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Resumo

Estudos em computação social frequentemente se utilizam de atributos pessoais dos
usuários de serviços on-line a fim de entender melhor o seu comportamento. Como
esses atributos são muitas vezes indisponíveis para pesquisadores e desenvolvedores, es-
forços recentes têm se dedicado a estimá-los através da combinação de outras fontes de
informação. Além de oferecer insights sobre como usuários se relacionam com platafor-
mas online, tais metodologias de estimação de atributos também podem contribuir na
compreensão de quão expostas estão as informações do usuário a terceiros. Nesta dis-
sertação eu proponho estudar o uso de tecnologias de reconhecimento facial para a
estimação do gênero e da idade dos usuários de uma rede social online baseada em
imagens, o Instagram. Esta abordagem é inspirada pela crescente riqueza de infor-
mações de dados de imagem em redes sociais on-line, bem como os recentes avanços
no reconhecimento facial.
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Abstract

Studies in social computing often take into account personal attributes of users of
specific online services in order to better understand their behavior. As these attributes
are often unavailable for researchers and developers, recent efforts have been devoted to
estimate them by combining other sources of information. Besides offering insights to
how users relate to online platforms, such attribute estimation methodologies can also
contribute to understanding how exposed is user information to third parties. In this
master thesis I propose to study the use of face recognition technologies to estimate
the age and the gender of the users of a popular, image-based online social network,
Instagram. This approach is inspired by the increasing wealth of information from
image data in online social networks, as well as recent advances in face recognition.
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Chapter 1

Introduction

The internet has acquired a major role in the daily lives of an increasing number of
people in the world. The website Internet World Stats, for example, reports that the
web has 3, 366, 261, 156 users, equivalent to 46.4% of the world population, 832.4%

of what it had a decade ago1. Product of the explosion of innovations brought by
the Internet, Online Social Networks (OSNs) allowed users to interact with each other
in unprecedented ways, and new methods of analysis and information processing are
transforming these forms of interactions into insights and applications that are increas-
ingly customized and geared towards certain demographic groups [Boyd, 2013].

Due to this influx of innovation, discussions once considered unrelated to the
field of Computer Science must now be addressed, in order to enable the design of
solutions that tackle the new demands posed by these systems. These new demands
spanned a wide range of studies that combine data collection algorithms with statistical
techniques in order to harvest thousands or millions of user profiles and test hypotheses
that could never be tested before.

Traditionally – perhaps in continuation with studies of the topology and prop-
erties of the Internet – these studies have treated social networks like a huge graph,
focusing in the modeling of graph properties. For example, Mislove et al. [2007] stud-
ied theoretical characteristics of friendship networks in Orkut, Flickr, LiveJournal and
YouTube, demonstrating interesting properties like a small average path length be-
tween nodes (small-world) and a strongly uneven distribution of edges (scale-free). In
fact, in recent years, virtually all global-scale OSNs and many regional OSNs have been
studied in this fashion. Examples are Google+ [Magno et al., 2012], Twitter [Kwak
et al., 2010], Orkut [Benevenuto et al., 2009], Facebook [Ugander et al., 2011] and
Cyworld [Ahn et al., 2007a].

1
http://www.internetworldstats.com/stats.htm (Visited Jan 2016)

1

http://www.internetworldstats.com/stats.htm
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Recently, the attention has shifted from simply estimating graph properties to
developing methods of systematically characterizing the content produced in the net-
work [Ottoni et al., 2014; An et al., 2011; Zhao et al., 2011] and the personal attributes
of the users who interact within a network [Cunha et al., 2014; Gong et al., 2012]. This
allows researchers and designers to better understand different patterns of behavior
within a network, and to develop theories and intuitions based on existing literature
in the social and behavioral sciences.

In the present work, I aim to explore a novel method of estimating and analyzing
age and gender in OSNs. There are three main motivations for such objective.

First, age and gender are well known predictors of user behavior. Recent studies
show a consistent pattern of gender differences in relevant online behavior, as in the
choice of hashtags in Twitter [Cunha et al., 2014], the expression of positive feelings
in micro-blogging networks [Kivran-Swaine et al., 2012], and organization of interac-
tion networks in massive online games [Szell and Thurner, 2013]. I was fortunate to
contribute in the area with a study on information disclosure in Facebook, in which
we showed how self-reported gender and age were important predictors of exposure
both to the community at large and to the user’s social circle [Quercia et al., 2012]. In
another work, we showed how men and women differed significantly in how they share
images in Pinterest [Ottoni et al., 2013].

Second, gender and age are sensitive attributes of digital life. As mentioned
above, users of different ages and genders differ in the way they share information, and
for good reasons – users with different age/gender profiles have different concerns on
how they use OSNs in their social life. For example, Boyd [2007] describes how young
people use OSNs publicly but control their level of exposure through implicit codes
and impression management – what she calls social stenography. Similarly, Hargittai
et al. [2010] shows that although the youth notably expose more personal information
on the network than adults, they care and control the public who have access to that
information.

In fact, the relationship between OSNs and the youth has been central to the
public debate concerning Internet services. An example of a heated debate in the early
days of OSNs was centered on the risks that children in MySpace faced by exposing
themselves to sexual predators. In this sense, the work of Marwick [2008] shows how
the public perception of this risk has motivated many public policies from the U.S.
government and design decisions from MySpace’s owners. Lewis et al. [2008] also cite
MySpace’s media scandals to explain their observation that women are more concerned
about their privacy than men.

This concern about privacy is important because users are frequently not aware of
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the level of exposure they have in a network. Indeed, personal exposure online is often
underestimated, since users do not usually take into account the various strategies used
by online services and third parties to discover and infer their personal data - like the
so-called privacy attack algorithms. In a recent work, my research group and I showed
how photo-tags – pointers to other users in photos in Facebook – can be leveraged to
uncover the user’s age and gender with good accuracy [Pesce et al., 2012]. Knowledge
about which methods can be used to uncover socially sensitive information is important
to spread awareness of the level of exposure users are submitting themselves.

The third motivation for this work is that understanding the relationship between
OSN usage and attributes such as gender and age has a high social impact, since it is
related to socially relevant debates such as gender equality and generational differences.
In fact, a number of recent studies combined data collection methods with theories from
the humanities and social sciences to study the pervasiveness of issues such as women’s
lack of representation in highly prestigious positions [Wagner et al., 2016; Terrell et al.,
2016], the biased depiction of women in their community-written biographies [Graells-
Garrido et al., 2015] and the lack of efficiency of impeding kids from using social
networks in order to protect their safety [Dey et al., 2013; Minkus et al., 2015].

Following this trend, my research group and I managed to show that the propor-
tion of women that appeared in photos and “selfies” posted in Instagram in different
countries correlated with gender equality indicators [Souza et al., 2015]. We also inves-
tigated how users who declared they were neither male or female behaved in Google+,
raising the hypothesis that other gender categories allow for non-binary gender identi-
ties to be expressed in the network [de Las Casas et al., 2014].

The growing perception of the sensitivity and value of these two attributes means
that they are becoming increasingly more difficult to obtain. There is an effort of both
the users and the OSNs of hiding them from public exposure, and sometimes they are
not even available as a field to be filled by the user. This is not to say that the OSN
is simply ignoring this information. For example, Twitter does not have a user-fed
gender field, and the age field is not publicly exposed. However, both their campaign
targeting tools and their analytics tools offer filters of age and gender, which means
they do track each user’s age and gender, but chose not to expose it. This is expected
of any OSN with business models that rely heavily in advertising, exactly because age
and gender are strong predictors of user – and consumer – behavior, and therefore
primary variables to be used at user segmentation strategies. But this is also expected
of any OSN that make efforts of segmenting its user base in order to offer customized
services.

This emerging scenario, in which gender and age information is increasingly dif-
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ficult to obtain, but also increasingly relevant, calls for a need of estimating these
attributes in novel ways. Methods developed for such task must be thoroughly eval-
uated in order to avoid unexpected biases and effects. Additionally, these methods
must be publicized to all parts involved whenever possible, and methods using propri-
etary technologies must present a way of properly evaluating the “black boxes” they
encompass.

In this work, I propose to use face recognition technology to estimate age and
gender. Although person recognition and attribute estimation using facial data is
still considered an open problem, there have been much recent progress, which mo-
tivated many social computing researchers to incorporate these technologies in their
work [Bakhshi et al., 2014; Redi et al., 2015b,a; Jang et al., 2015; Polakis et al., 2012;
Li et al., 2014].

Using face data for this task makes intuitive sense – humans recognize themselves
mostly by looking at their own faces, having a specialized brain area for such task,
and incorporating such data into an attribute estimation methodology can help us
approach, or even surpass, a human-level recognition performance. Moreover, using
data in images uploaded by the users goes in line with recent trends in Internet use, as
users have been massively uploading and publishing personal photographs, and social
media have been increasingly more adorned with pictures of the persons related to the
content they share. This shift from textual content to pictorial content in the Internet
– the Visual Web – has been observed and debated by specialists2. It is only logical to
expect that novel methods in social computing will try to leverage this new data-rich
environment.

However, the use of face recognition for estimating user attributes has not been
rigorously evaluated, only validated in a case-by-case fashion – when validated at all.
More specifically, no study has tackled possible sources of bias in these automatic
attribute estimation methods. Thus, I propose to evaluate and validate a popular,
proprietary facial recognition system in a reproducible way, and then show how its bias
can be corrected or at least taken into account when analyzing user behavior.

I intend to use Instagram to test this approach. Instagram is the OSN that
managed to dominate the Visual Web. Although other services such as Google+,
Flickr and Facebook offer photo sharing capabilities and allow for social interactions in
photos, Instagram is a network solely dedicated to social interactions centered around
photo (and short video) sharing.

Thus, my full proposal is to study the use of face recognition technologies for at-

2
http://om.co/2014/12/10/weaving-a-very-visual-web/ (Visited Jan 2016)

http://om.co/2014/12/10/weaving-a-very-visual-web/
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tribute estimation using Instagram as a case study. To be more specific, by attribute I
mean any relevant characteristic that can be retrieved from information available in the
OSN that is directly and individually related to each user. This can be either explicitly
stated in the OSN’s interface, or can be inferred from other explicit information. In
the later case, the attribute is estimated. Thus, I intend to use explicitly available
information in Instagram’s interface (the content of the photos posted by the users)
to infer attributes of the posts (the number, gender and age of the persons depicted
in the photos) and eventually attributes of the users (the gender and age of the users
who posted the photos). In doing so, I intend to open a discussion about the benefits
and risks of using face recognition technologies for such tasks, as well as to present a
framework to evaluate the reliability of such methodology.

In Chapter 2, I will explain how I collected data from the OSN and briefly describe
attributes of the users I managed to collect. In Chapter 3 I will briefly walk through
the state of the art in face recognition and present my evaluation of the face recognition
system of choice, Face++, using a benchmark dataset that best approaches the kind of
images that are expected to be found in Instagram. In Chapter 4, I will present my
analysis of relevant aspects of user behavior in Instagram using Face++ in conjunction
to other well-known methods of analysis. Finally, in Chapter 5, I will round up the
decisions and findings presented here and present a final discussion on the topic.





Chapter 2

Instagram

Instagram is a free OSN for photo and video sharing with over 400 million active users
and 40 billion photos shared as of January 20161. It has a wide international projection:
only 25% of its user base is from the service’s country of birth (USA). It was launched
as an iPhone app at October 2010 and rapidly gained popularity, reaching 10 million
users in September of 2011. It was named “iPhone app of the year” by Apple on
December 2011 and was bought by Facebook four months later. The Android version
was launched in April 2012, and the Windows Phone version of Instagram was only
launched in November of 2013, after much pressure from Nokia executives2.

Instagram was one of the first popular mobile-first applications: although it has
mobile and web interfaces, users can only post and interact in the mobile interface.
It is also neatly integrated with other services, and allows users to share content to
networks, such as Facebook, Twitter and Tumblr.

Next, I will briefly describe how the service is structured, introducing the con-
cepts that I will use throughout the text to describe the data. In Section 2.1, I will
describe the main concepts related to the network. In Section 2.2, I will describe how
the Instagram’s data was collected and the methodological decisions made during the
collection step. Then, in Section 2.3, I will explain how geolocation was handled to map
each geotagged media to its country of origin. Finally, in Section 2.4, I will present
an exploratory analysis of the collected data that aims to examine how the data is
distributed.

1
https://www.instagram.com/press (Visited Jan 2016)

2
http://techcrunch.com/2013/11/20/instagram-windows-phone/ (Visited Jan 2016)

7

https://www.instagram.com/press
http://techcrunch.com/2013/11/20/instagram-windows-phone/
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2.1 Core concepts

Instagram allows the user to take a picture or a short video, edit its visual and metadata
properties and post it to the network. Edition of the media content can be made by
a variety of pre-defined filters - considered one of the main features of the service.
Moreover, users can add captions, hashtags and geolocation metadata. After posting
a media, other users can interact with it through comments and signs of approval
(“likes”). The user can also share this content in other online social networks, which
extends the post’s reach to beyond Instagram.

Anyone with a smartphone running Android, Windows or iOS can download the
App and create a user account tied to a username and a user ID. A user profile is
assigned to each user account. After created, the user account can be used to visit the
user’s own profile or other profiles visible to her.

Users can create posts in their profiles, which are displayed as a list, sorted in
descending order (from last post to first post). A post is a media object, which can
contain either a photo or a 3 to 15 second long video, a list of comments and likes

of other users and extra metadata detailing when and where the post was created and
textual data describing (and enhancing) the post’s content. The data and metadata
from the media object is best described in Table 2.1.

Figure 2.1: Screenshots of a user profile (left) and a post (right) in Instagram. The
faces and remaining posts were blurred.
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media Either a photo or a 3 to 15 second long video and all its associated
metadata

filter One in a predefined set of image transformations suggested by In-
stagram to make the posts prettier

timestamp Time of creation of the post. Added automatically by the service.

caption A field of text, which is displayed below the media and above the
comments.

hashtags A set of words preceded by the hash sign (“#”) added in the caption.
They are hyperlinks to other posts with the same tag, and can also
be queried in a search engine provided by the service.

geotag A pair of a GPS coordinate and a location name, referring the post
to a physical location. The user can pick any existing (i.e. named)
location for the post, but only one per post. Geotags are hyperlink
to a page with the location on a map, along with the most recently
posted public media using the tag.

users_in_post A set of links to user profiles who are presumably in the photo. The
user who made posted the photo provides these tags, and they are
not equivalent as another user being in a photo, i.e. a photo with
a tag of an user does not necessarily depict the person whose user
account was tagged, and a person that appears on a photo will not
necessarily have her user profile tagged.

Table 2.1: Attributes of media objects in Instagram

Social interactions in the network can occur at media level or at user level. At
media level, it is possible to like or comment a post.

Liking is a form of lightweight interaction in which a user signals that he approved
(or supports) the content of the post. If at most 10 users liked a post, their username is
displayed in it. If more users liked it, the amount of likes is displayed. Commenting

has a higher social cost, and means appending a short text in the post, signed with
the user’s username. The profile owner can delete any comment made in its media.
In comments and captions, a user can mention another user by typing its username
preceded by an “@”. Comments can also have hashtags.

At user level, it is possible to follow or be followed by other users. The rela-
tionship is not symmetric, meaning that it is possible to follow someone and not be
followed back, and vice-versa. Following a user means that everything posted by her
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will appear in the main page (feed) of the followee.
Instagram also offers some options to control the profile’s visibility. All user

accounts are public by default, which means that every content published by a user
can be viewed by anyone without the need of following that user. This setting can be
altered in the mobile app, where a user can configure its account as private. Private
users’ publications are only visible to their followers, and they cannot be followed
without their consent.

Instagram does not offer finer grain control of the posts visibility, such as posting a
content only to a predefined list of followers (such as in Google+) or posting something
public while keeping the account private (such as in Facebook). However, it has a
service called Instagram Direct, available for all users in the mobile application,
that allows a user to send photos or videos directly to other specific users. Content
sent via Instagram Direct can only be viewed by the recipients no matter if the sender’s
account is public or private.

2.2 Data collection

Instagram offers an Application Programming Interface (API) that allows developers
to access many of the data published in the network. By making requests to Repre-
sentational State Transfer (REST) endpoints, it is possible to obtain information of
users, media, relationships and comments, among other data types. However, the API
imposes tight limits to the number of requests allowed per client. To address this issue,
my research team and I built a distributed crawler to make requests from multiple
clients, the CAMPS Data Collection Tool. Details of its implementation can be found
in de Souza [2015].

2.2.1 A brief review on sampling methodologies

Methodologies for sampling OSNs can be informally divided in two approaches: crawl-

ing and selection sampling. The proper choice of approach depends on the sampling
goal, i.e. what is being modeled and which attributes are being estimated.

In the crawling approach, the network is treated like a big, unknown graph, and
Graph Sampling Algorithms are used. These either are a simple implementation of a
graph traversal algorithm (e.g. Bread First Search, Depth First Search, etc), which may
produce biased samples but when used correctly can reasonably approach the graph’s
characteristics [Mislove et al., 2007; Ahn et al., 2007b]; or are more sophisticated sam-
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pling methods that correct for bias either at collection time or at a posterior correction
step [Kurant et al., 2011; Gjoka et al., 2010].

In general, in the case of simple, non-corrective algorithms, a proper sample must
contain a reasonable component of the graph (e.g. the biggest connected component),
while for corrective algorithms this is not necessary, but at expense of a significant
increase in the cost of data collection.

The alternative approach, selection sampling, involves finding a way of select-
ing a group of nodes independent of their position in the network. This is normally
done by using a feature such as a feed of top posts [De Choudhury et al., 2010]. The
problem of this strategy is that the collection is strongly biased towards users with
higher visibility, such as celebrities.

Alternatively, one can often query the network for user IDs, and some authors
have used the ID selection strategy to collect the whole network [Magno et al., 2012;
Cha et al., 2010]. However, these authors have relied on idiosyncrasies of the collected
networks, such as sequential ID numbers with few gaps, or availability of the full ID
list. Since data collection can provide third parties important information about a
network service, OSNs will often try to increase the cost of this type of collection by
making the generated IDs more difficult to guess – normally by hiding the ID list and
making the ID space sparse, with a low hit-to-miss ratio, so that many possible IDs
must be guessed before a valid node is discovered.

This makes collecting the whole network unfeasible in most cases, but still allows
for smaller samples. When done at random, selection sampling is equivalent to classical
statistical sampling, and has the advantage of always producing unbiased samples with
respect to node labels. One disadvantage of this method is that, since edges are not
taken into account, the network loses most of its topological structure unless a big
proportion of it is sampled or the selection is made by edge instead of by node [Lee
et al., 2006; Leskovec and Faloutsos, 2006].

2.2.2 Sampling Instagram

For our project, we did not intend to model Instagram as a graph, so node (i.e. user)
relationships are not of primary interest. Although attributes such as user interactions
are of interest, the links between users can be safely ignored. I will only work with the
labels assigned to nodes, which can be collected by the API. This has the additional ad-
vantage of using node attributes calculated taking the whole network into account, since
they are provided by Instagram, thus avoiding distortions due to sampling. Moreover,
it is of interest to have a representative sample of Instagram’s population. Therefore,
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Figure 2.2: Instagram’s ID space

selection sampling with a random batch of user IDs was chosen.
To do so, one needs to know how the IDs were distributed. Thus, the fol-

lowing methods was devised: (a) The ID space was divided in batches of 10

7,
i.e. Batch 1 would hold the IDs {1, 2, · · · , 9999999}, Batch 2 would hold the IDs
{10000000, 10000001, · · · , 19999999}, and so on. (b) For each batch, 10

4 IDs were
chosen randomly and the hits (i.e. IDs that existed) were counted.

Using this method, no hit after Batch 158 could be found, which means that all
valid IDs were between 1 and 1.58⇥ 10

9. We can also get an idea of how the IDs were
distributed, as displayed in Figure 2.2. It can be seen that the IDs are not uniformly
distributed across the whole ID space. Instead, the distribution is U-shaped, with a
gap starting at 500M, reaching its “valley” at around 700M, and then slowly rising.

After knowing the ID space and assuring that it is completely covered, 16 million
IDs were sampled from the valid ones and the user profiles were collected in December
2014. 30% of the sampled profiles were public, while the remaining profiles were either
private, blocked or deleted.

Activity was collected retroactively up to three and a half years, giving informa-
tion from January 2012 to December 2014. This data traces Instagram’s activity to
a time period when it had just reached its 10M user mark, a few months before its
acquisition by Facebook, and in a time when its use was restricted to iPhone users.

The first post of most of the users can be captured by looking at the post with
the minimum created time for each user ID. Figure 2.3 shows the first post of each
user ID. It is possible to affirm that the IDs follow a somewhat chronological order,
due to the lack of any data point in the upper left corner of the graph3. However,
the presence of lower ID numbers in more recent “first posts” suggests that (1) many

3Notice that this method will not be reliable for the first 10M users of the service, but they will
be more unlikely to appear in the dataset as the ID number increases.
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Figure 2.3: Scatterplot showing the relationship between ID and date of the user’s first
post. Dots were set to an alpha level of 1/100 in order to highlight overlaps.

IDs were reused along Instagram’s existence; (2) some IDs were “skipped” and only
attributed to a user later or (3) many users created their profiles and did not post
anything until years later. Notice that these possible explanations are not mutually
exclusive.

The ID space’s growth may have followed the growth of Instagram, but consider-
ing that the U shape of the ID space coincides with the steeper slope in the ID growth,
it seems there was an implementation decision taken around July 2013 to generate
sparser ID numbers. Thus, the steeper slope does not seem to represent solely a higher
adoption rate of Instagram.

It may be interesting to point out that the “leap” in IDs seems to have happened
around June 2012. This was a few months after the acquisition by Facebook (April)
and at the same moment that they announced having reached 80 million users4.

Table 2.2 shows some interesting descriptives on the results of the collection of
the public profiles, broken down by different patterns of user activity.

2.3 Resolving geolocation

Many posts of the collected users were geotagged. As stated in Section 2.1, geotags
are a pair of name and geographical coordinates. The name is arbitrary and unpre-
dictable5, but it is possible to map each coordinate to a location defined in a geo-
graphical database. There is a number of freely available geographical databases with

4http://blog.instagram.com/post/28067043504/the-instagram-community-hits-80-million-users
5Names are Foursquare locations. Foursquare is a location-based social network that partnered

up with Instagram in 2010: foursquare.com

foursquare.com
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Statistic Absolute Relative

Total number of valid users 5,170,062
... with at least 1 followee 3,801,988 74%
... with at least 1 follower 3,797,961 73%
... with at least 1 post 2,860,421 55%
... without followers and followees 956,813 19%

Total number of posts 153,979,348
... that are photos 150,088,274 97%
... with at least one like 141,087,975 91%
... with a least one comment 57,699,726 37%
... without likes and comments 12,252,832 8%
... with hashtags 58,794,786 38%
... with geotags 35,392,626 22%

Table 2.2: Collection Descriptives

differing levels of resolution. I opted to use the Global Administrative Areas (GADM)
Database – a high-resolution public database of country administrative areas, with a
goal of mapping “the administrative areas of all countries, at all levels”6. Version 2.8,
released in November 2015, was used to map coordinates to country labels.

Figure 2.4 shows a sample of all the geotags scattered around the world, and
Figure 2.5 shows the 310, 067 media (0.876% of the tagged media) that could not be
mapped using GADM. Most of these geotags are located in the coastlines of countries,
which means that they were either taken over the sea, or taken at a seashore and
displaced by measurement error. Moreover, 585 locations were invalid (had a latitude
over 90, under -90, or longitude over 180 or under -180). By looking at the name given
by Instagram, I could notice that some of those were inverted (latitude was considered
longitude), and the remaining of them had impossibly large values (e.g. longitude of
999 degrees). I could not reproduce the error, and since the proportion of erroneous
cases was negligible, I simply filtered them out.

Due to the low number of posts in certain countries, some must be disconsidered
from analysis: first, because Instagram use may not be widespread in the region, and
geotagged media from there may be solely due to travelers and tourists from other
countries; second, because even if this is not true, the low sample size for the country
will yield estimates that are too far from their true value.

Thus, a cutoff point was determined. A cutoff as low as 10 medias is possible
and will likely include all possible countries, but the number is too small for reliably

6
http://www.gadm.org/about (Visited Jan 2016)

http://www.gadm.org/about
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Figure 2.4: A random sample of 1M of the geotags mapped to their position in the
world. The data points were set to transparency with an alpha value of 0.01 to highlight
areas where they overlap.

Figure 2.5: Location of geotags that could not be mapped to any country, with no
transparency.

estimating any measure of interest. On the other hand, a cutoff of at least 1000 medias
will exclude a big number of countries that can have interesting information. A cutoff
of a minimum of 100 medias proves to be a reasonable middle term, in which only a
small set of countries are excluded, and the sample size is big enough so as to avoid
noisy estimates. Figure 2.6 shows the set of countries that are eliminated with a cutoff
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of at least 100 medias, and shows that most of the world’s countries are still included.

Figure 2.6: Countries included (green) and excluded (dark gray) when the cutoff value
is set to 100. The “darkness” of the included countries is proportional to the amount
of medias located in that country, log scaled.

2.4 Distribution of Instagram’s attributes

A well-grounded quantitative analysis of Instagram must take into account how the
attributes are distributed. OSNs, and social systems in general, have important char-
acteristics that rule these distributions.

First, OSN attributes are sometimes subject to arbitrary cutoffs that distort the
distribution. A social network service has limitations related to network bandwidth
and data storage that pushes their developers to impose reasonable limits to their
usage. The best known example is Twitter, which imposes a 140 character limit to all
tweets (posts) produced in the network. Another example is Facebook, which limits
user profiles to at most 5000 friends. These limits can sometimes be lifted after the
network has grown and is able to support a better infrastructure, but the effects on
the distributions take time to fade away.

Second, social graphs are known to exhibit heavy-tailed distributions in its node
degrees [Mislove et al., 2007]. The “tail”, in this sense, is the probability of observing
a very large value (relative to the expected value), and it is considered heavy if there
is a significant amount of probability density in it – that is, extremely large values are
likely enough to appear even in a small set of observations. For us, this means that, for
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some attributes, the majority of users (or medias) will have small to moderate values,
but a few will have extremely high values, and the distribution will be heavily skewed
because of that.

There are different distributions that can generate a heavy tail. Here, I will
focus in the two most commonly found in OSN modeling: the power law distribution
(also known as Pareto or Zipf distribution) and the Log-normal distribution. Other
distributions, such as the Weibul, or a combination of distributions, can eventually
provide a better fit to the data. However, a precise and rigorous modeling of each
attribute in Instagram is beyond the scope of this work. A detailed treatment on the
procedures used to estimate the parameters, as well as a definition of the method used
for deciding among the two distributions are given in Appendix A.

Table 2.3 shows the results of the MLE estimates for all attributes, along with
the best fit and test statistic. Figures 2.7, 2.8 and 2.9 show the log-log plots of each
attribute, along with a log-scaled density plot to better describe the probability density
in each point. Due to memory restrictions, attributes with more than 10

7 observations
had to be downsampled to this number in the density plot (but the log-log plots were
generated using the whole dataset). Next, I will briefly examine the log-log plots of
each attribute.

Entity Attribute x0 ↵ µ � R Best Fit

Media # likes 37 2.29 -674.55 22.91 56.99 Power law
# comments 8 2.73 -655.51 19.51 78.64 Power law

User # follows 503 2.57 -0.57 2.24 -17.85 Log-normal
# followees 401 2.36 -933.67 26.23 6.98 Power law
# media 976 3.23 2.87 1.47 -4.64 Log-normal

Hashtag Frequency 4 1.75 -44.97 8.04 -24.50 Log-normal

Table 2.3: Estimates. R was standardized by its estimated standard deviation in order
to make it comparable between tests. All R values were significant under p < 0.001

2.4.1 Media Interactions: Likes and Comments

Figure 2.7 shows the distributions of likes and comments for all the medias collected.
It is not possible to visually discriminate which of the distributions fits better to the
data, but the power law yields a better fit in the likelihood ratio test. Although the
comments distribution lay reasonably straight in the log-log plot, the likes distribution
shows a weaker decay at values between 100 and 5000, and a stronger decay for higher



18 Chapter 2. Instagram

values. Most of the medias received up to 10 comments and 100 likes, but the plots
shows that some media received more than 10, 000 comments and likes.

(a) (b)

(c) (d)

Figure 2.7: Density and log-log plots of the distributions of attributes related to media
interactions

2.4.2 Hashtags

Figure 2.8 shows distributions related to the use of hashtags: the number of hashtags
per media and the frequency of each individual hashtag.

The number of hashtags per media has a gap in the probability of values above
30, which is a limit imposed by Instagram. Numbers above 30 are actually due to
“cheats”, e.g. deleting a hashtag after it was listed7.

7
http://www.justin.my/2012/05/instagram-hashtags-cheat-and-tips/ (Visited Jan 2016)

http://www.justin.my/2012/05/instagram-hashtags-cheat-and-tips/
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The hashtag frequency has a stronger decay than each of the two proposed dis-
tributions, but can still be fairly well approximated by a log-normal distribution.

Although the comments distribution lay reasonably straight in the log-log plot,
the likes distribution shows a weaker decay at values between 100 and 5000, and a
stronger decay for higher values. Most of the medias received at up to 10 comments and
100 likes, but the plots shows that some media received more than 10, 000 comments
and likes.

(a) (b)

(c) (d)

Figure 2.8: Density and log-log plots of the distributions of attributes related to the
use of hashtags. Since the number of hashtags per media does not follow a power law,
the x axis of the density plot is not log-scaled.

2.4.3 User Attributes: Followers, Followees and Posts

Figure 2.9 shows the distributions of followers, followees and posts.
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The number of followers has a well behaved power law tail, although with a
weaker decay than expected for high values. Again, a log-normal distribution is visually
indistinguishable for a power law, but the fit for a power law is better. It can be seen
that around 99% of the users have less then 1000 followers, but some users more than
a million.

As with the number of hashtags, the number of followees also has an unusual
shape that can be explained by the service’s limit policies. Instagram established
a limit of 7, 500 users in June 2012 due to increased spam after its acquisition by
Facebook. However, users who already were above this limit were not affected by the
change, and can still follow unlimited users8. Interestingly, the log-normal fit shows a
possible projection of how the attribute would be distributed if this limit were not set.

As with followers, 99% of the users follow at most 1000 other users, but even with
Instagram’s limits this count can get to a million.

The number of posts has a curved shape that fits a log-normal distribution.

8
http://ubuntulife.net/instagram-follow-limit-you-cant-follow-anymore-people/

(Visited Jan 2016)

http://ubuntulife.net/instagram-follow-limit-you-cant-follow-anymore-people/
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(a) (b)

(c) (d)

(e) (f)

Figure 2.9: Density and log-log plots of the distributions of attributes related to user
interactions





Chapter 3

Face Recognition

3.1 Attribute estimation from face data

Computer Vision and Biometrics researchers have been historically greatly interested
in extracting information about faces in image data. Although there is no agreed-upon,
cross-disciplinary terminology, this topic is commonly referred to as Face Recognition.
It normally involves three steps [Huang et al., 2007]: (1) a detection step, in which
faces are highlighted in the picture through a face detection algorithm; (2) a normal-

ization step, in which faces are transformed (rotated and re-scaled) so that all faces
are in a standard position; and finally, (3) a classification step, in which the aligned
face is converted to a vectorized representation and assigned a class depending on the
task at hand. This task is normally an identification task, in which a face is mapped
to a member of a known set of persons (or none, in case of open set tasks), or a ver-

ification task, in which a decision is made of whether two faces represent the same
person [Zhao et al., 2003].

Note that some researchers reserve the term face recognition exclusively for
the classification step. However, the classification task can also use sets of labels that
are not linked to individual identities. For clarity and simplicity, I will use the term
“Face Recognition” meaning the task of, given a face, outputting a label related to the
person to which the face belongs. A system that solves this task will be called a Face
Recognition System (FRS).

In a research setting with benchmark datasets, normally the detection step is
disconsidered – the regions with faces in the picture are already given with the data.
However, there is a difference between extracting facial features for classification in
constrained and unconstrained settings. In constrained settings, the extraction
problem is considerably simpler – faces in input images are expected to be well-aligned,

23
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so the alignment step can (also) be disconsidered, and one can expect that background,
lighting conditions and facial expressions will be controlled. Unconstrained settings,
exemplified by family pictures and newspaper photos, demand systems that are invari-
ant to scale, rotation, alignment, different facial expressions, etc. FRSs that manage
to overcome these challenges are able to cover a much wider range of situations: while
constrained situations can be assumed in tasks such as extracting information from
passport pictures and mugshots, they cannot be assumed for most photographs and
pictures taken from videos. Therefore, a high performance in unconstrained settings is
highly desirable.

In the present work, I will explore a task that is related, but distinct from iden-
tification/verification: Attribute Estimation. It differs from the former in that the
outcome of the system is not a decision over the face’s identity, but over describable
aspects of visual appearance [Kumar et al., 2009]. More specifically, here it is either
the age or the gender of the person.

Although recent work has tried to estimate gender and age using an unique
method [Han and Jain, 2014; Kumar et al., 2009], historically, these two tasks have
been approached differently.

3.1.1 Perceived gender classification

Deciding whether a face belongs to a male or female can be posed either as a two-
class problem ({Male,Female}) or a one-class problem, when one gender is assumed in
positive cases and the alternative in negative cases. Two considerations must be made.
First, I chose to use the term Perceived Gender Classification, as the class is related
to which gender the face appears to be and has nothing to do with a self-assigned
gender identity. Second, it should be noted I am aware of no study that takes into
consideration other possibilities besides male or female, in spite of the assumption of
binary gender roles having been criticized in the past decades [de Las Casas et al.,
2014].

Normally, classification is done by extracting features using standard image de-
scriptors – such as SIFT, HOG, Local Binary Patterns, Gabor features, Biologically
Inspired Features and Color Histograms [Santarcangelo et al., 2015] – and feeding it
to a state of the art classifier such as Support Vector Machines or Random Forests.
Some methods use dimensionality reduction techniques, such as Independent Com-
ponent Analysis or Principal Component Analysis [Santarcangelo et al., 2015], while
others rely only in regularization to control for model complexity.
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3.1.2 Age estimation

The problem of visually estimating the age of a person through her face can be un-
derstood as either a classification problem, in which each age group is treated as a
category and a binary encoding is used, or a regression problem, when age is treated as
a real valued outcome problem [Levi and Hassner, 2015]. When taken as a regression
problem, a common metric of performance is Mean Absolute Error(MAE):

MAE =
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where x is the predicted age of the i-th face, y is the true age of the i-th face, and
n is the number of faces in the test set. An alternative metric, the Cumulative Score
(CS), considers a success if the predicted age is within a range from the true age and
calculate its accuracy (e.g. . a CS5(x) will calculate the proportion of predictions that
missed the true age by 5 years or less).

Early methods of representing faces for age estimation are based on the layout
of facial features (eyes, nose, mouth) in the face region. This proved to be unsuitable
for unconstrained settings, as accurately finding facial features in these environments
is a challenge by itself [Levi and Hassner, 2015]. Moreover, proportions between facial
elements give considerably less information about age after adulthood, when shape
changes become less prominent and texture changes start be more relevant [Fu et al.,
2010; Guo et al., 2009]. An alternative approach was to model the aging process as a
subspace that aggregates individual aging patterns encoded by a model, or as a mani-
fold, that learns a low-dimensional trend from faces with different ages. However, these
two approaches are limited due to problems of generalization to faces different from
the ones in the database, and also due to bad performance for faces in unconstrained
settings [Levi and Hassner, 2015].

Finally, a number of image descriptors combining local and global information of
shape and texture were suggested [Levi and Hassner, 2015; Fu et al., 2010; Guo et al.,
2009].

3.1.3 Performance in Face Recognition

The de facto standard benchmark dataset for face verification in unconstrained settings
is the Labeled Faces in the Wild (LFW) dataset [Huang et al., 2007]. It is composed of
13, 233 annotated pictures gathered from news articles on the Web of 5, 749 different
individuals, 4, 069 of whom have just one picture assigned to them. Besides the public



26 Chapter 3. Face Recognition

availability of performance metrics for many algorithms1, the dataset features the per-
formance of human annotators, contributed by Kumar et al. [2009]. Recently, a number
of advanced algorithms surpassed human annotators [Taigman et al., 2014]2 and vir-
tually reached a plateau in LFW [Zhou et al., 2015], achieving over 99% accuracy.
Two major factors that collaborated for this were the development of sophisticated
Deep Neural Networks (DNNs) and the availability of external, big datasets (i.e. with
millions of faces) for training the models.

DNNs are machine learning systems that can be understood as many intercon-
nected layers of parallel processing units (called neurons or units). They are high
capacity classifiers, which means that they can learn extremely complex data trans-
formations if they are trained with enough data. This allows them to learn highly
discriminative features from raw input, which enables the modeler to avoid engineering
domain-dependent features – such as the aforementioned biologically inspired features
made for face processing. Moreover, they can be architectured in a way that handles
image data extremely well. More specifically, Convolutional Neural Networks are espe-
cially powerful for computer vision tasks [Krizhevsky et al., 2012]. All these properties
make DNNs especially fit to be used for Face Recognition tasks. However, in order to
explore all the potential of DNNs, they must be trained with a huge number of labeled
data – in the order of millions.

Creating this kind of dataset through manual annotation would be extremely
expensive. Fortunately, the rise of online social platforms allowed for a huge influx of
publicly available, semi-annotated image data from millions of internet users. Although
the indiscriminate collection of this data may pose ethical concerns, it has become
an increasingly common practice in order to circumvent the need for data for high
capacity algorithms such as DNNs [Taigman et al., 2014; Zhou et al., 2015]. This,
however, means that high-performance face recognition is increasingly dependent on
mass collection of data.

3.1.4 Bias in Face Recognition

Bias is an important, but ambiguous concept. There is a number of definitions for it,
depending on which kind of literature is taken into account.

In Machine Learning and Statistics, bias represents “the systematic difference
between a random variable and a particular value” [James, 2003]. For example, sam-

1
http://vis-www.cs.umass.edu/lfw/results.html (Visited Jan 2016)

2According to the authors, human performance is about 97.5%. It must be noted, however, that
this is only the case for tightly cropped faces. When the full picture is shown, humans get a 99.2%
accuracy.

http://vis-www.cs.umass.edu/lfw/results.html
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pling bias means deviating from a random sample of the population, a biased estimator
is a method of calculating estimates that systematically over- or underestimates the
quantity of interest, and a learning algorithm with high bias is one that systematically
misses its target, irrespective of the amount of data used to train it.

The simple definition of bias according to the Miriam-Webster dictionary website
is “a tendency to believe that some people, ideas, etc., are better than others that usu-
ally results in treating some people unfairly”3. This definition shows the importance of
considering fairness when working with a concept of bias that relates to social matters.

The concept of algorithmic bias has recently emerged in the literature. When
describing a framework to understand algorithmic bias, Friedman and Nissenbaum
[1996] define that “a system discriminates unfairly if it denies an opportunity or a
good or if it assigns an undesirable outcome to an individual or group of individuals on
grounds that are unreasonable or inappropriate”. Again, the authors point out that the
discrimination alone cannot be considered bias unless it occurs systematically, i.e. it
follows a consistent pattern based on attributes of the system or the environment in
which the system is embedded. Note that their definition lacks a proper description of
what are “reasonable and appropriate” outcomes. For my work, it suffices to consider
that the outcome is the probability of the FRS yielding a correct result for a given in-
dividual, as most applications that use a FRS rely on its accurate performance to make
decisions. Thus, I will consider that a FRS is biased if its performance is consistently
different for different groups of individuals in a manner that is not publicly disclosed
and justified by the system’s engineers. Of especial interest here is bias of FRSs based
on different age groups and genders.

A number of factors can impact the performance of a FRS. Depending on the al-
gorithm used for recognition, visual factors, such as pose and illumination have a strong
influence in identification/verification performance [Zhao et al., 2003]. However, the
high degree of success on the LFW datasets suggests that these factors are impacting
progressively less the algorithms. In contrast, external factors, such as factors related
to the demographical distribution, still seem to affect state of the art algorithms.

The most comprehensive study about this is the series of reports produced by
the American National Institute of Standards and Technology using the Face Recog-
nition Vendor Test (FRVT) dataset. The FRVT is a large-scale project created to
test commercial and prototype-level academic FRSs in constrained settings using over
7 million images taken from passports and mugshot images from the United States
government. Although the dataset is not publicly available, they allow companies to

3
http://www.merriam-webster.com/dictionary/bias (Visited Jan 2016)

http://www.merriam-webster.com/dictionary/bias
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subscribe to their tests and publish their results in open reports, along with compar-
isons with unconstrained datasets such as the LFW and others. The latest version of
the dataset is from 2013, and reports were made separately concerning Age Estimation,
Gender Classification and Face Identification. The dataset format is especially suited
for investigating bias due to demographic profile: since it is from a constrained setting,
confounding factors are unlikely to play a role. Moreover, since it uses government-
certified data, it has very reliable annotations containing each face’s true age, gender
and nationality.

Their reports present interesting findings. The following effects are observed in
all algorithms tested, unless explicitly noted:

Biases in Gender Classification [Ngan and Grother, 2015] All algorithms
have a good overall performance, with the most accurate correctly classifying
the gender of a person 96.5% of the time. Males have their gender classified
with more accuracy than females in all age bands. The peak of classification
accuracy for females is for young adults (21-30 age band), while for males is for
older adults (31-60 age band). For males, the performance stabilizes after 20
years old and only drops slightly after 81 years old. However, for four of the
nine algorithms, the performance for the 0-10 age band for males is significantly
worse than for older ages. In contrast, for females, performance quickly reaches
the peak for young ages, but drops steadily after 40 years old, reaching its worst
accuracy at the 81-90 age band (with an average accuracy of 57% across the
algorithms, almost random guessing). Finally, the performance for males is the
most affected in unconstrained settings.

Biases in Age Estimation [Ngan and Grother, 2014] Algorithms have a satis-
factory performance, but with room for improvement, with the most accurate
algorithm yielding a MAE of 4.3 years and correctly estimating the age of 63% of
the participants within 5 years. The report shows that age estimation is not in-
dependent of the target age group: different algorithms show different patterns of
precision in estimating age across age groups. Most algorithms are most precise
estimating the age of adults (18-55), which is also the most operationally relevant
age group. Some algorithms are especially good at estimating the age of kids and
teens (0-18), some are especially bad for this group, and most algorithms show
the highest estimation error (accuracy and MAE) in the senior age group (56-99
y.o.). Moreover, the estimation error is not centered at zero in all cases, which
means that the algorithms systematically overestimate or underestimate certain
groups. More specifically, the seniors tends to have their age underestimated,
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while the youth age group tend to have its age overestimated. Women have their
age consistently underestimated in all age groups. Finally, they show that eth-
nicity has an impact on age estimation: South Americans tend to have their age
overestimated, and Asians underestimated.

Besides the FVRT reports, other researchers also point out the presence of
age/gender bias in FRSs:

• Guo et al. [2009] show that gender classification accuracy is 10% higher for adult
faces than for young or senior faces when using a SVM classifier and biologi-
cally inspired features. However, they use an unbalanced dataset, with twice the
number of adult faces than for the other age groups.

• Dago-Casas et al. [2011] train SVM and LDA classifiers in LFW and in the
GROUPS dataset (see Section 3.3.1) and show that age estimation accuracy for
adults (20-65) is much higher than for other age groups. They point out that
this effect can be at least partly due to adults being much more prevalent in their
training set than the other groups.

It can be seen that FRSs do show signs of algorithmic bias, and specifically to
minorities – women, seniors and US immigrants. It is also noticeable that some of
this bias is consistent across many different algorithms. The reasons for this are yet
unclear.

One possibility is an inherent limitation of facial features to estimate such at-
tributes. For example, the precise age of a person may not be as clearly discernible by
her facial features as she gets older. If this is the case, then there is an upper bound in
performance that cannot be overcome by any FRS that relies only on facial features. In
fact, if humans were to be considered a “gold standard” of face recognition that man-
ages to extract all possible information about age and gender that a face possesses, one
could argue that human performance is heavily biased, especially towards age [Voelkle
et al., 2012].

However, it may also be possible that exogenous factors are at play. First, FRS
engineers may not be economically motivated to assure that their algorithms are not
biased for people whose demographics are not commercially or operationally relevant
for their services. Moreover, the training sets used in the FRSs may be unbalanced for
some specific demographic groups. As mentioned in Section 3.1.3, state of the art FRSs
often rely on data collected on the Internet to generate the algorithms’ training set.
This means that the gender and age distribution of the faces in the training set is the
distribution available in the Internet. Moreover, to find data that is already reliably
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labeled, engineers will often restrict to well known faces – such as pictures of celebrities,
a cohort with very specific demographics. The LFW Dataset is an example of such
Internet collected database, and its gender distribution is heavily skewed towards males
(70% of the faces are male).

Although the precise source of algorithmic bias is a delicate subject and beyond
the scope of this work, it is possible the access the presence/absence of such bias. This
can be done even when the internals of the FRS are not accessible. As Diakopoulos
[2015] points out:

Algorithms are often described as black boxes, their complexity and tech-
nical opacity hiding and obfuscating their inner workings. At the same
time, algorithms must always have an input and output, two openings that
can be manipulated to help shed light on the algorithm’s functioning. It
is not essential to understand the code of an algorithm to begin surmising
something about how the algorithm operates in practice.

Thus, it is possible – even desirable – to use an off-the-shelf, widely adopted algorithm,
even if its implementation is proprietary. What matters in evaluating algorithmic bias
is the relationship between input and output.

In the next Section, I will describe the algorithm I chose for this work, Face++.

3.2 Attribute estimation with Face++

Face++ is a FRS with a publicly available web service based in China with an endpoint
in the USA. It is trained in millions of images downloaded from the Internet. As of 2015
they match the state of the art in face recognition, with 99.5% accuracy in the LFW
dataset [Zhou et al., 2015]. Face++ has been used in a number of publications [Bakhshi
et al., 2014; Redi et al., 2015b,a; Jang et al., 2015] and boasts dozens of partnerships
with big companies like Intel and Lenovo4.

All Face++ services are available through requests to specific REST endpoints
defined in its Application Programming Interface (API). After creating an account on
its website, it is possible to create new applications to have access to the services. A
Face++ API application is analogous to an Instagram API client and receives an API
key and an API secret that are also used for authentication.

In this work, I used only one of its resources, located at the endpoint
/detection/detect. A GET request pointing to an image URL and appropriate

4
http://www.faceplusplus.com/ (Visited Jan 2016)

http://www.faceplusplus.com/
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parameters returns a JSON-formatted text with the position, pose and attributes of
all faces detected in the image.

The attributes returned are age, gender, race, whether the person is smiling and
whether the person is wearing glasses. In this work I will focus only in age and gender.

An example query would be:

https://apius.faceplusplus.com/v2/detection/detect?url=http%3A%2F%2Ff

aceplusplus.com%2Fstatic%2Fimg%2Fdemo%2F1.jpg&api_secret=YOUR_API_SEC

RET&api_key=YOUR_API_KEY&attribute=pose,gender,age

The precise method used by Face++ for attribute estimation is not clear, al-
though it is likely built on top of its patented DNN face representation technology [Fan
et al., 2015]. The format of its output, however, provides some information on some
characteristics of its estimation method.

For the perceived gender classification, their API outputs a gender value
({Male,Female}) and a confidence value ranging from 50 to 100. With this infor-
mation, one can assume that they model the problem as a binary classification task
with a continuous outcome, in which values above 50 are set to be from one class and
values under 50 are set to be from another class.

For age estimation, their API outputs an integer age value and an “age range”
that takes discrete values from 4 to 18. There is no information on how this range is
calculated or to what it refers. It is possibly an interval related to the estimation error,
but since there is no documentation5 and no clear interpretation of how it is meant to
be handled, I decided to ignore it.

3.2.1 Face++ performance

In its website6 Face++ reports more than 96% accuracy, but have no official benchmarks
for age estimation or face detection. However, existing work by independent research
teams provide some clues. Bakhshi et al. [2014] use crowdsourcing to validate the
Face++ results in its ability to detect at least one face when there is one (97% accuracy),
the ability to correctly classify the gender of the faces (96% accuracy for both genders)
and its ability to classify a face in one of three age groups: under 18-, 18-34 and 35+.

Yadav et al. [2014] compare Face++ results with that of human raters. They find
that accuracy is very high for humans and Face++ in 0-5 and 6-10 age groups, and
then drops significantly. They also find that female faces have their age more easily

5The API developers also did not respond to contact.
6
http://www.faceplusplus.com/tech_gender/ (Visited Jan 2016)

http://www.faceplusplus.com/tech_gender/
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estimated by either gender, which goes in the opposite direction of what was reported
with other algorithms in the FRVT tests.

3.3 Validation of Face++’s output

Since Face++ is proprietary and does not offer detailed information about its perfor-
mance in attribute estimation, it is important to validate it with ground truth data
to access how it can be biased. Besides providing an objective way to access the al-
gorithm’s behavior, a ground truth can also yield information that can be used to
calibrate Face++’s gender confidence score, yielding a powerful tool to measure the
uncertainty of the perceived gender classification for out of sample data.

There is no source of information in Instagram that can be reliably used as a
ground truth for this task. A good alternative is to use benchmark datasets with age
and gender labels. Unfortunately, although there are labels available for the LFW
dataset, their labeling methodology is not well specified. Thus, I recurred to another
well known dataset presented by Gallagher and Chen [2009]: the GROUPS dataset.

The GROUPS dataset is composed of images of groups of people in unconstrained
environments, and is well established in the literature, despite it being relatively new.
It is built from a collection of 5080 Flickr Images containing 28 231 faces, all labeled by
human annotators using crowdsourcing. It uses discretized age labels and binary gender
labels. The dataset is very well balanced for gender: it has 13 445 (52.3%) female faces
and 12 273 (47.7%) male faces. The age label distribution is skewed towards adults,
as can be seen in Table 3.1.

Age Band [0,2] (2,7] (7,13] (13,19] (19,36] (36,65] (65,99]

Frequency 757 1440 790 1560 13 893 6193 1085

Table 3.1: Number of faces in each age band in the GROUPS dataset.

3.3.1 Evaluation Method

In order to evaluate Face++’s performance, I fed all pictures of the GROUPS Dataset
to Face++ using its API. The coordinates of the faces found by Face++ were matched
to a corresponding face in the Dataset’s Ground Truth (GT) using a point matching
method:

• For each image, I found the midpoint between the eyes of each face for both
the GT and Face++, generated all possible pairings between the GT and F++
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sets, sorted them by their euclidean distance, and selected all non-overlapping
pairs, starting from the pair with smallest distance. Here “non-overlapping” pairs
means those that did not share a member with another selected pair (i.e. with a
smaller distance).

• I excluded the pairs that were above a given distance threshold. Given that the
images were of varying sizes, this threshold was set to be 10% of the maximum
possible distance between two points in the image, i.e.

p
w

2
+ h

2, where w is
the image’s width and h is the image’s height. The number 10% was found
empirically. 53 pairs were excluded in this manner.

For each pair of (F++, GT) face, a record was generated containing the attributes
estimated by Face++ and the attributes stated in the GT. With this I managed to match
25 752 of the 28 231 faces (91.21%). This is a reasonable detection accuracy compared
to the state of the art on unconstrained datasets7. 270 faces found by Face++ could not
be matched. By manual examination I could observe that many of those were treated
as background by the annotators of the dataset.

Overall accuracy for gender and age were 88% and 65%, respectively8. Perfor-
mance for gender did not differ substantially for males and females.

To evaluate Face++’s performance in age estimation I grouped all age values that
were inside one of the age bands specified by GROUPS as belonging to that age band.
Table 3.2 shows the Confusion Matrix of the errors for age group estimation, separated
by gender. It is important to highlight that the ground truth for these estimates is
hand labeled and is subject to error – especially in the age estimation task.

The pattern of error is similar in both genders, although slightly higher for males
in all age bands. The adolescent ((13,19]) and senior ((65,99]) age groups had worse
performance in both genders, and kids ([0,2]) and young adults ((19,36]) had the
best performance.

Most age groups have their age significantly underestimated in both genders: the
youth ((7,13]), seniors and old adults ((36,65]). However, adolescents are strongly
overestimated: in fact, more adolescents were estimated as young adults than estimated
as adolescents.

This pattern of error may be due to the arbitrary boundaries established by the
GROUPS labelers. For example, the difference between someone with 19 and 20 years
is smaller then that of someone between 20 and 30, but in this evaluation framework

7
http://vis-www.cs.umass.edu/fddb/results.html (Visited Jan 2016)

8Notice that the probability of the algorithm getting a right answer by chance is 50% and 14%,
respectively.

http://vis-www.cs.umass.edu/fddb/results.html
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Gender Predicted Band [0,2] (2,7] (7,13] (13,19] (19,36] (36,65] (65,99]

Female [0,2] 0.75 0.14 0.02
(2,7] 0.21 0.56 0.30 0.03 0.01 0.01
(7,13] 0.02 0.22 0.44 0.20 0.06 0.03 0.01
(13,19] 0.01 0.04 0.10 0.29 0.17 0.06 0.02
(19,36] 0.01 0.03 0.14 0.45 0.66 0.47 0.14
(36,65] 0.03 0.11 0.42 0.67
(65,99] 0.01 0.16

Male [0,2] 0.80 0.21 0.03
(2,7] 0.14 0.55 0.32 0.05
(7,13] 0.04 0.16 0.43 0.20 0.03 0.01
(13,19] 0.01 0.04 0.11 0.29 0.10 0.03
(19,36] 0.01 0.03 0.11 0.43 0.68 0.36 0.06
(36,65] 0.01 0.03 0.18 0.58 0.72
(65,99] 0.02 0.22

Table 3.2: Proportion of faces classified in each age band. Zero valued-cells were
omitted for readability, and boldface values are correct results.

Figure 3.1: Density plot of age values separated by its true age group. Vertical gray
lines separate each of the groups. Note that the fact that the density is less spread in
lower age bands may be at least partly due to smaller ranges between the cutoff points
in these bands.

the former would count as a mistake, while the latter would not. Indeed, the good
performance in the adult age groups can be accounted at least partially by the fact
that the age bands are much wider. Moreover, the fact that most of the errors were in
the neighbor class suggests that collapsing some of the age bands into broader bands
would greatly increase performance.

Unfortunately, fine grained age annotation is not available in GROUPS, so it
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is not possible to use better measures of error, such as MAE or CS9. However, it is
possible to visualize the spread of the age values for each band. This can be seen in
Figure 3.1. Indeed, most of the density curves of the age groups are centered near
the lower cutoff points of the age bands, which confirm our three main conclusions:
(1) Face++ systematically underestimates most of the age groups, especially the youth,
seniors and old adults, (2) Face++ fails to accurately estimate the 13-19 age band and,
(3) the arbitrary cutoff points lead to arbitrary accuracies

With this in mind, I propose merging the categories (2,7] with (7,13] and
(36,65] with (36,99]. Judging by the accuracies alone, it would be interesting to
merge the (13,19] band to the (19,36]. However, this would throw away important
information, since these two are the primary demographics in Instagram. Thus, I will
treat them separately, with a caution note that Face++ cannot reliably separate these
two age bands for individual faces. This new subgroup yields accuracy estimates stated
in Table 3.3.

Predicted Band [0,2] (2,13] (13,19] (19,36] (36,99]

[0,2] 0.78 0.12
(2,13] 0.20 0.75 0.24 0.05 0.02
(13,19] 0.01 0.07 0.29 0.14 0.04
(19,36] 0.01 0.06 0.44 0.67 0.37
(36,99] 0.03 0.14 0.56

Table 3.3: Proportion of faces classified in the newly proposed age bands. Zero-valued
cells were omitted for readability.

Moreover, although it is not possible to correctly evaluate the accuracy of age
estimation in finer grain, I will also use the raw age values. The evaluation made in this
section suggests that the age values are systematically underestimated, except for young
adults. However, the discretization of such values throws away important information.
It is reasonable to assume that, although the age estimates will individually show a
high degree of error, they will on average approach a value close to the actual age, with
a bias to lower values. When this is taken into account, analyses can yield important
insights.

9These measures were briefly reviewed in Sec. 3.1.2
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3.4 Calibrating the gender confidence

In binary classification, classifiers normally output a class score, which can be later
discretized to get the predicted class. This score reflects the degree of “confidence” the
classifier has over the class. Thus, a low predicted score would mean that the referred
observation is not likely from the class.

Classifiers such as DNNs and logistic regressions output a score with a value
ranging between 0 and 1, which is commonly understood as a probability of being from
the target class. However, this interpretation must be taken with caution. Although
this score can, indeed, be interpreted as a probability, it is not guaranteed that this will
be the posterior probability of an instance belonging to the class – which is normally
what is desired. If this is indeed the case, then this probability score should approximate
the proportion of positive instances of a class for each confidence level. Thus, for
example, approximately 80% of the predictions with a score of 0.8 should be positive
and 20% should be negative. When the score of a classifier satisfies this condition, it
is said to be well-calibrated

Well-calibrated classifiers are of interest because the scores can be directly inter-
preted. This allows for much more analytical power: if the average score of a classifier
for a given situation is p, we can expect that the classifier will miss n(1� p) cases in n.

Although some families of classifiers already output fairly well-calibrated scores,
one can enhance the calibration of a classifier by passing its scores through a model
trained on external data. There are many methods for classifier calibration, but two
of them are the most widely adopted:

Sigmoid Method (Platt Scaling) Pass the output of the classifier to a sigmoid with
parameters fitted using maximum likelihood estimation. Let the score of a clas-
sifier be s:

P (y = 1|s) = 1

1 + exp(↵s+ �)

where ↵ and � are the parameters. This is akin to fitting a logistic regression on
the classifier score and using the regression model to map any new score to the
calibrated probabilities.

Isotonic Method Find a monotonically increasing (isotonic) function that maps the
score to the probability scores. This method is more general, as it only assumes
that the mapping function is isotonic. Given a training set (s, y), where s is
the vector of scores and y is the vector of true classes, the Isotonic Regression
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problem is finding the isotonic function m̂ such that

m̂ = argmin

z

X

i

(y

i

� z(s

i

))

2

The isotonic method is less constrained than the sigmoid method, which makes
it more prone to overfit [Niculescu-Mizil and Caruana, 2005].

It is only possible to calibrate the gender confidences, as Face++ does not provide
an equivalent metric for age. To do so, I transformed the (gender value, gender

confidence) tuple into an unique score that would reflect its binary classification
score, and thus the predicted posterior probability of a positive class. Hence, the
probability P (y = Female|x) is defined as:

P (y = Female|x) ⇡ s =

8
<

:

c

100 if ŷ = Female
100�c

100 if ŷ = Male

where ŷ is the predicted class (gender value) of the observation, and c is the confidence
score (gender confidence) attributed to the classification. The choice of the Female

class as the positive instance was arbitrary, but does not impact the results. Notice that
this transformation is easily undone – if the predicted class is Female, then c = 100⇥s,
otherwise c = 100⇥ (1� s).

Both the Isotonic and the Sigmoid method were used for calibration. The models
were trained with the same training set: a random sample of 80% of the GROUPS
dataset (the remaining data was used as the test set). To evaluate the performance of
each scoring procedure, one must use a Reliability Plot – the scores are discretized into
10 equally sized bins from 0 to 1, and the mean value of the predicted scores in each
bin is plotted against the proportion of positive instances of the class in that bin. A
perfectly calibrated classifier should produce results that lie in the diagonal line of the
plot. Data points above the diagonal line indicate that the model is underestimating
the probability of a positive instance for that predicted value (i.e. the probability is
actually higher), and results bellow the diagonal line indicate the opposite.

Figure 3.2a shows the distribution of scores using each method, while Figure 3.2b
shows the reliability plot (both generated with the test set). Most of the scores concen-
trate in the 90% (or 10%) confidence bin. The uncalibrated scores are fairly good at
estimating the posterior probabilities, which may be attributed to the learning method
employed – neural networks are known to yield well-calibrated results [Niculescu-Mizil
and Caruana, 2005]. However, it can be seen that Face++ systematically underesti-
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(a)

(b)

Figure 3.2: (a) Density plot of the distribution of the scores for each method. (b)
Reliability plot of the uncalibrated scores of Face++ and the calibrated scores using
two different methods. The scores were transformed to reflect the probability of the
face being female. The dashed lines in the plots represent the threshold for deciding
whether the face is female or male.

mates its confidence of the face being male and overestimates the confidence of it being
female.

The sigmoid method does not correct this bias. Possible reasons are: (1) the score
distribution violates the assumption of normality (conditioned to the class value), as
it is highly skewed towards extreme values; (2) As Niculescu-Mizil and Caruana [2005]
argue, the sigmoid method is best fit when the reliability curve is sigmoid shaped, and
in this case it is shaped as an inverse sigmoid; (3) neural networks normally apply
a sigmoid function (or a generalization of it) at its last layer for classification, and
this may already leverage all the benefits that the sigmoid method could bring to the
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probability estimation.
The isotonic method is able to correct the bias, except for small underestimation

errors in the mid-range of the probability estimates. The density plot also shows how
it manages to redistribute scores in intermediate values. The errors are probably due
to overfit – the isotonic regression has many parameters to estimate, and has been
observed to only saturate after tens of thousands of examples in common classification
datasets [Niculescu-Mizil and Caruana, 2005].

Due to the superiority of using the isotonic correction to estimate the posterior
probabilities of a class, I will use it whenever possible instead of the raw gender

confidence. To do so, I created a model using all the GROUPS dataset (not only the
training set) and generated a mapping function to convert the gender confidence score
to its calibrated score.





Chapter 4

Gender and Age in Instagram

Much of the work in the relationship between face recognition and Internet data has
focused in accessing the risks incurred by exposing face data in OSNs (facial disclosure).
Li et al. [2014] suggest that facial disclosure is increasingly common, which can affect
the security of systems that use face validation as authentication mechanisms, and
propose a method for estimating the risk. A more specific example is offered by Polakis
et al. [2012], who present an attack strategy towards Facebook’s Social Authentication
system that combines automatic face recognition and publicly accessible information
on a user’s friends list to solve these questions, rendering the user vulnerable to identity
theft.

Alternatively, some authors suggest the use of face recognition to enhance user
privacy. Xu et al. [2014] propose a mechanism that gives a user control of her personal
exposure by automatically identifying photos in which she is involved and giving her
management access to these photos. In a similar line of work, Ilia et al. [2015] propose
a method for detecting and blurring faces of users who do not want to disclose their
information.

Given the richness of context information in OSNs, some authors suggest methods
that use the additional data available in social networks as means to get information
that enhances the performance of FRSs [Stone et al., 2010; Taigman et al., 2014]. Re-
cently, however, some researchers have followed the opposite trend, and employed face
recognition as a tool to extract information to complement their analyses. For exam-
ple, Redi et al. [2015b] and Vonikakis et al. [2014] combine face detection with other
visual descriptors to model aesthetic qualities of images containing persons. Redi et al.
[2015a] goes even further and predict “ambiance” ratings from Foursquare locations by
analyzing the profile pictures of users who frequented the locations.

A number of such studies used Instagram as the OSN of choice. Bakhshi et al.

41
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[2014] show that users tend to engage more to photos with faces than other kinds of
photos, and that gender, age and the number of faces does not impact the engagement
as significantly as the presence or absence of faces. Jang et al. [2015] compared the
behavior of adults and adolescents in Instagram, using automatic face recognition to
sample its data and further validating the dataset manually. They find the adolescents
post less photos, but get more likes and use more hashtags than adults. They also find
that adolescents tend to remove more posts they already shared, their posts are more
directed to stating their mood and asking for likes/followers, and that they post more
selfies.

Interestingly, most of the authors cited in the last two paragraphs used Face++ as
the FRS of choice (the exception is Vonikakis et al. [2014], who used the free computer
vision library OpenCV), and Bakhshi et al. [2014] and Jang et al. [2015] used it specif-
ically for estimating gender and age. While Jang et al. [2015] used it only for finding
adults and validated the output manually afterwards, Bakhshi et al. [2014] validated
their method using crowd sourcing. Unfortunately, they transformed the data before
submitting it to validation, and their results do not generalize for Face++’s raw output.

Now that I have presented the results of collecting data in Instagram in Chapter 2
and how to estimate personal attributes using face recognition systems in Chapter 3 –
along with the biases implied in this method – I will show how Face++ can be used in
Instagram to yield insightful information. In order to do so, I used the CAMPS Data
Collection Tool to make Face++’s API scan all medias from the users in the Instagram
dataset.

This chapter is organized as follows. In Section 4.1, I will investigate how biased is
Face++ with Instagram’s sample through the calibrated scores described in Chapter 3.
After addressing algorithmic bias, in Section 4.2, I will analyze how the faces detected
in Instagram are distributed, and what they can say about the network. Then, in
Section 4.3, I will present a simple methodology to map from attributes of individual
faces found in the network to attributes from users. Finally, in Section 4.4, I will
present some analyses that use these newly estimated user attributes.

4.1 Assessing estimation bias

The investigation of bias in face estimation follows two hypotheses, based on the liter-
ature review in Section 3.1.4:

Perceived gender classification bias depends on age In Section 3.1.4 I argued
that there is mounting evidence of different confidence levels for gender classifi-
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cation in different age bands. This can be reproduced in the Instagram dataset
after Face++’s confidence scores are converted to probability estimates.

Bias depends on location There is some evidence that FRSs are biased towards
some ethnicities. Thus, it is reasonable to postulate that some countries will
have different expected confidence levels for gender estimation. I will test this
by grouping medias per country and analyzing how gender confidence varies for
each country, for each gender.

Notice that age bias is not being assessed. Unfortunately, due to the absence of a
reliable confidence score or ground truth, this will not be possible. However, the age
estimate can be used to better understand the perceived gender classification bias.

In Section 3.4 I described a method of obtaining the probability of a given face
being a female face using calibration from the GROUPS dataset. This resulted in a
model that converts the gender confidence scores returned by Face++ to a probability
score. The expected frequency of female faces in a sample of n faces randomly drawn
from a population with a probability score of s is n⇥s. Thus, the closer this probability
score is to 1, the more likely it will be a female face. Combining this information with
the gender value attribute returned by Face++, it is possible to calculate the expected
precision of Face++ in estimating a gender value. If the face is predicted to be female,
then the algorithm is expected to be right with a probability of s. Conversely, if the face
is predicted to be male, then the algorithm is predicted to be right with a probability
of 1� s. If this precision varies systematically with another attribute – in our case age
and location – we can say that the algorithm is biased relative to this attribute.

Figure 4.1a explores the relationships between the estimated age and the confi-
dence of the gender estimation. It can be seen that for some age bands (e.g. (19, 36]),
the probability is much more concentrated in one gender than for other bands
(e.g. [0, 2]). This can be further verified in Figure 4.1b, which shows the median and
the first and third quartiles of the probability score values for each age value1. The
probability scores for males were transformed (s0 = 1� s) to ease interpretation. The
algorithm’s expected precision for both females and males is fairly high in across ages,
varies consistently along a person’s lifespan.

Two effects observed in Ngan and Grother [2015] can also be observed in this
dataset, although much subtler. First, the peak of classification accuracy for males
occurs in later ages than for females – the probability score reaches its plateau for 18

1I opted to use robust statistics instead of mean and standard deviation because, as can be seen
in Figure 4.1a, the distribution of the probability score is skewed. However, using the mean instead
of median yields the same conclusions.
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(a)

(b)

Figure 4.1: Relationship between age and probability scores in Instagram. (a) Density
plot of the probability scores by age ranges. (b) Line plot of the median probability
score and first and third quartiles per age value, separated by gender.

year old females, but only for 30 year old males. Second, performance for 40 year old
males “stabilizes” and stays at the same level for older ages, whereas it keeps dropping
for females. At 60 years old, median performance for males is 94.4%, while for females
is 88.3%. Conversely, in Ngan and Grother [2015] performance for male classification
was consistently better in all algorithms and ages, while in this dataset the average
expected precision is slightly higher for females – 89.4% versus 86%.

Notice that some probability scores for users classified as males are lower than
0.5. This means that, after the isotonic correction, they should be classified as females
instead. I opted not to change their label, since what is being assessed is the output
of Face++, and the isotonic correction was a step taken only for defining the expected
precision of Face++’s output in Instagram.
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(a)

(b)

Figure 4.2: Relationship between country and probability scores in Instagram.

The variation along countries can be seen in Figure 4.2. Again, the scores for
males were transformed. It can be seen that Western and Asian countries show a better
precision for females, while countries in Africa and in South and Western Asia show
a worse precision. Conversely, the highest precision for males is achieved in countries
in North Africa and in South and Western Asia, indicating that there is a big overlap
between low precision for females and high precision for males (and vice-versa), with
the exception being South Africa.
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4.2 The faces of Instagram

Figure 4.3 shows the distribution of ages estimated by Face++, separated by gender.
It can be seen that the algorithm estimated much more females than males, and the
female population is slightly younger on average than the male population.

Figure 4.3: Density of the age of the found faces separated by gender. Notice that the
marginal densities were preserved to enable comparison between genders.

To better understand the demographics of faces in Instagram, it is worth ob-
serving how it varies by country. To do so, I calculated the median age and propor-
tion of female faces for each country, based on the resolved geolocations described in
Section 2.3. In order to control for country-specific demographics, I subtracted the
proportion of females from freely available estimates. More specifically, I defined a
new metric, female representation (FR), as the difference between the proportion
of females seen in Instagram from a given country from the country’s proportion of
females:

FR(c) = F (c)

instagram

� F (c)

census

where F (c) is the proportion of females observed in Instagram, and in a reliable census
estimate, respectively. Here, I used census estimates from the World Bank’s Data-
Bank 2.

I opted not to apply the same correction to the median age. This decision was
motivated by the fact that the median age across countries in census data varies much
more than the median age across countries in Instagram. In fact, using data from
the United Nations3 from 2014, one can observe that the median age varies from 15

2
databank.worldbank.org

3
data.un.org

databank.worldbank.org
data.un.org
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years old to 45 with a standard deviation of 8.32). In contrast, the median age from
Instagram varies from 17 to 31, with a standard deviation of 2.26. This means that
simply subtracting the two measures would be insufficient – they would have to be
re-scaled, hindering the interpretation of the results.

Figure 4.4: Female representation by country. Countries that were either below the
cutoff of at least 100 medias or did not have enough data in World Bank’s DataBank
were omitted.

Results can be seen in Figures 4.4 and 4.5. It can be seen that women are
overrepresented in almost all of the world, with the exception of North Africa and
South and Western Asia. Notice that these are also the regions that have the most
bias in gender estimation, as shown in Section 4.1. One could suggest that this effect is
due to this bias differential. However, the high bias for females and low bias for males
in these regions mean that many faces predicted to be females will actually be male,
while most of the faces predicted to be male will be in fact male. This means that the
amount of “true females” in these regions is expected to be even lower than what has
been estimated – i.e. females in these regions are overestimated.

The median age of Instagram in all countries stays in the 20-30 year old band.
As stated before, the median age of different countries vary considerably, and this
stability in Instagram’s median age is probably due to the service targeting a specific
demographic group. Asian countries have the youngest population, especially China.
This can be due to bias from face estimation, as Ngan and Grother [2014] noticed that
Asians tend to have their age underestimated. However, Ngan and Grother analyzed
FRSs from the USA, and Face++ is a Chinese service with many Chinese clients, which
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Figure 4.5: Median age by country. Countries that were either below the cutoff of
at least 100 medias, or did not have enough data in World Bank’s DataBank were
omitted.

means that they have a strong economic incentive to be precise with this demographic
profile. Unfortunately, this hypothesis cannot be verified in the current work.

4.3 Connecting medias to users

Face++ returns information about all faces it can detect in a photo, but looking at each
media alone does not allow us to identify which face is the user’s face, or even if the
user is depicted in all her posts.

One could assume that the face of the user in the profile picture is the user’s
face, and thus assign each user the gender and age found in the profile picture.
However, many profile pictures have either many or zero faces: 1 511 631 faces were
found in the profile pictures, while 3 119 742 profile pictures had no face detected –
1 455 529 of which were from users who did not change their picture from the de-
fault (i.e. their url points to https://instagramimages-a.akamaihd.net/profiles/

anonymousUser.jpg). Therefore, this approach will have a very low coverage and bi-
ases the results.

This approach can be enhanced by combining information of the profile picture
with information in the user’s posts. Due to homophily – a tendency for people to
have friends that share their own traits [McPherson et al., 2001] – a person is expected
to have slightly more same-gender friends, and one can assume this would translate

https://instagramimages-a.akamaihd.net/profiles/anonymousUser.jpg
https://instagramimages-a.akamaihd.net/profiles/anonymousUser.jpg
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to more pictures with same-gender faces. The same applies to age: the average age
of a person’s friends is her age, and it is reasonable to assume that the average age
of the people appearing in her pictures will be the user’s age. In fact, Pesce et al.
[2012] showed that one can achieve good classification performance for estimating both
age and gender in Facebook by simply averaging the ages and genders of a user’s
photo-tagged friends.

Therefore, even without knowing the user’s face, it is possible extract information
from all the faces from the user profile and develop a method to discover the user’s
gender and age.

There are a variety of ways this problem can be tackled, but I chose to approach
it by modeling the problem as finding a set of thresholds in the user’s known attributes
that can be used to decide the user’s unkown attributes. This can be done by training
a Decision Tree model from a ground truth and applying the model to the dataset.

A Decision Tree recursively splits the dataset in a way that best reduces an
impurity measure I(A). In this case I used the Gini Impurity4:

I(A) =

X

i

p(1� p) (4.1)

where A is the subset of the data representing a given split and p is the proportion
of positive instances of the class being learned. Thus, a set of instances with high
impurity has a proportion of positive instances near 50%, and a set with low impurity
has a proportion near 0 or 100%, meaning that this method manages to separate
positive and negative instances efficiently. The Decision Tree Algorithm selects the
attribute and split point that best achieve this goal [Breiman et al., 1984]. Additionally,
it selects surrogate variables that can be used when the selected variable is missing.
Thus, Decision Trees have a natural way of dealing with missing data.

The first splits of a decision tree are highly informative of the dataset’s inner
structure, but afterwards the tree quickly increases in complexity without generalizing
well to unseen data (in other words, it overfits the training data). In order to avoid
that, the tree is pruned after a given number of splits. More specifically, a subset of
the training set can be used as a validation set (in which the tree is not trained) and
the tree can be pruned when the error in the validation set stops decreasing.

More formally, the best decision tree is found by cross validation: the training
set is separated into 10 parts, the tree is trained in 9 of these parts and the remaining
part is used as the validation set. A classification error is calculated for each point the

4Not to be confused with the Gini Coefficient, a popular measure in the social sciences to describe
income inequality.
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tree splits the data. This procedure is repeated, leaving a different 10th of the training
set as the validation set, until all the 10 parts were used for validation. The average
and standard error of the classification error are estimated using the error found for
each iteration. Then it is possible to find the number of splits that has the smallest
classification error. However, splits within 1 standard error from this minimum point
are equally good candidates for pruning. Thus, for parsimony, the optimal point for
pruning is the one with the smallest number of splits in the interval within one standard
error from the point with the smallest classification error.

In order to maintain this methodology as general as possible, I limited the feature
set to the output given by Face++ over each user, combined by simple transformations:
the proportion of faces of each gender, the average age, and the number of faces found
for the user. The precise definition of the features can be seen in Table 4.1. A diagram
of the whole approach can be seen in Figure 4.6.

n_faces_m Sum of the number of faces identified in all of the user’s medias
prop_females_m Proportion of female faces in the users’s medias
prop_females_p Proportion of female faces in the user’s profile picture
avg_age_m Average age of faces seen in the posted medias
avg_age_p Average age of faces seen in profile picture

Table 4.1: Features used in the Decision Tree

User

Faces
(Profile)

Faces
(Media)

Decision 
Tree

prop. females
avg. age

prop. females
avg. age

Gender 
Value

Profile 
Picture

Posted 
Media

# facesFace++

Figure 4.6: Diagram of the pipeline for estimating the gender of a user.

4.3.1 A ground truth for gender

To train and test this approach, a ground truth is needed. There is no publicly available
dataset that resembles Instagram profiles, but it is possible to leverage other sources
of information from certain users to discover their gender, and then predict the gender
of the remaining users using machine learning methods.
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A highly precise method of estimating gender in social media is through name

lists. Tang et al. [2011] used a name list to estimate the gender of Facebook users
from the New York and Boston networks, and achieved 96.8% accuracy and 96.3%
coverage in gender estimation. A particular advantage of using name lists in Facebook
is that the service enforces a Real Name Policy5, which allows the method to achieve
such a high coverage. Even if the name list does not contain all possible names of the
users, since names are distributed according to a power law [Tang et al., 2011], the
most frequent names will account for a significant proportion of all user names. In
other OSNs (such as Instagram) this is not normally the case – users are identified
by a unique nickname and can optionally fill their real name in a field. This exposes
the main disadvantage of using name lists: when users cannot be identified by their
real names, the method’s coverage is hindered. However, the accuracy is not severely
impacted, as shown in Burger et al. [2011] in a study on Twitter.

Another important factor to consider is that the relationship of name and gen-
der is culture-specific, so a given name list is only valid for the location where it is
generated. Moreover, many names cannot be properly attributed to a specific gender
(i.e. they are assigned to both females and males) and are usually removed from the
list. Alternatively, when information about the frequency of times that a name is as-
signed to either males or females is available, it is possible assign a probability score of
a name being from each gender. That is, let F

n

and M

n

n be the count of the times that
a given name n is assigned to females and males (respectively) and M and F be the
sum of the frequencies of all known name assignments for males and females. Then,
the name’s score s can be calculated as:

s(n) =

F

n

/F

F

n

/F +M

n

/M

and a threshold value can be set to determine when the name can be reliably considered
male or female.

When all these observations are taken into account, name lists are one of the most
precise methods for gender estimation using profile information. Although attempts
have been made to use names to estimate age [Gallagher and Chen, 2008], it is normally
only possible to do so with the help of external data.

I used three name lists from different sources:

Census 1990 Names: a list of 5163 American names and their relative frequencies,
compiled from the Census of 1990, which is freely available in the US Census’

5
https://www.facebook.com/help/112146705538576 (Visited in February 2016)

https://www.facebook.com/help/112146705538576
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Dataset [1] [2] [3]

Brazilian Names [1] – 0.81 0.83
Census 1990 [2] 0.81 – 0.97
Facebook NYC [3] 0.83 0.97 –

Table 4.2: Correlation between overlapping names in each dataset. The numbers in
brackets are only shorthands that refer to each dataset, added for readability.

site6.

Brazilian Names: A list of 33 866 known brazilian names used by Cunha et al. [2014].
No frequency information is available, but names with an ambiguous gender
assignment were removed.

Facebook NYC Names: A list of 23 405 names and their frequencies, compiled from
public profiles of Facebook’s New York network, presented by Tang et al. [2011].

The datasets overlapped moderately. Census 1990 and Facebook NYC had an
overlap of 2210 names, and Brazilian Names overlapped with Facebook NYC by 4200

names and with Census 1990 by 2210 names. Interestingly, even for a 0.5 decision
threshold, all datasets agree on all the gender assignments for each name. The corre-
lations of the probability scores in these overlapping regions can be seen at Table 4.2.
Notice that in the Brazilian Names list the name frequencies are not available and the
scores are binary: 1 for females and 0 for males.

Female names are more diverse than male names in all datasets. Figure 4.7
shows the distribution of scores for each list. Following Tang et al. [2011], to achieve
the highest precision I used a threshold of 0.8 for determining whether a name was for
a given gender, i.e. a name was considered male if its score was at most 0.2 and female
if it was at least 0.8. The intermediary results were discarded.

Instagram provides the option of filling a full name field in a users’s profile. The
first word of this field can be considered the first name, and then compared to the name
lists to assign the proper gender. To account for cultural specificity, I restricted the
search to the country where the name list was generated (i.e. either Brazil or USA).
Since users do not have a country field, I considered a user being from a country if
the user had most of her geotagged photos in that country. Thus, my method for
generating the ground truth was the following:

For each named list:
6
http://www.census.gov/topics/population/genealogy/data/1990_census.html

(Visited December 2015)

http://www.census.gov/topics/population/genealogy/data/1990_census.html
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Figure 4.7: Histogram of the distribution of name scores for each dataset.

1. Determine the target country

2. Select all users whose post mostly in the target country

3. Extract the first word of the Full Name field of all these users

4. Check if this word matches any of the names in the name list

Not all users could be assigned to a country, since geotagging is optional. 746 001
had a top country, 85 659 of whom had Brazil as their top country, and 181 037 had the
USA as their top country. From these users, 50 569 Brazilian users could be matched to
the Brazilian name list, 85 659 American users could be matched to the Census name
list and 65 551 users could be matched to the Facebook NYC name list.

4.3.2 Inference

Having established a ground truth, I extracted the relevant features and trained the
Decision Tree. For comparison, I also tried two naive methods that did not require
learning: considering all users with prop_fem_profile over 0.5 as female, and cosider-
ing all users with prop_fem_media over 0.5 as female. Additionally, I compared the
Decision Tree with another highly efficient classier: a Support Vector Machine (SVM).
Since the SVM does not handle missing values naturally, I imputed these missing val-
ues with the mean of each attribute. The SVM hyperparameters were fine-tuned using
grid search and cross-validation (the best paramerters were � = 1 and C = 0.1)

The naive methods yielded surprisingly good results, which can be seen in Ta-
ble 4.3, with an accuracy of 0.70 and 0.82 and coverage of 0.99 and 0.44, respectively.
It must be noted that using media information yielded better accuracy than using the
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Accuracy Precision Coverage
Male Female

Naive (media) 0.82 0.79 0.84 0.99
Naive (profile) 0.81 0.75 0.86 0.44
SVM 0.83 0.82 0.84 1.00
Decision Tree 0.84 0.82 0.85 1.00

Table 4.3: Performance of the different methods of classification

profile picture, even though one would expect that a profile picture would be more
important to determine the users’s gender.

The decision tree and SVM perform similarly, with the decision tree performing
slightly better. Besides the natural handling of missing data, one advantage of using a
Decision Tree is that its thresholds can be plotted and inspected, as in Figure 4.8. It
can be seen that most of the training set (92%) receives a label at the second split, when
the tree has levaraged the “raw” information of the genders in the medias and profile
picture. These are also the cases with highest purity. The remaining, “hard” cases
are successively split and secondary information is used, like the number of scanned
faces and the average age in the profile picture. However, the tree does not manage to
achieve a good level of purity in most of the leafs.

Since the Decision Tree was trained with users from only two countries, and
considering that there is a considerable variation in the proportion of female faces and
average age depending on the country, it is reasonable to worry that the classification
rules will not generalise well for users of other cultural backgrounds. In order to
evaluate that, I randomly sampled 10 users from each of the 16 countries with most
users in the dataset (which contain 75% of the geotagged media) and manually labeled
them as female or male based on their profile7. Since what is of interest is the country-
wise variation, I avoided “hard cases” by sampling only users with more than 10 faces
detected in their profiles. The results are in Table 4.4. Although the sample size for
each country is modest, the average accuracy and precisions is comparable with the
results in Table 4.3. It can also be seen that the classifier performs reasonably well
regardless of the country.

7I did not have access to the predicted gender during labeling.
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Figure 4.8: First 10 splits of the gender Decision Tree. Each node states the dominant
class of its split side. The numbers below the node represent the probability of an
observation inside the node being Female (left), and the proportion of the training set
that “falls” into that split (right). The rule for each split is stated in the branches of
the tree.
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Country Accuracy Precision Frequency
Mal. Fem. Mal. Fem.

USA 0.8 1.00 0.75 4 6
BRA 1.0 1.00 1.00 4 6

AUS 1.0 1.00 1.00 3 7
CAN 1.0 1.00 1.00 3 7
CHN 0.9 1.00 0.87 3 7
DEU 1.0 1.00 1.00 4 6
ESP 0.8 1.00 0.71 5 5
FRA 1.0 1.00 1.00 4 6
GBR 0.9 0.80 1.00 4 6
IDN 0.9 0.75 1.00 3 7
ITA 0.9 0.83 1.00 5 5
MEX 1.0 1.00 1.00 6 4
MYS 0.8 1.00 0.71 5 5
PHL 0.9 0.80 1.00 4 6
RUS 0.9 0.83 1.00 5 5
SAU 1.0 1.00 1.00 7 3
THA 0.7 0.50 0.83 3 7
TUR 0.9 0.83 1.00 5 5

Average* 0.91 0.90 0.94 4.31 5.68

Table 4.4: Performance in different countries.
*The average does not consider BRA and USA.
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4.4 User-level analysis

4.4.1 Gender balance in Instagram

It is possible to investigate the gender balance in Instagram by analyzing the proportion
of female (or male) users in the network. The proportion will be different depending
on how the data is analyzed. In order to estimate the user’s gender, the profile must
have at least one media or a profile picture with an identifiable face. The more medias
the user has, the more reliable will be the estimates. However, if the user’s gender has
an effect in user activity, the proportion of female users in different strata of activity
may also differ substantially.

Females Males

All users 53% 47%

At least 10 posts 55% 45%

... 50 posts 59% 41%

... 100 posts 61% 39%

... 500 posts 64% 36%

... 1000 posts 62% 38%

... 10000 posts 55% 45%

At least 10 followers 53% 47%

... 50 followers 53% 47%

... 100 followers 54% 46%

... 500 followers 56% 44%

... 1000 followers 55% 45%

... 10000 followers 51% 49%

Table 4.5: Proportion of users of each gender for different levels of engagement

Table 4.9 shows the gender proportions for different cutoff criteria. There is a
small variation in the gender proportion when different cutoffs in the number of posts
or followers are considered. This variation does not stabilize for users with more than a
few posts or a few followers, and differs depending on the variable chosen for filtering.
In any case, it stays between 55% and 64% of females, and varies less when the cutoff
variable is the number of followers. It is possible that there is a relationship between
the number of posts and the user’s gender – this will be further explored in the next
section.

It is possible to follow the evolution of the gender balance in Instagram by looking
at the timestamps of the medias posted by the users. Figure 4.9 shows this evolution,
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(a)

(b)

Figure 4.9: Change in proportion of users in Instagram over time. The ranges are
confidence intervals. Figure (a) refers to new users (whose first post is in month x)
and Figure (b) refers to active users (who posted in month x).

both for new users, as measured by their first post in the network, as for active users,
measured by the number of users who posted something in a given month. The figures
show that Instagram was much more unbalanced in the beginning of 2012, but is
becoming progressively more balanced. In fact, slightly more male users seem to be
joining the network than female users, and the number of active male users is almost
approaching the number of active female users.

This is a smooth trend that has been happening consistently throughout the
years, except for a sharp difference in new and active users in April 2012. I could
not find the reason for such difference, but it is interesting to notice that it occurred
at approximately the same time as the “jump” in user IDs occurred, described in
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Section 2.2.2.

4.4.2 Gender differences in Instagram’s attributes

Having estimated the gender of the users in Instagram, it is possible to know how
different is the behavior of users of each gender, by comparing the distribution of the
user attributes conditioned on the user gender.

An intuitive non-parametric effect-size measure for comparing distributions is the
probability of superiority (PS), based on Mann-Whitney-Wilcoxon’s U statistic.
The U statistic represents the number of times an observation from a group is bigger
then an observation of another group in all possible pairings of the two groups. It can
be calculated in large samples by obtaining the rank of all observations (the smallest
observation’s rank is 1, the second smallest observation’s rank is 2, and so on), and
summing these ranks for each group.

For example, consider a set of observations of a random variable X paired with
groups A and B. If the observed values of variable X for group A are X

A

= {2, 5, 70}
and for group B are X

B

= {1, 3, 6}, then the ranks of the observations are Ranks
A

=

{2, 4, 6} and Ranks
B

= {1, 3, 5}. Thus, the sum R of the ranks are R

A

= 2+4+6 = 12

and R

B

= 1 + 3 + 5 = 9. These rank sums carry information on how the values of X
for one group are “lagged behind” another group without considering the magnitude
of their differences. In other words, R

A

is proportional to the number of times that
the values of group A are smaller than the values of group B considering all possible
pairings of groups A and B.

Let R
f

and R

m

be the sum of the ranks for females and males, respectively, and
n

f

and n

m

be the number of observations for males and females. The U statistic for
females and males can be calculated by the following formula:

U

f

= R

f

n

f

(n

f

+ 1)

2

U

m

= R

m

n

m

(n

m

+ 1)

2

And the chosen U statistic is the smallest from the two groups: U = min(U

f

, U

m

).
The U statistic is normally distributed, with:

µ

U

=

n

f

n

m

2

�

U

=

r
n

f

n

m

(n1 + n2 + 1)

12

Thus, a p-value is normally computed by looking up the probability of U in
the null hypothesis of no difference between the two groups. Moreover, the female
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probability of superiority PS

f

can also be easily calculated as PS =

Uf

nfnm
. Thus, the

PS

f

of an attribute is the probability that a randomly chosen female will have a value
higher in this attribute than a randomly chosen male. A value of 0.5 means that the
gender has no effect in the attribute, and values close to 1 or 0 mean that gender have
a strong effect.

Median PS

f

p-value
Fem. Male

# Followees 60 61 49.46% < 0.0001

# Followers 52 51 50.58% < 0.0001

# Media Posted 15 12 53.57% < 0.0001

Avg. Tags used 0.0028 0.00001 53.30% < 0.0001

Avg. Likes 4 3.99 50.45% < 0.0001

Avg. Likes per Follower 0.073 0.074 51.14% < 0.0001

Avg. Comments 0.31 0.29 49.75% < 0.0001

Avg. Comments per Follower 0.0031 x 0.0033 51.01% < 0.0001

Table 4.6: Effect size of gender in the attributes

Results can be seen in Table 4.6, along with the median value for each gender.
Besides attributes from the user profile, I also calculated the average number of likes
and comments each user received, as well as the ratio of the average of likes/comments
per follower. Moreover, I calculated the average amount of hashtags used by the user.
The extent of the differences of the distributions can also be compared in Figures 4.10,
4.11, 4.12, 4.13, 4.14, 4.15 and 4.17.

Contrary to other OSNs8, the differences in the behavior of male and female
users are not very pronounced. Although all results are statistically significant to a
high degree, this is likely to be due to the big sample size. The exceptions are average
hashtag use and number of posts – females post slightly more and use slightly more
hashtags than males. This higher effect size for number of posts explains the unstable
results for Table 4.5. Also, although the distributions for the average of comments and
likes are practically the same for both genders, females have a slightly higher ratio of
average likes and comments per follower.

However, even the strongest the effect sizes are very close to 50%. This shows
that the gender differences in Instagram are not as pronounced as in other networks.
Unfortunately, I cannot analyze differences in content use – this is beyond the scope

8see Ottoni et al. [2013], for an example on Pinterest
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of this work, as methods of natural language processing and computer vision must be
used in order to extract quantitative measures of content production.
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Figure 4.10

Figure 4.11

Figure 4.12
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Figure 4.13

Figure 4.14

Figure 4.15
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Figure 4.16

Figure 4.17



Chapter 5

Conclusions

The estimation of the age and gender of users in OSNs is an important step to define
factors on which the behavior of these users can vary, as well as to define how the
demographics of each online service is given in different points in time. In this disser-
tation, I investigated how face recognition can be used for estimating these attributes
using images posted in Instagram.

To do so, I collected a random sample of public user profiles and their activity in
the network using its REST API, and their posts were scanned using a state of the art,
freely available face recognition system, Face++. The use of such system allowed me to
achieve high precision in face recognition, while keeping the research steps reproducible.

I presented the current state of face recognition in the literature, and argued that
although very advanced, it is not without bias towards certain groups of people. Thus,
I defined a method of identifying algorithmic bias in the output of Face++ by using a
well known dataset, with pictures similar to the ones that are expected in Instagram,
to generate estimates of how it should behave in the network. This method allowed me
to generalize measures of bias to datasets in which human annotation is not feasible,
and thus derive the bias that should be expected for Instagram as a whole. The results
showed that the reliability of the estimation of age and gender is indeed conditioned
to endogenous aspects of the task at hand. More specifically, male and female genders
are not estimated with the same precision, and gender estimation depends on the age
of the person whose face is being scanned and the geographical location where the face
was photographed – probably due to different performance for different ethnicities.

Nonetheless, I showed that attribute estimation methods based on face data are
still very reliable, and when bias is taken into account it is possible to spot differences
in how women and men of different age ranges use Instagram. This approach can also
be combined with and additional classification step that maps all the faces found in an

65
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user profile to the user’s gender – and possibly to the user’s age, if a ground truth can
be established for training the classifier.

This has the advantage of not needing to determine which of the detected faces
is the user’s face. Instead, it leverages the fact that users of one gender are more likely
to appear in photos of users of their own gender – a well known phenomenon in social
science called homophily. In fact, the strategy of relying in homophily of the posted
media is so powerful that it shows performance comparable to cases where the profile
picture of the user is available and has face data in it, which is a good indicator that
the user’s face is in fact available.

When the gender of users is estimated, it can be used for a wide range of tasks
already defined in the social computing literature. Here, I limited myself to two of the
most basic methods of characterization: describing how the gender balance changed
during the network’s evolution, and calculating how different are the behaviors of male
and female users in the network as a whole. Contrary to what is observed in other
OSNs, it can be seen from the results that gender only affects the user attributes
slightly, and mostly in the production of content – female users posted more media and
used more hashtags. Additionally, by looking at the date of the posts of the users I
reconstructed how Instagram was in the past. By doing that, I showed that Instagram
used to be more imbalanced towards females, but the proportion of female users is
trending towards 50%, and the tendency for the future is for Instagram to have a more
balanced user base.

This characterization is merely a small demonstration of the techniques that
can be employed to answer interesting research questions. Numerous examples of
more sophisticated techniques that depend on knowing the user’s gender are readily
available in the literature, covering topics such as the categorization of content [Ottoni
et al., 2013], linguistic style [Cunha et al., 2014; de Las Casas et al., 2014], gender
discrimination [Terrell et al., 2016] and gender bias appearing in discursive patterns
[Garcia et al., 2014].

However, this also signals a risk of undesired exposure of personal information.
Although users who publicly upload pictures in the network are aware that third parties
can infer their gender and age by looking at their pictures, most users do not know
that this can be done automatically with high precision. This risk of exposure can
extend beyond Instagram pictures and be combined with other attack strategies – all
one needs is access of a set of pictures associated with a person. Moreover, if a user
wants to explicitly hide information about her age and gender, she might assume that
it is safe to upload pictures of her friends, as long as none of these uploads contain
her face. However, results shown here suggest that the estimation method does not
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need to depend on that availability of the person’s face to reliably infer her gender.
Future work could explore this question further by explicitly targeting users who do
not expose their own face, and by exploring other ways of associating a set of pictures
to a person that do not depend on extracting it from a user profile in an OSN.

My work also explores the topic of algorithmic bias. The method for investigating
algorithmic bias presented here can also be generalized to any computational system
employed for automatic decision making, as long as one can find a method of carefully
inspecting the relationship between input and output of the system. Thus, every
system can be treated as a “black box”, which enables researchers to include proprietary
algorithms in their investigation. The limitation for this method is when the input
cannot be controlled or the output cannot be inspected. In this work, I leveraged the
fact that Face++ offers confidence scores for its classification of the perceived gender, as
well as the fact that Face++ exposes a public API with a high quota of detections per
hour – which allows for a large number of inputs to be fed to the system. If this method
were to be employed to investigate Facebook’s face recognition system, for example,
it would need to be extended, since Facebook embeds its system in its own platform,
with no public API, and gives no information on the confidence for each classification.

The algorithmic bias reported here has been found before in other FRSs. Its
origin is still unknown and can be subject of future investigation. Possibilities range
from either an inherent limitation in using face data to estimate the perceived gender
and age; economic and operational incentives for the FRS to respond better to certain
demographic groups; or idiosyncrasies in the data collection methods employed to train
the algorithms that will perform the task.

My research has some limitations. First, it is restricted to only one platform,
and only publicly available data. It is perfectly reasonable to assume that users will
behave differently in different OSNs, and users who make their profile private – almost
70% of the IDs found during data collection – will have a different pattern of behavior.
The public exposure of user profiles is likely to be related to the user’s gender and age,
since women incur in more social risks when exposing personal information publicly,
and people from different age groups have different attitudes towards privacy. A more
general characterization of user behavior could benefit from using all the data contained
in an OSN, including private profiles. However, this is normally impossible to be done
without access privileges given by the service’s administrators.

A second limitation is in the method of estimating bias. Although images in
the GROUPS dataset are drawn from Flickr, which should be very similar in format
to what is expected to appear in Instagram, there is no guarantee that this is the
case. A better option would be to generate a labeled dataset from pictures directly
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drawn from Instagram, perhaps using crowdsourcing. However, this would demand
extra resources, and would mean sacrificing reproducibility if this dataset could not be
shared. Future work could explore the differences in pictures across multiple image-
based online services in order to establish objective criteria of how transferable are the
features of images found in one service to another.

A third limitation is in the scope of the analyses produced here. To limit my
research subject, I chose not to analyze the content of the posts made by the users, and
focused only in the most salient attributes in the OSN: followers, followees, interactions,
hashtag use and the number of posts. It is possible that differences in behavior for
different genders and age groups are more strongly manifested in the content instead
of raw activity counts.

Finally, I did not manage to explain the unusual pattern of IDs in Instagram’s ID
space, and this could affect how representative is the sample collected. Investigating
whether users in different ranges of the ID space show systematic differences in behavior
that cannot be explained by their time in the network is a research question on itself.

I believe that these limitations do not hinder the contributions made by this
work. Although some systematic variations in the data were probably not accounted
for, there is no reason to believe that they would invalidate the conclusions.

The use of face recognition technologies as a tool to describe how users relate to
the Visual Web is becoming increasingly more common, and a proper understanding
of its uses and limitations is important. The exact comprehension of the mechanisms
employed by the algorithms used for these tasks is desirable but, as I argue, not nec-
essary. Instead, researchers can focus on the effects of using such algorithms in the
groups they are willing to investigate. In this work I chose age and gender as personal
attributes to be estimated, due to their social and theoretical relevance. However, the
methods presented here can be extended to cover other topics, and as machine learning
becomes more sophisticated, more inferences will be possible to be made by looking
at the information uploaded and exposed by users in online services. It is up to inde-
pendent researchers to identify, investigate and publicize these methods of inference in
order to ensure public awareness of the risks and benefits incurred in embracing these
services.
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Appendix A

Estimating heavy-tailed distribution

parameters

Here I will describe well-known methods of estimating distributional parameters, as well
as differentiating between different possible heavy-tailed distributions for the empirical
data.

An important heavy-tailed distribution that constantly emerges in OSNs is the
Power-law distribution. The probability of high values in a power law distribution
decays polynomially. That is, for a given value of ↵ > 1,

p(x) = Cx

�↵ (A.1)

Where C is given by the normalization requirement that
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This gives C = (↵ � 1)x

↵�1
0 , which when plugged to Equation A.1 yields the

normalized expression:

p(x) =

↵� 1

x0

✓
x

x0

◆�↵

Here, x0 is the lowest possible value of x, and is the tail’s offset, above which the
distribution follows a power law. This means that it is possible (and indeed fairly
common) that an attribute follows some distribution at lower values, and above a
given threshold it becomes power-law distributed.

Another interesting and recurrent distribution with a heavy tail is the log-normal
distribution. In the log-normal distribution, the logarithm of the attribute values are
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normally distributed:

p(x) =
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Identifying heavy tailed distributions is important because this class of distri-
butions must be dealt with special methods that are not normally used, for example,
when an attribute follows a Gaussian distribution. For example, power laws with ↵ < 2

have an infinite expected value, and thus simply comparing the means of two groups
of observations distributed in such a way makes no sense.

The Maximum Likelihood Estimation (MLE) method is a reliable and unbiased
method to estimate the parameters for each of these two distributions. It consists of
finding the set parameters ✓ that generate a distribution that maximizes the likelihood
function L(✓), defined as

L(✓) =

nY

i

p(x

i

|✓)

where x

i

is the i

th observation seen in the empirical data.

It is normally simpler to deal with the logarithm of the likelihood function, rep-
resented by `(✓), which is monotonically related to the L and handles the same results.
Thus, a MLE estimator ✓̂ can be defined as:

✓̂ = argmax

✓

L(✓) = argmax

✓

`(✓)

The MLE estimator for both the power-law and the log-normal distributions can
be found analytically.

For power laws, consider that
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There are many methods suggested to determine x0. Normally it is informally set
by visually inspecting the distribution. A more rigorous method, suggested by Clauset
et al. [2009], is to calculate the Kolgovorov-Smirnov (KS) statistic to various possible
values (or all values) of x0 and pick the one that yields the best fit. The KS statistic
D is the maximum distance between the CDFs of the data (S(x)) and the fitted model
(P (x)):

D = max

x�x0

|S(x)� P (x)|

Thus, in order to find good values for ↵̂ and x0, one must calculate the MLE of
↵ for all the candidate values of x0 and pick the one that minimizes D.

For the log-normal distribution, consider that:
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Setting the gradient to 0, with respect to µ:
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A good way to examine the tail of a distribution is by a plot of its Complementary
Cumulative Distribution Function (CCDF). When both the x and y axes are put in
log scale, a CCDF that follows a power law is expected to lay in a straight line. This
can be easily be seen from Equation A.1, since

ln p(x) = lnC � ↵ ln x,

which is a linear equation with slope �↵.
Log-normal distributions have higher decay that can also be seen in a log-log plot:
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which is quadratic in ln x, so a quadratic curve is expected.
Despite this expected visual distinction, in practice the log-normal parameters

can be tuned in a way that the curve “looks like” a flat line – its curve should only be
noticeable if a broader proportion of the probability space were shown. Thus, visual
inspection is not a good way to access which distribution fits best to the data. A better
method is to calculate the logarithm of the ratio of the likelihood of each observation
given each model (log likelihood ratio). This can be expressed as

R = ln

Y

i

p1(xi

)

p2(xi

)

=

X

i

[ln p1(xi

)� ln p2(xi

)] =

X

i

[`

(1)
i

� `

(2)
i

]

where p1 and p2 are the probabilities of the two distributions and `

(1) and `

(2) are their
respective log-likelihoods. Since each value of x is independent, so are `

(1) and `

(2), and
by the central limit theorem, R must be normally distributed. Thus, it is possible to
estimate the p-value of a given value of R and determine the best fit. A positive and
statistically significant result means that p1 is the best fit, while a negative statistically
significant result means p2 is the best fit. More details in Clauset et al. [2009].
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