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Resumo

Normalmente, a manutenção de um software gira em torno do tratamento de relatórios
que descrevem erros, ou bugs. Isto representa um grande esforço do time envolvido
nesta tarefa, especialmente em projetos de código aberto. Desenvolvedores destes pro-
jetos selecionam os bugs que desejam resolver em repositórios específicos. Geralmente,
o esforço geral não é coordenado e pode implicar em trabalho redundante. Além disso,
destaca-se que desenvolvedores enfrentam trocas de contexto o que pode impactar neg-
ativamente na sua respectiva produtividade. Assim, entende-se que se os desenvolve-
dores trabalharem continuamente em bugs similares, essas trocas de contexto podem
ser mitigadas. Nesta tese é proposto e avaliado um sistema de recomendação de bugs
que auxilie um desenvolvedor a tratar bugs similares, minimizando assim a troca de
contexto. Primeiramente, realizou-se uma caracterização do fluxo de tratamento de
bugs seguido pelos desenvolvedores Mozilla, onde foram identificadas oportunidades
de incluir recomendações de bugs similares, como por exemplo, que desenvolvedores
menos experientes gastam mais tempo procurando por um bug do que realizando a
sua correção. Em seguida, o sistema de recomendação proposto na tese, denominado
NextBug, foi avaliado usando bugs resolvidos no passado do ecossistema Mozilla. Os
resultados foram comparados a uma técnica de vanguarda para detecção de bugs du-
plicados e mostrou-se que o NextBug desempenha tão bem quanto esta técnica de
referência. Finalmente, se reporta um estudo de campo realizado para monitorar os
bugs corrigidos para sistemas Mozilla durante uma semana e se analisou e-mails en-
viados aos desenvolvedores que corrigiram estes bugs perguntado se eles trabalhariam
nas recomendações fornecidas pelo NextBug. Do total de 66 desenvolvedores, 39 (59%)
afirmaram que eles poderiam trabalhar nas recomendações. Além disso, 44 desenvolve-
dores (67%) expressaram interesse em usar o NextBug como um plug-in instalado no
repositório de bugs.

Palavras-chave: Manutenção de software, tratamento de bugs, relatório de erro,
sistema de recomendação, mineração de texto.
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Abstract

The maintenance work to be performed on software systems, whether feature develop-
ments or defects, is typically described as a bug or issue report. Bug handling represents
a major effort in most software projects, specially for popular open source systems. In
such systems, developers self-select bugs from the many open bugs in a repository when
they wish to perform work on the system. However, developers’ work is not coordinated
which can lead to redundant work when handling bugs. Moreover, developers face con-
text changes during their work which has a negative impact on their productivity.
Therefore, if developers are guided to work on similarly related bug reports, the con-
text changes can be mitigated, improving their productivity. In this thesis, we propose
and evaluate a recommender that suggests similar bugs that a developer can fix after
handling a giving bug. The recommender is inspired by techniques originally designed
to detect duplicated bug reports. To the best of our knowledge, there is currently no
other research aimed to recommend similar bugs to help developers on addressing more
bugs. First, we characterize the bug handling workflow followed by Mozilla developers,
when we identify an opportunity to include recommendations of similar bugs in this
workflow. For instance, we discovered that less skilled developers require more time
to find a bug than actually fixing it. Second, we evaluate the proposed recommender,
called NextBug, using past bugs resolved in the Mozilla ecosystem and we compare
the results with a state-of-the-art technique for detecting duplicated bugs. The results
show that NextBug performs just as well as this more complex technique. Finally, we
report a field study where we monitored the bugs fixed for Mozilla during a week. We
sent mails to the developers who fixed these bugs, asking whether they would consider
working on the recommendations provided by NextBug; 39 developers (59%) stated
that they would consider working on these recommendations; 44 developers (67%) also
expressed interest in seeing NextBug plugin installed in their bug tracking systems.

Palavras-chave: Software maintenance, bug handling, bug report, recommendation
system, text mining.
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Chapter 1

Introduction

In this chapter, we start by stating our problem and motivation (Section 1.1). Next,
we discuss our objectives, goals, and intended contributions (Section 1.2). Then, we
present our current publications (Section 1.3). Finally, we present the outline of this
thesis (Section 1.4).

1.1 Problem and Motivation

The importance of software maintenance in software engineering is well-established, as
well as the costs and complexity inherent to this activity [Tan and Mookerjee, 2005;
Mookerjee, 2005; Aziz et al., 2009; Junio et al., 2011]. In most software organiza-
tions, systems are maintained periodically, i.e., maintenance requests1 are grouped and
implemented as part of software projects [Tan and Mookerjee, 2005; Marques-Neto
et al., 2013]. Studies show the advantages of periodic maintenance such as dilution
of costs, decrease of system degradation, and better use of software engineering prac-
tices [Banker and Slaughter, 1997; Tan and Mookerjee, 2005]. However, open-source
projects typically adopt continuous maintenance policies, where the maintenance re-
quests are addressed by developers with different skills and commitment levels, as soon
as possible, after being registered in an issue tracking system [Mockus et al., 2002;
Tan and Mookerjee, 2005; Liu et al., 2012]. Therefore, maintenance in open-source
systems usually does not take benefit of the gains of scale that happen when requests
are handled in batch [Tan and Mookerjee, 2005].

1In this thesis, we preferably use the term bug or issue to refer to maintenance work items such
as tasks, requests, reports, defects, enhancements, tickets, etc. The main reason is that bug is the
term used in the Mozilla systems we analyze in this research. We also use issue because it is a very
common terminology among related work.

1



2 Chapter 1. Introduction

Another problem faced by popular open-source systems is related to the issue
reporting process. Usually, certified developers, as well as common users, can report any
fault perceived in the software. However, this process is not coordinated, which results
in a high amount of reported issues from which many are invalid or duplicated [Liu
et al., 2012]. In 2005, a certified maintainer from the Mozilla Software foundation made
the following comment on this situation: “everyday, almost 300 bugs appear that need
triaging. This is far too much for only the Mozilla programmers to handle” [Anvik et al.,
2006]. Our data indicates that, in 2012, the number of reported issues for the Mozilla
projects increased approximately 110% when compared to 2005. In this context, any
process or tool that improves issue processing can provide a relevant impact on the
maintenance and evolution of open-source systems.

Furthermore, software developers make several changes of context in a typical
workday. These changes normally happen due to meetings, mails, instant messaging,
etc., or when a given task is concluded and they need to choose a new task to work
on. Regardless the reasons, the negative effects of context changes on developers’
productivity are well-known and studied. For example, in a recent survey with industry
developers, more than 50% of the participants answered that a productive workday is
one that flows without context changes and having no or few interruptions [Meyer
et al., 2014]. Another study shows that developers spent at least two thirds of their
time in activities related to acquiring task context, i.e., searching, navigating, and
understanding the code relevant to the task at hand [Ko et al., 2005]. We argue
that this time can be reduced if developers consistently decide to work on a new task
similar to a previously concluded one. More specifically, context changes are reduced
by guiding developers to work on a set of bugs B0, B1, ..., Bn, where Bi requires
changes on parts of the system related to a previous bug Bi−1, for i > 0. By following
this workflow, context changes are mitigated because the order of the bugs naturally
reproduces the work performed under a periodic maintenance policy, i.e., a bug that
is selected, comprehended, and fixed at a given time helps on further bug corrections.
The same principle also applies when fixing such bugs simultaneously.

Therefore, we hypothesize that developers contributing to software projects can
work more efficiently if support is provided to work on similar bugs, i.e., bugs requiring
changes in the same parts of the system. This hypothesis is better suited for open
source projects where developers have the liberty to choose most of their work [Mockus
et al., 2002]. By working on similar bugs, developers avoid the effort of locating and
understanding different code fragments on each bug they volunteer to work on [Kersten
and Murphy, 2006; Parnin and Rugaber, 2011]. Moreover, since hundreds of bugs
appear daily in large open source projects, developers may not notice bugs in the
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tracking system that are very similar to one she is currently working on (or planning
to work on). Therefore, productivity can also increase by reminding developers of
other bugs that are potentially similar to one she is currently browsing in the tracking
system.

To clarify our motivation, consider the following Mozilla bug that was fixed by a
developer on February 12, 2009:2

Bug 475327 - [Linux] New Tab button is still right side of the Tab bar

When the developer fixed this bug, another bug with a similar description was
also available in Mozilla’s tracking system.

Bug 474908 - Dragging a tab in a window with only one tab detaches the tab

This second bug was fixed by the same developer of the first one, 24 days after
the first bug. Fixing the second bug required changes in one XML file that also was
changed by the developer when fixing the first bug. In the interval between working
on these bugs, the respective developer remained active, fixing another 12 non-related
bugs. To find out how often such a situation occurs, we retrospectively analyzed bugs
reported for Mozilla systems from January 2009 to October 2012. For 67% of the bugs,
just after the developers fixed a bug B, they chose to work on a bug B′′ even though
a more similar bug B′ in terms of changed files was available in the tracking system.
As a result, for 43K Mozilla bugs, a developer may have required less context changing
and been more productive by choosing a different bug.

1.2 Objective and Contributions

Our main objective is to design and evaluate an approach to recommend similar bugs
to maintainers based on the textual description of each bug stored in issue tracking
platforms, such as Bugzilla and Jira. The recommendations should be presented each
time a developer browses the page containing the main description of a bug, with a
minimal runtime cost. The intention is to remind the developer about bugs similar to
the one he/she is browsing. In our previous motivating example (Section 1.1), the page
describing Bug 475327 should be extended with a list of bugs with a similar textual
description, like Bug 474908.

More specifically, suppose that a developer manifests interest in a bug with a
short description q (a textual document). In this case, we intend to rely on text

2 https://bugzilla.mozilla.org/show_bug.cgi?id=475327, verified 2016-05-16.

https://bugzilla.mozilla.org/show_bug.cgi?id=475327
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mining techniques to retrieve open bugs with short descriptions dj similar to q and to
recommend them to the maintainers.

We claim the proposed approach is compatible with the current software main-
tenance process followed by open-source systems for the following reasons: (a) it is
based on recommendations, and therefore maintainers are not required to accept extra
bugs to fix; (b) it is fully automatic and unsupervised and therefore does not depend
on human intervention; (c) it relies on information readily available in issue track-
ing systems and therefore requires little effort to compute. Despite that, assuming
the recommendations effectively capture similar bugs, we claim they can contribute to
introduce gains of scale similar to the ones achieved with periodic maintenance policies.

The proposed recommender is based on techniques originally designed for detect-
ing duplicated bug reports. Even tough contemporaneous and more complex techniques
for detecting duplicate bugs usually perform better than simpler ones, our results show
this is not the case for similar bugs recommendations. More specifically, our results
show that the technique proposed in the thesis—which is lightweight and simple—can
perform just as well as more complex techniques. Therefore, our focus is to analyze the
feasibility of similar bugs recommendations and not to argue that our approach fosters
productivity gains, even though it is possible to see indirect evidence of that effect.

Our inspiration for this work are the recommendation systems widely used by
online stores (e.g., Amazon)3 which serves as an interesting analogy to our approach.
Online stores recommend other “related” products whenever you browse a product.
For example, when we browse a book on Amazon, other similar books on related
subjects are also presented (Figure 1.1). Even though not every client accepts the
recommendations, those that do contribute to increase the store’s sales. Similarly, we
propose in this thesis a recommendation system to improve the number of bugs handled
by maintainers of open source systems.

The intended contributions of this thesis are: (a) a novel application of bug mining
techniques to recommend similar bug reports to developers; (b) a tool to enhance a bug
tracking system with recommendations of similar bugs; (c) a lightweight technique to
characterize the maintenance process followed by software developers, which showed the
importance of supporting developers on finding more bugs of interest; (d) a quantitative
study on a large-scale bug repository, which compares our approach with a state-of-
the-art technique and shows that it is possible to predict similar bugs; (e) a survey
study with Mozilla developers, which showed that developers can recognize similar
bugs recommendations.

3 http://www.amazon.com/, verified 2016-05-16

http://www.amazon.com/
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Figure 1.1: Amazon screenshot adapted to show the books’ recomendation.

In the quantitative study, we analyze 65K Mozilla and 2.6K Mylyn bugs by ap-
plying our recommender technique. We check whether the recommendations provided
by the recommender share a subset of the same source files. The results show that
we were able to predict bugs whose fixes indeed share the same source files, and as a
consequence, context change can be mitigated by working on them.

In the qualitative study, we surveyed 66 Mozilla developers, by presenting them
to similar bugs recommendations (that were still unresolved in the system) and by
asking them two questions. The main goal of this survey is to verify if developers can
recognize similar bugs recommendations. We also plan to reveal the developers opinion
on extending their bug tracking system with similar bugs recommendations.

1.3 Publications

The work described in this thesis includes material from the following publications:

• Henrique Rocha, Guilherme de Oliveira, Humberto Marques-Neto, Marco Túlio
Valente. Characterizing Bug Workflows in Mozilla Firefox. 30th Brazilian Sym-
posium of Software Engineering (SBES), pages 1-10, 2016.
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• Henrique Rocha, Marco Túlio Valente, Humberto Marques-Neto, Gail Murphy.
An Empirical Study on Recommendations of Similar Bugs. 23rd IEEE Interna-
tional Conference on Software Analysis, Evolution, and Reengineering (SANER),
pages 46-56, 2016.

• Henrique Rocha, Guilherme de Oliveira, Humberto Marques-Neto, Marco Túlio
Valente. NextBug: A Bugzilla Extension for Recommending Similar Bugs. Jour-
nal of Software Engineering Research and Development (JSERD), vol. 3, issue
1, pages 1-14, 2015.

• Henrique Rocha, Guilherme de Oliveira, Humberto Marques-Neto, Marco Túlio
Valente. NextBug: A Tool for Recommending Similar Bugs in Open-Source
Systems. Brazilian Software Conference (CBSoft) – Tool Track, pages 53-60,
2014 (best tool award).

• Henrique Rocha, Humberto Marques-Neto, Marco Túlio Valente. Agrupamento
Automático de Solicitações de Manutenção. First Latin-America School of Soft-
ware Engineering (ELA-ES), pages 9-9, 2013 (3rd best PhD work award).

The following publications represent earlier research efforts during this Ph.D:

• Henrique Rocha, Cesar Couto, Cristiano Maffort, Rogel Garcia, Clarisse Simoes,
Leonardo Passos, and Marco Tulio Valente. Mining the impact of evolution
categories on object-oriented metrics. Software Quality Journal, vol. 21, issue 4,
pages 529-549, 2013.

• Hugo Brito, Humberto Marques-Neto, Ricardo Terra, Henrique Rocha, and
Marco Tulio Valente. On-the-fly extraction of hierarchical object graphs. Journal
of the Brazilian Computer Society, vol. 19, issue 1, pages 15-27, 2013.

• Henrique Rocha and Marco Tulio Valente. How Annotations are Used in Java:
An Empirical Study. In 23rd International Conference on Software Engineering
and Knowledge Engineering (SEKE), pages 426-432, 2011.

1.4 Outline of the Thesis

We organized the remainder of this work as follows:

• Chapter 2 describes background information on software maintenance, mainte-
nance policies, issue tracking systems, and information retrieval techniques. We



1.4. Outline of the Thesis 7

also discuss work on issue reports, including characterization and visualization
techniques, work aiming to detect duplicate issues, to assign issues to developers,
and to group similar issues.

• Chapter 3 describes the Mozilla maintenance process focusing on its bug han-
dling workflow. We analyze and characterize a large dataset of Mozilla bugs. We
also present and discuss a lightweight technique, called Bug Flow Graphs, aimed
to better understand and visualize the workflow followed in the maintenance of
open source systems. Finally, we perform a characterization study focusing on
the workflow followed when fixing bugs in the Mozilla ecosystem.

• Chapter 4 presents our approach to recommend similar bug reports to devel-
opers. We also present a supporting tool, called NextBug, implemented as a
Bugzilla addon.

• Chapter 5 presents a retrospective study to evaluate our approach in a quanti-
tative dimension. First, we compare NextBug against REP [Sun et al., 2011], a
state-of-art technique to detect duplicate bugs. Second, we show how NextBug
performs on a smaller system (Mylyn), which has fewer bugs.

• Chapter 6 shows the results of a field study conducted with Mozilla developers,
where they were presented with similar bugs provided by NextBug and asked a
few questions about them.

• Chapter 7 presents the main conclusions and outlines future work ideas.





Chapter 2

Background and Related Work

In this chapter, we present background information related to this thesis. First, we
present central concepts on Software Maintenance (Section 2.1) and Information Re-
trieval (Section 2.2). Then, we present work on bug characterization and visualization
(Section 2.3) that is related to our characterization study in the next chapter. We
also discuss techniques to detect duplicated bug reports (Section 2.4), and to assign
bug reports to developers (Section 2.5), which are related to our work. Moreover, we
present a brief review on studies that also work with similar bug reports (Section 2.6).
Besides, we provide an overview on Recommendation Systems on Software Engineer-
ing (Section 2.7), since our approach is based on recommendation system principles.
Finally, we conclude with general remarks on the discussed topics (Section 2.8).

2.1 Software Maintenance

Software maintenance is an important activity in a software’s life cycle. Basically,
it includes all the tasks performed to modify a software while preserving its in-
tegrity [ISO/IEC 14764, 2006; ISO/IEC 12207, 2008]. Normally, understanding the
software which is being modified corresponds to a great part of a maintenance ef-
fort [Tan and Mookerjee, 2005]. The importance of maintenance is well known both in
the academia and in the industry. The Lehman and Belady [1985] laws point out that
a system must be continuously adapted otherwise it becomes progressively less satis-
factory until it is discarded. The complexity of maintenance tasks is also well-known.
Usually, maintenance activities are one of the most problematic parts of a software
life cycle due to their inherent complexity [Tan and Mookerjee, 2005; Ahn et al., 2003;
Heales, 2002].

Software maintenance is also a costly process [Tan and Mookerjee, 2005]. There

9
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are several studies that highlight and discuss the costs associated with maintenance
tasks. Coleman et al. [1994] claim that 40% to 60% of production costs are devoted
to maintenance. Other study presents a worse case scenario, showing that software
maintenance activities may consume up to 80% of the total costs during a system’s life
time [Alkhatib, 1992]. Erlikh [2000] shows that for legacy systems up to 90% of the
system’s resources are consumed by maintenance tasks. There are also studies that
highlight the increasing amount of money spent in software maintenance activities. In
the 1980’s, it was estimated that annually US$ 30 billion was spent with maintenance
tasks worldwide [Chan et al., 1996; Swanson and Beath, 1989]. In the 1990’s, IEEE
estimated that US companies expended over US$ 70 billion per year with software
maintenance [Sutherland, 1995]. We did not find recent studies with more current
estimates on the costs of maintenance activities. However, there are no evidences that
they have decreased.

Software maintenances is typically performed based on a proposed Modification
Request (or Change Request). According to ISO/IEC 14764 [2006] these requests are
classified into two categories: correction or enhancement. Correction activities can be
sub-categorized into corrective or preventive tasks. Enhancement activities are also
sub-categorized further into adaptive or perfective. Figure 2.1 shows an overview of
this classification [ISO/IEC 14764, 2006].

Figure 2.1: Modification Requests classification. Source: ISO/IEC 14764(2006)

Correction maintenance involves the modification of a software to fix a prob-
lem. In corrective tasks, the problem is only discovered after the software product is
released to end-users. Frequently, corrective maintenance requests represent a signifi-
cant portion of all requests [Tan and Mookerjee, 2005]. On the other hand, preventive
maintenance tasks try to anticipate the problems before they become operational faults
perceived by the users. Enhancement maintenance is the modification of a software to
keep its value when dealing with a changing environment. Adaptive tasks provide nec-
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essary changes in which a software must operate and perfective tasks intend to improve
the software beforehand.

There are two policies to deal with software maintenances: continuous or periodi-
cally. Under a continuous policy the modification requests are handled in a ad-hoc way,
i.e., as soon as possible after the assignment of a request to a maintainer. On the other
hand, under periodic policies, the maintainers handle the software maintenance at pre-
defined time intervals and, thus, several requests are addressed together. Open-source
systems most often employ a continuous maintenance policy, while organizations prefer
to adopt a periodic policy [Tan and Mookerjee, 2005; Junio et al., 2011].

As this thesis focus on maintenance tasks addressed following a periodic policy,
we discuss the central characteristics of such policies in Section 2.1.1.

2.1.1 Benefits of Periodic Maintenance

Most open-source systems adopt an uncoordinated reporting process, where both users
and testers can report a modification request [Liu et al., 2012]. This practice usually
results in a continuous maintenance process, where maintainers address the change
requests a soon as possible.

On the other hand, commercial software is often maintained under a periodic
policy. Basically, the preference for this policy happens due to two reasons: scale eco-
nomics and software degradation [Tan and Mookerjee, 2005]. The first reason is the
gain obtained with scale economics. Periodic policy provides scale economics by reduc-
ing the fixed costs inherent to maintenance activities by 36% [Banker and Slaughter,
1997]. Other reason for following periodical policies is the mitigation of system degra-
dation, since each maintenance activity may contribute to the structural degradation
of a system, as pointed out by Lehman and Belady [1985]. Thus, instead of perform-
ing maintenance tasks after each change request, it is better to optimize the tasks
implementing more change requests in each maintenance cycle [Tan and Mookerjee,
2005].

Banker and Slaughter [1997] conducted an empirical evaluation to measure soft-
ware maintenance productivity. They investigated how maintenance can be improved
by analysing maintenance projects in a large financial services organization. Their
findings indicate that scale economics can be achieved by clustering maintenance re-
quests into larger projects. On the other hand, as pointed out by the authors, batching
several maintenance requests may incur on opportunity costs for delaying the cor-
rection. According to the authors, grouping maintenance requests has the potential
to reduce the maintenances costs up to 36%. Tan and Mookerjee [2005] presented a
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study comparing two types of periodical maintenance policies: uniform and flexible.
Uniform policy performs periodical maintenance tasks at fixed time intervals, while
flexible policy perform maintenance tasks at varying intervals. The authors propose a
model that considers previous empirical studies to reduce the costs of maintenance and
replacement activities. They evaluated several parameters and scenarios on periodical
maintenance such as: percent of reuse of original code, system degradation, waiting
costs, productivity improvements, and useful life of the system. The results showed
several situations where flexible policies perform better than uniform ones.

Junio et al. [2011] evaluate the advantages of grouping maintenance requests to
achieve scale economics. They proposed a process, called PASM, that fosters the usage
of best software engineering practices when handling maintenance requests. The au-
thors applied their approach in the information technology department at PUC Minas.
The results showed that after adopting PASM, maintainers spent more time on soft-
ware engineering activities and less on codification tasks. Marques-Neto et al. [2013]
proposed a quantitative approach to evaluate software maintenance services. Their ap-
proach is an adaptation of a method originally proposed to characterize the workload of
e-commerce services. They rely on clustering techniques to generate a compact model
that represents maintenance tasks workflow. The authors claimed the approach can
help organizations to better understand and improve their own maintenance process.

2.1.2 Context Changes

In software development, developers are more productive when focusing on related
tasks and topics. Context changes may interrupt a developer focus and, therefore,
affect his/her productivity. In fact, the negative impacts of context changes have been
revealed by several researchers [Meyer et al., 2014; Murphy, 2014]. Most developers
agree that context changes are bad for their productivity, as 72% responded in a sur-
vey [Meyer et al., 2014]. Moreover, over 50% of software developers considered few
interruptions and context changes as a definition for a productive day [Murphy, 2014].
Ko et al. [2005] measure the amount of time developers spend understanding the code
when working on maintenance tasks. They measured the percentage of time developers
spend on activities such as reading code or API, and navigating dependencies. The
results showed that, on average, developers spend two thirds of their time in activities
related to task context.

After analyzing 10,000 programming sessions of 86 programmers, Parnin and Ru-
gaber [2011] observed that only 7% of the sessions do not require navigation to other
locations prior to editing. One approach introduced to reduce the cost of context
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changing is Eclipse Mylyn [Kersten and Murphy, 2006]. As a developer works on an
indicated task, Mylyn tracks the artifacts touched and changed, building a degree-of-
interest model that describes how important each part of each artifact is to the task.
This model is stored per task and when a task change occurs, Mylyn can re-display to
a developer the artifacts earlier worked on as part of that task. Cassandra is a task rec-
ommender that aims to schedule the maintenance work in order to minimize conflicting
changes in parallel software development [Kasi and Sarma, 2013]. The system relies
on Mylyn to get contextual data, which is communicated to a centralized scheduler
component. This component identifies potential conflicts in order to recommend task
orders that restrict dependent tasks that share common files from being concurrently
edited.

We claim that the recommendation of similar bus proposed in this thesis also
helps to reduce context changes and consequently improve developers’ productivity.
If developers consistently work on similar tasks (either sequentially or concurrently),
their time caused by context changes will decrease.

2.1.3 Issue Tracking Systems

Issue tracking systems (ITS) are software systems that maintain a dataset of main-
tenance modification requests (i.e., problems, issues or bug reports) for one or more
projects. Usually, these systems provide a web interface that allows users to interact
with the tracking system and the reported issues [Anvik et al., 2006]. Such interaction
may include different operations like reporting a new issue, sending an attachment file,
or providing comments for an issue.

Most open-source projects use an ITS to support their maintenance processes.
The ITS provides a central knowledge repository about the issues handling progress. It
also serves as a communication channel for geographically distributed developers and
users [Anvik et al., 2006; Ihara et al., 2009]. Currently, there are several ITSs that are
used in software maintenance and development. Following, we describe some of the
most popular systems:

• Bugzilla:1 is a free ITS developed by Mozilla, implemented in Perl. According to
Bugzilla web site, there are over 1200 organizations or projects using its system.

• Jira:2 is a commercial system developed by Atlassian. Jira also provides man-
agement features integrated with its bug tracking features.

1 http://www.bugzilla.org, verified in 2016-05-16.
2 https://www.atlassian.com/software/jira, verified in 2016-05-16.

http://www.bugzilla.org
https://www.atlassian.com/software/jira
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• Mantis:3 is a another free and open-source ITS implemented in PHP.

• Trac:4 is an open-source ITS that supports integration with version control
platforms such as Subversion, Git, Mercurial, among others. Trac also supports
some project management tools.

• RedMine:5 is another ITS that provides project management features along
with issue tracking services. Another important feature is integration with version
control systems.

The recommender proposed in this thesis uses the Bugzilla repository. However,
it is possible to generalize our proposal to other ITSs that maintain similar issue data.

2.2 Information Retrieval

Information retrieval (IR) deals with the representation, storage, and organization of
structured or unstructured data [Baeza-Yates and Ribeiro-Neto, 1999; Raghavan and
Wong, 1986]. As IR techniques handle textual documents [Baeza-Yates and Ribeiro-
Neto, 1999; Wang et al., 2008], and most artifacts required by a software maintenance
process—including code—are textual, IR techniques can be used to handle such doc-
uments [Marcus and Menzies, 2010]. Our approach relies on IR techniques to extract
semantic information from issue reports.

Usually, applications that employ IR techniques need to be properly modeled.
This modeling consists in building a logical framework for representing the documents
in the dataset. An IR model also defines a ranking function to quantify the similarity
between documents and queries (user information needs). The ranking function is used
to classify the documents, ordering by their relevance to the query (Figure 2.2).

Formally, an IR model is as a quadruple [D,Q, F,R(qi, dj)] where D is a logical
representation for the documents in the dataset, Q is a logical representation for the
user queries, F is a framework for modeling documents and queries, and R(qi, dj) is a
ranking function between a query qi and a document dj.

Most IR models adopt index terms to represent the data (documents and queries).
In a general form, any word with a semantic significance can be an index term. Thus,
index terms summarize the textual content adding simplicity to the documents and
queries representation. Since not every term is equally useful to represent the data,

3 http://www.mantisbt.org, verified in 2016-05-16.
4 http://trac.edgewall.org, verified in 2016-05-16.
5 http://www.redmine.org, verified in 2016-05-16.

http://www.mantisbt.org
http://trac.edgewall.org
http://www.redmine.org
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Figure 2.2: Modeling in the Information Retrieval Process.

it is a common step for several models to assign numerical weights to each indexed
term [Raghavan and Wong, 1986].

2.2.1 Pre-processing Index Terms

Some works recommend to apply pre-processing techniques to better generate the in-
dex terms and improve the data representation and the overall IR process [Baeza-Yates
and Ribeiro-Neto, 1999; Runeson et al., 2007; Wang et al., 2008; Sun et al., 2010]. Pre-
processing techniques usually include: tokenization, stop-words removal, and stem-
ming. Tokenization is the process of receiving a sequence of characters as input and
producing a stream of tokens as output. A token is a string of alphanumeric characters
without delimiters [Sun et al., 2010]. Stop-words are very common words occurring
in most documents in the dataset and, because of that, their information for IR has
little significance. These words occur in every document and have little relation to the
documents textual content. Most of these words are prepositions, conjunctions, or pro-
nouns, such as: the, of, that, etc. If stop-words are not removed from the documents,
they could negatively affect the ranking function [Wang et al., 2008; Runeson et al.,
2007]. As a document may contain different grammatical forms of a word, stemming
tries to reduce each word to its radical form by removing affixes and other lexical com-
ponents. The reason to perform stemming is because different forms of words generally
have similar semantic information. For instance, the stemming process would reduce
“crashing” and “crashed” into “crash”, and an automated process could easily identify
both words as the same data [Sun et al., 2010; Runeson et al., 2007].
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2.2.2 Vector Space Model

Previous studies that apply IR techniques to issue reports have adopted the vector
space as its IR model [Ko et al., 2006; Runeson et al., 2007; Wang et al., 2008; Alipour
et al., 2013]. The vector space model (VSM) is a classic modeling approach to process
documents and queries by decomposing them into t-dimensional vectors, where t is
the number of different index terms in the document collection. In the classical VSM,
the index terms are assumed to be mutually independent [Baeza-Yates and Ribeiro-
Neto, 1999; Raghavan and Wong, 1986]. The weights wi are positive real numbers that
represent the i -th indexed term in the vector. The weights calculation is based on
the following observations: (i) high frequency terms are more important for describing
documents (term frequency – tfi), and (ii) terms that occur in most documents are
less important to discriminate relevant documents (inverse document frequency – idfi).
The Equation 2.1 uses the term frequency and the inverse term frequency to calculate
wi , which is referred as tf-idf weighting scheme [Baeza-Yates and Ribeiro-Neto, 1999].

wi = tfi × idfi = (1 + log2 fi)× log2

N

ni

(2.1)

where fi is the frequency of the i -th term in the document, N is the number of doc-
uments in the collection, and ni is the number of documents in which the i -th term
occurs.

The similarity between the vectors of a document dj and a query q is described
by the ranking function in Equation 2.2:

Sim(dj, q) = cos(Θ) =

−→
dj • −→q

||
−→
dj || × ||−→q ||

=

∑t
i=1wi,d × wi,q√∑t

i=1(wi,d)2 ×
√∑t

i=1(wi,q)2
(2.2)

This function is often called cosine similarity because it measures the cosine of the
angle between two vectors as illustrated in Figure 2.3. Since all weights are greater or
equal to zero, we have 0 ≤ Sim(dj, q) ≤ 1, where zero indicates that there is no relation
between the two vectors, and one indicates the highest possible similarity, i.e., both
vectors are actually the same.
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Figure 2.3: Cosine Similarity.

2.3 Bug Characterization and Visualization

In this section, we present works aiming either to characterize or to visualize bugs.
These work share common goal to help developers better understand the bugs reports
and the maintenance process.

Guo et al. [2010] analyse the factors that could affect the fixing of bugs in Win-
dows 7 and Vista. They also performed a survey with 358 developers, which showed
how reputation and seniority affect the chances of bugs to be fixed. Based on the
characterization, the authors propose a prediction model to identify the probability of
a new bug to be fixed. Their prediction showed 68% of precision and 64% of recall for
Windows 7 bug fixes.

Zimmermann et al. [2012] characterize which bugs are reopened for Windows 7
and Vista. This is a continuation on their previous work on characterizing fixed
bugs [Guo et al., 2010]. Basically, they show the impact of different bug report fea-
tures on the probability of bug reopening. Joorabchi et al. [2014] characterize non-
reproducible bugs from six systems, for a total of 32K bugs. Their study tries to
understand the causes for a bug to be marked as non-reproducible. They classify
non-reproducible bugs into six categories, and show workflow patterns for them.

D’Ambros et al. [2007] propose an approach to follow the evolution and main-
tenance of systems by looking at the bug life cycle. They present two types of visu-
alization techniques: system radiography and bug watch. Dal Sassc and Lanza [2013]
propose a web visual analytics platform, called in*Bug, to help visualize bug reports
stored in tracking systems. Jeong et al. [2009] investigate the process called Bug Toss-
ing, i.e., when bug reports are assigned to the “wrong” developer and later they are
reassigned to a more proper developer. The graphical representation from Jeong et al.
[2009] focus only on the bug tossing, which shows developers and their relations.
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Minelli and Lanza [2013] developed a tool, called DFlow, to visualize the workflow
of developers. DFlow is implemented in Pharo Smalltalk, and it analyses the developers
tasks inside an IDE.

Ihara et al. [2009] propose a graph based visualization technique to analyze bug
resolution process. They propose a general model and the bug workflow is adapted to
fit such model. Therefore, it is a more generic and automated technique. However,
the adaption do not accurately represent all the states and transitions of the workflow
followed by developers.

Critical Assessment: The presented characterization studies analyze a specific type
of bug report (fixed, reopen, or non-reproducible) to understand the bugs and them
work towards a prediction model. The visualization techniques tries to help managers
and developers by showing the bugs to better analyze and understand the maintenance
process.

2.4 Detecting Duplicated Bug Reports

Recent studies have focused on finding duplicated issue reports in bug tracking systems.
Duplicated reports can hamper the bug triaging process and may waste maintenance
resources [Cavalcanti et al., 2013]. Typically, studies for finding duplicate issues employ
traditional information retrieval techniques such as natural language processing, vector
space model, and cosine similarity. For example, Ko et al. [2006] analyze the linguistic
characteristics of bug reports. They proposed an approach that uses natural language
processing to parse the bug reports’ summaries and suggest a better structured report.
They also claim that their approach can help in finding similar bug reports. Although,
they did not provide any experimental evaluation on this.

Runeson et al. [2007] worked only with natural language data in their approach to
find duplicated reports. They used VSM and measured similarity using three different
metrics: Cosine, Jaccard, and Dice. Their experiments showed better results using
the Cosine Similarity when compared to the other two. To evaluate the approach,
they measured only recall rate achieving around 31% for their top-5 list of duplicated
reports. They also conducted interviews with maintainers who evaluated positively the
approach.

Wang et al. [2008] used a trace with execution data with issues’ reports to find
duplicated reports. The authors tested three heuristics combining both execution data
and natural language information. After the experiments they chose a Classification-
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Based Heuristic which favors the natural language information. The natural language
processing uses the classic Vector Space Model (VSM) and Cosine Similarity to process
the bug reports. They also analyzed the impact of using summaries and full descriptions
to detect duplicates. Their dataset was composed by bug reports from two open-source
systems: Eclipse and Firefox. The Eclipse dataset has 220 bug reports, from which
44 were duplicates manually inserted for testing. The Firefox dataset is composed by
1,492 bug reports. In this dataset, they used the first 50 days of reports as a training
set (744 bugs) and the remaining as a test set (754 bugs). The authors measured high
recall rate values (between 55% and 95%) for their approach.

Jalbert and Weimer [2008] proposed an approach for bug duplication detection
that uses a model classifier employing textual semantic information, linear regression,
and graph clustering. The textual information processing follows different steps when
compared to other bug duplication studies. The authors used a different weight formula
and they not used an Inverse Term Frequency (IDF). They performed a statistical anal-
ysis that indicates the IDF weight gives worst results for the bug duplication problem.
They used a graph clustering technique originally designed for social networks and ap-
plied it to issue reports. In this case, the bug reports represent the nodes and the edges
connect nodes with similar textual information. The authors build a classifier based
on linear regression that uses the clusters and textual information as features. The
evaluation was based on Mozilla bug reports from February 2005 to October 2005, for
a total of 29,000 bug reports. They evaluated their approach measuring the recall rate,
which performed only 1% better than the approach considered as baseline [Runeson
et al., 2007].

Sun et al. [2010] proposed an approach to detect duplicate reports by using dis-
criminative models. First, they preprocessed each issue using standard techniques
(stemming, stop-words removal, etc.) and organized them into a hash-map like struc-
ture. Then, the approach trains a classifier based on a Support Vector Machine (SVM)
algorithm. A noteworthy aspect of this work is the analysis of features selection and
several possible similarity measurements. Their evaluation showed a recall rate around
65% for a recommendation list with 20 reports. According to the authors, this recall
rate represents an improvement up to 43% over previous techniques.

Sun et al. [2011] proposed a retrieval function, called REP, to measure the sim-
ilarity between bug reports and to improve the detection of duplicate reports. The
REP function analyses both textual and categorical information of each report. The
authors also extended the BM25F [Robertson et al., 2004] method that considers the
query weights. They applied their method to bug reports from three open-source sys-
tems: Eclipse, Firefox and OpenOffice. The Eclipse dataset was composed by over
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200K bug reports. Their evaluation measures the recall rate@k and the mean average
precision. They show a small improvement of their extended BM25F method over the
classic one. We compare REP to our proposed recommender in Chapter 5. We also
describe REP in more detail in Section 5.1.2.

Tian et al. [2012] proposed another approach to classify whether a bug report
is a duplicate or not. Initially, the authors discussed that there are basically two
approaches for duplicated report detection: report retrieval and report classification.
Report retrieval searches for duplicate reports in a similar way as information retrieval
searches for documents. Report classification address the task as a classification prob-
lem and assign a label (duplicate or not) to new reports. The authors claim that such
lines complement each other. Despite that, their approach falls on the classification
category. They implemented several extensions over the work of Jalbert and Weimer
[2008] such as: (i) a variant of the BM25F method, (ii) a relative similarity measure to
better differentiate a duplicate report from a similar one, and (iii) using the product
information on each bug report to improve the similarity measurement. They also
compared their results to the work of Jalbert and Weimer [2008], and their approach
showed a better accuracy and F-score. Their evaluation results showed accuracy and
F-score values of 24% and 38% respectively.

Nguyen et al. [2012] proposed an approach, called DBTM, to detect duplicate
bug reports that combines features provided by information retrieval and topic-based
techniques. The authors used a machine learning generative process called Latent
Dirichlet Allocation (LDA) to extract the topic-based information presented in bug re-
ports. The information retrieval technique used to extract the textual information was
the BM25F. Both techniques were combined using another machine learning technique
called Ensemble Averaging. They used the same dataset presented by Sun et al. [2011].
The authors measured only the recall rate in their evaluation and their results were
better than the ones from Sun et al. [2011].

Liu et al. [2012] proposed an approach to improve the search quality in bug
tracking systems. The authors claim that searching for reports is an important step for
bug triaging and to find duplicate reports. The approach uses a supervised machine
learning technique to better rank the bug reports and therefore improve the search
quality. Their evaluation measured the average rank of the results, mean average
precision, and F-score. They achieved better values for all measured metrics over other
searching techniques.

Alipour et al. [2013] analyzed approaches for detecting duplicated bugs using
information retrieval techniques. They also proposed a more accurate approach for
detecting duplicated issues by exploring the bug’s contextual information along with
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the software architecture and quality guidelines. The approach uses BM25F [Robert-
son et al., 2004] method and cosine similarity to retrieve the textual, categorical, and
contextual information. The authors then compare the following classifiers algorithms:
0-R, C4.5, KNN (nearest neighbors), Logistic Regression, and Naive Bayes. The dataset
used for their experiments is composed by five years of bug reports from the Android
operating system, for a total of 37,236 reports with 1,063 duplicates. Their evaluation
measured accuracy (precision), kappa (which measures the agreement between the clas-
sifier and the classes), and the area under a Receiver Operation Characteristic (ROC)
curve. They report that the algorithm C4.5 achieved the better results, presenting high
precision values (above 84%).

Cavalcanti et al. [2013] presented an exploratory study on bug repositories and
the task of finding duplicate bug reports. The authors used nine software projects
with different characteristics. The bug duplication problem was found in all of the
studied projects. Their work showed many guidelines that may contribute to reduce
the number of duplicates and improve the techniques used to detect them.

Critical Assessment: the presented works aim to identify duplicate issue reports by
using information retrieval techniques. Most of them rely on the Vector Space Model
and on standard pre-processing techniques (e.g., stemming) to extract and model the
information in each issue. The similarity measurement is usually either a cosine or a
customized BM25F. None of the discussed works deal with similar reports.

2.5 Assigning Bugs to Developers

Approaches to assign the most suitable developer to correct a software issue are also
reported in the literature. Anvik et al. [2006] proposed a recommendation system
to assign bug reports to developers. Their approach is based on supervised machine
learning that requires training to create a classifier. This classifier assigns the data
(bug reports) to the closest category or class (developer). The authors evaluated the
performance of three machine learning algorithms: Support Vector Machines (SVM),
C4.5, and Naive Bayes. They also verified which recommendation list size brings better
results. After their experiments, they recommended the SVM algorithm and a list size
of only one recommendation. The dataset used in the experiments is composed by issue
reports for Eclipse and Firefox from September 2004 to May 2005. The training set
used 8,655 and 9,752 bug reports from Eclipse and Firefox, respectively. The test set
was composed by bug reports from May 2005, using 122 bug reports from Eclipse and
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22 bugs from Firefox. They achieved low recall values (bellow 10%) but their precision
was high (around 60%).

Anvik and Murphy [2011] proposed another approach to recommend which de-
veloper to assign a bug report. This work is an extended version of the paper discussed
in the last paragraph [Anvik et al., 2006]. One of the improvements is that the recom-
mendation system suggests additional information besides the developers. The revised
recommendation system also suggests which component the report should be assigned
to and which other project members should be aware of the issue. Despite this, the
approach remains basically the same as in the previous paper. However, the authors
proposed a new set of heuristics to label each report and also analyzed six machine
learning algorithms to improve precision. They concluded that the Support Vector Ma-
chine (SVM) performs better than the other algorithms and their precision increased
considering their previous work (around precision 75% for the same systems).

Tamrawi et al. [2011] proposed an approach, called Bugzie, based on fuzzy sets
to assign bug reports to developers. The authors claim that a bug report describes
technical aspects related to the issue. Bugzie models the fixing expertise of developers
to correct these technical aspects using fuzzy sets. They use the fuzzy membership
function to rank developers to each indexed term and a combination formula to find
the most capable fixer for a bug report. The approach incrementally updates the fuzzy
sets as new bug reports are resolved. The Bugzie accuracy for top-5 recommendations
is in the range of 70% to 83%.

Kagdi et al. [2012] proposed another approach to recommend suitable developers
and also the source code part to resolve an issue report. Their work is an extension of
the xFinder method proposed by [Kagdi et al., 2008]. They begin by extracting identi-
fiers and comments from the source files to create a system corpus which is processed
using the Latent Semantic Indexing (LSI) algorithm to create a indexed representa-
tion and to reduce dimensions. The issue’s summary is used as a query for the LSI
index. The result is a ranked list of source code units (classes, methods, etc.) that
best represents the queried issue. The commit log history of these source code units
in the version control system is then analyzed. The analyzed log is used to determine
developers that corrected (committed) the source code. For the evaluation, the au-
thors rely on an accuracy measure that resembles a likelihood metric. They conducted
experiments on three open-source systems: ArgoUML, Eclipse, and KoOffice. They
measured an accuracy for developer recommendations between 47% and 96% for bug
reports and between 43% and 60% for feature requests.

Poshyvanyk et al. [2012] also proposed an approach to recommend the most
suitable developer to handle an issue report. Unlike other works, their approach does
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not require mining the bugs or commits repository and does not require training. The
source files are preprocessed using Latent Semantic Indexing (LSI) to create an indexed
corpus. The new arriving issue report is queried on the corpus to find the most related
source files. Thus, the header comments in such source files are used to extract the
developer information for the issue report. For the evaluation, they used issue reports
and source files from three open-source systems: ArgoUML, jEdit, and MuCommander.
The number of issue reports tested ranged from 91 (ArgoUML) to 141 (jEdit), which
may be considered a small set. They measured precision and recall and compared
their approach to other works [Anvik et al., 2006; Kagdi et al., 2012]. Their approach
performed 20% better for one test but on the others the difference did not have a
statistical relevance.

Shokripour et al. [2013] proposed a two-phase approach to assign developers to
issue reports. They indexed terms from the nouns presented in the source code files used
to correct past issues. According to the authors, these index results are simpler than
in other similar studies. They used the information presented in the version control
system and the patch files to map which files were modified to correct each issue. The
first phase consists in searching the index for the source files that are most likely to
be changed to correct a new issue. In the second phase, they use the source files from
the previous phase to find which developers corrected the files, and then recommend
the appropriate developers to address the new issue. Their dataset is composed by
two open-source software: Eclipse and Firefox. In their evaluation, they measured an
accuracy of 89% for Eclipse and 59% for Firefox.

Naguib et al. [2013] propose an approach based on activity profile to recommend
developers to work on an issue. First, they categorize the bug reports into topics using
Latent Dirichlet Allocation (LDA) algorithm. Second, they mine historic data to
analyze the developer’s actions on reviewing, assigning, and resolving bugs to identify
roles. After that, the authors associate the LDA topics with the developer’s role. This
creates an activity profile that reveals the developers areas of expertise.

Critical Assessment: There is limited common ground among the presented works
to assign issue reports to developers. They use very diverse techniques: classifiers,
fuzzy logic, LSI or LDA, and source code mapping using patch files and version control
systems.
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2.6 Analyzing Similar Issue Reports

There are few studies that deal with similar issue reports. Weiß et al. [2007] developed
an approach that suggests the fixing effort (in person-hours) required to correct an
issue. As argued by the authors, the implementation time to fix an issue is particularly
challenging to predict because fixing a bug is a search process that involves under-
standing the source code, execution traces, states, and history. Their approach uses
the nearest neighbor algorithm to group similar issues together and estimate the effort
based on the average time spent fixing similar issues.

Wang et al. [2010] proposed an approach called Rebug-Detector that detects
source code defects related to polymorphism. The authors claim that if a method in
the source causes a defect, then overridden methods may also cause similar ones. The
approach begins by extracting term information from bug reports. Then it locates
the defected methods from the source code using the bug report information. After
that, Rebug-Detector measures the similarity among all overridden methods related
to the defective one. Finally, Rebug-Detector shows which methods may cause similar
defects. The approach detected 61 defects in the experiments from which 21 are real
defects and 10 are suspected ones.

Critical Assessment: In spite of the fact that those works identify similarity in issues
or code fragments, none of them aim to recommend similar bugs to mitigate the context
changes.

2.7 Recommendation Systems in Software

Engineering

In the current software engineering scenario, developers are continuously exposed to
excessive information and new technologies. Recommendation systems for software
engineering (RSSE) aim to assist software engineers in handling the information over-
load that recently characterized the area [Robillard et al., 2010]. Normally, RSSEs are
applied in the context of code or artifact reuse, improving development quality and
even on writing good bug reports [Anvik et al., 2006; Holmes et al., 2005; Robillard
et al., 2010; Zimmermann et al., 2004]. In this thesis, we claim that RSSEs can also
be used in the context of software maintenance for recommending similar bug reports,
aiming to avoid the change of context and, consequently, improving the productivity
of the maintenance team.
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Zimmermann et al. [2004] designed the ROSE recommendation system, which
uses association rules to detect co-changes in source files. The evaluation strategy of the
ROSE system is specially noteworthy. Unlike other studies that measure only precision
and recall, the ROSE evaluation also measured feedback and likelihood which are more
appropriate metrics for recommendation systems. Since these metrics are useful to
evaluate any type of recommendation system, we employ these in our retrospective
study (Chapter 5).

Holmes and Murphy [2005] presented a RSSE called Strathcona. This system
helps developers in finding API code examples by analyzing the structural context
of the source code. According to the authors their main contributions are: a set
of heuristics to determine structural similarity, and to show the utility of structural
similarity in software examples.

Some of the studies described in Section 2.5 can be considered recommendation
systems that suggest the most capable developer to correct an issue. Even though
several RSSEs have been proposed, to the best of our knowledge there is no recommen-
dation system aimed to suggest similar bug reports. Usually, a maintainer who wants
to correct related issues, must search for them manually, which is a time consuming
task that may dissuades developers to work on maintenance requests on a regular basis.

2.8 Final Remarks

In this chapter, we provided background information to better understand the solution
proposed in this thesis. First, we presented the definitions, classifications, and costs of
software maintenance (Section 2.1) and the benefits of periodical maintenance policies
(Section 2.1.1). We also discussed context changes (Section 2.1.2) and their negative
impact on software development, because our approach could contribute to decrease
context changes and improve the overall developers’ productivity. We also presented
information about issue tracking systems (Section 2.1.3) because the data used in our
experiments is extracted from such systems.In Section 2.2, we presented background
information about information retrieval techniques since our approach relies on such
techniques to find similar issues. In Section 2.3, we described research on bug char-
acterization and we also presented tools to help visualize bugs. We analyzed these
topics because, in Chapter 3, we present a characterization study and a visualization
technique to better understand bug reports. In Sections 2.4, 2.5 and 2.6, we discussed
several works that rely on issue reports as source of information. We investigate ap-
proaches proposed to detect duplicated reports which are closely related to our thesis.
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We also discussed works conducted to assign the most capable developers to issue re-
ports. We presented works that also attempt to group similar issues, however aiming to
achieve very different goals from our thesis. To conclude, in Section 2.7, we presented
a brief introduction on recommendation systems in software engineering.



Chapter 3

Bug Characterization Study

In this chapter, we present a characterization study focused on how open source systems
handle bugs. Our goal is to shed light on the maintenance process followed by a major
open source project and identify possible bottlenecks and improvement opportunities.
Basically, our characterization relies on graphs—called Bug Flow Graphs (BFG)—that
describe the workflow followed when resolving bugs.

The chapter is organized as follows. Section 3.1 describes the overall maintenance
process followed by Mozilla systems (our selected open source ecosystem for this study),
detailing Mozilla bug life cycle workflow. Section 3.2 describes the concept of Bug Flow
Graphs. Section 3.3 presents and analyzes the dataset of Mozilla bugs used in this
study. Section 3.4 reports the study results, using BFGs to analyze the maintenance
workflow of Mozilla bugs. Section 3.5 presents threats to validity. Finally, Section 3.6
concludes the chapter.

3.1 Mozilla Maintenance Process

In Mozilla software, a maintenance request begins when someone posts an issue report
in Bugzilla. This report includes pre-defined fields, natural language text, attachments,
and dependencies. Bugzilla stores the issue reports information in a relational database
(MySQL by default). After the new issue is reported and saved in Bugzilla repository,
it must be analysed by a project member to confirm whether it is valid or not. This
process is called triage (or bug triage), and the person responsible for the triaging is
called the triager [Anvik and Murphy, 2011].

The Bugzilla user who submits an issue report is called reporter. When this user
creates a new report, the following fields are automatically filled by the system and
cannot be changed later: issue identification key, the reporter, creation date, and time.

27
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Other fields can be filled by the reporter but may be changed later by the triager, such
as: product, component, hardware, operating system, version, priority, and severity.

The most important fields rely on natural language text, such as full description,
summary, and comments. The full description contains detailed information describing
the issue and how someone can reproduce it. The short description, or summary, is
a compact version of the full description highlighting the most important information
on the issue. There is also an additional comments field, which contains discussions
about the issue and possible approaches to solve the problem. The comments can also
contain links to other issues with more information or duplicated reports. The reporter
may attach a file in the issue report, which is usually a screenshot of the perceived bug
or a patch containing the source code correction.

There are other fields that are filled by the triager and not by the reporter, as
the issue progress through its states. These fields are the developer assigned to handle
the issue, the current status of the issue report, and the resolution status.

3.1.1 The Life Cycle of Mozilla Bugs

A bug life cycle documents the workflow followed by the bug until its resolu-
tion [Bugzilla Team, 2015]. The Mozilla Foundation employs Bugzilla as the official
issue tracking system for all its projects, including Firefox. Bugzilla provides a
standard bug workflow (as illustrated in Figure 3.1) which is composed of the following
states: Unconfirmed, Confirmed, In_Progress, Resolved, and Verified [Bugzilla Team,
2015]. However, Firefox workflow shows different states than those presented by
the standard Bugzilla workflow. We questioned a BMO1 maintainer about these
differences, who answered the following to us:

“This is because default workflow of Bugzilla changed a few years ago, and Mozilla
still uses the old one. (...) However, if it’s different to the default for earlier Bugzilla,
those will be customizations.” – BMO’s Maintainer (2015-12-29)

In other words, Mozilla systems are using a customized and older version of
the Bugzilla workflow. The states found for Mozilla bugs in 2012 are: Unconfirmed,
New, Assigned, Resolved, Verified, and Reopen.2 From these states, three have the
same names and representation as the standard Bugzilla (Unconfirmed, Resolved, and
Verified), and two states have different names but representing equivalent information

1BMO is Mozilla’s customized version of Bugzilla (https://bugzilla.mozilla.org, verified
2016-04-20).

2These states are still in use for BMO during the writing of this thesis.

https://bugzilla.mozilla.org
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Figure 3.1: Standard Bugzilla Workflow (version 5.x) [Bugzilla Team, 2015].

(Confirmed ≡ New and In_Progress ≡ Assigned). Only Reopen does not have an
equivalent status in the current Bugzilla workflow. Figure 3.2 shows the states for
BMO and the valid transitions between them. {Start} represents the possible states a
new bug report can start in the workflow, i.e., it denotes which states a newly created
bug is registered in the tracking system.

Figure 3.3a shows the BMO workflow where the vertices represent the states and
the edges represent the transitions between them. This workflow resembles an earlier
version of Bugzilla (version 3.x and earlier), which is reproduced in Figure 3.3b. When
we compare both workflows, there are indeed many customizations in BMO over the
older version. For instance, BMO has more transitions and one less state (Closed).
We searched Mozilla bugs data and found that BMO used to have this state in the
past, however the last bug marked as Closed was resolved in 2006. We asked a BMO
maintainer why they removed the Closed status and his answer was:

“Because it was, in practice, pointless. So while it remains in the config, it is
unreachable.” – BMO’s Maintainer
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Figure 3.2: Workflow used by Mozilla’s customized version of Bugzilla. The cells with
a check mark represent valid transitions and white cells indicate there is no transition
between these states. Dark gray cells are used when the beginning and end state are
the same (i.e., there are no loops in the workflow). Resolved and Verified (colored red)
indicate states that a bug is considered closed. This image was provided by a BMO
Maintainer in 2015-12-29.

(a) BMO (b) Older Bugzilla

Figure 3.3: Bug Life Cycle Workflows: (a) Mozilla’s customized version, (b) Older
Bugzilla version (3.x)

Although the states from BMO and the standard workflow are very similar, the
transitions between them are not. There are transitions in BMO that would be con-
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sidered invalid in the standard workflow. For example, the transition from New to
Unconfirmed is present in BMO (Figures 3.2 and 3.3a), but it does not exist in the
standard old Bugzilla workflow (Figure 3.3b). The BMO workflow is specific to the
Mozilla ecosystem, and may not reflect other open source projects.

3.1.2 Understanding the Workflow

In this study, we focus on the workflow followed by Firefox bugs under the BMO
version. Figure 3.3a shows the possible paths followed by a Firefox bug during its
life cycle. When a bug is registered, it is set as Unconfirmed, New, or Assigned. In
some systems, common users can only register unconfirmed bugs. On the other hand,
super-users may register unconfirmed, new, or assigned bugs. They may also promote
unconfirmed bugs to a new or assigned status. The bug status changes to Assigned
whenever a developer is assigned to work on it. When the developer finishes his work,
its status changes to Resolved. Unconfirmed and new bugs may also move directly
to Resolved without passing through Assigned. There are two main reasons for this
event: (i) the bug is not valid, or (ii) a volunteer posted a correction before someone
was officially assigned to work on the bug. Finally, the quality assurance (QA) team
verifies the bug resolution. If the bug passes this verification, its status changes to
Verified.

If a resolved or verified bug proves to be incorrect or flawed, its status changes to
Reopen to developers to start working on it again. A reopened bug can return to the
earlier states of the maintenance process (New, Assigned) or be concluded as resolved.
A reopen, resolved, or verified bug can also return to Unconfirmed if the bug is never
confirmed on the system. A bug is closed when it is either resolved or verified, otherwise
it is considered open. A closed bug has one of the following resolution status: Fixed,
Duplicate, WontFix, WorksForMe, Invalid, and Incomplete. A successfully fixed bug is
marked as Fixed. If there is in the tracking system another report describing the same
bug, then the bug is marked as Duplicate. A bug that will not be fixed is marked as
WontFix. When a developer can not reproduce the bug, it is marked as WorksForMe.
If the bug is not valid, then it is marked as Invalid. A vague report description that
developers cannot understand or a support request are marked as Incomplete.

3.2 Bug Flow Graphs

As proposed in this work, a Bug Flow Graph (BFG) is a directed graph that
summarizes a bug life cycle workflow. It provides a visual representation that shows
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the bugs flowing through the maintenance process. In a BFG, the nodes represent the
status a bug may take throughout the maintenance workflow. The edges represent the
transitions between status. Loops indicate bugs that stayed in the same status, i.e.,
bugs that did not change status and continued in a particular state. Since loops are
not represented in the original workflow, we used dotted edges to represent them. An
edges’ weight is a multi-valued information P (Md), where P is the percentage of bugs
that went through the transition and Md is the median time to make the transition.
We use the median because it is more robust to skewed distributions, as it is the
case of most state transition times. For better visualization of the BFG, we remove
loops with no bugs. However, removing other edges with no bugs would hinder the
understanding of the maintenance process. For this reason, we colored gray these edges.

Example: Figure 3.4 shows a fragment of a BFG computed for Firefox bugs. The BFG
reveals that, during the time frame used to collect the bugs, 90% of the bugs that
reached a state called Assigned advanced to a Resolved state. On the median, three
days are needed to perform this transition. It also shows that 6% of the bugs returned
to the New state, after spending 17 days in Assigned, on the median. Finally, 4% of
the bugs that reach Assigned do not leave this state. All together, their median time
in this state is 79 days.

Figure 3.4: Fragment of a BFG for Firefox

The basic steps to create a BFG are: (i) acquire the bugs status changes; (ii) cal-
culate the edges information (percentage and median time); and (iii) draw the workflow.

BFGs are an improvement over directly acquiring workflow data from the ITS.
Although the information showed by BFGs are indeed present in tracking systems,
it is not easily accessible [Ihara et al., 2009; Luijten et al., 2010]. For example, it is
not possible to acquire this data with simple queries, requiring more complex process
to extract and to mine historical data. Due to this difficulty, it is reasonable to as-
sume that developers and managers might overlook such information. By contrast, the
visualization provided by BFG is an easier way to reason about bug workflows.

Although the BFGs presented in this work are specific to the workflow followed
by the Mozilla ecosystem, the methodology can be applied to other projects.
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Table 3.1: Mozilla bugs (2012) classified by their resolution status

Status Bugs Resolution Time (in days)
Number % Min Max Avg Dev Med

Open 13,512 14.08% – – – – –
Fixed 49,229 51.28% 0 1,482 76 178 9
Duplicate 10,840 11.29% 0 1,496 94 228 2
WorksForMe 8,028 8.36% 0 1,506 286 346 150
Invalid 6,546 6.82% 0 1,485 129 274 1
WontFix 5,396 5.62% 0 1,511 413 432 241
Incomplete 2,443 2.54% 0 1,488 450 443 290
Total 95,994 100.00% 0 1,511 136 272 7

3.3 Dataset Overview

In this section, we present the dataset—composed of Mozilla bugs—used in the study
reported in this chapter. We also provide a general analysis of the bugs and the
developers working on them.

3.3.1 Mozilla Bugs

Table 3.1 presents Mozilla bugs in 2012 according to their resolution status. Open
indicates bugs still not resolved when the data was acquired. The table also shows
the resolution time (in days) for each status (minimum, maximum, average, standard
deviation, and median). As we can see, 14% of the bugs registered in 2012 are open
and still waiting resolution.3 The most common resolution status is fixed (51.28%),
followed by duplicate (11.29%). The less common resolution is Incomplete (2.54%).

When we analyze the resolution times in Table 3.1, duplicate and invalid bugs
show the lowest resolution time (on the median). Indeed, Bugzilla provides features
to aid in the detection of duplicate bugs,4 consequently, we expect this kind of bugs
to be detected more quickly. Invalid bugs are also more easily detectable since they
describe intended system’s functionalities (i.e., it works like that on purpose) or they
are not a Mozilla bug (e.g., a bug in a third-party library). For this reason, the time to
resolve invalid bugs is also low. The highest resolution time is recorded for incomplete
bugs (average and median). An incomplete bug includes a vague description or it is a
support request. The high resolution time to close this kind of bug may indicate that

3Those bugs were still waiting resolution at 2016-03-01, when we updated our bug data to the
current BMO.

4Bugzilla has internal features designed to detect duplicated bugs. For instance, when registering
a new bug, Bugzilla automatically warns the user if there is another bug very similar to the one he/she
is currently registering.
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developers need better ways to identify incomplete bugs. WorksForMe and WontFix
also show high average and median values. This is expected for WorksForMe because
developers may take a long time trying to reproduce such bugs [Joorabchi et al., 2014].
Since only module owners can resolve bugs with WontFix status, it is also expected
the longer resolution time because few developers have the permission to apply such
status. Fixed bugs show higher median resolution time than Duplicates and Invalids,
but they show much lower median values when compared to Incomplete, WorksForMe,
or WontFix resolutions. Finally, fixed bugs show the lowest average resolution time.

The average, standard deviation, and median resolution times presented in
Table 3.1 suggest that the bugs’ resolution time do not fit into a normal distribution.
We expected the bugs to follow a skewed distribution based on previous research and
experience [Luijten et al., 2010]. To verify our expectation, we plotted the resolution
times for each status (and considering all bugs together) as violin charts (Figure 3.5).
This chart shows a high density of bugs resolved within a few days. Moreover, the
plots suggest that some bugs present very high resolution times. For this reason,
measurements like median better represent the resolution data than average and
standard deviation.
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Figure 3.5: Violin plots showing the distribution of resolution times (in days) per bug
status.

We also applied the Kruskal-Wallis test to compare the bugs status resolution
times. The test showed that the distributions are different (p-value < 0.001). Therefore,
the bug nature may impact on the bug resolution time.
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Table 3.2: Types of Mozilla Users Registered in Bugzilla

Type Number %
Reporter 12,206 65.45%
Commenter 9,341 50.09%
Patcher 1,495 8.02%
Developer 1,911 10.25%
User (total) 18,648 100.00%

3.3.2 Mozilla Users

By analyzing the bugs and their resolution time, we can get a general overview of the
bugs. However, there is another key aspect on bug handling, the users interacting
with the issue tracking system. We therefore consider the distinction among different
types of users according to their interaction with bugs. We classify users into four types:
reporter, commenter, patcher, and developer. A reporter is someone who reports a bug
(as already described in Section 3.1). A commenter is an user who posts comments
on bugs. A patcher is an user who posts a patch file for a bug. And a developer is
someone who was assigned to handle a bug. For us, an user is someone who interacts
in any way with a bug, i.e., users are the union of the four types. However, these types
are not mutually exclusive, and it is possible for an user to belong to more than one
user type.

As presented in Table 3.2, 18,648 users interacted with Mozilla bugs in 2012. As
we expected, the number of reporters and commenters is greater than those of patchers
and developers. Patchers and developers are related groups and share many common
users, almost 80% of patchers also fall into the developer category. For this study, we
focus on the developers because they are the users officially assigned to fix bugs.

3.3.3 Developers Profile

We classify developers into specific categories according to their bug handling skills.
For this study, we excluded the developer identified as “nobody”5 because such user
is not a person. We consider the number of bugs assigned to the developer for skill
based classification. In our dataset, developers are assigned 23 bugs on average, with
60 bugs as standard deviation, and three bugs on the median. The average, deviation,
and median suggest that bugs assigned to developers follow a skewed distribution. For
this reason we divided the developers into quartiles presented in Table 3.3. We call

5“nobody” is used in Bugzilla as a placeholder, until the bug is properly assigned to a real developer.
However, a bug can be resolved and its assigned field not updated to the responsible user, and as such
“nobody” takes credit for the resolution.
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Table 3.3: Developers Classification by Skill

Quartile Assigned Bugs Skill Level
1st 1 Newbie2nd 3
3rd 22 Junior
4th >22 Senior

Newbies the developers from the first and second quartiles, i.e., developers who are
assigned to work on three bugs or less. The third quartile are Junior developers who
work on 22 bugs or less. Senior developers hold the fourth quartile and they work on
more than 22 bugs.

We compute the resolution time (in days) for every bug handled by developers
in each skill category. We also add a new category called Expert, which are the top-10
developers in number of worked bugs (Expert is a subset of Senior). Figure 3.6 shows
the resolution times as violin charts. The charts suggest the bug resolution time for
each developer skill category follows a skewed distribution. We can also observe a
trend on developer skill versus resolution time, i.e., bugs have a faster resolution time
as the developer is more skilled. For instance, Newbies showed an average, standard
deviation, and median of 282, 344, and 188 days, respectively. On the other hand,
Senior developers showed 62, 155, and 8 days, respectively for the same measures.
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Figure 3.6: Distribution of resolution times (in days) for each developer skill category.

We also applied the Kruskal-Wallis test to compare resolution times according
to developers category. We found the distributions are different (p-value < 0.001).
Therefore, the developers skill indeed impact on the bug resolution time.
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3.4 Study Results

In this section we present and analyze the results of our study by creating and analysing
BFGs. Our motivation is to perform an exploratory research and to learn lessons from
the results we obtain.

3.4.1 Overall Workflow Analysis

The dataset discussion in Section 3.3 shows a general overview of bugs registered for
the Mozilla ecosystem. However, we must analyze the workflow followed by bugs to
perform a more thoroughly characterization. Figure 3.7 shows the BFG for all Mozilla
bugs considered in this study.

Figure 3.7: BFG for all Mozilla bugs.
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By analyzing this BFG, we can make at least the following observations about
the workflow followed when resolving these bugs:

• Most bugs start as New (≈ 76%). However, there is a large portion of bugs
starting the workflow as Unconfirmed (≈ 20%). As expected, it is a rare condition
for a bug to start as Assigned (≈ 4%).

• For the unconfirmed bugs, few of them stay in the unconfirmed status (≈ 12%)
and few are confirmed as a new bug within one day (transition Unconfirmed to
New, ≈ 22%). Almost two thirds of unconfirmed bugs are resolved in six days
(transition Unconfirmed to Resolved, ≈ 63%).

• A small proportion of new bugs wait three days (on the median) until they are
officially assigned to a developer (transition New to Assigned, ≈ 15%). Further-
more, many new bugs are directly resolved without being officially designated to
a developer after waiting 12 days (transition New to Resolved, ≈ 71%). There is
also bugs that remain open in the New status (≈ 13%). It is very rare for a new
bug to return to the Unconfirmed status (less than 1%).

• An interesting finding is that new bugs are resolved faster when they are properly
assigned to a developer. It usually takes seven days (three days from New to
Assigned plus four days from Assigned to Resolved) for a new bug to be resolved
if it is assigned to a developer. By contrast, it takes 12 days for a new bug to
be closed without being formally designated to a developer (transition New to
Resolved).

• Most resolved bugs stay closed, either in the Resolved (≈ 80%) or Verified (≈
96%) states. Few bugs are verified by the quality control team, which usually
takes four days (transition Resolved to Verified, ≈ 11%). Only a portion of
bugs are reopened (transition Resolved to Reopen, ≈ 8%) and even fewer return
to the beginning of the workflow as unconfirmed bugs (transition Resolved to
Unconfirmed, ≈ 1%).

Positive Points: Most resolved (80%) and verified (96%) bugs remain closed (i.e.,
they are not reopened), which appoints to the efficacy of Mozilla developers in their
bug resolutions.

Negative Points: Many open bugs (12% Unconfirmed and 13% New) remain in
the same state. The time these bugs stay in the initial states of the workflow is very
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high (Unconfirmed 188 days; and New 167 days), which could indicate they are being
ignored or neglected.

Opportunities for Improvements: We found that bugs are resolved five days
faster when properly assigned to a developer. Therefore, tools to assist developers and
volunteers on finding bugs of their interest could contribute to reduce the resolution
time of Firefox bugs. As examples, we can mention tools to allocate developers to
bugs [Anvik et al., 2006] or to recommend similar bugs that can be fixed after a given
bug, as the recommender tool proposed in Chapter 4. Another effort can be directed
on helping developers finding more open bugs, especially those being neglected for a
long time in the New and Unconfirmed states.

Although the BFG presented in Figures 3.7 provides a starting point to under-
stand the Mozilla workflow, grouping all types of bugs may hide peculiarities of the
maintenance process. For example, this BFG does not discriminate fixed bugs from
other types. Since the recommendation system described in Chapter 4 is designed to
help developers on fixing more bugs, we decided to analyze BFGs focusing only on
fixed bugs.

3.4.2 Fixed Bugs Workflow

Figure 3.8 shows a BFG that considers only fixed Mozilla bugs. By analyzing this
BFG, we can make the following observations:

• Most fixed bugs bugs start as new (≈ 87%), while unconfirmed (≈ 6%) and
assigned (≈ 7%) bugs are less frequent. This contrasts with the BFG for all bugs
where new bugs show a lower percentage (≈ 76%) as the starting state of bugs.

• The BFG also shows that ≈ 24% of the new bugs are formally assigned to a
developer within two days (transition New to Assigned). The remaining 76% are
resolved directly after seven days (transition New to Resolved).

• The BFG also confirms the findings we discovered analyzing the BFG of all bugs,
which is that bugs not formally assigned to a developer take a longer time to be
resolved.

• Only 17% of resolved bugs are verified by the quality control team within four
days after they are fixed (transition Resolved to Verified).
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Figure 3.8: BFG for Fixed Mozilla bugs.

Positive Points: Unconfirmed bugs are quickly confirmed within one day as they
arrive in the workflow (Unconfirmed to New). This is important because new bugs
follow faster paths towards resolution than unconfirmed ones. Moreover, there is an
increase in the percentage of assigned bugs, which takes less time to fix.

Negative Points: Although the percentage of verified bugs is higher than in the
workflow for all bugs (17% for fixed only versus 11% for all bugs), it is still lower
than expected for a mature process. Another negative aspect is the time spent for
unconfirmed bugs to be directly resolved, which is much greater than the one showed
for all bugs (eight days for fixed, and two days for all bugs).
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Table 3.4: Top-10 Mozilla products considering fixed bugs registered in BMO

Product Name Bugs %
Core 12,594 13.12%
Infrastructure & Operations 3,106 3.24%
Release Engineering 3,045 3.17%
Firefox OS 2,929 3.05%
Firefox 2,688 2.80%
Firefox for Android 2,200 2.29%
www.mozilla.org 1,722 1.79%
Marketplace 1,577 1.64%
Testing 1,459 1.52%
addons.mozilla.org Graveyard 1,235 1.29%

Opportunities for Improvements: The verification of bugs can be a bottleneck in
the workflow because only a few portion of resolved bugs are verified by the quality
control team. Even though only 10% of resolved bugs are reopened, this transition
indicates rework performed by developers. We also found that confirmed (or New)
bugs are fixed faster when they are properly assigned to a developer. Therefore, this
finding reinforces that techniques to assist developers on finding appropriate bugs can
contribute to optimize the maintenance process.

3.4.3 Workflow of Top Systems in Number of Fixed Bugs

Table 3.4 shows the top-10 Mozilla products according to the number of fixed bugs in
BMO. The top-3 are internal products to Mozilla, i.e., they are not systems available
to end-users. Core is composed of shared components used by Mozilla systems. In-
frastructure & Operations registers bugs related to server and network infrastructure.
Release Engineering catalogs bugs related to Mozilla releases (e.g., branded releases,
release automation, and building releases). The next three products are related to the
Firefox browser. Firefox OS is an open source operating system designed for mobile
devices. Firefox is the second most popular web browser in the world.6 Firefox for An-
droid is Firefox browser designed for Android devices. The next systems in number of
fixed bugs are www.mozilla.org (Mozilla.org website), Marketplace (marketplace to dis-
tribute applications), Testing (automated testing of Mozilla clients), addons.mozilla.org
Graveyard (retired components from addons.mozilla.org).

Figure 3.9 shows a BFG that considers only fixed bugs for the Core and Firefox
systems. By analyzing this BFG, we can make at least the following observations:

6According to W3Schools (http://www.w3schools.com/browsers/browsers_stats.asp, veri-
fied 2016-05-22).

http://www.w3schools.com/browsers/browsers_stats.asp
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(a) Core (b) Firefox

Figure 3.9: BFGs for fixed bugs on Mozilla systems: (a) Core, (b) Firefox.

• In the Core system, a directly resolved bug (transition New to Resolved) takes
one day longer when compared to all fixed bugs (Figure 3.8). On the other hand,
the resolution time when a bug is assigned to a developer is one day shorter when
compared to all fixed bugs.

• In Firefox, a directly resolved bug takes 16 days longer than in the BFG for all
fixed bugs. On the other hand, the resolution time when a bug is assigned to a
developer is six days longer (five days longer to be assigned to a developer, and
one day longer to be resolved).

• For both systems, it takes a longer time to verify resolved bugs (transition Re-
solved to Verified). The BFG for all bugs shows a median of four days to verify
a bug, while in the Core system this time is ten days and in Firefox it is 21 days.

• For both systems, it takes only one day for a resolution to be found incorrect
and to reopen the bug (transition Resolved to Reopen). By contrast, when all
fixed bugs are considered it takes four days on median for a fixed bug to be found
incorrect and be reopened.

• For Firefox, unconfirmed bugs take 41 days (on the median) to be resolved di-
rectly. This contrasts with the median considering all fixed bugs which is only
eight days.
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Positive Points: In both systems, bugs assigned to developers are resolved faster
than the ones directly resolved. Another positive point is that incorrect resolutions
are discovered faster in both systems, as it usually takes only one day for such bugs
to be reopened.

Negative Points: Both systems show a increased time to verify bugs and to resolve
new bugs directly (one more day for Core, and 16 more days for Firefox ). Specially
transition times in Firefox are usually higher when compared to all fixed bugs
considered together.

Opportunities for Improvements: The verification of bugs may be a bottleneck
in the workflow, mainly because of the time. The time required for a Firefox bug to
be verified is approximately four times greater than the time a developer working on
the bug requires to fix it, i.e., five days to fix (transition Assigned to Resolved) and 21
days to verify (transition Resolved to Verified). For Core system, the time to verify is
approximately three times greater than the time for a developer to fix (i.e., three days
to fix versus ten days to verify). We could infer that the quality control team for Core
and Firefox may need more people or tools to improve this verification.

3.4.4 Developers Workflow

In this section, we investigate how developers handle bugs by analyzing their workflow.
We create BFGs considering only fixed bugs for each developer skill level (Figure 3.10).
As we can see, the workflows for each skill category are different. We can make the
following observations when comparing these BFGs:

• First, we begin by analyzing the assignment of bugs. As previously discussed
(Section 3.4.1), a bug takes less time to be resolved when it is assigned to a
developer. The BFGs show that skilled developers have a lower percentage of
bugs being assigned to them (transition New to Assigned). Moreover, the time
in days for a new bug to be assigned to a developer decreases as his skill level
increases, i.e., less days are required to assign a bug to skilled developers. We also
see an increase on the number of bugs that start the workflow as already assigned
in accordance to the developer skill level (3% for Newbies, 4% for Juniors, 9%
for Seniors, and 12% for Experts).

• Analyzing the resolution of assigned bugs (transition Assigned to Resolved), the
percentage of bugs following the transition are very similar (over 94%). Newbies
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(a) Newbie (b) Junior

(c) Senior (d) Expert

Figure 3.10: BFGs according to Developers’ Skill Profiles: (a) Newbie, (b) Junior, (c)
Senior, and (d) Expert.

showed a greater resolution time than the others (11 days). Junior require six
days to fix a bug. Seniors and Experts usually take three days to fix an assigned
bug. Moreover, if we sum up the assignement time (New to Assigned) and the
fixing time (Assigned to Resolved) the results are 45 days for Newbies, 13 days



3.4. Study Results 45

for Juniors, five days for Seniors, and three days for Experts.

• An interesting finding is that for Newbies and Juniors bugs spend more time
waiting to be assigned than being handled by developers. For Newbies, a bug
waits 34 days in the New status until being assigned to a developer, but only 11
days to get fixed after its assignment. Juniors wait seven days to be assigned
to a bug, while taking five days to fix it. Therefore, tools to help assign bugs to
developers are more helpful to less skilled developers.

• When we analyze bugs that are fixed directly following the transition from New
to Resolved, developers skill seem to affect the percentage of bugs and resolution
times. The percentage shows a clear trend, since the transition New to Assigned
is more common than transition New to Resolved, in the case of skilled developers

• The more skilled the developer, the less likely is he/she to work on unconfirmed
bugs. We can see a decrease in the number of bugs that start the workflow as
unconfirmed, as the developer becomes more experienced. Moreover, the per-
centage of unconfirmed bugs that are directly resolved (transition Unconfirmed
to Resolved) also decreases as the developer is more skilled.

• There is also a relation between the developers experience and the percentage of
bugs verified by the quality control team. The more skilled the developer, the
more bugs are verified.

Positive Points: Developers’ skill has a positive impact on the fixing time of bugs,
i.e., bugs require less time to be resolved if the developer handling them is more
experienced, as expected.

Negative Points: Even though it takes more time to directly resolve bugs, skilled
developers prefer this path over being properly assigned to bugs (which in the workflow
requires less time to fix).

Opportunities for Improvements: When Newbies and Juniors are involved, a bug
spends more time waiting to be assigned than actually being fixed. Therefore, tools to
assign bugs to developers probably provide more value to less skilled developers, and
could reduce the time that Newbies and Juniors demand to fix bugs.
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3.5 Threats to Validity

Construct Validity: The transition times in our results are extracted from the bug
tracking system. We cannot guarantee that this is the time the developer is actually
working on the bug. Certainly, developers overlap bug fixing with other activities,
specially in the case of volunteers.

Conclusion Validity: The findings we discussed are based on the median number
of days presented by BFG transitions. Since it is a median, we can only be certain
that at least half of the transition follow the indicated number of days. However, it is
common for an overall analysis to account for aggregate statistics to draw lessons.

Internal Validity: We investigated Mozilla bugs reported for one year (2012).
For this reason, our findings may change if different time intervals are investigated.
Another threat is that we extracted all the information directly from the bug tracking
system database. Therefore, if the tracking system stored faulty information that
would impact in our findings.

External Validity: In our characterization study, we analyzed bugs reported for
the Mozilla ecosystem. Therefore, our findings may not be valid to other other open
source or closed source systems.

3.6 Final Remarks

In this chapter, we conducted a characterization study focusing on the workflow fol-
lowed by Mozilla developers to handle bug reports. We begin by describing the Mozilla’s
maintenance process (Section 3.1). In Section 3.2, we propose the concept of Bug Flow
Graphs to provide a visual representation of the overall workflow process. BFGs can
be used by team leaders to identify critical points in the maintenance workflow. In
Section 3.3, we present the dataset used for the characterization. We also performed
an overview analysis on the dataset showing resolution times for the bugs, and the
users interacting with the bugs. We also analyze the developers by classifying them
into categories according to their skill. In Section 3.4, we present the characterization
results by showing BFGs and discussing their positive and negative points, as well as
possibilities for improvement. We also present BFGs for developers skill categories,
which reveals interesting differences among them. Finally, in Section 3.5, we discuss
threat to validity.



Chapter 4

Recommendations of Similar Bugs

In this chapter, we present an approach to recommend similar bugs to developers. Our
goal is to extend Issue Tracking Systems (ITS) with recommendations of bugs that
developers should consider to work on. Considering that developers can improve their
productivity by avoiding context changes during software maintenance activities [Ker-
sten and Murphy, 2006], we propose a recommendation system to suggest additional—
and similar—software maintenance requests when a developer selects one issue to work
on. The proposed recommendations consider the textual similarity of the suggested
issues with the main one to foster the creation of sequences of software maintenance
requests that can be implemented by the same developer. Our approach is particularly
indicated for large scale open-source software systems, which have a decentralized and
global community of developers who post daily many software maintenance requests
in an issue tracking system [Liu et al., 2012; Mockus et al., 2002].

First, we begin by describing the main characteristics as well as the major de-
cisions behind the design of the proposed approach for recommending similar bugs
(Section 4.1). Then, we present a tool that implements this approach, called NextBug,
which enhances Bugzilla standard interface with recommendations of similar bugs (Sec-
tions 4.2). Finally, we end this chapter with final remarks on the proposed approach
(Section 4.3).

4.1 Proposed Approach

We assume that bugs are stored in a tracking system that has at least the following
fields: short description (or summary), bug completion status (pending or completed),
and the component (systems are usually divided into smaller logical components in
the ITS). These fields are commonly present in existing ITS. Pending bugs are those

47
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waiting for resolution. Completed bugs are those marked with a closed status in the
ITS. In the proposed approach, we need the binary status of bug completion, i.e., if
the bug is considered pending or closed. We also assume that the projects tracked
by the ITS is structured into components and that bugs are allocated to particular
components, during a triage process [Anvik et al., 2006].

Figure 4.1 illustrates the algorithm proposed to recommend similar bugs, which
is inspired on algorithms previously proposed to detect duplicated bug reports [Wang
et al., 2008]. We rely on standard information retrieval techniques for preprocessing
a query q (representing the short description of a bug browsed by the developer) and
a collection of documents B (representing the short descriptions of the pending bugs
in the tracking system with the same component as q). Because B only includes bugs
that refer to the same component of q, the recommendations share the same component
with the bug queried by the developer.

Figure 4.1: Proposed approach for recommending similar bugs

The preprocessing steps performed over q and B include (i) tokeninzation, to
separate the text into a bag of words (ii) the use of stemming techniques to reduce
the words to their radical form and (iii) the removal of stop-words [Wang et al., 2008;
Runeson et al., 2007; Baeza-Yates and Ribeiro-Neto, 1999]. After this initial step,
we calculate the cosine similarity between q and each b ∈ B. We verify whether the
measured similarity passes a threshold τ to recommend b as a bug similar to q. This
threshold is the only free parameter that needs to be set up prior to use, and the
proposed approach does not require any training or tuning phase.
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4.1.1 Rationale

In this section, we discuss the main design decision behind our approach.

Why do we use the short description (or summary) instead of full descrip-
tions? Ko et al. [2006] and Wang et al. [2008] analyzed the use of both short and full
descriptions in the detection of duplicated issues. Ko et al. [2006] argued that by using
only summaries we can improve the precision and the efficiency in finding similar bugs,
when compared to the use of extended bug descriptions. On the other hand, Wang
et al. [2008] compared the usage of short and extended descriptions and concluded
that using both descriptions is slightly better than using just the summary. Moreover,
we designed our approach to compute over a large number of bugs. Therefore, using
only the summary is faster than its extended description.

Why we do not use stack traces? Among the studies described in Sections 2.4, 2.5,
and 2.6, only Wang et al. [2008] employ execution trace information when dealing
with issue reports. Their original issue dataset did not contain execution trace
information, and the authors had to extract this information. Moreover, Nguyen et al.
[2012] pointed out that execution traces are not an information usually stored in issue
tracking systems. Finally, as execution traces are not present in the dataset we used
to evaluate our approach, we decided to not use this kind of data in our approach.

Why we do not use a classifier? There are studies applied to bugs that employ
classifiers as their main component [Anvik et al., 2006; Wang et al., 2008; Jalbert and
Weimer, 2008; Tian et al., 2012]. As discussed by Tian et al. [2012], bug duplication
approaches can be modeled either as a classification or retrieval problem. Classification
techniques have the disadvantage to require training, which hinders the usability of
the technique on real world applications. On the other hand, retrieval techniques are
usually simpler, although they require users to manually select the duplicates. We
claim that for a recommendation system, the retrieval route is more appropriate than
a classifier because the users will manually select the recommendations provided by
the approach.

Why we do not use a clustering algorithm? Among the studies described in
Sections 2.4, 2.5, and 2.6, only Jalbert and Weimer [2008] use a clustering algorithm to
create a feature to help its classifier. Therefore, clustering is not used directly for the
detection but as a component to a more complex classifier. We also tried to employ
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a few clustering algorithms in the begging stages of our research to identify similar
bugs. However, our preliminary results were not satisfactory when we used clusters.
Therefore, we decided to not to pursue this line of work in this thesis.

Why we do not use the LSA/LSI algorithm? Some studies described in
Chapters 2 employ the Latent Semantic Analysis/Index (LSA/LSI). However, the
LSA algorithm is known to have high memory and performance constraints. In fact,
we tried to employ LSA at the beginning stages of our research, but our hardware was
unable to run LSA for our complete dataset.

Why we do not map bugs to files and use that information for recom-
mendations? In this research, our goal is to predict similar bugs relying only on
the information available at bug reports. To map files to bugs would require to mine
historical commit data, as employed by Anvik et al. [2006]. This solution is outside
the scope set up for this thesis, and is left as a future work idea.

Do duplicate bugs affect our approach? Our approach is designed to be used
when a developer is searching for a bug to work on. In this stage of the maintenance
process, duplicated bugs should be already filtered in the ITS (otherwise it is a triage
mistake). Moreover, Bugzilla and other ITSs have integrated features for duplicate
bug detection. Therefore, we can assume there will be few duplicate bugs going to
developers, which would not have a significant impact on our results.

4.2 NextBug: A Prototype Implementation

In this section, we present NextBug [Rocha et al., 2014, 2015], an open-source tool
available under the Mozilla Public License (MPL). We describe the tool’s main features
(Section 4.2.1) and the tool’s architecture and its main components (Section 4.2.2).

4.2.1 Main Features

Currently, there are several ITSs that are used to handle software maintenance requests
such as Bugzilla, Jira, Mantis, and RedMine. NextBug is implemented as a Bugzilla
plug-in because this ITS is used by the Mozilla project, which is used to evaluate our
approach (see Chapters 5 and 6). However, NextBug can also be extended and applied
to other ITS.
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When a developer is analyzing or browsing an issue, NextBug can recommend
similar bugs using the standard Bugzilla web interface. NextBug uses a textual sim-
ilarity algorithm to verify the similarity among bug reports registered in Bugzilla, as
described in Section 4.2.2.

Figure 4.2 shows an usage example of our prototype implementation. This figure
shows a real bug from the Mozilla project, which refers to a FirefoxOS application
issue related to a mobile device camera (Bug 937928). As we can observe, Bugzilla
shows detailed information about this bug, such as a summary description, creation
date, product, component, operational system, and hardware information. NextBug
extends this original interface by showing a list of bugs similar to the browsed one. In
Figure 4.2, this list is shown on the lower right corner. Another important feature is
that NextBug is only executed if its Ajax link is clicked and, thus, it does not cause
additional overhead or hinder performance to developers who do not want to follow
similar bug recommendations.

Figure 4.2: Screenshot showing the original Bugzilla interface for browsing a bug en-
hanced with the NextBug plug-in. Similar bugs are shown in the lower right corner.

In Figure 4.2, NextBug suggested three bugs similar to the presented one.

• Bug 956407 - [Buri] Camera app temporarily disappeared from device, with a
similarity of 42%.

• Bug 957910 - [Camera] Quit camera hurriedly would record no video, with a
similarity of 40%.
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• Bug 959464 - [Camera] Simplify build time configuration, with a similarity of
26%.

As we can note, NextBug not only detects similar bugs but it also reports an index to
express this similarity.

Another important feature of NextBug is the support of filters to configure the
provided recommendations according to the user’s preferences. We implemented this
feature after conducting a survey with Mozilla developers (described in Chapter 6).
Many developers requested a feature to customize the search results. The following
comments show a sample feedback received from three Mozilla developers:1

“It would not be bad, as long as it could be configured to do the recommendations
according to a set of parameters.” – Subject # 13.

“If it presented similar bugs that I did not file, and which were not assigned to anyone,
that might be useful.” – Subject # 63

“It would probably need to be able to at least check if a bug is already assigned to
the current user (or to another user, which probably makes them ineligible, too).” –
Subject # 14

The recommendations produced by NextBug follow the established criteria set
up by the filters. By clicking on the gear icon next to the NextBug label, a dialog
popup shows the configuration options for the filters (Figure 4.3). These filters include
the following options: (a) similarity threshold, i.e, the minimum similarity measure
required for a recommendation to be considered valid, (b) maximum number of recom-
mendations given by NextBug, (c) maximum and minimum bug severities considered
valid for the recommendations, (d) an option to consider enhancements requests along
with bugs when presenting the recommendations for similar bugs, (e) searching only
for unassigned bugs, i.e., recommend only bugs that no one is currently working on,
and (f) shows only bugs that are not reported by the current user; this filter is useful
because the current user is probably aware of the bugs he/she reported. Except for
the first and second filters, all other filters are optional, e.g., the user is not required
to check for unassigned bugs if he/she does not want to.

The similarity threshold (i.e., the first filter) requires some experimentation from
the user to fit his preferences.2 We suggest an initial value of 10%, which usually

1The developers described here are the same subjects we presented in the field study (Chapter 6).
2Since our approach is unsupervised, the threshold is left for the user to configure according to its

needs.
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Figure 4.3: NextBug dialog with the configuration options for filtering recommenda-
tions.

results in a good number of relevant recommendations (as in the evaluation reported
in Chapter 5). As the user increases this value, NextBug gives less recommendations,
but more precise ones.

4.2.2 Architecture and Algorithms

Figure 4.4 shows NextBug’s architecture, including the system main components and
the dependencies between them. As described in Section 4.2.1, NextBug is a plug-in for
Bugzilla. Therefore, it is implemented in Perl, the same programming language used in
the implementation of Bugzilla. Basically, NextBug instruments the Bugzilla interface
used for browsing and for selecting bugs reported for a system. NextBug registers an
Ajax event in this interface that calls NextBug back by passing the browsed issue and
the filter options as input parameters. We chose an asynchronous event design because
it is executed only if NextBug is called by the developer and therefore it does not
introduce additional overhead.

Algorithm 1 summarizes the processing of a NextBug event. It first selects the
open issues that follow the criteria defined by the filter options (line 3), and then
performs standard IR techniques on these issues along with the browsed one (lines
4-9). The processed issues are passed to the recommender module which selects the
ones to be presented to the users (line 10). Finally, the produced recommendations are
returned to the Bugzilla interface (line 14).

As presented in Figure 4.4, NextBug architecture has two central components:
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Figure 4.4: NextBug architecture showing the main components and their interactions.

Algorithm 1 Recommendation Algorithm
1: function NextBug-Event( BrowsedIssue, Options)
2: StartT ime = get-System-Time-Millisecs( );
3: FilteredOpenIssues = get-Open-Issues( Options );
4: q = IR-Processing( BrowsedIssue );
5: D = ∅;
6: for doeach issue d′ ∈ FilteredOpenIssues
7: dj = IR-Processing(d′);
8: D = D ∪ dj ;
9: end for

10: Recommendations = recommender( q, D, Options );
11: EndTime = get-System-Time-Millisecs( );
12: ExecutionT ime = EndTime− StartT ime;
13: log( q, Recommendations, ExecutionT ime );
14: return Recommendations ;
15: end function

Information Retrieval (IR) Process and Recommender. We discuss these two compo-
nents in the following subsections.

4.2.2.1 Information Retrieval Process Component

The IR Process component obtains the filtered open issues directly from the Bugzilla
database as well as the browsed bug. Then it relies on the following standard IR
techniques for natural language processing: tokenization, stemming, and stop-words
removal [Wang et al., 2008; Runeson et al., 2007]. We implemented all such techniques
in Perl. After this initial processing, the issues are transformed into vectors using
the Vector Space Model (VSM) [Runeson et al., 2007; Baeza-Yates and Ribeiro-Neto,
1999]. We detailed VSM in Section 2.2.2.
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4.2.2.2 Recommender Component

The Recommender component receives the processed issues and verifies the ones sim-
ilar to the browsed one. The similarity is computed using the cosine similarity mea-
sure [Runeson et al., 2007; Baeza-Yates and Ribeiro-Neto, 1999]. More specifically, we
employed the Equation 2.2 described in Section 2.2.2. Finally, the issues are ordered
according to their similarity before being returned to Bugzilla. The recommendations
are presented in the same Bugzilla interface used by developers when browsing and
selecting bugs to work on (without the need of reloading the webpage because of the
asynchronous event).

Logging files are also updated with anonymous information about the process
before the recommendations return to the Bugzilla interface. The anonymity is im-
portant to preserve the user’s privacy and to prevent NextBug being perceived as a
spyware program. The logging files register execution time data, the browsed issue,
and the recommendations given. The anonymous data collected can also be used in
future studies to support analysis and evaluation of NextBug.

4.3 Final Remarks

In this chapter, we detailed our recommender to suggest similar bugs to developers.
First, we explained our proposed approach (Section 4.1) and the rationale behind the
design decisions for the approach (Section 4.1.1). Second, we presented a prototype
tool, called NextBug (Section 4.2), which is implemented as a Bugzilla addon and en-
hances the standard Bugzilla interface with similar bugs recommendations. Finally,
we described NextBug’s main features (Section 4.2.1) and its internal design and algo-
rithms (Section 4.2.2).





Chapter 5

Retrospective Study

In this chapter we present a quantitative study, by retrospectively simulating the usage
of recommendations of similar bugs in the Mozilla ecosystem and in the Mylyn frame-
work. We rely on metrics proposed to evaluate recommendation systems to assess the
quality of the provided suggestions [Zimmermann et al., 2004].

This chapter is divided into four main sections: (i) we begin by comparing our
recommendation approach (NextBug) against a state-of-the-art technique to detect
duplicate bugs (REP) using 65K bugs from the Mozilla ecosystem (Section 5.1); (ii) we
conducted another study using a smaller system (Mylyn) with 2K bugs (Section 5.2);
(iii) we discuss threats to validity (Section 5.3); and (iv) we present this chapter final
remarks (Section 5.4).

5.1 Comparative Study

In this section, we compare a technique for detecting similar bugs using cosine similarity
(as implemented by NextBug) with REP [Sun et al., 2011], a state-of-the-art technique
for detecting duplicated bug reports. Our overall aim is to check whether a duplicate
bug detection technique is also appropriate for recommending similar bugs.

5.1.1 Data Collection

In this study, we use a dataset of bugs reported for the Mozilla ecosystem. This
ecosystem is composed of 69 products including systems such as Firefox,1 Thunder-

1http://www.mozilla.org/firefox, verified 2016-05-16
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bird,2 SeaMonkey,3 and Bugzilla.4 These systems are from different domains and are
implemented in different programming languages. For the study, we initially consid-
ered fixed issues (including both bugs and enhancements) reported from January 2009
to October 2012 (130,495 bugs). Figure 5.1 shows the monthly number of issues fixed
in this time frame.

Figure 5.1: Fixed issues per month

Mozilla issues are also classified according to their severity, in the following scale:
blocker, critical, major, normal, minor, and trivial. Table 5.1 shows the number and the
percentage of each of these severity categories in our dataset. This scale also includes
enhancements as a particular severity category.

Table 5.1: Issues per Severity

Severity Issues Days to Resolve
Number Percent. Min Max Avg Dev Med

blocker 2,720 2.08% 0 814 15.44 52.25 1
critical 7,513 5.76% 0 1258 37.87 99.52 6
major 7,508 5.75% 0 1275 41.59 109.83 5
normal 103,385 79.23% 0 1373 46.27 108.84 8
minor 3,660 2.80% 0 1355 77.05 161.72 11
trivial 2,109 1.62% 0 1288 80.84 164.74 11
enhancement 3,600 2.76% 0 1285 126.14 195.25 40
Total 130,495 100.00% – – – – –

Table 5.1 also shows the minimum, maximum, average, standard deviation, and
median number of days required to fix the issues in each category. We can observe

2http://www.mozilla.org/thunderbird, verified 2016-05-16
3http://www.seamonkey-project.org, verified 2016-05-16
4http://www.bugzilla.org, verified 2016-05-16

http://www.mozilla.org/thunderbird
http://www.seamonkey-project.org
http://www.bugzilla.org
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that blocker bugs are quickly corrected by developers, showing the lowest values for
maximum, average, standard deviation, and median measures among the considered
categories. The presented lifetimes also indicate that issues with critical and major
severity are closer to each other. Finally, enhancements are very different from the
others, showing the highest values for average, standard deviation, and median.

A recommended issue is helpful if it reduces the context switches of a developer.
Thus, we evaluate the goodness of a recommendation based on whether two issues
required similar files to be changed. For Mozilla, we determine the files changed to
conclude a task using a heuristic introduced by Walker et al. [2012]. Normally, in open-
source projects, including Mozilla, developers post a patch for a given maintenance
issue, which must be approved by certified developers. Thus, patches can be considered
as proxies for the files effectively changed when working on the task. By using this
heuristic, we linked 65,590 issues (bugs/tasks/tickets/enhancements) to patches and
after that to the files in the patches. Figure 5.2 shows a histogram with the frequency
of the number of files changed by the considered issues. Table 5.2 presents descriptive
statistics about the values in this histogram. As we can observe, most issues change
few files (two files, on the median), as also concluded by other studies using Mozilla
data [Walker et al., 2012].

Figure 5.2: Files changed per mapped issue

Table 5.2: Files changed per mapped issue

Average 6.35
Standard Deviation 27.48
Median 2.00
Maximum 2,043.00

Table 5.3 presents the top-10 Mozilla systems by number of issues mapped to
source code files. The table also shows the mean number of issues per component,
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and the standard deviation. With the exception of Testing and SeaMonkey, the other
systems in this table have at least 100 issues/component, but usually with relevant
variations on each system, as expressed by the high standard deviation values.

Table 5.3: Top-10 Mozilla systems by issues with changed files

System Components Issues Issues/Component
Core 121 28,258 233 ± 642
Firefox 38 4,732 124 ± 160
Mozilla.org 25 3,679 147 ± 514
Toolkit 30 3,044 101 ± 136
Fennec 5 2,667 533 ± 931
Firefox for Android 11 2,068 188 ± 504
Thunderbird 20 2,060 103 ± 77
Tamarin 15 1,913 127 ± 209
Testing 27 1,878 70 ± 91
SeaMonkey 32 1,764 55 ± 50

5.1.2 Technique for Comparison: REP

REP [Sun et al., 2011] is a technique to detect duplicated bugs that employs an exten-
sion on the BM25F textual similarity function. REP also uses non-textual fields (such
as component, version, priority, etc.) along with a stochastic gradient and a two-round
tuning to train a duplicated bug retrieval function.

The classical BM25F was designed for search engines, for this reason it handles
short queries. Also, in search engines, the queries do not have repeated words. As
argued by Sun et al. [2011], those characteristics do not apply to bug reports. When
we use a bug report as a query for information retrieval, the report itself may be long
and contain repeated words to describe the issue. The BMF25F extension takes these
particular characteristics into account, and the similarity function for a query q and a
bug b is defined as:

BM25Fext(q, b) =
∑

t∈b
⋂

q

IDF (t)× TFB(b, t)

k1 + TFB(b, t)
× (k3 + 1)× TFQ(q, t)

k3 + TFQ(q, t)
(5.1)

where t is the term extracted from the textual element that appears in both the query
q and the bug b, IDF (t) is the inverse document frequency of the term t, TFB is the
term frequency in a bug b, TFQ is the term frequency in the query q, and finally, k1
and k3 are calibration weights to adjust the similarity.
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The term frequency according to a bug is defined as:

TFB(b, t) =
K∑

f=1

wf × occurrences(b[f ], t)

1− df +
df×lengthf

average_lengthf

(5.2)

where f is the field, wf is the field weight, occurrences is the number of occurrences of
term t in the field f , lengthf is the size of the bag b[f ], average_lengthf is the average
size of the bag b[f ] considering all other bugs, and df is a weight to scale the field.

The term weight frequency related to a query follows a different equation:

TFQ(q, t) =
K∑

f=1

wf × occurrences(q[f ], t) (5.3)

The BM25Fext function is used to process the short and full descriptions together.
The BM25Fext can be used to process single words (unigrams), two-words (bigrams),
or even a set of words (n-grams). The REP retrieval function is a linear combina-
tion of seven features, where two of those features are textual information processed
through BM25Fext (unigram and bigram), and the other five features use categorical
information. The REP function between a query q and a bug b is defined as follows:

REP(q, b) =
7∑

i=1

wi × featurei(q, b) (5.4)

where wi is the weight of the i-th feature, and featurei(q, b) is the returned value from
computing the i-th feature. Table 5.4 describes how the features are calculated.

All of the seven weights assigned to the features require tunning. Moreover, each
BM25Fext execution has six weights that require calibration.5 In total, REP has 19
free parameters. Table 5.5 shows all the free parameters, their description, and their
initial values before training (or tunning).

REP employs a gradient descent to optimize the parameter values, as described
in Algorithm 2. The training set used by this algorithm is a collection of training
instances of the form (q, relevant , irrelevant), where q is the query (i.e., bug report),
relevant is a relevant bug as a response to the query (i.e., a relevant duplicate bug in
the original work), and irrelevant is an irrelevant bug in relation to the query (i.e., not
a duplicate bug in the original work). To adapt the algorithm to handle similar bugs, a

5As seen in Table 5.4, features 1 and 2 require a BM25Fext execution on the short and long
description of the bug report. Therefore, REP executes BM25Fext two times.
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Table 5.4: Features of REP(q, b)

Description Class Equation
Unigram Textual feature1 (q, b) = BM25Fext(q, b) of unigrams

Bigram Textual feature2 (q, b) = BM25Fext(q, b) of bigrams

Product Categorical feature3 (q, b) =

{
1 if q.product == b.product
0 otherwise

Component Categorical feature4 (q, b) =

{
1 if q.component == b.component
0 otherwise

Type Categorical feature5 (q, b) =

{
1 if q.type == b.type
0 otherwise

Priority Categorical feature6 (q, b) =
1

1 + |b.priority − q.priority|

Version Categorical feature7 (q, b) =
1

1 + |b.version− q.version|

similar bug is used to compose relevant (using an oracle as described in Section 5.1.3)
and the irrelevant with a non-similar bug. In this way, we trained the technique to
optimize the parameter to find similar bugs.

Algorithm 2 REP Parameter Tuning Algorithm
1: function REP-par-tuning( TrainingSet , TuningRate, MaxIterations)
2: for n = 1 to MaxIterations do
3: for each instance I ∈ TrainingSet in random order do
4: for each free parameter par in instance I do
5: par = par − TuningRate × ∂RNC

∂par (I)
6: end for
7: end for
8: end for
9: end function

In Algorithm 2, ∂RNC
∂par

(I) is the partial derivative of the cost function RNC with
respect to the parameter par . The RNC cost function uses the training instance
I(q, relevant , irrelevant) to compute the similarity score between the query q and the
irrelevant bug against the similarity between the query and the relevant . Low RNC

values tend to increase the accuracy of the similarity calculation. Throughout each
iteration, the free parameters are adjusted towards a minimum RNC .

Algorithm 3 describes the steps for the two-round tuning, basically it runs the
tuning algorithm (Algorithm 2) twice. A fixed parameter is not adjusted by the tuning
algorithm, which is performed to avoid redundant tunning.
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Table 5.5: Parameters of REP

Par Description Init.
w1 weight of feature1 unigram 0.9
w2 weight of feature2 bigram 0.2
w3 weight of feature3 product 2.0
w4 weight of feature4 component 0.0
w5 weight of feature5 type (bug or enhancement) 0.7
w6 weight of feature6 priority 0.0
w7 weight of feature7 version 0.0
w8 weight wf of short description (feature1) 3.0
w9 weight wf of full description (feature1) 1.0
w10 weight df for term frequency (TFB) in short description (feature1) 0.5
w11 weight df for term frequency (TFB) in full description (feature1) 1.0
w12 k1 weight used in BM25Fext (feature1) 2.0
w13 k3 weight used in BM25Fext (feature1) 0.0
w14 weight wf of short description (feature2) 3.0
w15 weight wf of full description (feature2) 1.0
w16 weight df for term frequency (TFB) in short description (feature2) 0.5
w17 weight df for term frequency (TFB) in full description (feature2) 1.0
w18 k1 weight used in BM25Fext (feature2) 2.0
w19 k3 weight used in BM25Fext (feature2) 0.0

Algorithm 3 REP Two-Round Tuning Algorithm
1: initialize free parameters in REP with default values
2: fix parameters w12,w13,w18, and w19 (k1 and k3 weights used for BM25Fext in feature1

and feature2).
3: execute Algorithm 2 with |TrainingSet | = 30, TuningRate = 0.001, MaxIterations = 24
4: unfix w13 and w19 (k3 weights).
5: fix w8, w9, w10, w11, w14, w15, w16, w17 (df for term frequency, wf short and full descrip-

tion weights used for BM25Fext in feature1 and feature2).
6: execute again Algorithm 2 (same configuration as first execution)

5.1.3 Study Design

For the comparison between NextBug and REP, we use the same algorithms and pa-
rameters reported in the original work about REP [Sun et al., 2011]. For example,
in the parameter tuning phase, we use 30 training instances, 24 iterations, and an
adjustment coefficient of 0.001. The difference is that we use similar bugs as training
set, rather than duplicated ones. To compose the training set we randomly selected
bugs from our dataset and each bug was paired with two others: a similar bug and
a non-similar one. We select similar bugs from an oracle, as described next. We also
normalize the results provided by the REP function. Basically, we divide the results
of REP(q, b), where q is a query and b is a document (or bug), by the maximal pos-
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sible result, i.e., REP(q, q). In this way, REP normalized results range from 0 to 1.
When evaluating and comparing the techniques, the bugs similar to a query q are
the ones with a similarity measure (NextBug) and a normalized result (REP) greater
than a threshold τ . Our implementation of REP and NextBug is publicly available on
GitHub.6

We simulate NextBug and REP by retrospectively computing recommendations
for the bugs in our dataset. Our goal is to reconstruct a scenario where similar bug
recommendation lists would be in place when each bug in our dataset was marked as
closed. To reconstruct this scenario, we call Bq the set of pending bugs at the exact
moment that each bug q was fixed. For each bug b ∈ Bq, the similarity measure (or
REP function result) is then used to decide whether b is similar to q or not. A lower
bound threshold τ is used in this check. Finally, we call Aq the set of similar bugs that
would be recommended for q, Aq ⊆ Bq.

After producing the recommendations, we evaluate whether each bug r ∈ Aq is a
useful recommendation by checking if both r and q changed similar files. Suppose that
bugs q and r require changes in the sets of files Fq and Fr, respectively. The similarity
of Fq and Fr is calculated using the Overlap coefficient [Rijsbergen, 1979]:

Overlap(Fq, Fr) =
|Fq ∩ Fr|

min(|Fq|, |Fr|)
(5.5)

The Overlap result is equal to one (maximal value) in the situations illustrated in
Figure 5.3. First, when Fq ⊆ Fr, i.e., the “context” established by the developer when
working on the bug q is reused when working on the recommended bug r. Second,
when Fr ⊆ Fq, i.e., to work on the recommended bug r the developer does not need
to set up new “context” items. In both cases, the developer concludes two bugs and
one of the required contexts is completely reused.

Figure 5.3: Maximal overlap scenarios (boxes represent files changed to conclude a
bug): (a) the context of the first bug is reused by the recommended bug; (b) no new
files are included in the context of the recommended bug.

6https://github.com/hscrocha/NextBug-REP-Comparative-Study-Impl, verified 2016-05-16.

https://github.com/hscrocha/NextBug-REP-Comparative-Study-Impl
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Overlap similarity is used to create an oracle Oq with the relevant bugs that must
be recommended with q, as follows:

Oq = { b ∈ Bq | Overlap(Fq, Fb) ≥ 0.5} (5.6)

This oracle includes the pending bugs b at the moment that q was concluded
(set Bq) and whose overlap coefficient calculated using the files changed by q and b is
greater than 0.5. We are assuming that 50% of “context reuse” between bugs is enough
to convince a developer to fix the bugs consecutively (or concurrently).

The described oracle is used only to evaluate the quality of the provided recom-
mendations. Both techniques, NextBug and REP, do not employ change file informa-
tion for their recommendations.

5.1.4 Evaluation Metrics

We evaluate both techniques using four metrics for recommendation systems: feedback,
precision, likelihood, and recall. These metrics are inspired by the evaluation followed
by the ROSE recommendation system [Zimmermann et al., 2004]. Although, ROSE
targets a different context, their metrics are appropriate to evaluate other recommen-
dation systems. We also calculated F-measure, which combines both precision and
recall into an averaged weighted result.

5.1.4.1 Feedback

Assuming that Z is the set of queries and that Zk is the set of queries with at least k
recommendations, feedback is the ratio of queries with at least k recommendations:

Fb(k) =
|Zk|
|Z|

(5.7)

For example, suppose a recommendation system that executed 100 queries (|Z| =
100). If all those queries returned at least one recommendation each, then Fb(1) is
100%. On the other hand, if only 40 queries returned at least 3 recommendations, then
Fb(3) = 40%.

Feedback is a useful metric for recommendation systems, because a recommender
that rarely gives recommendations is not practical. However, feedback is not the only
important point to evaluate, as a recommender that gives too many imprecise recom-
mendations is not trustworthy.
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5.1.4.2 Precision

Precision is the ratio of relevant recommendations provided by the recommender. As-
suming that Rq(k) are the top-k recommendations more similar to the query q (mea-
sured in terms of the similarity measure or the normalized REP results), precision is
defined as follows:

Pq(k) =
|Rq(k) ∩Oq|
|Rq(k)|

(5.8)

The overall precision is the average of the precisions calculated for each query:

P (k) =
1

|Zk|
∑
q∈Zk

Pq(k) (5.9)

Suppose that a query returned four recommendations. If the first recommenda-
tion is a relevant one, then Pq(1) = 100%. Otherwise, we have Pq(1) = 0% (for a
non-relevant first recommendation). Moreover, if among the top four recommenda-
tions only the second one is relevant, then the precision values would be Pq(2) = 50%,
Pq(3) = 33%, and Pq(4) = 25%.

5.1.4.3 Likelihood

Likelihood checks whether there is at least one relevant suggestion (i.e., included in
the proposed oracle) among the provided recommendations. Likelihood provides an
indication of how often a query to produce recommendations provides at least one
potentially useful result. Likelihood is defined as follows:

Lq(k) =

{
1 if Rq(k) ∩Oq 6= ∅
0 otherwise

(5.10)

Therefore, Lq(k) is a binary measure. If there is at least one useful recommenda-
tion among the top-k recommendations, it returns one; otherwise, it returns zero. It is
worth to mention that likelihood(1) is always equal to precision(1), by definition. The
overall likelihood is the average of the likelihood computed for each query:

L(k) =
1

|Zk|
∑
q∈Zk

Lq(k) (5.11)

For example, suppose that a query returned four recommendations but only the
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third one is relevant. Then the likelihood values would be Lq(1) = 0%, Lq(2) = 0%,
Lq(3) = 100%, and Lq(4) = 100%.

We compute likelihood because a recommender might be useful even when it
provides one or two incorrect recommendations plus one clearly useful result. In this
case, humans with some experience in the domain can rapidly discard the incorrect
recommendations and focus on the useful one [Zimmermann et al., 2004; Shani and
Gunawardana, 2011].

5.1.4.4 Recall

Recall is the ratio of recommendations in the oracle among the provided recommenda-
tions. The recall up to k recommendations is defined as follows:

Rcq(k) =
|Rq(k) ∩Oq|
|Oq|

(5.12)

The overall recall is the average of the recall calculated for each query:

Rc(k) =
1

|Zk|
∑
q∈Zk

Rcq(k) (5.13)

For example, suppose a query returned three recommendations and all of them are
relevant. Suppose also that the oracle size is ten (|Oq| = 10) , i.e., the oracle includes
ten relevant bugs for this query. In this case, the recall values are Rcq(1) = 10%,
Rcq(2) = 20%, and Rcq(3) = 30%.

Since the number of recommendations is limited by the top-k, the maximum
possible recall for a given query may not be 100%. In the last example, all recom-
mendations are relevant however if we compute recall(3), the maximum possible result
considering the oracle (|Oq| = 10) is 30%. For this reason, recall values are usually
lower than precision and we also decided to compute the maximum possible recall for a
more fair comparison. The maximum possible recall for k recommendations is defined
as follows:

Max Rcq(k) =
k

|Oq|
(5.14)

In our case, recall can be perceived as less important than feedback. Indeed, a
recommender that gives results for most queries (feedback) is still useful, even if it does
not cover all relevant recommendations (recall).
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5.1.4.5 F-score

F-score is a measure of accuracy that considers both precision and recall. The clas-
sical F-score (also known as F-measure or F1-score) is a balanced weighted average
between precision and recall. Since we compute precision and recall for a list of k
recommendations, F-score also considers k recommendations as follows:

F1(k) = 2× P (k)× Rc(k)

P (k) + Rc(k)
(5.15)

Summary: Feedback is the ratio of queries with at least a given number of recom-
mendations. Precision is the ratio of relevant recommendations, i.e., recommenda-
tions found in the oracle. Likelihood checks whether there is at least one relevant
recommendations among the provided suggestions. Recall is the ratio of recom-
mendations in the oracle among the provided recommendations. Finally, F-score is
a weighted average between precision and recall.

5.1.5 Comparison Results

Figures 5.4 to 5.8 show results of the evaluation metrics, for thresholds ranging from
0.0 to 0.8 (τ parameter). When the threshold is zero, both techniques act as a ranking
function, as the similarity test considers any pending bug.
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Figure 5.4: Feedback (Fb)

Figure 5.4 shows the feedback results. REP provides more recommendations
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(maximum Feedback of 83%) than NextBug (maximum Feedback of 68%). NextBug
feedback reveals how the technique is sensible to the threshold parameter. When we
increase the similarity threshold, NextBug feedback decreases because the similarity
test becomes more strict. When the threshold is zero, NextBug recommends less bugs
than REP due to its component filter, i.e., NextBug only recommends bugs that share
the same component as the query. On the other hand, there is a small impact on REP
feedback as we increase the threshold. The main reason is that REP similarity function
scores are usually high due to the use of many features (e.g., product, version, priority,
etc.). Thus, it is very likely that it exists a pending bug sharing at least some features
with the query. For example, the recommendations’ average similarity for NextBug is
0.17, and for REP is 0.73 (considering a threshold of zero).

Regarding precision (Figure 5.5), both techniques show precision(1) values around
70%, and precision(3) values greater than 62%. One technique may perform slightly
better than REP depending on the similarity threshold. For example, if we consider a
threshold of zero, then REP has a better precision(1) than NextBug (71% and 70%,
respectively). However, for a threshold of 0.2, REP precision(1) is lower than NextBug
(71% and 73%, respectively). Moreover, REP precision slightly varies for thresholds
lower than 0.6 because the feedback values also show minor variation in these cases.
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Figure 5.5: Precision (P )

Figure 5.6 shows that both techniques perform well for likelihood. Since by
definition, likelihood(1) is equal to precision(1), we focus the likelihood analysis on
a list of three recommendations. NextBug has a minimum likelihood(3) of 79% for
a similarity threshold of 0.65, and REP has a minimum likelihood(3) of 80% for a
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similarity threshold of 0.7.
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Figure 5.6: Likelihood (L)

Considering recall, NextBug performs better than REP as shown in Figure 5.7.
For example, assuming a similarity threshold of zero, the recall(1) values for NextBug
and REP are 36% and 27%, respectively. For the same threshold, recall(3) values are
43% for NextBug and 35% for REP. Although recall results may seem low, they are
limited by the maximum possible recall. The max recall(1) for threshold of zero is
45%, and max recall(3) is 59%. Moreover, the recall results are comparable with other
recommendation systems. For example, ROSE (a system that recommends classes
that usually change together) has an average recall of 33% (in the fine-grained nav-
igation scenario) [Zimmermann et al., 2004]. Another recommendation system that
suggests the most suitable developer to fix a bug has a recall of 10% (highest average
recall) [Anvik et al., 2006].

Finally, Figure 5.8 shows the F1-scores. NextBug shows higher F1 values con-
sidering top-1 recommendations. For example, considering a threshold of zero and
0.4, NextBug F1(1) scores are 48% and 45%, while REP scores are 39% and 37%,
respectively.

Summary: The reason for NextBug (a simple technique) to perform just as well
as REP (a more complex function) is because the textual description field of a bug
report appears to be the most relevant field to predict similar bugs. As such, the
extra fields processed by REP do not contribute significantly to better recommen-
dations although they do contribute to an increase in the number of suggestions.
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Figure 5.7: Recall (Rc) and Maximum Recall (Max Rc)
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Figure 5.8: F-score (F1 )

5.1.6 Configuration Without the Component Filter

We also investigate the relevance of the component filter in NextBug results. As men-
tioned, NextBug only recommends bugs that share the same component with the query.
For this reason, it shows a lower feedback than REP, which does not have this filter.
Figure 5.9a shows the feedback results when NextBug is configured without this com-
ponent filter. As we can see, the results are very similar to the ones presented earlier by
REP earlier (Figure 5.4). For example, for a similarity threshold of zero, feedback(1)
is 83% for both NextBug and REP. However, even without the component filter, the
similarity threshold (τ) still has a relevant impact on NextBug’s feedback values.
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Figure 5.9: NextBug Feedback (Fb), Precision (P ), Likelihood (L), Recall (Rc), and
F-score (F1) without the component filter

Although it increases feedback, removing the component filter has an impact
on the remaining metrics. Precision and likelihood (Figure 5.9b) shows slightly lower
values without the filter. For example, without the filter, NextBug precision(1), preci-
sion(3), and likelihood(3) are respectively 69%, 63%, and 79% (considering a similarity
threshold of zero). Using a filter, the same metrics values are 70%, 65%, and 82%. The
results without the filter are lower than those provided by REP (71%, 65%, and 81%).

Removing the filter has a more noticeable impact on recall. As we can see in
Figure 5.9c, the recall values without the filter are lower than those with the filter
(Figure 5.7). For example, NextBug recall(1) is 36% with and 26% without the filter,
considering a similarity threshold of zero. Recall(3) values are 43% with and 34%
without the filter. The results without the filter are closer to the ones showed by
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REP (recall(1) of 27% and recall(3) of 35%). The maximum recall is not affected by
removing the filter, and the results remain the same as presented earlier in Figure 5.7.

Since both precision and recall results are affect by disabling (or not) the compo-
nent filter, F-score shows a similar variation. For example, Figure 5.9d shows the F1

scores for a NextBug instance without component filtering. For a similarity threshold
of zero, NextBug’s F1(1) score decreases from 48% (with filter) to 38% (without filter).
However, it is very close to the results provided by REP (39%).

Summary: Removing the component filter increases the feedback values for
NextBug but has a negative impact on the remaining metrics. Therefore, we claim
that NextBug performs better when its component filter is turned on.

5.1.7 Oracle Sensibility Testing

Most of the evaluation metrics (precision, likelihood, recall, and F1-score) use the
defined Oracle Oq to verify whether a recommendation is relevant. We assumed that an
overlap coefficient of 0.5 or higher, i.e., 50% of “context reuse” in terms of changed files
would be good enough to convince developers to fix these bugs. However, the selection
of 0.5 was arbitrary (it was based on user experience in the context) and different
results are possible by varying the overlap criteria. For this reason, we changed the
oracle to account for different overlap values:

Oq = { b ∈ Bq | Overlap(Fq, Fb) ≥ Ω} (5.16)

First, we present results when we set Ω=0.25. Since we are setting Ω to a lower
value, the Oracle becomes less strict, because only a 25% of “context reuse” is necessary
for a bug to be considered relevant. As a consequence, we expected the metrics to show
higher results. We did not present feedback because its results are unaffected by the
Oracle.

We show only the F-score results to summarize the metrics (Figure 5.10). F-
scores increase for Ω = 0.25 for similarity thresholds of 0.6 and lower. For example,
for a similarity threshold of zero and Ω = 0.25, NextBug and REP scores are 52% and
41% for F1(1), 58% and 50% for F1(3). Considering the same similarity and Ω = 0.5

(original Oracle criteria), F-score results for NextBug and REP respectively are: F1(1)
of 48% and 39%, F1(3) of 52% and 46%.



74 Chapter 5. Retrospective Study

0.0 0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

Similarity Threshold

F
−

sc
or

e

●

● ●
● ● ●

● ● ● ● ● ● ● ●
●

●

● ●
● ● ●

●

● ●

●
●

●

●

●

●

● ● ●

●

NextBug F1(1)
NextBug F1(3)
REP F1(1)
REP F1(3)

(a) Ω = 0.25

0.0 0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

Similarity Threshold

F
−

sc
or

e

●

● ● ●
● ●

● ● ● ● ● ● ●
●

●
●

●
●

●

●

● ●

●
●

●
●

●

●

●

●

● ● ●

●

NextBug F1(1)
NextBug F1(3)
REP F1(1)
REP F1(3)
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Figure 5.10: F-score (F1): (a) Ω = 0.25, (b) Ω = 0.5
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Figure 5.11: F-score (F1): (a) Ω = 0.75, (b) Ω = 0.5

Figure 5.11 presents the F-score results for Ω = 0.75 and Ω = 0.5. We expect
an opposite impact as the oracle becomes more strict, i.e., we anticipate the results
to show lower values when compared to the original Oracle (Ω = 0.5). For instance,
NextBug and REP scores are respectively, F1(1) of 40% and 34%, and F1(3) of 42% and
38% (for a similarity of zero and Ω = 0.75). Considering the original Oracle (Ω = 0.5)
and the same similarity, F-scores results are F1(1) of 48% and 39%, and F1(3) of 52%
and 46% (for NextBug and REP, respectively).
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Summary: When we change the overlap criteria (Ω) used to define the Oracle, it
affects the metrics results (excluding feedback). Setting Ω = 0.25 increase these
metrics, because the Oracle becomes less strict and more recommendations are
considered relevant. When we set Ω = 0.75 it has an opposite effect, because the
Oracle becomes more strict the metrics’ results decrease.

5.1.8 Alternative Evaluation: Assigned Developers

The previous measures are centered on the following external similarity criteria: two
bug reports are similar whenever their implementation require changes to similar source
code files. In this section, we consider an alternative measure of similarity: a bug q
is similar to an opened issue when they were assigned to the same developer. The
assumption in this case is that a recommendation is useful when it matches a developer
that fixed the bug.

Following this measure of relevance, we can redefine the Oracle Oq as follows
(where developer(x ) is the developer that fixed an issue x).

Oq = { b ∈ Bq | developer(q) = developer(b) } (5.17)

Using this redefinition of Oq it is possible to recalculate likelihood and precision
using the same formulas described earlier (Section 5.1.4). As we mentioned before,
feedback results are unaffected by how the Oracle is defined, and for this reason we do
not present feedback results. We do not compute recall using this new Oracle because
using it in the recall formula would give the same results as precision. One can argue
that it is possible to change the developer’s Oracle to contain every developer in the
dataset, in a similar way as done by Anvik et al. [2006]; Anvik and Murphy [2011].
However, such change would not provide reasonable results for the Mozilla ecosystem
which has thousands of developers working on similar bugs.

Figure 5.12 shows precision results for this alternative relevance measure. As we
can observe, the results are very different from those presented in Figure 5.5. NextBug
shows better precision results than REP using this alternative Oracle. As the similar-
ity threshold increases so does the precision of NextBug, and the difference between
NextBug and REP results. REP precision varies slightly for similarities of 0.7 and
lower. For example, considering a similarity threshold of zero, NextBug shows preci-
sion(1) = 24% and precision(3) = 20%, while REP shows precision(1) = 23% and pre-
cision(3) = 18%. Increasing the similarity threshold to 0.2, NextBug results increases
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to precision(1) = 35% and precision(3) = 34%, while REP results are precision(1) =
23% and precision(3) = 18%.
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Figure 5.12: Precision considering assigned developers

Figure 5.13 shows likelihood results considering the alternative measure. The
likelihood results also show lower results when compared to the ones in Figure 5.6. For
instance, likelihood(3) results for NextBug and REP respectively are, 40% and 38%
(considering a similarity threshold of zero). Increasing the similarity threshold to 0.2,
likelihood(3) results are 58% and 38% for NextBug and REP, respectively.
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Figure 5.13: Likelihood considering assigned developers
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The results indicates that NextBug recommends more issues than the ones that
were handled by the same the developer.

Summary: When we analyze the similar bugs suggestions regarding if the same
developer handled both the query and the recommendations, NextBug outperforms
REP by showing better precision and likelihood.

5.1.9 Execution Time

Table 5.6 shows the time to compute the recommendations evaluated in this study. The
execution time refers to an HP Server, CPU Xeon Six-Core E5-2430 2.20 GHz, 64 GB
RAM, operating system Ubuntu 12.04, 64 bits. Both techniques (NextBug and REP)
are implemented in Java and executed in a Java Virtual Machine (JVM) 1.7.0 80. The
execution time only considers the information retrieval processing steps, the similarity
test (according to each technique), and the time to return the recommendation list.
Particularly, we do not consider the time to process the SQL queries that retrieve the
pending bugs reported in a given date (since in our study all bugs are initially loaded
in main memory, to optimize performance). For REP, the execution time shown in
Table 5.6 does not include the training stage (or parameter tuning), since it can be
performed off-line. We execute the experiments three times, using the threshold zero
(the one with the highest feedback). We report the average values for the execution
time results.

Table 5.6: Execution Time (ms)

Min Max Avg Med Std Dev
NextBug 0.0 163.6 3.8 3.7 2.1
REP 0.0 1,117.3 11.3 11.4 6.9

As can be observed in Table 5.6, the maximum time to provide a recommendation
is 163 milliseconds for NextBug and 1.1 seconds for REP. NextBug average, median,
and standard deviation time are also lower than REP.

Summary: The reported execution times show that is feasible to (re-)compute
on-the-fly the recommendations for both techniques each time a developer requests
a web page with a bug report.
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5.1.10 Summary of Findings

For detecting similar bugs (i.e., bugs requiring changes in the same parts of a system),
a technique that considers just two bug report fields (component and short description)
performs just as well as REP, a technique optimized for detecting duplicate bug reports.
Furthermore, both techniques have a runtime performance that supports their online
integration with a issue tracker system.

5.2 Second Study: Mylyn

The goal of this study is to analyze NextBug when recommending similar bugs for a
smaller system (Mylyn), with few bugs. The Mozilla ecosystem has an overwhelming
amount of reported issues, while smaller and less popular open source projects may
face a different scenario. Considering such scenario is important to verify if smaller
projects can also benefit from similar bug recommendations.

For this study, we do not compare NextBug results with REP because the Mylyn
dataset for this study does not have all the fields and information required by REP
(e.g., product, priority, version, etc.).

5.2.1 Mylyn Dataset

Mylyn is a task management framework for Eclipse. For this study, we initially consider
2,682 issue reports fixed between January 2009 and December 2012. Figure 5.14 shows
the monthly number of fixed issues in this time frame.

Figure 5.14: Fixed issues per month
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(a) Commit (b) Context

Figure 5.15: Files changed/browsed per mapped issue

As we previously stated for the Mozilla data (Section 5.1.1), a recommendation
is relevant if two issues changed similar files. For Mylyn, there are two sets of files that
can be related to an issue. First, Mylyn has the files effectively changed when working
on 1,756 issues, which we call the Commit dataset. Second, the system also provides
information on the files browsed in Eclipse by Mylyn’s developers when working on
1,573 issues, which we call the Context dataset. This last dataset was collected using
the Mylyn plugin itself. Figure 5.15 shows a histogram with the frequency of files
changed (Figure 5.15a for the commits dataset) or files browsed (Figure 5.15b for the
context dataset). When considered together the Commit and Context datasets include
2,682 unique issues, distributed over 43 components.

5.2.2 Study Design

For this study, we retrospectively simulated NextBug providing recommendations for
the bugs in the Mylyn dataset. The design is similar to the comparative study (Sec-
tion 5.1), but using a different dataset. Moreover, we present the results for both the
Commit and Context datasets. For the evaluation we will also use the same metrics
described in Section 5.1.4: feedback, precision, likelihood, recall, and f-score.

5.2.3 Results

Figures 5.16 to 5.20 show results for the evaluation metrics, for similarity thresholds
ranging from 0.0 to 0.2 (τ parameter). We decided to analyze a lower threshold range
than in the Comparative Study (Section 5.1) because Mylyn has fewer issues when
compared to the Mozilla dataset (less than 5% of the analyzed Mozilla issues). For
this reason, most metrics do not show results for higher thresholds.

Figure 5.16 shows the feedback results. The Commit dataset shows lower feed-
back values than Context. For instance, considering a similarity threshold of zero,
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Figure 5.16: Feedback (Fb) results: (a) Commits, (b) Context

feedback(1) results are 54% and 78%, and feedback(3) results are 23% and 60%, re-
spectively for Commit and Context. Moreover, if we compare to the Mozilla dataset,
the feedback results for Mylyn Commit are very close for low thresholds. For exam-
ple, NextBug showed feedback(1) = 68% and feedback(3) = 44% (similarity threshold
of zero). This indicates that NextBug is able to give recommendations even when a
system has few issues (such as Mylyn).

Considering precision (Figure 5.17), both Commit and Context present a slightly
upward trend for top-1 recommendations. Regarding top-3 recommendations, Commit
shows a downward trend while Context shows an upward trend. These trends contrast
with the Mozilla dataset which showed a more stable precision values on thresholds
of 0.2 and lower. For example, for precision(1) and precision(3), Commit results are
59% and 50%, and Context results are 47% and 45%, respectively. For Mozilla these
results are 70% and 65% (considering a similarity threshold of zero). If we increase the
threshold to 0.2, precision(1) and precision(3) results are 60% and 11% for Commit,
59% and 80% for Context, and 72% and 65% for Mozilla.

Regarding likelihood (Figure 5.18), the Context dataset performs again better
than the Commit. Because likelihood(1) is equal to precision(1) by definition, we
only discuss likelihood(3) results. For a threshold of zero, Commit likelihood(3) is
71%, and Context likelihood(3) is 72%. As the similarity threshold increases, Commit
likelihood(3) decreases and Context likelihood(3) increases. For instance, considering
a similarity threshold of 0.1, Commit and Context likelihood(3) results are 50% and
87%, respectively.

Figures 5.19 shows the recall and maximum possible recall measurements. Both
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Figure 5.17: Precision (P) results: (a) Commits, (b) Context
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Figure 5.18: Likelihood (L) results: (a) Commits, (b) Context

Commit and Context shows more slightly downward trend for recall results. When
we compare the results, Commit recall are usually better than Context. For example,
considering a threshold of zero, recall(1) and recall(3) results are respectively 55% and
70% for Commit, and 25% and 47% for Context. These results are expected because
the Oracle for Commit is smaller than Context.

Considering the maximum recall, both Commit and Context show a downward
trend for thresholds lower than 0.15. If we consider a similarity threshold of zero,
max recall(1) values are 71% and 46% respectively for Commit and Context. For the
same threshold, max recall(3) values are 88% and 73% respectively for Commit and
Context.
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Figure 5.19: Recall (Rc) results: (a) Commits, (b) Context
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Figure 5.20: F-score (F1) results: (a) Commits, (b) Context

Figures 5.20 shows the F-scores. Since Commit shows better results for both
precision(1) and recall(1) than Context, its F1(1)-scores are also higher than Context.
For example, considering a threshold of zero, F1(1)-scores are 57% and 33%, respec-
tively for Commit and Context. Considering a threshold of zero, F1(3)-scores are 58%
Commit and 46% Context.

Summary: NextBug can provide similar bugs recommendations for small projects
(such as Mylyn), once it is configured with low similarity thresholds.



5.3. Threats to Validity 83

5.3 Threats to Validity

Internal Validity: Initially, we assumed that the bugs recommendations are relevant
if they share similar changed files with the query. There are at least three threats to
this assumption. First, one study discuss that developers sometimes include extra files
in their patches that are not necessarily changed [Walker et al., 2012]; these files are
included in the patches to help understand the proposed changes. Therefore, we can
consider these extra files as part of the bug fixing context, i.e., they do not in fact
represent noisy data. Second, two bugs are considered similar even when they require
changes in different parts of the same source code files. Therefore, handling these bugs
sequentially might not necessarily save effort.

Regarding Mylyn, these threats are mitigated in two ways. First, the Commit
dataset are the real files changed when working on Mylyn’s issues (and not information
extracted from patches). Second, the Context dataset includes the files accessed in the
IDE when working on the issues, as captured by the Mylyn tool itself.

External Validity: The study reported in this chapter considered systems with dif-
ferent characteristics. Mozilla is a complex ecosystem, including well-known Internet
software. Mylyn is a task management framework for the Eclipse ecosystem. Although
the studied systems represent different cases, our results may not generalize to other
systems and domains.

5.4 Final Remarks

In this chapter, we evaluated our approach, NextBug, in a quantitative manner by
retrospectively computing recommendations over bug datasets. First, we compare
NextBug with REP—a state of art technique for detecting duplicate bugs (Section 5.1).
We employed five evaluation metrics design compare both techniques. The comparative
study showed that, for similar bug recommendations, NextBug performs just as well as
REP. Moreover, both techniques are feasible to be computed online by Issue Tracking
Systems.

To conclude the chapter, we present a study using bugs from a smaller project,
Mylyn (Section 5.2). The results showed that NextBug small systems with few reported
bugs. We also discuss the threat to validity for the experiments conducted in this
chapter (Section 5.3).





Chapter 6

Field Study

Retrospective studies take an optimistic view; any relevant recommendation will be
recognized by the recipient of the recommendation. To address this issue, in this chap-
ter we report a field study with Mozilla developers to determine if developers recognize
relevant recommendations and if they would consider taking a recommendation. First,
we present the study design for the experiment (Section 6.1). Second, we discuss the
results and analyze the surveyed answers (Section 6.2). Then, we present the threats
to validity for the field study (Section 6.3). Finally, we present the final remarks of
this chapter (Section 6.4).

6.1 Study Design

For this study, we monitored bugs handled on Mozilla projects for a week (from May
22 to May 28, 2014). On each day, we collected data on bugs fixed in the previous day
and computed off-line recommendations of similar bugs, as provided by NextBug. We
used τ = 0.3 (similarity threshold) because it showed an interesting balance between
precision and recall in the comparative study results (Section 5.1.5). Additionally, it
does not generate too many recommendations to manage manually.

We analyzed 1,412 bugs that were handled during the experiment’s week and we
were able to compute recommendations for 421 bugs, which corresponds to a feedback
of 30% (using the feedback definition presented in Section 5.1.4). For each bug with
at least one recommendation, we sent an email, using information from the tracking
system, to the developer responsible for its resolution (i.e., the developer assigned to
handle the bug).1 Figure 6.1 presents one of the emails we sent. In each email, the

1More specifically, we did not selected which bugs to send. We send the top-3 recommendations
as provided by NextBug to every developer in the study.
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developer is presented with a list of up to three bugs and asked whether he/she would
consider to work on one of them (Question #1). Each recommendation includes the ID
and short description of the bug, as well as a link to its page at Bugzilla to facilitate the
developer’s inspection. We also asked the developer why (or why not) they would work
on the recommendations (Question #1a and #1b). Finally, we asked the developers
whether they would consider it useful to extend the issue tracking system (Bugzilla in
this particularly case) with a list of similar bugs (Question #2).

Hello Mr./Ms. [XXX],

The following bug assigned to you was resolved on Tuesday:

[789261] - WebIDL bindings for Window

We found that you might next consider to work on one of the following open bugs:

I. [976307] - ES objects created by WebIDL bindings should be created in the compartment
of the callee
II. [986455] - Support implementing part of C++ WebIDL interfaces in JS
III. [979835] - Port BoxObject to WebIDL

Looking at these suggestions, would you:

1. Consider working on one of these suggested bugs next?
1a. If so, which of the bugs would you select to work on?
1b. If not, why are these bugs not of interest to work on?

2. Consider useful a Bugzilla extension presenting bugs similar to a browsed one (i.e., bugs
that would probably require changes similar to the ones performed when fixing a given bug)?

Figure 6.1: E-mail sent to a Mozilla developer

We sent only one email to any given developer, regardless of how many bugs
he/she concluded in the week we studied. The intention was to avoid a perception
of our mails as spam messages. We discarded the usage of a control group due to
potential ethical issues. Using a control group would require sending meaningless
recommendations to real developers, which could impact negatively their daily work
and therefore contribute to a negative image of software engineering researchers among
practitioners.

The study involved sending emails to 176 developers. We received 66 answers,
which represents a response ratio of approximately 37%. We classify the developers
that answered our survey according to the number of handled bugs. We employed the
same skill classification based on the number of assigned bugs from our developers’
profiles in the characterization study (Section 3.3.3). More specifically, we classified as
Newbies developers who are assigned to work on three bugs or less; Juniors developers
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who work on 22 bugs or less; and Seniors developers who work on more than 22
bugs. These groups correspond to 3% Newbies, 8% Juniors, and 89% Seniors of the
developers we received answers.

6.2 Results

Table 6.1 summarizes the field study results. Both questions were initially proposed to
receive a positive (yes) or negative (no) answer. However, in some cases the developers
did not answer the questions (blank) or answered in a not clear way (unclear). The
percentage of valid answers (yes or no) is 97% and 79% for Question #1 and Question
#2, respectively. In the following subsections, we analyze the valid answers received
for each question.

Table 6.1: Field study results

Answer
Yes No Blank Unclear

Question #1 39 (59%) 25 (38%) – 2 (3%)
Question #2 44 (67%) 8 (12%) 10 (15%) 4 (6%)

6.2.1 Question #1: Would you consider working on one of

these bugs next?

For this first question, 59% (39 out of 66 developers) answered they would indeed con-
sider taking one of the recommendations. Moreover, 86% of these answers (57 out of
66 answers) were provided by Senior developers, which increases their confidence. Ta-
ble 6.2 presents detailed information on two recommendations that received a positive
feedback from Mozilla developers. We can observe that the cosine similarity between
the query and the recommendations is high (greater than 0.33) and the bugs seems
to be semantically related to the queries. For example, the first query and associated
recommendations denote problems in the library for Firefox marketplace payments.
The second query and recommendations are related to the airplane mode feature, from
Firefox OS. The developer who worked on the second query answered that he replied
to Rec. #2.1 thanks to our email.

For the bugs in Table 6.2, we received these comments:

“The suggestions seem pretty accurate (...) the #3 bug is new to me — I didn’t know
about that one" (Subject #47 on Recs. for Query #1)
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Table 6.2: Examples of useful recommendations, according to Mozilla developers (in-
cluding the textual similarity between the query and the provided recommendations)

Short Description Sim.
Query #1 fxpay: make a payment with the example app

(ID 989136)
Rec. #1.1 fxpay: save a receipt to device on purchase (ID

991994)
0.35

Rec. #1.2 fxpay: fixup transaction state (ID 987758) 0.34
Rec. #1.3 ’Payment Cancelled’ message is displayed after

’Payment Complete’ message (ID 972108)
0.33

Query #2 Airplane mode icon in status bar is not respon-
sive (ID 1014262)

Rec. #2.1 Airplane mode icon can co-exist with the wifi
icon (ID 1008945)

0.49

Rec. #2.2 Intermittently the user is unable to turn/off Air-
plane mode on (ID 1003528)

0.48

Rec. #2.3 Airplane mode does not display an ’on’ message
to user (ID 1010551)

0.39

“The suggested bugs you present are definitely bugs I’d be likely to pick up after the
one I solved” (Subject #40 on Recs. for Query #2)

Table 6.3 presents two examples of incorrect recommendations. In the first exam-
ple, both the query and the recommendation are related to a specific component, called
Compositor. However, the query denotes a performance bug and the recommendation
denotes a crash. In the second example, Query #4 denotes a fairly simple bug in the
JavaScript engine and Rec. #4.1 is a more complex but not critical bug, according to
the developer who completed the query.

Table 6.3: Examples of incorrect recommendations, according to Mozilla developers
(including the textual similarity between the query and the provided recommendations)

Short Description Sim.
Query #3 Add compositor benchmark (ID 1014042)
Rec. #3.1 Compositor crash during shutdown crash while

debugging (ID 977641)
0.36

Query #4 Use a magic number to identify crashes re-
lated to any stack traversal during bailouts (ID
1015145)

Rec. #4.1 IonMonkey bailouts should forward bailout rea-
son string to bailout handler (ID 1015323)

0.35
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We also analyzed the comments related to the incorrect answers, trying to extract
small phrases and sentences that can contribute to organize the developers’ reasons in
categories. This analysis resulted in four categories, as follows:

• Recommendations that do not make sense (e.g., “one bug is a performance bug,
the other is a stability bug”, Subject #9).

• Recommendations that might be correct, but they are not a priority at this
moment (e.g., “bugs may interest me but are definitely not my current focus”,
Subject #1).

• Recommendations to developers who are not an expert on the component (e.g., “I
fixed that bug because someone broke the build, I’m not interested in the sandbox”,
Subject #38).

• Recommendations to paid Mozilla developers, who follow a work schedule
(e.g., “Our manager determines the next bugs we work on”, Subject #42).

The percentage of answers in each category is presented in Table 6.4. Only 20%
of the recommendations were ranked as denoting a non-similar or unrelated bug. In
fact, 40% of the negative answers are not exactly because the recommendations are
meaningless, but because the developers decided to focus on another bug, which he/she
judged as having a higher priority. Moreover, 16% of the developers confirmed they did
not have the expertise to evaluate if the recommendation were relevant or not. Only
12% of the developers stated they follow a work schedule. This is expected since most
Mozilla contributors are volunteers with the liberty to choose their own work.

Table 6.4: Reasons for not following a recommendation

Recommendations that do not make sense 20%
Recommendations that might be correct, but are not a priority 40%
Recommendations to non-expert developers 16%
Recommendations to developers with a work schedule 12%
Other reasons 12%

6.2.2 Question #2: Would you consider useful a Bugzilla

extension with recommendations?

For this second question, 44 developers (67%) answered that a Bugzilla extension in-
cluding similar bug recommendations would be useful. All Newbie and Junior devel-
opers answered this second question positively. Among the Senior, 82% answered the
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question positively. We analyzed the comments related to the positive answers which
resulted in the following categories:

• The extension is specially good for new contributors (e.g., “would be immensely
helpful for new contributors as they don’t know the project very well”, Subject
#10).

• The extension would increase developers’ productivity (e.g., “we could do more
work in less time”, Subject #27).

• The extension would be useful as a customized bug search engine (e.g., “might be
useful for keeping relevant bugs that I might miss on my radar”, Subject #39).

The percentage of answers in each category is presented in Table 6.5. We can ob-
serve that 11 developers (25%) highlighted the benefits of the recommendations to new
Mozilla contributors. Other 14% of the answers mention the increase in productivity
and 13% envisioned using NextBug as an advanced bug search engine.

Table 6.5: Usefulness of a Bugzilla extension

Support new contributors when searching for bugs 25%
Increase productivity 14%
Support to customized bug searches 13%
No reason given 25%
Other reasons 23%

Only 8 developers (12%) answered that a Bugzilla extension including bug rec-
ommendations would not be useful (all of them are Senior developers). We organized
the negative answers in two categories:

• The extension is not useful for developers who follow a well defined work schedule
(e.g., “in my case a product process is driving the prioritization”, Subject #48).

• The extension is not useful for developers that work on projects with few and
usually well-known bugs (e.g., “I don’t manage a lot of open bugs at the same
time, so I don’t need a list of suggestions”, Subject #22).

Each of these categories received 25% of the answers. Furthermore, 50% of the
respondents did not give a clear reason or did not provide an answer at all.
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6.3 Threats to Validity

Internal Validity: We based the study on a single textual similarity threshold.
Differently from the retrospective study, we did not test other thresholds, which
would be a particularly difficult task in a study with real developers. However, we at
least tried to select a threshold showing an interesting balance between precision and
feedback. We did not send multiple mails to the same developer, to avoid a perception
of our messages as spam. Due to this decision, we in fact reduced our sample to 42%
of the bugs with recommendations completed in the week monitored in the study.
Despite this fact, we were able to receive feedback from 66 unique developers, which
is a good response rate (≈37%).

External Validity: The participants might not be representative of the whole popu-
lation of Mozilla developers and, in more general terms, of general software developers.

6.4 Final Remarks

In this chapter, we presented a qualitative study by surveying real developers about
similar bugs recommendations. We received 66 responses (37%) from unique developers
working on Mozilla bugs. First, we described how the experiment was designed and
conducted, the survey questions, and the experimental subjects (Section 6.1). Then,
we presented an overview of the answers and we discussed the comments we received
(Section 6.2). For instance, 59% of the developers considered taking a recommendation
provided by NextBug, and 67% of the developers considered useful a Mozilla extension
to recommend similar bugs. Finally, we presented the threats to validity (Section 6.3).





Chapter 7

Conclusion

In this chapter we present our closing points and arguments. We begin with a discussion
on our main findings and some possible questions (Section 7.1). Then, we describe the
main contributions from our research (Section 7.2). Finally, we outline possible ideas
for future work (Section 7.3).

7.1 Discussion

In this section, we discuss and put our findings in perspective. We start by discussing
why it is not always possible to avoid context changes (Section 7.1.1). We also discuss
the increase on productivity possible by reordering tasks (Section 7.1.2), the systems
that most benefit of task recommendations (Section 7.1.3), and alternatives to improve
our evaluation metrics (Section 7.1.4).

7.1.1 Can we avoid context changes on issue handling?

It is not possible to completely avoid context changes because a similar pending issue
may not exist in the tracking system at the time a given issue is concluded. In such
cases, a developer who wishes to continue working on the system must choose a bug
requiring a different context. For example, in the retrospective study, NextBug achieved
a feedback of 78% and a top-1 precision of 47% for Mylyn’s Context dataset (considering
a similarity threshold of zero). Therefore, we can infer that 1−(0.78∗0.47) = 63% of the
issues do not have a similar pending issue in the tracking system (at least, as predicted
by our approach). For Mozilla, we achieved a feedback of 68% and a top-1 precision of
70%. Therefore, for 1 − (0.68 ∗ 0.70) = 48% of the bugs a context change is required.
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For both cases we assume only a top-1 recommendation list to be conservative. If we
consider top-3 recommendations the percentage of context change would be lower.

Based on these results, one can argue that NextBug is effective for a portion of
issues. However, for systems with an intense flow of new issues, a positive impact on
approximately 35-50% of the issues is relevant. For example, our recommendations can
avoid context changes for 67K bugs (52% of 130,495) in Mozilla and 992 bugs (37%
of 2,682) in the Mylyn plugin. Moreover, these recommendations are provided at low
cost in feasible execution time (3.8 ms on average). Finally, they are reported to be
of interest to end-users. For example, 67% of the Mozilla developers in the field study
indicated interest in a Bugzilla extension with recommendations.

7.1.2 Does our approach increase developer’s productivity?

In the field study, six developers spontaneously mentioned that a Bugzilla extension
with recommendations would contribute to an increase in productivity. We received
answers like this one:

“It would be useful for developers, since they’ll be able to be much more productive in
their contributions”, (Subject #7)

Additionally, issue recommendations can keep contributors working on the
system, by promptly indicating new issues they could work on. In this way, gains
of productivity may be achieved by expanding the workforce, which is especially
important for the long-term survival of complex open-source systems [Mockus et al.,
2002]. For example, 2,221 developers were responsible for the 130,495 issues we
initially considered in the retrospective study with Mozilla data. However, 928
developers (42%) worked on at most two issues and did not return to work on the
system. It is therefore reasonable to assume that recommendations could help to keep
such developers involved with the project. In fact, 11 developers mentioned this fact
in the field study, as in the following answer:

“A recommendation engine would be immensely helpful for new contributors to the
project as they often don’t know the project very well and find skulking through the bug
tracker tedious and energy-sucking.”, (Subject #10)

The previous comment reinforces the finding revealed in the characterization
study, where less skilled developers (i.e., Newbies and Juniors) take more time to
be assigned to a bug than actually fixing it (Section 3.4.4). In summary, tools like
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NextBug, can help new contributors to find and, consequently, handle more bugs.
In this thesis, our experiments (Chapters 5 and 6) showed indirect evidence that

NextBug can help to increase productivity. However, we acknowledge we did not
conduct specific experiments to measure the productivity gains achieved from NextBug.
These experiments are left as a future line of work.

7.1.3 Applicability

The benefits of the approach discussed in this thesis tend to be clearer in systems with
a large base of maintenance tasks. For example, in 2011, on average 6,593 maintenance
issues were reported monthly for Mozilla projects and on average 3,043 valid issues
were waiting to be handled in the first day of each month. On the other hand, on
systems with limited maintenance activity the advantages of an automated approach
for recommending similar bugs are less clear. First, because the space for searching for
similar tasks is naturally smaller. In other words, less tasks means less similar tasks
and therefore less effort saved on avoiding context changes. Second, if a system has
few pending tasks, it is easier for developers to discover by themselves the next tasks
they should work on, without the support of a recommendation engine.

We evaluated NextBug with 70 open-source systems, including 69 systems from
Mozilla and with the Mylyn plugin from the Eclipse ecosystem. Open-source systems
are natural candidates for task recommendations due to the uncoordinated and
decentralized nature of their development process, which depends on a large base of
contributors, most of them working as volunteers. Therefore, as previously discussed in
Section 7.1.2, such volunteers constitute an important target of the recommendations
proposed in the thesis. On the other hand, even systems like Mozilla include paid
developers, who have a well-defined workflow established by project managers. In the
field study, these developers usually ranked our recommendations as not useful, as
stated in the following comment:

“I’m a paid contributor to Mozilla, and as such, we have processes used by ourselves
and our manager which determine the next bugs we work on. So while your approach
looks like it did indeed select bugs somewhat similar to the one you mentioned, the
process used to choose which bug to *actually* work on next is quite different than
simply “it is similar”. Your approach may work well for volunteers who have full
control over exactly what they choose to do.”, (Subject #42)

However, even in such cases we envision that task recommendations might have
an application, not to developers, but to support the project managers when creating
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and assigning working units to paid developers. For example, recommendations can
be used to complement these working units with related tasks that could be easily
implemented by the assigned developers and that were not initially considered by the
managers responsible for their creation. A similar scenario applies to closed systems,
where the workforce typically follows a well-defined task schedule.

We also received suggestions of slightly different applications of NextBug. For
example, one of the Mozilla’s project manager commented that NextBug could be
adapted to recommend mentors for pending bugs:

“To be able to say, based on [a previous] contribution, you would be a good mentor for
these bugs over here, that would be quite valuable to us.”, (Mozilla’s Project Manager)

Another surveyed subject suggested that we could apply our approach to find
bugs that are appropriate to beginner contributors:

“I spend some time looking through the bugs and marking them as good first bugs for
contributors, but that requires a lot of work. An engine would probably be easier, plus
it might connect bugs it didn’t occur to me to be connected.”, (Subject #10)

7.1.4 Can we improve the measured evaluation results?

In this section, we discuss whether it is possible to improve results, considering the
evaluation metrics used in the retrospective study (Chapter 5). We employed four
metrics proposed to evaluate recommendation systems (feedback, likelihood, precision,
and recall) [Zimmermann et al., 2004] and a f-score (a harmonic mean between precision
and recall). On NextBug, we use only two fields from issue reports: short description
and component. At first glance, it may seem that our results can be improved by
considering other fields, such as priority, severity, full description, etc. In fact, work on
duplicated bug reports followed this strategy over the years to present better results.
However, in the comparative study (Section 5.1) we used REP [Sun et al., 2011], a state-
of-art technique of duplicate bugs detection, to find similar bugs. Even tough REP uses
several fields (e.g., full description, severity, etc.) to compute similarity among bugs, its
results are just as good as the ones achieved with NextBug. Therefore, by just adding
more fields to the similarity computation does not necessary impact on the evaluated
results.

We also argue that the use of a thesaurus with common and domain-specific
words can contribute to increase the evaluation metrics. By using a thesaurus, our
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approach could detect similar bugs using related semantic words that otherwise would
be undetected, and consequently, recommend bugs more accurately.

Another possibility of improvement would be to employ a clustering algorithm and
recommend the bugs from the same cluster as similar. However, we claim this technique
is more appropriate to create maintenance projects. In such case, each cluster would
be a maintenance project composed of similar issues. Nevertheless, to apply clustering
on-the-fly in the issue tracking system to give recommendations, requires a cluster
algorithm with a extremely fast computing time. Whether or not clustering would
improve our results, it is still an open question (and a future work idea).

7.2 Contributions

Popular open source systems may face a high number of reported issues. When devel-
opers work on issues that touch different parts of a software system, they must spend
time between each task handling a context change, i.e., they must spend time finding
the appropriate code and understanding it. In this thesis, to reduce the number and
costs of context changes, we proposed a new approach, called NextBug, to identify and
to organize a set of similar programming tasks using a recommendation mechanism.
The recommendations provided by NextBug can help a developer to work in a more
productive manner.

First, we conducted a characterization study focusing on the workflow followed
by developers to handle bug reports to better understand the bug handling process.
To help on this characterization, we propose the concept of Bug Flow Graphs (BFG),
which provides a visual representation of the overall workflow process in a more simple
way than retrieving this information from the issue tracking system. The BFG for all
Mozilla bugs showed that a bug usually takes five days longer to be resolved when it
is not properly assigned to a developer. When analyzing the developers’ profile BFGs,
we discovered that less skilled Mozilla developers take a longer time to be assigned to a
bug than actually fixing it. Therefore, tools and techniques to help developers to find
more bugs can improve the productivity of the bug handling process.

We performed a comparative study to verify whether NextBug is more suited for
similar bug recommendations than REP (a state-of-the-art technique for duplicate bug
retrieval). Although REP provides more recommendations, NextBug shows compara-
ble results for the remaining metrics. On Mozilla bugs, NextBug precision for top-1
recommendation is 70%, and REP is 71%. Considering likelihood, for the top-3 recom-
mendations, the values are 82% and 81% for NextBug and REP, respectively. These
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results indicate that for detecting similar bugs a technique that considers just the bug
components and short descriptions (like NextBug) performs as well as a technique op-
timized for identifying identical bug reports, which usually considers other fields and
compute their recommendations using complex ranking functions.

We also conducted a retrospective study on the Mylyn framework to verify
NextBug applicability in a system with a smaller dataset of issues. The results show
that NextBug can effectively provide recommendations even for smaller systems.

Finally, we performed a week-long field study by sending e-mails with recom-
mended bugs produced by NextBug to Mozilla developers. We received a feedback of
66 developers (37%) and most of them (59%) confirmed that NextBug recommenda-
tions express meaningful next bugs for developers to work on. Moreover, most of the
surveyed subjects (67%) confirmed interest in an extension to recommend similar bugs
on their issue tracking system (Bugzilla).

7.3 Future Work

Future work includes an investigation on alternatives to improve NextBug results,
like building a thesaurus with common words and also with domain-specific words
which can contribute to increase NextBug accuracy. Another possibility to improve
our approach is to employ clustering algorithms and verify their efficacy for similar bug
recommendations. Moreover, we plan to implement and compare other close related
techniques (proposed for example to duplicate bugs or to assign bugs to developers).

We also plan to investigate proactive recommendation styles, e.g., notifying de-
velopers when a new bug similar to one he/she is currently working on appear in the
tracking platform. Another route for future work is to create user profiles to store and
identify the developer’s behavior when handling bugs, and therefore, recommend bugs
based on his personal preferences. We are planning a second field study, when we in-
tend to install NextBug in a real bug tracking system to investigate whether developers
really follow similar bug recommendations. Regarding the characterization study, we
have plans to implement an online tool to create BFGs (Bug Flow Graphs), which can
be used by project managers to reason about bug fixing workflows.

Another line of future work is to perform experiments to measure the gains of
productivity achieved by NextBug. Although, we did show indirect evidence that
NextBug can increase the productivity, these new experiments can provide more robust
evidences about this benefit.
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Appendix A

Field Study Answers

In this appendix we supply the summarized field study answers. To preserve the
subject’s anonymity, we withhold personal information from our surveyed subject as
well as any other data that could be used to track them. Table A.1 show the subject’s
number, the date we sent the survey email, the bug ids recommended to them, and the
yes/no answers to the surveyed questions.

Table A.1: Survey Answers

Subject Survey Date
Recommendations Answers
I II III Q#1 Q#2

1 2014-05-22 956294 N Y
2 2014-05-22 979946 957830 Y Y
3 2014-05-22 971044 976571 unclear Y
4 2014-05-22 973133 N Y
5 2014-05-22 965435 965454 Y Y
6 2014-05-22 967621 N Y
7 2014-05-22 977245 977178 978220 Y Y
8 2014-05-22 983930 N Y
9 2014-05-22 977641 N Y
10 2014-05-22 975141 Y Y
11 2014-05-22 956159 984865 Y
12 2014-05-23 1007772 999091 1005296 Y unclear
13 2014-05-23 1015208 N Y
14 2014-05-23 1015205 1015144 Y Y
15 2014-05-23 1014242 Y N
16 2014-05-23 983041 957046 N

Continued on next page ⇓
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Subject Survey Date
Recommendations Answers
I II III Q#1 Q#2

17 2014-05-23 1003570 Y Y
18 2014-05-23 979835 unclear unclear
19 2014-05-23 960462 980066 1007117 N Y
20 2014-05-23 1012462 988366 Y Y
21 2014-05-23 1015162 1007336 1015157 Y Y
22 2014-05-26 967893 978296 978298 Y N
23 2014-05-26 999778 999779 994520 Y Y
24 2014-05-26 982019 Y Y
25 2014-05-26 1011831 1014932 N Y
26 2014-05-26 1001540 989889 979158 Y N
27 2014-05-26 1015688 991553 989292 Y Y
28 2014-05-26 979888 N
29 2014-05-26 980922 N Y
30 2014-05-26 973503 Y Y
31 2014-05-26 983018 Y Y
32 2014-05-26 1011708 N
33 2014-05-27 1011019 Y N
34 2014-05-27 1016577 Y Y
35 2014-05-27 993555 994410 973732 Y Y
36 2014-05-27 1012985 Y N
37 2014-05-27 1013398 1008991 1006775 N
38 2014-05-27 1012584 995071 1011491 N Y
39 2014-05-27 1014280 970094 Y Y
40 2014-05-27 1008945 1003528 1010551 Y Y
41 2014-05-27 979879 977484 996208 N Y
42 2014-05-27 1014957 978010 987719 N Y
43 2014-05-27 1015323 N Y
44 2014-05-27 1009198 1009205 977219 Y Y
45 2014-05-27 987838 Y Y
46 2014-05-27 1013217 Y Y
47 2014-05-27 991994 987758 972108 Y unclear
48 2014-05-27 1016072 987418 1016069 Y N
49 2014-05-28 956529 N Y
50 2014-05-28 991148 1014244 Y
51 2014-05-28 989768 Y
52 2014-05-28 1016227 1016221 1016233 Y

Continued on next page ⇓
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Subject Survey Date
Recommendations Answers
I II III Q#1 Q#2

53 2014-05-28 976521 971856 1016973 Y Y
54 2014-05-28 1011439 1013008 1014354 N Y
55 2014-05-28 1004153 N Y
56 2014-05-28 1010732 N
57 2014-05-28 1016730 Y unclear
58 2014-05-28 992401 Y Y
59 2014-05-28 990354 N Y
60 2014-05-28 1004154 987924 N N
61 2014-05-28 1013821 1011541 1012632 Y Y
62 2014-05-28 991342 N N
63 2014-05-28 1004365 1004377 Y Y
64 2014-05-28 987111 976148 1014991 Y
65 2014-05-28 958098 988434 1016155 Y Y
66 2014-05-28 999125 999119 N Y


	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem and Motivation
	1.2 Objective and Contributions
	1.3 Publications
	1.4 Outline of the Thesis

	2 Background and Related Work
	2.1 Software Maintenance
	2.1.1 Benefits of Periodic Maintenance
	2.1.2 Context Changes
	2.1.3 Issue Tracking Systems

	2.2 Information Retrieval
	2.2.1 Pre-processing Index Terms
	2.2.2 Vector Space Model

	2.3 Bug Characterization and Visualization
	2.4 Detecting Duplicated Bug Reports
	2.5 Assigning Bugs to Developers
	2.6 Analyzing Similar Issue Reports
	2.7 Recommendation Systems in Software Engineering
	2.8 Final Remarks

	3 Bug Characterization Study
	3.1 Mozilla Maintenance Process
	3.1.1 The Life Cycle of Mozilla Bugs
	3.1.2 Understanding the Workflow

	3.2 Bug Flow Graphs
	3.3 Dataset Overview
	3.3.1 Mozilla Bugs
	3.3.2 Mozilla Users
	3.3.3 Developers Profile

	3.4 Study Results
	3.4.1 Overall Workflow Analysis
	3.4.2 Fixed Bugs Workflow
	3.4.3 Workflow of Top Systems in Number of Fixed Bugs
	3.4.4 Developers Workflow

	3.5 Threats to Validity
	3.6 Final Remarks

	4 Recommendations of Similar Bugs
	4.1 Proposed Approach
	4.1.1 Rationale

	4.2 NextBug: A Prototype Implementation
	4.2.1 Main Features
	4.2.2 Architecture and Algorithms

	4.3 Final Remarks

	5 Retrospective Study
	5.1 Comparative Study
	5.1.1 Data Collection
	5.1.2 Technique for Comparison: REP
	5.1.3 Study Design
	5.1.4 Evaluation Metrics
	5.1.5 Comparison Results
	5.1.6 Configuration Without the Component Filter
	5.1.7 Oracle Sensibility Testing
	5.1.8 Alternative Evaluation: Assigned Developers
	5.1.9 Execution Time
	5.1.10 Summary of Findings

	5.2 Second Study: Mylyn
	5.2.1 Mylyn Dataset
	5.2.2 Study Design
	5.2.3 Results

	5.3 Threats to Validity
	5.4 Final Remarks

	6 Field Study
	6.1 Study Design
	6.2 Results
	6.2.1 Question #1: Would you consider working on one of these bugs next?
	6.2.2 Question #2: Would you consider useful a Bugzilla extension with recommendations?

	6.3 Threats to Validity
	6.4 Final Remarks

	7 Conclusion
	7.1 Discussion
	7.1.1 Can we avoid context changes on issue handling?
	7.1.2 Does our approach increase developer's productivity?
	7.1.3 Applicability
	7.1.4 Can we improve the measured evaluation results?

	7.2 Contributions
	7.3 Future Work

	Bibliography
	A Field Study Answers

