the
Section 4.1.2 and for θ = 1.5, is detailed above:

Fitness(E(5,70,70,500,20), X(5,70,70,500,20)) = ((555.25−500)·1.5)+(697.35−628.22)+(924.12−879.46) = 140.70 (4.5)

For the cases in that the first energy level is the beginning of a miniband, as evidenced
in this example, the height of the barriers is used as reference to calculate the gap
between them.

Then, the optimization target of the GA is to minimize the Fitness function,
formally:

Solution = min(Fitness(E(g1,g2,g3,g4,g5), X(g1,g2,g3,g4,g5))) (4.6)

Once defined, the genetic algorithm, initially, creates a set of randomly generated
individuals to compose the initial population. Individuals are then evaluated and
selected based in their fitness to create couples and have their genes crossed to generate
new individuals. Thus, each couple selected perform the crossover procedure where each
gene for each son is computed according to:

Son1 = R · Parent1 + (1−R) · Parent2 (4.7)

Son2 = (1−R) · Parent1 +R · Parent2 (4.8)

where R is a random value between 0 and 1.

This crossover is always performed when new individuals are needed to create a
new population. In order to broaden the search, these new individuals generated are
randomly chosen to perform mutation. In the mutation process, genes are chosen to
receive a new value. It has been applied, in this work, three kinds of mutation: uniform
mutation, non-uniform mutation and side-shift mutation.

Non-uniform mutation, as described in Michalewicz [2013], is a technique to make
a fine search and ensure that at least a local optimum is reached. So a gene v is selected
through a mutation rate, and then applying the following equation to compute the new
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value.

v′ =

v + δ(t, UB − v), if random value 0

v − δ(t, v − LB), if random value 1
(4.9)

where LB and UB are lower and upper domain bounds for variable v. t represents the
generation number. The function δ(t, y), described in equation 4.10 returns a value
in the range [0, y] that rapidly approaches 0 as the end of generations draws near. In
this way, we allow our search to spread in the space initially and very locally at later
stages; thus tunning the search to minor steps, which brings benefits when minimum
and maximum can be very near on the search space.

δ(t, y) = y · (1− r(1−
t
τ
)b) (4.10)

In this equation, t is the current generation, y is the maximum value that the
function can return, r is a random number from [0..1], τ is the maximal generation
number, and b is a system parameter determining the strengh of the shift that is going
to happen in the gene.

Finally, elitism is ensured by always copying a number of best individuals from
the last generation to the current generation.

4.3 Simulation Results

To find superlattices of quantum wells structures with specific energy-band configura-
tion, the genetic algorithm described in Section 4.2 has been applied in conjunction
with the simulation method explained in Section 4.1.2.

The parameters used to set up the GA, for all experiments, are detailed in Table
4.4.

Number of individuals per generation 50

Number of generations 150

Elitist set length 5

Mutation rate 15%

Uniform mutation rate 50%

Non-uniform mutation rate 50%

Table 4.4: Genetic algorithm parameters

The elistist set length represents the size of the set of the best individuals in the
current population which can never be selected to be replaced. This procedure ensures
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an elitist behavior, thus, preserving the evolution of the population.

The mutation rates described above means that 15% of the newly generated
individuals are chosen to be mutated and among those, 50% are going to be uniformly
mutated and the other 50% will be non-uniformly mutated.

By applying these parameters in the genetic algorithm, during the course of
three months it was possible to run eight experiments whose details are displayed
in Table 4.5. For each experiment is detailed, the duration in days, the number of
individuals evaluated and the the best fitness found. These experiment were performed
in a machine with Ubuntu 12.04, 16 GB of memory RAM and processor Intel Core i7-
2600 CPU a© 3.40GHz. A superlattice of quantum wells simulation is carried-out in
about 3 minutes.

Experiment Duration (days) Evaluation’s amount Best individual found

1 15 7524 92.9807

2 12 6983 97.6952

3 14 7247 219.3430

4 15 7431 152.6827

5 14 7302 120.7379

6 13 6925 85.7514

7 13 6896 84.6815

8 13 6915 143.3456

Table 4.5: Experiment results.

For these experiments two different values of the penalization in the fitness func-
tion were used. In this way, for the experiments 1,2,3 and 4 θ was set in 0.6 and for
the other experiments was set in 1.5. An important note is that when the θ value was
set in 0.6, structures with not desired energy-band configurations were found.

Figures 4.8a and 4.8b are results of the fitness curves, for the θ values of 0.6 and
1.5, respectively. In these curves, it is shown how each strategy evolved in an average
of the best individuals from each generation.

The parameters of the best structure found in these experiments are shown in
Table 4.6. In Table 4.7, the energy levels detected and the fitness value of this structure
are detailed. Figure 4.9 illustrated the energy-band localization and the transmission
coefficient for this structure.

In contrast, the worst structure found in the optimization process was detailed in
Table 4.8 and in Table 4.9. Also, Figure 4.10 shows the energy-band localization and
the transmission coefficient for this structure.
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(a) (b)

Figure 4.8: Genetic algorithm evolution (a) with penalization 0.6. and (b) 1.5.

Number of Quantum Wells 7

Central Quantum Well Width 63 Ang.

Superlattices of Quantum Wells Width 16 Ang.

Barriers Width 48 Ang.

Barriers Height 501 meV

Table 4.6: Parameters of the best individual found.

Energy Value Localizated State

547.12 Discrete Energy Level

612.23 Beginning of Miniband

774.97 End of Miniband

862.08 Discrete Energy Level

881.65 Beginning of Miniband

1163.71 End of Miniband

Fitness Value 84.6815

Table 4.7: Simulation result of the best individual found.

Number of Quantum Wells 8

Central Quantum Well Width 62 Ang.

Superlattices of Quantum Wells Width 16 Ang.

Barriers Width 51 Ang.

Barriers Height 495 meV

Table 4.8: Parameters of the worst individual found.

These results demonstrate that an genetic algorithm is an adequate technique to
optimization of superlattices with central quantum well. The best structures found here
have great potential to be grown experimentally and to develop optoelectronic devices
such as photodetectors. The evolution curves of the GA shows that the minimization
target is accomplished. It was detected that the penalization in the fitness function
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Figure 4.9: Energy-band localization of the best individual.

Energy Value Localizated State

546.08 Discrete Energy Level

596.99 Beginning of Miniband

749.32 End of Miniband

835.74 Beginning of Miniband Discrete

1090.00 End of Miniband

1120.40 Discrete Energy Level

1170.32 Beginning of Miniband Discrete

1451.00 End of Miniband

Fitness Value 152.6827

Table 4.9: Simulation result of the worst individual found.

is a critical parameter for the performance of the GA. This parameter was set in 0.6,
initially, under the premise to produce generations with great diversification and to
scape from a local minima. For the experiments in that θ was set with this value, in
two of theirs interesting results with the desired characteristics were obtained, but in
the other two cases individuals with not desired energy-band configurations were kept
along the evolution process and returned as the best solution. When θ was set in 1.5,
structures with the desired characteristics were found. Due to the high computational
cost to perform an optimization experiment, bigger θ values were not evaluated. In
the superlattices with central quantum well studied in this work, only the energy levels
above the miniband are considered.
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Figure 4.10: Energy-band localization of the worst individual.



Chapter 5

Logic Devices with Photonic
Crystals

This chapter presents the process to accomplish the all-optical logic gates in photonic
crystals, the results of the Majority and Feynman gates proposed in this work and a
methodology to be applied for the robustness analysis of all-optical logic devices in
photonic crystals.

5.1 Majority and Feynman Gates

The realization of the logic gates can be achieved due to the photonic crystal waveguide,
which takes advantage of the controlled light beam interference effect. For the devel-
opment of all-optical Majority and Feyman gates, we use a two-dimensional photonic
crystal.

According to wave optics theory, if the phase difference between two light beams
is 2kπ (where k = 0, 1, 2, ...), then constructive interference will occur, and the output
light will have high power (corresponding to the logic state of 1). If the phase difference
is (2k + 1)π (where k = 0, 1, 2, ...), then destructive interference will occur, and the
output light will be approximately zero (corresponding to the logic state of 0) Zeng
et al. [2010].

Photonic crystal structures studied here are composed of triangular lattice ar-
rays of cylindrical silicon rods embedded in a background medium of air. The lattice
constant a is 875 nm and the diameter of the silicon rods are 495 nm. The dielec-
tric constant of silicon and air are set as 11.56 and 1, respectively. The wavelength,
λ, supported by the waveguide of this structure, corresponding to the photonic band

33
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gap, is 1550 nm, as used in the optical communications window. These are the same
parameters used by Fu et al. [2013].

For the study of the electric field distribution of the photonic crystal structure,
the simulations were carried out with the finite difference time-domain (FDTD) method
using the MIT software package, MEEP, described by Oskooi et al. [2010]. MEEP can
solve numerically Maxwell’s equations, used to calculate transmission and reflection
spectra, resonant modes and frequencies, and field patterns (e.g. Green’s functions) in
response to an arbitrary source, typically a continuous (CW) or Gaussian wave input.
Also, MEEP will discretize this structure in space and time, and that is specified by a
single variable, the resolution. The resolution used here was set as 40.

To set a logic input in 1 a CW, with frequency ac
λ

(c = 1) for units in MEEP, is
applied. Finally, to get the transmission output, the flux spectra is computed in the
output point of the structure with the design of the logic device (Fd) and without it
(Fwd), then the ratio Fd/Fwd is calculated.

5.1.1 Majority Gate

The Majority gate is a logic device with three inputs and one output. The output
is the majority function, thus, if at least two inputs are 0 then the output is 0. In
contrast, the output is 1 if and only if at least two inputs are 1. Table 5.1 present the
truth table for this logic function.

A B C Y

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Table 5.1: Majority gate truth table.

Observe that, if one input is fixed at binary 0 an AND gate with two inputs is
defined. In the same way, if one input is fixed at binary 1, an OR gate is accomplished.
This property allows the creation of simple and optimized computational circuits. Ma-
jority gate is a basic logic device in other technologies, such as Quantum dot Cellular
Automata (QCA). In the same way, we believe that majority gates can be used to
design optimized computational circuits in photonic crystals.
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The schematic structure for the all-optical Majority gate is shown in Figure 5.1a.
It is formed by three symmetrical optical waveguides: AY, BY, CY, of equal length.
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Figure 5.1: Majority gate simulation results.

Considering the input set (1, 0, 0), a single beam is injected into input port A,
then the signal light can propagate through the optical waveguide AY to the output
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Y. There are losses in the way, reaching output Y with transmission smaller than 0.35.
These correspond to a logic operation Maj(1, 0, 0) = 0, as shown in Figure 5.1b.

Similarly, if a single beam is injected into input port B or C, the signal light
can propagate through the optical waveguide BY and CY, respectively, to the output
Y with low transmission. These correspond to logic operations Maj(0, 1, 0) = 0 and
Maj(0, 0, 1) = 0, as shown in Figure 5.1c and Figure 5.1d.

When two beams are injected into two inputs ports, then the phase difference of
these two signal light beams is zero. Constructive interference occurs, and the output
signal has a transmission greater than 0.85, as shown in Figure 5.1e, Figure 5.1f and
Figure 5.1g. This corresponds to the logic operations Maj(0, 1, 1) = 1, Maj(1, 0, 1) =

1, Maj(1, 1, 0) = 1.
Finally, if the beams are injected into the three inputs ports, then the phase

difference at the cross point is zero, causing a constructive interference, and achieving
1.00 of transmission. This corresponds to Maj(1, 1, 1) = 1, shown in Figure 5.1h.
Obviously, when no single beam is injected in any input port, then no light comes to
output, corresponding to Maj(0, 0, 0) = 0.

Table 5.2 summarizes the transmission results for the Majority gate. When the
transmission output is greater than 0.85 it is considered as logic output 1. If the
transmission output is less than 0.35, then it is considered as logic output 0.

Input (A,B,C) Output Y Transmission

(0,0,0) 0 0

(0,0,1) 0 0.32

(0,1,0) 0 0.32

(0,1,1) 1 0.88

(1,0,0) 0 0.32

(1,1,0) 1 0.95

(1,0,1) 1 0.95

(1,1,1) 1 1.00

Table 5.2: Transmission results for all-optical majority gate

5.1.2 Feynman Gate

In 1961, Rolf Landauer argued that any irreversible computational process, e.g., AND,
OR, XOR, implies the loss ofKBTLn2 joules per bit erased, whereKB is the Boltzmann
constant and T is the temperature, see Neumann [1966]. One possible solution is
achieved by building the process using reversible primitives. These primitives, also
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known as reversible gates, are information preserving, i.e., they have one-to-one relation
(bijective functions) between inputs and outputs.

The Feynman gate is a logic reversible device with two inputs (A,B) and two
outputs (X,Y). The outputs are defined by the function X = A and Y = A⊕B. Table
5.3 illustrate the truth table for the Feynman logic gate.

A B X Y

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

Table 5.3: Feynman gate truth table.

Photonic crystals have been seen as a promising technology for approaching the
thermodynamic limit of computation, thus in an effort to go beyond that limit we pro-
pose an all-optical Feynman gate, shown in Figure 5.2a. To the best of our knowledge,
it is the first time that a reversible gate is proposed based on photonic crystals.
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Figure 5.2: Feynman gate simulation results.

When a single beam is injected into input port A, then the optical signal propa-
gates to both outputs X and Y with transmission greater than 0.40, as shown in Figure
5.2b. This corresponds to the logic operation Feyn(1, 0) = (1, 1). If a single light
beam is injected into input port B, then the optical signal propagates to the output X
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and Y, with transmission of 0.10 and 0.50, respectively. This corresponds to the logic
operation Feyn(0, 1) = (0, 1), as shown in Figure 5.2c.

When the two input ports are excited, then the difference of the path length
between the waveguide AY and BY is one lattice constant, and the phase difference
is π. Thus, destructive interference occurs and the transmission in the output Y is
only 0.01. The transmission at the output X is 0.75. This corresponds to the logic
operation Feyn(1, 1) = (1, 0), as shown in Figure 5.2d. Finally, if no single beam
is injected in both input ports, then no light comes to the output, corresponding to
Feyn(0, 0) = (0, 0).

Table 5.4 presents the results for the transmission of the all-optical Feynman gate.
It is possible to observe that transmissions ≥ 40% are considered as logic output 1,
and ≤ 10% are considered as logic 0.

Input (A,B) Output (X,Y) Transmission X Transmission Y

(0,0) (0,0) 0 0

(0,1) (0,1) 0.10 0.50

(1,0) (1,1) 0.45 0.40

(1,1) (1,0) 0.75 0.01

Table 5.4: Transmission results for all-optical Feynman gate

5.2 Robustness Analysis of All-Optical Logic Gates

The process of robustness analysis proposed here is a methodology to identify critical
regions and evaluate the reliability and fault tolerance of the all-optical logic devices
designed with photonic crystals waveguides. This is a relevant step before the physical
growth of these devices, because allows to know and measure the behaviour of them
due to possible errors or disorders added in the system.

Generally, the logic gates projected in two-dimensional photonic crystals are com-
posed of triangular or square lattice arrays of cylindrical semiconductor rods embedded
in a background medium of air. On the other hand, they also can be projected with
triangular or square lattice arrays of cylindrical air holes embedded in a background
medium of a semiconductor material. The disorders consist in horizontal and vertical
displacements, reduction and enlargement of the cylinders that form the device.

Then, to cause disorders in the system, random numbers are generated with the
following Gaussian distribution:

δ = ae
(x−b)2

2c2 (5.1)
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where a = 1
σ
√
2π
, b = µ, c = σ and x the input, µ and σ are the center and the width

of the function, respectively, as can be observed in the Figure 5.3.

Figure 5.3: Gaussian distribution for σ = (0.5, 1.0, 5.0, 10.0, 15.0, 20.0).

This distribution allows to control the µ and σ parameters. In this work, µ is
setted as 0 and σ a set of variable parameters: (0.5, 1.0, 10.0, 15.0, 20.0). It is impor-
tant to note that bigger σ values can cause uncontrollable behaviours in the system.
Thus, the formal expression that describes the disorder added to a cylinder for each
component is:

f(x, y, r) = (x± δx(0, σ))x + (y ± δy(0, σ))y + (r ± δr(0, σ))r (5.2)

where x and y are the cartesian coordinates of the cylinder position and r the radius.
It is important to remark that δ(0, 20) generates disorders about ±80 nm.

When these disorders appear in the growth and/or fabrication process, the correct
operation of the device probably will be affected. That is, the output transmission ex-
pected values can change significantly. To consider an error in the output transmission
a tolerance value is defined, setted in 0.1, as in electronic devices. So, for each study
case of each logic gate, 50 simulations are performed, as indicated by Jain [1991], and
a statistical test is computed to measure the reliability and robustness of the device.
The statistical test consist in calculate the mean, standard deviation and confidence
interval with 95% of confidence level for each study case. Then, the tolerance value is
evaluated with respect to the expected value.

For example, if the transmission output of a device without disorders is 0.8,
interpreted as logic 1, but the obtained expected value includes includes smaller values
that the tolerance, (0.7 for this case), it can be said with 95% of confidence level that
the logic device probably operates unexpectedly, as illustrated in Figure 5.4a. On the
other hand, if the transmission output of a device without disorders is 0.8, interpreted
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as logic 0, but the obtained expected value includes includes smaller values that the
tolerance, (0.7 for this case), it can be said with 95% of confidence level that the logic
device probably operates unexpectedly, as shown in Figure 5.4b.
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Figure 5.4: Robustness Analysis test. (a) for output transmission interpreted as logic
1 and (b) logic 0.

5.2.1 OR Gate

To accomplish the robustness analysis of the OR logic device proposed by Fu et al.
[2013], the first three study cases are illustrated in Figure 5.5.

It is important to remember that the OR is a symmetrical logic device, i.e., the
transmission and the path difference are equal for the inputs, (0, 1) and (1, 0). The
output transmission for (0, 1)− (1, 0) input cases is: 0.411 and for input (1, 1) is 0.846.
Then, output transmission greater than 0.4 and is considered as logic 1. The lower
boundary of the tolerance to consider an error is 0.3.

The mean, standard deviation and the confidence interval, computed with 95%
of confidence level, are described in Table 5.5 for the (0, 1) and (1, 1) input cases, lines
1,2,3 and for all cylinders. The numbers in red represent the cases when the tolerance
value is infringed, in yellow when they are close to the limits, while when the expected
value is close to the real transmission it is shown in green.
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Line 2
Line 1

Line 3

Line 2
Line 3

Line 1

Figure 5.5: Lines analysed for the OR device.

(0,1) (1,1)

σ σ
Region 0.50 1.00 5.00 10.0 15.0 20.0 0.50 1.00 5.00 10.0 15.0 20.0

Mean 0.411 0.411 0.411 0.408 0.385 0.335 0.846 0.846 0.845 0.833 0.773 0.450

Std 0.002 0.004 0.019 0.044 0.076 0.181 0.002 0.003 0.016 0.037 0.095 0.276

0.408 0.402 0.375 0.322 0.237 -0.019 0.841 0.840 0.814 0.760 0.587 -0.091
All

CI
0.415 0.420 0.447 0.495 0.534 0.689 0.850 0.852 0.876 0.905 0.959 0.990

Mean 0.409 0.409 0.408 0.402 0.382 0.313 0.841 0.841 0.836 0.808 0.763 0.530

Std 0.002 0.004 0.020 0.033 0.094 0.187 0.002 0.003 0.017 0.041 0.107 0.237

0.405 0.401 0.368 0.337 0.198 -0.053 0.838 0.834 0.802 0.729 0.553 0.065
Line 1

CI
0.413 0.417 0.448 0.467 0.566 0.679 0.845 0.847 0.870 0.888 0.974 0.995

Mean 0.411 0.411 0.411 0.412 0.411 0.399 0.846 0.846 0.846 0.846 0.852 0.820

Std 0.000 0.000 0.002 0.004 0.007 0.071 0.000 0.001 0.002 0.005 0.026 0.091

0.411 0.410 0.407 0.404 0.397 0.259 0.845 0.845 0.842 0.837 0.801 0.641
Line 2

CI
0.412 0.412 0.415 0.419 0.426 0.539 0.846 0.847 0.850 0.856 0.903 0.999

Mean 0.411 0.411 0.411 0.411 0.411 0.409 0.846 0.846 0.846 0.846 0.846 0.842

Std 0.000 0.000 0.000 0.000 0.001 0.006 0.000 0.000 0.000 0.000 0.001 0.008

0.411 0.411 0.411 0.411 0.409 0.397 0.846 0.846 0.846 0.846 0.844 0.826
Line 3

CI
0.411 0.411 0.411 0.411 0.412 0.421 0.846 0.846 0.846 0.846 0.847 0.858

Table 5.5: Simulations results for the modifications of the all cylinder and the first
three lines for the OR device. Std is the standard deviation and CI the confidence
interval.

For the input (0, 1) when all cylinders are modified with σ = [15, 20] the expected
transmission value includes 0.3. Then the lower boundary of tolerance is infringed as a
result of a high standard deviation, due to low transmission values obtained. Thus, with
95% of confidence level, it can be said that the system probably operates unexpectedly.
When the disorders are added using (0.5 ≤ σ ≤ 10) the performance of the device is
not affected, at the same confidence level.

If the disorders are added in the first line the same considerations are valid.

For the second line, only disorders with σ = 20 can produce output transmission
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that infringe the lower tolerance value. Modifications in the second line with (0.5 ≤
σ ≤ 15) are not significant.

Finally, it can be said with 95% of confidence level that the cylinders of the third
line do not affect the correct operation of the device applying disorders in the interval
(0.5 ≤ σ ≤ 20).

For the input (1, 1), two cases must be evaluated. The first, when the general
lower limit of the tolerance is infringed, i.e. 0.3, and the second when the transmission
is under 0.75, that is, the lower boundary of tolerance for the input (1, 1). Then, when
all cylinders are modified with σ = 20 the two lower boundary conditions are infringed
as a result of a high standard deviation, due to low transmission values obtained and
the confidence interval includes 0.3 and 0.75. Thus, with 95% of confidence level, it can
be said that the system probably operates unexpectedly. When the modifications are
in the order of σ = 15 the lower limit of tolerance for this input case is infringed, but
note that the low transmission value can be interpreted as logic 1. The results show
that applying disorders in the interval (0.5 ≤ σ ≤ 10) the device operates as projected.

When the cylinders of the first line are modified using σ = 20 the two lower
boundary conditions are infringed. On the other hand, if modifications with σ = [10, 15]

are applied the lower boundary condition for the input case in infringed but the low
transmission expected can be interpreted as logic 1. When the disorders are applied in
the interval (0.5 ≤ σ ≤ 5) the correct operation of the device is accomplished.

For the second line, only disorders with σ = 20 can produce output transmission
that infringe the lower tolerance value for the input case. Modifications in the second
line with (0.5 ≤ σ ≤ 15) can be despicable.

The disorders application in the third line can be ignored with 95% of confidence
level.

As previously demonstrated, the cylinders of the first line have greater effect in
the performance of the device by the reason that they are closer to the waveguide.
Then, five regions are analysed to establish which of them have the greatest effect in
the device performance, illustrated in Figure 5.6.

Figure 5.6: Regions analysed for the OR device.
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The first, in yellow, is formed by the first ten cylinders of the waveguide input.
The second, in red, by the four cylinders that form the inclination of the waveguide
input. The third, in gray, by the thirteen cylinders of the output. The fourth, in
blue, is composed by the four cylinders that form the edge of the waveguide. The
fifth is formed by the four cylinders of the inputs intersection, in green. As can been
observed in the simulations results shown above, modifications with σ = 20 generates
greater effects. Due to the high computational cost to perform these experiments, only
modifications of this order are investigated. The results for these regions are displayed
in Table 5.6.

(0,1) (1,1)

σ σ
Region 20.0 20.00

Mean 0.332 0.604

Std 0.065 0.121

0.205 0.369
1

CI
0.461 0.841

Mean 0.348 0.668

Std 0.065 0.055

0.220 0.560
2

CI
0.476 0.776

Mean 0.313 0.609

Std 0.041 0.134

0.233 0.346
3

CI
0.394 0.872

Mean 0.322 0.657

Std 0.062 0.045

0.201 0.569
4

CI
0.444 0.745

Mean 0.310 0.653

Std 0.073 0.081

0.169 0.495
5

CI
0.453 0.811

Table 5.6: Simulations results of the first line regions for the OR device. Std is the
standard deviation and CI the confidence interval.

For these regions it is important to note that in average the transmission results
are close to the value when the first line is analysed completely. The regions with
greater impact for the input case (0, 1), as shown in Figure 5.7b, are the 3 and 5. For
the (1, 1) input case the regions with greater effect are the 1 and 3, as illustrated in
Figure 5.7c.
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Figure 5.7a shows the normalized average of the OR logic gate, as can observed,
the third region have greater effect for both input cases by the reason that the device is
projected with triangular lattice and the periodicity in the straight lines can be easily
broken.

(a)

(b) (c)

Figure 5.7: Regions effect for the OR device. (a) Normalized average. (b) Input case
(0,1). (c) Input case (1,1).

5.2.2 XOR Gate

For the XOR logic device proposed by Fu et al. [2013], the lines to be analysed are
detailed in Figure 5.8. It is important to remember that the output transmission for
the XOR logic device are: 0.318 for the (0,1) input case, 0.858 for the (1,0) input case
and 0.067 for the (1,1) input case. Then output transmission greater than 0.3 and
lower than 0.07 are interpreted as logic 1 and 0, respectively. The lower boundary of
the tolerance to consider an error is 0.2 for the cases when the logical output is 1 and
the upper limit of tolerance 0.17 for the cases when the logical output is 0.

The mean, standard deviation and the confidence interval, computed with 95%
of confidence level, are described in Table 5.7 for the (0, 1) and (1, 0) input cases, lines
1,2,3 and for all cylinders.

For the input (0, 1) when all cylinders are modified with σ = [10, 15, 20] the lower
boundary of tolerance is infringed as a result of a high standard deviation, due to low
transmission values obtained and the confidence interval includes 0.2. Thus, with 95%
of confidence level, it can be said that the system probably operates unexpectedly. In
contrast, when the disorders are added using (0.5 ≤ σ ≤ 5) the performance of the



5.2. Robustness Analysis of All-Optical Logic Gates 45

Line 2
Line 1

Line 3

Line 2
Line 3

Line 1

Figure 5.8: Lines analysed for the XOR device.

(0,1) (1,0)

σ σ
Region 0.50 1.00 5.00 10.0 15.0 20.0 0.50 1.00 5.00 10.0 15.0 20.0

Mean 0.317 0.317 0.311 0.306 0.310 0.304 0.857 0.856 0.853 0.837 0.775 0.508

Std 0.003 0.007 0.035 0.068 0.109 0.245 0.002 0.005 0.024 0.049 0.120 0.304

0.310 0.303 0.242 0.171 0.096 -0.176 0.852 0.845 0.804 0.739 0.539 -0.088
All

CI
0.324 0.331 0.380 0.441 0.524 0.785 0.862 0.867 0.901 0.934 1.012 1.104

Mean 0.318 0.315 0.318 0.310 0.313 0.309 0.857 0.855 0.847 0.831 0.721 0.465

Std 0.003 0.006 0.038 0.071 0.109 0.249 0.002 0.004 0.022 0.045 0.144 0.302

0.312 0.303 0.242 0.169 0.099 -0.179 0.852 0.847 0.802 0.741 0.437 -0.128
Line 1

CI
0.324 0.328 0.393 0.450 0.527 0.798 0.862 0.864 0.891 0.920 1.005 1.059

Mean 0.317 0.318 0.317 0.316 0.316 0.307 0.857 0.857 0.856 0.857 0.851 0.833

Std 0.000 0.000 0.002 0.005 0.009 0.070 0.000 0.000 0.002 0.004 0.074 0.123

0.317 0.317 0.313 0.305 0.298 0.169 0.857 0.856 0.851 0.848 0.705 0.591
Line 2

CI
0.318 0.318 0.321 0.326 0.335 0.444 0.858 0.858 0.861 0.867 0.998 1.074

Mean 0.317 0.317 0.317 0.317 0.317 0.315 0.857 0.857 0.857 0.857 0.857 0.856

Std 0.000 0.000 0.000 0.000 0.002 0.003 0.000 0.000 0.000 0.000 0.001 0.012

0.317 0.317 0.317 0.317 0.311 0.308 0.857 0.857 0.857 0.857 0.855 0.831
Line 3

CI
0.317 0.317 0.317 0.317 0.318 0.323 0.857 0.857 0.857 0.857 0.858 0.881

Table 5.7: Simulation results for the modifications of all cylinders and the first three
lines for the XOR device and (0,1) and (1,0) input cases. Std is the standard deviation
and CI the confidence interval.

device is not affected. If the disorders are added in the first line, the same considerations
are valid.

For the second line, only disorders with σ = 20 can produce output transmission
that infringe the lower tolerance value. Modifications in the second line with (0.5 ≤
σ ≤ 15) can be neglected.

Finally, it can be said with 95% of confidence level that the cylinders of the third
line do not affect the correct operation of the device, applying disorders in the interval
(0.5 ≤ σ ≤ 20).
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For the input (1, 0), two cases must be evaluated. The first, when the general
lower limit of the tolerance is infringed, i.e. 0.3, and the second when the transmission
is under 0.75, that is, the lower boundary of tolerance for the input (1, 0). Then, when
all cylinders are modified with σ = 20 the two lower boundary conditions are infringed
as a result of a high standard deviation, due to low transmission values obtained and the
confidence interval includes 0.2. Thus, with 95% of confidence level, it can be said that
the system probably operates unexpectedly. When the modifications are in the order of
σ = [10, 15] the lower limit of tolerance for this input case is infringed, nevertheless the
low transmission value can be interpreted as logic 1. The results show that applying
disorders in the interval (0.5 ≤ σ ≤ 5) the device operates as projected. For this input
case when the disorders are added in the first line, the same considerations are valid.
For the second line, only disorders with σ = [15, 20] can produce output transmission
that infringe the lower tolerance value of the input case. Modifications in the second
line with (0.5 ≤ σ ≤ 10) can be neglected.

It can be said with 95% of confidence level that the disorders application in the
third line not affect the correct function of the device.

Table 5.8 explains the mean, standard deviation and the confidence interval,
computed with 95% of confidence level, for the (1, 1) input case, lines 1,2,3 and for all
cylinders.

For the input (1, 1) when all cylinders are modified with σ = [15, 20] the upper
boundary of tolerance is infringed as a result of a high standard deviation, due to low
transmission values obtained and the confidence interval includes 0.17. Thus, with
95% of confidence level, it can be said that the system probably does not operate as
projected. Moreover, when the disorders are added using (0.5 ≤ σ ≤ 10) the device
operates as expected. If the disorders are added in the first line the same considerations
are valid.

For the second and third lines, modifications with (0.5 ≤ σ ≤ 20) the upper limit
of tolerance is not infringed, thus the correct operation of the device is achieved.

As demonstrated above, the cylinders of the first line have greater effect in the
performance of the device by the reason that they are closer to the waveguide. Then,
six regions are analysed to establish what of them have greatest effect in the device
performance, as illustrated in Figure 5.9.

The first region, in yellow, is formed by the nine cylinders of the first input and
the fourteen of the second input of the waveguide. The second, in red, by the cylinders
that form the inclination of the inputs waveguide. The third, in gray, by the sixteen
cylinders of the output. The fourth, in green, is composed by the four cylinders that
form the edge of the second input waveguide. The fifth, in blue, is formed by the four
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(1,1)

σ
Region 0.50 1.00 5.00 10.0 15.0 20.0

Mean 0.066 0.066 0.069 0.079 0.105 0.194

Std 0.001 0.002 0.012 0.026 0.059 0.200

0.064 0.061 0.045 0.027 -0.010 -0.199
All

CI
0.069 0.071 0.093 0.132 0.221 0.587

Mean 0.066 0.066 0.070 0.080 0.109 0.246

Std 0.001 0.002 0.011 0.026 0.077 0.209

0.063 0.062 0.047 0.028 -0.042 -0.164
Line 1

CI
0.069 0.070 0.093 0.132 0.262 0.656

Mean 0.066 0.066 0.066 0.068 0.067 0.073

Std 0.000 0.000 0.000 0.002 0.003 0.045

0.066 0.066 0.065 0.063 0.059 -0.015
Line 2

CI
0.066 0.067 0.068 0.072 0.074 0.162

Mean 0.066 0.066 0.066 0.066 0.066 0.067

Std 0.000 0.000 0.000 0.000 0.001 0.002

0.066 0.066 0.066 0.066 0.064 0.061
Line 3

CI
0.066 0.066 0.066 0.066 0.067 0.072

Table 5.8: Simulation results for the modifications of all cylinders and the first three
lines for the XOR device and (1,1) input case. Std is the standard deviation and CI
the confidence interval.

Figure 5.9: Regions analysed for the XOR device.

cylinders that form the edge of the first input. Finally, the sixth region, in purple, is
formed by the four cylinders of the inputs waveguide intersection. The results for these
regions are shown in Table 5.9.

It is important to note that in average the transmission results are close to the
value when the first line is analysed completely. The region with greater impact for
the input case (0, 1), as shown in Figure 5.10b, is the first. For the (1, 0) input case
the region three, as illustrated in Figure 5.10c, and for the input case (1, 1) the first
region, as illustrated in Figure 5.10d.

Figure 5.10a shows the normalized average of the XOR logic gate. As can been
observed, the first region has greater effect for this device by the reason that it is
projected with triangular lattice and the periodicity in the straight lines can be easily
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(0,1) (1,0) (1,1)

σ σ σ
Region 20.0 20.00 20.0

Mean 0.284 0.775 0.219

Std 0.129 0.239 0.210

0.031 0.305 -0.193
1

CI
0.537 1.244 0.632

Mean 0.293 0.733 0.124

Std 0.118 0.189 0.139

0.061 0.361 -0.149
2

CI
0.525 1.105 0.398

Mean 0.348 0.694 0.083

Std 0.119 0.234 0.108

0.113 0.234 -0.129
3

CI
0.583 1.155 0.297

Mean 0.295 0.851 0.120

Std 0.066 0.076 0.167

0.165 0.701 -0.207
4

CI
0.425 1.001 0.449

Mean 0.319 0.811 0.078

Std 0.099 0.086 0.021

0.125 0.642 0.036
5

CI
0.514 0.979 0.119

Mean 0.293 0.839 0.083

Std 0.084 0.029 0.040

0.126 0.781 0.004
6

CI
0.459 0.897 0.162

Table 5.9: Simulations results of the first line regions for the XOR device. Std is the
standard deviation and CI the confidence interval.

broken.

5.2.3 Majority Gate

For the Majority logic gate the lines to be analysed are detailed in Figure 5.11. The
lower boundary of the tolerance to consider an error is 0.75 for the cases when the
logical output is 1 and the upper limit is 0.45 for the cases when the logical output is
0.

As described in the Section 5.1.1 the output transmission for the inputs cases
(0,1,0),(0,0,1),(1,0,0) are the same. The mean, standard deviation and the confidence
interval, computed with 95% of confidence level, are described in Table 5.10 for the
(0,1,0) and (0,1,1) input cases, lines 1,2,3 and for all cylinders.
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(a) (b)

(c) (d)

Figure 5.10: Regions effect for the XOR device. (a) Normalized average. (b) Input
case (0,1). (C) Input case (1,0). (d) Input case (1,1).

Line 2
Line 1

Line 3

Line 2
Line 3

Line 1

Figure 5.11: Lines analysed for the Majority logic device.

For the input (0,1,0) when all cylinders are modified with σ = [15, 20] the upper
boundary of tolerance is infringed as a result of a high standard deviation, due to low
transmission values obtained and the confidence interval includes 0.45. Thus, with 95%
of confidence level, it can be said that the system probably operates unexpectedly. On
the other hand, when the disorders are added using (0.5 ≤ σ ≤ 5) the device operates
as expected. If the disorders are added in the first line the same considerations are
valid.

For the second line, only disorders with σ = 20 can produce output transmission
that infringe the upper tolerance value. On the other hand, modifications with (0.5 ≤



50 Chapter 5. Logic Devices with Photonic Crystals

(0,1,0) (0,1,1)

σ σ
Region 0.50 1.00 5.00 10.0 15.0 20.0 0.50 1.00 5.00 10.0 15.0 20.0

Mean 0.319 0.319 0.318 0.309 0.297 0.228 0.874 0.872 0.871 0.848 0.586 0.362

Std 0.002 0.005 0.030 0.055 0.143 0.236 0.005 0.011 0.049 0.125 0.172 0.298

0.314 0.308 0.258 0.200 0.015 -0.235 0.863 0.850 0.774 0.601 0.247 -0.222
All

CI
0.325 0.330 0.378 0.418 0.580 0.692 0.884 0.893 0.967 1.094 0.925 0.946

Mean 0.319 0.319 0.319 0.310 0.289 0.222 0.881 0.881 0.879 0.875 0.550 0.363

Std 0.002 0.005 0.028 0.064 0.107 0.164 0.004 0.009 0.049 0.087 0.190 0.210

0.314 0.307 0.263 0.183 0.078 -0.099 0.872 0.862 0.781 0.703 0.177 -0.049
Line 1

CI
0.323 0.330 0.374 0.437 0.499 0.543 0.890 0.899 0.976 1.046 0.923 0.775

Mean 0.319 0.319 0.319 0.317 0.315 0.301 0.881 0.881 0.881 0.878 0.874 0.775

Std 0.001 0.001 0.002 0.002 0.041 0.127 0.000 0.001 0.001 0.005 0.060 0.149

0.317 0.317 0.315 0.313 0.235 0.052 0.881 0.879 0.879 0.868 0.756 0.483
Line 2

CI
0.321 0.321 0.323 0.321 0.395 0.550 0.881 0.883 0.883 0.888 0.992 1.067

Mean 0.319 0.319 0.319 0.319 0.317 0.312 0.881 0.881 0.881 0.879 0.876 0.863

Std 0.000 0.000 0.000 0.000 0.002 0.006 0.000 0.000 0.000 0.001 0.002 0.005

0.319 0.319 0.319 0.319 0.313 0.300 0.881 0.881 0.881 0.877 0.872 0.853
Line 3

CI
0.319 0.319 0.319 0.319 0.321 0.324 0.881 0.881 0.881 0.881 0.880 0.873

Table 5.10: Simulation results for the modifications of all cylinders and the first three
lines for the Majority device and (0,1,0) and (0,1,1) input cases. Std is the standard
deviation and CI the confidence interval.

σ ≤ 15) not infringe the upper boundary of tolerance and the device operates correctly.
Finally, it can be said with 95% of confidence level that the cylinders of the third

line not affect the correct operation of the device applying disorders in the interval
(0.5 ≤ σ ≤ 20).

For the input (0,1,1) when all cylinders are modified with σ = [10, 15, 20] the
lower boundary of tolerance is infringed as a result of a high standard deviation, due
to low transmission values obtained and the confidence interval includes 0. Thus, with
95% of confidence level, it can be said that the system probably operates unexpectedly.
In contrast, when the disorders are added using (0.5 ≤ σ ≤ 5) the device operates as
projected. If the disorders are added in the first line the same considerations are valid.

For the second line, only disorders with σ = 20 can produce output transmission
that infringe the lower tolerance value. Moreover, modifications with (0.5 ≤ σ ≤ 15)

not infringe the upper boundary of tolerance and the device operates correctly.
The disorders applied in the third line can be neglected because the device per-

formance is not affected.
The simulation results shown that the output transmission for the majority logic

device when the inputs are (1,0,1) and (1,1,0) are equal. Then, Table 5.11 displays
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the results for the (1,0,1) and (1,1,1) input cases, when all cylinders, first, second and
third lines are modified.

(1,0,1) (1,1,1)

σ σ
Region 0.50 1.00 5.00 10.0 15.0 20.0 0.50 1.00 5.00 10.0 15.0 20.0

Mean 0.952 0.951 0.948 0.932 0.631 0.328 1.000 1.000 1.000 0.985 0.896 0.430

Std 0.003 0.006 0.029 0.063 0.118 0.224 0.004 0.009 0.042 0.092 0.179 0.325

0.945 0.938 0.891 0.808 0.399 -0.111 0.992 0.984 0.921 0.803 0.544 -0.206
All

CI
0.958 0.963 1.004 1.056 0.863 0.768 1.009 1.019 1.088 1.167 1.248 1.067

Mean 0.952 0.951 0.950 0.946 0.694 0.332 1.000 1.000 0.985 0.983 0.888 0.484

Std 0.004 0.005 0.032 0.066 0.122 0.258 0.005 0.006 0.041 0.073 0.231 0.428

0.944 0.940 0.886 0.815 0.455 -0.172 0.990 0.988 0.903 0.840 0.434 -0.354
Line 1

CI
0.959 0.961 1.013 1.076 0.934 0.838 1.012 1.014 1.067 1.126 1.341 1.323

Mean 0.952 0.952 0.951 0.948 0.891 0.884 1.000 1.000 0.984 0.978 0.922 0.885

Std 0.001 0.001 0.002 0.002 0.041 0.127 0.000 0.001 0.001 0.005 0.060 0.149

0.950 0.950 0.947 0.944 0.811 0.635 1.000 0.998 0.982 0.968 0.804 0.593
Line 2

CI
0.954 0.954 0.955 0.952 0.971 1.133 1.000 1.002 0.986 0.988 1.040 1.177

Mean 0.952 0.952 0.952 0.951 0.946 0.923 1.000 1.000 1.000 0.989 0.983 0.974

Std 0.000 0.000 0.000 0.000 0.002 0.006 0.000 0.000 0.000 0.001 0.002 0.005

0.952 0.952 0.952 0.951 0.942 0.911 1.000 1.000 1.000 0.987 0.979 0.964
Line 3

CI
0.952 0.952 0.952 0.951 0.950 0.935 1.000 1.000 1.000 0.991 0.987 0.984

Table 5.11: Simulation results for the modifications of all cylinders and the first three
lines for the Majority device and (1,0,1) and (1,1,1) input cases. Std is the standard
deviation and CI the confidence interval.

For the input (1,0,1) when all cylinders are modified with σ = [15, 20] the lower
boundary of tolerance is infringed as a result of a high standard deviation, due to low
transmission values obtained and the confidence interval includes 0.75. Thus, with 95%
of confidence level, it can be said that the system probably operates unexpectedly. In
contrast, when the disorders are added using (0.5 ≤ σ ≤ 10) the device operates as
projected. If the disorders are added in the first line the same considerations are valid.

For the second line, only disorders with σ = 20 can produce output transmission
that infringe the lower tolerance value. Moreover, modifications with (0.5 ≤ σ ≤ 15)

not infringe the upper boundary of tolerance and the device operates correctly.
The disorders are applied in the third line are insignificant because the device

performance is not affected.
For the input (1,1,1) when all cylinders are modified with σ = [15, 20] the lower

boundary of tolerance is infringed as a result of a high standard deviation, due to low
transmission values obtained and the confidence interval includes 0.75. Thus, with 95%
of confidence level, it can be said that the system probably operates unexpectedly. On
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the other hand, when the disorders are added using (0.5 ≤ σ ≤ 10) the device operates
as projected. If the disorders are added in the first line the same considerations are
valid.

For the second line, only disorders with σ = 20 can produce output transmission
that infringe the lower tolerance value. Moreover, modifications with (0.5 ≤ σ ≤ 15)

do not infringe the upper boundary of tolerance and the device operates correctly.
The disorders applied in the third line can be neglected due to the fact that the

device performance is not affected.
Six regions of the first line are analysed to establish their effect in the device

performance, as illustrated in Figure 5.12.

Figure 5.12: Regions analysed for the Majority logic device.

The first region, in yellow, is formed by the first nine cylinders of the waveguide
input. The second, in red, by the four cylinders that form the inclination of the
waveguide inputs. The third, in gray, by the cylinders of that form the waveguide
path intersection. The fourth, in purple, by the cylinders that form the output. The
fifth, in blue, is composed by the four cylinders that form the edge of the waveguide
and the sixth region is formed by the cylinders of the four intersections, in green. The
simulations results for these regions are shown in Table 5.12.

It is important to note that in average the transmission results are close to the
value when the first line is analysed completely. The region with greater impact for the
input case (0,1,0) is the third, as shown in, as shown in Figure 5.13b. For the input
case (0,1,1) the third region, as illustrated in Figure 5.13c. For the (1,0,1) input case
the region three, as illustrated in Figure 5.13d and for the input case (1,1,1) the first
region, as shown in Figure 5.13e.

Figure 5.13a shows the normalized average of the Majority logic gate, as can
been observed, the third region has greater effect for this device by the reason that it is
projected with triangular lattice and the periodicity in the straight lines can be easily
broken.
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(0,1,0) (0,1,1) (1,0,1) (1,1,1)

σ σ σ σ
Region 20.0 20.0 20.0 20.0

Mean 0.289 0.385 0.578 0.503

Std 0.061 0.021 0.082 0.077

0.169 0.344 0.417 0.352
1

CI
0.409 0.426 0.739 0.654

Mean 0.274 0.423 0.531 0.628

Std 0.078 0.027 0.052 0.093

0.121 0.370 0.429 0.446
2

CI
0.427 0.476 0.633 0.810

Mean 0.267 0.568 0.380 0.540

Std 0.069 0.030 0.023 0.048

0.132 0.509 0.335 0.446
3

CI
0.402 0.627 0.425 0.634

Mean 0.232 0.391 0.358 0.519

Std 0.086 0.023 0.039 0.093

0.063 0.346 0.282 0.337
4

CI
0.401 0.436 0.434 0.701

Mean 0.261 0.437 0.459 0.571

Std 0.043 0.079 0.068 0.085

0.177 0.282 0.326 0.404
5

CI
0.345 0.592 0.592 0.738

Mean 0.287 0.553 0.481 0.631

Std 0.034 0.170 0.036 0.058

0.220 0.220 0.410 0.517
6

CI
0.354 0.886 0.552 0.745

Table 5.12: Simulations results of the first line regions for the Majority device. Std is
the standard deviation and CI the confidence interval.

5.2.4 Feynman Gate

For the Feynman logic device the lines to be analysed are detailed Figure 5.14. The
lower boundary of the tolerance to consider an error is 0.3 for the cases when the logical
output is 1 and the upper limit is 0.2 for the cases when the logical output is 0.

The mean, standard deviation and the confidence interval, computed with 95%
of confidence level, are explained in Table 5.13 for the (0,1) input case, lines 1,2,3 and
for all cylinders.

As can been observed for the (0,1) and output X, similarly to the other logic gates
when modifications are added to all cylinders and the first line with σ = [15, 20] infringe
the tolerance limit defined. Only the disorders with σ = 20 infringe the tolerance limit
in the second line. The disorders added in the third line can be neglected.
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(a)

(b) (c)

(d) (e)

Figure 5.13: Regions effect for the Majority device. (a) Normalized average. (b) Input
case (0,1,0). (c) Input case (0,1,1). (d) Input case (1,0,1). (e) Input case (1,1,1).
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Figure 5.14: Lines analysed for the Feynman logic device.

For the the (0,1) and output Y, disorders in the order of σ = [10, 15, 20] affect
the device performance when are added in the first line and to all cylinders. For the
second line, disorder with σ = [15, 20] generates unexpectedly behaviours in the device.
The modifications added in the third line can be neglected.
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(0,1)-x (0,1)-y

σ σ
Region 0.50 1.00 5.00 10.0 15.0 20.0 0.50 1.00 5.00 10.0 15.0 20.0

Mean 0.107 0.107 0.103 0.101 0.113 0.133 0.503 0.503 0.501 0.484 0.396 0.289

Std 0.002 0.002 0.012 0.028 0.050 0.136 0.006 0.006 0.034 0.075 0.099 0.254

0.102 0.102 0.078 0.046 0.015 -0.134 0.490 0.490 0.433 0.336 0.201 -0.208
All

CI
0.112 0.112 0.128 0.156 0.211 0.400 0.515 0.515 0.568 0.631 0.591 0.787

Mean 0.107 0.107 0.106 0.102 0.124 0.137 0.503 0.502 0.502 0.464 0.397 0.258

Std 0.001 0.002 0.008 0.013 0.096 0.121 0.002 0.005 0.007 0.042 0.087 0.144

0.105 0.103 0.090 0.077 -0.0645 -0.100 0.499 0.492 0.488 0.382 0.226 -0.024
Line 1

CI
0.109 0.111 0.121 0.127 0.312 0.374 0.507 0.512 0.516 0.546 0.568 0.540

Mean 0.107 0.107 0.107 0.103 0.101 0.085 0.503 0.503 0.503 0.501 0.478 0.461

Std 0.001 0.001 0.002 0.002 0.041 0.127 0.000 0.001 0.001 0.005 0.060 0.149

0.105 0.105 0.103 0.099 0.021 -0.164 0.503 0.501 0.501 0.491 0.360 0.169
Line 2

CI
0.109 0.109 0.111 0.107 0.181 0.334 0.503 0.505 0.505 0.511 0.596 0.753

Mean 0.107 0.107 0.107 0.105 0.104 0.101 0.503 0.503 0.503 0.503 0.501 0.497

Std 0.000 0.000 0.000 0.002 0.004 0.006 0.000 0.000 0.000 0.001 0.002 0.005

0.107 0.107 0.107 0.101 0.096 0.089 0.503 0.503 0.503 0.501 0.497 0.487
Line 3

CI
0.107 0.107 0.107 0.109 0.112 0.113 0.503 0.503 0.503 0.505 0.505 0.507

Table 5.13: Simulation results for the modifications of all cylinders and the first three
lines for the Feynman device and (0,1) input case. Std is the standard deviation and
CI the confidence interval.

Table 5.14 details the simulation results for the input (1,0), when all cylinders
are modified and the first, second and third lines. The numbers in red represent the
cases when the tolerance value is infringed, in yellow when are close to the limits and
when the expected value is close to the real transmission in green.

For the (1,0) and output X, when modifications are added to all cylinders and
the first line with σ = [15, 20] infringe the tolerance limit defined. Only the disorders
with σ = 20 infringe the tolerance limit in the second line. The disorders added in the
third line can be neglected.

For the the (1,0) and output Y, disorders in the order of σ = [10, 15, 20] affect
the device performance when are added in the first line and to all cylinders. For the
second line, disorder with σ = [10, 15, 20] generates unexpectedly behaviours in the
device. The modifications added in the third line can be neglected.

Table 5.15 explains the simulations result for the (1,1) input case, when all cylin-
ders, the first, second and third lines are modified. The numbers in red represent the
cases when the tolerance value is infringed, in yellow when are close to the limits and
when the expected value is close to the real transmission in green.

For the (1,1) and output X, when modifications are added to all cylinders with
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(1,0)-x (1,0)-y

σ σ
Region 0.50 1.00 5.00 10.0 15.0 20.0 0.50 1.00 5.00 10.0 15.0 20.0

Mean 0.451 0.451 0.448 0.445 0.440 0.427 0.398 0.397 0.395 0.391 0.387 0.228

Std 0.002 0.005 0.026 0.062 0.152 0.265 0.002 0.004 0.021 0.041 0.090 0.167

0.445 0.441 0.396 0.323 0.141 -0.093 0.393 0.389 0.352 0.309 0.210 -0.098
All

CI
0.456 0.461 0.499 0.566 0.738 0.948 0.402 0.405 0.437 0.472 0.563 0.556

Mean 0.451 0.451 0.446 0.445 0.423 0.391 0.398 0.398 0.383 0.374 0.361 0.238

Std 0.002 0.004 0.005 0.008 0.121 0.254 0.003 0.007 0.014 0.052 0.112 0.234

0.447 0.443 0.436 0.429 0.186 -0.107 0.392 0.384 0.356 0.272 0.141 -0.221
Line 1

CI
0.455 0.459 0.456 0.461 0.660 0.889 0.404 0.412 0.410 0.476 0.581 0.697

Mean 0.451 0.451 0.450 0.448 0.427 0.425 0.398 0.398 0.396 0.384 0.381 0.351

Std 0.000 0.001 0.004 0.005 0.035 0.115 0.000 0.002 0.003 0.006 0.051 0.133

0.451 0.449 0.442 0.438 0.358 0.200 0.398 0.394 0.390 0.372 0.281 0.091
Line 2

CI
0.451 0.453 0.458 0.458 0.496 0.650 0.398 0.402 0.402 0.396 0.481 0.611

Mean 0.451 0.451 0.451 0.451 0.448 0.447 0.398 0.398 0.398 0.398 0.395 0.392

Std 0.000 0.000 0.000 0.001 0.003 0.004 0.000 0.000 0.000 0.002 0.004 0.008

0.451 0.451 0.451 0.449 0.442 0.439 0.398 0.398 0.398 0.394 0.387 0.376
Line 3

CI
0.451 0.451 0.451 0.453 0.454 0.455 0.398 0.398 0.398 0.402 0.403 0.408

Table 5.14: Simulation results for the modifications of all cylinders and the first three
lines for the Feynman device and (1,0) input case. Std is the standard deviation and
CI the confidence interval.

σ = [10, 15, 20] infringe the tolerance limit defined. Modifications with σ = [15, 20]

and σ = 20 for the first line and for the second line, respectively, infringe the tolerance
limit. The disorders added in the third line can be neglected.

For the the (1,1) and output Y, disorders in the order of σ = 20 to all cylinders and
σ = [15, 20] in the first line affect the device performance. For the second line, disorder
with σ = 20 generates unexpectedly behaviours in the device. The modifications added
in the third line can be neglected.

Five regions of the first line are analysed to establish their effect in the device
performance, illustrated in Figure 5.15.

Figure 5.15: Regions analysed for the Feynman logic device.

The first region, in yellow, is formed by the nine cylinders of the first input and
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(1,1)-x (1,1)-y

σ σ
Region 0.50 1.00 5.00 10.0 15.0 20.0 0.50 1.00 5.00 10.0 15.0 20.0

Mean 0.730 0.731 0.732 0.716 0.669 0.352 0.019 0.019 0.018 0.033 0.052 0.186

Std 0.002 0.006 0.030 0.073 0.118 0.260 0.001 0.001 0.006 0.026 0.059 0.166

0.726 0.718 0.672 0.573 0.436 -0.157 0.017 0.016 0.005 -0.018 -0.064 -0.139
All

CI
0.735 0.744 0.792 0.859 0.902 0.862 0.021 0.022 0.031 0.085 0.168 0.511

Mean 0.730 0.730 0.728 0.719 0.675 0.382 0.019 0.019 0.017 0.028 0.048 0.167

Std 0.001 0.003 0.007 0.034 0.118 0.267 0.003 0.005 0.007 0.018 0.108 0.195

0.728 0.724 0.714 0.652 0.444 -0.141 0.013 0.009 0.003 -0.007 -0.164 -0.215
Line 1

CI
0.732 0.736 0.742 0.786 0.906 0.905 0.025 0.029 0.031 0.063 0.260 0.549

Mean 0.730 0.730 0.730 0.726 0.715 0.672 0.019 0.019 0.019 0.014 0.010 0.045

Std 0.000 0.003 0.004 0.007 0.021 0.108 0.000 0.002 0.005 0.006 0.009 0.122

0.730 0.724 0.722 0.712 0.674 0.460 0.019 0.015 0.009 0.002 -0.008 -0.194
Line 2

CI
0.730 0.736 0.738 0.740 0.756 0.884 0.019 0.023 0.029 0.026 0.028 0.284

Mean 0.730 0.730 0.730 0.730 0.728 0.749 0.019 0.019 0.019 0.019 0.014 0.012

Std 0.000 0.000 0.000 0.002 0.003 0.006 0.000 0.000 0.000 0.002 0.005 0.006

0.730 0.730 0.730 0.726 0.722 0.737 0.019 0.019 0.019 0.015 0.004 0.000
Line 3

IC
0.730 0.730 0.730 0.734 0.734 0.761 0.019 0.019 0.019 0.023 0.024 0.024

Table 5.15: Simulation results for the modifications of all cylinders and the first three
lines for the Feynman device and (1,1) input case. Std is the standard deviation and
CI the confidence interval.

the fourteen of the second input of the waveguide. The second, in red, by the cylinders
that form the inclination of the inputs waveguide. The third, in purple, by the cylinders
that form the outputs path. The fourth, in blue, is composed by the cylinders of the
first intersections and the fifth region, in green, is formed by the cylinders that form
the edges to the output waveguide. The simulations result of the these regions are
shown in Table 5.16.

As can been observed in average the transmission results are close to the value
when the first line is analysed completely.

The region with greater influence for the input case (0,1) is the first, as shown
in Figure 5.16c and Figure 5.16d, for the input case (1,0) the region 3, as illustrated
in Figure 5.16e and Figure 5.16f. For the input case (1,1) the region 1, as shown in
Figure 5.16g and Figure 5.16h.

Figure 5.16a and Figure 5.16b display the normalized average for output X and
Y respectively. The first region has greater effect for this device by the reason that it is
projected with triangular lattice and the periodicity in the straight lines can be easily
broken.
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(0,1)-x (0,1)-y (1,0)-x (1,0)-y (1,1)-x (1,1)-y

σ σ σ σ σ
Region 20.0 20.0 20.0 20.0 20.0 20.0

Mean 0.132 0.293 0.365 0.319 0.358 0.157

Std 0.032 0.083 0.021 0.069 0.089 0.023

0.069 0.131 0.324 0.184 0.184 0.112
1

CI
0.195 0.456 0.406 0.454 0.532 0.202

Mean 0.113 0.310 0.341 0.287 0.393 0.143

Std 0.045 0.073 0.067 0.024 0.078 0.087

0.025 0.167 0.210 0.240 0.240 -0.028
2

CI
0.201 0.453 0.472 0.334 0.546 0.314

Mean 0.084 0.376 0.325 0.279 0.412 0.135

Std 0.067 0.080 0.078 0.035 0.027 0.066

-0.047 0.219 0.172 0.210 0.359 0.006
3

CI
0.215 0.533 0.478 0.348 0.465 0.264

Mean 0.119 0.316 0.378 0.323 0.442 0.078

Std 0.016 0.056 0.092 0.076 0.063 0.075

0.088 0.206 0.198 0.174 0.319 -0.069
4

CI
0.150 0.426 0.558 0.472 0.565 0.225

Mean 0.083 0.389 0.359 0.298 0.451 0.068

Std 0.025 0.047 0.089 0.037 0.047 0.072

0.034 0.297 0.185 0.225 0.359 -0.073
5

CI
0.132 0.481 0.533 0.371 0.543 0.209

Table 5.16: Simulation results of the first line regions for the Feynman device. Std is
the standard deviation and CI the confidence interval.

5.3 Cascading of Logic Gates

The photonic logic devices studied in this work are novel and have a great potential
to be applied in future all-optical integrated circuits (AOIC). Still, the development of
AOIC faces great challenges, especially for the cascade of logic gates.

There are two major problems. First, when light beams are injected in inputs
(logic 1) they propagate not only to the outputs, but also back to other inputs with
logic 0. This feedback signal must be suppressed in order to avoid its propagation to
previous gates. Second, due to losses the values at the outputs are weaker than in
the inputs. Also, the output of different logic gates presents unequal threshold values.
Once an amplifier is created and connected to the output this problem will be solved.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.16: Regions effect for the Feynman device. The normalised average for output
X (a) and Y (b). Input case (0,1), output X (c) and Y (d). Input case (1,0), output X
(e) and Y (f). Input case (1,1), output X (g) and Y (h).





Chapter 6

Conclusions and Future Work

The optimization of semiconductor nanodevices is an important step in the way to
develop and discover new optoelectronic devices. Moreover, it is a very difficult process
that present several challenges to the scientist. Fortunately, computational techniques
can support this kind of process in order to achieve efficient and effective results more
quickly.

In this work, an approximate method to achieve automatically the energy-band
configuration of superlattices of quantum wells was implemented and used in conjunc-
tion with a genetic algorithm to find structures with a desired energy-band configu-
ration. The experimental results demonstrate that the GA is an adequate, effective
and efficient computational technique to the optimization of superlattice with cen-
tral quantum well. The best structures found here have great potential to be grown
experimentally in order to develop new optoelectronic devices such as photodetectors.

In addition, two all-optical gates in photonic crystals were proposed: the Majority
and the Feynman gates. The majority gate is a compact device that can operate as
AND or OR logic gate. Also, it can be used to create simple and optimized logic,
such as in other technologies (QCA and SET). The Feynman gate is reversible and can
be used to achieve the limits of power consumption in computation. The numerical
analysis, using the FDTD method, shows that the logic 0 and 1 are defined as less than
35% and more than 85% of transmission, respectively, for the Majority gate. For the
all-optical Feynman gate device, the logic 0 and 1 are defined as less than 10% and
more than 40% of transmission, respectively. The devices presented here can be used
to design photonic computational circuits. However, this technology introduces new
challenges, such as the feedback problem to the inputs and the weaker values at the
outputs. Once these problems are solved the cascade of gates will be allowed, enabling
the creation of photonic integrated circuits.
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A methodology to evaluate the robustness of the logic devices in two-dimensional
photonic crystals are applied to these devices. The simulations results show that the
first line has the greater effect in the performance on the device, by the reason that it
is close to the waveguide. The regions of the first line with great impact in the device
operation are the ones formed by straight lines because the periodicity can be easily
broken. In general, with 95% of confidence level the logic devices designed with these
geometries are robust and can support modifications of about ±40nm for a tolerance
in the transmission output of ±0.1. Therefore, the devices studied here have great
potential to be grown experimentally.

6.1 Future Work

From this work, many others may arise. It is possible to highlight:

• Applying other computational intelligence techniques to perform the energy-band
configuration automatically of the superlattices of quantum wells.

• Consider the calculation of the transmission coefficient under the barriers.

• Evaluate other penalization values and consider the number of discrete energy
levels and minibands in the fitness function.

• Try other metaheuristics to optimize superlattices of quantum wells and compare
their results with those obtained in this work.

• Perform the experimental growth of the superlattices of quantum wells structures
found in this work.

• Evaluate the robustness of other all-optical logic devices in photonic crystals.

• Perform the experimental growth of the all-optical logic devices proposed in this
work.

• Use computational optimization techniques to the discovery of new all-optical
logic devices.

• Investigate other types of structures and phenomenons in photonic crystals to
solve the feedback problem and the cascade of the logic gates.
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Appendix B

SPQW Online Simulator

Superlattice of quantum wells online simulator is a web tool de-
veloped in this work to simulate these structure, available at
http://www.nanocomp.dcc.ufmg.br/applications/spqws/. As shown in the Fig-
ure B.1, this tool is composed of two main modules, to known: Projects and
Simulator.

Figure B.1: Init page of SPQW online Simulator.

The simulator module is illustrated in Figure B.2. This module is divided into
three sections.

The first section capture the parameters to perform and save the simulation. The
second section is an area to view and interact with the coefficient transmission plot.
This area have same particular functionalities execute with the commands explained
bellow:

• Scroll for zoom in, zoom out
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1 

2 

3 

Figure B.2: Simulator module of the SPQW online simulator.

• Alt + Scroll to right and left

• Shift + Scroll to up and down

• Ctrl + Click to add/delete a peak

• Shift + Click to add/delete the begin of miniband

• Ctrl + Shift + Click to add/delete the end of miniband

The third section is an area exhibiting the energy-band configuration of the sim-
ulated structure.

The Projects, shown in Figure B.3 is composed of the history simulations section,
plot section and the result simulation section, as shown in figure. It is important to
remark that the history simulation section, displayed the all simulations performed in
the tool.
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1 

3 

2 

Figure B.3: Projects module of the SPQW online simulator.





Appendix C

Superlattices of Quantum Wells
Structures

This section show the parameters and the simulation results of the superlattices of
quantum wells structures obtained in the optimization process.

• Superlattice of quantum wells structure 1.

Number of Quantum Wells 12

Central Quantum Well Width 27 Ang.

Superlattices of Quantum Wells Width 14 Ang.

Barriers Width 39 Ang.

Barriers Height 463 meV

Table C.1: Parameter of superlattice of quantum wells structure 1.

Energy Value Localizated State

578.22 Discrete Energy Level

624.90 Beginning of Miniband

871.70 End of Miniband

909.07 Discrete Energy Level

983.13 Beginning of Miniband

1347.09 End of Miniband

Table C.2: Energy localization of structure 1.
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• Superlattice of quantum wells structure 2.

Number of Quantum Wells 12

Central Quantum Well Width 25 Ang.

Superlattices of Quantum Wells Width 12 Ang.

Barriers Width 48 Ang.

Barriers Height 416 meV

Table C.3: Parameter of superlattice of quantum wells structure 2.

Energy Value Localizated State

526.18 Discrete Energy Level

550.99 Beginning of Miniband

751.79 End of Miniband

801.24 Discrete Energy Level

860.49 Beginning of Miniband

1157.18 End of Miniband

1178.32 Discrete Energy Level

1237.60 Beginning of Miniband

1416 End of Miniband

Table C.4: Energy localization of structure 2.
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• Superlattice of quantum wells structure 3.

Number of Quantum Wells 12

Central Quantum Well Width 46 Ang.

Superlattices of Quantum Wells Width 16 Ang.

Barriers Width 43 Ang.

Barriers Height 531 meV

Table C.5: Parameter of superlattice of quantum wells structure 3.

Energy Value Localizated State

649.35 Beginning of Miniband

846.47 End of Miniband

901.38 Discrete Energy Level

943.18 Beginning of Miniband

1275.82 End of Miniband

Table C.6: Energy localization of structure 3.
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Figure C.1: Superlattice of quantum wells structure 3.

• Superlattice of quantum wells structure 4.

Number of Quantum Wells 13

Central Quantum Well Width 34 Ang.

Superlattices of Quantum Wells Width 21 Ang.

Barriers Width 43 Ang.

Barriers Height 485 meV

Table C.7: Parameter of superlattice of quantum wells structure 4.

Energy Value Localizated State

500.24 Discrete Energy Level

507.13 Beginning of Miniband

634.24 End of Miniband

687.88 Beginning of Miniband

917.03 End of Miniband

993.52 Discrete Energy Level

1003.86 Beginning of Miniband

1272.22 End of Miniband

Table C.8: Energy localization of structure 4.
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Figure C.2: Superlattice of quantum wells structure 4.

• Superlattice of quantum wells structure 5.

Number of Quantum Wells 7

Central Quantum Well Width 63 Ang.

Superlattices of Quantum Wells Width 16 Ang.

Barriers Width 48 Ang.

Barriers Height 501 meV

Table C.9: Parameter of superlattice of quantum wells structure 5.

Energy Value Localizated State

547.12 Discrete Energy Level

612.23 Beginning of Miniband

774.97 End of Miniband

862.08 Discrete Energy Level

881.65 Beginning of Miniband

1163.71 End of Miniband

Table C.10: Energy localization of structure 5.
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Figure C.3: Superlattice of quantum wells structure 5.

• Superlattice of quantum wells structure 6.

Number of Quantum Wells 14

Central Quantum Well Width 62 Ang.

Superlattices of Quantum Wells Width 18 Ang.

Barriers Width 55 Ang.

Barriers Height 413 meV

Table C.11: Parameter of superlattice of quantum wells structure 6.

Energy Value Localizated State

484.34 Discrete Energy Level

500.37 Beginning of Miniband

629.26 End of Miniband

653.94 Discrete Energy Level

714.00 Beginning of Miniband

953.58 End of Miniband

982.89 Discrete Energy Level

999.78 Beginning of Miniband

1275.57 End of Miniband

Table C.12: Energy localization of structure 6.
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Figure C.4: Superlattice of quantum wells structure 6.

• Superlattice of quantum wells structure 7.

Number of Quantum Wells 8

Central Quantum Well Width 62 Ang.

Superlattices of Quantum Wells Width 16 Ang.

Barriers Width 51 Ang.

Barriers Height 495 meV

Table C.13: Parameter of superlattice of quantum wells structure 7.

Energy Value Localizated State

546.084 Discrete Energy Level

596.99 Beginning of Miniband

749.32 End of Miniband

835.74 Beginning of Miniband

1090.00 End of Miniband

1120.40 Discrete Energy Level

1170.32 Beginning of Miniband

1451.00 End of Miniband

Table C.14: Energy localization of structure 7.
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Figure C.5: Superlattice of quantum wells structure 7.

• Superlattice of quantum wells structure 8.

Number of Quantum Wells 8

Central Quantum Well Width 63 Ang.

Superlattices of Quantum Wells Width 16 Ang.

Barriers Width 47 Ang.

Barriers Height 504 meV

Table C.15: Parameter of superlattice of quantum wells structure 8.

Energy Value Localizated State

549.75 Discrete Energy Level

617.21 Beginning of Miniband

786.64 End of Miniband

871.66 Discrete Energy Level

889.95 Beginning of Miniband

1182.64 End of Miniband

Table C.16: Energy localization of structure 8.
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Figure C.6: Superlattice of quantum wells structure 8.
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