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Resumo

IPv6 Low Wireless Personal Area Networks (6LoWPAN) é a mais promissora tecnolo-
gia para a implementaçcão da chamada Internet das Coisas. Para que esta tecnologia
torne-se uma realidade, protocolos de roteamento precisam ser resilientes a variações na
qualidade da transmissão, devido a constantes mudanças nos enlaces. O mais promissor
destes protocolos é o IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL).
Nesta dissertação, o protocolo RPL é estendido de forma a considerar a incerteza na
qualidade dos enlaces. O problema de roteamento do RPL Robusto é modelado como
um problema de otimização robusta derivado do Problema da Árvore de Caminhos
Mais Curtos, denominado Árvore de Caminhos Mais Curtos Robusta (RSPT). É pro-
postas uma nova heurísticas para o RSPT, além de uma formulação matemática e um
algoritmo exato baseado na formulação proposta. Além disso, uma heurística e três
algoritmos aproximativos da literatura para problemas de Otimização Robusta são es-
tendidos para o RSPT, e uma prova de seus fatores de aproximação foi desenvolvida.
O algoritmo propostos é comparado com os algoritmos da literatura. Experimentos
computacionais demonstram que o algoritmo exato proposto resolveu todas as instân-
cias propostas com 100 vértices na otimalidade. Entretanto, ele não consegue resolver
instâncias com 200 vértices na otimalidade em um tempo de 24 horas. A heurística
proposta apresenta melhores resultados que os algoritmos aproximativos estendidos da
literatura, sendo que obtem um gap relativo próximo ao gap do algoritmo exato pro-
posto com um tempo computacional muito inferior. A heurística proposta pode ser
facilmente extendida para outros problemas de otimização robusta.

Palavras-chave: Otimização robusta, programação matemática, heurísticas, Internet
das Coisas, RPL.
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Abstract

IPv6 Low Wireless Personal Area Networks (6LoWPAN) is the most promising tech-
nology for implementing the so called Internet of Things. In order for this technology
to become a reality, routing protocols need to be resilient to variations in the links
quality, due the constantly changes in the channels. The most promising of these
protocols is the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL).
In this work, the RPL routing protocol was extended to consider the uncertainty in
the link quality. The RPL routing problem is modeled as a Robust Optimization
problem derived from the Shortest Path Tree problem, denominated Robust Shortest
Path Tree problem (RSPT). A new heuristics for the RSPT is developed, besides a
mathematical formulation and an exact algorithm based in the proposed formulation.
Besides that, a heuristic and three aproximative algorithms from literature of Robust
Optimization were extend for the RSPT, and a proof of its approximation ratio is
developed. The proposed algorithms are compared with the algorithms from the lit-
erature. Computational experiments shown that the proposed exact algorithm solved
all the proposed instances with 100 vertices at optimality. However, it could not solve
instances with 200 vertices at optimality within 24 hours. The proposed heuristics
presented better results that the approximative algorithms extended from literature,
such that it achieves a relatively gap close to the gap of the proposed exact algorithm
with a smaller computational time. The proposed heuristic can be easily extended to
other robust optimization problems.

Keywords: Robust optimization, mathematical programming, heuristics, Internet of
Things, RPL.
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Chapter 1

Introduction

Nowadays, there is a steady growth in the number of Internet-connected devices such
as computers, sensors, actuators, smartphones, home appliances, etc. [Atzori et al.,
2010]. This new set of devices introduces a novel paradigm in the scenario of modern
wireless telecommunications. These devices communicate with other and collaborate
with their neighbours to reach common goals, forming the Internet of Things (IoT)
[Giusto et al., 2010].

IoT refers to the networked interconnection of daily use objects, thus leading to
a ubiquitous system. This ubiquity of the Internet is obtained by integrating objects
via embedded systems. This leads to a highly distributed network of devices that
communicate with each other and with people at their surrounding [Xia et al., 2012].
It can be characterized as a highly dynamic and distributed network system, composed
of a large number of smart objects that produce and consume information [Miorandi
et al., 2012].

A large number of applications are being developed for the IoT, with promises
that this new paradigm will improve our quality of life [Xia et al., 2012]. However, many
challenges, such as energy consumption, security and well designed routing protocols
need to be solved before IoT becomes a reality. One of the most promising technolo-
gies for the implementation of IoT is the IPv6 Low Wireless Personal Area Network
(6LoWPAN) [Shelby and Bormann, 2011]. It is characterized by low resources in terms
of both computation and energy capacity [Atzori et al., 2010; Gubbi et al., 2013]. Each
6LowPAN node represents a device in the IoT. These nodes are interconnected by
wireless links with potentially low communication quality and high loss rates [Winter,
2012].

Many routing protocols for 6LoWPAN were designed in an attempt to overcome
the aforementioned deficiencies. Currently, the most promising of these protocols is

1



2 Chapter 1. Introduction

the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) [Winter, 2012;
Gaddour and Koubâa, 2013]. For each application running at the network, a sink
node s is specified. Then, RPL builds a Destination Oriented Direct Acyclic Graph
(DODAG) from s to all other nodes serving the application. The DOGAG represents
all the possible routes from the sink to any other node in the application, and vice-versa.
It is built taking into account the nodes’ transmission range and the distance between
nodes. Each node may have one or more parent nodes, and the arcs are oriented from
the node to its parents.

Once the DODAG is built, a default parent is selected for each node, which
induce a s-rooted tree that is a subgraph of the DODAG. This tree specifies the default
routes between nodes in a 6LoWPAN, and its is referred to as the routing tree. It is
computed taking into account a predefined metric regarding the link quality. There are
an exponentially large number of s-rooted trees in a DODAG, and the efficiency of the
network depends on how good is the one chosen by the protocol. Therefore, each node
periodically updates its parent, inducing a possibly better routing tree. An example
of a DODAG and a routing tree is presented in Figure 1.1. In this example, the sink
node is a, and a package from node e to node f follows the path < e, c, a, d, f >.

(a) (b)

Figure 1.1. (a) An example of a DODAG rooted on node a, and (b) an example
of a routing tree in this DODAG. In this example, a package from node e to node
f follows the path < e, c, a, d, f >

The most common metric used to build the RPL routing table is the link quality.
RPL uses the last observation of the link quality to compute the routes. Therefore,
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the performance of RPL may vary with the network links variability. The objective of
this work is to improve the performance of RPL networks by taking into account link
variability in the routing protocol.

Two main strategies can be used to optimize problems with data variability:
stochastic programming [Spall, 2005] and robust optimization [Kouvelis and Yu, 1997;
Ben-Tal and Nemirovski, 2002]. The former is mostly applied whenever the probability
law associated to the uncertain data is known in advance. A drawback of this approach
is that it is sometimes difficult to define the probability distribution associated to the
uncertain data, or else errors can happen on the parameters estimation.

Robust optimization (RO) is an alternative to stochastic programming, where
the variability at the uncertain data is represented by a set of deterministic values.
The realization of the uncertain data, bounded by the determined interval, is called
a scenario of a instance of a RO problem. RO is properly used when there is some
uncertainly data that can be recovered from past times observation of the problem that
will be optimized. A RO framework presented in [Kouvelis and Yu, 1997] defines three
critical steps to build a robust model. The first step is to structure the uncertain data.
It defines that the uncertain data can be structured by a discrete set of scenarios, each
one with a single value for each uncertain data, or by an interval of values for each
uncertain parameter, which leads to an infinite number of scenarios. The second step is
to choose an appropriate robust criterion, that determines how conservative will be the
robust model. The last step is to gather the chosen data structure and robust criterion
to build a robust model. Given the robust model, a solution is said to be robust if it
has the smallest value for the robust criterion, among all feasible solutions. The robust
optimization problem is defined as to find the robust solution for a given robust model.

There are three main robust criteria, namely the regret (RE) [Kouvelis and Yu,
1997; Karaşan et al., 2001], the minmax regret (MR) [Kouvelis and Yu, 1997; Aissi
et al., 2009], and the minmax relative regret (RR) [Kouvelis and Yu, 1997; Coco et al.,
2014a]. They are explained below.

Let R be the set of possible scenarios for a given problem, and X be the set of
feasible solutions for this problem. Also, let xr be the cost of solution x for the scenario
r. The RE criterion is defined as

min
x∈X

max
r∈R

{xr}, (1.1)

i.e., the robust solution is the one that minimizes the maximum value of xr over all
possible scenarios. This criterion has a conservative nature, as it is based on the
anticipation that the worst scenario might happen [Kouvelis and Yu, 1997].
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Let R, X and xr be as defined above. Let also x∗
r be the cost of the optimal

solution x∗
r for the scenario r. The MR criterion is defined as

min
x∈X

max
r∈R

{xr − x∗
r}, (1.2)

i.e., the robust solution is one that minimizes the maximum regret over all scenarios.
Analogously, the MRR creterion is defined as

min
x∈X

max
r∈R

�
xr − x∗

r

x∗
r

�
, (1.3)

i.e., the regret of using xr instead of x∗
r relative by the cost of xr [Kouvelis and Yu,

1997]. MRR is more difficult to solve, when compared to MR, because its objective
function is nonlinear. However, MRR is a better metric than MR, as shown in [Coco
et al., 2014a].

In this work, the RPL routing problem is modeled as a robust optimization prob-
lem derived from the Shortest Path Tree problem (SPT) [Wu and Chao, 2004; Cormen
et al., 2009]. Given a connected digraph G = (V,A) with a set V of nodes and a set A
of arcs. Each arc (i, j) ∈ A is associated with a cost cij ∈ R+. Moreover, let n = |V |
and m = |A| be respectively the number of nodes and arcs in G. SPT consists in
finding a spanning tree of G that has the shortest path from a given root node s to
every node in V \ {s}. There are polynomial time algorithms that solve the SPT, such
as Dijkstra algorithm [Dijkstra, 1959] and Bellman-Ford algorithm [Bellman, 1956].

The Robust Shortest Path Tree problem (RSPT) is a generalization of SPT, where
the cost of each arc (i, j) ∈ A is defined by an interval [lij, uij], with lij, uij ∈ R+, such
that uij ≥ lij > 0, ∀(i, j) ∈ A. Also, let s ∈ V be the root node. In our model for the
RPL routing problem, the nodes in V are associated to IoT devices, and the arcs in E

are associated to links. Besides, for all (i, j) ∈ A, lij and uij correspond to the smallest
and the largest observation in the link quality metric. This problem is formally defined
in Chapter 4.

The remainder of this work is organized as follows. The routing problem in
6LoWPAN network is discussed in Chapter 2. Related works are presented in Chapter
3. The RSPT routing problem is formally defined in Chapter 4, and a mathematical
formulation is presented. Heuristics for RSPT are proposed in Chapter 5. Computa-
tional experiments are presented in Chapter 6. Finally, concluding remarks are drawn
in Chapter 7.



Chapter 2

Routing in 6LoWPAN

Embedded devices (ED), also called smart objects, are a part of the Internet that
consists in resource-constrained IP-enabled devices [Shelby and Bormann, 2011; Ee
et al., 2010]. The IoT connects such devices, and will impact significantly in various
sectors of the society, as environmental monitoring, energy savings, smart grids, more
efficient factories, logistics, healthcare and smart homes [Atzori et al., 2010; Giusto
et al., 2010; Xia et al., 2012; Shelby and Bormann, 2011; Gubbi et al., 2013; Kushalnagar
et al., 2007; Kortuem et al., 2010; Said and Masud, 2013; Madakam et al., 2015].

smart smart smart smart
office/building city agriculture transportation

network size small medium medium/large large

# users not too many, general few, large, general
many public landowners public

energy battery battery, battery, battery,
harvesting harvesting harvesting

databases local shared local, shared shared

connectivity wifi/3G/4G/ wifi/3G/4G wifi/ wifi/
backbone backbone satellite satellite

bandwidth small large medium medium/large

examples Furdík and Lukác [2012] Zanella et al. [2014] TongKe [2013] Lee et al. [2015]

Table 2.1. Smart environment application domains [Gubbi et al., 2013]

Table 2.1 gives details about some of these application domains. The first column
shows the characteristic of the network. Remaining columns describe different applica-
tion domains. Each type of network has its own characteristics. One can see that IoT
networks can be a small building network, as presented by Furdík and Lukác [2012],
or a great network that interconnect the transport systems in a city, with thousands

5



6 Chapter 2. Routing in 6LoWPAN

of EDs connecting the public transportation, as presented by Lee et al. [2015]. This
work focus on office/building networks, with low bandwidth and hundred of devices.

The network constructed by interconnected wireless EDs is a subset of the IoT,
and is called Wireless Embedded Internet (WEI). The 6LoWPAN was developed to
enable WEI to work with the IPv6 protocol, instead the traditional IPv4 protocol,
thus enabling a vast amount of dispositives to be on the IoT [Shelby and Bormann,
2011].

The EDs communication devices typically benefit from multi-hop mesh networks,
i.e. networks wherein messages are routed from a source to a destination through pos-
sibly multiple other nodes acting as relays. A 6LoWPAN is a multi-hop mesh network,
such that a path is formed by the set of links (i.e., channels) between the source and
the destination. However, current IPv4 protocols may not easily be applicable to these
networks, as discussed in [Shelby and Bormann, 2011].

Some protocols were designed for 6LoWPAN networks [Winter, 2012; Ee et al.,
2010; Vasseur et al., 2011; Felsche et al., 2012]. One of the first protocols is the
6LoWPAN On-demand Distance Vector Routing (LOAD) [Kim et al., 2007b; Chang
et al., 2010]. It is a simplified on-demand routing protocol based on Ad-Hoc On-
demand distance vector routing (AODV) [Royer and Perkins, 1999; Perkins et al.,
2003], that was first proposed for wireless sensor networks (WSN). Both LOAD and
AODV use IEEE 64-bit address as devices interface identifiers for building it routing
table. However, because of its length, the IEEE address is not scalable and inefficient
when used in a 6LoWPAN network [Zhu et al., 2009].

The Dynamic MANET On-demand for 6LoWPAN Routing protocol (DYMO-
low) [Kim et al., 2007a] is based on the Dynamic MANET On-demand Routing protocol
(DYMO) [Chakeres and Perkins, 2008] and the AODV protocol. DYMO-low is a
routing protocol for 6LoWPAN that works directly on the link layer, not using the
network IP layer. Thus, it creates a mesh network topology of 6LoWPAN devices that
do not have the knowledge of IP, such that IP sees this network as a single link, with
all EDs sharing a same IPv6 prefix. This protocol is able to use both 16-bit link layer
short address or IEEE 64-bit extended address.

The Hierarchical Routing protocol (HiLow) [Kim et al., 2005] was proposed in
order to increase the network scalability. It works with 16 bits link layer short address
and it is characterized by low memory consumption and a fast packet routing [Ee
et al., 2010]. Besides that, HiLow do not have a recovery path mechanism, making it
unable to construct another routing table when some node of the network fails. This
characteristic makes HiLow unable to work with dynamic networks. Therefore, it can
efficiently route packets only in static environments.
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The IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) [Vasseur
et al., 2011; Winter, 2012; Gaddour and Koubâa, 2013] was designed to be highly
adaptive to network conditions and to provide alternate routes, whenever default routes
are inaccessible. RPL also works with 16 bits link layer short address, one of the
characteristics of 6LoWPAN.

RPL is the most promising routing protocol for 6LoWPAN when compared to
other protocols [Gaddour and Koubâa, 2013]. RPL is flexible, supporting various types
of traffic (MP2P, P2MP and P2P). Thus, it can be easily adapted for various application
requirements. It is also flexible and can use any metric to build its routing table.
Besides, RPL is suitable for fault-tolerance applications, with a local and a global
repair of its routing table [Gaddour and Koubâa, 2013].

RPL is based on the topological concept of a DODAG. It is possible to define a
network by one or more of this DODAGs at the same time, thus being denominated a
RPL instance. Furthermore, one network can run multiple RPL instances at the same
time, such that each instance serves to an different application. Thus, one node can
join one or more of these instances [Gaddour and Koubâa, 2013].

The RPL protocol is composed of three different ICMPv6 control messages: (i)

DIS (DODAG Information Solicitation); (ii) DIO (DODAG Information Object); (iii)
DAO (DODAG Destination Advertisement Object) [Winter, 2012]. These messages
are used to exchange information about the DODAG topology.

A comparison between RPL and the others 6LoWPAN routing protocols can
be found in [Gaddour and Koubâa, 2013]. It shows that RPL is a flexible protocol
that can directly connect to the Internet by using the IPv6 protocol, supports various
types of traffic, and can be easily adapted for various types of applications. Therefore,
[Gaddour and Koubâa, 2013] concludes that RPL outperform others 6LoWPAN routing
protocols. A detailed description of how RPL works can be found in [Vasseur et al.,
2011; Winter, 2012].

Values of link quality are used to make routing decisions. However, the great
link variability in 6LoWPANs can degrade the link throughput, as observed in Koksal
et al. [2006]. If one link channel varies, it can disrupt the network and cause the whole
network to lose performance, or even fail [Atzori et al., 2010; Shelby and Bormann, 2011;
Koksal et al., 2006]. Besides, no current routing protocols in the literature consider
channel variability.

Routing algorithms for 6LoWPAN try to select the paths with better channels in
order for messages to be transmitted more efficiently, consuming less energy and avoid-
ing retransmissions. However, the channel variability may lead the routing selection
to the worst possible decision in that instant, causing many problems in the network.
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When this occurs, the network will fail, it may even get disconnected. Besides that, a
large amount of energy will be used in order to retransmit messages that were lost in
the network. Thus, the network will be even more congested due the high quantity of
retransmitted messages.

This work propose a solution to deal with the channel variability. The routing
problem of the RPL under channel variability is modeled as a RSPT. RO techniques
are used to select the routes and improve the network, even in the presence of wireless
channel variability, thus modeling the RPL routing protocol as a RSPT. This work
aims to construct a DODAG in a given network by considering the best and the worst
link quality in a given interval of time, and then build a routing tree that will be more
resilient to this link quality variation.



Chapter 3

Related works

Robust optimization problems were first studied in [Gupta and Rosenhead, 1968].
Many RO problems were introduced by Kouvelis and Yu [1997]. For instance, the
Robust Assignment problem [Deí et al., 2006; Pereira and Averbakh, 2011], the Robust
Shortest Path problem [Karaşan et al., 2001; Coco et al., 2014a, 2016], the Robust
Minimum Spanning Tree Problem [Yaman et al., 2001; Kasperski et al., 2012], the
Robust Knapsack problem [Yu, 1996; Monaci and Pferschy, 2013] and Robust Net-
work Design problem [Gutiérrez et al., 1996; Ukkusuri et al., 2007]. More recently,
RO versions of classical NP-Hard problems have also been studied, as the Robust
Travelling Salesman problem [Montemanni et al., 2006; Candia-Véjar et al., 2011], the
Robust Set Covering problem [Degel and Lutter, 2013; Coco et al., 2015], the Robust
Scheduling Optimization problems [Daniels and Kouvelis, 1995; Wu et al., 2009], and
the Robust Restricted Shortest Path problem [Assunção et al., 2014], among others.
This work refers to the survey [Ben-Tal and Nemirovski, 2002] for other RO problems.
It also presents the main results of RO applied to uncertain linear, conic quadratic and
semidefinite programming until the time of its publication.

A survey about robust optimization criteria is presented by Coco et al. [2014b].
This work addresses RO problems with discrete scenarios. The three main minmax

regret criteria are reviewed, so as α-robustness [Kalaı et al., 2012], bw-robustness [Roy,
2010], and pw-robustness [Gabrel et al., 2013]. It also presents two new robust criteria
that can be applied to measure the robustness of both scenarios and interval data
models.

There are several works in literature that deals with the complexity theory of
RO problems. The survey [Aissi et al., 2009] is dedicated to computational complexity
results for several versions of Robust Shortest Path, Robust Minimal Spanning Tree,
and Robust Knapsack. The book [Kouvelis and Yu, 1997] also gives complexity results

9
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for a widely range of RO problems. The work of Chekuri et al. [2007] proves that a
single-source version of the Robust Network Design problem is NP-Hard in undirected
graphs. The complexity of the Robust Least-Squares problem have be discussed in
[Ghaoui and Lebret, 1997]. The work [Aron and Hentenryck, 2004] prove that the
Robust Minimal Spanning Tree problem is NP-Complete even in graphs when the
edges cost are defined as binary values, settling the conjecture presented in [Kouvelis
and Yu, 1997]. The work of Averbakh [2001] presents the first problem that is NP-
Hard when there is a finite set of scenarios, but is polynomial time solvable when the
uncertainty is represented by interval data.

The first MILP formulation for the Robust Shortest Path problem was given by
Karaşan et al. [2001]. Besides, a pre-processing algorithm for the Robust Shortest Path
problem was given in this same work. It consists in finding the so called weak arcs,
i.e. arcs that never will be in the optimal solution of the problem. This algorithm is
valid only for acyclic, planar or layered graphs. The idea of identifying weak arcs in a
solution is extended to the Robust Travelling Salesman problem in [Montemanni et al.,
2006, 2007].

A constraint programming approach to the Robust Minimal Spanning Tree prob-
lem with interval data was developed by Aron and Hentenryck [2002]. The proposed
search algorithm is based on three basic components: a combinatorial lower bound, a
pruning component and a branching heuristic. Computational experiments show that
the proposed algorithm outperforms the MILP based branch-and-bound algorithm pro-
posed by Yaman et al. [2001].

Benders decomposition approaches for the Robust Shortest Path problem and
the Robust Minimal Spanning Tree problem are presented by Montemanni and Gam-
bardella [2005a] and Montemanni [2006], respectively. These works extend the pre-
vious works of Montemanni et al. [2004] and Montemanni and Gambardella [2005a],
that have presented branch-and-bound algorithms for these two problems. It is shown
that the benders decomposition approach outperforms the previous branch-and-bound
algorithms and all others state-of-the-art algorithms until the time of its publication.

The work of Kouvelis and Yu [1997] is extended in Averbakh [2005]. It considers
the robust version of combinatorial optimization problems with discrete scenarios and
the RR criterion. The author proposes a nonlinear generic formulation for this class
of problem, and also developed a proof that RO problems with interval data with the
RR criterion are NP-Hard.

A 2-approximative algorithm for RO problems with interval data and the RR
criterion is presented by Kasperski and Zieliński [2006]. This algorithm fixes the mean
scenario, i.e. a scenario where each arc cost is fixed at its mean value ((lij+uij)/2), and
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then runs an algorithm for the classical version of the problem. This 2-approximative
algorithm has the same complexity as the algorithm for the classical problem.

A polynomial time (1+ε)-approximative scheme for RO problems is presented by
Kasperski and Zieliński [2007], extending the work [Kasperski and Zieliński, 2006]. This
algorithm can be applied for all RO problems that its classical version is polynomially
solvable. Its complexity for the Robust Shortest Path problem is O(|A|3/ε2), where A

is the set of arcs of the problem.
Approximative algorithms for RO problems with interval data and AR criterion

was developed in Conde [2012]. This work extends the previous work of Kasperski
and Zieliński [2006, 2007]. It aims to solve the classical version of RO problems at
the mean scenario, obtaining algorithms that have an approximation factor of 2 for
minmax absolute regret problems [Kasperski and Zieliński, 2006, 2007].

Four pre-processing algorithms for Robust Shortest Path were developed by
Catanzaro et al. [2011]. This work extends the work of Karaşan et al. [2001], by
presenting new algorithms to fix arcs in the optimal solution. The first algorithm aims
to find an subset of arcs that, if removed from the problem, result in solutions with
a worst robustness cost. The second algorithm search for nodes that are not in any
path between the origin node s and destination node t. The third algorithm construct
a Minimum Spanning Tree (MST) t at the upper scenario, i.e. a scenario where each
arc of the graph is at it respective maximum value, and then find a shortest path p1

between s and t in t. Then, one arc (i, j) ∈ p1 is removed from the original graph and
a new shortest path p2 is evaluated at the resultant graph. If the robustness cost of
shortest path p1 is lower than shortest path p2, then the this arc (i, j) belongs to the
optimal solution of the problem. The last algorithm construct a MST t � at the lower
scenario, i.e. a scenario where each arc of the graph is at it respective minimum value,
and then find a shortest path p�1 between s and t in t�. After that, an arc (i, j) ∈ G \ t�
is inserted in t�, and a new shortest path p�2 is evaluated in t�. If this new arc (i, j)

do not belongs to the shortest path p�2, then it can be removed from the problem.
These four algorithms has complexity equals O(|V |2 × |A|), O(|V |3), O(|V |2 × |A|),
and O(|V |2 × |A|), respectively, where V represents the set of nodes and A represents
the set of arcs of a graph G.

A Scenario-based Algorithm (SBA) for the Robust Set Covering problem with
interval data was presented by Coco et al. [2015]. This work extends the approximative
algorithms presented by Kasperski and Zieliński [2006], targeting a set of scenarios
computed as a linear combination of mean and upper scenarios. The presented heuristic
is also a 2-approximative algorithm, as it also includes the mean scenario. It is shown
that SBA outperforms the heuristics presented by Kasperski and Zieliński [2006] in a
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reasonable running time. An extension of this work is presented in Coco et al. [2016],
that develops hybrid algorithms that combine SBA and exact methods for this same
problem.

For the best of our knowledge, there is no work in literature for RSPT. Thus, this
work proposes the first MILP formulation for this problem, so as exact, approximative,
and heuristic algorithms.



Chapter 4

The Robust Shortest Path Tree

4.1 The problem

Let G = (V,A) be a connected digraph, where V is the set of nodes and A is the set of
arcs. Each arc (i, j) ∈ A is associated with an interval cost [lij, uij], which represents
the variation in the link quality metric, with lij, uij ∈ R+ and uij ≥ lij > 0, for all arcs
(i, j) ∈ A. Let also s ∈ V be the root node, and V � = V \ {s}.

Definition 4.1.1. A scenario r is a realization of arcs cost crij ∈ [lij, uij] for each arc
(i, j) ∈ A.

(a) (b)

Figure 4.1. Examples of a RSPT instance (a) and one possible scenario (b)

13
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Figure 4.1 shows an example of a RSPT instance and one possible scenario defined
in this network. One can see that Figure 4.1b has a cost for each arc defined inside the
interval cost presented in Figure 4.1a.

Let T be the set of all s-rooted spanning trees in G. Let also pti be the path from
node s to node i ∈ V � induced by the tree t ∈ T . Besides, let cr(pti) =

�
(i,j)∈A[pti]

crij be
the cost of pti in the scenario r, and cr(p∗i ) be the cost in the scenario r of the shortest
path p∗i from s to i in r.

Definition 4.1.2. The robust deviation of a path pti induced by t ∈ T in the scenario
r (also referred to as the regret of pti in r) is defined as dr(pti) = cr(pti)− cr(p∗i ), i.e. the
difference between the cost of pti in r and the best possible path from s to i in r.

Let A[t] be the set of arcs that compose a tree t ∈ T , and A[pti] ⊂ A[t] be the set
of arcs that compose the path pti, and R be the set of all possible scenarios in G.

Lemma 4.1.1. [Kouvelis and Yu, 1997] The robust deviation of p t
i is the maximum,

among all scenarios in R, at the scenario r ti ∈ R, such that cr
t
i
ij = 1, for all (i, j) ∈ A[pti],

and c
rti
ij = 0, for all (i, j) ∈ A \ A[pti].

The smaller is the robust deviation of pti, the better is this path for sending
packets from s to i. Besides, the smaller is the value of drti (pti), the more robust is this
path to variations in the link quality.

Definition 4.1.3. The robustness cost of t ∈ T is defined as Rt =
�

i∈V � dr
t
i (pti), i.e.

the sum of the maximum robust deviation of every path from s to any other node in
G.

A smaller robustness cost implies that, when there is a great link variability, the
network will be less affected. The smallest is robustness cost of the communication
tree of a 6LoWPAN, the more efficient and the more reliable is the network.

Definition 4.1.4. A tree t∗ ∈ T is said to be robust if it has the smallest robustness
cost among all trees in T .

Therefore, RSPT can be defined as to find a robust spanning tree of G rooted in
s, i.e. t∗ = argmint∈T Rt.

4.1.1 RSPT complexity proof

In order to proof that RSPT is NP-Complete, it is possible to construct reductions
from two well known NP-Complete problems: the 2-Partition Problem (2PT) [Karp,
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1972] and the 3-Partition Problem (3PT) [Garey and Johnson, 1979]. It is proved that,
with only two different scenarios, the RSPT problem is NP-Complete, and with an
indefined number of scenarios, the RSPT problem is strongly NP-Complete.

Definition 4.1.5. Given a finite set I, and a weight ai ≥ 0, ∀i ∈ I, the objective
of the 2-Partition Problem is to find two subsets of I, namely X and Y , such that�

i∈X ai =
�

i∈I\Y ai and X ∩ Y = ∅. Karp [1972] demonstrated that 2PT is NP-
Complete even when |X| = |Y | = |I|

2
.

Definition 4.1.6. Given a finite set I of exactly 3l elements, and a weight ai ≥ 0, ∀i ∈
I, the objective of the 3-Partition Problem is to find m disjoint subsets s1, s2, . . . , sm ⊆
I such that s1 ∪ s2 ∪ . . . ∪ sm = I, and

�
k∈si ak = B, ∀si ∈ m. Garey and Johnson

[1979] demonstrated that 3PT is strongly NP-Hard even when B
4
< ai <

B
2
, ∀ai ∈ I.

It is possible to note that, when this inequality is satisfied, a solution for 3PT consists
in exactly m = l triplets such that the sum of elements in each triplet is B.

Theorem 4.1.2. The RSPT problem is NP-Complete, even in layered graphs with
only 3 layers and 2 scenarios.

Proof. The 2PT problem can be reducted to RSPT. Given a 2PT instance, it is possible
to construct a corresponding RSPT instance in polynomial time.

Let I be a finite set with |I| = m elements. It is possible to build a digraph
G = (V,A) partitionated into 3 disjunt subsets of vertices V = V0 ∪ V1 ∪ V2. Subset V0

contains only one vertice, denominated s. Subset V1 contains 2m vertices, and subset
V2 contains m vertices. Besides, it is possible to define three disjunt subsets of arcs
A = A0 ∪ A1 ∪ A2. Subset A0 contains 2m arcs, constructing an complete bipartite
digraph betwen subsets V0 and V1. Subset A1 contains m arcs, such that there is an
arc from each vertice vi ∈ V1 to a vertice wi ∈ V2, for all 0 ≤ i < m. One can see that
this construction corresponds to a layered digraph with 3 layers of vertices.

A RSPT problem can be constructed with only two scenarios, namely r1 and r2.
The cost of arcs e ∈ A0 are fixed in 0 under both scenarios. At scenario r1, the cost of
each arc ei ∈ A1 is fixed in ai, and the cost of arcs e ∈ A2 is fixed in 0. At scenario r2,
the cost of each arc ei ∈ A2 is fixed in ai, and the cost of arcs e ∈ A1 is fixed in 0.

Given the above construction, let t1 and t2 be two shortest paths trees (SPT) in
G with root at vertice s in scenarios r1 and r2, respectively. Note that t1 and t2 are
unique by construction. Besides, let X and Y be two set of arcs such that X = E\A[t2]
and Y = E \ A[t1]. A 2PT of I exists if and only if Rt1 = Rt2 = 1

2

�
k∈I ak. To prove

the "if" part, suppose there exists a partition of I in two subsets X and Y with�
k∈X ak =

�
k∈Y ak = 1

2

�
k∈I ak. It is possible to construct two SPT t1 and t2 such
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that A[t1] = E0 ∪ X and A[t2] = E0 ∪ Y . Both t1 and t2 are optimal solutions for
the RSPT instance. To prove the "only if" part, assume that Rt∗ = 1

2

�
k∈I ak]. Let

t1 and t2 be two SPT at scenarios r1 and r2, respectively. Moreover, let X and Y be
two subsets of arcs such that X = A \ A[t2] and Y = A \ t1. By the construction of
the network, it is clear that (A[t1] ∩ A[t2]) \ E0 = ∅. Also, by the construction of the
network, it is clear that Rt1 = Rt2 =

1
2

�
k∈I ak. Thus, it must be a 2PT of I in subsets

X and Y .

Theorem 4.1.3. The RSPT problem is strongly NP-Complete for an unbounded num-
ber of scenarios, even in layered graphs with only 3 layers.

Proof. The 3PT problem can be reducted to RSPT. Given a 3PT instance, it is possible
to construct a corresponding RSPT instance in polynomial time.

Let I be a finite set with |I| = 3l elements. It is possible to build a digraph
G = (V,A) partitionated into 3 disjunt subsets of vertices V = V0 ∪ V1 ∪ V2. Subset V0

contains only one vertice, denominated s. Subset V1 contains (3l)2 vertices, and subset
V2 contains 3l vertices. Besides, it is possible to define l + 1 disjoint subsets of arcs
A = A1∪A2∪ . . .∪El∪Al+1. Subset Al+1 contains (3l)2 arcs, constructing an complete
bipartite digraph betwen subsets V0 and V1. All others l subsets contain 3l arcs with
origin in vertices v3l+i ∈ V1 and destiny at vertices wi ∈ V2, for i ∈ {0, 1, . . . , 3l}. One
can see that this construction corresponds to a layered digraph with 3 layers of vertices.

A RSPT problem can be constructed with an unbounded number l of scenarios.
The cost of arcs e ∈ Al+1 are fixed at 0 under all scenarios. For each scenario ri ∈
{0, 1, . . . , l}, the cost of each arc e ∈ Ai is fixed in ai. Besides, the cost of each arc
e ∈ A \ Ai is fixed in 0.

Given the above construction, let T = {t1, t2, . . . , tl} be the set of SPT of G

with root at vertice s in G on scenarios {r1, r2, . . . , rl}, respectively, such that A[ti] =

E0 \
�

j∈l,j �=i tj. Note that all SPT ∈ T are unique by construction. A 3PT of I exists
if and only if there is a RSPT t∗ of G with Rt∗ = B. To prove the "if" part, suppose
there exists a 3PT of I into l disjoint subsets with

�
k∈sm = B, ∀m ∈ {1, 2, . . . , l}.

It is possible to construct a set {t1, t2, . . . , tl} of SPTs in G as mentioned above. By
the construction of the network, the robustness cost of all SPTs are the same, i.e.
Rti = B, ∀ti ∈ T . Thus, Rt∗ = minRti , ∀ti ∈ T , that, by definition, is equal to B. To
prove the "only if" part, assume that Rt∗ = B. By the construction of the network,
there are l different SPT in G, each one on a different scenario. Besides, all l SPT
have the same robustness cost B. It is possible to define l disjoint subsets of arcs
s1, s2, . . . , sl, such that the subset si contains the arcs in ti ∩

�
j∈l,j �=i tj. By definition,
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�
k∈I ak = lB. As there are l SPT in G with robustness cost equal to B, there is

exactly a 3PT of I into subsets s1, s2, . . . , sl.

4.2 A mixed integer linear programming

formulation

A Mixed Integer Linear Programming (MILP) formulation is defined with decision
variables zij ∈ {0, 1} such that zij = 1 if arc (i, j) ∈ A belongs to the robust tree and
zij = 0 otherwise. Moreover, auxiliary variables yk

ij ∈ {0, 1} keep the path from s to
k ∈ V \{s} induced by the tree defined by variables zij. Besides, variables xk

i ≥ 0 have
the cost of the shortest path from s to i ∈ V \ {s} in the scenario induced by the path
from s to k (defined by variables ykij). Therefore, the shortest path from s to k in this
scenario is kept in xk

k. The corresponding MILP formulation is defined by Equations
(4.1) to (4.9).

min
�

k∈V \{s}


 �

(i,j)∈A
(uijy

k
ij)− xk

k


 (4.1)

�

(j,l)∈A
ykjl −

�

(i,j)∈A
ykij =





1, if j = s

−1, if j = k

0, otherwise
, ∀j ∈ V, k ∈ V \ {s} (4.2)

xk
j ≤ xk

i + lij + (uij − lij)y
k
ij, ∀(i, j) ∈ A, k ∈ V \ {s} (4.3)

ykij ≤ zij, ∀(i, j) ∈ A, k ∈ V \ {s} (4.4)

�

(i,j)∈A
zij = n− 1 (4.5)

xk
s = 0, k ∈ V (4.6)

xk
i ≥ 0, ∀i ∈ V \ {s}, k ∈ V (4.7)

ykij ∈ {0, 1}, ∀(i, j) ∈ A, k ∈ V (4.8)
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zij ∈ {0, 1}, ∀(i, j) ∈ A (4.9)

The objective function (4.1) minimizes the sum of the maximum robust deviation
for every k ∈ V \ {s}. Constraints (4.2) are the classic flow conservation constraints
and ensure the connectivity of each path from s to k. Inequalities (4.3) enforce the
correct value of x. The cost of the shortest path from vertex s to a vertex j ∈ V \{s} is
computed as the cost of the path from s to a vertex i that is adjacent to j and belongs
to its inverse transitive closure, plus uij if yijk = 1 or lij otherwise. Inequalities (4.4)
guarantee that the path from the root node s to every other node to be at the robust
tree. Constraints (4.2), (4.4), and (4.5) enforce that variables z induces a tree. Equation
(4.6) set to zero the value of the shortest path from s to itself, for all k ∈ V \ {s}. The
domain of the variables x, y, and z are defined by (4.7), (4.8), and(4.9) respectively.



Chapter 5

Heuristics for RSPT

Kasperski and Zieliński [2006] developed three heuristics for the Robust Shortest Path
problem. They are called Average Median (AM), Average Upper (AU) and Average
Median Upper (AMU). This work first extends the AM, AU, and AMU heuristics for
the RSPT.

AM receives as input a graph G = (V,A), the lower bound lij, and the upper
bound uij for each arc (i, j) ∈ A. Next, the scenario rm is fixed, where the cost of
the arcs are set to their respective mean value, i.e. cmij = (lij + uij)/2. Then, the
regret of the solution is computed by constructing two Shortest Path Tree (SPT) by
the Dijkstra’s algorithm. The first evaluates the cost of the SPT in scenario rm. The
second evaluates the cost of the SPT on the worst scenario, as stated at Lemma 4.1.1.
Then, the regret is computed and returned. The asymptotic worst case complexity of
this heuristic is the same as that of Dijkstra’s algorithm, i.e. O(|E| + |V | · log(|V |)).
This heuristic is a 2-approximative algorithm for Robust Shortest Path. A proof that
it is also 2-approximative for RSPT is given in Session 5.1.

AU receives the same input as AM. Next, the scenario ru is fixed, where the cost
of the arcs are in their respective maximum value, i.e. cuij = uij. Then, the regret
is computed in the same way as in AM and returned. The asymptotic worst case
complexity of this heuristic is the same complexity of as that of AM.

AMU runs AM and AU and then returns the best solution found by these heuris-
tics. As AMU uses AM, its also a 2-approximation algorithm for the RSPT.

A Scenario-based Algorithm (SBA) for the Robust Set Covering problem was
presented in Coco et al. [2015, 2016], and is extended here to RSPT. SBA is an extension
of AMU, where target scenarios between the lower scenario (r l, a scenario where the
cost of the arcs are set to their respective lower, i.e. cmij = lij) and the upper scenario
(ru) are investigated. SBA have three different parameters: the initial scenario α;

19
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the final scenario β; and the step size γ. All parameters have real values into the
interval [0, 1]. Target scenarios are computed as α + δγ, for all δ ∈ {0, . . . , i} such
that α + δγ ≤ β. Thus, SBA investigates β−α

γ
different scenarios. One can see that

both mean scenario rm and upper scenario ru can be obtained with SBA. Thus, it can
produce solutions at least as good as AMU and also holds an approximation ratio of
at most 2 for the RSPT.

This work advances the literature by developing a new heuristic to solve the
RSPT, denominated MILP-based Variable Neighbourhood Descent (MILP-VND), and
it is presented in Section 5.2. MILP-VND is compared with AM, AU, AMU [Kasperski
and Zieliński, 2006, 2007], SBA [Coco et al., 2015, 2016], and the MILP formulation
(4.1)-(4.9) in Chapter 6.

5.1 Proof of AM 2-approximation for RSPT

Lemma 5.1.1. Kasperski and Zieliński [2006] Let t � , t�� ∈ T be two trees rooted in s.
Then, the following inequality holds for all r ∈ R:

dr(pt
�

k ) ≥
�

(i,j)∈A[pt
�
k ]\A[pt

��
k ]

uij +
�

(i,j)∈A[pt
��
k ]\A[pt

�
k ]

lij, ∀k ∈ V \ {s} (5.1)

Lemma 5.1.2. Kasperski and Zieliński [2006] Let t � , t�� ∈ T be two trees rooted in s.
Then, the following inequality holds:

dr(pt
�

k ) ≤ dr(pt
��

k )+ (5.2)
�

(i,j)∈A[pt
�
k ]\A[pt

��
k ]

uij +
�

(i,j)∈A[pt
��
k ]\A[pt

�
k ]

lij, ∀k ∈ V \ {s}

Theorem 5.1.3. The performance ratio of algorithm AM for the RSPT is at most 2.

Proof. Let t ∈ T be the tree given by AM algorithm. Also, for all k ∈ V \ {s}, let
A[ptk] be the set of arcs from vertex s to k in t. We will prove that, for all t ∈ T ,�

k∈V \{s} d
r(ptk) ≤ 2

�
k∈V \{s} d

r(ptk), for all t ∈ T , r ∈ R. It follows that
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�

k∈V \{s}


 �

(i,j)∈A[ptk]\A[ptk]

uij −
�

(i,j)∈A[ptk]\A[ptk]

lij


 ≥ (5.3)

�

k∈V \{s}


 �

(i,j)∈A[ptk]\A[ptk]

uij −
�

(i,j)∈A[ptk]\A[ptk]

lij




From inequality (5.2), we have

dr(ptk) ≤ dr(ptk) +
�

(i,j)∈A[ptk]\A[ptk]

uij +
�

(i,j)∈A[ptk]\A[ptk]

lij, ∀k ∈ V \ {s} (5.4)

We can rewrite inequality (5.4) as

�

k∈V \{s}
dr(ptk) ≤

�

k∈V \{s}
dr(ptk)+ (5.5)

�

k∈V \{s}


 �

(i,j)∈A[ptk]\A[ptk]

uij +
�

(i,j)∈A[ptk]\A[ptk]

lij




Inequality (5.1) together with inequality (5.3) yield

dr(ptk) ≥
�

(i,j)∈A[ptk]\A[ptk]

uij −
�

(i,j)∈A[ptk]\A[ptk]

lij ≥ (5.6)

�

(i,j)∈A[ptk]\A[ptk]

uij −
�

(i,j)∈A[ptk]\A[ptk]

lij, ∀k ∈ V \ {s}

We can rewrite inequality (5.6) as
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�

k∈V \{s}
dr(ptk) ≥ (5.7)

�

k∈V \{s}


 �

(i,j)∈A[ptk]\A[ptk]

uij −
�

(i,j)∈A[ptk]\A[ptk]

lij


 ≥

�

k∈V \{s}


 �

(i,j)∈A[ptk]\A[ptk]

uij −
�

(i,j)∈A[ptk]\A[ptk]

lij




Inequalities (5.5) and (5.7) imply that
�

k∈V \{s} d
r(ptk) ≤ 2

�
k∈V \{s} d

r(ptk) for
any t ∈ T . Therefore, it is also valid for the robust tree, which completes the proof.

5.2 MILP-based Variable Neighbourhood Descent

The MILP-VND heuristic consists in a local search procedure that uses CPLEX to
evaluate the neighbourhood of a solution. It implements a Variable Neighbourhood
Descent [Talbi, 2009], a traditional local search metaheuristic that exploits the idea of
neighbourhood change to escape from local optimum solutions [Hansen and Mladen-
ović, 2001].

The MILP-VND uses the σ-opt neighbourhood structure [Lin, 1965], with σ ∈
{1, . . . , 4}. It receives as input a graph G = (V,A), besides the lower bound lij and
the upper bound uij for each arc (i, j) ∈ A. Then, it runs SBA and use its solution
as an initial point for the local search procedure. As MILP-VND starts from the SBA
solution, it is also returns a solution that worst cost it at most twice of the optimal
one.

The use of CPLEX for solving the neighbourhood structure instead of the tra-
ditional enumeration strategy is justified by the complexity of verify the value of a
neighbourhood. The evaluation of one solution consist in running two times the Dijk-
stra’s algorithm, that is well-known to has the complexity of O(|A| + |V |log|V |). As
MILP-VND uses up to a 4-opt neighbourhood structure, the complexity to verify a
complete neighbourhood using the enumeration strategy is up to O(|A|+ |V |log|V |)4.
Thus, using CPLEX can speed up the local search procedure.

MILP-VND uses the constraint (5.8) to define a neighbourhood. It limits the
search space by only considering solutions that differ exactly 2σ arcs from a given
solution t ∈ T .
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�

(i,j)∈t
zi,j = |V |− 1− σ (5.8)

MILP-VND starts with the solution t obtained from SBA and the value of the
regret of t. Next, it runs the local search procedure until the limit value of σ is
reached. Each neighbourhood structure evaluation is done by CPLEX by inserting the
Constraint (5.8) at the MILP formulation defined by Equations (4.1)-(4.9). If CPLEX
founds a solution with a better regret than the current solution t, then t is replaced
by the new generated solution, plus setting σ to its initial value. Otherwise, the value
of σ is increased, in order to explore a larger neighbourhood. Finally, it removes the
inserted constraint before evaluating a new neighbourhood. After the exploration of
all neighbourhood structures without an solution improvement, it returns the current
solution t and MILP-VND is ended.





Chapter 6

Computational Experiments

Computational experiments were performed on an Intel Xeon CPU E5645 with 2.4

GHz clock and 32 GB of RAM memory, running Linux operating system. The branch-
and-bound implementation of the ILOG CPLEX version 12.6 with default parameter
settings has been used to solve the MILP formulation (4.1)-(4.9). The heuristics have
been implemented from scratch in C++ and compiled with GNU GCC version 5.2.1.
The running time of CPLEX branch-and-bound was limited 24 hours.

The performance of AM, AU, AMU, SBA, and MILP-VND are assessed on a
classic set of RSP instances, based on Karaşan graphs [Karaşan et al., 2001] with
100 and 200 nodes. Karaşan graphs rely on a layered [Sugiyama et al., 1981] and
acyclic [Bondy and Murty, 1976] topology, see for example Figure 6.1. Instances are
generated as in Coco et al. [2014a]. The instance names are presented as K-n-a-b-
c-d, where n is the number of nodes and d is the graph width. Parameters a and b

are used to generate the intervals [lij; uij]. For each arc (i, j) ∈ A, a value c ∈ [1; a]

is randomly generated using an uniform distribution. Then lij and uij are randomly
generated in [(1− b)c; (1 + b)c] and [lij; (1 + b)c] respectively. M layers are considered,
each one with d nodes. Thus n = Md. Each pair of consecutive layers m and m + 1,
m ∈ {1, . . . ,M−1}, define a complete bipartite digraph: each node i ∈ m is connected
to each node j ∈ m + 1 by an arc. Parameter c refers only the Id of the instance.
Moreover, an additional source node s is connected to each node in layer 1 by an arc
and an additional sink node t receives an arc from every node in layer M , as shown in
Figure 6.1. Karaşan graphs are used for this work because they are already used for
RSP problems [Coco et al., 2014a; Karaşan et al., 2001; Montemanni and Gambardella,
2005b; Montemanni et al., 2004; Pérez et al., 2012]. Besides, they represent DODAGs,
the same type of graph given by the RPL protocol.
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Figure 6.1. A Karaşan graph with M = m layers and width W = 2 [Karaşan
et al., 2001]

6.1 CPLEX branch-and-bound

The first experiment aims at evaluating the performance of the CPLEX branch-and-
bound based on the MILP formulation (4.1)-(4.9) for the proposed instances. Besides,
these results are used to evaluate the proposed heuristics in comparison to CPLEX
upper bound.

The results are reported in Tables 6.1 and 6.2. The first column is the instances’
name. The second and third columns show the lower bound and the upper bound
founds by CPLEX, respectively. The fourth column shows the relative optimality gap.
The last column shows the running time in seconds. It can be seen that CPLEX
branch-and-bound easily solve at optimality all the instances with 100 nodes, with an
maximum running time of 7.55 seconds. However, for the instances with 200 nodes,
the CPLEX branch-and-bound can only solve four out of the ten evaluated instances
in less than 24 hours. However, the maximum optimality gap observed for this set of
instances was 1.56%.

6.2 Average Median Upper algorithm

The second experiment aims to evaluate AM, AU and AMU for the proposed instances.
It compares the heuristics result with CPLEX branch-and-bound results presented in
Tables 6.2 and 6.2. The results of these experiments are shown in Tables 6.3 and
6.4. The first column is the instances’ name. The second and third columns report
CPLEX branch-and-bound gap and running time. Then, each pair of columns reffer to
a heuristic. The first column of each pair shows the relative gap of the solution found
by the heuristic over the upper bound of the CPLEX branch-and-bound, in percentage.
The second column of each pair shows the heuristic running time in seconds.
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instance lb up gap (%) t (s)

K-100-200-0.9-a-2 22.00 22.00 0.00 0.72
K-100-200-0.9-b-2 83.00 83.00 0.00 0.80
K-100-200-0.9-a-5 228.00 228.00 0.00 2.74
K-100-200-0.9-b-5 370.00 370.00 0.00 4.58
K-100-200-0.9-a-10 39.00 39.00 0.00 4.07
K-100-200-0.9-b-10 27.00 27.00 0.00 4.16
K-100-200-0.9-a-25 14.00 14.00 0.00 2.73
K-100-200-0.9-b-25 32.00 32.00 0.00 7.55
K-100-200-0.9-a-50 14.00 14.00 0.00 2.52
K-100-200-0.9-b-50 9.00 9.00 0.00 2.50

average 0.00 3.23

Table 6.1. Results for CPLEX Branch-and-bound Karaşan instances with 100
nodes

instance lb up gap (%) t (s)

K-200-200-0.9-a-2 169,324.00 169,324.00 0.00 12,046.38
K-200-200-0.9-b-2 128,538.00 128,538,00 0.00 28,660.90
K-200-200-0.9-a-5 25,579.91 25,769.00 0.73 > 86,000.00
K-200-200-0.9-b-5 15,383.15 15,390.00 0.04 > 86,000.00
K-200-200-0.9-a-10 8,092.51 8,221.00 1.56 > 86,000.00
K-200-200-0.9-b-10 6,979.42 7,086.00 1.51 > 86,000.00
K-200-200-0.9-a-25 2,029.16 2,036.00 0.34 > 86,000.00
K-200-200-0.9-b-25 2,363.35 2,382.00 0.80 > 86,000.00
K-200-200-0.9-a-50 1,050.00 1,050.00 0.00 370.07
K-200-200-0.9-b-50 895.00 895.00 0.00 302.64

average 0.50 55,737.8

Table 6.2. Results for CPLEX Branch-and-bound for Karaşan instances with
200 nodes

It can be seen that AU outperforms AM for both set of instances. For instances
with up to 100 nodes, as reported in Table 6.3, AM founds a relative gap of 0.99%, while
AU founds the optimal solution for all evaluated instances. As AMU ran AU, it also
found the optimal solution for all evaluated instances. Both AU and AMU outperform
CPLEX branch-and-bound in terms of running time, achieving an average running
time of 0.02 seconds and 0.05 seconds respectively, while CPLEX branch-and-bound
has an average running time of 3.23 seconds.

For instances with up to 200 nodes, as reported in Table 6.4, AM founds a relative
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CPLEX AM AU AMU

instance gap (%) t (s) gap (%) t (s) gap (%) t (s) gap (%) t (s)

K-100-200-0.9-a-2 0.00 0.72 0.00 0.01 0.00 0.01 0.00 0.01
K-100-200-0.9-b-2 0.00 0.80 0.00 0.01 0.00 0.02 0.00 0.02
K-100-200-0.9-a-5 0.00 2.74 0.00 0.02 0.00 0.01 0.00 0.03
K-100-200-0.9-b-5 0.00 4.58 0.26 0.01 0.00 0.01 0.00 0.03
K-100-200-0.9-a-10 0.00 4.07 0.00 0.02 0.00 0.01 0.00 0.06
K-100-200-0.9-b-10 0.00 4.16 0.00 0.02 0.00 0.02 0.00 0.05
K-100-200-0.9-a-25 0.00 2.73 0.00 0.04 0.00 0.04 0.00 0.10
K-100-200-0.9-b-25 0.00 7.55 3.03 0.03 0.00 0.04 0.00 0.09
K-100-200-0.9-a-50 0.00 2.52 6.67 0.05 0.00 0.05 0.00 0.10
K-100-200-0.9-b-50 0.00 2.50 0.00 0.04 0.00 0.04 0.00 0.09

average 0.00 3.23 0.99 0.02 0.00 0.02 0.00 0.05

Table 6.3. Results for AM, AU and AMU for Karaşan instances with 100 nodes,
compared with the CPLEX branch-and-bound

CPLEX AM AU AMU

instance gap (%) t (s) gap (%) t (s) gap (%) t (s) gap (%) t (s)

K-200-200-0.9-a-2 0.00 12,046.38 0.01 0.02 0.01 0.02 0.01 0.07
K-200-200-0.9-b-2 0.00 28,660.90 0.69 0.02 0.69 0.02 0.69 0.06
K-200-200-0.9-a-5 0.73 > 86,000.00 2.65 0.05 2.61 0.06 2.61 0.13
K-200-200-0.9-b-5 0.04 > 86,000.00 2.08 0.02 2.08 0.02 2.08 0.05
K-200-200-0.9-a-10 1.56 > 86,000.00 9.53 0.10 9.90 0.02 9.53 0.24
K-200-200-0.9-b-10 1.51 > 86,000.00 6.74 0.10 4.17 0.12 4.17 0.24
K-200-200-0.9-a-25 0.34 > 86,000.00 3.05 0.21 2.21 0.20 2.21 0.50
K-200-200-0.9-b-25 0.80 > 86,000.00 4.13 0.22 3.94 0.22 3.94 0.48
K-200-200-0.9-a-50 0.00 370.07 2.86 0.31 2.23 0.34 2.23 0.72
K-200-200-0.9-b-50 0.00 302.64 4.48 0.34 4.58 0.38 4.48 0.78

average 0.50 55,737.80 3.62 0.13 3.24 0.14 3.19 0.33

Table 6.4. Results for AM, AU and AMU for Karaşan instances with 200 nodes,
compared with the CPLEX branch-and-bound

gap of 3.62%, while AU founds an relative gap of 3.24% and AMU achieves a relative
gap of 3.19%. CPLEX branch-and-bound has a smaller gap of 0.50%, but an average
running time of more than 55,000 seconds, while AM, AU and AMU running time
never exceed 1 second.

As stated in Chapter 5, AM and AU consist in running two times the of Dijkstra’s
algorithm. Thus, it can justify the great time efficiency of these heuristics. Besides, as
AM and AMU are 2-approximative algorithms for RSPT, they average case is closer
to the optimum than it theoretical limit.
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6.3 Scenario-based Algorithm

The third experiment aims to evaluate SBA for the proposed instances. First, it
presents a sensibility analysis of SBA in relation to its parameters. Then, SBA is
compared with AMU and CPLEX branch-and-bound.

In order to evaluate the SBA sensibility to its parameters, 12 different versions of
SBA were developed and evaluated. Three different sets of initial and final scenarios
are considered, being {0, 0.5}, {0.5, 1}, and {0, 1}. Moreover, four different step sizes
are considered, being 0.1, 0.05, 0.01, and 0.001.

As AMU solves all instances with 100 vertices at optimality, this experiment
is performed only in instances with 200 vertices. Table 6.5 shows the results of the
sensibility analisys of SBA. The first column shows the step size γ. The second and
third columns show the initial scenario α and the final scenario β, respectively. The
fourth column reports the number of inspected scenario by SBA with the defined α, β,
and γ. The fifth and sixth columns report, respectively, the average gap and the average
running time over the proposed instances with 200 vertices for each combination of α, β,
and γ reported in columns 1, 2 and 3.

γ α β # scenarios gap (%) time (s)

0.1
0 0.5 6 2.67 0.97

0.5 1 6 2.80 0.81
0 1 11 2.48 1.55

0.05
0 0.5 11 2.59 1.55

0.5 1 11 2.68 1.55
0 1 21 2.41 2.98

0.01
0 0.5 51 1.87 7.25

0.5 1 51 1.99 7.27
0 1 101 1.73 14.28

0.001
0 0.5 501 1.75 69.86

0.5 1 501 1.94 68.90
0 1 1001 1.59 138.10

Table 6.5. Results for different versions of SBA

As shown in Table 6.5, SBA running time is directly correlated with the number
of inspected scenarios, i.e. SBA’s running time increases as the number of inspected
scenarios increase. The works Coco et al. [2015, 2016] suggest that SBA finds good
solutions when scenarios between the average scenario and the upper scenario are
inspected, i.e. when α = 0.5 and β = 1. However, one can see that, when SBA is
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applied to solve RSPT, a smaller average gap can be achieved when inspecting solutions
between the lower scenario and the median scenario than between the median scenario
and the upper scenario, for all step sizes. However, some instances have a smaller
gap between the median scenario and the upper scenario. Thus, the best average
gap is achieved when SBA inspect solutions between the lower scenario and the upper
scenario, for all step sizes. The best evaluated set of parameters for SBA is α = 0, β = 1

and γ = 0.001, that achieved an average gap of only 1.59% in 138.10 seconds, in average.

Next, Table 6.6 reports the comparison of SBA with AMU and CPLEX branch-
and-bound results presented in Tables 6.2 and 6.4. Two SBAs are analysed. The first,
called SBA1, have α = 0, β = 1 and γ = 0.01. The second, called SBA2, is the best
evaluated SBA, as shown in Table 6.5. The first column reports the instances’ name.
The second and third columns report CPLEX branch-and-bound gap and running time.
Then, each pair of columns reffer to a heuristic. The first column of each pair shows the
relative gap of the solution found by the heuristic over the lower bound of the CPLEX
branch-and-bound, in percentage. The second column of each pair shows the heuristic
running time in seconds.

Table 6.6. Results for CPLEX branch-and-bound, AMU and two different SBAs
for Karaşan instances with 200 vertices

CPLEX AMU SBA1 SBA2

instance gap (%) t (s) gap (%) t (s) gap (%) t (s) gap (%) t (s)

K-200-200-0.9-a-2 0.00 12,046.38 0.01 0.07 0.01 2.60 0.00 23.43
K-200-200-0.9-b-2 0.00 28,660.90 0.69 0.06 0.69 2.62 0.68 23.65
K-200-200-0.9-a-5 0.73 > 86,000.00 2.61 0.13 1.56 5.42 1.07 49.07
K-200-200-0.9-b-5 0.04 > 86,000.00 2.08 0.05 1.18 5.32 0.86 51.23
K-200-200-0.9-a-10 1.56 > 86,000.00 9.53 0.24 1.62 9.91 1.62 91.79
K-200-200-0.9-b-10 1.51 > 86,000.00 4.17 0.24 1.91 10.09 1.68 97.24
K-200-200-0.9-a-25 0.34 > 86,000.00 2.21 0.50 2.11 21.00 2.01 205.42
K-200-200-0.9-b-25 0.80 > 86,000.00 3.94 0.48 2.23 21.02 2.23 200.66
K-200-200-0.9-a-50 0.00 370.07 2.23 0.72 2.23 31.04 2.23 308.39
K-200-200-0.9-b-50 0.00 302.64 4.48 0.78 3.58 33.67 3.35 330.14

average 0.50 55,737.80 3.19 0.33 1.71 14.28 0.95 138.10

As can be seen in Table 6.6, SBA2 average gap is less than 1%, achieving a
gap close to CPLEX branch-and-bound with an average running time two orders of
magnitude faster. SBA1 improved 8 out of 10 instances when compared to AMU, and
SBA2 improved 7 out of 10 instances when compared to SBA1. However, as shown in
Table 6.5, a greater computational time is needed in order to lower the average gap. In
general, as greater is the number of inspected scenarios, then lower is the average gap.
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6.4 Mixed Integer Linear Programming Variable

Neighbourhood Descent

This experiment aims to evaluate MILP-VND for the proposed instances. As AMU
solves all instances with 100 vertices at optimality, this experiment is performed only in
instances with 200 vertices. The results of this experiment are shown in Table 6.7. The
first column reports the instances’ name. The second and third columns report CPLEX
branch-and-bound gap and running time. The fourth column shows the relative gap
of the solution found by MILP-VND over the lower bound of the CPLEX branch-
and-bound, in percentage. The last column reports the MILP-VND running time, in
seconds.

Table 6.7. Results for CPLEX branch-and-bound and MILP-VND for Karaşan
instances with 200 vertices

CPLEX MILP-VND

instance gap (%) t (s) gap (%) t (s)

K-200-200-0.9-a-2 0.00 12,046.38 0.01 244.02
K-200-200-0.9-b-2 0.00 28,660.90 0.61 303.64
K-200-200-0.9-a-5 0.73 > 86,000.00 1.43 305.37
K-200-200-0.9-b-5 0.04 > 86,000.00 1.38 306.54
K-200-200-0.9-a-10 1.56 > 86,000.00 2.06 310.14
K-200-200-0.9-b-10 1.51 > 86,000.00 2.02 305.37
K-200-200-0.9-a-25 0.34 > 86,000.00 0.34 308.84
K-200-200-0.9-b-25 0.80 > 86,000.00 1.29 430.92
K-200-200-0.9-a-50 0.00 370.07 0.00 955.20
K-200-200-0.9-b-50 0.00 302.64 0.00 978.94

average 0.50 55,737.80 0.91 444.42

As can be seen in Table 6.7, MILP-VND can solve two instances at optimality,
when CPLEX can solve five instances. It shows that the heuristic is commonly trapped
into local optima, and can not converge to the global optimum in the most of the cases.
However, MILP-VND average gap is 0.91%, and its average running time is 444.42
seconds. Thus, it presents a gap less than twice than CPLEX, and a running time two
orders of magnitude faster.



32 Chapter 6. Computational Experiments

6.5 Comparison of heuristics

The last experiment compares the heuristics AMU, SBA, and MILP-VND with CPLEX
branch-and-bound based on the proposed MILP formulation (4.1)-(4.9). The results of
these experiments is shown in Table 6.8. First column represents the instance name.
Next, each pair of consecutive columns refer to one heuristic, AMU, SBA, and MILP-
VND, respectively. The first column of each pair shows the relative gap of the solution
found by the heuristic over the lower bound of the CPLEX branch-and-bound, in
percentage. The second column of each pair shows the algorithm running time in
seconds. As instances with 100 vertices are easily solved by CPLEX or AMU, Table
6.8 shows results only for instances with 200 vertices.

Table 6.8. Results for CPLEX Branch-and-bound and heuristics for Karaşan
instances with 200 nodes

AMU SBA MILP-VND

instance gap (%) t (s) gap (%) t (s) gap (%) t (s)

K-200-200-0.9-a-2 0.01 0.07 0.00 23.43 0.01 244.02
K-200-200-0.9-b-2 0.69 0.06 0.68 23.65 0.61 303.64
K-200-200-0.9-a-5 2.61 0.13 1.07 49.07 1.43 305.37
K-200-200-0.9-b-5 2.08 0.05 0.86 51.23 1.38 306.54
K-200-200-0.9-a-10 9.53 0.24 1.62 91.79 2.06 310.14
K-200-200-0.9-b-10 4.17 0.24 1.68 97.94 2.02 305.37
K-200-200-0.9-a-25 2.21 0.50 2.01 205.42 0.34 308.84
K-200-200-0.9-b-25 3.94 0.48 2.23 200.66 1.29 430.92
K-200-200-0.9-a-50 2.23 0.72 2.23 308.39 0.00 955.20
K-200-200-0.9-b-50 4.48 0.78 3.35 330.14 0.00 978.94

average 3.19 0.33 0.95 138.10 0.91 444.42

It can be seen in Table 6.8 that the fastest algorithm is AMU. It achieves a
gap of 3.19% with a running time that never exceeds 1 second. However, MILP-VND
produces the best gap of all heuristics. It gives a gap of 0.91%, just 0.41% greater than
CPLEX branch-and-bound. However, its computational cost was more than 3 times
higher than SBA.
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Conclusions

In this dissertation, the Robust Shortest Path Tree (RSPT) problem with interval
data and minmax regret criteria was proposed. It was inspired by a real network
application, the RPL routing problem. The RPL protocol builds a routing table for
6LoWPANs, that is a special type of network that composes the Internet of Things.
This problem consists in computing a spanning tree in a given graph, such that the
sum of the robust cost of the paths between the root node s and every other node of
the network is minimized. In this work, the RSPT problem was formally defined, and
a mathematical formulation was proposed. Besides, a set of algorithms for RSPT were
presented and evaluated.

As far as we know, this is the first work in literature that develops optimization
algorithms for the RPL protocol. Another novel contribution of this work is to use
Robust Optimization techniques in order to consider the channel variability of 6LoW-
PANs. Thus, this work proposes to extend the RPL protocol with the AU heuristic
as objective function. As AU simple consists in running the Dijkstra’s algorithm in a
pre-defined scenario, it can be implemented as a fully distributed network protocol.

To our knowledge, this is the first work in literature that deals with the RSPT. In
order to compare the developed algorithms, a heuristic and three approximative algo-
rithms for others Robust Optimization problems presented in [Kasperski and Zieliński,
2006] and [Coco et al., 2015] were extended for the RSPT. A proof that three of these
algorithm holds a 2-approximation factor for the RSPT was developed. Besides, a
Mixed Integer Linear Programming based local search was proposed. MILP-VND av-
erage gap was just 0.41% greater than CPLEX branch-and-bound, but its running time
was 2 orders of magnitude lower. Thus, it was considered the best heuristic to solve
RSPT.

Future works may use the developed model to compute the DODAG used by
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the RPL for routing packets in 6LoWPANs, using the AU heuristic to choose the
arcs that will be at the routing table. Furthermore, it is proposed to improve the
presented formulations for the RSPT, and proposes new mathematical formulations
for this problem, so as the development of new exact and heuristics algorithms for the
RSPT. At last, it is proposed to extend the developed MILP-VND heuristic to other
robust optimization problems that AMU or SBA can be efficiently used.
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