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Resumo

Reutilização de software é uma estratégia de desenvolvimento em que os componentes
de software existentes são utilizados no desenvolvimento de novos sistemas de software.
Há muitas vantagens da reutilização no desenvolvimento de software, como a minimiza-
ção dos esforços de desenvolvimento e melhoria da qualidade de software. Nesta dis-
sertação, é proposto um método para a identificação de oportunidades de reutilização
baseados na similaridade dos nomes de dois tipos de entidades orientadas a objetos:
classes e métodos. O método desenvolvido, chamado JReuse, computa por meio de
uma função de similaridade com o objetivo de identificar classes e métodos de nomes
semelhantes, a partir de um conjunto de sistemas de software de um mesmo domínio.
Essas classes e métodos compõem um repositório com oportunidades de reutilização.
Além disso, apresentamos uma ferramenta protótipo para apoiar o método proposto.
O método e a ferramenta foram aplicados em 72 sistemas de software minerados do
GitHub, em 4 domínios diferentes: contabilidade, hospital, restaurante e e-commerce.
No total, esses sistemas possuem 1.567.337 linhas de código, 57.017 métodos e 12.598

classes. Depois da sua aplicação, JReuse foi avaliada através de uma pesquisa com
32 desenvolvedores do GitHub nos domínios avaliados. Como resultado, foi possível
obervar que JReuse é capaz de identificar as principais classes e métodos que são mais
frequentes em cada domínio selecionado.

Palavras-chave: Reuso de Software, reuso, artefatos reutilizáveis, oportunidades de
reuso, estratégia de extração.
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Abstract

Software reuse is a development strategy in which existing software components are
used in the development of new software systems. There are many advantages of reuse
in software development, such as minimization of development efforts and improvement
of software quality. Few methods have been proposed in literature for recommendation
of reuse opportunities. In this dissertation, we propose a method for identification of
reuse opportunities based on naming similarity of two types of object-oriented entities:
classes and methods. Our method, called JReuse, computes a similarity function to
identify similarly named classes and methods from a set of software systems from a
domain. These classes and methods compose a repository with reuse opportunities. We
also present a prototype tool to support the proposed method. We applied the method
and tool to 72 software systems mined from GitHub, in 4 different domains: accounting,
hospital, restaurant, and e-commerce. In total, these systems have 1, 567, 337 lines of
code, 57, 017 methods, and 12, 598 classes. After its application, we evaluated JReuse
through a survey with 32 developers from GitHub in the evaluated domains. As a
result, we observe that JReuse is able to identify the main classes and methods that
are frequent in each selected domain.

Keywords: Software reuse, ad-hoc software reuse, reusable assets, reuse opportunities,
naming similarity, recommendation systems.
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Chapter 1

Introduction

The increasing demand for larger and more complex software systems requires the use
of existing software artifacts (Pohl et al., 2005). In this context, software reuse is
a development technique in which previously implemented software components, are
used in the development of new software systems (Krueger, 1992). Reuse has been
studied and indicated as an alternative to the traditional software development aiming
to increase software quality and decrease development efforts by using existing, and
sometimes tested, software components (Mohagheghi and Conradi, 2007; Morisio et al.,
2002; Ravichandran and Rothenberger, 2003).

Methods for identification of reuse opportunities are essential to support the
building of repositories of reuse opportunities (Guo and Luqi, 2000). These methods
may be used in different contexts related to software developement, including the sup-
port of feature identification for a software product line (Lee et al., 2004), for instance.
Many methods have been proposed in the literature to support the identification of
reuse opportunities from software systems (Caldiera and Basili, 1991; Kawaguchi et al.,
2004; Kuhn et al., 2007; Maarek et al., 1991; Ye and Fischer, 2005). However, to the
best of our knowledge, we did not find a method able to identify reuse opportunities
from several systems, considering most frequent entities such as classes and methods
from systems of a single domain.

1.1 Motivation

To support software reuse, developers need first to find the relevant source code frag-
ments to be reused. For instance, a code fragment may be relevant as a reuse opportu-
nity because of its efficient in terms of performance. Other reason to reuse a fragment
is it quality because, in general, existing code have been submitted to spection and

1



2 Chapter 1. Introduction

testing. Finally, by reusing existing fragments, developers may decrease development
efforts and, then, increase their productivity.

Since software systems have been increasing and evolving along the years, to
identify frequent source code fragments with a particular functionality may be diffi-
cult. That is, because of significant number of classes, methods, and lines of code in
these systems, the identification of reuse opportunities is a hard task. In this context,
automated analysis and identification of reuse opportunities are useful to minimize
costs (Ye and Fischer, 2002).

In addition, one of the current drawbacks in the software reuse process is the
classification of the most frequent reuse opportunities from a set of software systems.
Since many opportunities may be identified, it is important to recommend the most
appropriate for reuse to developers, given a domain. For this purpose, some studies
have proposed supporting techniques (Caldiera and Basili, 1991; Ye and Fischer, 2005).

Previous work in literature proposed methods to support the identification of
reuse opportunities in software systems. These methods apply different techniques for
source code analysis, such as natural-language processing (Maarek et al., 1991), formal
specifications (Caldiera and Basili, 1991), machine learning (Kawaguchi et al., 2004),
and other Information Retrieval techniques (Kuhn et al., 2007; Ye and Fischer, 2005).
However, to the best of our knowledge, we did not find a method able to: (i) identify
reuse opportunities, (ii) recommend the reuse opportunities identified, and (iii) show
the name and the location of the main entities identified as reuse opportunities, given
a set of systems (design partial).

1.2 Proposed Work

During the software development, the reuse of existing artifacts is an attractive way to
reduce development costs and time-to-market and improve the software quality (Mo-
hagheghi and Conradi, 2007). Source code is the artifact most commonly reused in
software development (Morisio et al., 2002). However, to identify the reuse opportuni-
ties in large systems, and even in small systems, is a far from trivial task.

In this dissertation, we propose a method for identification of reuse opportunities
called JReuse. Considering a set of software systems, JReuse aims to identify similarly
named classes and methods from the systems based on lexical analysis. From the most
frequent classes, JReuse analyzes the methods of these classes to identify similarly
named methods. The dissertation also presents a prototype tool that supports the
proposed method. JReuse provides a list of classes and methods recommended as
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reuse opportunities. This list may guide developers in the use of existing entities that
are common in systems from a given domain.

JReuse performs the identification of reuse opportunities in two well-defined steps.
First, given a set of systems from the same domain, the proposed method analyzes
similarly named classes to identity the most frequent classes. Second, from the classes
identified in the previous step, JReuse analyzes similarly named methods to identify
the most frequent ones. Our method has been designed to analyze object-oriented
software systems, independent of size, and applicable to different domains. The pro-
posed method can be used to provide support to identify opportunities of software
reuse. In addition, the method was built to guide users through partial design in the
development of new software systems, showing the most frequent entities.

We conducted an evaluation of our method in two steps. First, we performed an
empirical study conducted in controlled environment with 72 software systems. These
systems were collected from GitHub and belong to four different software domains:
accounting, restaurant, hospital, and e-commerce. Second, we conducted a survey with
experienced developers from two of the four domains, namely e-commerce and hospital.
We evaluated only these two domains because of the low percentage of responses for
the other domains. With respect to the first evaluation, we observed that JReuse is
able to identify reuse opportunities using naming similarity analysis for classes and
methods. Regarding the second evaluation, participants from the survey agree that
JReuse provides classes for the analyzed domains as reuse opportunities.

1.3 Publications

This dissertation generated the following publications and, therefore, it contains re-
sources from them.

• Oliveira, J., Fernandes, E., Souza, M., and Figueiredo, E. (2016). A method
based on naming similarity to identify reuse opportunities. In Proceedings of the
XII Brazilian Symposium on Information Systems (SBSI), pages 305–312 (best
paper)

• Oliveira, J. and Figueiredo, E. (2016). A recommendation system of reuse op-
portunities based on lexical analysis. In Proceedings of the IX Workshop Thesis
and Dissertations in Information Systems (WTDSI), pages 49–51

• Oliveira, J. A., Fernandes, E. M., and Figueiredo, E. (2015). Evaluation of du-
plicated code detection tools in cross-project context. In Proceedings of the III
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Workshop on Software Visualization, Evolution and Maintenance (VEM), pages
49–56

1.4 Outline of the Dissertation

While this chapter introduced this dissertation, the remainder of this document is
organized as follow.

Chapter 2 presents background information to support the comprehension of this
dissertation. It includes the main concepts related to the study, such as software reuse
and reuse techniques. We also discuss related work.

Chapter 3 describes JReuse, a method proposed for identification of reuse opportu-
nities using lexical analysis. We presents the similarity analysis computation used by
our method, the method steps, and a supporting tool that implements the method.

Chapter 4 provides an evaluation of the proposed method. This evaluation consists
of an empirical study conducted in controlled environment. We present the study
design and the main results we obtained by analyzing 72 systems from four different
domains: accounting, restaurant, hospital, and e-commerce.

Chapter 5 presents a survey conducted with experienced software developers for two
of the four domains analyzed in Chapter 4. We discuss the main obtained results.

Chapter 6 concludes the dissertation with a discussion regarding the proposed method
and its applications to the identification of reuse opportunities. We summarize the
contributions of the study, and suggestions for future work.



Chapter 2

Background and Related Work

In order to speed up software development with quality and low cost, we can apply
software reuse techniques. Such techniques consist of using existing software artifacts
in the development of new systems, with minimization of efforts. Even in an ad hoc
approach, the reuse of source code fragments is a recurrent activity in development
settings (Ajila et al., 2012; Wang et al., 2012; Xue, 2011). However, by reusing code
fragments in many parts of the system, developers may cause code clones (Fowler,
2009; Marcus and Maletic, 2001; Patil et al., 2015). To support reuse, methods and
supporting tools for identification of reuse opportunities are required.

This chapter presents background information and work related to this disserta-
tion. Section 2.1 presents an overview on recommendation systems because our method
is based on recommendation system principles. Section 2.2 presents the concepts about
software reuse and discusses the advantages and drawbacks of each type of reuse. Sec-
tion 2.3 shows some examples of the use of similarity analysis to identify opportunities
of reuse and code clone. Section 2.4 presents previous work in the area of identification
of reuse opportunities from source code. Lastly, Section 2.5 concludes this chapter with
some final remarks.

2.1 Recommendation Systems in Software

Engineering

Along the years, the availability of data regarding software systems has been increasing
in terms of volume and complexity (Herlocker et al., 2004). In the context, Recommen-
dation Systems for Software Engineering (RSSEs) are tools to support developers in
many tasks, such as decision-making with respect to the data and recommendation of

5



6 Chapter 2. Background and Related Work

reuse opportunities (Cubranic and Murphy, 2003). These tools aim to analyze the de-
velopers’ needs and preferences, indicated implicitly or explicitly through the tool, and
then to recommend artifacts to the developer (Robillard et al., 2010). Such artifacts
may be source code fragments, for instance (Holmes et al., 2006).

In general, software developers spend significant efforts to find software artifacts
in source code repositories (Begel et al., 2010). For example, considering large-sized
systems, it may be difficult for developers to find software components to reuse (Ko
et al., 2006). Therefore, to extract reuse opportunities is a task that impacts nega-
tively on the productivity of developers (Begel et al., 2010). In this context, a RSSE
may support developers in the process for identification of reuse opportunity by recom-
mending source code in an automatic fashion (Holmes et al., 2006). Some examples of
studies that propose RSSEs for reuse opportunities are CodeBroker (Ye and Fischer,
2005) and Strathcona (Holmes et al., 2006). CodeBroker aims to identify similar class
library elements using a text-based analysis, to support developers in the used of APIs.
Strathcona is a Recommendation system to assist developers in finding fragments of
code, or examples, of an API’s use.

2.2 Software Reuse

In software reuse, previously implemented software components are used to support
the development of new software (Krueger, 1992). The main goal of reuse is the im-
provement of software quality aspects followed by an increasing development efficiency
with low cost (Ravichandran and Rothenberger, 2003). There are many approaches
to support reuse in software development. Krueger (1992) presents an extensive study
regarding definitions and application of software reuse.

There are two types of software reuse: ad hoc and systematic reuse (Mohagheghi
and Conradi, 2007). Ad hoc, reuse is applied in an opportunistic way, without planning,
taking as an example the reuse of random software code snippets from the Web (Sojer
and Henkel, 2011). In turn, systematic software reuse follows specific protocols and
processes to provide the use of existing software components when developing new
systems (Mohagheghi and Conradi, 2007).

Wang et al. (2005) conducted a study regarding the identification of business
domain components to support reuse. According to their work, there are two types
of component identification: forward and reverse. In forward identification, reuse is
planned before the development of software systems. On the other hand, in reverse
identification, reuse opportunities are identified from a set of existing software systems.
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Some studies investigated advantages and drawbacks of systematic software
reuse (Mohagheghi and Conradi, 2007; Mohagheghi et al., 2004). Mohagheghi et al.
(2004) studied the impacts of reuse on software quality through an empirical study on
large-scale system components. They concluded that reuse provides software compo-
nents with lower defect-density and higher stability when compared with non-reused
components. Mohagheghi and Conradi (2007) conducted a literature review to inves-
tigate the impact of software reuse in industrial development context. They identified
flaw decreasing, reduction of development efforts, and increasing of productivity as the
main advantages of reuse.

Many strategies are proposed in literature, based on techniques such as: natural-
language processing, formal specifications, architecture style, and machine learning. In
natural language processing, lexical inspection of source code elements is conducted
to identify reuse opportunities (Maarek et al., 1991). In formal specifications, the
reusable components are extracted with support of software models and metrics analy-
sis (Caldiera and Basili, 1991). In architectural style (Monroe and Garlan, 1996), where
software reuse is supported by the analysis of interacting components in a high-level
abstraction, such as software design and modeling, different analyzes are conducted
to extract reuse opportunities, such as automated semantic categorization of software
components (Kawaguchi et al., 2004).

2.3 Analysis of Similarity

Some studies proposed and discussed in literature (Kukich, 1992; Navarro, 2001; Fluri
et al., 2007) investigating the analysis of similarity and their applications. For example,
the analysis of similarity utilized in this dissertation is Levenshtein Distance. The
Levenshtein Distance denotes the minimum number of operations needed to transform
one string into the other (Levenshtein, 1966). The operations are: (i) insert a character,
(ii) delete a character, or (iii) substitute a character. Algorithm is based on the problem
of the longest common subsequence (Levenshtein, 1966). A larger distance means that
the strings are less similar, that is, that more operations are necessary to transform
one string into another, whereas a distance of 0 operations denotes that the strings are
equal (Fluri et al., 2007). The runtime-complexity is O(n.m), where n is the number
of characters in stringa and m in stringb.

Many studies have applied similarity analysis in the identification of reuse op-
portunities and code clone detection (Li et al., 2016; Marcus and Maletic, 2001; Roy
and Cordy, 2008; Selim et al., 2010; Yuan and Guo, 2012). As an example, Li et al.
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(2016) present a study that applies similarity analysis techniques to support the iden-
tification of reuse opportunities. They present a method for identification of similar
implementations of Android mobile application. The proposed method aims to provide
the identification of families of applications. For this purpose, they compute a similar-
ity function based on the number of similar methods and the total number of methods
in two different systems under comparison.

Li et al. (2006) propose a tool called CP-Miner for code clone detection. CP-
Miner relies on data mining techniques and targets on copy-paste occurrences of code
clone. The method parses source code to compute hash values for sentences. After, the
tool analyzes source code to find frequent subsequence that may present clones, using
a mining algorithm.

2.4 Related Work

Previous work investigates the identification of reuse opportunities from software sys-
tems (Inoue et al., 2005; Koziolek et al., 2013; Li et al., 2005; Mende et al., 2009;
Michail and Notkin, 1999; Oliveira et al., 2007; Ye and Fischer, 2005). Inoue et al.
(2005) propose a graph-based technique to support the extraction of frequently used
components in a given software component repository. The proposed technique relies
on ranking components based on their usage by other components from the repository.
The authors also present a supporting tool called SPARS-J, for analysis of Java classes.

Koziolek et al. (2013) present a technique for identification of reuse opportunities
based on domain analysis. The proposed technique aims to support the assessment of
potential SPL by organizations. This technique encompasses feature modeling of the
domain, comparison of systems in architectural level, and the extraction of reusable
components. Li et al. (2005) present an approach for identification of reusable com-
ponents from legacy systems. The proposed approach aims to support reengineering
tasks; that is, the implementation of new systems based on existing source code. For
this purpose, the authors propose the generation of the Abstract Syntax Tree (AST) for
analysis and extraction of modules and components as candidate for reuse. Therefore,
we may consider this approach as a recommendation system.

Mende et al. (2009) propose a tool to support software evolution and maintenance
by identifying similar methods along the source code and recommend merging of these
methods to the developer. The proposed tool may be considered as a recommendation
system. This tool computes code clones in method-level and uses the Levenshtein’
distance for textual comparison of methods. Michail and Notkin (1999) propose a tool,
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CodeWeb, to support the comparison of software libraries in terms of components (i.e.,
classes and methods) provided by these libraries. For this purpose, the tool performs
naming similarity computations to identify similar classes and methods from a set of
libraries. We consider the proposed tool as a recommendation system, since it provides
the identification of the appropriate libraries for reuse.

Oliveira et al. (2007) propose a method and a supporting tool for recommendation
of reusable software components. The proposed tool applies a technique for software
reuse and identification of candidates for reuse called Automatic Identification of Soft-
ware Components (AISC). The tool, called Digital Assets Discoverer, performs static
analysis of code to identify reuse opportunities. The tool also provides an interactive
graphic interface and exports feature using a metadata representation model.

Ye and Fischer (2005) present a supporting tool called CodeBroker to support
runtime identification of reusable software components. The proposed tool relies on
information retrieval techniques for identification of reuse candidates. Since the tool
executes in runtime, it provides recommendation of source code components in pro-
duction environment. For this purpose, CodeBroker is based on search engines and
Javadoc artifacts for code analysis.

In turn, our reuse opportunities identification method and supporting tool aim to
identify candidates for reuse in software systems from an specific domain, using lexical
analysis. Unlike other approaches presented, our method can be used for two purposes.
First, provide support to identify reuse opportunities in software. Second, guide users
through partial design in developing new software systems, showing the most frequent
entities. Our method also ranks software entities identified as reuse opportunities by
frequency in which the appear in different systems from the same domain. We expect
this approach to be helpful in reuse recommendation by suggesting methods and classes
that are the most used in software systems given a specific domain.

2.5 Final Remarks

This chapter provided the background information necessary to fully understand the
approach proposed in this dissertation. It discussed the concepts of recommendation
systems, software reuse, and techniques for identify reuse opportunities. These concepts
are essentials since our approach is a recommendation system that aims to achieve a
better software design by recommending reuse opportunities.

In the next chapter, we detail our method for identifying reuse opportunities from
source code. The method called JReuse is divided in two steps. First, JReuse analyzes
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all classes of a domain. Second, JReuse analyzes all methods from classes identified
in the previous step. Then, the method provides a list of entities identified as reuse
opportunities of the domain analyzed.



Chapter 3

Proposed Method

Strategies for identifying reuse opportunities are essential to support the building of
reuse opportunity repositories. Software systems have been increasing and evolve.
Therefore, to identify reuse opportunities is difficult. For this purpose, developers
need supporting methods and automated tools. In this context, we propose a method
for identification of reuse opportunities. This chapter explains in detail the proposed
method for identification of reuse opportunities. Section 3.1 discusses each step of the
similarity-based identification process used in our method. Section 3.2 describes the
proposed method for reuse opportunity identification. Section 3.3 presents a supporting
tool that implements our method. Finally, Section 3.4 concludes the chapter with final
remarks.

3.1 Identifying Similarity

Some studies in the literature investigated the textual similarity identification (Tian
et al., 2014; Zhen et al., 2008). There are many applications for similarity analysis,
such as comparison of dialects, spell check, and plagiarism detection (Liu and Lu,
2008). The proposed method called JReuse relies on static code analysis techniques
to identify reuse opportunities. We conducted an ad hoc review in order to select
algorithms that compute the similarity between strings to be utilized in this work.
Furthermore, this study aimed at identifying the most utilized algorithms in the
literature, appropriate for this study purposes. In order to achieve these purposes, we
selected the Levenshtein’s algorithm. Levenshtein’s algorithm (Yujian and Bo, 2007)
is used to compute the lexical similarity of classes and methods by name. In short
terms, given two strings A and B, this similarity function computes the number of
changes required to turn A into B.

11
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To identify similarly named classes, we adopted a threshold of, at least, 75%
similarity between two entities. In addition, to identify similarly named methods, we
adopted the same threshold used to identify classes. These thresholds were derived
empirically by the author of this dissertation. This threshold was chosen because
we observed that some well-known naming conventions for classes and methods may
lead to similarly named entities that clearly represents different purposes . We also
considered some well-known naming conventions for classes and methods to define this
threshold. For instance, the similarity computed for Costumer and CostumerDAO, that
are commonly named classes in e-commerce systems, is 72%. However, intuitively
these classes implement different functions (i.e., DAO classes implement data base
persistence).

An example of similarity analysis is shown in Table 3.1. In this example, we
present eight matches between names of classes from two software systems. In this
example, classes from System A and System B has at least 75% similarity rate with
class names. The adopted thresholds covers, for instance, the similarity between names
that vary from singular to plural (e.g., Client and Clients).

Table 3.1. Similarity Evaluation

System A System B Similarity Rate
ShoppingCart ShoppCart 75%
OrderProductId OrderProduc 78%
Orderservice Orderservi 83%
Reviwes Reviwe 85%
Clients Client 85%
CartController CartControll 85%
Products Product 87%
ProductsController ProductController 94%

3.2 The Method Steps

A software domain is a set of systems that shares a common set of functionalities,
requirements, or terminology (Neighbors, 1992; Pressman, 2005). Thus, we expect
that software systems within the same domain present lexical similarity in names of
elements, such as classes and methods. In this context, similarly named elements may
contribute to the comprehension of the characteristics in a given business domain (Cy-
bulski and Reed, 2000).
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Considering this scenario, our study proposes a method called JReuse for identifi-
cation of reuse opportunities from software systems based on naming lexical similarity
of two object-oriented code elements: classes and methods. Considering software sys-
tems from a specific domain, the method compares names of classes and methods in
order to identify common elements among different systems. We believe that recurring
names of classes may indicate reuse opportunities in a given domain. Furthermore,
frequent names of methods in these classes may indicate common behaviors and re-
quirements in such entities (Cybulski and Reed, 2000). Regarding the identification
of methods, we adopted two rules. First, JReuse excludes all get and set methods.
Second, JReuse analyzes the return type of each method. For instance, if the pair of
methods has the same return type, they are considered as reuse opportunities. Other-
wise, the methods are considered as different functions.

In general, only the similarity rate is not enough for electing a class as a possible
reuse opportunities. We also consider the classes that are more frequent among the
systems (e.g., a name of class with matches in 10 different systems is more frequent
than a name of class that matches in only 2 systems). We believe that recurring names
of classes may indicate reuse opportunities in a given domain. Furthermore, frequent
names of methods in these classes may indicate common behaviors and requirements
in such entities (Cybulski and Reed, 2000).

Our method compares different elements as illustrated in Figure 3.1 and described
as follows. First, JReuse compares all classes from the set of systems to identify the
similarly named classes, JReuse has not synonymous analysis. Therefore, entities such
as Client and Customer are considered as different entities. Second, considering only
classes pointed as reuse opportunities in the previous step, JReuse compares pairs of
methods by name to identify similarly named methods.

Figure 3.1. Steps to Identify Common Entities
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For both steps, the same process is performed as illustrated in Figure 3.1. Con-
sider array[1..n] an array of names of elements (classes or methods) and two pointers
i = {1, .., n−1} and j = {2, .., n−1}. For each i, we compare array[i] with array[j]

for j = {i+1, .., n− 1}. If array[i] is similar to array[j] with a minimum similarity
rate of 75%, then the method registers a reuse opportunity.

Seven steps are required by the JReuse to identify reuse opportunities as presented
in Figure 3.2. The steps are described as follows.

Figure 3.2. Steps of the Method called JReuse

1. In this step, the method receives as input software systems from the data set
provided by the user. These systems are supposed to belong to the same do-
main. Then, the method collects all classes, filters out files that are not Java and
eliminates all system projects that are Android.

2. In this step, the method identifies the class to compute the similarity between
the classes entities of other systems. The method does not compare classes of the
same system.

3. In this step, the JReuse compares names of classes in pairs to identify class names
with at least 75% of similarity. Classes with similar names (matches) are gathered
and each class name receives a score that is the number of systems in which the
class occurs. The higher the score, the higher the class seems to be relevant for
the analyzed domain.

4. For each class identified as reuse opportunities, their methods are identified to
compute the similarity between these entities. In this step, all methods are
identify from the selected classes, with exception the methods set and get.
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5. From of each class group identified as reuse opportunities, their methods are an-
alyzed with the same threshold (with at least 75%) adopted for classes. However,
for a method to be considered a candidate for reuse opportunity, it is necessary
that the return types of both methods are the same. The similarity calculation is
performed between different systems; the method does not evaluate the similarity
between the entities of a single software system.

6. After the identification of entities (classes and methods) and calculation of sim-
ilarity, JReuse sortes in decreasing order by frequency of the identified reuse
opportunities when necessary.

7. Finally, in this step the method JReuse builds a repository of entities as reuse
opportunities. Thus, it is possible, to use the entities previously identified.

3.3 Tool Support

To automate the proposed method, we developed a prototype tool that implements
JReuse for Java software systems. We selected Java because (i) it is one of the most
popular programming languages, (ii) there is an available Java parser to support source
code analysis by the generation of an Abstract Syntax Tree (AST), (iii) many studies
have been investigating software reuse in Java systems. Through the Java parser, it is
possible to access the structure of the source code, JavaDoc, and comments. It is also
possible to change the AST nodes or create new ones to modify the source code, and
(iv) it is one of the most popular programming languages1. In addition, to support the
identification of similarly named entities (classes and methods), we used the Eclipse
Java Development Tools (JDT) parser.

As input, our tool receives a set of software systems from the same domain.
Second, the tool ignores all files that are not Java and all files present in test packages.
Third, we discarded methods named main, since this type of method is essential in
any Java system. Note that, given a system, all classes may contain a main method.
In general, this method is responsible for starting the system (Rountev, 2004). Then,
JReuse processes classes and methods to identify similarly named entities according to
the proposed method.

JReuse provides an abstraction for the design organization of a system given a
domain. In other words, the reuse opportunities identified by JReuse may be used to
compose a partial design for any system that belongs to the analyzed domain in terms

1http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2015
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of frequent classes and methods. For this purpose, the tool outputs one CSV file. Each
line of the file has (i) the name of a class identified as reuse opportunity, (ii) a method
from the respective class also identified as reuse opportunity, and (iii) the absolute
path of the class. The output file is sorted in decreasing order by frequency of the
identified reuse opportunities.

Tool Architecture: The architectural design of our tool is presented in Figure 3.3.
JReuse is a plug-in for Eclipse IDE. Therefore, it shares common features from the
Eclipse source code. In this figure, we present each layer of the JReuse code. The View
Layer encompasses the implementation of the graphical user interface. The Controller
Layer is responsible to manage the tool and provide the similarity computation for
classes and methods. The Model Layer provides the modeling of the data base.
Finally, the DAO Layer implements data persistence.

Figure 3.3. Architecture of the tool
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(a) JReuse button in the Eclipse menu (b) Screen to choose directory for analy-
sis

(c) Dialog to inform the selected direc-
tory

(d) Progress bar for preprocessing Java
files

(e) Progress bar for similarity computa-
tion

(f) (1) Data grid view for JReuse results; (2) “Save as CSV” button

Figure 3.4. User interface of JReuse

User Interface: Figure 3.4 presents the user interface of JReuse. Figure 3.4(a) il-
lustrates the JReuse button in the Eclipse menu. Figure 3.4(b) presents the screen to
choose the directory with Java projects for analysis. Figure 3.4(c) shows a dialog to in-
form the chosen directory. Figure 3.4(d) is the progress bar for preprocessing, in which
JReuse mines all projects to find Java files for identification of reuse opportunities.
Figure 3.4(e) is the progress bar for similarity analysis, in which the tool computes
similarity among names of classes and, after, among names of methods for the classes
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pointed as candidates to reuse opportunities. Finally, Figure 3.4(f) presents the data
grid view to display the JReuse results of analysis.

3.4 Final Remarks

This chapter presented our method to identify and extract reuse opportunities, through
the similarity analysis. The proposed method consists of two phases. First, it computes
similarity between classes and methods in different software projects. Second, the
method sorts the extracted reuse opportunities (classes and methods) in decreasing
order of occurrence. In addition, we described the thresholds derived empirically to
support the identification of similar classes and methods.

We also present, an Eclipse plug-in that implements our identification method,
by describing the design and main functionalities of the method. Our tool allows
developers to obtain recommendations of reuse opportunities, which can be applied in
the development of new software systems.

In the next chapter, we present the evaluation of our method. For this purpose,
we conduct an empirical study in controlled environment to evaluate JReuse with a
total of 72 software systems from four domains: accounting, restaurant, hospital, and
e-commerce. The data set is composed by systems collected from GitHub.
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Method Evaluation

This chapter describes an evaluation adopted for analyzed the method proposed and
presented in Chapter 3. We conducted an empirical evaluation through study ex-
ploratory conducted in environment controlled. To perform the evaluation, we adopted
the guidelines based on Wohlin et al. (2012), for this type of evaluation in Software En-
gineering. The focus of our method is identify the main reuse opportunities in systems
of software. Therefore, evaluation consists in analyze the reuse opportunities identified
by our method JReuse.

We organized the remainder of this chapter as follows. Section 4.1 presents the
study goal and the research questions we designed to guide our study. Section 4.2
describes the data set used to evaluate our method and the prototype tool, both called
JReuse. Section 4.3 presents the steps adopted in the evaluation. Section 4.4 presents
the results of the evaluation of the classes identified as reuse opportunities. Section 4.5
presents the results of the evaluation of the methods identified as reuse opportunities
from the classs identified previously. Section 4.6 provides an overview and discusses the
main lessons learned. Section 4.7 presents threats to the validity of our study. Finally,
Section 4.8 concludes this chapter with final remarks.

4.1 Goal and Research Questions

In this study, we aim to assess whether JReuse is able to identify frequent classes and
methods in a specific software domain. We are also interested in assessing the relevance
of the results provided by our method. For this purpose, we chose four domains to be
evaluated: accounting, hospital, restaurant, and e-commerce. We also formulated the
two research questions (RQs) to guide our study.

19
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RQ1 What are the most frequent classes in software systems for each selected domain?
And how are they distributed through systems?

RQ2 What are the most frequent methods in the classes identified by the method? And
how are they distributed through these classes?

Through RQ1 and RQ2 , we are interested in investigating whether the most
frequent identified classes and methods are indicated for software systems for the re-
spective domain. We expect that JReuse is able to provide a list of classes and methods
whose recommendations for reuse are relevant for the respective domains.

4.2 Data Set

To evaluate our method, we chose only systems from the domain of accounting, hospital,
restaurant, and e-commerce, for several reasons. First, software systems from these
domains encompass several business features, such as user personnel, financial, product,
and service management. Second, there is a significant number of domain systems
available for download in GitHub1. Third, from the viewpoint of the authors, the four
domains we chose are well-defined in terms of requirements and we believe that it would
be possible to find reuse opportunities among systems of these domains.

The systems that compose our data set were extracted from GitHub repositories.
We performed the selection of systems for the e-commerce domain in January 2015
and in May 2016 for the other domains. We selected software systems are based on the
ranking of starred systems and system length in terms of storage space. In GitHub,
stars are a meaningful measure for repository popularity among the platform users,
and may be used to support the selection of systems.

There is a diverse terminology to represent a same software domain. For instance,
we may refer to the e-commerce domain as ecommerce, without hyphenation. In order
to support the collection of software systems to compose our data set, we developed an
algorithm to clone GitHub repositories individually, with the respective systems, based
on a well-defined search string for each domain under analysis in this study. Since
the goal of our study is to identify reuse opportunities from different software systems,
given large system sets per domain, we defined the following search strings.

For e-commerce: e-commerce OR ecommerce OR electronic commerce
For restaurant: restaurant OR eatery OR restaurants

1https://github.com/
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For hospital: hospital OR infirmary OR lazaretto
For accountancy: accountancy OR accounting

Table 4.1 presents the exclusion criteria applied in the selected systems. First,
we collected 400 Java systems from GitHub, 100 for each domain in order descending
sorted by stars. Then, we discarded systems according to the following exclusion
criteria: (i) non-Java software systems, since GitHub do not verify automatically the
main programming languages of the systems, (ii) Java projects developed for Android
platform, because Android systems tend to have a different architectural design and
code implementation when compared with traditional Java systems, (iii) systems with
less than 1,000 lines of code (LOC), and (iv) systems written in other languages rather
than English, since our method relies on a lexical similarity technique and, then, natural
language may impact significantly the results provided by our method.

Table 4.1. Filters that were applied to the data set

Excluded Systems byDomains Not English Less than 1,000 LOC Android
Selected
Systems

Accounting 9 49 31 11
Restaurant 3 56 28 13
Hospital 16 37 34 13
E-commerce 21 40 4 35

For each selected system, we considered only the last release. This process was
necessary to discard different versions of the same system, which probably contain lots
of similarly named classes and methods. Finally, we obtained in 72 Java systems for
evaluation of the JReuse method.

To better characterize systems in the four domains, Figures 4.1, 4.2, and 4.3
presents software metrics for systems per domain: lines of code (LOC), number of
classes (NOC), and number of methods (NOM), respectively. We plotted twelve box-
plots, one for each metric. However, because of the heterogeneity of the sample of our
data set, we decided to eliminate ”outliers” for each metric. Therefore, all boxplots
presented a brief overview of each analyzed domain.

Let’s consider Figure 4.1 in the following analysis of LOC. With respect to the ac-
counting domain, we observe that the mean of LOC for the systems is 8,690. Moreover,
the median is 5,112, i.e., half of the accounting systems has at least 4 KLOC. That is, a
significant number for analysis and identification of reuse opportunities. Regarding the
restaurant domain, the mean of LOC is 3,447. In addition, the median is 3,256. Again,
we conclude that these systems have a significant LOC for analysis. For the hospital
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domain, the mean is 4,964 and the median is 2,534 of LOC. Although these values are
smaller than the obtained values for the other domains, it remains significant for the
study. Finally, with respect to the e-commerce domain, we observe a mean LOC of
46,100 and a median of 3,730. In general, systems from this domain have the highest
numbers of LOC and, therefore, they may have several reuse opportunities.

Figure 4.1. LOC of Sytems per Domain

Let us consider Figure 4.2 in the following analysis of NOC. With respect to the
accounting domain, note that the mean of NOC for the systems is 35.73. Furthermore,
the median is 18, i.e., half of the accounting systems has at least 18 classes. This number
is significant for analysis because we are interested in finding similarly named classes
within a pairwise comparison. Therefore, we expect a comparison of 18 ∗ 18 = 324

pairs that may be reuse opportunities. Regarding the restaurant domain, the mean of
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NOC is 37.23. In addition, the median is 40. Again, we conclude that these systems
have a significant NOC for analysis. For the hospital domain, the mean is 33.85 and
the median is 25 of NOC. Finally, with respect to the e-commerce domain, we observe
a mean NOC of 368.9 and a median of 45.5. In general, systems from this domain
has the highest numbers of NOC and, therefore, there is a significant possibility of
identifying reuse opportunities.

Figure 4.2. NOC of Sytems per Domain

Based in Figure 4.3, we discuss some observations as follows. With respect to
systems from the accounting domain, we have a mean NOM of 263.6. In addition,
the median is 196, i.e., half of the systems has at least 196 methods. That is, a
significant number for analysis and extraction of reuse opportunities. This number is
significant because we compute similarly named methods in pairs. Therefore, we expect



24 Chapter 4. Method Evaluation

a comparison of 196∗196 = 38, 416 pairs that may be identified as reuse opportunities.
Considering the restaurant domain, the mean of NOM is 162.4 and the median is
159. Again, we conclude that these system have a significant NOM for analysis. For
the hospital domain, the mean is 192.2 and the median is 90 methods. At last, with
respect to the e-commerce domain, we observe a mean NOM of 1,683 and a median
of 175.5. That is, the highest number of methods for analysis considering the four
selected domains.

Figure 4.3. NOM of Sytems per Domain
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4.3 Evaluation Steps

Figure 4.4 presents the three study steps we followed to investigate the research ques-
tions described in Section 4.1. Each step is described as below.

Figure 4.4. Designed an Exploratory Study

Step 1: Automated Search – By using the search strings described in Section 4.2,
we cloned from GitHub several software systems, belonging to different domains. We
intended to identify appropriate domains to be analyzed in our exploratory study.
For this purpose, we considered a domain as appropriate when, from our viewpoint,
systems from the given domain contain a significant number of classes and methods
for analysis. After performing the search for systems, with support of our algorithm,
we obtained 400 software systems from four distinct domains: accounting, restaurant,
hospital, and e-commerce.

Step 2: Exclusion Criteria – By applying a set of exclusion criteria defined by
the authors, we select the systems according to with the following requirements: (i)
software systems written only in English, (ii) software systems with more than 1,000
lines of source code, and (iii) traditional Java software systems, i.e, software that
are not exclusive to the Android platform. After applying the exclusion criteria, 72
different software systems remained for analysis.

Step 3: Detection of Similarly Named Classes – We executed the JReuse
prototype tool for the 72 collected systems. Per domain, the respective systems
were submitted to JReuse for extraction of reuse opportunities. After the automated
analysis for each domain, JReuse provided a list with the most frequent classes that
occur in the given domain.

Step 4: Detection of Similarly Named Methods – We also executed the JReuse
prototype tool to identify similarly named methods. From the classes identified as
reuse opportunity in Step 3, JReuse identified similar methods among these classes. In
the previous step, JReuse provided most frequent classes per domain, as well as a list of



26 Chapter 4. Method Evaluation

classes, sorted by relevance, with the main classes identified as reuse opportunities. In
this step, JReuse complements such list with methods identified as reuse opportunities.
That is, the previously obtained list of reuse opportunities is completed with the most
frequent methods for the identified classes.

4.4 Results of Frequent Classes

This section presents and discusses the study results aiming to answer our first research
question. For this question, we discuss the results obtained with respect to the four
domains under analysis: accounting, restaurant, hospital, and e-commerce.

RQ1 What are the most frequent classes in software systems for each selected domain?
And how are they distributed through systems?

In this study, we analyzed the frequency of similarly named classes for the systems
of each domain. Table 4.2 presents software metrics for systems per domain: lines of
code (LOC), number of classes (NOC), and number of methods (NOM). This table
categorizes NOC and NOM in two types: (i) analyzed, i.e., the number of entities
analyzed by the tool and (ii) recommended, that is, entities identified by the tool as
reuse opportunities.

In general, from Table 4.2 we observe that JReuse identified a smaller number
of methods than classes as reuse opportunities. For instance, for domain e-commerce,
JReuse identified 75 classes and 28 methods as reuse opportunities. One of the reasons
for this results is that the similarity computation of JReuse for methods is more strict
than for classes. Thus, the proposed method aims to avoid the recommendation of
methods with similar names but different responsibilities. For this purpose, JReuse
compares the return type of similarly named methods. As an example, if a pair of
similar methods has the same return type, then they are considered as the same reuse
opportunities. Otherwise, both methods are considered different.

Table 4.2. Software metrics for systems from each domain

NOC NOM
Domains Systems LOC Analyzed Recom-

mended Analyzed Recom-
mended

Accounting 11 95,588 493 25 2,900 21
Restaurant 13 44,813 484 17 2,111 20
Hospital 13 65,297 446 21 2,516 20
E-commerce 35 1,567.337 12,598 75 57,017 28

In order to present and discuss the most frequent classes extracted as reuse op-
portunities, we considered the following exclusion criteria of classes. For each domain,
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we discarded classes that occur in a maximum of two different systems. This decision
was taken because our method compares classes in pairs and, then, 3 occurrences may
not be significant to a reuse recommendation. We selected the top-ten most frequent
classes of each domain, as presented in Figures 4.3, 4.4, 4.5, and 4.6. We submitted
the list of most frequent entities to a group of 4 researchers at Software Engineering
Laboratory (LabSoft) from Federal University of Minas Gerais (UFMG), for validation
of the entities with respect to relevance.

Tables 4.3, 4.4, 4.5, and 4.6 present classes identified as reuse opportunities for
e-commerce, accounting, restaurant, and hospital, respectively. We selected only the
classes with at least 15% 2 occurrences in the systems of the respective domain. Each
table has a “Domain-Specific” field. This field indicates the viewpoint of the focal group
regarding a given entity to be specific for the analyzed domain. The focal group’s
viewpoint is represented by three symbols in table: (i) the (X) symbol indicates that
the focal group agreed that the class is specific for the domain under analysis, (ii)
the (7) symbol indicates that the focal group disagreed that the class is indicated for
the domain, and (iii) blank field (Unconfirmed) indicates that the focal group did not
converge to a specific opinion on the class. Moreover, each table has a “Labels” filed to
inform the level of relevance of the entity identified by JReuse as reuse opportunity.

Scale to Indicate the Level of Relevance of the Entities Identified. To support
the identification of the most recommended classes and methods for each domain,
Figure 4.5 shows a scale from 0% to 100% that represents the level of relevance to
recommend an entity based on frequency of classes and methods identified as reuse
opportunity. The thresholds 0% and 50% determine two labels for level of relevance,
namely weak and strong. The weak label (from 0% to 50%) indicates that the class is
weakly or moderately recommended as reuse given a domain. Finally, the strong label
(from 50% to 100%) indicates that the class is highly recommended as reuse.

Figure 4.5. Scale of relevance to entity identified as reuse opportunity

2The percentage is arbitrary, i.e. can be adapted for domains with more or with less systems for
analysis.
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With respect to the accounting domain, presented in Table 4.3. For this domain,
the classes from Users to TransactionManager belong to the strong label and, there-
fore, they are the highly recommended classes for accounting systems. Note that, in the
other hand, the focal group did not consider the classes Users, DatabaseConnection,
and Util as specific classes for the accounting domain. In addition, the classes from
AddFinancialsAction to RawMaterial belong to the weak label. The remainder
classes have exactly 2 or 3 occurrences in different systems from the accounting domain.
Therefore, they are weakly recommended and were omitted from this table.

Table 4.3. Classes with at least 15% occurrences in the accounting domain

Labels Classes Frequency % of systems Domain
Specific

Users 13 100% 7
DatabaseConnection 13 100% 7
CashFlow 11 85% X
Util 10 77% 7
BalancesAssets 9 69% X
CashBanks 9 69% X
ShareholderEquity 9 69% X
BalancesLiabilities 8 62% X
ChartAccounts 8 62% X
AccountingMovement 8 62% X
AccountsReceivable 8 62% X
AccountsPayable 6 46% X
Transactions 7 54% X
Log 7 54% 7
FinancialReportsPoeHelper 7 54% 7
InventoryManager 7 54% X

Strong

TransactionManager 7 54% X
AddFinancialsAction 6 46% X
Accounts 6 46% X
FeaturesAnalysis 6 46% X

Weak

RawMaterial 6 46% X

Key: Agree (X) and Disagree (7)

Regarding accounting domain, Figure 4.6 presents the top-ten most fre-
quent classes for this domain, with the highest occurrence. Classes are sorted
by frequency: Users, DatabaseConnection, CashFlow, Util, BalancesAssets,
CashBanks, ShareholderEquity, BalancesLiabilities, ChartAccounts, and
AccountingMovement. We observe that, although only CashFlow is considered spe-
cific to the given domain, from the viewpoint of the focal group, all classes from this
label are meaningful in accounting systems. In turn, the remainder classes are from
the medium label. Among these classes, CashBanks, Transaction, and Accounts are
considered specific, for instance.
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Figure 4.6. Distribution of frequent classes through accounting systems

With respect to the restaurant domain, let us consider Table 4.4. The classes
Login and User belong to the strong label. Note that they are not considered as specific
classes from the given domain considering the focal group’s viewpoint. However, they
are relevant in restaurant systems. In addition, the classes from Client to Order belong
to the strong label and are relevants for this domain, considering the focal group’s
viewpoint. Many of them were pointed as reuse opportunities for restaurant systems
by the focal group, such as RestaurantMenu, Delivery, and Customes. Moreover, this
entities belong to the weak

Table 4.4. Classes with at least 15% occurrences in the restaurant domain

Labels Classes Frequency % of systems Domain
Specific

Login 10 77% 7
User 10 77% 7
ConnectionManager 9 70% 7
Client 9 70% X
Table 8 62% X
PaymentType 8 62% X
Dish 8 62% X
Employee 7 54% X

Strong

Order 7 54% X
RestaurantMenu 6 47% X
Delivery 6 47% X
ItemOrdered 6 47% X

Weak

Customer 4 31% X

Key: Agree (X) and Disagree (7)
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Regarding the analysis of the restaurant domain, Figure 4.7 presents the top-
ten classes with higher occurrence, namely Login, User, ConnectionManager, Client,
Table, PaymentType, Dish, Employee, Order, and RestaurantMenu. These classes
have an high to medium level for recommendation according to the scale from Fig-
ure 4.5. The classes with the highest occurrences in this domain are Login and User,
respectively. Both are present in 77% of the analyzed information systems. Neverthe-
less, they are not specific classes of restaurant systems. However, JReuse identified
some frequent classes such as Client, Table, PaymentType, and Dish.

Figure 4.7. Distribution of frequent classes through restaurant systems

Consider Table 4.5 for analysis of the hospital domain. Observe that the classes
from Patient to Microbiology belong to the strong label and, therefore, they are
highly recommended classes as reuse opportunities. Note that, from the viewpoint of
the focal group, the three most frequent classes are considered specific from hospital
systems. In fact, classes such as Patient and Doctor are meaningful in the given do-
main. In addition, classes from PatientCondition to OperationsWithCards are from
the weak label. Finally, the remainder classes have less than 10% of the occurrences
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Table 4.5. Classes with at least 15% occurrences in the hospital domain

Label Classes Frequency % of systems Domain
Specific

Patient 13 100% X
Doctor 13 100% X
Disease 11 85% X
User 10 77% 7
Login 9 69% 7
Diagnose 9 69% X
Symptoms 9 69% X
PatientDisease 8 62% X
HealthPlan 8 62% X
Immunology 8 62% X
Haematology 8 62% X
Medication 7 54% X
Surgery 7 54% X
MedicalRecords 7 54% X
TypePayment 7 54%

Strong

Microbiology 7 54% X
PatientCondition 6 46% X
LaboratoryExams 6 46% X
Log 6 46% 7
HistoPathology 6 46% X
Connection 6 46% 7
Paycash 5 38%
Util 5 38% 7

Weak

OperationsWithCards 3 23%

Key: Agree (X), Disagree (7), and Unconfirmed (field blank)

Figure 4.8 presents the most frequent classes identified for the hospital domain,
in decreasing order of frequency. For the 13 systems we collected from this domain,
JReuse extracted some relevant entities, such as Patient, Doctor, and Disease, from
the focal group’s point of view. The classes presented in this figure belong to the
strong label, as illustrated in Figure 4.5. Note that the classes Patient and Doctor

are present in 100% of the evaluated systems. Similarly to the other domains, JReuse
identified some classes that are generic, such as User (77%) class, that are expected in
systems from other domains.
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Figure 4.8. Distribution of frequent classes through hospital systems

Let us consider Table 4.6 regarding the e-commerce domain in the following dis-
cussion. Note that the classes Product to ClientDao belong to the strong label, ac-
cording to Figure 4.5. That is, they are highly recommended classes for e-commerce
systems, because they are present in more than 50% of the analyzed systems. In addi-
tion, the classes Item to ShoppingCartService are the weakly recommended classes.
As aforementioned, classes with less than 15% of the occurrences were omitted.

Table 4.6. Classes with at least 15% occurrences in the e-commerce domain

Labels Classes Frequency % of systems Domain
Specific

Product 28 80% X
PaymentType 24 69% X
Client 20 58% X
ProductDao 18 52% X

Strong

ClientDao 18 52% X
Item 17 49% X
ShoppingCart 17 49% X
User 17 49% 7
Customer 14 40% X
Category 12 35% X

Weak

ProductService 10 29% X
Order 9 26% X
LoginController 7 20% 7
UserDao 6 18% X
ProductServiceImpl 6 18% X
ShoppingCartController 6 18% X
OrderedProduct 5 15% X
ShoppingCartService 5 15% X

Key: Agree (X) and Disagree (7)
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Finally, Figure 4.9 presents the top-ten most frequent classes for e-commerce
systems. We sorted the classes in decreasing order of frequency. The most frequent
entities are, respectively, Product, PaymentType, Client, ProductDao, ClientDao,
Item, ShoppingCart, User, Customer, and Category. Note that, according to the
focal group the classes Product, Payment, ShoppingCart, Customer, and Client are
elementary entities to be expected in an e-commerce system. In turn, although User

is one of the most frequent classes identified by JReuse (49% of the systems contain
this class), User is not specific of the e-commerce domain. However, this entity is
meaningful for information systems in general.

Figure 4.9. Distribution of frequent classes through e-commerce systems

4.5 Results of Frequent Methods

This section presents and discusses the results for of the methods identified from of
top-ten most frequent classes, presented in first research question.

RQ2 What are the most frequent methods considering the similarly named classes iden-
tified by the method? And how are they distributed through these classes?

Research question RQ2 is related to the extraction of similarly named methods
from classes identified as reuse opportunities by JReuse. To summarize the data and
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present the principal methods of each domain, we adopted the following exclusion
criteria. We discarded methods that does not appear in more than 2 classes from
different systems. We discarded also methods named main, because this type of method
is essential in any Java system (Rountev, 2004).

To support a discussion of RQ2 for each domain under analysis, Tables 4.10,
4.7, 4.8, and 4.9 present the most frequent methods for the top-ten most frequent
classes with respect to the accounting, restaurant, hospital, and e-commerce domain,
respectively. To support the identification of the most frequent methods for each
domain, we use the same labels presented in Section 4.4. Each table is signed with two
symbols: (i) the (X) symbol that indicates the focus group agreed that the method
should belong to a given class and (ii) the (7) symbol that indicates the focus group
disagree that a method belongs to a given class.

Considering the accounting domain for analysis, Table 4.7 presents the methods
identified as reuse opportunity for the top-ten most frequent classes. The classes with
at least 10 methods identified as reuse opportunities are AccountingMoviment and
BalancesLiability. They contain 13 and 12 identified methods, respectively. We
observe that both are relevant in the accounting domain, from the viewpoint of the focal
group. Through Table 4.7, we may observe methods that may be strongly recommended
as reuse opportunities (see Figure 4.5). As as example, calculatePayment appears in
20 Product classes, against 13 and 11 for PaymentType, and ProductDao, respectively.
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Table 4.7. Methods most often identified from of most common classes among
the accounting domain systems.
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execute 29%7 50%7 19%7 89%X
calculatePayment 100%X 67%7

addTrans 100%X 50%7 58%X 58%7 50%X 37%7 23%7

calcDuplicates 50%X 34%X 58%X 58%X 63%X 67%7 50%X
update 50%X 67%X 72%X 50%X
generateReport 34%X 34%X 29%X 63%X
deleteById 67%X 50%X 72%X 43%X 38%X 50%7

convertToCsv 63%X
findByName 67%X 67%X 43%X 43%X 38%X 50%7 34%X 28%X
othersValues 50%7 50%7 43%7 58%7 38%7 34%7

checkPayment 50%X 34%7 50%X
generateXls 34%X 29%X 50%X 34%X
makePay 67%X 34%7 58%X
salesValues 50%X 67%X
validateInput 50%X 50%X 29%X 43%X 50%X 50%7 25%X 67%7 19%X 34%7

inventoryUtil 34%7 50%X
printFile 34%7 50%X
print 38%X
validateCheckPayment 50%X
parseDateToString 43%7

printCustDebt 25%7

Key: Agree (X) and Disagree (7)

For the restaurant domain, let us consider Table 4.8 with respect to the methods
obtained from the top-ten most frequent classes. The classes Table and Order have at
least 10 methods identified as reuse opportunities, with 14 and 13 types of methods,
respectively. As an example, note that the method insertFood is present in 63% and
100% of the classes Table and Order, respectively. These values belong to the strong
label in the scale from Figure 4.5. Methods such as insertFood, generateBills, and
cancelReservation are relevant in restaurant systems, from the viewpoint of the focal
group.
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Table 4.8. Methods most often identified from of most common classes among
the restaurant domain systems.
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search 75%X 43%X 75%X 75%X 100%X 70%X 100%X 70%7 100%X 67%7
insert 38%X 86%X 38%X 100%X 34%X 70%X 100%X 100%X
remove 100%X 86%X 75%X 38%X 67%X 60%X 78%X 70%X 100%X
login 80%X
calculate 63%7 88%7
validationUser 70%X 50%X
insertFood 63%X 100%X 100%X
disableUser 70%7
editReserve 63%X 86%X
deleteTable 75%X
generateBills 75%X 58%X 63%7 75%X
consultCode 25%7 72%7 63%X 100%X
updatePosition 63%X 72%7
cancelReservation 63%X 29%7 25%7
reserveTable 63%X 43%7
removeObservation 50%7 72%7 63%7 38%7 40%7 56%7
updateMenu 58%7 84%X
insertRequest 58%X
calculateAll 50%X 50%X
lastOrder 25%X 29%7

Key: Agree (X) and Disagree (7)

Table 4.9 presents the methods obtained from the top-ten most frequent classes
from hospital domain. The classes with at least 10 types methods identified as reuse
opportunities are Patient, Diagnose, Disease, and PatientDisease. They have 16,
11, 10, and 10 identified methods, respectively. Methods such as verifyPathology,
findPatient, and validatePatient are relevant for the given context, from the view-
point of the focal group. For instance, the method verifyPathoogy is present in
73% and 75% of the classes Disease and PatientDisease, respectively. These values
correspond to the strong label in the scale of Figure 4.5.
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Table 4.9. Methods most often identified from of most common classes among
the hospital domain systems.
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deleteData 47%X 78%X 37%X 88%X 75%X 54%X 78%X 63%X 80%X 34%7
verifyPathology 39%7 45%X 73%X 75%X 67%X
findPatient 54%7 63%7 31%X
registerDisease 24%7 56%7 64%X 50%X 63%7 31%X 38%7
insertPatient 54%7
anamnesis 54%7 38%7
saveData 47%X 56%X 37%X 75%X 88%X 39%X 67%X 63%X 50%X 34%7
updateData 47%X 78%X 37%X 75%X 88%X 39%X 67%X 63%X 70%X 34%7
symptoms 16%7 56%X 55%X 38%X 78%X
diagnosisPerformed 55%7 31%X
bloodGroup 47%X 45%7 50%7
sonography 16%7 23%7 28%7 38%7 75%7 24%X
patientProfile 39%X 38%7
insertCoagulation 39%7 34%7 25%7 23%7
fetchDetail 16%7 23%X 19%X 50%X 63%7 23%7 25%X
authorizeUser 40%7
scheduling 31%X
insertBlood 34%7 37%7 25%7
sons 24%X 38%7
validatePatient 24%X

Key: Agree (X) and Disagree (7)

Given the e-commerce domain, let us consider Table 4.10 for analyze the meth-
ods obtained from the top-ten most frequent classes. The classes with at least 10

types methods identified as reuse opportunities are Product, Customer, Item, Client
PaymentType, User, and ShoppingCart, respectively. They have 15, 12, 12, 12, 11,
10, and 10 identified methods, respectively. We observe that all of them are relevant
in the e-commerce context, from the viewpoint of the focal group. In Table 4.10, we
may observe methods that may be strongly recommended as reuse opportunities for a
given class.
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Table 4.10. Methods most often identified from of most common classes among
the e-commerce domain systems
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addCustomerAddress 36%X
alter 61%X 58%X 100%X80%X 63%X 30%X 48%X 89%X 89%X 59%X
buy 10%X 67%X
calculateSubtotal 8%7 18%7 25%X
calculateTotal 22%7 12%7 50%7 48%X 12%7
changePassword 59%X
changeStock 68%7 46%7 65%X 45%7
checkout 15%7 77%X
cities 25%7
delete 68%X 79%X 95%X 65%X 59%X 83%X 71%X 89%X 78%X 59%X
findByCategory 29%7 62%X 67%7
findByEmail 50%7 15%7
login 50%X 100%X
moveitemToCart 11%7 48%7 30%X
moveListToCart 8%7 42%7
password 15%X 100%7 62%X
processRegister 40%7 53%7 30%X 39%7
processUpdateAccount 29%7 10%7 53%X
productList 72%7 55%7 62%7
register 61%X 86%X 89%X 100%X71%X 77%X 53%X 95%X 78%X 67%X
removeCustomerAddress 36%X
resetPassword 89%X
reviewItem 48%X
save 29%X 36%X 83%X 25%X 25%X 77%X 65%X 45%X 39%X 75%X
shoppingCartItem 11%7 71%7 89%X
update 58%X 79%X 71%X 65%X 55%X 95%X 48%X 34%X 17%X 75%X
validateAddress 15%X 20%X 12%7
validatePobox 43%X 25%X

Key: Agree (X) and Disagree (7)

The method productList, for example, appears in 72% of the Product classes
(i.e., a strong level of recommendation, according to Figure 4.5), against 55% and
62% for PaymentType, and ProductDao, respectively. Therefore, this method is a
strong candidate to compose a Product class, although it may be present in other
classes such as PaymentType and ProductDao. The Count line presents the number of
different types of methods that were found for a given type of class. For instance, for
the Customer class, JReuse identified 12 types of methods as reuse opportunities.
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4.6 Lessons Learned

In this study, we learned a lot regarding interesting research topics such as software
reuse, reuse opportunities identification, and recommendation systems. For this pro-
pose, we take as an example the e-commerce domain, especially by the popularity and
size of these systems on GitHub. We discuss some of the main lessons learned with
support of the following questions.

How much a lexical analysis may support the identification of reuse opportunities
assets? As discussed in Section 2.2, there are many approaches to support software
reuse in literature. Lexical analysis is a simple one. However, as pointed by the results
of Section 4.1, it may be effective to identify reuse opportunities in systems from a
single domain. Moreover, we initially conceived our method to gather elements with
names that are semantically similar. However, through our study we identified some
occurrences of similar entities in an intuitive fashion that do not represent the same
real-world concept. For instance, in our exploratory study which was conducted in a
controlled environment (see Section 4.3) we found that frequent classes such as Client
and Costumer have distinct behaviors although intuitively they represent the same
real-world abstraction. Some classes named as Client implement a simplistic system
clients which register data basically. In turn, Costumer classes generally implement
system clients with more robust features, such as data management. Therefore, we
conclude that lexical analysis performs satisfactorily to identify reuse opportunities at
least in this domain.

Names of classes and methods are suitable to the entities they represent in a busi-
ness domain? We discuss in Chapter 3 that names of classes and methods may be
useful for reuse opportunities identification. In fact, we observed that naming similar-
ity identification may support reuse opportunities identification. However, to retrieve
similarly named classes and methods may be uninteresting if they are not representa-
tive in an specific domain. Chapter 4 highlights identified classes and methods that fit
to e-commerce domain. These entities are the most frequent that our tool detected.
Therefore, we believe that names of entities are, in general, sufficiently representative.
Moreover, we observed in this study that our method is able to identify reuse oppor-
tunities in randomly mined systems from GitHub, provided by different development
teams. Therefore, we expect to obtain even more relevant results in the context of an
specific organization.

How to apply our reuse opportunities identification tool in a reuse recommenda-
tion system? Methods and classes are elementary entities of object-oriented software
systems. Knowing these entities, we are able to describe the architecture of a sys-
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tem. Therefore, with results provided by our tool, we see an opportunity for reuse
recommendation through software modeling using class diagrams, for instance.

To the best of our knowledge, we have not found many recent studies with respect
to reuse opportunities identification, supported by tools for this activity, and methods
to support the building of reuse repositories with similar approach. Therefore, as an
interesting research topic, we lack more quantitative data to measure and compare
different techniques that support software reuse.

4.7 Threats to Validity

We based our study on related work to support the method definition, the tool
development, and the proposal of a recommendation system. Regarding the evaluation
of our method and tool, we conducted a careful empirical study to assess effectiveness
of the tool with respect to reuse opportunities identification that are representative
in the enterprise software context. However, some threats to validity may affect our
research findings. The main threats and respective treatments are discussed below
based on the proposed categories of Wohlin et al. (2012).

Construct Validity. Before running our reuse opportunities identification method,
we conducted a careful filtering of information systems from GitHub repositories.
However, some threats may affect the correct filtering of systems, such as human
factors that wrongly lead to discard a valid system to be evaluated. Considering
the exclusion criteria for selection of systems (see Section 4.2), we implemented an
algorithm to automate this process and, then, discard inappropriate systems for
analysis. However, we may have discarded relevant software systems by using our
algorithm, such as systems misidentified as non-Java systems.

Internal Validity. We conducted a lexical classification of entities that may be
affected by some threats. To treat this possible problem, we selected a sample
of 10 e-commerce systems from our data set, with diversified number of enti-
ties. Then, we manually identified the names of entities from source code to find
synonyms. We compared our manual results with the results provided by the tool
and observed a loss of 10% in synonym terms identified through the automated process.

Conclusion Validity. After running our identify tool, we gathered manually classes
that seemed to represent the same real-world object. For instance, classes named as
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Client and Costumer were considered the same type of entity. The same occurred
with methods identified by the tool as reuse candidates. However, this process is
subjective and may be affected by human factors. In this first exploratory study, we
decided to not unify terms (e.g., Customer and Client) in the quantitative analysis.

External Validity. We evaluated our method with a set of 72 systems, extracted from
GitHub. Considering that they may not represent the 4 domains analyzed, our find-
ings may be not be generalized. Furthermore, we evaluated only four system domains,
accounting, restaurant, hospital, and e-commerce. However, the collected systems are
the most popular on GitHub that is a largely used platform. Finally, we evaluated sys-
tems implemented only in Java programming language. Although it is one of the most
popular languages worldwide, our results may not generalize to other programming
languages.

4.8 Final Remarks

This chapter reported a study, conducted to evaluate our method and tool. We report
in Section 4.2, the selection process of the domains of systems evaluated. In this
context, we investigate how our method performs in a wider range of systems.

Section 4.5 and 4.4, we evaluated our method and tool with 72 open-source sys-
tems available on GitHub. Our method called JReuse, reached acceptable results in
every domains evaluated, indicating its applicability in different domains and identify-
ing the main opportunities for reuse of each domain. We derive a threshold to measure
the level of relevance in recommend particular entity as reuse opportunities. The scale
contains two levels, strong and weak.

The next chapter describes the execution of a survey with GitHub developers for
the purpose of assessing the results from JReuse analysis of software systems from 4
distinct software domains (e-commerce, hospital, restaurant and accounting systems).
However, because of the low response rate for the domains: accounting and restaurant,
we discarded both domains in the analysis in next chapter.





Chapter 5

Survey with Developers

As shown in Chapter 4, our method was applied to identify reuse opportunities for
four software domains under analysis: e-commerce, accounting, restaurant, and hos-
pital. However, because of the low response rate for the domains: accounting and
restaurant, we discarded both domains in the analysis presented in this chapter. The
reuse opportunities identify by our method, need manual inspection in order to eval-
uate these results. The goal of this chapter is to provide an empirical evaluation of
the top-ten most frequent classes in each domain identified by the proposed method.
This chapter presents a survey with domain experts in each software domain analyzed.
Section 5.1 presents the settings required to design the survey, such as the selection
of participants. Section 5.2 presents the background of the survey participants. Sec-
tion 5.3 presents results of this study. Section 5.4 shows some threats to validity that
may affect our findings. Finally, we conclude this chapter with some final remarks in
Section 5.5

5.1 Survey Settings

The proposed method is able identify reuse opportunities in systems of different do-
mains and distinct sizes. To assess the relevance of the results of the exploratory study
conducted in a controlled environment (presented in Chapter 4), we conducted a pre-
liminary evaluation of JReuse. As a preliminary study, we assess only the identification
of classes by the method. For this purpose, we designed a survey with specialists from
each of the four software domains under analysis: e-commerce, accounting, restaurant,
and hospital. A survey is a research strategy to identify characteristics of a popula-
tion of individuals (Wohlin et al., 2012). In general, it is conducted with support of
associated to the use of questionnaires for data collection (Easterbrook et al., 2008).

43
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The survey is composed by four questionnaires, with the purpose of assessing
the JReuse results for each of the four software domains analyzed. We asked domain
experts to indicate the level of relevance for a certain class to a given domain. We
consider an increasing scale of relevance from 0 to 5; 0 means that the developer
disagrees completely that the class is specific of the domain assessed; 5 means that
he fully agrees that the class is exclusive of the domain analyzed. The survey was
conducted in June and July of 2016.

Each questionnaire contains 17 questions, as shown in Table 5.1. The first four
questions, namely Q1 to Q4, are related to background information and aim to provide
us to provide us with background information of the participants. The other questions,
from Q5 to Q15, are related to classes that may be specific for the given domain, or non-
specific, from the viewpoint of the participants. A control class, Game, was introduced,
to assess the quality of the responses. It is out of the scope of the four domains under
analysis. Finally, Q17 is an open question for participants to provide us subjective
comments regarding the survey. We do not discuss Q17 in this dissertation, because it
represents only feedback for the survey improvement in further replications.

Table 5.1. Survey Settings

Group Questions Alternative
(Q1) Do you work with
software development ? "Yes"; "No"; "Partially"

(Q2)How long do you
develop software?

"For less than one year";
"Between one and three years";
"For more than three years"

Background (Q3)Choose the highest level in
computer science

"PhD"; "Master Degree";
"Complete Graduate";
"Ongoing graduate program";
"High school or below";
"I don’t have knowledge
about computer science"

(Q4) Do you develop software products
for the <DOMAIN> domain ? "Yes"; "No"; "Partially"

Domain Specific
Questions

(Q5 Q15) Please, consider the
following classes. Which classes
do you consider that belong to
the < DOMAIN > domain?
Assume a range from 0 to 5
where 0 means you disagree
completely that the class is from
the < DOMAIN > domain and
5 means you completely agree
that the class is exclusive
from the < DOMAIN > domain.

likert scale: 0 to 5

Comments (Q17) If you have further comments,
please use the text area below Open question

In general, literature recommends the selection of a representative sample partic-
ipants from the target population to perform a survey (Easterbrook et al., 2008). For
this purpose, we based our participant selection on previous work (Salvaneschi et al.,
2014; Kalliamvakou et al., 2014). We performed eight steps described as follows, con-
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sidering the systems we collected from GitHub. First, for each domain, we selected the
top-200 most popular repositories sorted by decreasing order of stars. In GitHub, stars
are a meaningful measure for repository popularity among the platform users, and they
may be used to support the selection of well-evaluated systems by developers. Second,
we excluded projects analyzed in Section 4.2. This decision was made to minimize bias
with respect to the previous knowledge of participants on the analyzed systems.

Third, we excluded Android projects because the design of these projects may
vary when compared with traditional Java projects. We also excluded projects written
in other languages rather than English because JReuse performs a lexical analysis of
systems and we target only on project written in English. Fourth, we excluded projects
with less than 20 classes and 20 methods, because we intend to compose a data set
with sufficient number of domain experts for analysis. We also excluded projects with
less than an year of life for the same reason. Finally, from the remaining projects, we
selected the top-three committers for each project to collect their valid email addresses.
We use these emails to invite developers for the survey.

A total of 202 email addresses from domain experts were extracted from the 198

different projects we collected. We sent a specific questionnaire to participants for each
system domain. A total of 31 questionnaires, i.e., around 15.34%, were responded.
Table 5.2 presents the number of participants who answered the questionnaire per
domain. We only got one answer for the Accounting domain and none for Restaurant.
Since few participants responded the accounting and restaurant questionnaires, we
discarded both domains in the analysis presented in this section. Therefore, our analysis
is based on 31 answer, 9 for Hospital and 22 for e-commerce.

Table 5.2. Population Sampling Distribution

Domain Projects Emails Sent Answer
Accounting 11 11 1
Restaurant 10 13 0
Hospital 56 111 9
E-commerce 121 67 22

Total 198 202 32

5.2 Participant Background

In this section, we discuss the background information collected from Q1 to Q4. Fig-
ure 5.1 presents the background of participants for analysis of the e-commerce and
hospital domain (Q1). Figure 5.1(a) shows that 25 of the 31 participants (around
80%) work in the context of software development. Since more than a half of the
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participants are software developers, we assume that the sample is appropriate to eval-
uate our method. Figure 5.1(b) shows the results regarding professional experience of
participants (Q2). Note that 18 of them (around 58%) have more than three years
of professional experience, and 12 (around 38%) have between one and three year of
experience. Only one out 31 participants has less than one year of the work experience.

With respect to the education level in Computer Science (Q3), Figure 5.1(c) shows
that 27 participants, i.e., around 87%, hold at least a complete graduate degree in the
area. Therefore, we conclude that the participants are appropriate to our analysis.
Figure 5.1(d) presents the results with respect to the development of product for the
respective domain (Q4). In total 26 participants (around 83%) develop software for
the domains analyzed and 5 (around 16%) participants do not develop software for the
respective domain. However, all 31 participants were selected because they frequently
commit in projects of the analyzed domains. Therefore, we assume that the participants
are able to evaluate the relevance of entities for the given domain.

(a) Work in software development (b) Experience in software development

(c) Knowledge in computer sciences (d) Development of product for the domain

Figure 5.1. Background of Participants
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5.3 Results

This section presents the main results of the survey, with respect to questions Q5 to
Q15. These questions are related to the level of relevance for classes, identified by
JReuse as reuse opportunities, to a given domain. Note that we considered only the
top-ten most frequent classes reported by our method for each domain and a control
class (Game). Considering all participants, we computed the mean of relevance level
for each class from Q5 to Q16. Based on the mean for the classes, we chose 3 as a
thresholds to classify a class as relevant (mean ≥ 3) or irrelevant (mean < 3) for the
respective domain. After, we computed the number of classes classified as relevant.

Figure 5.2 presents the percentage of classes considered as relevant by the partic-
ipants per domain. We observe that 90% of the classes identified by JReuse as reuse
opportunities are relevant for the e-commerce domain from the participants’ viewpoint.
On the other hand, 10% of the classes were not indicated as a relevant reuse opportu-
nity. For example, for the e-commerce domain, the only class indicated by the method
as reuse opportunity, but not indicated as relevant by domain experts is User. In fact,
this class is a generic entity for software systems. That is, it may compose systems
from several domains.

Figure 5.2 also shows the results for the hospital domain. In this analysis, we
observe that the participants agree that 80% of the classes indicated by JReuse are
relevant for the respective domain. However, 20% of classes were not indicated as
relevant by the participants. The class Login presented a mean of 2.34 and User

presented a men of 2.23 for relevance level. In other words, we conclude that, according
to the results presented by the participants, these two classes are generic and may not
represent reuse opportunities for the analyzed domain.

Figure 5.2. Accuracy of the method JReuse compared with participants
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In summary, participants of the survey agree that 90% and 80% of the classes
from the e-commerce and hospital domains are relevant, respectively. Therefore, our
data suggests that JReuse is effective and accurate in the identification of reuse oppor-
tunities. Since the variation of percentage for both domains is minimum, i.e., 10% to
20%, we assume that JReuse provides sufficient results regardless the analyzed domain.

5.4 Threats to Validity

With respect to the survey with software developers, we conducted a careful study
to assess the relevance of reuse opportunities identified by JReuse. However, there
are some threats to validity that may invalidate our findings. We discuss each type of
threat to validity of our study, based on Wohlin et al. (2012), as follows.

Construct Validity. In order to compose our participant set, we selected emails
of software developers from 404 different Java projects. To provide diversity of the
participants of the survey, we selected developers from projects based on the number
of stars in GitHub. Although our participant set may not be representative, the
178 selected systems are developed by several contributors, from different domains,
and provide distinct functionalities. Furthermore, in this preliminary study, we
do not assess the effectiveness of JReuse in terms of methods identified as reuse
opportunities. This decision was taken to prevent a high number of questions and the
increase of complexity of the survey. Thus, we designed a short survey that partici-
pants are motivated to answer. However, we performed a careful analysis of the classes.

Internal Validity. Since our survey was available during a short time (from June
to July 2016, specifically), we obtained a small number of participants. The collected
results may be, then, insufficient to draw precise conclusion regarding the effectiveness
of JReuse. However, we sent invitations for a significant number of participants. In
addition, we invited the top-three contributors in terms of commits for each project.
Such treatments aim to minimize problems with the lack of availability for developers
to participate in the survey. Furthermore, to minimize problems with data collection,
we designed an online questionnaire to automatically collect the participants’ answers.

Conclusion Validity. With respect to the data analysis, we computed the mean
of relevance level reported by participants for each class, per domain. We then
computed the percentage of classes considered as relevant by the participants. We
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defined a thresholds to classify a class as relevant or irrelevant according to the
subjective opinion of the author. Therefore, this threshold may not be applied in
other contexts or considering more systems. However, to minimize this threat, we
analyzed a significant number of participants (i.e., 31 participants) and the top-ten
most frequent classes per domain.

External Validity. Regarding the study generalization, we present some relevant
issues. First, although most participants have at least one year of professional experi-
ence, our participant set may not represent the real context of software development.
However, the majority of participants has three or more years of experience. Such
participants are developers from different organizations. Second, from the four do-
mains analyzed, we received a significant number of responses only for two domain:
e-commerce and hospital. Therefore, our results may not be generalized to other do-
mains.

5.5 Final Remarks

This chapter describes a survey with 31 software developers of two domains: e-
commerce and hospital. This survey aims to assess the effectiveness of JReuse in
identifying relevant reuse opportunities given a domain. As a preliminary study, we
assess only the identification of classes by the proposed method. We present in detail
the survey settings, including the process of selection of participants and the question-
naire for participants to respond. A total of 31 participants answered the questionnaire,
22 for the e-commerce domain and 9 for the hospital domain.

Our study provided a positive results regarding the effectiveness of JReuse. We
observe that participants agree with 80% to 90% of the classes identified by our method
as reuse opportunities for the hospital and e-commerce domain. Therefore, our data
suggest that JReuse is able to effectively identify reuse opportunities with respect to
classes for different domains.

Finally, the chapter discusses the main threats to the validity of our study. These
threats include the the selection of appropriate participants and classes for analysis, and
also the generalization of our study findings. Chapter 6 presents the main conclusion
of this dissertation. The provided discussion encompasses both the empirical study in
controlled environment (Chapter 4) and the survey described in this chapter. The next
chapter also suggests future work.





Chapter 6

Conclusion

In this dissertation, we proposed JReuse, a method to identify reuse opportunities in
object-oriented software systems given a domain. We also presented a prototype tool
that implements the proposed method. JReuse aims to recommend software compo-
nents for reuse based on the most frequent entities from a set of systems in a given
domain.

We evaluated our method in two steps. First, we performed a empirical study
conducted in controlled environment. This study was conducted with a total of 72
software systems from four domains: accounting, restaurant, hospital, and e-commerce.
We collected all systems from GitHub. Second, we performed a survey with 31 domain
experts in two of the four domains: e-commerce and hospital.

With respect to the first evaluation, our findings suggest that JReuse is able
to identify several reuse opportunities for the analyzed domains, independent of the
analyzed domain and the size of the systems. The number of obtained results is sig-
nificant. Regarding the second evaluation, we observe based on the results of a survey
that the most frequent classes provided by JReuse are relevant for the two domains
under analysis.

We organized the remainder of this chapter as follows. Section 6.1 summarizes
the contributions of our study. Finally, Section 6.2 suggests future work.

6.1 Contributions

As a result of the work presented in this dissertation, we highlight the following
contributions.
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• JReuse, a method to support the identification of reuse opportunities in software
systems from a given domain. JReuse is based on lexical similarity analysis
of names of classes and methods, and relies on the analysis of object-oriented
software systems.

• A supporting tool that implements the proposed method for identification of reuse
opportunities. This tool is compatible with Java projects. The tool provides an
output with the classes and methods identified as reuse opportunities, as well as
absolute paths of the classes to be accessed in the source system.

• An evaluation of JReuse in two steps. First, we conducted an empirical study with
72 systems from four different domains (namely, accounting, restaurant, hospital,
and e-commerce), collected from GitHub. Second, we conducted a survey with
31 domain experts from GitHub for two domains.

6.2 Future Work

We intend to complement this research with the following future work.

• With respect to the proposed method, we aim to apply other lexical analysis tech-
niques to identify reuse opportunities. We may also implement a hybrid analysis
that combines lexical and semantic techniques for identification and recommen-
dation of source code statements as reuse opportunities.

• With respect to the JReuse supporting tool, we suggest an evaluation of the
graphical user interface in terms of usability. Moreover, we intend to assess the
performance of tool with respect to scalability with larger systems.

• Regarding the evaluation of JReuse, we may extend the survey with domain
experts to assess the method recommended by JReuse as reuse opportunities. In
addition, we suggest a comparison of the effectiveness of JReuse to the manual
identification of reuse opportunities conducted by developers.

• We suggest identify reuse opportunities in other programming languages. In
addition, we wish evaluate the feasibility in identify reuse opportunities when
there is a well-defined programming pattern in same enterprise systems.
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