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Resumo

O advento das câmeras digitais permitiu se estimar a estrutura 3D a partir de imagens
que são adquiridas por estes dispositivos de forma rápida e barata. Ao longo dos anos,
inúmeras técnicas surgiram, e os algoritmos do estado-da-arte agora são capazes de
prover resultados a partir de sensores de baixo custo com qualidade e resolução com-
parável aos sistemas padrão da indústria. Câmeras atuais capazes de produzir imagens
de alta definição são compactas, leves, e podem ser facilmente acopladas a veículos
aéreos não tripulados (VANTs), em contraste a outros meios de aquisição de dados 3D,
como LiDAR, que está associados a altos custos financeiros e logísticos. No entanto, o
tempo de processamento das imagens coletadas rapidamente se torna proibitivo con-
forme o número de imagens de entrada aumenta, exigindo hardware poderoso e dias
de tempo de processamento para se gerar modelos 3D de grandes conjuntos de dados.
Neste trabalho, é proposta uma abordagem eficiente baseada na técnica de estrutura a
partir do movimento incremental (Structure-from-Motion) e técnicas de reconstrução
estéreo para gerar automaticamente MDE - Modelos Digitais de Elevação - a partir de
imagens aéreas e também modelos 3D em geral. A abordagem proposta usa a infor-
mação de GPS para inicializar a estrutura de grafo usada no algoritmo, uma pontuação
baseada em árvore de vocabulário para reduzir o número de pares a serem considera-
dos na etapa de correspondência, uma técnica de filtragem de pontos de interesse na
imagem que mantém a alta repetibilidade de pontos e reduz o custo computacional, e
múltiplas otimizações locais em vez da clássica otimização global é empregado em um
novo esquema para acelerar o processo incremental de estimação. Resultados obtidos
com seis grandes conjuntos de imagens aéreas obtidas por VANTs e quatro conjuntos
de dados terrestres mostram que a abordagem adotada supera as estratégias atuais em
tempo de processamento, e também é capaz de proporcionar resultados equivalentes
ou melhores em precisão comparado com três métodos do estado-da-arte.

Palavras-chave: Modelo Digital de Elevação, Visão Estéreo, Reconstrução 3D,
Veículo Aéreo Não Tripulado, Estrutura a partir do movimento.
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Abstract

The advent of digital cameras heralded many possibilities of structure and shape re-
covery from imagery that are quickly and inexpensively acquired by such devices.
Throughout the years numerous techniques have emerged, and state-of-art algorithms
are now able to deliver 3D structure acquisition results from low cost sensors with
quality and resolution comparable to industry standard systems such as LIDAR and
expensive photogrammetric equipments. Current imaging devices capable to produce
high-definition images are compact, lightweight, and can be easily attached to un-
manned aerial vehicles (UAVs), in contrast to other means of 3D data acquisition such
as LiDAR, which is associated to high financial and logistical costs. However, the
processing time of the collected imagery to produce a 3D model quickly becomes pro-
hibitive as the number of input images increases, demanding powerful hardware and
days of processing time to generate full DEMs of large datasets containing thousands of
images. In this work we propose an efficient approach based on Structure-from-Motion
(SfM) and Multi-view Stereo (MvS) reconstruction techniques to automatically gen-
erate DEM – Digital Elevation Models – from aerial images and also 3D models in
general. Our approach, which is image-based only, uses the increasingly meta-data
information such as GPS in EXIF tags to initialize our graph structure, a keypoint
filtering technique to maintain high repeatability of matches across pairs and reduce
the matching effort, a vocabulary tree score to reduce the space search of matching
and multiple local bundle adjustment refinement instead of the global optimization in a
novel scheme to speed up the incremental SfM process. The results from six large aerial
datasets obtained by UAVs with minimal cost and four terrestrial datasets show that
our approach outperforms current strategies in processing time, and is also able to pro-
vide better or at least equivalent results in accuracy compared to three state-of-the-art
methods.

Keywords: Digital Elevation Model, Multi-View Stereo, 3D Reconstruction, Un-
manned Aerial Vehicles, Structure-from-Motion.
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Chapter 1

Introduction

Geometric reconstruction of the world from a sequence of images remains one of the
key-challenges in Computer Vision. Three-dimensional recovery of the geometry of an
object or a scene has several applications in Computer Vision and Robotics, such as
scene understanding [Li et al., 2009], object recognition and classification [Belongie
et al., 2002] [Gehler and Nowozin, 2009], digital elevation mapping and autonomous
navigation, to name a few.

In Robotics, 3D information is crucial to mobile robots that navigates au-
tonomously in the environment, because it gives much more information about the
ambient [Wurm et al., 2010]. Semantic mapping is one of the computer vision tech-
niques that uses 2D-3D information to extract high-level features of the environment
that can improve the agent’s decision [Henry et al., 2010].

Due to the recent development of low-cost RGB-D sensors, semantic mapping
techniques have been gaining more attention because of the easy accessibility of these
devices that can be attached in the robots and provide reliable 2D and 3D information
that together can be explored efficiently to generate semantic maps [Hermans et al.,
2014]. However, these devices, e.g. the Kinect, which provides linked radiometric
and depth information, only works well in estimating surface depth that is within a
certain distance range of the sensor in indoor environments (3 to 5 meters at most),
and much less in outdoor scenes in daylight, because they are generally based on
infrared emission, limiting the use of such sensors in a myriad of real world problems.
Aligning the sensor readings in a global frame (registration) without the use of accurate
Inertial Measurement Units (IMU) is another challenge [Henry et al., 2012]. In contrast,
image-based 3D acquisition can be widely applied in many types of environment with
consumer grade cameras, which are increasingly accessible to everybody nowadays.
Image based techniques can be applied both indoor and outdoor with no restrictions

5



6 Chapter 1. Introduction

at all, when there is enough baseline, overlap and texture present in the acquired images
[Westoby et al., 2012].

Light Detection and Ranging (LiDAR) systems generally require accurate IMU
and GPS rigidly attached and well-calibrated to obtain a global reference frame of
the sensor readings, which makes the use of such approach in a campaign, expensive
[Liu, 2008]. Although, recent methods based on laser [Bosse et al., 2012] are able to
provide accurate 3D reconstruction results without the the requirement of GPS, and is
applicable to both indoor and outdoor environments. However, LIDaR based systems
are only able to measure depth and the intensity of the returned pulse, and texture
information can not be directly obtained from the data.

For applications, such as aerial mapping, for instance, image-only based pipelines
that incorporate recent SfM (Structure-from-Motion) and Multi-view Stereo (MvS)
techniques are strong competitors to LiDAR based surface measurements [Leberl et al.,
2010]. Two of the advantages of image-based reconstruction when compared to LiDAR
is that several mapping tasks may also require digital images of the scene, and radio-
metric information is directly registered with depth.

In particular, approaches that estimate DEMs using only images gained attention
recently, specially due to the increasing availability of high quality cameras and of
UAVs. Camera equipped UAVs are a low-cost and lightweight autonomous platforms
that can be readily applied to acquire data processed by software packages, generating
full three-dimensional models of outdoor scenes in remote areas [James and Robson,
2012]. In addition, these easy-to-use platforms can allow people with no knowledge at
all in Robotics and Computer Vision to use complete image-based 3D reconstruction
pipelines with minimal costs. Figure 1.1 shows a DEM estimated by our approach, and
Figure 1.2 shows a sparse point cloud in VisualSFM’s graphical user interface.

A large number of techniques for recovering 3D data which describes the geometry
of a scene or an environment have been proposed in the literature. In the past few years,
state-of-the-art techniques in 3D photography and laser-based sensors have set the bar
in accuracy in the order of a few centimeters in elevation measurement [James and
Robson, 2012]. Recent methods based only on sequences of images attained significant
improvements, thanks to the advancement of camera sensor technology and computer
vision techniques.

Recent technological advances in imaging sensors enabled the production of high
resolution, low cost digital cameras which can provide high quality images and also
meta-information such as noisy GPS and camera intrinsic parameters. However, the
high resolution images and the rich set of features output by these cameras impose
heavy time and memory constraints for the use of state-of-the-art methodologies in
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Figure 1.1. DEM reconstructed by our pipeline followed by a sample of 4 images
out of 220 used in the estimation from a construction site near ICEx. The model
was obtained with minimal budget using a smartphone camera and a low-cost
quadrotor.

large datasets obtained from their data stream.
A relatively new approach developed in Computer Vision field called Structure-

from-Motion significantly advanced in accuracy and scalability in the past few years,
and is able to retrieve the camera parameters and an initial sparse set of 3D points.
Given sets of point correspondences between image pairs and the intrinsic parameters
of each image, SfM pipelines are able to compute a global consistent pose (translation
and orientation vector) for each image (where they were taken in the 3D space) up
to an undetermined scale and an arbitrary coordinate system. Although, challenges
and problems still remain unsolved. Some of the problems are that these approaches
can provide wrong results when the optimization of the parameters get stuck at local
minima, and the processing cost of the optimization step still is too costly. Limitations
are also present, for example the lack of texture in the images makes image-based
techniques useless in some cases.

After a structure-from-motion algorithm is used to obtain a 3D model from the
images, a similarity transform can be used to geo-reference the 3D model into a known
global reference system and scale, allowing one to measure distances in the scene in a
metric scale. This can be performed by using ground control points and inaccurate GPS
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Figure 1.2. VisualSFM [Wu, 2013] graphical user interface showing two different
view points of the same reconstructed model. The colored rectangles represents
the poses of the cameras in 3D. The software, which is free for research purposes,
provides a friendly interface covering the complicated structure-from-motion al-
gorithm, and allows people with no expertise in computer vision to use advanced
techniques to estimate 3D models from images.

data. This promoted a huge advancement in 3D photography, and now it is possible to
obtain 3D models without many prerequisites previously required in photogrammetry,
such as structured acquisition of images, expensive and accurate GPS/IMU devices
rigidly attached to the camera sensor, resulting in a costly and hard to apply approach
to small and medium size mapping projects. Semi-automatic selection of point mea-
surements in overlapping images were also required, increasing even more the costs
[Irschara et al., 2012].

Nowadays, even consumer-grade cameras have considerable amount of resolution,
with sufficient radiometric and geometric stability to be used for 3D reconstruction,
depending on the accuracy needed [James and Robson, 2012]. Ultimately, with the
popularization of UAVs, high resolution image acquisition using these vehicles showed
to be a high cost-efficient and automated method that summing with all above qualities
mentioned makes 3D photography the most time-and-cost efficient method to obtain
digital terrain models [Westoby et al., 2012].
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However, in general the processing time of SfM methods increases non-linearly
with respect to the number of pictures, which makes the processing time for most real
outdoor scenes, such as open-pit mines and large areas of cities, undesired, specially on
consumer-grade computers. The complexity of the image registration step, which is at
the core of SfM algorithms, has a time complexity of O(n2) when using a brute force
approach, where every image is tested against all the dataset to validate the geometry
of a valid correspondence. Since this step is expensive in terms of processing time,
naive methods already boggle down with just few hundreds of images, and become
prohibitively slow when thousands of images are considered. In addition to the reg-
istration step, another barrier to be overcame is the costly non-linear optimization of
the camera parameters required in SfM methods called Bundle Adjustment (BA). This
step is extremely important to avoid drifting during the reconstruction and provides
the optimal solution for the SfM problem, being the maximum likelihood estimator for
camera pose and 3D points considering that the measured points in the images have a
Gaussian noise in their position.

Thus, despite the advances of SfM methods that estimate the three-dimensional
structure from a sequence of images, there are still several challenges that need to
be overcame to compute high quality 3D data from a large number of high definition
images.

In this thesis, we combine several ideas in a novel scheme, which some of them
have already proven to be efficient separately, like making use of GPS information
[Frahm et al., 2010], considering only the most discriminant features of the images
to make a coarse estimation of the pair geometry [Wu, 2013], the use of nearest
neighbour search of the corresponding features of the valid pairs, and leveraging the
O(log(n)) complexity of the vocabulary tree search to speed up the matching phase
[Nister and Stewenius, 2006]. These steps combined outperform the previously pro-
posed approaches individually, and drastically reduces the time required to perform
the matching step when compared to the brute force approach. Also, our proposed
pipeline detailed in the methodology section is able to meticulously select image pairs
with high quality of overlapping area. These steps can decrease the possibility of us-
ing bad pairs in the incremental structure and motion estimation step, and drastically
reduces the space search of the problem, speeding up the epipolar graph build time.

Another contribution of our work is the proposal of an overlapping local bundle
adjustment (LBA) window approach, since for large datasets, the global optimization
can hugely contribute for the slowness of the process. We locally optimize the camera
poses and points, but we also consider previously done bundle adjustment steps to
maintain the consistency of the model, which is the novelty in this approach.
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Therefore, as shown in Chapter 5, our approach is capable of computing the DEM
faster than the other methods used in the experiments in all the tested datasets while
preserving the quality of the results.

It is worth mentioning that this thesis is the result of a subproject founded by
Instituto Tecnológico Vale (ITV), which is contained in a bigger context. The full
idea of the project is to create a complete system that is able to map a remote area
using cooperative coordination among many micro aerial vehicles and build 3D maps
of the environment that also have other relevant information associated to them, e.g.
magnetic information obtained by magnetometers.

1.1 Objective and Contributions

Our goal was to develop a SfM algorithm capable of producing accurate results com-
parable with the state-of-the-art SfM techniques, while focusing in time performance
gains.

The general contribution of our work is the development of a new SfM pipeline
that is able to deliver high quality DEMs at a low processing time cost. The main
contributions can be summarized as follows:

• Proposal and implementation of a new SfM pipeline which incorporates and
adapts the best techniques, both focused in time performance and accuracy, into
a single algorithm;

• Proposal and implementation of an adapted overlapping local bundle adjustment
window approach for large-scale datasets;

• A comparison and analysis of state-of-the-art softwares used in aerial mapping
with large real world datasets acquired by UAVs.

1.2 Thesis Organization

In Chapter 2 we explore and discuss the main concepts of 3D reconstruction tech-
niques, including the projective reconstruction theorem and MvS dense reconstruction
techniques.

In Chapter 3 we review and detail recent state-of-the-art SfM techniques present
in the literature.

In Chapter 4 we present the proposed pipeline, divided in five main steps.
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Sequentially, Chapter 5 contains the experiments and results obtained by exhaus-
tively testing seven datasets with the proposed approach and three state-of-the-art SfM
implementations.

Finally, in Chapter 6 we discuss the results achieved.





Chapter 2

Theoretical Background

In this chapter, we explore and detail important concepts and techniques used in 3D
photography, which is the basis for all approaches of 3D reconstruction using collection
of images.

2.1 Epipolar Geometry

The epipolar geometry in stereo vision is the intrinsic projective geometry between
two pinhole cameras that view the same static 3D scene, where the geometric rela-
tions between the 3D points and their 2D perspective projections onto the images are
constrained by the camera internal parameters and their relative pose [Hartley and
Zisserman, 2004].

The fundamental matrix Fij is a 3 × 3 matrix of rank 2 which describes the
geometry between a pair of images i and j according to the corresponding points that
are consistent with the epipolar geometry constraint:

xT
j Fijxi = 0, (2.1)

where xi and xj are the projected 2D coordinates of the same 3D point in pixels in the
images taken from different viewpoints.

With F, we can map a point in the left image to a line (namely, epipolar line) in
the right and vice-versa. Figure 2.1 depicts this constraint. The camera motion can be
obtained from F up to a projective transformation. If the intrinsic parameters of the
cameras are known, we can obtain a new matrix called the essential matrix E which
is a special case of the fundamental matrix where the intrinsic calibration matrices are
identity matrices (this happens if we normalize the image coordinates by multiplying

13
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Figure 2.1. Epipolar geometry between two cameras. Given the 2D coordinate
x′ in the right image, which is the perspective projection of X onto it, the same
projection in the left image is constrained by the epipolar line, and must project
along the line segment. The epipolar line of each camera can be seen as the
intersection of the epipolar plane and the respective camera plane. The epipolar
plane is defined by the optical center of the cameras and the 3D point, in which
their 2D projections in both camera planes also lies in the epipolar plane, so this
geometry does not depend on the scene structure. Note that there is an infinite
number of possible epipolar lines as we move X in the 3D space, and just one case
is represented in the image.

the points by the calibration matrices or the fundamental matrix itself). We can update
the fundamental matrix to the essential matrix by using the calibration matrices:

Eij = Kj
TFijKi, (2.2)

where Kj and Ki are the respective calibration matrices of cameras i and j. The
calibration matrix is a 2D transformation matrix in the form:

K =

fx s cx

0 fy cy

0 0 1

 , (2.3)

where (fx, fy) are the focal length of the camera in pixel units (usually they have the
same value) and (cx, cy) is the center of projection expressed in pixels. Finally, s is the
skew factor and is usually 0. With E, it is possible to recover the relative euclidean
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motion of the two cameras in the 3D space up to an ambiguity of scale, because we
can only recover the direction of the relative translation from it.

The fundamental and essential matrix can be estimated from a set of point cor-
respondences between two images (normalized image coordinates, in the case of the
essential), and robust techniques like the normalized eight-point algorithm [Hartley,
1997] and the five-point algorithm [Nistér, 2004] developed in the past years allow a
robust estimation from noisy image coordinates.

2.2 Structure from Motion (SfM)

In general, SfM pipelines are based on feature matching and stereo vision techniques.
Recent advancements in robust feature detection and matching across images allowed
the use of stereo methods that can be used to estimate the extrinsic parameters between
each valid pair of cameras (sharing a portion of view in the scene) automatically. SfM
core methods take as input the relative extrinsic parameters between the pairs and put
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Figure 2.2. An example of the SfM problem. We want to find the projection
matrices P,P′, P′′ and X that are in the same global frame, so that we can
project X into the 3 images using their respective projection matrices and the
error between the projected and measured 2D coordinates of the same 3D point
in the scene is minimal.
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them into a single reference coordinate system [Snavely et al., 2008b]. In Figure 2.2, we
have a simple example of the structure-from-motion problem. Having the projection
matrix for each camera relative to a global frame, it is possible to use MvS techniques
to obtain a dense 3D model of the scene.

One of the most representative works that inspired numerous existing cutting-
edge state-of-the-art SfM techniques until now is the well known Bundler software
[Snavely et al., 2008a], which can handle a few hundred of images in a time span of
days, in a consumer-grade computer. The authors used images from the Internet to
create 3D models of well-known world sites, e.g. Notre Dame church, the Coliseum in
Rome and the Trafalgar’s Square, obtained from social media websites.

2.2.1 Epipolar Graph

Keypoint matching is one of the most time consuming steps in a SfM pipeline. Tech-
niques like ORB [Rublee et al., 2011], SURF [Bay et al., 2008] or SIFT [Lowe, 2004]
and many others can be used to detect and match points across images, which requires
a lot of computational effort to process high resolution photographs in the detection
and description phase. In addition, the matching step, that requires comparing each
descriptor of the keypoint in one image to all descriptors of all keypoints in the other
to find its nearest neighbor, is also another time bottleneck in this phase, requiring
O(n2) comparisons between high-dimension descriptor vectors to perform the match of
two images optimally, considering that n is the number of keypoints in the images.

The epipolar graph is widely used to represent the geometric relation between
each pair of image in the scene and can be defined as follows: G = (V , E), where each
vertex v ∈ V represents an image and there is an edge e ∈ E between two vertices if
there is a valid epipolar geometry relation between the images which is described by
the fundamental or essential matrix. A simple epipolar graph is shown in Figure 2.3.

In the naïve approach, each image is matched against all other images in the
dataset using a brute force nearest neighbor search for each possible pair to attribute
the correspondence for each point, and then RANSAC [Fischler and Bolles, 1981] is
used to robustly estimate the essential matrix between each pair, as also to remove the
outliers from the correspondences.

2.2.2 Bundle Adjustment

Besides the feature matching and geometric validation step, another bottleneck of SfM
approaches is the optimization of the camera parameters and 3D points, required in
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Figure 2.3. An epipolar graph with 13 images from Notre Dame. The thickness
of the edges indicates a higher number of correspondences between pairs.

all approaches with no exception, to reduce drifting and improve accuracy. Once new
camera poses are estimated and their 2D features are triangulated into 3D points,
there is a need to optimize these estimated parameters due to estimation errors which
accumulates in the model. The optimal solution for this problem considering Gaussian
noise in the position of the keypoints, is the maximum likelihood estimator (MLE).

In this optimization problem, we want to estimate the camera poses and 3D
points that minimizes the squared re-projection error in pixels between the measured
and predicted projections. Considering that each camera pose j is parameterized by a
projection matrix Pj and each 3D point i by a vector Xi, we can write the optimization
problem as minimizing:

min
Pj,Xi

∑
i=1

∑
j=1

‖ XiPj − xij ‖2, (2.4)

where XiPj is the predicted projection of point i on image j, and xij is the measured
2D coordinate of the projection. The optimization step requires an initial guess of
the camera parameters and 3D points which is provided by the SfM algorithm, and
since it is based on iterative methods that solves for a non-convex cost function in a
high-dimensional non-linear parameter space, it can be stuck at a local minima if a
bad initial solution is provided.
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Considering that the parameters of each projection matrix has 6 degrees of free-
dom (three for the position and three for orientation) and each 3D point has 3 degrees
of freedom (X,Y and Z coordinates), the total dimensions of the problem to solve can
be calculated as 6j + 3i in this case. Other parameters as focal length, principal point
and distortion coefficients can also be considered in the optimization, increasing even
more the number of parameters of each camera. For large datasets, such as the ones
containing thousands of cameras and millions of 3D points, the dimensionality of the
problem is extremely high, and minimizing its cost function demands highly specialized
algorithms that need to be extremely efficient and well-implemented.

In spite of the efforts of the community and the improvements already made,
specially in exploiting the sparse block structure that arises in bundle adjustment to
speed up the computation [Lourakis and Argyros, 2009], the problem is still costly
to solve for large datasets. However, Eudes and Lhuillier [2009] shows that using a
local bundle adjustment instead performing a global optimization in the incremental
process on video-based reconstructions can achieve good quality results and provides a
considerable speed up gain. Another solution for this problem is to use a divide-and-
conquer approach [Ni et al., 2007], which can also accelerate the optimization while
maintaining good accuracy relative to global bundle adjustment.

2.3 Multi-view Stereo Algorithms (MvS)

Multi-view stereo algorithms take as input fully calibrated intrinsic and extrinsic cam-
era parameters and their respective images, and generate a quasi -dense 3D model based
on correspondences between images. They can be roughly classified into four classes
according to the underlying object models, being them shape-from-sillouetes, voxel-
based, patch-based and graph-based. Each of them has its limitations, specially for
considering some assumptions that are not general for every scenario. This limits the
dataset type a technique can be applied, being them object and scene datasets.

A key process in all kinds of these algorithms is to check the consistency of
the projected 3D points into the images [Furukawa and Ponce, 2010]. The limitation
of these techniques is that they provide poor results when weak texture regions in
the images and occlusions are present, because they use the intensity information to
perform the consistency checks. All below techniques assumes that the intrinsic and
extrinsic parameters of each camera are already known, which can be obtained by
manual calibration or structure-from-motion techniques.
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2.3.1 Photo-consistency

Photo-consistency tests are widely used in the techniques described below. Such tests
are based on color or greyscale variance information that can be used as constraints
in 3D reconstruction as a valid three-dimensional point in a world’s surface as it’s
projection onto the visible cameras will theoretically have the same intensity or color,
considering small variations of illumination and Lambertian reflectance. One of the
most used scores to measure the similarity of patches in images is the normalized
cross-correlation, which is given by the formula:

NCC =
1

n

∑
x,y

(f(x, y)− µf )(t(x, y)− µt)

σfσt
, (2.5)

where f and t are two corresponding patches in the images, n the total amount of
pixels in the patches, and σ and µ the respective standard deviation and mean of the
patch. A fixed threshold is usually set, and patches are declared inconsistent if they
are not similar enough.

2.3.2 Voxel-based Approaches

In voxel-based approaches, a bounding box containing the volume of the scene is ini-
tialized, and every unit of this volume is formed by a voxel. We can do a direct analogy
of voxels as being 3D pixels, like we have pixels in ordinary images. They have 3D
coordinates and a color, like a pixel in an image has 2D coordinates and also a color.
But this limits the technique, because there is a need to know a valid volume containing
the scene, limiting the technique to object datasets only, and the quality of the model
as also the computational cost is dependent of the resolution of the voxel space. Then,
an iteration is made to verify the photo-consistency of the voxel, achieved by project-
ing the voxel onto all camera planes that can see it, and color variance is analyzed to
determine if the voxel is photo-consistent or not. In case it is not, it is removed from
the volume space.

The first attempts in reconstruction of 3D shapes through images used the sil-
houettes as source of shape characteristics. Szeliski [1993] and Niem and Buschmann
[1994] proposed methods that uses calibrated cameras to produce 3D object models
using the silhouettes. First, images of the object are taken in different poses around it,
then, segmentation techniques are used to extract the silhouettes. Finally, the shapes
of the silhouettes are used to define the volume intersection of the model generating
the 3D shape of the object. But as proved in the work of Laurentini [1997], the sil-
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houette information has not enough information to converge into the real shape of
the object, depending on the shape of it, even when there is a possibility to obtain
infinite number of images of the object in all possible poses. Another limiting factors
of shape-from-silhouettes techniques are the number of images necessary to provide a
good approximation of the shape, and also the pose of the cameras of the images. If
there is too few images available, or a bad distributed viewpoints of the object, these
kind of approaches can provide very rough results. A method presented by Shanmukh
and Pujari [1991] considers some prior knowledge of the object shape and provides a
solution that optimises the reconstruction specifying the viewpoints necessary.

2.3.3 Multiple Depth Maps

These techniques rely on estimated depth maps for each pair of image. Once the depth
maps are obtained using stereo algorithms, they are merged onto a single model. These
kind of techniques are simple and more flexible but requires many well-distributed
views of the object to achieve good results. An example of the power of this technique,
Irschara et al. [2012] developed a full methodology to obtain a dense model from large
scale and highly overlapping aerial images. The core component of the approach is
a multi-view dense matching algorithm that explores the redundancy of the data. A
multi-view plane sweep technique is applied to perform the match, where the 3D space
is iteratively traversed by parallel planes which is usually aligned with a particular key
view. For each depth in the plane, sensor images are projected onto the plane and a
similarity function is used to compute a cost. After, a depth map can be extracted
using a minimum graph cut algorithm. The final result of the approach is a model
with depth value estimated for every possible pixel in the images.

2.3.4 Patch-based Methods

Being one of the most flexible techniques, patch-based approaches can achieve good re-
sults in the majority of datasets (objects and scenes), except in texture-less or occluded
regions. These approaches first generate a set of sparse 3D oriented points using feature
matching correspondences across images, and then iteratively expand these patches to
increase density.

Techniques based on patches are the most versatile, being robust to calibration
errors and does not need any prerequisite like initializing a visual hull, bounding box
or valid depth ranges, not being restricted only to object datasets. The approach pre-
sented in [Furukawa and Ponce, 2010] shows a hybrid approach that outputs a dense
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collection of small oriented rectangular patches obtained from pixel-level correspon-
dences considering the images and their respective calibration. The algorithm consists
of a simple match, expand and filter procedure, and as first step patches are created
considering sparse points obtained with feature matching techniques, and their orien-
tation are calculated considering the cameras centers that observe the point. Then,
cells are calculated by the projection of the patch in all cameras. A cell C = (x, y) is
defined by a window with sizem with its coordinate at the central pixel. The expansion
is done by creating other cells in the region of an existing cell, and photo-consistency
tests are realized as well as occlusion tests to determine if a patch will be created or
not, considering the new cells created (filtering step). Another similar technique is
presented in [Goesele et al., 2007], which also uses patches, also known as surfels to
reconstruct the surface of the scene. In a similar way, the initial sparse set of surfels are
obtained by the result of a sparse reconstruction of a structure from motion approach
as well as the cameras parameters. The algorithm iteratively grows surfaces through
the initial sparse set, optimizing surface normals within a photo-consistency measure,
which significantly improve the matching. The results obtained are very accurate, and
direct comparisons between a model generated with laser scan and the technique shows
the robustness of the technique.





Chapter 3

Related Work

In this chapter, we discuss relevant methods present in the literature that try to solve
the Structure-from-Motion problem, pointing out the advantages and disadvantages of
each one.

3.1 Structure-from-Motion

Incremental SfM reconstruction techniques aim at solving the problem incrementally.
Our method fits in this category, being an extended pipeline, that is, in the end of
the pipeline we also have the dense reconstruction and the estimated mesh with the
projected textures.

Incremental SfM approaches are able to handle unordered collection of images. In
other words, they do not make any assumption of temporal sequence in the frames, do
not require high redundancy of images, and do not rely in any loop closing technique,
since the feature tracking among cameras occurs globally considering the entire dataset.
Such scheme allows SfM techniques to be robust, accurate and near-optimal in most
cases after global bundle adjustment, although it might get stuck at a local minima
eventually.

The incremental approach gained attention in the past ten years, because of its
robustness to outliers (wrong correspondences and relative motion estimation) and
missing data, such as the absence or wrong intrinsic parameters. Other methods such
as factorization-based [Tomasi and Kanade, 1992] and global SfM [Crandall et al.,
2011] can provide results in less time than incremental SfM because they do not need
to optimize the model constantly, however such methods tend to be very sensitive to
outliers and missing data, and generally cannot be applied to images in the wild, such
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the ones obtained on the Internet or datasets commonly gathered by inexperienced
people.

Bundler [Snavely et al., 2008a] is based on incremental SfM. First, features and
meta-data are extracted for each image, and then an exhaustive brute-force matching
of features is performed between each possible pair. Then, the fundamental matrix
is estimated and finally the incremental reconstruction is performed by adding new
cameras in a greedy manner through camera resectioning and triangulating new points
with the before estimated cameras. The major drawback of the approach is the number
of images that can be used for the reconstruction, which is bounded to a few hundreds,
since the time required to process more than that rapidly becomes prohibitive due to
both brute-force matching and multiple global BA calls that are required during the
reconstruction. In the end, the pipeline provides the projection matrices for the images
and a sparse point cloud.

The method of Frahm et al. [2010] is applicable to the structure and motion
estimation of large-scale datasets. To deal with the high redundancy of images from
image queries from the internet, they first clusterize the images and for each cluster
they consider just an iconic image. Then, a result retrieved from a vocabulary tree
search is used to perform the feature matching and geometry validation of the k closest
images to the query image defined by a similarity score, giving a huge speed up of
the epipolar graph building. However, their method tends to reconstruct unconnected
clusters consisted of subsets of the original dataset.

The geo-location occasionally available can also be exploited to deal with the
problem of fragmented models generated by large-scale SfM. Strecha et al. [2010] lever-
age the geo-location available, among other meta-data (DEMs and 2D building models),
to deal with the fragmentation problem and also allow the update of the estimations
when new images of the region become available without the necessity of redoing the
process from scratch. But the method depends on reliable information to generate
good results, such as accurate GPS.

Other approaches take advantage of the meta-data increasingly available in recent
imagery to deal with the struggle in the matching step. Agarwal et al. [2009], which
also focus on large-scale internet photo collections, use the noisy geo-location of the
images to remove comparison between far away pairs, performing the matching only
between close cameras, selected according to an arbitrary threshold, reducing efforts
of the image matching step. However, their methodology requires a computer cluster
with hundreds of CPUs to provide the complete solution within the time span of a day.

Since vocabulary tree approaches may return ambiguous pairs that can induce
the reconstruction to fail, resulting in wrong models, Irschara et al. [2011] uses the
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meta-data to compute a coarse projection matrix for each camera using the available
GPS and IMU data. By means of a pre-existing 3D model of the scene or making
weak assumptions on its maximum depth, the method is able to estimate a coarse
overlap between the images. Thus the feature match process occurs among the ones
with overlapping views, improving significantly the time performance compared to the
brute-force matching and avoiding ambiguity. However, IMU data and pre-existing
models are not commonly available, limiting the applicability of this technique.

In order to overcome the costly matching step, the work of Wu [2013] tries to
reduce the time consumption by using approximate nearest neighbor search and care-
fully selecting subsets of keypoints to be matched. For a moderate number of images
(few hundreds), this approach is efficient, but it does not avoid the quadratic complex-
ity of matching. The authors also use preconditioned conjugated gradient which can
accelerate the convergence of the optimization in the bundle adjustment step. Further-
more, they explore the pleasingly parallelizable characteristics of the problem to speed
up the process by using multi-core processors and GPUs. The results remain as one
of the state-of-art techniques, although for very large datasets, the method requires
powerful hardware, such as multiple GPUs and many threads to provide the solution
in acceptable time.

Other works focused at improving bundle adjustment, which is an essential part
of the SfM pipeline, thus, receiving intense research in the past years. Jeong et al. [2012]
perform experiments with several bundle adjustment methods present in the literature,
and proposes two methods that work in the reduced camera system that leverages the
natural block sparsity. While one is based in exact minimum degree ordering and
block-based LDL (lower triangular and diagonal matrix decomposition) solving, the
other uses a block-based preconditioned conjugate gradient. The reported results show
that the methods are able to converge faster, in addition to handle memory efficiently.
However, the strategies for the linear solvers were not fully investigated as pointed by
the authors, and better results can be achieved with a proper investigation.

More recently, the work of Zhu et al. [2014] explores the idea that the way BA
distributes the errors evenly may cause local areas to be sub-optimal, and re-optimizing
them locally can improve the accuracy of the reconstruction. They use a divide-and-
conquer approach to segment the model into well-conditioned regions (parts of the scene
that are visible from many cameras) and re-optimizes them while also maintaining the
global consistency. The result is that fine details that were be lost with the global
optimization are now present in the re-adjusted model.
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3.2 Video-based Methods: Visual-SLAM

Video-based methods, also known as Visual-SLAM, use similar stereo techniques to
estimate the relative camera poses, but differently from the structure-from-motion for
unordered collection of images, they use the temporal relation between the frames to
skip the matching step. Using fast tracking techniques such as optical flow, the points
are tracked in the most recent frames of a video stream, which requires a high frame-rate
to maintain the relative change of frames very low. Generally, the images resolution
are limited by these techniques if one wants to achieve real-time performance.

Because these methods aim at running in real-time, global bundle adjustment is
undesirable at any point, and the uncertainty of the camera poses in long sequences
is high. Consequently, they rely on loop-closure techniques to attempt drift correction
on-the-fly, however, loop detection may be too expensive for large datasets and does
not guarantee that all loops will be detected. Furthermore, the 3D model generated
by these techniques can suffer from multiple estimations of the same 3D point, because
they only keep track of the most recent features in the images, providing a sub-optimal
solution which may lead to reduced global accuracy specially on large datasets.

Thus, these techniques are not usually used to estimate 3D models in general
because of their limitation in accuracy, but they are commonly used in robotics to
provide a coarse estimation of the robot’s pose and the environment structure in 3D
using low-cost cameras, being very useful in that case.

Pollefeys et al. [2008] proposed a real-time system that is able to deliver dense
3D information from a video stream of an urban area. They rely on accurate INS and
GPS to provide the camera poses. Eight cameras were positioned in different points
of view attached to a vehicle, and then a calibration was performed to compensate the
difference of coordinate system of the cameras and the INS/GPS sensors. Using the
camera poses provided by the sensors, a subset of frames with sufficient baseline are
constantly selected, and a GPU implementation of the plane sweep algorithm originally
proposed by Collins [1996] is used to achieve real-time 3D depth estimation.

More recently, Engel et al. [2014] proposed a video-based method that uses di-
rect intensity comparisons of small-baseline consecutive frames to obtain semi-dense
depth-maps. This step requires the frames to be extremely redundant. The algorithm
constantly estimates relative camera poses based on those depth-maps, and solves for a
graph-based pose optimization problem to obtain global camera poses, where each pose
is parametrized by a similarity transform (pose and scale). These poses are updated if
a loop is found to reduce scale drift using loop detection algorithms. The system works
in real time using 640× 480 resolution images, and the frame resolution is bounded if
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one wants to achieve real-time results running in CPU. The technique also suffers from
pose drifting for long sequence of frames, specially if no loop is found.

3.3 Structure-from-Motion versus LiDAR

The work of James and Robson [2012] applies a 3D photography methodology to geo-
sciences. By using SfM and multi-view stereo (MVS) techniques, the authors generate
models and compare them against laser scanned models. A consumer-grade camera,
low cost UAVs and computer vision software were used in the experiments, and they
concluded that the combination SfM+MVS is capable of producing useful 3D models
with a decrease of 80% in the total time spent in a mapping campaign (considering
the logistics until the final result) in comparison to LiDAR. Similarly, the work of
Westoby et al. [2012] presents a survey concluding that 3D photo techniques are good
options to produce topographic data in an efficient cost and low-time way, in contrast
to the traditional surveying campaigns using lasers and manned aerial vehicles, which
require high financial and logistical costs, and demand specialists to perform the data
acquisition.

More recently, the work of Micheletti et al. [2015] demonstrates that even an
ordinary smartphone camera with 5.0 megapixel resolution processed by a SfM pipeline
is able to deliver satisfying results. The authors compare the models generated by SfM
against those generated by a well established photogrammetric software and LiDAR.
Their results reinforce that SfM approaches are a fully automated and inexpensive way
to obtain reliable 3D information.

A survey performed by Teza et al. [2016] showed many advantages of SfM over
terrestrial laser scanners (TLS) in morphological analysis for architectural applications.
The first advantage is that when a photo-realistic representation is required, SfM is
suitable while TLS requires additional camera sensors and rendering techniques. An-
other appealing advantage is that when UAV-mounted or lifting platform-mounted
instrument is needed, TLS becomes unsuitable, while SfM is perfectly suitable for this
task, since cameras can be easily attached to them. When a very fast survey is needed,
SfM techniques demonstrated to be faster than campaigns using TLS, specially when a
complex building has to be mapped. Besides, when there is limited available economic
resources, TLS becomes unsuitable. A last advantage of SfM highlited by the authors
is that the SfM pipelines are highly automated, while TLS requires some manual work
to generate the 3D model. On the other hand, in the presence of trees or similar dis-
turbances, SfM becomes unsuitable, as well as when observations of tall buildings or
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night survey are required , while the TLS is partially suitable for these tasks.
Laser-based SLAM approaches are also gaining attention, since they do not re-

quire GPS to register the point cloud and robot’s pose. A modern system proposed
by [Bosse et al., 2012] uses a hand-held 2D range LiDAR sensor mounted on a spring,
and an industrial-grade IMU rigidly attached to the LiDAR device to map the 3D
environment. The device is built in such a way that when the operator moves through
the environment, the sensor head is moved as the result of the motion induced by the
spring, giving the 2D range sensor a 3D field of view. The SLAM software receives the
range and IMU data and estimate the 6-degree-of-freedom robot’s trajectory and also
the 3D point cloud registered in a global frame. The point cloud based SLAM method
first extract and match features based on the point normals, and then, similar to the
classic Iterative Closest Point (ICP) algorithm, they minimize the distance between the
matched points. The trajectory is optimized through a moving window of fixed size,
which they call open-loop solution. A post-processing phase called closed-loop solution
can be performed using the result of the open-loop solution, where all the trajectory
is optimized in a single window. However, if the open-loop trajectory drifts too much,
the closed-loop solution may get stuck at local minima, and loop-closure techniques
may be required to generate a consistent model. One advantage of Laser-based SLAM
is that it can handle textureless scenes, but they also suffer from the lack of features,
in this case in the point cloud. Examples of scenes without features in the point cloud
are long tunnels or plain regions, that lack abrupt normal surface changes.



Chapter 4

Methodology

In this section we detail the main steps of our methodology. It is a novel pipeline that
provides two new features: An efficient epipolar graph building procedure and a local
bundle adjustment adapted to large-scale reconstructions.

First, the GPS constraint in addition to the vocabulary tree score are used to
efficiently prune non-overlapping pairs (Figure 4.1– I) followed by a coarse to fine
geometry validation to save even more processing time in the feature matching phase
(Figure 4.1– II). The epipolar graph’s edges are then updated by the modifed maximum
spanning tree algorithm (Algorithm 2) that carefully selects the best ones to be used
in estimation of the camera parameters and the scene structure while enforcing the
completeness of the graph (Figure 4.1– III). The camera motion and intrinsics, as well
the 3D structure parameters are locally optimized by an overlapping window containing
the most recent cameras (Figure 4.1– IV). As a direct consequence of using the proposed
local bundle adjustment (LBA), our approach demands less global optimizations to
provide an accurate solution in the end of the reconstruction. In the final step, our
pipeline computes the dense model using a patch-based multi-view-stereo technique
and Poisson reconstruction to obtain the final mesh (Figure 4.1– V).

4.1 Registration

In general, in the aerial image acquisition process, GPS data (even if noisy) will be
available. UAVs require GPS to autonomously navigate through the environment, and
the readings from the sensor can be directly registered with the images or obtained
through smart-phones and cameras that already have GPS sensors built-in. Leveraging
this meta-data, we can use it to reduce the space search of the matching step and avoid
ambiguity in the scene to be considered. It is fair to assume that if the Euclidean
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Image Collection

Filtering Incremental SfM

Dense Reconstruction

GPS

Local Bundle Adjustment

Global Refinement

1. Non-overlapping pairs are efficiently
removed (red edges) in the initial 
graph by the GPS distance constraint
and the vocabulary tree score; 

3. The ep. graph is filtered by a 
modified MST considering inliers;

4. Sparse point cloud and camera motion 
are incrementally recovered and optimized
through local BA;

5. Global refinement and dense 
reconstruction are performed to 
generate the final textured mesh.

Calibration/Metadata

Input

Textured Mesh

Output

Camera Parameters

Dense Surfel Model

Registration

2. Features are detected and rapidly 
matched across connected pairs;

Figure 4.1. Illustration of the main steps of our methodology. We initialize
the epipolar graph by connecting images with a large chance of having overlap,
according to GPS data and a vocabulary tree search. In this example, the black
edges are below the threshold distance, and the vocabulary tree query of at least
one of the images are among the top 40 highest score matches of the other, so
they are kept while the red ones are removed. After the optimized pairwise regis-
tration, we update the epipolar graph by selecting high quality matches enforcing
completeness, here represented by the blue edges in step III. The camera mo-
tion is incrementally recovered for each image and a sparse point cloud generated
from the matching points and optimized through robust and fast local bundle
adjustment. At the end, we compute the dense model.

distance between the position of image pairs is large, they do not share any portion of
view. By considering that, we generate an initial graph G = (V , E), where each vertex
v ∈ V represents an image. We connect the d_nearest images according to the distance
obtained by compairing each pairs’ GPS coordinates. We used d_nearest = 40 in our
experiments, which is a sufficient value for all datasets in our experiments. Reducing
this value can reduce even more the effort of matching although it can prune pairs that
overlap.

The constraint increases the time performance and reduces the time complex-
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ity of matching n images from O(n2) to O(n) considering aerial and large datasets.
Additionally, this avoids comparing ambiguous pairs, which makes the approach more
robust to wrong reconstructions due to views that are actually geometrically consistent
but are not viewing the same portion of the scene (e.g. symmetric building facades).

4.1.1 Keypoint Extraction

In general, SfM techniques look for the correspondences between images to estimate
the camera extrinsic parameters and to generate the final sparse three-dimensional
point cloud. We used SIFT [Lowe, 2004] to extract the keypoints and compute their
descriptors due to its good invariance to scale and affine transformations that occur,
as a consequence of cameras looking at the same region in many different viewpoints.

To avoid that too many keypoints are considered by our approach which is bad
both due to ambiguity and unnecessary elevated processing time to match and optimize
in the SfM phase, we sort the found keypoints by descending order of scale and remove
the small keypoints so that we keep the features with large scale attribute up to 9.000

features per image, which is a sufficient amount of keypoints for the most scenarios, as
suggested by [Wu, 2013]. The reason we select the features with large scale attribute
in many steps in the approach is because they have a higher repeatability rate than
small scale features and their descriptors tend to be more discriminant.

4.1.2 Vocabulary Tree Pruning

In some cases, the GPS tags are missing for some images, and it can become a problem
when a dataset has most of its images without GPS information. Thus, we cannot
remove the edges of the respective vertices that correspond to those images because
we do not have any prior information to infer if the pairs overlap. Depending on the
size of the dataset, it can cause a strong negative impact in the processing time of this
phase.

To overcome this problem, we use a vocabulary tree approach similar to Nister and
Stewenius [2006] to avoid the O(n2) time complexity in the matching step. Vocabulary
trees are used in scalable image recognition, where similar images are returned by a
recursive search in the tree given an image query (the search term). The algorithm
we used to build a vocabulary tree can bee seen in Algorithm 1. Using the SIFT
descriptors, we build a vocabulary tree with a branching factor (voc_tree_bf) of 9

(a reasonable value as shown in [Nister and Stewenius, 2006] experiments for large
datasets) by grouping a feature set formed by 600 random keypoint descriptors obtained
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in each image selected uniformly. We finally index the tree leafs using the top 3000

features (ordered from large to small scale value) of each image. Once the tree is
indexed, we can query an image for images with close visual appearance to it, taking
O(log(n)) time complexity in a balanced tree, where n is the number of images in the
entire dataset. These parameters were varied in our experiments, and we concluded
that selecting 600 random keypoints produce a varied set of features and reduces the
memory usage to build the tree, and querying for the 3000 largest features produces
improved matching results rather than querying for the entire set, mostly because the
largest features are more stable. The visual similarity score for each image is obtained
by propagating again the 3000 features with largest scale attributes. The algorithm
increments the bin’s score of the respective indexes of the images that are present in
the leaf of each descriptor propagation in the histogram of indexes for the image query.
We have used the increment score as being:

score =
1

nl
, (4.1)

where nl is the node level, so the most common features will contribute less to the
score of the bins that are indexed in the leaf. Intuitively, the most common features
will have larger clusters and the depth of the path for these less discriminant features
will be larger.

In our experiments, we search for the top 60 highest score matches for each image
(the most similar ones to that query according to the vocabulary tree), and we prune
the edges in the epipolar graph from the query vertice to those vertices that are not
among the highest scores of this query, excepting the edges that were validated by the
GPS distance. The time complexity cost of the entire pruning operation is O(n log(n)),
being n the number of images. Here, we consider that the tree is balanced assuming
that the keypoint descriptors we used to build the tree were randomly chosen, even
though it may not be true if there are too many similar features in the images. This
approach enforces the matching step to be linear in time since each image will have at
most 60 candidates to perform the registration.

4.1.3 Geometric Validation

After the graph construction, we can efficiently match image pairs in a reduced space
search, which initially had O(n2) and now has O(n) pairs. Furthermore, the remaining
image pairs present strong evidence that they will actually overlap. For each edge
of the graph, the matching step procedure first attempts to match the descriptors of



4.1. Registration 33

c

c

c

Feature Space in the last level of the path

Upper Node

F

...

[3,7,1] [2] [0,5,8,9]

0 1 0 1 0 0 0 1 0 0Histogram:

Image query (1 out of 3.000 features...)

Leafs c c c

F

0 1 2 3 94 5 6 7 8

Figure 4.2. Example of a query for an image. The first feature is being prop-
agated down. In this case, the branching factor of the tree is three, and in each
level, the feature is compared to the three node centers and it is propagated to the
one that is the closest to it. The process is recursively done until it reaches a leaf,
where the histogram is incremented with the score (1 in this case for simplicity)
for each respective index the leaf holds.

Algorithm 1 Vocabulary tree building.
procedure BuildVocabularyTree(Node, FeatureSet, BranchingFactor)
Cset = K-means(FeatureSet, BranchingFactor)
for each cluster C and its respective child node do

SetChildCenter(ChildNode, Center(C))
if Size(C) > 5×BranchingFactor then

BuildVocabularyTree(ChildNode, C, BranchingFactor) .
Recursively divides the feature space into n Voronoi cells, where n is the branching
factor.

two small sets containing the biggest (most discriminant) keypoints of their respective
images, selected according to the scale attribute. If the correspondences are able to
minimally satisfy the epipolar geometry constraint, a full pairwise match considering
all keypoints are performed to obtain a fine pairwise registration.

Fast Geometry Verification: We perform a fast (coarse) verification of the epipolar
geometry. The top k_top keypoints (in our tests, we use k_top = 600) with the
highest scale value are selected, which reduces the effort of matching. If the selected
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pairs of keypoints do not provide a valid epipolar geometry, we remove the edge of the
graph. We consider a pair as valid if the number of inlier correspondences returned
by the fundamental matrix estimation 2.1 using RANSAC [Fischler and Bolles, 1981]
is higher than at least 15% of the number of matches between each pair, which we
call coarse_inlier_rf . The 15% value was chosen by performing tests on image pairs
and we concluded when there is less than 15% of inliers in the correspondences using
k_top = 600, the likelihood of overlap between them is minimal. These steps are
performed only between images that are connected in our graph. To avoid requiring
the intrinsics for the images, we use the fundamental matrix in this step instead of
the essential matrix, since for some images the intrinsics may not be available or have
incorrect parameters.

Fine Pairwise Registration: To perform the fine registration, we fully match the
keypoints between image pairs that have passed in the fast geometry validation. We
now use all the keypoints found in both images with Fast Approximate Nearest Neigh-
bour search (FLANN) [Muja and Lowe, 2009]. We also use the ratio test criterion,
discarding similar distances of the two nearest neighbours of a query descriptor. We
use a ratio of 0.8 in our experiments, which is the suggested value in the original SIFT
paper [Lowe, 2004]. This step filters out ambiguous pair matches which have a higher
chance to be wrong correspondences and decreases the set of points to be considered
by the RANSAC. By doing that we also raise the probability of finding a valid pairwise
geometric estimation (fundamental matrix), since the ratio of inliers/total in the set
of correspondences is increased. At last, we estimate the fundamental matrix by using
the RANSAC scheme with the normalized 8-point algorithm [Hartley, 1997] to validate
a pair geometry. Again, we use the fundamental matrix to avoid using wrong intrinsics.

A threshold in pixel is defined (threshold_fm = 0.07% of the image width in
our tests) to determine if the point is an inlier or not, depending on the distance that
it is from the respective epipolar line in the other image, which is a similar threshold
used by Bundler [Snavely et al., 2008a], and were tested many different datasets.

4.2 Filtering

We set the weights in the epipolar graph using the number of inliers returned by
RANSAC for each estimated pair. A naïve approach would consider removing the edges
with a small number of inliers using a hard threshold and perform the triangulation by
using only the remaining pairs. However, this may remove edges that keep the graph
connected, which results in missing parts in the final 3D model, specially because it is



4.3. Incremental SfM 35

difficult to define a hard threshold for this purpose, depending on many factors, e.g.
matching quality, amount of texture in the images and overlap. Therefore, we propose
applying a maximum spanning tree approach (MST) to remove only the edges with
small number of inliers but enforcing the connectivity of the graph, since the MST
avoids us breaking the epipolar graph into smaller connected components when we try
to remove an edge with low number of inliers.

The last step of the epipolar filtering consists in extracting the sub-graph that
contains the edges from the maximum spanning tree and the edges with the number of
inliers larger than a defined threshold τi (we use a value of 60 inliers in our experiments,
a standard value used by Bundler [Snavely et al., 2008a] and VisualSFM [Wu, 2013]).

This procedure is described by the Algorithm 2. The complexity of the Algo-
rithm 2 lies in the same of Kruskal’s algorithm O(e log(e)) since only an additional
O(e) iteration is required.

4.3 Incremental SfM

Our methodology uses an incremental structure-from-motion approach. The algorithm
begins the reconstruction by using a pair of images and then incrementally estimate the
points and cameras parameters, adding them to the model sequentially. The camera
motion estimation happens in a greedy manner with respect to the number of 2D-3D
correspondences. In other words, the method estimates the camera motion through
resectioning by choosing the camera that provides the largest amount of 2D-3D corre-
spondences and then triangulates new 3D points into the model, until there is no more
cameras to add.

Algorithm 2 Epipolar graph filtering.
procedure EpipolarFiltering(EG, τi)

MaxSpanningTree(EG,F ilteredEG)
for each edge e in EG do

if weight > τi & e /∈ FilteredEG then
Add(FilteredEG, e)

return FilteredEG
. The FilteredEG contains the maximum spanning tree plus all edges higher

than a threshold.
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4.3.1 Robustly Choosing The Initial Pair

Choosing the initial pair is crucial to the quality of the reconstruction. If we choose
a pair not having enough overlap, the reconstruction can fail immediately. But if we
also choose a pair that have almost no translation motion (generally, they will overlap
almost entirely), the essential matrix estimation and initial triangulated points will
be ill-conditioned, because there is not enough parallax for the algorithm to infer the
depth of the scene. To avoid that, we sort the edges of the graph and keep a percentile
of 0.4 of the most valued edges (this value is arbitrary and is not sensitive when it is
not set on the extremes like ≤ 0.10 or ≥ 0.90 according to our experiments), which
contains consistent geometric pairs that undoubtedly overlap. Then, we sort this subset
considering the ratio between the essential matrix inliers and the homography inliers
and use a percentile of 0.25 (again, the percentile value is not sensitive and is arbitrary)
of the subset containing the highest ratio between the fundamental matrix inliers and
homography inliers (Finliers/Hinliers), which is useful to avoid the use of small-baseline
pairs in the seed reconstruction. Homographies cannot explain parallax in the scene,
just the motion of planar surfaces. The number of homography inliers then will be,
in general, lower than the inliers of the fundamental matrix for pairs with sufficient
translation motion, except in the case when the entire scene is planar, which is fair to
assume that is not in our context.

We then finally select the pair which provide the lowest mean re-projection error
in this small subset of candidates. The essential matrix (2.2) is estimated using the
normalized camera coordinates of the correspondences, calculated using the respective
camera intrinsic parameters extracted from the EXIF meta-data or a calibration file.
To perform the reconstruction of the initial pair, there must exist some source of
information of the intrinsic parameters, or it will not be possible to approximately
estimate the relative euclidean motion for them. An initial point cloud is created by
triangulating the feature correspondences using the relative euclidean motion extracted
from the essential matrix and refined using bundle adjustment.

4.3.2 Robust Incremental Estimation

From the initial point cloud, we find the image with the largest 2D correspondences
with 3D points already estimated and we calculate the extrinsic parameters from the
camera through camera resectioning. Camera resection techniques uses the 2D-3D
correspondences to find a projection matrix Pi that maximizes the number of inliers
of the projection of the corresponding 3D points onto the image i, generally using the
direct linear transform (DLT) algorithm in a RANSAC scheme. We adopt the same
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approach of Moulon et al. [2013] that uses an a contrario RANSAC scheme for solving
for Pi, where an inlier threshold is also estimated. The threshold choice for a pure
RANSAC scheme for estimating Pi is usually done empirically and do not generalize
well for different kind of datasets.

We first estimate a normalized Pi using normalized image coordinates, and
then we evaluate the ratio of inliers and the threshold estimated. If the inlier ra-
tio inlier/total is fewer than 0.25 or the threshold is above 24.0 pixels (MAX_RE),
we assume that the intrinsic parameters of the camera are wrong. The values of these
paramaters are similar to Bundler and works well for all datasets we tested. We then
try to re-estimate the unnormalized Pi and decompose it into two matrices using the
RQ decomposition. The two matrices are actually the rotation matrix (an orthogonal
matrix) and the calibration matrix Ki of camera i. Finally, we are able to extract the
new focal length fromKi, and re-estimate the normalized Pi. If the camera resectioning
fails again, we exclude it from the model.

If a valid estimate of Pi is obtained, our algorithm optimizes the camera param-
eters including the focal length and camera distortion through a single-camera bundle

Algorithm 3 Incremental estimation.
procedure IncrementalSfM(Structure, Cameras, EG)

while NotAllChecked(Cameras) do
BC ← FindBestCamera(Structure, Cameras)
ResectionNormalized(Structure, BC)
if BC.InlierRatio < 0.25 ∨BC.threshold_resec > MAX_RE then

ResectionUnnormalized(Structure, BC)
UpdateFocalLength(BC)
ResectionNormalized(Structure, BC)
if BC.InlierRatio < 0.25 ∨BC.threshold_resec > MAX_RE then

continue . Skip this camera.
else

OneCameraBundleAdjustment(BC)
TriangulatePoints(Structure, BC, Cameras, EG)

else
OneCameraBundleAdjustment(BC)
TriangulatePoints(Structure, BC, Cameras, EG) . Triangulate

points with connected cameras in the graph that have already been estimated.
if NumberOfEstimatedCameras mod window_size = 0 then

LocalBundleAdjustment(Structure, Cameras)
GlobalBundleAdjustment(Structure, Cameras) .

Performs a final global optimization considering all cameras and points in the end
of the procedure.



38 Chapter 4. Methodology

(a)

(b)

Figure 4.3. Sparse reconstruction obtained from small_mine dataset (127 im-
ages) during the incremental estimation of the camera parameters and sparse 3D
structure. (a) Partially reconstructed model (32 images); (b) Fully reconstructed
model.

adjustment with fixed 3D points. Finally, we triangulate the points that are not in
the model by visiting the connected estimated cameras using the epipolar graph. We
discard the points with a triangulation angle smaller than 2.0 degrees (a standard value
used in many stereo algorithms, such as [Furukawa and Ponce, 2010], [Snavely et al.,
2008a], [Wu, 2013]) because the cameras do not have enough baseline to provide a
good estimation of the 3D intersection.

The camera resectioning step is repeated iteratively for all cameras, and after a
certain amount of camera estimations, we call a local bundle adjustment to minimize
the re-projection error, consequently reducing drifting. Once there is no more cameras
to be added, we run a final global optimization to obtain a set of optimized parameters
for each camera, including motion, radial distortion and intrinsics, and also the refined
sparse point cloud representing the keypoints found in the 3D space, which can be seen
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in Figure 4.3. Algorithm 3 shows the incremental estimation procedure.

4.4 Local Bundle Adjustment and Global

Refinement

Bundle adjustment (BA) techniques attempt to minimize the re-projection error be-
tween the observed and predicted image points in order to obtain the optimal 3D
structure and camera parameters (Subsection 2.2.2).

Due to the large number of unknown parameters which contributes to the re-
projection error value, a standard implementation of this optimization method would
have massive computational costs when applied to the minimization problem charac-
terized in bundle adjustment. Lourakis and Argyros [2009] proposed a method that
explores the sparse block structure of the non-linear optimization problem in BA con-
text achieving a considerable time performance gain (Equation 4.5).

However, finding the optimal solution for this problem is still time consuming
when considering thousands of cameras and millions of 3D points. To tackle with this
problem, we propose an overlapping local bundle adjustment window approach that
optimizes the camera poses and points locally, but it overlaps with already optimized
3D points to hold the consistency and avoid fast propagation of drifting. Although
this approach can be find in several video-based (i.e. small baseline and organized
dataset) methods, in our work we apply this approach for unorganized dataset of large
baselines.

Let V = (P1, . . . , Pm, X1, . . . , Xn)T be a vector containing all parame-
ters describing the m projection matrices and the n 3D points, and X =

(xT11, . . . , x
T
1m, . . . , x

T
n1, . . . , x

T
nm)T the measured image point coordinates across the cam-

eras (position of the detected keypoints). By using the parameter vector, we can create
the estimated measure matrix as:

X̂ = (x̂T11, . . . , x̂
T
1m, . . . , x̂

T
n1, . . . , x̂

T
nm)T , (4.2)

where x̂Tij is the projection of the 3D point i in the camera j.
We can write the BA as the optimization problem of finding the values that

minimize:
(X− X̂)TΣ−1X (X− X̂) (4.3)

over the parameter vector V. ΣX is the norm matrix. The minimization can be
performed by the Levenberg-Marquardt algorithm Marquardt [1963] to solve the aug-
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 X1  X2
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Figure 4.4. A simple case of the local window approach. The blue selection
represents the points and cameras that have already been bundle adjusted, while
the red selection will be optimized when the window becomes full. The green
points will contribute to the minimized re-projection error of the cameras, but
since they already are optimized, their parameters will remain fixed.

mented weighted normal equations:

(JTΣ−1X J + µJ)δ = JTΣ−1X (X− X̂), (4.4)

where J represents the Jacobian of X̂, δ the update parameter of V that we are
estimating and µ is the damping term which is used to change the diagonal elements
of the Jacobian.

For instance, considering the camera setup and the scene structure illustrated in
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Figure 4.4, the Jacobian J can be write as:

J =
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. (4.5)

In our implementation, we first used the Sparse Bundle Adjustment (SBA) library
as the optimizer solver [Lourakis and Argyros, 2009], but then we verified that there
is a newer, more efficient and flexible implementation of a non-linear least squares
solver called Ceres [Agarwal et al., 2015] that also leverages the sparse structure of
the Jacobian, which we later used to model and optimize the parameters of our SfM
problem in a very practical way, and it was able to provide slightly better re-projection
error results.

The incremental approach estimates camera motion and scene structure calling
bundle adjustment multiple times. As the number of parameters of the model incre-
mentally increases, the time to perform a global BA iteration rapidly grows with the
number of cameras and points. Our approach proposes to fasten the parameters of the
3D points that have already been bundle adjusted and only adjusts the parameters of
the newest estimated cameras and points.

The time complexity of bundle adjustment considering the sparse block structure
is O(m3) [Mitra and Chellappa, 2008], where m is the number of cameras. In the the
incremental approach, O(m) global BA calls are required to avoid the propagation of
drifting, which makes the complexity raise to O(m4). This asymptotic behavior causes
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the approach to be very slow on large datasets. However, limiting the number of
cameras BA will consider to a constant number, we can still obtain comparable results
as shown in our experiments and able to reduce the O(m4) complexity back to O(m3).
In this case, we will still require global BA calls to correct long term drifting but we can
limit the number of calls to a constant value, while we reduce the fast propagation of
drifting optimizing the parameters through local bundle adjustment. LBA has a time
complexity of mO(w3), for a window containing w cameras. Since the number w is
fixed to a constant value, we obtain an overall asymptotic behavior of O(m) +O(m3),
where the O(m) term is respective to LBA, and the O(m3) term the global BA part.
The final time complety then is equivalent to O(m3).

The window in our case contains the most recent estimated cameras and all the 3D
points that projects onto them. When the window achieves the limit of cameras, we call
a BA that will optimize all cameras in the set and the points. It is important to notice
that points that have been already optimized contributes to the minimized re-projection
error, although their parameters remain fixed, to maintain the local consistency and
prevent the fast propagation of drifting. Figure 4.4 shows two sets of cameras (blue and
red). The blue set was optimized and the current iteration is trying to adjust the three
new cameras (in red). The green points should not be modified in the optimization

process. Thus, we set the values
∂x̂ij
∂Xi

= 0,∀i ≤ 2 in the Equation 4.5.

Global BA can be performed sometimes during reconstruction to obtain the opti-
mal parameters as we do in our experiments, but much fewer global optimization calls
are required (bound to a constant value), and it is optional depending on the size of
the dataset and the desired accuracy.

4.5 Dense Reconstruction

Once we have the complete set of projection matrices and undistorted images estimated
by our approach, we use them as input to a MvS dense reconstruction technique [Fu-
rukawa and Ponce, 2010].

This algorithm uses a robust match, expand, and filter approach to estimate a
quasi-dense set of small 3D rectangular patches and is composed of three main parts.
First, an initial collection of small oriented rectangular patches is created by matching
the features detected in input images. The algorithm initializes each patch with its
center c(p), normal n(p), a reference image R(p) and the list of visible images V (p).
The geometric parameters c(p) and n(p) are estimated by maximizing a photographic
similarity cost function (Equation 2.5). Thereafter, it creates new patches according
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to the neighbouring pixels of the initial matches. This performs the expansion around
the vicinity of the patch. After the matching and expansion, a filtering process is
performed in order to eliminate erroneous patches. The algorithm uses three filters –
two of them based on visibility constraints and a third one that enforces a weak form
of regularization.

It is important to mention that the quality of the camera parameters provided
by the SfM algorithm as well as the quality of the images (e.g. resolution, texture
and image sharpness) strongly influence on the density and quality of the estimated
quasi-dense surfel model.

By using the Poisson Surface Reconstruction method [Kazhdan et al., 2006], we
convert the set of oriented points into a mesh model. The parameters used in Poisson
reconstruction were 12 for the reconstruction depth and 10 for the subdivision depth.
We chose those parameters empirically by varying them between 6 and 12 and analyzing
the visual quality and computational resources needed. Higher values produce more
detailed models but require a lot more memory and processing time. At last, we use the
images and their respective projection matrices to obtain a parametrized and textured
model by projecting the image rasters’ into the model. Figure 4.5 shows the three
models generated by the dense reconstruction phase for the expopark dataset.
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(a)

(b)

(c)

Figure 4.5. The dense reconstruction obtained from exporpark dataset (1, 231
images) after the estimation of the camera parameters and sparse 3D structure.
(a) Quasi-dense surfel model estimated by the patch-based multi-view stereo
algorithm [Furukawa and Ponce, 2010]; (b) Poisson surface reconstruction of a
detailed region; (c) The projected textures into the mesh of the same region.



Chapter 5

Experimental Evaluation

In this chapter, we show the obtained results of our structure-from-motion approach in
ten different datasets and compare them against three state-of-the-art implementations
for solving moderate and large scale SfM problems, namely, Bundler [Snavely et al.,
2008a], VisualSFM [Wu, 2013] and OpenMVG [Moulon et al., 2013].

5.1 Experimental Setup

5.1.1 Datasets

Both aerial and terrestrial datasets were used to evaluate our method, each one from
a different scene. Challenging aspects are present in many of these datasets: Low-
textured regions, reflective surfaces such as lakes, occlusions caused by moving objects
and strong illumination and perspective changes.

Aerial Datasets: We used six large scale aerial datasets composed of high resolution
overlapping images acquired by unmanned aerial vehicles with large baseline, obtained
from publicly available drone websites.

• small_mine contains 127 images acquired from the main pit of a stone mine;

• small_city has 297 images from a village next to a lake in Switzerland;

• The intergeo presents plan terrain and low textured regions, which allow us to
visually check consistencies of the generated model (479 images);

• colombia_club was gathered in a large region of a complex (795 images), con-
taining a small river and a lake, which are poor in texture;

45
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small_mine – 127 images – 1600× 1200 pixels resolution.

small_city – 297 images – 1600× 1200 pixels resolution.

intergeo – 479 images – 1837× 1380 pixels resolution.

colombia_club – 795 images – 1837× 1380 pixels resolution.

sand_mine – 978 images – 1837× 1380 pixels resolution.

expopark – 1, 231 images – 1837× 1380 pixels resolution.

Figure 5.1. Four image samples for each aerial dataset, followed by the amount
of images and resolution.

• The sand_mine dataset was obtained in a stone and sand mining region, in-
corporating multiple open pits, mountains and plain regions (978 images);
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• The largest dataset, named expopark , exhibits composite details of hangars and
tall buildings from an exposition park and its surroundings (1, 231 images). It
also contains small objects as cars and small trees.

Terrestrial Datasets: We also used four terrestrial datasets. NotreDame was ob-
tained from the internet (Flickr), while the other three were made using a Samsung S4
smartphone from VeRLab.

• Notredame is an unordered collection set of 715 images taken from the flickr
website. The challenge of this dataset is to tackle with unknown focal lengths
and distortion coefficients from the heterogeneous camera models, in addition to
the GPS missing from most of images. Furthermore, strong illumination changes,
occlusions and extreme viewpoints are present in this dataset.

• The UFMG_statue dataset was obtained by taking 23 pictures around a replica
of Venus de Milo statue in front of the "Belas Artes" building. The statue has
smooth texture, and fine prominences that can be used to evaluate the depth
quality of the mesh.

• UFMG_Rectory dataset was also obtained by taking 104 pictures of the rectory
building in different viewpoints. The building has reflective glasses in the window
that can deteriorate the results.

• ICEx_square dataset contains a set of 125 images taken inside ICEx near the
main entrance. The low textured and ambiguous walls of the building is chal-
lenging to all photo-based reconstruction techniques.

5.1.2 Hardware

We used a virtual machine hosted by a computer equipped with two Intel(R) Xeon(R)
CPU E5-2620 @ 2.00GHz processors and 132 GB of RAM , but for a fair comparison we
have set each method used in our experiments to work in a single thread and computed
the time each approach used in CPU. Our focus was to test the scalability of the SfM
approaches per se rather than testing how well they are implemented for the use in
parallel systems, such as VisualSFM that has multiple GPU and multi-thread support.

5.1.3 Evaluation Methodology

To quantitatively evaluate the output of all the SfM techniques in our experiments,
we use the residual re-projection error values in pixels. For a given reconstruction, we
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statue – 23 images – 2048× 1152 pixels resolution.

rectory – 104 images – 2048× 1152 pixels resolution.

ICEx_square – 125 images – 2048× 1552 pixels resolution.

NotreDame – 715 images – various pixels resolution.

Figure 5.2. Four image samples for each of the terrestrial datasets, followed by
the number of images and resolution.

calculate the mean and median of the vector of residuals. We used the median when
comparing different pipelines because the threshold value of the outlier elimination for
the four approaches vary, and the median gives a more fair value for comparison. Each
element of the vector has the residual error obtained by projecting the estimated 3D
point onto the image using the cameras’ estimated poses and calculating its distance
from the measurement. The residual vector contains all the residuals of the projections



5.2. Parameter Tuning 49

of all the estimated 3D points onto the cameras they are visible in.
To calculate the residual value of the projection of one 3D point onto a given

camera it is visible in, we first need to convert the 3D point into the camera’s coordinate
system:

C = RiX + ti, (5.1)

whereX is the 3D point, Ri is the camera’s rotation matrix, ti is the camera translation
vector, andC is the 3D point in the camera’s coordinate system, considering the camera
i. Then, we divide the point by the z coordinate (perspective division) to project the

3D point onto the camera’s plane represented by the 2D vector p =
C

Cz

. Finally, to be

able to compute the residual error of the estimated projection of the point, we calculate
the position of the projection in pixels ppixel, which is given by the formula:

ppixel = r(p,Di)Ki, (5.2)

where r(p,Di) is the radial distortion function (Brown-Conrady distortion model) that
distorts the point p according to the distortion coefficients vector Di, and Ki is the
calibration matrix respective to the camera i.

Now, we can obtain the residual error value by finding the Euclidean distance
between the predicted position of the projection and the measured position of the
projection:

residual =‖ ppixel −M ‖2, (5.3)

whereM is the actual measured 2D position (found keypoint) of the projected 3D point
on image i. Due to the lack of ground-truth data, which is very common considering
large scale datasets and images in the wild, we were only able to evaluate the estimation
quality achieved by measuring the re-projection error values.

5.2 Parameter Tuning

To choose the window size in the local bundle adjustment step, we ran several experi-
ments with multiple window size values on 3 moderate-sized datasets. We chose the size
equal to 80, since it provided the best time performance gains with small fluctuations
in the re-projection error (Figure 5.3).

We tested several combinations of detectors and descriptors (e.g. ORB [Rublee
et al., 2011], SURF [Bay et al., 2008] and SIFT [Lowe, 2004]) and we found that SIFT
holds the best results, providing robust and accurate correspondences. However, in
textureless regions of the images, depending on the thresholds used, the detector may
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Figure 5.3. Mean normalized performance achieved by varying the window size
(a) and the mean normalized re-projection error of each window size (b) for the
large-scale aerial datasets, with their respective standard deviation interval. We
have empirically chosen the best parameters according to the graph results.

not return any keypoints in a large area of an image or no features at all, which may lead
to a bad pose estimation and loss of overlap that may be crucial to the reconstruction.

We found that lowering the default contrast threshold value of the OpenCV’s
[Bradski, 2000] SIFT implementation from 0.04 to 0.02 still yields good keypoints with
sufficient discriminant descriptors and provide a higher amount of keypoints in low
textured regions of the image.

5.3 Results and Discussion

The Figure 5.5 shows the median re-projection error for each dataset and each method.
Figure 5.4 shows the time performance. We set a time-out of 120 hours for the single
core experiment. Bundler and VisualSFM were unable to generate the results for
some datasets in the established time-out. The VisualSFM re-projection error was
computed by using the the VisualSFM method with all parallel optimization options
enabled including GPU. The darker green curve of the processing time in Figure 5.4
shows the values for a execution in a machine with a Xeon E3-1200 v2/3rd Gen 8-core
processor and a GeForce GTX 560 Ti GPU.

In Figure 5.4, we can clearly see an expressive increase in processing time by
all implementations but ours, as the number of images increases. Our method shows
a smoothed growth and it leads the performance, reflecting the optimization steps
adopted in our method. Also in Figure 5.5, we can see that our approach provides
the second best values of achieved re-projection error, slightly smaller (less than 0.09

pixels on average) than OpenMVG. This is the result of a careful selection of pairs
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Figure 5.4. Time performance considering the entire pipeline. Our approach was
the only able to provide the results for the expopark dataset within the time-out
value of 120 hours.
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Figure 5.5. Median re-projection error results of each approach for the large
aerial datasets. VisualSFM-GPU re-projection error is equivalent to VisualSFM
without GPU.

to be matched through the filtering performed by Algorithm 2, which avoids false
positive matches that can lead to an increase of the re-projection error of the cloud
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compromising the model accuracy, besides assuring the completeness in the model
estimation. As can be seen in Figures 5.6, 5.10, 4.5 and 5.11, the final model for all
sets of aerial images do not present any discontinuity on the mesh, except in reflective
surfaces as lakes and water.

We used a collection of 715 unorganized images from the Notre Dame
dataset [Snavely et al., 2008a] to show the capability of our approach to deal with
unordered collection of images in the wild. The dense 3D model generated by our
method is shown in Figure 5.9. For this experiment, our method estimated the model
with a re-projection error of 0.43 pixels in 27.4 hours. Bundler method, for its turn,
spent 86.7 hours and got a larger error (0.47 pixels). VisualSFM was not able to provide
the results within the established time-out value of 96 hours, and OpenMVG could not
handle with the missing focal lengths of a good portion of the images, not returning
any results.

For the rest of the terrestrial datasets we compared them with the most accurate
approach, OpenMVG, and we were able beat its results in some cases. Here, we use
the root mean squared error value (RMSE) since OpenMVG also uses an a contrario
estimation for outlier removal, and the objective function for the bundle adjustment
is to minimize the RMSE. For the UFMG_statue dataset, our method estimated the
parameters with a RMSE re-projection error of 0.24 pixels, while OpenMVG’s RMSE
was 0.25 pixels. In the UFMG_Rectory dataset our method’s residuals were 0.36

pixels, and OpenMVG’s 0.31 pixels, however, OpenMVG skips some images, and our
method estimates the poses of all cameras. Finally, in the ICEx_square dataset, one of
the most challenging ones due to the ambiguous and textureless walls, OpenMVG was
able to estimate the pose of only 53 cameras, with a RMSE of 0.43 pixels, while our
method was able to estimate all the 125 poses with a RMSE of 0.64 pixels, however the
RMSE for this last case cannot be compared because there were much more parameters
to be considered in estimating all the cameras. Figure 5.7 shows that the dense model
generated using our estimated poses for ICEx_square dataset is visually correct from
the top view, since it is known that the building is symmetric and regular.

The speedup provided by using the local bundle adjustment method proposed can
be verified in Table 5.1. We compare the total time used to generate the DEM with the
local bundle adjustment against the classic approach of globally optimizing the model
multiple times. After the reconstruction using local BA finishes, we run a final global
BA to obtain the optimal solution. We can see that even running a global optimization
in the end, the speedup gain is considerable, and it is able to achieve global minima.
It means that the multiple local BAs are able to maintain the necessary consistency
and avoid the final minimization to fail.
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images speedup local error global error
small_mine 127 2.33 0.60 0.45
small_city 297 2.51 0.56 0.53
intergeo 479 2.45 0.38 0.41

colombia_club 795 1.83 0.39 0.39
sand_mine 978 1.28 0.37 0.37
expopark 1, 231 2.04 0.38 0.23

Table 5.1. Speedup gain and mean re-projection error in pixels of the local
approach compared to global BA. A small oscillation can be noticed which is
caused by RANSAC model estimations, but the overall accuracy remains the
same, while there is a significant speedup advantage.

colombia_club sand_mine expopark
Using Alg. 1 0.39 0.37 0.38

Without Alg. 1 1.01 0.73 5.37

Table 5.2. Mean re-projection error in pixels when using the filtering based on
the maximum spanning tree.

We also evaluate the benefits of using the Algorithm 2 and the GPS information
to filter the epipolar graph. We performed three experiments with the largest datasets.
Table 5.2 shows there is a considerable gain in accuracy using Algorithm 2 in our
implementation. For the GPS data, we disabled the filtering step, and our method was
able to perform the reconstruction faster than all other ones (considering the final global
refinement), thanks to the efficient strategies adopted in incremental reconstruction.

All the mentioned characteristics of the aerial datasets described in Subsec-
tion 5.1.1 provide us rich information about how good are the estimated results both
quantitatively and qualitatively. A qualitative result from all these datasets is shown
in Figure 4.5, Figure 5.6, Figure 5.7, Figure 5.8 and Figure 5.12.

It can be verified that all of the models estimated by our approach are consistent
and dense, except in extremely low textured regions in the images and strongly per-
spective distorted regions such as the ground. However, even in low textured regions
as shown in the surfel model of intergeo dataset, there is no apparent holes in the
model. Our SfM algorithm is also able to handle the reflective surfaces present in the
colombia_club and small_city datasets, which may cause the dense reconstruction to
fail due to bad camera pose estimation. It is even possible to visually perceive the
heigh of the cars in the largest dataset, which were consistently estimated in the mesh
depicted in Figure 4.5–(b).
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5.3.1 Limitations

Our approach is inspired by the classical SfM pipeline proposed by [Snavely et al.,
2008a], and besides the GPS pruning, we do not treat geometric ambiguity in the scene,
thus, in some scenarios the reconstruction can fail for this reason. Some works in SfM
aim at solving this specific problem [Wilson and Snavely, 2013]. In aerial images, such
ambiguities are rare, but in images from cities taken from the ground, they are much
more common due to the symmetric nature of men made buildings.

Another issue is that if a significant drift occurs before the global optimization,
which can eventually happen for some datasets, mainly because the lack of tracks on
images, the reconstruction can also fail.

In our experiments, we learned that images from the ground are more challenging
due to strong perspective changes, lack of features and ambiguous keypoints present
in the images, specially from textureless regions and walls.

SfM pipelines are a very promising tool that offers 3D information estimation at
a low financial cost and automatic way. Nonetheless, in some situations laser-based
techniques are still superior in accuracy, density and completeness of the reconstructed
model, specially on weak textured environments.
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Figure 5.6. Dense surfel models estimated for the datasets. From up to down:
sand_mine, small_mine, intergeo, colombia_club and small_city.
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(a)

(b)

Figure 5.7. The surfel model for the ICEx_square dataset. (a) Inside view of
the model; (b) Top view of the model.
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Figure 5.8. Quasi-dense surfel model obtained from the UFMG_Rectory
dataset.

Figure 5.9. Result of the “Notre Dame" dataset experiment. Our methodology
estimate this model with a re-projection error of 0.43 spending 27.4 hours, while
Bundler returned an error equal to 0.47 and 86.7 hours of processing.
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Figure 5.10. A detailed region of the final textured mesh from the second largest
dataset small_mine.

Figure 5.11. Ground-level view of the final mesh obtained from the small_mine
dataset.
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Figure 5.12. Four views of the final mesh for the UFMG_statue dataset. Fine
geometry details can be seen.





Chapter 6

Conclusion

In this work, we proposed a novel methodology that incorporates efficient strategies in
the incremental pipeline, which contributed to the time performance and scalability of
the incremental structure from motion applied to DEM estimation.

Our contribution is the proposal and implementation of a new SfM pipeline
adapted to high resolution aerial image (but not only limited to this kind) datasets
which incorporates many previously used methods in the literature aiming at time effi-
ciency. It is important to mention that most of these methods were used separately in
previous works and we explore and adapt them into a single approach, in addition to
the maximum spanning tree that ensures the graph’s completeness and also contributes
to a lower re-projection error of the estimation. The speed-up achieved as well as the
low re-projection error can be seen in the experiments performed to evaluate the time
efficiency and point cloud quality.

We performed experiments on the task of creating DEMs and Sparse 3D Model
from sets of images. The proposed approach outperforms state-of-the-art SfM method-
ologies in terms of processing time, including VisualSFM algorithm with all GPU and
multi-core optimization enabled for the largest dataset in a machine with a reasonable
hardware configuration. As shown in “Notre Dame" experiment, our method can also
handle unorganized collection of images in a reduced time and smaller re-projection
error, even though our approach is specialized for aerial datasets.

It is worth noting that our approach is easily parallelizable in many steps and can
be merged with other approaches, contributing to the development of 3D reconstruction
techniques based on SfM.

61
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6.1 Future Works

One of the possible improvements for future work is to enhance our implementation
to leverage the parallelizable parts of the incremental SfM in a parallell architecture,
such as multi-core processors and GPUs.

Aerial images are a good option to reconstruct large areas, specially natural
environments, but in case of city areas, the facades of the buildings are usually not
reconstructed due to the Z axis of the camera that faces orthogonally the ground. In
the other hand, ground images provide fine details of facades and objects’ sides, but
the ground and top of other objects do not appear in such photos. An interesting work
is to to use both aerial and ground images to obtain a more complete and detailed
reconstruction of the scene. Merging these strongly different views of the same scene
can also improve accuracy due to more constraints that will be imposed to the geometry
of the reconstruction. However, keypoint matching techniques are usually not able to
provide correspondences from such different points of view. They are robust to affine
transformations up to a limit, and other approaches may be required to register aerial
and ground images together.

Other interesting improvements can be done practically in all modules of SfM,
and easily substituted, not only in our approach, but with respect to the state-of-
the-art in Structure-from-Motion. The own nature of the SfM pipelines permits one
to modify and improve isolated parts of the algorithm and replace them without any
further modification in the other modules. Some of the things that can be improved
in the incremental pipeline include:

1. Feature matching module, which will improve the overall accuracy of the al-
gorithm, due to more accurate and correct matches across image pairs. Im-
provements in time performance and memory consumption in this phase are also
important.

2. Bundle adjustment, one of the critical parts of the algorithm that is still a bot-
tleneck and consumes a great portion of the total time to process a dataset.

There is also an important limitation of the SfM approaches that we must men-
tion: They do not handle well textureless regions and ambiguity in the scene. Improve-
ments can be done to treat or solve this kind of problem, and are being approached
throughout the literature recently, but it is out of the scope in this work.
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