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Abstract

Vehicular Ad-hoc Networks (VANET) are a particular case of mobile ad hoc network
(MANET) in which nodes are vehicles that move following more predictable patterns.
This network is based on wireless communication among vehicles and fixed controller
nodes deployed on roads or streets. There are several application types and a good
example is a Virtual Traffic Light (VTL). These semaphores are implemented in a
distributed manner by vehicles themselves, thus, the signaling schedule can be adapted
with respect to the current traffic volume. It has shown improved results in traffic
control, increasing the traffic flow and reducing costs in infrastructure. However, this
application and many others in VANET already have great challenges. An interesting
question is how they will be tested. Simulation still is widely used in order to minimize
costs and reduce time of the experiments, since physical elements are not necessary
and tests can be reproduced easily.

The fields of computer networks and traffic engineering make extensive use of
simulators. Thus, there are long established software in both fields. Since the
introduction of vehicular networks, the integration of these two areas has recently
become necessary. This interaction is required due to inherent features of the
strong coupling between communication and mobility in VANETs. Applications alter
mobility patterns, which in turn, can disturb the data communication among vehicles.
Therefore, there is a strong and unique bidirectional relation between mobility and
data communication in vehicular networks.

However, most traffic and network simulators still use the isolated communication
approach, i.e., they do not exchange information in real time. Another technique uses
a software for connecting traffic and network software to get interactions. Nevertheless,
they suffer with latency requirements, due synchronization among models. This
last method is computationally complex, because both simulators must be run
simultaneously. Another issue appears because many network simulators do not
support devices and the protocol stack proposed for VANETs.

Thereby, another approach is the formal verification using Probabilistic Model
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Checking (PMC), a technique that automatically and exhaustively explores a model,
verifying if it satisfies properties given in special types of logics. Preliminary studies
show that model checking can be used to analyze Wireless Sensor Networks and
VANETs. They consider important questions like non-determinism to broadcast
the messages. However, traffic flow, computer networks and radio-propagation are
necessary and rarely explored together in this field.

Aware of this gap, this work contributes to formal analysis in VANETs presenting
a modeling structure with a microscopic granularity, which describes the traffic flow in
details together with a stochastic way to represent the possibility of receiving a message
with a probability p according to each vehicle’s position. Furthermore, we proposing
guidelines for building and verifying vehicular networks using our modeling. Thus,
future works may use the suggested instructions to create the models with a similar
abstraction level making the studies and results comparable.

To illustrate the use of the proposed model, applications and protocols for VANET
have been used in this work. Thus, this thesis presents the necessary concepts as model
checking, vehicular networks and virtual traffic light. The analytical models used in
our guidelines are also introduced. Finally, some experimental models are implemented
with the presented concepts.

Palavras-chave: Probabilistic model checking, VANET, Vehicular Network, Virtual
Traffic Lights, VTL.
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Chapter 1

Introduction

1.1 Motivation

Practically all major cities of the world are facing problems of traffic congestion. One
cause is the rapid growth of the population, consequently increasing number of cars
on roads. As a result, parking problems, long delays in getting to and from places
and accidents are more and more constant. According to Sheng et al. [2011] relying
only on the construction of transport infrastructure does not fundamentally solve the
existing transportation problems. So many countries have been adopting Intelligent
Traffic Systems (ITS).

These systems have as some of their main objectives to reduce the number of
traffic accidents, the cost of transport and CO2 emissions in the atmosphere [Ferreira
et al., 2010]. These systems make intensive use of communication among vehicles,
which is possible through the Vehicular Ad-hoc Networks (VANETs). This type of
network represents a particular class of Mobile Ad-Hoc Networks (MANETs). VANETs
are distributed self-organizing communication networks, mainly characterized by their
high speed, which poses several challenges [Harri et al., 2009].

VANETs provide a wide variety of applications that can be divided in three
classes [Vehicle Safety Communications Consortium, 2004]: (1) Traffic Safety —
which has preventive and emergency objectives. The main challenge is to rapidly
disseminate the information so that the driver has time to react to an unexpected
situation; (2) Entertainment — these include adaptations of Internet applications
for vehicular networks; and (3) Driver Assistance — related to information retrieval
that helps the driver in searching or automating services, for example, Intersection
assistance.

Intersection Management has been studied by several authors in order to optimize
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traffic flow [Bengtsson et al., 1995; Lomuscio et al., 2010]. Ferreira et al. [2010] presents
an approach that proposes replacing the fixed infrastructure for a control in which the
vehicles manage the flow temporarily. This method was named Virtual Traffic Light
(VTL).

Figure 1.1: Vehicle-to-vehicle communications – Font [Herald Wheels, 2013]

Figure 1.1 illustrates a VANET environment connecting several vehicles. It allows
the exchange of information. Hence, vehicles approaching a blind intersection could
warn each other of their existence. Thus, a virtual traffic light as mentioned above
could be implemented. However, the protocol must be secure and ensure that no
accidents will occur. Thus, it is necessary to have answers to questions like, what is
the probability of accidents using a certain protocol? Which should be the speed and
acceleration of the involved vehicles in order to avoid an accident? Those questions
have to be answered taking into account all possible behaviors.

Current research in this area frequently analyzes VANETs using simulators
to evaluate their behavior. However, simulation examines only a subset of
possible behaviors, which can lead to incomplete analysis [Hartenstein et al., 2010].
Furthermore, works such as Alves and et al. [2009] and Boban and Vinhoza [2011]
report that VANET simulators, despite constant evolution, have not reached an ideal
point, because they need to integrate the mobility of the nodes, the communication
protocols and the signals propagation. This is necessary since, the great benefit of
VANET is to transmit information about the traffic in order to modify the routes
of vehicles. However this benefit has become a challenge for simulation. Thus, two
hitherto unconnected worlds must now work together, network and traffic simulators.

Currently, the vehicular traffic flow simulators can produce trace files that are
given as input to a network simulator, or the traffic flow simulator must be coupled
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with the network software to allow feedback from communication to vehicular traffic
behavior. Another technique is to use a software to do the interface among established
Network and Mobility simulator. In this context, there are challenges that must
be addressed by the research community [Hartenstein et al., 2010; Hartenstein and
Laberteaux, 2008; Boban and Vinhoza, 2011; Alves and et al., 2009]: (1) Specifications
of APIs for coupling traffic flow and networking simulators (2) Modeling how drivers
react to the additional information provided by VANETs (3) Benchmark definitions to
make simulation studies and results comparable (4) Define the required level of accuracy
in simulation according to application type. (5) Most simulators do not properly
represent the hardware and protocols of vehicular networks (e.g. Wave protocol
and modern chipsets) (6) Modeling and analyzing the effect of large scale fading, in
particular of moving radio-wave obstacles like a truck between two cars, requires more
attention from the communications community. (7) Real-world measurements show
that deterministic radio propagation models should be avoided, because they do not
capture the probabilistic effects of small scale fading that have a significant impact on
packet reception.

1.1.1 Analysis of Computer Networks

Despite of simulation to be predominant in vehicular networks tests, others techniques
like measurements and analytical/mathematical modeling can be used. According
to Jain [1991], when the system under investigation already exists and it is necessary
to improve a product, measurement techniques can be used. On the other hand, when
the system does not exist or is too difficult to deal with, a model must be developed.

A mathematical model is an approximate representation of a physical situation.
A useful model explains all relevant aspects of a given situation. When
adequately constructed, models therefore allow the analyst to avoid the costs of
experimentation [Leon-Garcia, 2008].

According to Puigjaner [2003], the main existing analytical techniques are based
on the following formalisms: Queuing networks, Petri nets and Process algebras, with
some variants like Stochastic Petri Nets and Stochastic Automata Networks. These
techniques are basically special cases of Markov chain, which is a collection of random
variables having the property that, given the present, the future is conditionally
independent of the past [Kwiatkowska et al., 2004]. Here, it is needful to briefly
introduce some of these methods [Obiniyi et al., 2014]:

Queueing Networks (QN). Queuing theory is the mathematical study of
waiting lines. A model is constructed so that queue lengths and waiting times can be



4 Chapter 1. Introduction

predicted. It has found useful applications in telecommunications, traffic engineering,
computing and the design of diverse building structures. A queuing system describes
the system as a unique resource while a queuing network describes the system as a set
of interacting resources [Yousefi et al., 2008].

Petri Nets (PN) are essentially a graphical and mathematical modeling tool
applicable to many systems. Petri nets are directed graphs with two types of nodes,
places and transitions, and unidirectional arcs between them. Generally, tokens move
between places according to the firing rules imposed by the transitions [Puigjaner,
2003]. PN have been found to be very useful in the study of behavior of many
real-world scenarios involving concurrency, sequencing, synchronization and conflict.
Essentially in computer networks, PN can be used to describe and verify communication
protocols [Puigjaner, 2003; Jahanian et al., 2015]. Other techniques are derived from
PN, that is the case of Stochastic Petri Nets (SPN), which are Petri nets where
exponentially distributed firing time is attached to each transition.

Stochastic Automata Network (SAN) is a formalism for the definition and
the solution of complex systems with a very large state space. The main advantage of
using SAN is its memory efficiency [Plateau and Stewart, 1997]. The basic idea is to
represent a whole system by a collection of subsystems with an independent behavior
and occasional inter-dependencies. Each subsystem is described as a stochastic
automaton which represents a certain number of states, with rules or probability
functions that govern the movements from one state of the automata to the other.
SAN has been used efficiently in areas like machine decomposition, systolic computing,
neutral computing and IP networks [Othman et al., 2009; Plateau and Atif, 1997].

Performance Evaluation Process Algebra (PEPA) is a stochastic process
algebra designed for modeling computer and communication systems. In PEPA the
actions are assumed to have a duration or delay. Rates are drawn from the exponential
distribution and PEPA models are finite-state and so give rise to a stochastic process.
Hence it can be used to study quantitative properties of models of computer and
communication systems. The main advantage of characterizing the corresponding class
of PEPA models is that by “lifting” the definition from the stochastic process level
in to a formally defined high-level modeling paradigm, automatic detection of these
structures is facilitated when they occur [Hillston, 1996, 2005]. PEPA has been used
in different areas including networks [Edwards, 2001; Fourneau et al., 2002], mobility
model [Hillston and Ribaudo, 2004] and automotive systems [Argent-Katwala et al.,
2008].

These aforementioned techniques are characterized by Obiniyi et al. [2014]; Baier
et al. [2010] as methods of performance evaluation. These analysis are a branch
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of computer science studies, which investigate the perceived performance of systems
based on an architectural system description and a workload model [Baier et al., 2010].
According to Hermanns and Katoen [2001], performance evaluation aims at analyzing
quantitative system aspects that are related to its performance and dependability.
There are a number of reasons performance analysis study may be undertaken as
stated in [Obiniyi et al., 2014]:

1. To find out performance bottlenecks in existing systems and develop
improvements.

2. For capacity planning: for instance, how much resources should be spent to obtain
some desired level of service quality?

3. For performance comparison of systems, algorithms and protocols; for example,
given two protocols which one is better and in which respect?

4. To verify the claims of product designers and manufacturers or service providers;
e.g. is the Internet service provider able to guarantee a certain minimum
bandwidth as promised?

5. For predicting the performance at future workloads or operating conditions
(forecasting).

Nevertheless, an important and complementary issue to performance is
correctness [Baier et al., 2010]. Here, the central question is whether a system works
conforming their requirements and does not contain any flaws, that is the type of
questions which our work wants to answer.

Obiniyi et al. [2014] and Clarke et al. [1999] state that a prominent discipline in
computer science to assure the absence of errors is model checking, a highly automated
model-based technique to check whether a system model, which represents the possible
system behavior, satisfies a property describing the desirable behavior. Typically,
properties are expressed in temporal extensions of propositional logic, and system
behavior is captured by Kripke structures, that is, finite-state automata with labeled
states.

The strength of model checking which we have judged important to our work,
is the ability to generate diagnostic feedback in the form of counterexamples (such as
error traces) in case a property is refuted. This information is highly relevant to find
flaws in the model and in the real system [Obiniyi et al., 2014].

Furthermore, the usage of temporal logics in model checking gives an important
advantage to specify properties of interest at the same abstraction level as the modeling
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with a high degree of expressiveness and flexibility [Obiniyi et al., 2014]. Nesting
formulas yields a simple mechanism to specify complex measures in a succinct manner.
A property like “the probability to reach a state within 25 seconds that almost surely
stays safe for the next 10 seconds, via legal states only exceeds 0.5” boils down to
P≥0.5[“legal′′U≤25P=1[X

≤10“safe′′] ] and better, the meaning of the above formula is
precise [Obiniyi et al., 2014; Clarke et al., 1999].

Yet according to [Obiniyi et al., 2014; Baier et al., 2010], perhaps the largest
advantage of model checking to perform analysis is that all algorithmic details,
all detailed and non-trivial numerical computation steps are hidden from the user.
Without any expert knowledge on, say, numerical analysis techniques for CTMCs. This
fact, together with the advantages mentioned above, as well as the act to be exhaustive,
to support multiple types of models and reward structures (which could be used to do
some performance analysis) became model checking an appropriate technique to exams
correctness in VANETs.

There are some works in the literature about VANET and their protocols.
However, in preliminary studies we pointed that few analysis treat the non-determinism
of the message broadcast, the network protocol and the vehicles movement together.
In other words, the focus of studied works was to verify the communication
protocol. Nevertheless, it is important verifying networks considering not only
communication by itself, but also implemented functionality. Thus, it is often
necessary to model communication and other important system components to verify
functionality [Christian, 2009].

1.2 Objectives and Intended Contributions

Probabilistic Model Checking (PMC) is a formal, exhaustive and automatic technique
for modeling and analyzing stochastic systems [Clarke et al., 1999; Kwiatkowska et al.,
2011]. PMC performs an automatic analysis of systems in which system properties are
expressed in probabilistic logics, and are verified by the exhaustive enumeration of all
reachable states. PMC may answer questions such as “What is the probability of the
occurrence of a certain event?”. This is ideal for dynamic systems that exhibit stochastic
phenomena such as VANETs. PMC verification is performed by (1) specifying the
properties that the system must satisfy; (2) constructing the formal model of the
system, which should capture all the essential properties and (3) running the model
checker to validate the specified properties.

This work has the objective to model and analyze one specific protocol or
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applications using more than one to VANETs. The idea is to provide a guideline
for modeling which includes vehicular movement, non-deterministic message broadcast
and network protocols. Thus, we will consider not only communication, but all the
functionality of an application. For instance, to virtual traffic light algorithm, a leader
election protocol is crucial, however, the protocol evaluation is based on optimistic
and ideal assumptions, i.e., the studies neglect the existence of radio obstacles, and
consider a perfect communications system, namely, every broadcast message is received
by every vehicle. The analysis made by most researches focus in the evaluation of large
scale traffic efficiency. It is unusual to investigate the reliability of these new VTLs
through exhaustive methods or formal proofs. The researches also have difficulty to
execute tests because simulation does not support implementation details for this type
of application. Thus, almost all works had to build their own simulators or developed
an interface able to do the integration between motion and network.

1.3 An Overview of the Proposed Approach

The goal is to provide examples and guidelines to model and analyze vehicular networks
in a complete way using model checking. Figure 1.2 shows an abstraction of the
proposed idea. This model is divided in three wide groups (gear) implemented by
modules and/or formulas in some model checker language. The groups exchange data
with each other and may change their behavior according to interaction. We have been
moving towards groups with higher cohesion and looser coupling to represent motion,
signal-propagation and network. Thus, we can change parts of the modeling according
to our need. For instance, we may change modules responsible for a urban street to a
highway, or changing the code responsible for signal propagation from expressions for
the log-normal shadowing path loss to Nakagami model ([Van Eenennaam, 2008]).

We have proposed a microscopic model, which describes the traffic flow in details.
With regard to the implementation, the Cars Following Models (CFMs) are probably
the most popular class of driver model. CFMs usually represent time, position,
speed, and even acceleration as continuous functions, but most have been extended
to provide discrete formulations. One of most prolific CFM is Intelligent driver model
(IDM) [Hartenstein et al., 2010].

The IDM shows a crash-free collective dynamics, exhibits controllable stability
properties, and implements an intelligent braking strategy with smooth transitions
between acceleration and deceleration behavior. The IDM acceleration is a continuous
function incorporating different driving modes for all velocities in freeway traffic as well
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Figure 1.2: Framework proposed

as city traffic. Besides the (bumper-to-bumper) distance s to the leading vehicle and
the actual speed v, the IDM also takes into account the velocity difference (approaching
rate) to the leading vehicle [Kesting et al., 2010].

In order to adequately model VANETs and take into account the unique
characteristics of environment, we propose the mobility modeling along with signal
propagation using a stochastic model that represents the possibility to receive a message
with a probability p. The link probability is calculated within arbitrary networks
to take into account the distance between nodes and their relative clustering. The
behavior of the wireless links is based on an empirically validated model proposed
by Zuniga and Krishnamachari [2004]. The difference in behavior whether one node
or several nodes broadcast at the same time is accounted for in the link probabilities.
The method computes the various quantities such as the transmission powers, the
signal-to-noise ratios and thresholds for each node, taking into account their actual
pairwise separations.
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1.4 Outline of the Thesis

This thesis is structured in the following chapters:

• Chapter 2 provides basic concepts on Vehicular networks, a novel and adaptive
Ad hoc Networks. These networks are created among vehicles or between vehicles
and fixed infrastructure located on the streets or roads edges. Thus, protocols,
architectures and standards are presented. Special characteristics and technical
challenges also are reported. Finally, the potential applications and services are
pointed.

• Chapter 3 describes basic concepts of vehicular networks simulation, which
minimizes costs and reduces time of the experiments. However it shows
weaknesses. Thus, challenges and adopted solutions are presented. A microscopic
mobility model and a signal propagation model used by simulators are presented.
In the remainder of the chapter, we show how the analysis through simulation
have been conducted. As an example, we choose the studies about Virtual Traffic
Light, since their use are directly involved with human lives.

• Chapter 4 presents model checking, a formal verification approach which allows
verifying if a model satisfies a set of logic properties. Symbolic model checking
is first described, covering its symbolic representation and temporal logics. Since
our models are stochastic, probabilistic model checking is covered, including its
probabilistic and reward-based logics. Model checkers of Markov chains are
reviewed. The PRISM model checking tool was used in this work, therefore
we have included a brief description of its features. To finish, we present the
related work of this project. This part presents three works using model checking
in Wireless Sensor Networks and VANET. They show how the problem has been
modeled.

• Chapter 5 presents two case studies proposed in this work to model movement
using the PRISM model checker. The first one is a macroscopic model of an
virtual traffic light managing a crossroad. It shows the feasibility of formal
methods to analyze vehicular networks. The other model covers a microscopic
representation which will be used in our guidelines to represent motions.

• Chapter 6 describes the guidelines proposed by our work. In this point, the steps
from planning to the final report are presented. In addition, an example of source
code in PRISM language is shown.
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• Chapter 7 exemplifies our proposed architecture to modeling VANETs. We have
applied a modeling structure presented in our guidelines which includes mobility,
communication and signal propagation modules. We present an analysis of a
vehicular warning system involving some automobiles.

• Chapter 8 covers final remarks and conclusions of our research. Furthermore, it
exposes future work.

1.5 Publications

This thesis has generated the following publication and therefore contains material
from it:

• [Ferreira et al., 2012b]: Ferreira, B. and Braz, F. A. F. and Campos, S. V.
A. (2012). A probabilistic model checking approach to investigate vehicular
networks. In Proc. 15th Brazilian Symposium Formal Methods;

• [Ferreira et al., 2014b]: Ferreira, B. and Braz, F. A. F. and Campos, S. V.
A. (2014). A Probabilistic Model Checking Analysis of a Realistic Vehicular
Networks Mobility Model. In Proc. 17th Brazilian Symposium Formal Methods;

• [Ferreira et al., 2015a]: Ferreira, B. and Braz, F. A. F. and Loureiro, A. A. F. and
Campos, S. V. A. (2015). A Probabilistic Model Checking Analysis of Vehicular
Ad-Hoc Networks. In Proc. IEEE 81st Vehicular Technology Conference;

• [Ferreira et al., 2015b]: Ferreira, B. and Cunha, F. and Mini, R. and Braz, F. A.
F., and Loureiro, A. A. F. and Campos, S. V. A. (2015). Intelligent Service to
Perform Overtaking in Vehicular Networks. In Proc. The 20th IEEE Symposium
on Computers and Communications - ISCC2015;



Chapter 2

Vehicular Network

Outline. In this chapter we present some of the background on Vehicular Network
that is relevant to this thesis. We introduce protocols, architectures and standards
adopted in VANET, which are an important source to understand how we will model
the network of the architecture shown in Figure 1.2. We also describe characteristics,
technical challenges and some potential applications and services. Finally, we consider
some simulation outlook.

2.1 Introduction

Automobiles have been incorporating several technological advances such as
increasingly sophisticated sensors and actuators. A processor uses sensor data
to control different systems on a vehicle through the use of actuators, which are
electromechanical devices. This actuators can for example, adjust engine idle speed,
change suspension height or regulate the fuel metered into the engine [Toyota, 2012].
This control provides the emergence of technologies such a smart breaking systems,
driver fatigue detection and cruise control, the goal is to improve the experience of the
driver and passengers.

In addition, the next technological evolution is the use of communication
architectures to enable interaction between different vehicles. Such architectures and
applications form an Intelligent Transportation System (ITS), which works in an
environment formed by users in traffic [Alves and et al., 2009].

The vehicular communication used in ITS is called Vehicular Networks. These
networks are created among vehicles or between vehicles and a fixed infrastructure
located on the streets or roads edges. However, vehicular networks have a number
of challenges to their widespread adoption. Among them are the high node mobility,
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the dynamic scenarios, and scalability in number of nodes. The fading of connectivity
during data transmission and reduced time in which two nodes remain in contact are
other challenges. In this scenario, protocols designed for other wireless networks, such
as Mobile Ad hoc (MANET), are not suitable [Alves and et al., 2009].

Vehicular ad hoc networks (VANETs) are emerging as a new class of wireless
networks, spontaneously formed among moving vehicles equipped with wireless
interfaces that could have similar or different radio interface technologies from
short-range to medium-range communication systems. According to Hassnaa Moustafa
[2009], VANET is a form of mobile ad hoc network that provides communications
among vehicles following a specific architecture, which defines the way how the nodes
organize and communicate with each other. Three main architectures are [Alves and
et al., 2009; Hassnaa Moustafa, 2009]:

1. Infra-structured network: it employs static nodes distributed along streets or
roads. These static nodes serve as access points in IEEE 802.11 networks. The
advantage is the increased connectivity and the possibility of communication
with other networks such as the Internet. The connectivity, however, is only
guaranteed by a large number of fixed elements, which can raise the cost of the
network. The wired backbone mode also is called V2I (Vehicle-to-Infrastructure)

2. Wireless network: vehicles communicate with no external support or
centralizing element. Therefore, vehicles act as routers and forward messages
through multiple hops. This is the simplest configuration, since it does not require
any infrastructure. It has the network connectivity as major drawback, because
it depends on the density and mobility pattern of vehicles. This model is known
as V2V (Vehicle-to-Vehicle).

3. Hybrid Architecture: architecture that does not rely on a fixed infrastructure
in a constant manner, but can exploit it for improved performance and service
access when it is available. In this latter case, vehicles can communicate with
the infrastructure either in a single hop or multihop fashion according to the
vehicles’ positions with respect to the point of attachment with the infrastructure.
Figure 2.1 illustrates the three methods.

2.2 Protocols and Standards

Reducing the number of accidents may in turn reduce the number of traffic jams,
which could reduce the level of environmental impact and improve the welfare of the



2.2. Protocols and Standards 13

Figure 2.1: VANET architectures – Font [Alves and et al., 2009]

population. With these goals, various projects are underway or recently completed
and several consortia were set up to explore the potential of VANETs [Hartenstein
and Laberteaux, 2008]. These consortia projects involve several areas, including the
automotive industry, the road operators, tolling agencies and national governments.
A set of milestones presented in Figure 2.2 shows the evolution of the VANET
research around the globe. These include the consortia like Vehicle Safety
Consortium [VSC-US, 2011], Collision Avoidance Metrics Partnership [CAMP-US,
2013], Car-to-Car Communication Consortium [C2C-CC (EU), 2013], Advanced Safety
Vehicle-ASV Program [NASVA-JP, 2013] and Large- scale Vehicle Infrastructure
Integration Consortium [VII-US, 2012].

In this context, the Dedicated Short-range Communications System (DSRC) has
emerged in North America. The Car-to-Car Communication Consortium (C2C-CC)
has been initiated in Europe by car manufacturers. In Japan, five related government
bodies jointly finalized a “System Architecture for ITS”, since, several projects have
been developed, including the ASV Programme (Advanced Safety Vehicle) [Furukawa,
2005; Paromtchik and Laugier, 2007] which aims to develop methods and devices
to improve the safety of transportation system. Despite having the same objective,
different countries have adopted different specification and technology. An example, is
the distinct frequency spectrum defined by projects as depicted the Figure 2.3.

The communication standard VANET was created by IEEE and was called WAVE
(Wireless Access in the Vehicular Environment). WAVE is defined by the IEEE 1609
family, and the specification IEEE 802.11p. The latter defines the physical layer and
medium access control (MAC). It is based on IEEE 802.11a standard created for local
networks (LAN), which operates in a frequency band similar to the vehicular networks.
As shown in Figure 2.4, the IEEE 1609 family is not restricted to the lower layers. The
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Figure 2.2: VANET projects – Font [Alves and et al., 2009]

Institute of Electrical and Electronics Engineers defined other points of the protocol
stack including a network layer to be an alternative to the IP protocol, safety features
for application DSRC operation and multiple communication channels [Alves and et al.,
2009]. The protocol stack as suggested by the IEEE 1609 contains [Karagiannis et al.,
2011]:

• IEEE 1609.1: describes an application that allows the interaction of an On
Board Unit (OBU) with limited computing resources and complex processing
running outside the OBU, in order to give the impression that the application is
running on the OBU;

• IEEE 1609.2: specifies the WAVE security concepts and defines secure message
formats and their processing in addition to the circumstances for using secure
message exchanges;
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Figure 2.3: WAVE frequency specifications – Font [Karagiannis et al., 2011]

• IEEE 1609.3: provides routing and addressing services required at the WAVE
network layer. WSMP (WAVE Short Message Protocol) provides routing and
group addressing (via the WAVE Basic Service Set (WBSS)) to traffic safety and
efficiency applications. It is used on both control and service channels. The
communication type supported by WSMP is broadcast;

• IEEE 1609.4: provides multi-channel operation that has to be added to IEEE
802.11p.

The main objective of IEEE 1609 is to provide a standardized set of interfaces.
Thus different automotive manufacturers can provide communications between the
architectures shown in Figure 2.1. Furthermore, the standard should consider high
mobility of nodes, i.e., communications must be completed in short time intervals [Alves
and et al., 2009]. Therefore, IEEE 802.11p is based on an orthogonal frequency-division
multiplexing (OFDM) in PHY layer, but uses 10 MHz channels as opposed to the 20
MHz channels for IEEE 802.11a. As a result, data rates range from 3 to 27 Mb/s
for each channel, where lower rates are often preferred in order to obtain robust
communication. Because the basic type of communication in a VANET is based on
one-hop broadcasts, the IEEE 802.11 MAC can be understood as simple CSMA scheme.
However, many parameters can influence the probability of packet reception. A partial
list includes vehicular traffic density, radio channel conditions, data rate, transmission
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Figure 2.4: Protocol stack suggested by IEEE 1609 – Font [Alves and et al., 2009]

power, contention window sizes, and the prioritization of packets [Hartenstein and
Laberteaux, 2008]. Finally, Table 2.1 describes the nomenclature used in IEEE 1609
family of standards.

Table 2.1: Nomenclature of WAVE architecture – Adapted [Alves and et al., 2009]

WAVE devices names Description
On board Unit (OBU) WAVE mobile device able to exchange

information with other OBUs and RSUs
Road Side Unit (RSU) WAVE static device able to exchange

information with other OBUs and RSUs
WAVE Basic Service Set (WBSS) Set of WAVE stations composed of a

WBSS provider and zero or more WBSS users
WAVE Short Message (WSM) Message broadcasted by the WSMS protocol

WBSS Provider WBSS device able to broadcast WSMs
WBSS user WSM receiver

2.3 Special Characteristics of Vehicular Networks

and Technical Challenges

Vehicular networks have special behavior and features, which distinguish them from
other types of mobile networks. VANET comes with unique appeals, as i) Unlimited
transmission power, since each node (vehicle) can provide continuous power to
computing and communication devices; ii) High computational capability: Indeed,
vehicles can afford significant computing, communication, and sensing capabilities;
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iii) Predictable mobility: Unlike classic mobile ad hoc networks, where it is hard to
predict the nodes’ mobility, vehicles tend to have very predictable movements since
are (usually) limited to roadways. Positioning systems, like GPS, give the average
speed, current speed, and road trajectory. Thus, the future position of a vehicle can
be predicted [Nekovee, 2005].

However, vehicular networks have to cope with some challenging characteristics.
A central challenge of VANETs is that applications should run reliably using
decentralized communications. Many applications will be broadcasting information
of interest to many surrounding cars. However, at least one shared control channel is
required. This one-channel paradigm, together with the requirement for distributed
control, leads to some of the key challenges of VANET design. The very well-known
problem of hidden and exposed terminals is problematic. Clearly, medium access
control (MAC) is a key issue in the design of VANETs [Hartenstein and Laberteaux,
2008]. Other challenges are [Blum et al., 2004]:

• Potentially large scale: Vehicular networks can in principle extend over the
entire road network and so include many participants.

• High mobility: The environment is extremely dynamic, and includes extreme
configurations: on highways, relative speeds of up to 200 km/h on low traffic
freeways. On the other hand, in the city, relative speeds can reach up to 60 km/h
and nodes’ density can be very high, especially during rush hour.

• Partitioned network: Vehicular networks will be frequently partitioned. The
dynamic nature of traffic may result in large inter-vehicle gaps in sparsely
populated scenarios, and hence in several isolated clusters of nodes.

• Network topology and connectivity: VANET topology changes frequently
as the links between nodes connect and disconnect very often. Indeed, the degree
to which the network is connected is highly dependent on two factors: the range
of wireless links and the fraction of participant vehicles, where only a fraction of
vehicles on the road could be equipped with wireless interfaces.

2.3.1 Vehicular Network Potential Applications and Services

The primary vision of vehicular networks includes real-time and safety applications for
drivers and passengers. It provides safety and gives essential tools to decide the best
path along the way. Regarding application’s potential, vehicular networks open new
business opportunities for car manufacturers, network operators, service providers,
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in terms of infrastructure deployment and commercialization [Hassnaa Moustafa,
2009]. VANET provides a wide variety of applications that can be divided in three
classes [VSC-US, 2011; Karagiannis et al., 2011]:

1. Traffic Safety Applications – which have preventive and emergency objectives.
The main challenge is to rapidly disseminate the information so that the driver
has time to react to an unexpected situation. Two examples of active road safety
applications are: i) Intersection collision warning : in this case study, the risk of
lateral collisions for vehicles that are approaching road intersections is detected
by vehicles or road side units. This information is signaled to the approaching
vehicles in order to lessen the risk of lateral collisions. ii) Lane change assistance:
the risk of lateral collisions for vehicles that are accomplishing a lane change with
blind spot for trucks is reduced.

2. Driver Assistance Applications – related to information retrieval that helps
the driver in searches or automated services, for example [ETSI, 2011]; i) Speed
management : aims at assisting the driver to manage the vehicle speed for smooth
driving and avoiding unnecessary stopping and ii) Co-operative navigation: this
application manages the navigation of vehicles through cooperation among them.
Some examples of this type are traffic information and recommended itinerary
provisioning, co-operative adaptive cruise control.

3. Entertainment Applications – these include adaptations of Internet
applications for vehicular networks. A typical application is Co-operative local
services which focus on infotainment that can be obtained from locally based
services such as point of interest notification, local electronic commerce and media
downloading [C2C-CC, 2007; ETSI, 2011; Prj, 2008];

These three classes of VANET applications are not completely orthogonal:
for example, reducing the number of accidents can in turn reduce the number of
traffic jams, which could reduce the level of environmental impact (Figure 2.5). By
vehicle-to-vehicle and vehicle-to-roadside communication, accidents can be avoided
(e.g., by not colliding with a traffic jam) and traffic efficiency can be increased (e.g., by
taking alternative routes) [Hartenstein and Laberteaux, 2008]. Thus, an application
can serve to offer Safety and driver assistance.

ETSI [2011] identified performance requirements for vehicular networking
applications. The requirements can be grouped into the following items:
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Figure 2.5: V2V and V2I communication – Font [Hartenstein and Laberteaux, 2008]

a) Strategic requirements: These requirements are related to: (1) the level
of vehicular network deployment, e.g.,minimum penetration threshold and (2)
strategies defined by governments and commissions.

b) Economical requirements: These requirements are related to economical
factors, such as business value once the minimum penetration value is reached,
perceived customer value of the case study, purchase cost and ongoing cost and
time needed for the global return of the invested financial resources.

c) System capabilities requirements: These requirements are related to
the system capabilities, which are: Radio communication capabilities, such
as single hop radio communication range, used radio frequency channels,
Network communication capabilities, such as mode of dissemination, congestion
control, message priority. Vehicle absolute positioning capabilities, such as
Global Navigation Satellite System (GNSS), e.g., Global Positioning System
(GPS), beyond, others vehicle capabilities and vehicle communication security
capabilities.

d) System performance requirements: which are: related to the system
performance, vehicle communication performance, vehicle positioning accuracy.

e) Organizational requirements: associated with deployment, which are:
IPv6 or IPv4 address allocation schemes, suitable organization to ensure
interoperability between different Intelligent Transport Systems.
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f) Legal requirements: related to legal responsibilities, which are: support and
respect of customer’s privacy, support the responsibility of actors, support the
lawful interception.

g) Standardization and certification requirements: related to standardization
and certification, which are: support of system standardization, support of
Intelligent Transport System station standardization.

System performance requirements depend upon the class of application. For
safety applications, the coverage distance varies from 300 meters to 2000 meters
depending on the study case. But, the coverage distance associated with entertainment
applications varies from 0 meters to full communication range [C2C-CC, 2007; ETSI,
2011]. Examples for some applications are shown in Table 2.2.

Table 2.2: Application requirements examples – Adapted [Karagiannis et al., 2011]

Applications
classes

Study
case

Communication
mode

Minimum
trans. freq.

Critical
latency

Safety
application

Intersection
collision warming

Periodic msg.
broadcasting 10 Hz < 100 ms

Lane change
assistence

Co-operation
awareness

beteween cars
10 Hz < 100 ms

Driver
assistence

Green light optimal
advisory

Periodic, permanent
broadcasting msg. 10 Hz < 100 ms

Eletronic toll
collection

Internet vechicle and
unicast full duplex

session
1 Hz < 200 ms

Enterteinement
Vehicle software
provisioning and

update

Access to
internet 1 Hz < 500 ms

Intersection collision warning should follow these requisites. This service has
been studied by several authors in order to optimize traffic flow [Santos et al., 2010;
Gradinescu et al., 2007]. Ferreira et al. [2010] present an approach that proposes
replacing the fixed infrastructure for a control in which vehicles manage the flow
temporarily. This method was named Virtual Traffic Light (VTL). Some VTL concepts
and development examples about VTL are presented in Section 3.6.
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2.3.2 Simulation

Tests in vehicular networks require a large number of people, high costs and favorable
weather conditions. Moreover, the repetition of a given experiment in an environment
with many variables is hard. The use of simulation is an attractive alternative. It
provides a controlled environment and spends less resources. But the reproduction of
similar conditions which are found in real tests is a challenge. The simulation should
represent the signals propagation and network protocols. Furthermore, it should deal
with the mobility of nodes. Thus, specific mobility models must be developed [Alves
and et al., 2009].

Most of the proposed solutions use a known network simulator in conjunction
with a mobility simulator. This maybe involves other software to do the
interface among them. An example is the TraNS (Traffic and Network Simulation
Environment) [Piorkowski et al., 2008]. It is a simulation tool that uses the NS-2 and
SUMO. This is possible due to TraCI (Traffic Control Interface), an interface module
that connects the two simulators.

Specific simulators for vehicular networks have been proposed. Wang and Lin
developed the simulator NCTUns [Wang and Lin, 2008], that has simulation modules
for the IEEE 802.11p protocol. This simulator has an interface which allows the
creation of nodes in the network and specific paths [Alves and et al., 2009]. Despite
advances, this software and projects still have great challenges. Thus, developers have
been improving the tools constantly. More concepts and features of simulation are
presented in Chapter 3.

2.4 Conclusions

Vehicular network is a technology that will support several applications varying from
global Internet services to road safety applications. This chapter introduced and
discussed some possible applications.

Although many standard organizations are involved in the study and
standardization of VANETs, these networks are considered as a technology under
development that merits a lot of research. Moreover, a number of technical challenges
need to be resolved for wide-scale deployment of these networks in the near future.
Furthermore, this chapter showed important features of communication, which the
network model presented in the architecture of the Figure 1.2 should have, for instance,
aspects like latency and protocols to broadcast the messages.





Chapter 3

VANET Simulation

Outline. In this chapter we present some of the background on VANET Simulation
that is relevant to this thesis. We introduce the evolution, development and features
of the simulators. We also describe the Network, Radio-propagation and Mobility
model including a Lane-Changing representation. A proposed framework for realistic
vehicular mobility models also is introduced. Finally, the use of simulation examining
different studies about Virtual Traffic light are presented to illustrate the problems of
this analysis type.

3.1 Introduction

In order to validate the effectiveness of Intelligent Traffic Systems, it is necessary to
evaluate their performance and communication protocols in real test environments.
However, there are logistic difficulties, economic questions and technological limitations
which make simulations a good choice for testing and validation of these protocols. The
fields of computer networks and traffic engineering make extensive use of simulators.
There are long established software such as NS-2 (The Network Simulator)1 and SUMO
(Simulation of Urban Mobility)2. Since the introduction of vehicular networks, the
integration of these two fields has recently become necessary [Hartenstein et al., 2010].

This integration is required due to inherent features of the strong coupling
between communication and mobility in VANETs. Its use alter mobility patterns,
which in turn change the data communication between vehicles. This ad hoc
infrastructure compromises the correct message reception, which in turn changes its
mobility. Therefore, there is a strong and unique bidirectional relation between mobility

1NS-2. http://www.isi.edu/nsnam/ns/. Access date: October 17, 2016
2SUMO. http://sumo.sourceforge.net/. Access date: October 17, 2016
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and data communication in VANETs. Thus, three distinct aspects must work together
in order to achieve realistic tests [Boban and Vinhoza, 2011]: (1) Mobility Models
represent vehicle movement, including mobility patterns and the interaction between
vehicles (e.g. crossroad control); (2) Network Models describe the data exchange
between vehicles, including MAC, routing and superior protocol layers; (3) Signal
Propagation Models intend to reproduce the environment modeling involving fixed
and mobile obstacles during the communication.

Figure 3.1 shows the relationship between these three models and techniques
which could be used for the implementation of each model. These models can be
applied in different forms by choosing the available techniques accordingly to the desired
realism level. For further details on these mobility and signal propagation techniques,
refer to [Harri et al., 2009] and [Khosroshahy, 2007], respectively.

Figure 3.1: VANET simulation environment - Adapted from [Boban and Vinhoza,
2011]

As an example of realism level, an application directed to the traffic efficiency
should perform its simulations in large scale, with less precision on the movement
modeling. Network simulators should consider a full bidirectional interaction,
increasing its granularity to an arbitrary packet loss rate and a data reception
probability is enough.

On the other hand, traffic security applications require a considerable precision
level of vehicular movement modeling, a high degree of realism in the network and
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signal propagation models, although represented in a small scale with a simplified
traffic model. A common point between the simulation of these types of applications
is the communication between network and traffic simulators. These simulators have
usually been developed in different periods and they are connected in distinct forms as
described below [Harri et al., 2009]:

• Isolated: this was an initial approach in the communication between different
models. The simulation traces for vehicular mobility are statically generated and
then used by a network simulator. The main disadvantage is the difficulty to
define real time interactions between the network and the traffic itself. However,
its simplicity and universality are useful in some current applications.

• Embedded: in this approach, either a traffic vehicular simulator is inserted
in a network simulator, or the opposite. This allows the duplex interaction
between both simulators. However, this approach still is not ideal, because
simplified network simulators are inserted in the mobility ones (for example,
Bononi et al. [2006]), or detail-rich network simulators receive reduced vehicular
traffic modules, such as Wang and Chou [2008].

• Federated: a traffic simulator is integrated with a network simulator through
a communication interface, which controls the data exchange between them.
Renowned and detail-rich simulators can be used, such as in Wu et al. [2005],
which couples the traffic simulator CORSIM with the network simulator QualNet.
Another example is presented in VGrid [2009], which integrates the traffic
simulator SUMO with other network simulators such as NS-2 or OMNeT++.
The drawback is the communication latency between different simulators and
the amount of parameters to configure the connection between the softwares.

The Isolated approach uses ”Trace-based Models” (Figure 3.1) for mobility patterns,
which can use artificial traces, with random movement on a plane or with real-world
traces. This last one brings a certain level of realism, however this approach does
not provide a connection feedback to the network model in order to change the vehicle
movement. Ferreira et al. [2009] and Ho et al. [2007] use real-world traces and they are
examples of this technique. The other two approaches, Embedded and Federated, use
the ”Dedicated Traffic Models”, because they provide an improved ability to connect
mobility and network models [Boban and Vinhoza, 2011]. Figure 3.1 shows several
techniques used to implement this dedicated model. Thus, in order to guide the choices
about what to use during simulation, Harri et al. [2009] proposes dividing the modeling
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into three levels to facilitate the search for realism and efficiency requirements in ITS
testing:

1. Trip Modeling: vehicular movement is defined by trips between Points
of Interest (PoI) and can be done, for example, using the OD-Matrix
(Origin-Destination), which selects PoIs in the traffic environment and builds
a transition matrix to represent the correlations between routes. Figure 3.2a
illustrates an OD-Matrix, where the transitions are probabilities to move from
one vertex (PoI).

2. Path Modeling: once origin and destination have been defined, the route
planner defines the instruction sequence of each vehicle in order to reach
its destination. Path Modeling pre-computes or dynamically recomputes the
preferred intersection sequence based on the optimization function (e.g. shortest
or fastest path). Figure 3.2c distinguishes paths between PoIs for black and gray
vehicles.

(a) Origin-Destination matrix

(b) Flow Model
(c) Path modeling

Figure 3.2: Simulation levels - Adapted by [Harri et al., 2009]

3. Flow Modeling: a detailed description of vehicular mobility is used to
model the interaction of vehicles as a vehicle flow. Figure 3.2b illustrates
the precision of these interactions for an intersection. Productive methods
for the implementation of mobility models include [Helbing, 2001]: cellular
automata [Nagel and Schreckenberg, 1992], intelligent driver model [Kesting
et al., 2010] and gas-kinetic [Hoogendoorn and Bovy, 2001].
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Another important aspect of simulations is the classification of the granularity
for the mobility model, which can be: microscopic, mesoscopic and macroscopic. This
aspects are detailed below [Harri et al., 2009]:

• Microscopic: traffic flow is described in detail, regarding the mobility
parameters of specific vehicles and their interactions with other vehicles. These
parameters usually are vehicle acceleration/deceleration, adjusted in order to
maintain safe distances between vehicles. However, it is computationally
expensive.

• Macroscopic: this category does not consider a specific vehicle for the mobility
parameters – instead, it describes the class of vehicles as a flow or density.
Inspired by the flow theory, it has the advantage of a reduced computational
complexity compared to the microscopic models.

• Mesoscopic: this description uses traffic flow and an intermediate level of
detail. Individual vehicles can be modeled, although using a macroscopic
perspective. The objective is to benefit from the macroscopic scalability, however
still providing details comparable to microscopic models.

3.2 Mobility model

At beginning, VANET mobility models were characterized by their simplicity and
ease of implementation. However, simplified mobility models such Manhattan grid
model [Bai et al., 2006] were not able to model the vehicular mobility adequately,
because mobility was only constrained to a set of grid-like streets. Further, advancing
of the mobility models was achieved by using map generation techniques, such as
Voronoi graphs [Davies et al., 2006], which constrain the movement of the vehicles
to a network of irregular streets generated artificially. Recently, the most prominent
mobility models started utilizing real world maps (e.g., Choffnes and Bustamante [2005]
and Mangharam et al. [2005]).

The vehicle interaction includes modeling the behavior of a vehicle that is a direct
consequence of the interaction with the other vehicles on the road. This includes the
microscopic aspects, such as lane changing and decreasing/increasing the speed due to
the surrounding traffic, as well as the macroscopic aspects, such as, taking a different
route due to the traffic conditions, for instance, congestion [Gipps, 1986].

With regards to the implementation approaches for the microscopic mobility
models, Car following models (CFMs) are probably the most popular class
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of driver model. CFMs usually represent time, position, speed, and even
acceleration as continuous functions, but most have been extended to provide
discrete formulations [Hartenstein et al., 2010]. The most prolific proponents
are [Helbing, 2001]: the cellular automata models [Nagel and Schreckenberg, 1992],
the follow-the-leader models (e.g., car-following [Rothery, 1992] and intelligent driver
model (IDM) [Kesting et al., 2010], the gas-kinetic models [Hoogendoorn and Bovy,
2001] and the macroscopic models [Lighthill and Whitham, 1955]. These analytical
models are important to this work, specifically the IDM, because they are used to
represent movement in our modeling of the Sections 5.3 and 7.1.

The IDM shows a crash-free collective dynamics, it exhibits controllable stability
properties and implements an intelligent braking strategy with smooth transitions
between acceleration and deceleration behavior [Kesting et al., 2010]. The IDM
acceleration is a continuous function incorporating different driving modes for all
speeds in traffic of highways or cities. It uses the current speed v and the distance s
(bumper-to-bumper) to the leader vehicle (s = xl− x− e, where x are the coordinates
and e the extent of vehicle). This method also takes into account the speed difference
(approaching rate) ∆v = v − vl to the leading vehicle. The IDM acceleration function
is given by

aIDM(s, v,∆v) = a

[
1−

(
v

v0

)δ
−
(
s∗(v,∆v)

s

)2
]

(3.1)

s∗(v,∆v) = s0 + vT +
v∆v

2
√
ab

(3.2)

This expression combines the free-road acceleration strategy afree(v) = a[1 −
(v/v0)

δ] with a deceleration one abrake(s, v,∆v) = −a(s∗/s)2, which becomes relevant
when the gap to the leading vehicle is not significantly larger than the effective ‘desired
(safe) gap’ s∗(v,∆v). The free acceleration is characterized by the desired speed v0,
the maximum acceleration a, and the exponent δ characterizing how the acceleration
decreases with velocity (δ = 1 corresponds to a linear decrease while δ → ∞ denotes
a constant acceleration). The effective minimum gap s∗ is composed of the minimum
distance s0, the ‘velocity dependent distance’ vT, which corresponds the speed of the
leader vehicle with a constant ‘desired time gap’ T, and a dynamic contribution, which
is only active in non-stationary traffic corresponding to situations in which ∆v 6= 0.
This latter contribution implements an ’intelligent’ driving behavior that, in normal
situations, limits braking decelerations to the comfortable deceleration b. In critical
situations, however, the IDM deceleration becomes significantly higher, making the
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IDM collision-free [Treiber et al., 2000]. The IDM parameters v0, T, s0, a and b are
shown in Table 3.1.

Table 3.1: Parameters of the IDModel. Adapted from Kesting et al. [2010]

Parameter Car Truck
Desired speed v0 120 km/h 85 km/h
Free acceleration exponent δ 4 4
Desired time gap T 1.5 2.0
Jam distance s0 2.0 4.0
Maximum acceleration a 1.4 m/s2 0.7 m/s2
Desired deceleration b 2.0 m/s2 2.0 m/s2

New position and speed at time t,can be given respectively, by:

x = xi + vt+
a

2
t2 (3.3)

v = vi + at (3.4)

The deceleration over a given distance may be calculated by the Torricelle
equation:

v2 = v2i + 2a∆x (3.5)

where v is the current speed, vi e a are respectively, initial speed and acceleration,
finally, ∆x is the gap position between vehicle and obstacle.

3.2.1 Lane-Changing Model - Model MOBIL

A general model to represent lane-changing rules was proposed for Dirk Helbing and
Martin [2007]. The model is called Minimizing Overall Braking Induced by Lane
Change (MOBIL). The “utility” and the “risk” associated of a given lane are determined
in terms of longitudinal accelerations calculated by microscopic car- following models
as IDM. The behind vehicle desacelaration in the target lane can not exceed a given
safe limit bsafe. Risk criterion prevents critical lane changes and collisions, the
incentive criterion takes into account the advantages and disadvantages of other drivers
associated with a lane change via “politeness factor”. The parameter allows one to vary
the motivation for lane changing from purely egoistic to more cooperative driving
behavior.
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To understand this model, a specific lane change is shown in Figure 3.3. The
MOBIL model depends generally on the two behind vehicles in the current and the
target lanes, respectively. Thus, for a vehicle c considering a lane change, the behind
vehicles in the target and current lanes are represented by n and o. The acceleration ac
denotes the acceleration of vehicle c on the actual lane, and ãc refers to the situation in
the target lane, that is, to the new acceleration of vehicle c in the target lane. Likewise,
ão and ãn denote the acceleration of the old and new behind cars after the lane change
of vehicle c [Dirk Helbing and Martin, 2007].

Figure 3.3: Mobil notations - Font [Dirk Helbing and Martin, 2007]

3.2.1.1 Incentive Criterion for Symmetric Lane-Changing Rules

According to Dirk Helbing and Martin [2007], incentive criterion normally determines
if the lane change is better or not for an individual driver. In this model, the incentive
is generalized to include the immediately affected neighbors. The politeness factor p
determines to which degree these vehicles influence the lane-changing decision. Thus,
the incentive criterion is given by:

ãc − ac︸ ︷︷ ︸
driver

+ p

 ãn − an︸ ︷︷ ︸
new behind

+ ão − ao︸ ︷︷ ︸
old behind

 > ∆ath (3.6)

The first two terms denote the advantage of a possible lane change for the driver.
The change is good if the driver can go faster in the new lane. The third term denotes
the total advantage of the two immediately affected neighbors multiplied by politeness
factor p. Finally, the ∆ath term on the right-hand side of Equation 3.6 models a certain
inertia and prevents lane changes if the overall advantage is only marginal compared
with a “keep lane” directive.

If necessary, more than two lanes per direction can be implemented. For example,
a vehicle in a center lane, the incentive criterion is satisfied for both neighboring lanes,
the change is performed to the lane in which the incentive is larger. The p values can
vary from 0 (for selfish) to 1 (altruistic drivers). In the last case, drives do not change
if the overall traffic situation would be worst. By setting p < 0, even malicious drivers
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could be modeled, who accept own disadvantages in order to thwart others. In the
special case p = 1 and ∆ath = 0, the incentive criterion is simplified to:

ãc + ãn + ão > ac + an + ao (3.7)

Thus, lane changes are only performed when they increase the sum of
accelerations of all involved vehicles, which corresponds to the concept of minimizing
overall braking induced by lane changes (MOBIL) in the ideal sense [Dirk Helbing and
Martin, 2007].

3.2.1.2 Incentive Criterion for Asymmetric Passing Rules

In most countries, the driving rules for lane usage are restricted by legislation. A
common policy is to adopt the right lane as default. Thus, an asymmetric lane-changing
criterion for two-lane freeways also was formulated. Specifically, the following European
traffic rules are assumed [Dirk Helbing and Martin, 2007]:

1. Passing rule: Passing in the right-hand lane is forbidden unless traffic flow
is congested. Any vehicle driving at a velocity below some suitably specified
velocity vcrit is treated as driving in congested traffic (e.g., vcrit = 30 km/h).

2. Lane usage rule: The right lane is the default lane. The left lane should only
be used for the purpose of overtaking.

The keep-right directive of the lane usage rule is implemented by a constant bias
∆abias in addition to the threshold ∆ath. Therefore, the resulting asymmetric incentive
criterion for lane changes from left (L) to right (R) is [Dirk Helbing and Martin, 2007]:

L→ R : ãeurc − ac + p(ão − ao) > ∆ath −∆abias (3.8)

The incentive criterion for a lane change from right to left is given by

R→ L : ac − ãeurc + p(ãn − an) > ∆ath + ∆abias (3.9)

The passing rule was implemented following the condition:

ãeurc =

min(ãc, ac) if vc > ṽlead > vcrit

ac, otherwise
(3.10)

Where, according to Dirk Helbing and Martin [2007], ãc corresponds to the
acceleration in the left lane and ṽlead denotes the velocity of the front vehicle in the
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left-hand lane. The passing rule influences the acceleration in the right-hand lane only
if (a) there is no congested traffic (ṽlead > ṽcrit ), (b) the front vehicle on the left-hand
lane is slower (ṽc > ṽlead), and (c) the acceleration ãc for following this vehicle would
be lower than the single-lane acceleration ac in the actual situation. It should be noted
that the condition vc > ṽlead prevents vehicles in the right-hand lane from braking
whenever they are passed. The parameter values used in the MOBIL simulations are
shown in the Table 3.2.

Table 3.2: Parameters of the Mobil Model. Font– [Dirk Helbing and Martin, 2007]

Parameter Value
Politeness factor p 0...1
Changing threshold ∆ath 0.1 m/s2
Maximum safe deceleration bsafe 4 m/s2
Bias for right lane ∆abias 0.3 m/s2

The politeness parameter p, which it is relative to the incentive criterion, mainly
determines the lane-changing rate. The changing threshold ∆ath prevents lane changes
of marginal advantage. For p < 1, the maximum safe deceleration b serves as an
additional safety criterion. The value of b is chosen considerably below the physically
possible maximum deceleration of about 9m/s2 on dry roads. In the case of asymmetric
(European) lane-changing rules, the additional bias ∆abias models a preferred lane
usage of the default lane.

3.2.2 Framework for Realistic Vehicular Mobility Models

For the purpose of guiding developers through various challenges and options for
modeling vehicular motions, Boban and Vinhoza [2011] proposed a concept map for
a comprehensible representation of the functionalities of a realistic vehicular mobility
model. Figure 3.4, the concept map is organized around two major modules: the
motion constraints and the traffic generator. Additional modules such as time and
external influences are also required for a fine tuning of the mobility patterns. The
framework description is as follows [Boban and Vinhoza, 2011]:

• Motion constraints describe the relative degree of freedom available to each
vehicle. They can be streets, buildings, neighboring cars, pedestrians.

• Traffic generator defines different kinds of vehicles and it deals with their
interactions according to the environment under study. Macroscopically, it
models traffic densities, speeds and flows, while microscopically it deals with
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Figure 3.4: Concept map for realistic mobility models – Font [Boban and Vinhoza,
2011]

properties such as the inter-distance between cars, acceleration, braking, and
overtaking

• Time describes different mobility configurations for a specific time of the day.
Traffic density is indeed not identical during the day. Peak times, such as rush
hours or during special events can be observed. This block influences the motion
constraints and the traffic generator functional blocks.

• External influences model the impact of a communication protocol or any
other source of information on the motion patterns. This block also models the
impact of accidents, temporary road works, or real-time knowledge of the traffic
status on the motion constraints and the traffic generator blocks.

3.3 Data exchange (Network) model

Network models for VANETs are quite similar to those used in other fields of
MANET research. The data models used in the current simulators, such as NS-2 and
NCTU-NS [Wang and Chou, 2008], rely on discrete event simulation, where different
protocols of the network stack are executed through events triggered by upper layer.
The main difference arises in the use of a dedicated WAVE protocol stack. The lowest
layers have been standardized under IEEE 802.11p specification. On the network layer,
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WAVE Short Message Protocol (WSMP) is used. However, applications running over
the standard TCP/IP protocol stack are also supported.

Due to the relative novelty of WAVE protocols, the majority of the widely
used VANET simulators do not implement these resources. One exception is the
NCTU-NS simulation environment [Wang and Chou, 2008]. Modeling the network
stack realistically is important for the credibility of the results obtained at each level
of the protocol stack, and especially for the application level, since all the potential
simulation errors from the lower layers are reflected at the application layer [Boban
and Vinhoza, 2011].

3.4 Radio-propagation model

Appropriate models have been developed in order to represent adequately the signal
propagation in vehicular networks. They regard the unique characteristics of VANET
environment, for instance, high speed of the vehicles, obstruction-rich setting and
the specific location of the antennas. Overall, we can distinguish two class, the
deterministic and the stochastic model (Figure 3.1). Deterministic models attempt
to model the signal behavior based on the exact environment in which the vehicle
is currently located and with specific locations of the objects surrounding the
vehicle [Maurer et al., 2004]. Stochastic models, on the other hand, assume a
location of the surrounding objects based on a certain (often pre-defined) statistical
distribution [Acosta-Marum and Ingram, 2006].

Stochastic models use the concepts of computational geometry to characterize
the environment by generating the possible paths or rays between the vehicle of
transmitting and receiving. Some examples are presented by Nagel and Eichler
[2008] and Giordano et al. [2010]. An interesting research is proposed by Zuniga and
Krishnamachari [2004]. The link probability is calculated within arbitrary networks
with regard to the distance between nodes and their relative clustering. To understand
this method the Figure 3.5 will be used. We can assume that the sender k is closest to
receiver i, so its signal is the strongest; Sender j is the weakest. All link probabilities are
affected by the others activities. Here d, d’ and d” are the distances from the senders
to the receiver i.

The node j wants to send a message to i. The probability that i receives j’s
message is computed as a function of the signal-to-noise ratio, SNRi,j, which is given
for SNRi,j = rxi,j/bgNi,j. It is the ratio of the power of the received message at i (rxi,j),
and the noise (bgNi,j) generated in part by the other activities of the network [Zuniga
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Figure 3.5: Signal strength varying with distance and interference - Adapted by [Boulis
et al., 2008]

and Krishnamachari, 2004]. The power at the receiver can now be computed directly:

rxi,j = 10rxdBi,j/10 (3.11)

Where, rxdBi,j is signal strength of the received message. It depends on the
distance d(i,j) between i and j, and the power at which j transmits, txj, and is given
by the formula:

rxdBi,j = txj − PLd0 − 10(pLE)log10(d(i, j)/10) (3.12)

where pLE is called the Path Loss Exponent, and can be thought of as the rate
at which the signal strength deteriorates with distance. Finally, d0 and PL are scaling
constants determined by the environment.

Next, we compute the background noise (bgNi,j). Thus, the noise generated by
the other nodes in the network must be taken into account (See Figure 3.5). Let sendk
be a function which is 1 or 0 according to whether node k is transmitting a message or
not. The total background noise at receiver i interfering with the message transmitted
by j is given by [Zuniga and Krishnamachari, 2004]:

bgNi,j = nbgN +
∑
k 6=i,j

rxi,k ∗ sendk (3.13)

In the simple case, where there are no neighbors nodes, the background noise is
assumed to be a constant nbgN determined by the operating environment. Now the
two quantities bgNi,j and rxi,j given at 3.11 and 3.13 respectively we can now compute
the probability that i receives j’s message.
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According to Boulis et al. [2008], the current analytic models for computing
the link probabilities predict that there is signal-to-noise threshold which there is
effectively zero probability that the message can be decoded by the receiver. This
threshold depends on a number of network specific parameters: the data rate (nDR),
the noise bandwidth (nBW), the threshold probability (nTP), the frame length (f) of
the message, and the modulation type of the transmission. In Frequency Shift Keying
(FSK) modulation, the threshold is is given by:

∆i,j = −2
nDR

nBW
loge(2(1− nTP 1

8f )) (3.14)

By Equation 3.15, Zuniga and Krishnamachari [2004] computed the threshold-free
probability that j’s message is received by i:

snr2prob(SNRi,j) = (1− 0.5 ∗ exp(−0.5
nBW

nDR
SNRi,j))

8f (3.15)

With SNRi,j and the snr2prob we can compute the link probabilities

prob_recvi,j =

0 if SNRi,j < ∆i,j

snr2prob(SNRi,j), otherwise
(3.16)

According to Boulis et al. [2008], since this formula depends on the mutual
contribution to the noise of the surrounding nodes, this is actually a conditional
probability, namely the probability that i receives j’s message given that i does not
receive the message from any of the other nodes. This together with the assumption
that if j 6= k then the events “i receives a message from node j” and “i receives a message
from node k” are mutually disjoint, implies that we can compute the probability Pi

that any message is received by i (from whichever sender) as the sum of the individual
link probabilities:

Pi =
∑
j 6=i

prob_recvi,j ∗ sendj (3.17)

According to Correia [2011] another renowned statistical model to represent
fading of the radio-mobile signal is the model of Nakagami-m [Nakagami, 1960], who is
indicated by Taliwal et al. [2004]; Rubio et al. [2007] as an excellent model to represent
the VANET environment. Its probability density function (pdf) is given by:

f(x) =
2mmx2m−1

Γ(m)Ωm
exp

[
− mx2

Ω

]
, x ≥ 0, Ω > 0, m ≥ 1

2
(3.18)
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where, Ω is the expected value of the distribution and can be interpreted as the
average received power. m is the fading parameter. The values of of parameters m e
Ω are in functions of the distance and Γ represents the Gamma distribution.

Due to the complexity of the exact model for probability density functions,
approximate solutions have been developed. Thus, studies [Jang and Sichitiu, 2012;
Malone et al., 2007; Engelstad, Paal E. and Osterb, Olav N., 2005] use a geometric
approach to reducing the computational effort and simplify the calculations of PDF
and CDF distribution Nakagami-m. An interesting example is shown in Killat and
Hartenstein [2009], they present an analytical model that gives the probability of
successfully receiving an one-hop broadcast message based on the distance between
sender and receiver. They obtained the expected probability of successfully receiving
a message at distance d while considering an intended communication range of CR
meter:

Pr(d, CR) = exp−3(d/CR)2

(
1 + 3

(
d

CR

)2

+
9

2

(
d

CR

)4
)

(3.19)

Both analytical models presented here are important to this work. They are used
to represent signal propagation in our modeling of the Sections 5.3 and 7.1.

3.5 Discussion

Up to this moment, the chapter presented a description of the current VANET
simulation. We notice a constant evolution to obtain a realistic environment to execute
testing in Intelligent Traffic Systems. There are several software options with different
levels of granularity in mobility, network and signal propagation models. However
the search for improving the verification should continue. Most traffic and network
models still use the Isolated communication approach. The software that makes use
of Federated approach suffers with latency requirements, due synchronization among
models. This last method is computationally complex, because both simulators must
run simultaneously [Hartenstein et al., 2010]. Another problem is that many network
simulators do not support the WAVE protocol [Boban and Vinhoza, 2011].

Although the interaction of vehicles and the application of traffic rules have been
shown to be essential for the accuracy of the vehicular traffic model [Harri et al.,
2009], many mobility models for VANET have scarce support for these microscopic
aspects [Ferreira et al., 2009]. It must be considered also that current VANET
simulators consider vehicles as dimensionless entities, in other words, have no influence



38 Chapter 3. VANET Simulation

on the signal propagation [Martinez et al., 2011].

In the remainder of this chapter, we present some of the background on
Virtual traffic lights (VTL). This done to verify the statements made above regarding
simulation, in the other words, we want to show how simulation have been employed in
VANETs. Thus, we introduce concepts, goals, tests and requirements about VTL.
We describe four different environments and protocols of the virtual traffic lights
proposed in the literature. Finally, a qualitative evaluation of safety in VTL protocols
is presented.

3.6 A Survey on Virtual Traffic Lights

Traffic congestion has become one of the main problems in modern life. Several policies
have been adopted worldwide to minimize this problem, and for over thirty years now,
efforts have been made to create traffic light systems that can respond to the ever
increasing traffic.

Currently most traffic control systems rely on timing plans generated offline
by traffic engineers using optimization models. However, these systems are hard to
maintain and do not adapt to special traffic events [Gradinescu et al., 2007], such as
rush hours.

Another problem is the cost of maintenance. According to DoT [2007], there
is a close relationship between costs and traffic volume – the USA spends billions of
dollars to maintain its current traffic lights. However, the low traffic volume at certain
intersections are unavoidable and it might not be worth using traffic lights in these
situations. For instance, only one percent of the intersections in the USA are managed
by traffic lights [Bureau, 2013; Patrushev, 2008], despite the fact that several studies
suggest that semaphores can reduce accidents by up to 33% [DoT, 2004].

Nevertheless, the management of intersections has gained attention recently and
technological breakthroughs in mobile computing and wireless communication have
created opportunities for intelligent semaphores. The main idea behind new traffic
lights is that vehicles at intersections would elect a leader based on a set of rules.
Thus, the leader creates a Virtual Traffic Light (VTL ), which it will control the traffic
flow by broadcast of messages. In order to establish a VTL, the algorithm can consider
different types of information, e.g. the current state of the traffic flow, which is shared
by all vehicles, and could potentially improve the traffic flow [Santos et al., 2010].

There are several goals that can be considered in the design of a VTL
protocol [Ferreira et al., 2010; Gradinescu et al., 2007; Chou et al., 2013]:
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1. Reducing the number of accidents at intersections

2. Reducing the travel time of urban workers during rush hours

3. Increasing the energy efficiency of urban transportation

4. Mitigating traffic congestion

5. Increasing the productivity of a nation

6. Reducing the carbon emission of vehicles

7. Reducing the deployment and maintenance costs of traffic lights

8. Support a greener environment by reducing external infrastructures

The analysis of VTL has been focused on two major areas: (i) quantitative
benefits over traditional methods and (ii) analysis of traffic performance metrics,
such as overall gain in average speed, reduction of carbon dioxide emission, and
improvements in traffic flow at intersections.

However, most studies overlook the quality of VTL communication, which can
become very poor due to several reasons. For instance, conditions when there is no
line-of-sight (LOS) between vehicles due to obstacles, such as buildings, that are often
not considered. These situations can cause major failures in the protocol and, therefore,
incur in potential accidents and the loss of human lives. Thus, in order to address these
issues, researchers have to improve the understanding of these protocols.

3.7 Virtual Traffic Lights (VTL)

Virtual Traffic Lights (VTL) can be divided in two different types:

1. built with mobile ad hoc networks (MANETs) and its derivatives

2. based on loop detectors (fixed sensors)

For the latter, we can cite the projects SCOOT [Robertson and Bretherton, 1991]
and SCATS [Akcelik and Chung, 1998]. SCOOT is based on loop detectors placed in
every lane on an intersection, usually in the end. Other systems, including SCATS,
have detectors placed immediately before the stop line at an intersection. Nevertheless,
they cannot get accurate data when the queue grows beyond the length of the detector,
or the lane is over saturated. Since they use a model based especially on occupancy,
they also have difficulties in differentiating between high flows or paralyzed intersection.
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However, adaptive traffic lights based on wireless communications among vehicles
can employ more flexibility than the ones mentioned above, because they provide more
information for the decision process (e.g. vehicles positions and speeds). The following
subsections describe some of these methods.

3.7.1 Adaptive VTL Using Car-to-Car Communication

The work, presented by Gradinescu et al. [2007] examines the possibility of deploying
an adaptive signal control system in intersections. The system can base its decision
control on information coming from cars. The authors assume each vehicle is equipped
with a short-range wireless communication device and there is a controller node placed
in the intersection with traffic lights.

Figure 3.6: Traffic lights communicate with adapt timing – Font [Gradinescu et al.,
2007]

This work uses TrafficView [Dashtinezhad et al., 2004], a VANET project for data
dissemination among vehicles. By making use of wireless communication and GPS, it
enables vehicles to collect and disseminate traffic information. Vehicles periodically
transmit information about themselves and other cars, which they know about. They
use one-hop transmission to avoid a broadcast storm. Each record consists of a position,
identification number, speed, direction, state and a timestamp of the moment when
the information was created.

The Controller receives all the exchanged information, thus finding out how
crowded the intersection lanes are. Beyond, in an urban environment, controllers in
adjacent intersections may communicate through a network. This can provide each
other with additional information [Gradinescu et al., 2007]. For example, with a known
number of cars approaching, the signal timing can be optimized. This model is depicted
in Figure 3.6.

The Traffic Lights Controller keeps track of the vehicles throughout the entire
period when they are in a few miles range around the intersection (through the
information propagation scheme of TrafficView), so it is able to measure accurately
both volume and demand. A time optimization plan occurs every cycle and is valid for
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the next cycle. This is done based on the measured parameters. But during a cycle
new optimizations may happen.

The authors have used simulation to analyze the behavior of the proposed method.
They emphasize the difficulty of integration between traffic and wireless network
simulators. Thus, they have chosen to develop a VANET discrete-event simulation
tool joining mobility and computer network. An integrated module for computing the
fuel consumption and pollutant emissions was also coupled. They have focused on the
relation between fuel consumption and the speed and acceleration of the vehicle. The
proposed method found that the system significantly improves traffic fluency, compared
to the existing, pre-timed traffic lights.

3.7.2 Adaptive VTL Based on VANETS for Mitigating

Congestion in Smart City

Chou et al. [2013] proposed an approach which adapts the cycle of VTL according to
current traffic and vehicle type using VANETs. The expected contribution is to mitigate
congestion. The proposed VTL dynamically adapts the cycle of traffic lights according
to three vehicle types, such as light vehicles, buses, and emergency ones. In this method
each vehicle is equipped with an on- board unit (OBU), the drivers should obey the
traffic signals of the proposed method. The routing protocol uses technique of carry
and forward [Vasilakos et al., 2011], in which nodes accept data from a source and carry
the message until transmitting it. The architecture of proposed VTL contains three
stages (See Figure 3.7a), called Smart Cycle Function, which is described below [Chou
et al., 2013]:
Planning function – vehicles collect beacon messages from their neighbors for the
selection of leader candidates. The beacon messages contain instant speed, location,
travel time, next-intersection, moving direction, vehicle identity, vehicle type and
generating time. Each lane should have a candidate and the vehicle that has the
shortest travel time until the intersection is selected. Then, the selected leader
candidate broadcasts lane messages to other vehicles and other leader candidates. The
lane messages contain vehicle identity, travel time, next-intersection, lane identity,
average speed of neighbors, number of neighbors and generating time.
Management function – In this phase lane messages are received. The leader
selection is made multiplying the quantity by weight assigned according to three types
of vehicles in every lane. Then, a leader candidate that has the smallest weight is
selected as leader. If the selected leader has not enough safe stopping distance, a
leader candidate that has the second smallest weight is chosen, and so on. The selected
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leader creates and maintains its own VTL and each intersection has only one leader.
For example, in Figure 3.7b there are two leader candidates, A and B. The weight of
vehicles in A, on vertical road segment is smaller than the weight of B, on horizontal
road segment. Therefore, leader candidate A is selected as leader, and A’s traffic signal
is set as red. The selected leader has to broadcast VTL messages to other vehicles
that are in the transmission range. The VTL messages contain VTL type, intersection
identity, traffic signal, cycle time and generating time.

Operating function – vehicles receive traffic signals (VTL messages) broadcast by
the selected leader. The traffic signals are shown on the screen of OBU. If vehicles do
not receive any VTL messages, vehicles can go through intersections and periodically
send beacon messages.

(a) Proposed data flow (b) Leader selection

Figure 3.7: AVTL scheme – Font [Chou et al., 2013]

In order to check the method, the researchers used the VANET simulator called
NCTUns [Wang and Chou, 2008]. NCTUns provides OBU and SignalAgent modules.
OBU module can exchange information with each other. SignalAgent module was used
to control traffic signal according to real time information.

Simulation parameters were as follows: IEEE 802.11p is MAC protocol, and its
transmission range is 250 meters. The transmission frequency of beacon message, lane
message and VTL message is set as 100 milliseconds. The road length of each two-way
road segment was 500 meters, and there were 4 lanes. Different numbers and types of
vehicles were used. When the number of vehicles is 200, the proposed VTL approach
improves the average speed of all vehicles by 33.1% when compared with fixed cycle
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traffic light. The average speed of emergency vehicles is improved by 62.06% when
simulated with 800 vehicles.

3.7.3 Distributed VTL System

Santos et al. [2010] present a distributed VTL system which is based on crossroad traffic
conditions. VTLs are generated by a distributed algorithm which requires participation
from vehicles at different roads in a particular intersection. Every vehicle has a
component called Car Navigation Modules (CNM) to display and change informations.
In a real scenario, communication among vehicles is made by wireless, which works in
a broadcast fashion.

The goal of this algorithm is to allow the communication among vehicles in order
to control the traffic at intersections using Virtual Traffic Lights. For this, the authors
defined some spatial variables. The Figure 3.8 shows them. The Line Of No Return
(LONR) defines the point when the vehicle must take a decision about if it should stop
or go ahead. It must stop if there are vehicles in the other roads or go ahead if no other
vehicles are detected. The Line Of Activity (LOA) is the point at which the algorithm
exits the Idle state and becomes active, preparing for VTL negotiation. The algorithm
assumes that the distance between intersections is bigger than the radius of LONR.

Figure 3.8: Crossroad with LOA and LONR lines depicted – Font [Santos et al., 2010]

Figure 3.9 presents a state machine of the algorithm. The vehicles periodically
send beacons (messages) to announce their presence. When vehicle closes the
intersection and crosses the LOA line it starts proposing himself as leader. It sends
a periodic beacon, the proposing beacons, moving from Idle state to Propose state.
By the time it arrives at LONR line if had received a beacon from an existing Leader
or a better proposing beacon from other close car then goes to a Non Leader state.
Otherwise the vehicle goes to Leader state and starts sending leader beacons. If there
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are no vehicles in the concurrent roads of the current intersection then the vehicles
jump to Yellow state and the vehicle can cross the intersection with caution.

If more than one road is occupied then there will be several leaders, one for each
occupied road. These leaders, which represent their roads, must then decide between
themselves who will cross the intersection. For that, leaders start to negotiate to choose
one among them to manage the crossroad, the SuperLeader. To achieve that, after they
make sure that they are seeing each other, they jump to the SuperLeader Negotiation
state where the negotiation takes place. The winner jumps to SuperLeader state and
the others return to the Leader state. The SuperLeader starts sending periodic green
beacons to the target road for a period of time. The vehicles that receive the green
message jump to Green state and can start moving. After the time expires, the
SuperLeader returns to Leader state and the negotiation starts again [Santos et al.,
2010].

Figure 3.9: Distributed VTL State Machine – Font [Santos et al., 2010]

In VTL algorithm different messages are used for different purposes. The
messages have common fields like source, destination, timestamp and type. However,
there are specific information for each purpose. For example, Traffic Messages carries
traffic information per each lane of a road. VTL Messages are used by leader
negotiation. These messages are the following ones [Santos et al., 2010]:

• Propose: Contains the propose time of the sending CNM. The CNM with the
lower propose time for given road becomes the leader of that road;

• Leader: Contains propose time and fellow leaders, which is the number of leaders
from where this CNM is receiving Leader messages. The other field in this
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message is a hash calculated from the IDs of each leader CNM from where this
CNM is receiving messages;

• Negotiation: This message contains the same fields as the previous one, plus the
number of cars in this CNM Leader group (this message is only sent by Leader
CNMs) and the SLV, that is value associated with each Leader and which is then
used to choose who will be the Super Leader and which road will receive green
semaphore;

• Green (G): Contains the same information as the original VTL message plus
the road ID to where the green semaphore is destined and the GPS time at which
this green semaphore will end;

• Yellow (W): Has the same information as the original VTL message plus the
GPS time the first white message was sent. This value is used to ensure fairness;

• Black: Signals a car mal-function, e.g., wireless device is broken.

Validation tests have not been published by authors. However, they have been
implementing a simulation framework in order to test and validate their VTL algorithm.
A simulation infrastructure have developed. This infrastructure is composed by several
entities, which are the Traffic Simulator (TS), the Manager, Car Navigation Modules
(CNMs) and Network Simulator (NS). CNM is the module that real vehicles would have
in order to enable the VTL algorithm. It provides communication between different
vehicles. This communication allows vehicles to discover each other and to exchange
information necessary to the VTL algorithm [Santos et al., 2010]. Java language
was the choice to implement all modules with exception of TS and CNM Display.
The navigation module is implemented in Python. The traffic simulator was already
implemented in C++. Instead of creating a Traffic Simulator from scratch, the authors
opted out by modifying an already existent simulator, adapting it to their needs. Due
to its performance, and modularity, DIVERT [Conceição et al., 2008] was chosen.

3.7.4 Self-Organized Traffic Control

Ferreira et al. [2010] present a VTL system which is based on the assumptions that
all vehicles are equipped with WAVE devices, share the digital map and have a global
positioning system (GPS). Each vehicle has a dedicated computer called Application
Unit (AU) which maintains an internal database. The data are grouped in a location
table, containing information about every node in its vicinity. These information are
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constantly updated through the reception of new beacons. The other table is named
traffic signs, it is responsible for storing data about the traffic light configuration at an
intersection. The AU also display information to the driver.

(a) Algorithm VTL (b) VTL State Diagram

Figure 3.10: VTL scheme – Font [Ferreira et al., 2010]

The VTL operation principle is simple (illustrated in Figure 3.10a). Step 1:
vehicles reaching an intersection check if there is a VTL running to be obeyed or if
one needs to be created in order to avoid crossroad conflicts. Step 2: during the
VTL creation, all vehicles nearing the intersection must elect one vehicle, which will be
responsible for broadcasting the traffic signal messages. Step 3: once there is a leader,
a VTL cycle for the intersection control is initiated with a red light for the leader lane.
This condition ensures that the leader will remain in the intersection for the duration
of a complete cycle. Once the current phase is finished, a new leader must be elected
to maintain the VTL. Figure 3.10b depicts the principle of VTL operation in terms of
states.

Figure 3.11a shows an example of the envisioned in-vehicle traffic light, where
the information are on the windshield of the car, such, the driver can easily see what
to do when approaching an intersection. This in-vehicle equipment will be interfaced
with the DSRC radio [Tonguz, 2011].
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(a) In-vehicle traffic lights concept (b) Average traffic flows using VTL

Figure 3.11: VTL – Font [Tonguz, 2011]

To see the impact of the proposed method, the DIVERT simulator was used
to analyze the traffic in the Manhattan grid and in city of Porto in Portugal, which
comprises 965 km of road structure and 2000 intersections of which 328 are equipped
with traffic lights (16 percent of all intersections) [Ferreira et al., 2010]. This software
is able to do evaluation in large-scale of micro-simulation [Conceição et al., 2008]. The
DIVERT mobility model has been validated against empirical data collected through
a recently conducted comprehensive stereoscopic aerial survey [Ferreira et al., 2009].

Figure 3.11b shows the results of a large-scale implementation of the proposed
VTL scheme with four scenarios of vehicle densities. The proposed scheme leads to
about 60 percent increase in average flow rates in Porto at high vehicle densities (i.e.,
during rush hours) [Ferreira et al., 2010]. The percentage benefit is with respect to the
existing traffic management scheme. The same group presents in [Ferreira and d’Orey,
2012], results referent a Carbon Dioxide (CO2) emissions which show a significant
reduction on CO2 when using VTLs, reaching nearly 20% under high-density traffic.

However, according to Tonguz [2011], despite the good results, there are several
challenges that need to be carefully addressed. The leader election algorithm described
earlier has to be made fail-safe. For instance, there is radio frequency propagation
problems due to the existing buildings and/or other obstructions. They might cause
malfunctioning of the protocol resulting in accidents.

3.8 Qualitative Evaluation of Safety in VTL

Protocols

Use of VTL has been shown to be promising and the works presented above show gains
in traffic flow of up to 60%. However, those studies were based on the assumption of
a perfectly reliable communication, i.e., notification messages of the traffic light were
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always received by vehicles located within a certain distance to the sender. Hence,
effects such as signal fading or non-line-of-sight conditions due to buildings were
neglected. Such effects, however, can have a negative impact on the dissemination
of the notification messages [Neudecker et al., 2012]. Virtual traffic lights suffers from
the same time-critical requirements as well as all safety applications.

In Mangel et al. [2011], the authors assert that adverse conditions exist at most
intersections in urban environments. Therefore, the usage of ITS may add a new safety
risk if a robust and reliable operation is not guaranteed. For instance, if individual
vehicles do not receive red light notifications early enough in a VTL, a car-crash or
dangerous driving maneuvers may be the consequence.

Worried about reliability in communication VTLs, Neudecker et al. [2012]
analyzed a scenario where, the speed and distance for two vehicles crossing an
intersection are exactly the same (see Figure 3.12). The algorithm examined was the
presented in Ferreira et al. [2010] what is described above. Hence, effects such as signal
fading or non-line-of-sight (NLOS) conditions due to buildings were studied.

Figure 3.12: Layout scenario test – Font [Neudecker et al., 2012]

Radio propagation was modeled using the NLOS communication model proposed
by Mangel et al. [2011]. The evaluation was based on the following metrics [Neudecker
et al., 2012]:

• VTL leader election distance (m): the distance at which the coordination of the
VTL protocol is finished and a vehicle declares itself as the VTL leader.

• Required deceleration (m/s2): this metric can be directly deduced from the
distance at which a driver is signalized to stop and the vehicle’s speed.

According to the results shown in Neudecker et al. [2012], the expected impact
of NLOS conditions on the performance of VTL can be confirmed. However, the
results indicate that this impact is not significant and that NLOS conditions do not
prohibit a timely detection and the possibility to take appropriate actions. Despite



3.9. Conclusions 49

these results show the feasibility of VTLs under NLOS channel conditions, the authors
claim that further research is needed to cover all the possible scenarios and other
sources of impairment. One of the problems is that, simulation examines only a subset
of possible behaviors.

3.9 Conclusions

Vehicular Networks (VANETs) increasingly draw interest in academic and commercial
sectors. There are several potential applications for it, from entertainment to the
prevention of accidents. But it is essential to test and analyze VANETs in order to
prevent loss of life. Simulation is widely used to check new protocols and applications.

For VANET simulations, microscopic and macroscopic models are typically
required. The first provides space-time behavior of vehicles and their interactions
on an individual level. The macroscopic model can show average number of vehicles
per hour passing a specific cross-section, the average number of vehicles per kilometer,
etc.

These models started with random movements in a plane area and nowadays they
progressed to real maps. However, despite the advance, significant challenges must be
overcome. For instance, the great benefit of VANET is to transmit information about
the traffic, in order to modify the routes of vehicles. However, modeling this benefit
has become a challenge for the simulation. Thus, two hitherto unconnected worlds
must now work together, network and traffic simulators.

Currently, the vehicular traffic flow simulators can produce trace files that are
given as input to a network simulator, or the traffic flow simulator must be coupled
with the network simulator to allow feedback from communication to vehicular traffic
behavior. Another technique is the use of a software to do the interface between
established Network and Mobility simulators. In this context, there are challenges that
must be addressed by the research community [Hartenstein et al., 2010; Hartenstein
and Laberteaux, 2008; Boban and Vinhoza, 2011; Alves and et al., 2009]: (1)
Specifications of APIs for coupling traffic flow and networking simulators (2) Modeling
how drivers react to the additional information provided by VANETs (3) Definitions of
benchmark to make simulation studies and results comparable (4) Defining the required
level of accuracy in simulation according to application type. (5) Most simulators do
not properly represent the hardware and protocols of vehicular networks (e.g. Wave
protocol and modern chipsets) (6) Modeling and analyzing the effect of large scale
fading, in particular of moving radio-wave obstacles like a truck between two cars.(7)
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Real-world measurements show that deterministic radio propagation models should be
avoided because they do not capture the probabilistic effects of small scale fading that
have a significant impact on packet reception.

Virtual traffic lights is one of many types of applications which use simulations
to perform tests. The analysis in these applications are important by the fact that the
usage is directly related to human lives. VTL usually are implemented in a distributed
manner by vehicles themselves, and allow to self-adapt the signaling schedule with
respect to the current traffic volume.

The study about VTL was important for this work in order to show the types
of test are applied and the challenges found in this phase. The conclusions show their
evaluations are based on optimistic and ideal assumptions, i.e., they have neglected the
existence of radio obstacles and considered a perfect communications system.

Tables 3.3 and 3.4 showed a comparative among the VTLs presented in this
chapter. The first one depicts the employed technology, who it indicates a trend to use
ad hoc communication. The last table presents the types of made analysis, which it
displays the focus on evaluation of large scale traffic efficiency. It is unusual investigate
the feasibility like in the work presented in Section 3.8.

Table 3.3: Analysis of VTL for infrastructure and in-vehicle features.

Infrastructure In-Vehicle Features
1 Intersection-based Short-range wireless communication device, GPS
2 Vehicle-based On-board unit (short-range wireless communication device, GPS and e-maps)
3 Vehicle-based Car Navigation Modules (short-range wireless communication device, GPS)
4 Vehicle-based DSRC devices vehicles sharing the same digital road map, GPS

Table 3.4: Analysis of VTL for measure of effectiveness and tests.

Measure of Effectiveness Tests
1 Control delay, volume per capacity A simulator was created for the experiments

ratio and poluents emission
2 Average speed NCTUns as network simulator tool

(It provides OBU and SignalAgent modules)
3 Validation tests Network simulator was created

haven’t been published yet to be integrated to the DIVERT
4 Flow rate vehicle/km2 DIVERT traffic simulator who

and poluents emission has a simple network embedded

The researchers also have difficulty to execute tests because the simulation joins
two fields not integrated before (traffic and network computer). Thus, most works have
to build their own simulators or implementing an interface able to do the integration
among both.



Chapter 4

Probabilistic Model Checking

Outline. In this chapter we present some of the background on model checking that is
relevant to this thesis. We also describe probabilistic model checking and the PRISM
tool. Their probabilistic logic and reward-based extensions are also presented. Finally
we discuss about the related works to this thesis and a conclusion is exposed.

4.1 Introduction

The model checking technique is a formal method to automatic and exhaustively
analyze if a given model of a system respects a given specification.

The systems usually modeled are hardware, communication standards or software,
such as circuit designs, network protocols (e.g. Carrier Sense, Multiple Access with
Collision Detection) or critical software (e.g. aircraft or spacecraft), respectively.
Recently other applications have been considered, for instance, biological systems, and
more recently game theory.

The specification is often given in special types of logic, for example, temporal and
probabilistic logic, which allow defining properties about the sequence and probability
of certain events, respectively. The specification often contains safety requirements
such as the absence of deadlocks and critical states that can cause the system to crash.

The first section presents the symbolic version of model checking, along with its
related concepts such as binary decision diagrams and temporal logics. This section is
largely based on [Clarke et al., 1999] and [Song, 2004].

The probabilistic version called probabilistic model checking (PMC) is described
in the following section, including its special representation using multi-terminal binary
decision diagrams and more appropriate probabilistic logic. This section is largely based
on [Parker, 2002], [Braz et al., 2013a] and [Crepalde, 2011].

51



52 Chapter 4. Probabilistic Model Checking

PMC is used in this research through PRISM model checker to study movements
of vehicles and their interactions with the environment. Therefore, a brief description
of PRISM and its modeling and property languages was included.

Finally, modeling about ad hoc networks are illustrated, the aim is to describe
the weakness and strengths about related work.

4.2 Symbolic Model Checking

This technique was proposed independently and simultaneously by Edmund. M. Clarke
and Ernest. A. Emerson [Emerson and Clarke, 1980; Clarke and Emerson, 1982; Clarke
et al., 1986] and by Jean P. Queille and Joseph Sifakis [Queille and Sifakis, 1982]. In
2007, Clarke, Emerson and Sifakis shared the Turing Award for their contribution on
founding the field of model checking.

The systems are modeled as a finite state machines, described in a precise high
level modeling language, and properties are specified in temporal logics. Given a model
M , a set of initial states S0 and a property φ, the verification algorithm automatically
checks if the model respects the property φ. This is performed by exhaustively exploring
the transitions between states, checking the specified properties.

There are other methods such as tests and simulations to analyze and check
systems. However, the model checking technique offers several advantages. First, it is
completely automatic: after modeling the system and specifying the desired properties,
the model checker performs the analysis without human interaction.

Furthermore, model checking guarantees that the model respects the specified
properties since the state space is completely searched. This allows the detection of
even small errors which might pass unnoticed by other techniques such as emulation,
simulation and tests. Finally, if the model does not respect some given property, the
model checker usually produces a counter-example, which is useful to understand and
correct the error.

However, there are some limitations. This exhaustive exploration of the
state-space causes the classical model checking problem of the state space explosion.
The number of states grows exponentially with the number of variables. For example,
the composition of N variables of size k each yields kN states. This is an active
research topic, and several efforts have been made to reduce the state space. The first
and one of the most important contributions has been made in [McMillan, 1992], which
proposed using Binary Decision Diagrams (BDDs), originally created by [Bryant, 1986],
to symbolically represent the transition relations between states.
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This implicit representation encodes each state as the attribution of boolean
values to the system variables. Therefore, transitions can be expressed as boolean
formulas in terms of two sets of variables, one set encoding the previous state and
another set encoding the current state. This avoids the explicit construction of graphs
of system states, providing a more compact description of the model, increasing the
size of models from 105 to 1020 states.

Furthermore, several improvements have been made to cope with the state
space explosion, allowing the verification of systems with 10120 states, such as Partial
Order Reduction [Godefroid et al., 1996], Symmetry Reduction [Clarke et al., 1998],
Compositional Reasoning [Berezin et al., 1998], Statistical or Approximate Model
Checking [Younes, 2005; Clarke et al., 2008] and Bisimulation Minimisation [C. Dehnert
and Parker, 2013].

4.2.1 Kripke Structure

The representation used in symbolic model checking to capture the behavior of a system
is a directed state transition graph called Kripke structure. It is a variation of a
non-deterministic finite state machine whose states or nodes represent the reachable
states of the system and whose edges represent allowed transitions between states.

Atomic propositions of the model are boolean expressions over the variables,
constants and other symbols of model. These propositions assume the value of
either true or false. Atomic propositions are self contained and do not include other
propositions.

Let AP be the set of atomic propositions. A Kripke structure M over AP is a
4-tuple M = 〈S, I, R, L〉, as defined by [Clarke et al., 1999], where:

• S is a finite set of states.

• I ⊆ S is the set of initial states.

• R ⊆ (S × S) is a transition relation that must be total, i.e., for each state s ∈ S,
there is a state s′ ∈ S such that R(s, s′).

• L : S → 2AP is a function that labels each state with the set of atomic
propositions which are true in that state.

A path in a Kripke structure M from a state s0 is a an infinite sequence of states
π = s0s1s2... such that s0 = s and the relation R(si, si+1) holds for all i ≥ 0.
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The Figure 4.1 shows a graphical representation of a Kripke structure for a model
and a computational path in its structure. The components of M which define the
Kripke structure are:

• S : {S0, S1}

• I : {S0}

• R : {(S0, S1), (S1, S0), (S1, S1)}

• L(S0) = {A,B}, L(S1) = {A,¬B}

AB A¬B

(a) Generic Kripke
structure with two
states.

AB A¬BA¬B A¬B

(b) A computational path in the Kripke
structure.

Figure 4.1: A Kripke structure and a computational path in it.

4.2.2 Kripke Structure Representation

As described by Clarke et al. [1999], a Kripke structure can be represented through
boolean functions, which employ logical operators such as negation (¬), disjunction
(∨), conjunction (∧) and implication ( =⇒ ).

Let V = {v1, · · · , vn} be the finite set of system variables and D =

{D1, · · · , Dn} be the finite set of domains of these variables, such as Di represents the
set of possible values for vi. A system state is the evaluation of all system variables
at a specific instant in time.

For example, suppose a system with three boolean system variables (a three bit
counter), i.e., let V = {v1, v2, v3} and D1 = D2 = D3 = {0, 1}. There are eight possible
system states (23 = 8), such as (v1 = 0, v2 = 0, v3 = 0), (v1 = 0, v2 = 0, v3 = 1)

and (v1 = 0, v2 = 1, v3 = 1). Their respective representations as boolean functions
are (¬v1 ∧ ¬v2 ∧ ¬v3), (¬v1 ∧ ¬v2 ∧ v3) and (¬v1 ∧ v2 ∧ v3), where vi is an 1-valued
variable (or true) and ¬vi is a 0-valued variabled (or false). These representations are
symbolic, therefore the name symbolic model checking.

The transitions between system states must also be represented as boolean
functions. In order to do that, a second set of system variables is created to represent
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the system variables in the next (future) state. Therefore, V is the set of system
variables in the current state, and V ′ is the set of system variables in the next (future)
state. For each v ∈ V , a variable v′ ∈ V ′ for the next state is created. A transition
can be viewed as an ordered pair for the evaluation of system variables in V and V ′,
which can be represented as a conjunction of boolean functions.

Let f be the boolean function for the current system state s and f ′ be the
boolean function for the next (future) system state s′, then the transition from state
s to state s′ is represented by the conjunction of both boolean functions, therefore,
f ∧ f ′. For example, the transition from a state where (v1 = 0, v2 = 0, v3 = 0)

to a state where (v1 = 0, v2 = 0, v3 = 1) is represented by the boolean function
(¬v1 ∧ ¬v2 ∧ ¬v3) ∧ (¬v′1 ∧ ¬v′2 ∧ v′3), as shown in Figure 4.2.

CurrentState

v1 = 0

v2 = 0

v3 = 0

(¬v1 ∧ ¬v2 ∧ ¬v3) ∧ (¬v′1 ∧ ¬v′2 ∧ v′3)

NextState

v′1 = 0

v′2 = 0

v′3 = 1

Figure 4.2: The symbolic representation of a transition.

Boolean functions can represent a set of states and a set of transitions. If
f1, f2, . . . fn represent all the transitions of a Kripke structure, the boolean function for
the set of all transitions is described by the disjunction of all fi, i.e., fR = f1∨f2∨· · ·∨fn.
The same reasoning is used to make the set of all system states of a Kripke structure.

The coupling of several transitions into a simple boolean function, which simplifies
the process of graph traversal, is inherent to the representation of boolean functions as
BDDs, covered in the next section. This is one of the main reasons for the efficiency
of BDDs in symbolic model checking algorithms.

Furthermore, the set of atomic propositions AP must be described in order to
create specifications for the system. An atomic proposition is an expression of the form
v = d, where v ∈ V and d ∈ D. A proposition v = d will be true in a system state s,
if the boolean function of s becomes true when v assumes the value d.

In order to illustrate first order representations, a symbolic representation of a
Kripke structure is presented in Figure 4.1. In this example, let V = {A,B} and
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DA = DB = {0, 1} for the model. Furthermore, it is necessary to create two variables
V ′ = {A′, B′} to represent future states. The symbolic representations of the system
states s0 and s1 are given by the boolean functions A ∧ B, and A ∧ ¬B, respectively.
Finally, the transition from state s0 to state s1 is given by R(s0, s1) ≡ A∧B∧A′∧¬B′.

The boolean function which represents the complete transition relation of the
model is composed of three disjunctions, representing the number of transitions of the
Kripke structure:

(A ∧B ∧ A′ ∧ ¬B′) ∨ (A ∧ ¬B ∧ A′ ∧B′) ∨ (A ∧ ¬B ∧ A′ ∧ ¬B′)

In this example, the labeling function L contains the following mappings: L(s0) =

{A = 1, B = 1} and L(s1) = {A = 1, B = 0}. As A = 1 and B = 1 ∈ L(s0), when A
and B assume, respectively, the values 1 and 1 in system state s0, the boolean function
which represents this state (A ∧B) becomes true.

Although previous definitions have considered only a boolean domain D = {0, 1}
for all variables, it is possible to use other domains such as integer values by simply
encoding each element to a boolean domain. The encoding is performed by using j
bits to encode the domain Di of each variable vi as a binary number and represent vi
as j boolean variables.

For example, suppose that the variables vi assume integer values in the domain
D = {0, 1, 2, 3, 4, 5, 6, 7}, then only three bits are necessary to encode each variable vi.
Therefore, the atomic proposition (v1 = 2) can be represented by the conjunction of
three new boolean variables (¬v1.1 ∧ v1.2 ∧ ¬v1.3), where each one corresponds to a bit
of the binary codification of the integer value of 2 (010). Finally, the boolean function
(v1 = 2)∧ (v2 = 3)∧ (v3 = 4) would be represented in a binary domain as shown below:

(¬v1.1 ∧ v1.2 ∧ ¬v1.3) ∧ (¬v2.1 ∧ v2.2 ∧ v2.3) ∧ (v3.1 ∧ ¬v3.2 ∧ ¬v3.3)

4.2.3 Binary Decision Diagrams

A data structure called Binary Decision Diagram (BDD) is used to represent boolean
functions in a compact, efficient and canonical form, as first described in [Bryant,
1986]. A BDD is compact because it discards redundant information; efficient because
it allows rapid graph traversal; and canonical because it is easy to check if two boolean
functions are equivalent.

This data structure is often used in symbolic model checking to represent
finite states systems, although there are other representations, such as explicit-state
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representation (all variables are always represented) and conjunctive normal form (a
conjunction of disjunctions).
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Figure 4.3: A binary decision tree for the boolean function (a ∧ b) ∨ (c ∧ d).

BDDs represent boolean functions as a special type of binary decision trees,
which is a directed tree with two types of vertices: terminal and non-terminal vertices
(shortened as terminal and non-terminal, respectively). In a binary decision tree, a
non-terminal vertex v is labeled with a boolean variable, given by var(v), which has
two successors: zero(v), when var(v) = 0, and one(v), when var(v) = 1. A terminal
vertex v assumes only the value zero or one (simply zero- or one-terminal, respectively),
given by function value(v). The tree edges are labeled with the value zero or one.

The Figure 4.3 shows an example of a binary decision tree for the boolean function
(a ∧ b) ∨ (c ∧ d). A path in the tree starts at the root vertex and the choice between
zero(v) and one(v) directs to a terminal that represents the function evaluation. In the
example, the variable evaluation (a = 1, b = 0, c = 1, d = 0) leads to a zero-terminal,
which means that the boolean function is false for that assignment, while a different
assignment leading to a one-terminal means that the function is true.

The binary decision trees can have a lot of redundant information. For example, in
the Figure 4.3 there are eight subtrees whose roots are labeled with a boolean function
d. However, only three of them are unique: in the first unique subtree, assigning any
value to the variable d leads to a zero-terminal. On the other hand, in the second
unique subtree, assignment any value to d leads to a one-terminal. Finally, in the third
unique subtree, the assignment of zero to d leads to a zero-terminal, while assigning
one to d leads to a one-terminal.

Therefore, a BDD is obtained by merging identical subtrees and eliminating nodes
with repeated information. The resulting structure is a directed acyclic graph (DAG)
called BDD which, unlike trees, allow shared vertices and substructures. It is worth to
emphasize the canonical aspect of BDDs, which means that two functions are equal if,
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and only if, their associated BDDs are isomorphic1.
[Bryant, 1986] first showed how to obtain a canonical representation of boolean

functions by imposing two restrictions on BDDs. Foremost, the variables must appear
in the BDD in the same order along the path from its root to a terminal. Secondly,
isomorphic subtrees or vertices should not exist in the BDD.

The first restriction is satisfied by fixing an order for the variables which label
the vertices of the BDD (var1 < var2 < · · · < varn). This means that if a vertex u
precedes a non-terminal v (starting from the BDD root), then the variable which labels
the vertex u precedes the variable which labels v in the order (var(u) < var(v)).

The second restriction is satisfied by repeatedly applying three rules of
transformation that do not change the function represented by the BDD:

1. Remove duplicated terminals: keep only two terminals, one zero-terminal and
another one-terminal. Redirect all input edges from the removed terminals to
these two unique terminals;

2. Remove duplicated non-terminals: if two non-terminals u and v are labeled with
the same variable (var(u) = var(v)) and have the same successors (zero(u) =

zero(v) ∧ one(u) = one(v)), remove the vertex v and redirect its input edges to
the vertex u;

3. Remove redundant children: if a non-terminal v has zero(v) = one(v), then
remove v and redirect all of its input vertices to zero(v).

The canonical form of the BDD, obtained by imposing these two restrictions, is
called Ordered Binary Decision Diagram (OBDD). The Figure 4.4 shows the OBDD
for the binary decision tree of 4.3, considering the variable order a < b < c < d.

Although BDDs have several advantages, it has its own disadvantages. The
main one is the order of the variables which appear in the boolean function being
represented. Depending on it, the BDD can be heavily compressed or completely
redundant. However, the problem of choosing the variable ordering which minimizes
the BDD size is co-NP-complete [Bryant, 1986].

There are heuristics to approximate this problem, such as the one presented
by [Bollig and Wegener, 1996], whom also briefly reviews several other heuristics based
on local search and simulated annealing. Nonetheless, variable orderings are often
found empirically since one can expect that it is related to the semantics of the model.

1Two BDDs are isomorphic if there is an injective function h that maps terminals and non-terminal
from a BDD to the other.
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Figure 4.4: A reduced binary decision diagram.

Another issue with BDDs is the space complexity. Since BDDs are essentially
an exhaustive representation of the model, in the worst case it is exponential to the
number of variables of the boolean function [Bryant, 1986].

4.2.4 Temporal Logic

There are several different types of logic, from the classical and first mathematical
formalism created by George Boole, and named after him, the boolean algebra, to
other non-orthodox logics, such as the more modern modal logic, the epismetic logic,
or the logic of knowledge. These logics are appropriate to different types of systems.

However, reactive and parallel systems present additional challenges on their
reasoning. They often can not be understood from its current state, demanding the
analysis of a sequence of events. For example, one simple reactive system such as an
alternating bit communication protocol can be reasoned only using temporal properties,
such as “if a message is sent, it is eventually received”. The message can be received
in the next time unit, or in the next ten time units. Therefore, to reason about such
systems we need to be able to state temporal properties.

One could describe and reason logical propositions in terms of time and the
sequence of events, which is called temporal logic and its applied to model checking,
where the behavior of the system being modeled is represented as a state-transition
graph such as the BDD reasoning on the time evolution of the model.

There are several temporal logics, such as the Computation Tree Logic (CTL and
CTL*) and Linear Time Logic (LTL). Each logic has its own set of logical operators.
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The main difference between LTL and CTL, is that in LTL the reasoning is on an
infinite computational path, while in CTL the reasoning is on a tree of infinite paths
starting at a root node s0. The CTL* is a superset of CTL and LTL.

Temporal logics (TL) borrow quantifiers from predicate logic (or first-order logic),
such as for all (∀) and exists (∃), naming them path quantifiers, which allow reasoning
on the computational tree created from unfolding the Kripke structure (Figure 4.5).
They also introduce temporal operators, which allow reasoning on the sequence of
states. TL can also use logical operators from boolean algebra, such as negation (¬),
disjunction (∨), conjunction (∧) and implication ( =⇒ ).

(a) A Kripke structure. (b) An infinite computational tree.

Figure 4.5: Unfolding a Kripke structure in an infinite computational tree.

Path quantifiers reason on a computational path, or sequence of states. They
are used to specify that every computational path from the current state respects the
given property. Path quantifiers are shown below. LTL does not support the E path
quantifier, because there is a single computational path.

• The “For All” path quantifier: A Φ – for every path, Φ is true.

• The “Exists” path quantifier: E Φ – there exists a path where Φ is true.

Temporal operators reason on a sequence of states. They are used to check that
one or more states hold the given property. The Figures below show the computational
paths associated with each property. The black dot represents the state in which the
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property φ is true. Only for Figure 4.9, the black and dashed dots represent when the
properties φ1 and φ2 are true, respectively.

• The “Eventually” operator: F φ – φ is true in a future state (Figure 4.6).

s p ...

Figure 4.6: The “Eventually” operator: F φ.

• The “Globally” operator: G φ – φ is true in all future states (Figure 4.7).

s ...

Figure 4.7: The “Globally” operator: G φ.

• The “Next” operator: X φ – φ is true in the next state (Figure 4.8).

s ...

Figure 4.8: The “Next” operator: X φ.

• The “Until” operator: φ1 U φ2 – φ1 is true until φ2 becomes true (Figure 4.9).

s ...

Figure 4.9: The “Until” operator: φ1 U φ2.

In CTL, temporal operators must be preceded by a path quantifier, for example,
EG φ, which states that exists a path where φ is always true (Figure 4.10d). The most
commonly used CTL operators are shown below (Figure 4.10).

Property AF φ checks if a property φ is eventually observed in all paths starting
at the current state (Figure 4.10a). Property EF φ, shown in Figure 4.10b, checks if
exists a path where the property φ is eventually observed. Property AG φ checks if a
property φ is always observed in all paths starting at the current state (Figure 4.10c).
These properties could be used to check safety aspects of the model, such as situations
which should never occur, for example, “the system never crashes!” (AG !crash).

There are several other logic, such as temporal or probabilistic logic. They can
be applied in probabilistic model checking which it is a formal verification technique to
study systems that exhibit probabilistic behavior. In the next Section we will discuss
this type of formal verification.
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(a) AF φ – for every path, φ is true in a future
state.

(b) EF φ – there exists a path where φ is
true in a future state.

(c) AG φ – for every path, φ is true in all future
states.

(d) EG φ – there exists a path where φ is
true in all future states.

Figure 4.10: Different types of combinations of temporal operators.

4.3 Probabilistic Model Checking

Probabilistic Model Checking (PMC) is a formal, exhaustive and automatic technique
for modeling and analyzing stochastic systems. PMC checks if a model satisfies a set
of properties given in special type of logic. This method can supply several types of
probabilistic models: probabilistic timed automata or discrete- and continuous-time
Markov chains and Markov decision processes.

A stochastic system M is usually a Markov chain or a Markov decision process.
This means that the system satisfies the Markov property, i.e., its behavior depends
only on its current state and not on the whole system history, and each transition
between states occurs in real-time.

Given a property φ expressed as a formula in a probabilistic temporal logic, PMC
attempts to check whether a model of a stochastic system M satisfies the property φ
with a probability greater than or equal to a probability threshold θ ∈ [0, 1].

Tools called models checkers such as PRISM [Kwiatkowska et al., 2011] attempt to
check the models. It requires two inputs: a modeling description of the system, which
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defines its behavior (for example, through the PRISM language), and a probabilistic
temporal logic specification of a set of desired properties (φ).

The model checker builds a representation of the system M , usually as a
graph-based data structure called Binary Decision Diagrams (BDDs), which can be
used to represent boolean functions. States represent possible configurations, while
transitions are changes from one configuration to another. Probabilities are assigned to
the transitions between states, representing rates of negative exponential distributions.

Let R≥0 be the set of positive reals and AP be a fixed, finite set of atomic
propositions used to label states with properties of interest. A labeled CTMC C is a
tuple (S, s̄, R, L) where:

• S is a finite set of states;

• s̄ ∈ S is the initial state;

• R : S × S → R≥0 is the transition rate matrix, which assigns rates between each
pair of states;

• L : S → 2AP is a labeling function which labels each state s ∈ S the set L(s) of
atomic propositions that are true in the state.

The probability of a transition between states s and s′ being triggered within t

time-units is 1 − e−R(s,s′) · t. The elapsed time in state s, before a transition occurs,
is exponentially distributed with the exit rate given by E(s) =

∑
s′∈S R(s, s′). The

probability of changing from state s to s′ is given by P (s, s′) = R(s,s′)
E(s)

[Parker, 2002].
Finally, the probability of changing from s to s′ in t time units is given by [Clarke
et al., 2008]:

P (s, s′, t) =
R(s, s′)

E(s)
× (1− e−R(s,s′) · t)

A computational path of a CTMCmodel starting at state s0 is an infinite sequence
π = s0t0s1t1..., where si ∈ S, ti ∈ R≥0 is the time spent at state si and R(si, si+1) > 0

for all i ≥ 0. The Figure 4.11 shows the graph of the CTMC model below:

• S = {S0, S1, S2};

• S0 = {S0};

• R(S0, S1) = λ1, R(S1, S2) = λ2, R(S2, S0) = λ3 and R(S1, S0) = λ4;
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• L(S0) = {A,B}, L(S1) = {A,¬B} and L(S2) = {¬A,B}.

Figure 4.11: An example of a CTMC model.

4.3.1 Probabilistic Logics

Properties can be expressed quantitatively as “What is the probability of
overtaking-vehicles without car-crash?” or qualitatively as “Is it safe to do the overtake
maneuver?”, offering valuable insight over the system behavior.

Properties are specified using the Continuous Stochastic Logic
(CSL) [Kwiatkowska et al., 2008], which is based on the Computational Tree
Logic (CTL) and the Probabilistic Computation Tree Logic (PCTL). The syntax of
CSL formulas is the following:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | PEp[φ] | SEp[φ]

φ ::= X Φ | Φ UI Φ

where a is an atomic proposition, E ∈ {>, <, ≥, ≤}, p ∈ [0, 1] and I is an interval of
R≥0.

There are two types of CSL properties: transient (PEp) and steady-state (SEp).
In this work we are interested in transient or time related properties. A formula PEp [φ]

states that the probability of the formula φ being satisfied from a state respects the
bound Ep. Path formulas use the X (next) and the UI (time-bounded until) operators.
For example, formula XΦ is true if Φ is satisfied in the next state.

This can be applied to check if one state leads to another with a probability p,
for example, state “open-in” is followed by state “open-out” with at least 10% chance:
P≥0.1[“open− in′′ =⇒ X “open− out′′].
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4.3.2 PRISM

There are several model checkers for stochastic processes. Each tool presents its own
features, some more complete than others, a renowned tool is the PRISM. It supports
different types of models, properties and simulators [Kwiatkowska et al., 2011]. It
has been largely used in distinct fields, e.g. communication and media protocols,
security and power management systems. We have used PRISM in this work for several
reasons, which include: exact PMC in order to obtain accurate results; Continuous-time
Markov Chain (CTMC) models, suited for our field of study; rich modeling language
that allowed us to build our model; and finally property specification using Continuous
Stochastic Logic (CSL), which is able to express qualitative and quantitative properties.

4.3.2.1 Modeling

One way to model the vehicular movement in the PRISM language is presented in the
Figure 4.12. We have modeled two vehicles moving in the same direction however in
different lanes on a freeway. A description of a CTMC model in PRISM must begin
with the keyword ctmc. It is composed of modules, which have their states represented
by a set of variables which assume a finite set of values. In the example, there are
two modules for each vehicle: Mod_vX, Mod_dX to represent respectively, speed and
position. In speed modules there is a variable which describes the current velocity,
which varies from 0 to the constant desired_speed_car. The other modules there is
a variable which describes the current position, which varies from 0 to the constant
RS. The new values to speed and position are calculated respectively by formulas:
v = vi + at and x = xi + vt+ (0.5)at2.

Typically, a variable declaration specifies the initial value for that variable. The
initial state for the model is then defined by the initial value for all variables. It is
possible, however, to specify that a model has multiple initial states. This is done using
the init...endinit construct. Between the init and endinit keywords, there should be
a predicate over all the variables of the model. Any state which satisfies this predicate
is an initial state. In our example, we have just set the initial position up of vehicle 1.
Thus, all states which have the value 1 to the variable pos_c1 will be initial states.

The behavior of the modules is defined by the transitions between states. These
transitions are defined by commands expressed as [action] g → r : u. This command
indicates that if the predicate g (also known as conditions or guard) is observed (true),
then the system will be updated by u, which is composed of one or more declarations
expressed as x′ = · · · , indicating that the value of x is updated (x′ is the value of
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ctmc

const time = 1; //seconds
const int RS = 300; //road size (meters)
const double a = 3.0; //m/s^2
const int desired_speed_car = 23; //m/s
formula muv_c2 = v_c2+(a*pow(time,2))/2;
formula muv_c1 = v_c1+(a*pow(time,2))/2;

init pos_c1=1 endinit

// --VEHICLE 1--
module Mod_vC1 //speed
v_c1 : [0..desired_speed_car];

[m] (v_c1 <= desired_speed_car) ->
v_c1’ = min(max(ceil(v_c1+a*time),0)

,desired_speed_car);
endmodule

module Mod_dC1 //position
pos_c1 : [1..RS];

[m] (pos_c1 <= RS) ->
pos_c1’ = min(

(ceil(pos_c1 + muv_c1)),RS);
endmodule

// --VEHICLE 2--
module Mod_vC2 //speed
v_c2 : [0..desired_speed_car];

[m] (v_c2 <= desired_speed_car) ->
v_c2’ = min(max((ceil(v_c2 + a*time)),0),

desired_speed_car);
endmodule

module Mod_dC2 //position
pos_c2 : [1..RS];

[m] (pos_c2 <= RS) ->
pos_c2’ = min( (ceil(pos_c2 + muv_c2)),RS));

endmodule

rewards ’’speed’’
true : v_c2;

endrewards

rewards ’’time’’
true : 1;

endrewards

Figure 4.12: PRISM model of the vehicular movement.

variable x in the next state). The value of the rate at which the update will occur is
defined by r.

PRISM also allows the synchronization between modules, through labels which
must be in brackets at the start of the synchronized commands. Transitions in different
modules using the same label happen simultaneously. The resulting rate is equal to
the product of the individual command rates of each synchronized module. In the
example, the movement between vehicles 1 and 2 (given by the kinematics Equations)
is represented by the commands labeled with m. The values assignment rate is omitted
because they assume the default value 1. In the other words, it is certain that both
vehicles will move in each step of the model. Thus, the final rate when this movement
occurs is 1× 1× 1× 1 and it is given by the product of the rates of the four commands
labeled with m.

4.3.2.2 Rewards

PRISM also allows including rewards in the model, which are structures used to
quantify states and transitions by associating real values to them. The state rewards
are counted proportionately to the elapsed time in the state, while transition rewards
are counted each time the transition occurs. In PRISM, rewards are described using
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rewards “horizontal”

(semaphore = false) : 1 ;

endrewards

Figure 4.13: An example of a state reward.

the following syntax:

rewards “reward name”

...

endrewards

Each reward is specified using multiple reward commands which follow the syntax
below.

[sync] guard : reward ;

Reward commands describe state rewards and transition rewards, respectively. The
predicate which must be observed is the guard. The sync is a label used to synchronize a
set of commands into a single transition in the system. Finally, reward is an expression,
which can contain variables and constants from the model, and when evaluated it counts
for the reward.

One example of a state reward is the traffic light signal (semaphore, in our
model), described in Figure 4.13. The reward is one, since it is essentially counting the
number of times when that particular reward was observed. The guard is the condition
which must be observed – semaphore=false, that state must be present. The sync is
absent here, because this event does not need to be synchronized with another module.
Therefore, the cumulative reward represents how many times the traffic light was open
to the horizontal lane on a crossroad (Value true represents the vertical one).

Reward properties can be applied to states and transitions. For example, “What
is the expected reward for the semaphore open to the vertical lane on a crossroad at
time T?”.

This reward can be instantaneous, obtaining its value at the given time through
the property R=?[I=t], or accumulated, calculating its value until the given time, using
the property R=?[C<=t]. In this work, we have used both rewards because they can
show the history, accumulating values such as the time of an event and instantaneous
ones to get information as current speed or acceleration.

Rewards of paths in a Continuous-time Markov chain are summations of state
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rewards along the path and transition rewards for each transition between these states.
State rewards are interpreted as the rate at which rewards are accumulated, essentially
counting them, i.e. if t time units are spent in a state with state-reward r, the
accumulated reward in that state is r × t.

4.3.2.3 Property Specification

The properties to check CTMC models in PRISM must be specified in the Continuous
Stochastic Logic (CSL), which is a temporal logic based on Computation Tree Logic
(CTL), Probabilistic CTL (PCTL) and reward-based extensions [Kwiatkowska et al.,
2008]. The CSL formulas use the following syntax:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | PEp[φ] | SEp[φ]

φ ::= X Φ | Φ UI Φ

where a is an atomic proposition, p ∈ [0, 1] is a probability and I is an interval of R ≥ 0
(real non-negative numbers) at which the property must be met. The operators ¬ and ∧
are logical ones, while X and U are temporal operators. The symbol E ∈ {>,<,≥,≤}
represents the type of bound which the property must satisfy. For example, if E is >,
the probability of the property must be higher than p.

There are two basic types of CSL properties: transient (PEp) and steady-state
(SEp). This work focused on transient and reward-based properties, therefore we will
describe the semantics of only transient ones.

The formula PEp[φ] is true in state s if the probability that φ is satisfied by a
path starting at state s matches the bound Ep. Path formulas are built using the
operators X (next) and UI (time-bounded until). The path formula X Φ is true if Φ is
satisfied in the next state, while Φ1 UI Φ2 is true if Φ2 is satisfied at some time unit
in the interval I and in all previous time units Φ1 is satisfied.

Other operators can be created from this minimum set of CSL operators, such
as the G (always) operator. The interval I can be omitted from the operators U and
F, which means that I = [0, ∞). Finally, one can also quantify the probability of a
property φ by using the expression =? instead of the bound Ep (P=? [φ]).

A few examples of transient properties are presented below considering the
PRISM model previously discussed (Figure 4.12).

• P=? [ F[0,T ] pos_c1 >= RS ] : the probability of the vehicle 1 across the road
at T time units. This is a FIΦ (eventually) property, where Φ is the atomic
proposition pos_c1 >= RS;
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• P=? [ (pos_c1 < pos_c2) U (pos_c2 >= RS) ] : the probability of the vehicle
2 arrives before vehicle 1. This is a Φ1 UI Φ2 (time-bounded until) property,
where I = [0, ∞) and Φ1 and Φ2 are the atomic propositions pos_c1 < pos_c2

and pos_c2 >= RS, respectively.

Furthermore, PRISM also allows to check the expected value of model rewards.
Some of the properties of this type which will be used throughout this work have the
forms REr [I = t], REr [ F Φ] and REr [C ≤ t], with r and t ∈ R≥0.

The first property (REr [I = t]) is true, starting from a state s, if the state reward
at the instant t satisfies the bound Er.

The second property (REr [ F Φ]) is true, starting from s, if the accumulated
reward along the path until the point where Φ is true satisfies the limit Er.

Finally, the third property (REr [C ≤ t]) is true, starting at s, if the accumulated
reward along the path at instant t satisfies the bound Er.

Given the definition of a reward, its accumulated value along the path in a CTMC
model is the sum of the state rewards along the path, plus the sum of the transition
rewards between these states, both defined in the body of the same reward structure.
The state reward associated with each state is v × t, where t is the time spent at the
state and v is the state reward associated with the state. If the bound is not specified,
using the expression =? one obtains the expected value of that reward.

A few examples of properties which obtain the reward values for the considered
example are presented below, given the rewards defined in the Figure 4.12.

• R{′′speed′′}=? [ I = T ] : the instantaneous velocity of the vehicle 2 after T

time units;

• R{′′time′′}=? [ F ( pos_c1 >= RS) ] : the expected time for the vehicle 1 to
across the scenario.

4.3.2.4 Filters

PRISM will by default return the value for the initial states of the model. However,
since model checking is exhaustive and computes exact answers, values are usually
generated for all states of a model. For example, when model checking P=?[ F fail],
PRISM computes the probability of reaching a state in which fail is true, starting from
any state of the model [Kwiatkowska et al., 2009]. Therefore, it is possible customize
PRISM properties to obtain others results according to different ranges of states. This
is done using filters, which are created using the filter keyword. They take the following
form:
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filter(op, prop, states)

where op is the filter operator, prop is any PRISM property and states is a
Boolean-valued expression identifying a set of states over which to apply the filter.

Here’s a simple example of a filter: filter(max, P=? [ (pos_c1 < pos_c2) U
(pos_c2 >= RS) ], pos_c2=RS/2 and pos_c1=0) This gives the maximum value,
starting from any state satisfying (pos_c2=RS/2) and (pos_c1=0), of the probability
of the vehicle 2 arrives before vehicle 1.

Most filters of the form filter(op, prop, states) apply some operator “op” to the
values of property “prop” for all the states satisfying states, resulting in a single value.
The full list of filter operators in this category is:

• min: the minimum value of prop over states satisfying states

• max : the maximum value of prop over states satisfying states

• count : counts the number of states satisfying states for which prop is true

• sum (or +): sums the value of prop for states satisfying states

• avg : the average value of prop over states satisfying states

• first : the value of prop for the first (lowest-indexed) state satisfying states

• range: the range (interval) of values of prop over states satisfying states

• forall (or &): returns true if prop is true for all states satisfying states

• exists (or |): returns true if prop is true for some states satisfying states

• state: returns the value for the single state satisfying states (if there is more than
one, this is an error)

There are also a few filters that, rather than returning a single value, return
different values for each state, like a normal PRISM property:

• argmin: returns true for the states satisfying states that yield the minimum value
of prop

• argmax : returns true for the states satisfying states that yield the maximum
value of prop
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• print : does not change the result of prop but prints the (non-zero) values to the
log

• printall : like print, but displays all values, even for states where the value is zero

4.3.2.5 PMC Implementation

The techniques which are implemented in PRISM to check the properties of CTMC
models with rewards include graph theory algorithms and numerical computation. The
first ones are used on the graph structure which represents the Markov chain specified
in the tool to determine, for example, the set of reacheable states or to check qualitative
properties. In this case, the algorithms are executed on the BDDs as it happens on the
non-probabilistic version of the model checking technique.

The numerical computation is required to solve a Markov chain and calculate
the probabilities and reward values (quantitative properties). Iterative methods such
as Jacobi and Gauss-Seidel are used to solve systems of linear equations and check
properties such as SEp, PEp [Φ1 U Φ2] and REr [ F Φ]. The iterative method known
as uniformisation is used to calculate rewards and probabilities for properties which
involve a time interval I or a specific time t: PEp [Φ1 UI Φ2], REr [ I = t] and REr

[ C ≤ t]. Further details on these techniques to solve Markov chains can be found
in [Parker, 2002].

Furthermore, to determine the quantitative properties using numerical
computation, PRISM allows the use of three data representations:

1. a generalization of BDDs, known as Multi-terminal BDDs (MTBDDs) to
represent real-valued functions, given that matrices and real vectors are required.
These data structures allows compact representations and efficient manipulation
of big models because they explore their regularities. However, the computation
is often slow;

2. explicit representation, as a sparse matrix, which allows a faster and direct
computation, however, it can not deal with big models;

3. a hybrid approach, which extends the MTBDDs, allowing faster computations
than compared to their original representation. In this case, MTBDDs are used
to represent only the transition matrix, while the solution vectors of the iterative
methods are represented by traditional real-valued vectors.

The adjacency matrix below illustrates the explicit representation of the
transitions of the CTMC model of the Figure 4.15a.
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2 5 − −
2 5 − 7
− − − −
− 7 − −


Figure 4.14: The adjacency matrix that explicitly represents the CTMC model.

Consider that the first line and first column of the matrix are 0-indexed. The
entry M(l, c) of the matrix indicates the value of the line l and column c. For example,
the value of the entry M(0, 0) is 2, while the value of M(1, 3) is 7. The Figure 4.15b
shows an example of a MTBDD which represents the transitions of the CTMC model
of the Figure 4.15a.

In the representation through MTBDD, the binary variables x1 e x2 encode the
indexes of the transition matrix lines, while y1 e y2 encode the indexes of the columns.
For example, for the entry M(1, 3) of the transition matrix, the index 1 of the line
is encoded through the binary representation (x1,x2) = (0,1) and the index 3 of the
column is encoded as (y1,y2) = (1,1). Thus, by following the path x1 = 0, y1 = 1, x2
= 1 and y2 = 1 in the MTBDD (note that the order of the variables is x1 < y1 < x2 <
y2) the terminal node 7 is reached, which is the value of the transition matrix for the
entry M(1, 3).

(a) A CTMC model. (b) The MTBDD for the
CTMC model.

Figure 4.15: A CTMC and its MTBDD representation

Further details on the techniques used by the PRISM tool can be found
in [Kwiatkowska et al., 2011, 2007, 2004]. In the reminder of this chapter we present
the related works to this thesis. Three case studies of model checking are discussed,
depicting how the academic community has been modeling Wireless Sensor Networks
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(WSNs) and VANETs. The first study focuses on the verification of a traffic light
synchronization protocol. The second study proposes a graphic-based specification
of wireless networks protocols, it can be used as a modeling environment for both
simulation and model checking. The third case provides an analysis of probabilistic
model checking applied to a specific congestion control protocol of VANETs.

4.4 Applying Model Checking to Wireless Sensor

Networks and Vehicular Networks

Verification of distributed systems such as wireless sensor networks ( WSNs) is difficult
to be performed. Even a single sensor node can adopt position or unexpected behavior
into environment, therefore, tests are a highly non-trivial task. Besides, these systems
can be used in areas where they can not be reprogrammed. Thus, it is recommended to
verify that each node, and the network as a whole, fulfill their requirements, otherwise
implementation failures can be costly and may cause accidents. Traditional approaches
such as simulators do not verify the desired properties for all possible computations
of a distributed system. It is known that software defects often appear only in
specific situations. Furthermore, such bugs can not be reliably detected by simulation
approaches.

A formal verification approach which can be used in such complex systems is
model checking [Christian, 2009; Cimatti et al., 2000]. Several researchers have used
model checking to test systems requirements and protocols. In Naik and Sistla [1994],
the authors have verified the IEEE 802.3 Ethernet CSMA/CD protocol using the
symbolic model checker SMV [Mcmillan, 1992]. Fehnker et al. [2007] have checked the
LMAC protocol, a medium access control protocol for WSNs using the Uppaal model
checker [Berhmann et al., 2006]. Currently, there are several studies in the literature
about analysis of VANET protocols, however, heretofore few works have been using
the model checking approach [Konur and Fisher, 2011].

Next sections explore some of the most relevant works. In Christian [2009],
the authors present the use of model checking to analyze WSNs. They check a
four-way traffic light crossroad using WSNs. The system follows a protocol to manage a
synchronization signal in each lane. The authors have used the NuSMV [Cimatti et al.,
2000] tool to identify potential failures in the protocol. In another study, Fehnker et al.
[2009] propose a graphical tool for the specification of wireless networks which in turn
generate models for the Castalia simulator and the PRISM probabilistic model checker
(PMC). The wireless connection behavior is based on an analytical model which has
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been validated empirically [Zuniga and Krishnamachari, 2004]. Finally, in Konur and
Fisher [2011], the authors present one of the few studies which uses probabilistic model
checking in VANETs. The authors have verified the correctness of a network congestion
Control Protocol.

4.5 Reliable Model Checking for WSNs

Christian [2009] describes the verification of a traffic light synchronization protocol
on a four-way intersection. However, they have proposed the verification of WSNs in
general. The authors outline guidelines and abstractions to improve the verifiability
of WSNs. Their objective was to make model checking easier to apply in this field,
which helps to achieve faster and correct verification of WSN models and make formal
analysis amenable in the WSN domain.

Figure 4.16: A schematic of the four-way crossroad intersection with traffic lights which
have been modeled using probabilistic model checking. Adapted from [Christian, 2009]

The purpose of the analyzed protocol is to synchronize traffic lights through
wireless connections and to ensure that only diagonally aligned traffic lights are
allowed to show the green signal at the same time (see Figure 4.16 for a schematic
representation).

The main contribution of this paper was the survey on the communication
modeling pitfalls and how to properly solve them. The author has shown that the
nonobservance of package collisions and the impossibility to listen to the channel while
communicating might cause the deadlock of traffic signals. During verification, without
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considering such aspects, researchers could not find a counter-example for the property
that states that “only diagonally aligned traffic lights are allowed to show the green
signal at the same time”. However, when variations of radio wave propagation were
introduced in the model, the verification results showed computation paths where three
traffic lights could show the green signal at the same time, which could potentially lead
to traffic accidents.

Therefore, Christian [2009] suggests to model the wireless communication channel
using DEFINE statements, which work similar to macros. Statements for the free
channel, with packet collision and others situations of traffic lights have been specified.
The value of these DEFINE statements are determined by the current control states of
the traffic lights and the value of input variables. The control states sendReq, sendAck,
sendAckPartner and sendComplete are used in the verification model. The first control
state is used to represent that a message was sent to inform the other traffic lights of
a request. The control state sendAck is used to check that the traffic light received a
request. The control state sendAckPartner is used when the traffic light has received
a request from the diagonally aligned traffic light at the intersection. The last control
state (sendComplete) notifies the other traffic lights of a successful traffic light change.

Figure 4.17 shows examples of DEFINE commands for following situations: 1)
the channel being free and 2) message collisions. For the first command, the DEFINE
holds the boolean value true if no other traffic light at the intersection currently sends
a message, otherwise false. In order to detect message conflicts, the DEFINE named
“collision” assumes the value true if two or three other traffic lights simultaneously send
messages [Christian, 2009].

Define statements
DEFINE
free:= !(sendReqEast|sendAckEast|sendPartnerEast|sendCompleteEast|....);
collision:= !((sendReqEast|sendAckEast|sendPartnerEast|sendCompleteEast) &

(sendReqWest|sendAckWest|sendPartnerWest|sendCompleteWest)....);

Figure 4.17: DEFINE commands for the communication channel modeling. One
command represents that the channel is free and can be used, and the other one
represents that a message collision has happened. Adapted from [Christian, 2009].

The author has concluded that system components such as synchronization
protocols often can not be verified isolated in WSNs. A formal model of the
communication protocol should observe others sensor node components, such as timers
or even parts of operating systems. They indicate that one challenge is to find suitable
models which do not affect the verifiability of the system and correctly describe
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its intended behavior. Therefore, specially for non-verification experts, suitable and
faultless abstraction techniques should be available [Christian, 2009].

4.6 Graphical modelling for simulation and formal

analysis of wireless network protocols

Fehnker et al. [2009] proposed a graphical-style of specification that acts as a modelling
environment for simulation and model checking. This tool is called CaVi. It provides an
unified modelling interface to the Castalia simulator [Boulis, 2013], and model checking
tool PRISM [Kwiatkowska et al., 2011].

Castalia is a Wireless Sensor Network simulator which it is able to test distributed
algorithms and protocols within a realistic wireless channel and radio model which takes
into account the physical characteristics of the radio. Figure 4.18 shows the proposed
architecture. The gossip and flooding protocols are supported. In this case, nodes
listen to a message and then forward it; once a node has received and sent a message,
the node becomes inactive.

CaVi generates PRISM models automatically using generic templates based on
flooding and gossiping protocols. The novelty is that the behavior of the wireless links
is based on an empirically validated model proposed by Zuniga and Krishnamachari
[2004], the same model used in Castalia. This signal propagation model is presented in
Section 3.4. The generated PRISM models can be either synchronous or asynchronous.
The synchronous models assume that nodes receive or send at the same time, while the
asynchronous models allows for an arbitrary delay between reception and transmission.
The latter covers all possible interleavings; something that is difficult if not impossible
to achieve by simulation [Fehnker et al., 2009].

Figure 4.18: CaVi Architecture – Font [Fehnker et al., 2009]
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According to Fehnker et al. [2009], the main feature of CaVi is its graphical
interface, with which a user can design a specific network layout. Nodes may be
created in a ”drag-and-drop” fashion, and the properties of individual nodes (such as
the power and signal strength) may be tuned as necessary via individual node menus
of parameters.

4.6.1 Analytic model to PRISM

Figure 4.19 shows a small network example which will be translated to the Prism model
taken from Fehnker et al. [2009]. Four nodes are numbered from 0 to 3. The first and
the last one correspond to the Source and Target node respectively.

Figure 4.19: Network example – Adapted by [Fehnker et al., 2009]

All nodes are either active or inactive; when a node “i” is active (activei = 1) it
can listen for and/or receive a message, or send one it received previously. The authors
use the variable sendi to denote whether node “i” is in possession of an uncorrupted
message (sendi = 1) which it must forward, or not (sendi = 0 – maybe because one
was never received, or because it has already been forwarded). Figure 4.20 formalizes
this behavior for node 3, where recvp3 is the link probability which depends on the
state of the surrounding nodes, and whose calculations are shown in the Section 3.4.

Synchronous behaviour for node
module node3
active3:[0..1] init 1;
send3: [0..1] init 0;

[tick] send3=0&active3=1 -> recvp3:(send3’=1)&(active3’=1)+
(1-recvp3):(send3’=0)&(active3’=1);

[tick] send3=1&active3=1 -> send3’=0&active3’=0;
[tick] active3=0 -> send3’=0&active3’=0;
endmodule

Figure 4.20: PRISM code for node 3
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In this synchronous style all nodes behave in lockstep, synchronized on the action
tick. The difference in behavior whether one node or several nodes broadcast at
the same time is all accounted for in the link probabilities. The authors computed
the various quantities such as the transmission powers, the signal-to-noise ratios and
thresholds for each node, taking into account their actual pairwise separations. CaVi
precomputed rxi,j from Equation 3.11, the power at the receiver “i” from message
broadcast by “j”. These values are denoted in the PRISM model by linRxSignal_i_j.

const double linRxSignal_1_3 = 3.04330129123453E-8;
const double linRxSignal_3_1 = 3.04330129123453E-8;

Figure 4.21: rxi,j constants

Signal-to-noise ratio SNR(i, j) between pairs of nodes calculated from equations
given by 3.11, 3.12 and 3.13 are depicted in Figure 4.22.

formula snr_3_1 = (linRxSignal_3_1*send3)/
(linRxSignal_0_1*send0 + linRxSignal_2_1*send2 + 1.0E-10);

Figure 4.22: Examples of the SNR from node 3 to 1.

Next the conditional link probabilities precvi,j from Equation 3.16 are calculated
from the precomputed thresholds, and combined in a single PRISM formula, with
precv3,2 given as an example (Figure 4.23),

formula Preceive_3_2 = func(max,0,(snr_3_2>=12.357925578002547)?
func(pow,(1-0.5*func(pow,2.71828,-0.781*snr_3_2)),8*25)
:0);

Figure 4.23: Examples of the precv from node 2 to 3.

Total link probabilities Pi are computed as the sum, following Equation 3.17.

formula recvp0 = func(min,1,Preceive_1_0+Preceive_2_0+Preceive_3_0);
formula recvp1 = func(min,1,Preceive_0_1+Preceive_2_1+Preceive_3_1);
formula recvp2 = func(min,1,Preceive_0_2+Preceive_1_2+Preceive_3_2);
formula recvp3 = func(min,1,Preceive_0_3+Preceive_1_3+Preceive_2_3);

Figure 4.24: Probabilities “p” of connection.

Finally, verifications can be presented. For example, Figure 4.25 computes the
separated probabilities that nodes 1, 2 and 3 obtain the message. The probability can
vary according to position of each node.

Through model, the researchers confirmed that using a simple flooding protocol,
the communication suffers from some serious performance issues. Since, the nodes send
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Some temporal logic properties

(1) Pmin=? [send1 = 0 U send1 = 1 ]
What is the minimum probability of the active node 1 waiting for communication until it
obtains the message.

(2) Pmin=? [send2 = 0 U send2 = 1 ]
What is the minimum probability of the active node 2 waiting for communication until it
obtains the message.

(2) Pmin=? [send3 = 0 U send3 = 1 ]
What is the minimum probability of the active node 3 waiting for communication until it
obtains the message.

Figure 4.25: Checking basic properties

as soon as they receive the message, the transmission is affected by high likelihood of
interference. To mitigate this problem, variations of this basic protocol were verified
in which nodes only forward a received message with probability p. Thus, the model
helps to choose the value of p to optimize the probability of the message being received
by all nodes [Fehnker et al., 2009].

4.7 Formal Analysis of a VANET Congestion

Control Protocol through Probabilistic

Verification

Konur and Fisher [2011] provide an analysis through the use of probabilistic model
checking to a specific congestion control protocol for VANETs. Probabilistic model
checker PRISM was used to investigate the correctness and effectiveness. A congestion
control protocol is an algorithm which is used to share available resources among nodes
within a network [Wei et al., 2006]. It is used when available resources are limited.

Vehicular Networks present peculiar features and the traditional congestion
control protocol does not guarantee reliable and safe communication. Thus, studies
have been proposing new protocols and they need to be tested. According to Konur
and Fisher [2011], in most of these, however, the analysis of a proposed method relies
on simulations for an evaluation of its efficacy. Yet, such simulations can examine only
a limited subset of all possible behaviors.

The analyzed protocol was proposed for Bouassida and Shawky [2010] and
it is based on “dynamic scheduling” and “transmission of priority-based messages”.



80 Chapter 4. Probabilistic Model Checking

Thus, priorities are assigned to messages dynamically, and high-priority messages are
transmitted in preference to low-priority ones. In order to provide a reliable and safe
network it is important to ensure fast delivery of emergency messages without any
delay. Thus, this protocol has three stages [Konur and Fisher, 2011]:

• Dynamic priority assignment A priority is assigned to a message based on
the utility of the message. The priorities determine when the messages are
transmitted.

• Message scheduling Based on the assigned priorities, messages are sent to
an appropriate channel. In a VANET, packets are accessed through a shared
medium [Torrent-Moreno et al., 2005]. For example, control channel (CCH) and
service channels (SCHs).

• Cooperative message transmission For high priority messages, Bouassida
and Shawky [2010] adopt the following message transmission process: “the
transmission of low priority messages is frozen, even if their corresponding channel
is free.” Whenever a message is sent from a channel, the package with the highest
priority within the channel is selected.

After choosing the congestion protocol, Konur and Fisher [2011] elected key
characteristics for their model:

1. The number of vehicles within an interference range at any time can be any value
in {0, .., n}

2. There are three types of messages: (i) emergency messages driven by an event
– with generation rate from {0, ..,m}; (ii) periodic safety messages; and (iii)
periodic non-safety service messages. Generation rates for safety and non-safety
messages are constant (represented by k and l, respectively).

3. There are a CCH and SCH channels. The available bandwidth for each channel
is assumed to be same. Half of the available bandwidth for CCH is devoted to the
transmission of emergency messages; the other half is used for safety messages.

4. We also assume that, if the number of messages in CCH and SCH exceeds a
certain threshold value, the channel is overloaded and the excess messages are
lost

5. The counting abstraction approach was adopted, whose overall behavior can be
captured.



4.7. Formal Analysis of a VANET Congestion Control Protocol
through Probabilistic Verification 81

Figure 4.26 shows a state machine for emergency messages. The diagrams for
other two types of messages are similar. The difference appears if the service channel
is overloaded and the safety channel is empty. Thus, any excess service messages are
forwarded to the control channel. However, if there are messages in safety channel,
then the service messages are lost.

Figure 4.26: Transition system for emergency message control. – Font [Konur and
Fisher, 2011]

This state machine updates the emergency message queue and counts the
number of lost messages. The variable S1 denotes the new size queue which it is
calculated by Equation 4.1. At each time instant new emergency messages (denoted
as emerg_msg) are added to the queue (denoted as emerg_que) and MSG_TRNS/2
messages are transmitted from the queue. If the queue size is smaller than the threshold
(emerg_count ≤ THR), no message is lost (emerg_msg_lost := 0). Otherwise excess
messages are lost (emerg_msg_lost := emerg_count− THR).

S1 = emerg_que+ emerg_msg −min(emerg_que,MSG_TRNS/2) (4.1)

Finally, some properties were explored. Based on the proposed model, the
correctness and performance was evaluated with respect to selected PCTL properties.
Figure 4.27 shows some of them. PRISM returned true for properties I and II, showing
that the congestion control protocol correctly works for emergency messages. However,
the third property returned false. It shows that the observed delays in safety messages
sometimes are higher than the delays for service messages.

Through several observations, Konur and Fisher [2011] proposed some
modifications like: (a) periodic safety messages use all available bandwidth within
the control channel, when an emergency message arrives, it takes precedence and is
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transmitted without any delay; (b) service messages only use the service channel,
if this channel is overloaded, the control channel is not used for service messages.
Nevertheless, final analysis showed slightly increased over that of the original method.
The modifications proposed allowed to achieve a better (i.e. lower) loss rate and delay
for safety messages.

Probabilistic Temporal logic properties

(1) P=0 [ F s = Lostemerg_msg ]
Emergency messages are never lost?

(2) P≥1 [ G Delayemerg_msg = 0 ]
Emergency messages are never delayed?

(3) P≥1 [ Delaysfty_msg < Delaysrv_msg ]
Delay of a safety message is always less than service message.

Figure 4.27: Checking basic properties – Adapted by [Konur and Fisher, 2011]

4.8 Conclusion

In this chapter we have presented model checking, a technique used to model and
analyze systems, verifying if those respect a set of properties. The symbolic model
checking is presented, as well as its concepts and related subjects, such as the model
representation using the Kripke structure and the data structure binary decision
diagram. The properties to be verified are specified using special types of logic, the
temporal logics, Computational Tree Logic (CTL and CTL*) and Linear Time Logic
(LTL), which are also described. Using these logics, it is possible to specify different
types of properties, such as “if a message is sent, then that message is eventually
received”, or “a distributed system never enters a deadlock state”.

The probabilistic model checking is also presented, an extension to the previous
technique which allows the modeling and analysis of stochastic systems. Different
structures are necessary and were described, such as multi-terminal binary decision
diagrams, and probabilistic logics, Probabilistic Computational Tree Logic (PCTL),
Continuous Stochastic Logic (CSL), reward- based and filter extensions. PRISM model
checkers was examined and their modeling language and property specification were
briefly presented.

The case studies depicted here show that verification techniques can be very
useful in assessing the efficiency and correctness of WSN and VANET, thus, their
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results may be used to improve the systems. Presented studies show how to model the
communication with different abstractions and model checkers.

Nevertheless, researches in VANET rarely use formal methods in their
analysis. Bouassida and Shawky [2010] and Lomuscio et al. [2010] are exceptions.
They employee model checking, however, the studies do not address uncertainty and
non-determinism. Another important point to mention is the absence of models which
represent the dynamism of the nodes movement and the non-determinism caused by
vehicles in traffic. These issue are determinants points in vehicular networks. Table 4.1
shows a comparison among the presented works here.

Table 4.1: Model Checking Research

Model Network Analysis Signal
Research Checker Type Type Movement propagation

type
Christian [2009] NuSMV WSN Correctness - deterministic

Fehnker et al. [2009] PRISM WSN effectiveness - stochastic
Konur and Fisher [2011] PRISM VANET Correctness/ - deterministic

effectiveness

The focus of all works mentioned above was to verify the communication
protocol. However, it is important verifying networks considering not only
communication by itself, but also implemented functionality. Thus, it is often
necessary to model communication and other important system components to verify
functionality [Christian, 2009]. Therefore, building models considering traffic flow,
network computers and radio-propagation is necessary and rarely explored.





Chapter 5

Our Models to Verify Movements in
VANETs

Outline. In this chapter we present our proposal for the formal verification of vehicular
movement using two models using probabilistic model checking. First, a macroscopic
vision about a crossroad managed by a semaphore with different parameters is modeled.
Then, an overtaking vehicle scenario is encoded. It uses analytical formulas to represent
position, speed and acceleration providing microscopic aspects.

5.1 Macroscopic model

Our experimental model represents different VTL protocols. Signal propagation and
communication have been abstracted assuming an Isolated approach. This first model
shows a wider vision, i.e., it is a macroscopic model because the vehicles are represented
by integer values. Thus, dimensions, position, acceleration and velocity are neglected.

Classifying our model according to the features presented in Section 3.1, it does
not include the movement from origin to destination, its vehicles randomly choose
their direction (Trip Modeling level). We modeled a single intersection and therefore
it was not necessary to define routes (Path Modeling level). In the Flow Modeling
level, we have modeled a VTL managed crossroad, where each road has two lanes in
opposite directions. This has been done to demonstrate the viability of PMC usage to
check which factors influence mobility patterns, such as, number of cars, road size and
semaphore timer duration.

Figure 5.1 illustrates transit dynamics in our model. Vehicles in vertical lanes
(top1 and bot2) await the vertical semaphore, while vehicles in horizontal lanes are
free to move. Vehicles have the option of following in the lane direction or turn
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right. Figure 5.1 also shows the standard adopted to feed back the cars on crossroad
(Continuous Traffic Transitions label). After leaving left1, a vehicle is reinserted in
right1 - an analogous behavior is used in vertical lanes. This solution was adopted
in order to maintain generality of the model while the modeling includes only one
crossroad.

Figure 5.1: Mobility VANET Model

Our model follows the characteristics of the VTL protocol presented in Section
3.7.4, with the following abstraction — although a leader is temporarily elected and
responsible for sending messages to open or close the roads, these messages and the
leader have been simplified into a global variable per crossroad. This is due to the
objective of verifying the vehicles movement instead of communication protocols and
signal propagation.

The VTL Protocol model is written in the PRISM language (used by the PRISM
model checker) and consists of a module that represents the roads managed by the
virtual traffic light. A fragment of the model is shown in Figure 5.2 and its complete
version can be found in the supplementary material at [Ferreira et al., 2012a].

The semaphore variable indicates which road is open for traffic. Each lane of the
roads is represented by an integer number which stores the vehicles in that lane for a
time frame (e.g., lane_right1). Vehicle movement is represented by modifying one
unit of the variables which represent the lanes of origin and destination, respectively.

Model behavior is parametrized by the constant protocol, which defines one
of three possible modes. In the first one, the horizontal road has precedence over
the vertical road and stays open for a fixed-timer period, in other words, a classic
traffic light (protocol=0 ). The second mode favors the most intensive road, this is
a new version proposed by the authors of this work, because it does not use timer,
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VTL Protocol PRISM Model
const int MAX_TIMER=15;
const int protocol; // 0 - timed signal; 1 - Most intensive traffic VTL

module crossroad
timer : [1..MAX_TIMER] init 1;
// Vehicles in both lanes
// First method - timed signal with initial preference to horizontal lane
[] (protocol=0) & (lane_right1>0 | lane_left2>0) & (lane_top1>0 | lane_bottom2>0) &

(timer = MAX_TIMER) -> 1 : (semaphore’=!(semaphore)) & (timer’=1);

// Second method - Chooses the most intensive lane
[] (protocol=1) & (lane_right1>0 | lane_left2>0) & (lane_top1>0 | lane_bottom2>0) &

((lane_right1+lane_left2)>=(lane_top1+lane_bottom2)) &
(timer = MAX_TIMER)-> 1 :(semaphore’=false);

endmodule

Figure 5.2: VTL Protocol PRISM Model

i.e., the traffic flow is analyzed all the time and the semaphore can change anytime
(protocol=1 ). The third protocol also verifies the most intensive traffic, however it
obeys a timer when a lane is chosen – a classic virtual traffic light (protocol=2 ). In
these latter two options, when there is traffic in only one road, the semaphore opens
for this road – this prevents vehicles remain stopped unnecessarily.

The experimental model presented in Figure 5.2 is a macroscopic view, where
the vehicles obey certain traffic rules and choose a random direction. However,
probabilities can easily be assigned to indicate a tendency of direction or PoI. Moreover,
a microscopic vision can be obtained by increasing the granularity of the model by
using modules to represent vehicles. Thus, the modeling can be done hierarchically in
different levels, as shown in Section 3.1, which are the trip, path and flow modeling.

5.2 Results for the macroscopic model

There are two variables in our model which can be parametrized: initial number of
cars per lane and the maximum value for the semaphore timer. The first variable sets
the initial value for each side of each lane, which behaves as a queue and is limited
by the constant MAX_CARS. If we set this initial value to zero or MAX_CARS, the model
becomes trivial since there is nothing happening — either due to no cars in any lane
or because it is too crowded and cars can not move. On the other hand, intermediary
values (dMAX_CARS

2
e) significantly complicate the model, since there are many possible

transfers between lanes. The behavior of the model Statistics (size), as well as the time
to build and check it has been shown in Table 5.1, where we have varied the number
of cars from zero to MAX_CARS.
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Table 5.1: Model statistics for different cars per lane (timer = 15).

Cars per Lane States Transitions TBuild Tsemaphore Ttraffic
0 15 15 0.032 s 0.0010 s 0.0020 s
1 97260 553886 1.222 s 0.023 s 4.462 s
2 1341720 8973247 26.597 s 0.164 s 148.829 s
3 1192440 7692693 11.43 s 0.281 s 126.925 s
4 72600 361920 0.864 s 0.015 s 5.062 s
5 30 30 0.033 s 0.0020 s 0.0030 s

The second variable sets the maximum value for the semaphore timer, which is
used to guarantee that a road has a sufficient amount of time when it is given the green
light. Model complexity is linear in function of the semaphore timer (Table 5.2), where
we have varied the semaphore timer from 9 to 21.

Table 5.2: Model statistics for different semaphore timers (cars per lane = 2).

Timer States Transitions TBuild TSemaphore TTraffic
9 805032 5380177 10.322 s 0.172 s 88.825 s
12 1073376 7176712 12.532 s 0.19 s 118.903 s
15 1341720 8973247 10.436 s 0.163 s 148.831 s
18 1610064 10769782 11.955 s 0.197 s 178.336 s
21 1878408 12566317 10.246 s 0.214 s 207.48 s

The model also allows changing the VTL protocol employed (either favoring the
vertical lane or the most intensive lane) through the flag protocol. The columns
TBuild, TSemaphore and TTraffic refer to the time to build the model, and to check a
semaphore safety property and a traffic reward property. The experiments have been
performed in an Intel(R) Xeon(R) CPU X3323, 2.50GHz which has 16 GB of RAM
memory.

5.2.1 Semaphore, Lane and Timer Safety Properties

We have formulated some properties related to the behavior of different model aspects
in order to verify if it shows the expected behavior, such as semaphore interchange
and timer reset. These properties can be seen in Figure 5.3. The first property checks
if the semaphore interchanges appropriately between one value (false — horizontal)
and the other (true — vertical). In order to express this we have used the operators
P>=1 for certainty (therefore we expect the result true), G for every starting path with
semaphore set to horizontal, implication (=>) to indicate causality between the events
and F for a path with semaphore eventually set to vertical.
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Semaphore, Lane and Timer Safety Properties

(1) P>=1 [ G semaphore=false => P>=1 [ F semaphore=true ] ]
Once the semaphore is false (horizontal), it eventually becomes true (vertical).

(2) P>=1 [ G lane_top2=1 & lane_bottom2=0 =>
P>0 [ X lane_top2=0 & lane_bottom2=1 ] ]

Whenever a vehicle in the top right lane (lane_top2) moves forward, it reaches the bottom
right lane (lane_bottom2).

(3) P>=1 [ G timer=MAX_TIMER => P>=1 [ F timer=1 ] ]
When the timer reaches its maximum value, it eventually resets.

Figure 5.3: Semaphore, Lane and Timer Safety Properties

We also have checked if the continuous traffic transitions behave as expected,
which means that if a vehicle moves to outside of top lane (lane_top2), it should
appear in the bottom right lane (lane_bottom2). Finally, we have checked if the timer
reaches its maximum, it eventually resets. All results were correct.

5.2.2 Semaphore and Lane Quantitative Properties

In order to quantify the behavior of the semaphore and the lanes over time, we have
added to the model several rewards and some examples are described in Figure 5.4.
These rewards essentially count each time some given condition is true. The semaphore
rewards are “horizontal” and “vertical”, which are true when the variable semaphore is
false and true, respectively. One of the lane rewards is lane_right1, which is always
true and counts its number of vehicles.

Semaphore
and Lane Rewards
rewards "horizontal"

(semaphore=false) : 1;
endrewards

rewards "lane_right1"
true : lane_right1;

endrewards

Semaphore and Lane Quantitative Properties

(4) R{“horizontal”}=? [ I=T ]
What is the expected reward for the semaphore open to
the horizontal road at time T?

(5) R{“lane_right1”}=? [ I=T ]
What is the expected reward for the number of vehicles
in the top right lane at time T?

Figure 5.4: Semaphore and Lane Rewards and Quantitative Properties

Since we have included these rewards in our model, we are able to quantify them
over time, using the reward and instant operators. The I (instant) operator checks a
property at a precise given time T. The R (reward) operator is used to query the value
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of some given reward, for example, R{“lane_right1”}=?. Therefore, the properties
shown in Figure 5.4 query the value of the rewards at a precise given time T.

5.2.3 Traffic Comparison of VTL and Timed Traffic Lights

The vehicular traffic in a horizontal and vertical road were analyzed for a crossroad
managed by a common signal (timed) and two instances of VTL with different modes -
(1) VTL which obeys a time (classic VTL) and (2) new VTL which does not have timer
(intensive). Figure 5.5 shows that the timed signal oscillates between clustering and
absent of traffic. For the second instance of VTL, there is a continuous flow without
clustering of vehicles and a reduction of time on lane. The first option of the VTL
shows an average behavior between the two methods mentioned. Furthermore, the
graph shows an abrupt oscillation in the beginning. This occurs due a design option,
the horizontal lane always starts open for traffic, thus, the reduction of vehicles on own
lanes is certain.

Figure 5.5: Traffic Comparison of VTL and Timed Traffic Lights

The mirrored behavior of the timed signal was expected. However, the behavior
of the two VTL instances shows unexpected features, such as, the average number of
cars on crossroad equals for both directions, which indicates that theses behaviors could
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be more efficient and fair in practice, because it avoids the agglomeration of vehicles
by interleaving the active road with more intensive traffic.

5.2.4 The Influence of Traffic and Timer in Semaphore

Interchange

Semaphore Interchange Property

(6) P=? [ semaphore=false U<=T semaphore=true ]
What is the probability that the semaphore changes from false (horizontal) to true
(vertical) within T seconds?

Figure 5.6: Semaphore Interchange Property

The traffic volume and upper limit or the timer influence directly the probability
of the semaphore changing from horizontal to vertical. We have devised a property
shown in Figure 5.6 which queries the probability of the semaphore changing from
false (horizontal) to true (vertical) in T seconds.

We have plotted this probability in Figure 5.7 for the three protocols with different
number of cars. As time progresses, the probability rises, which means it is likely that
the semaphore changes from horizontal to vertical. However, the Intensive and Timed
protocols are insensitive to traffic increase. The first one changes the direction in a few
seconds due traffic jam in opposite lane, while the timed protocol is stable until reaches
MAX_TIMER. In the classic VTL protocol, the timer and the number of vehicles must
be queried, thus, the probability increases slower than the Intensive protocol, however,
it is still better than the Timed protocol.

5.3 Microscopic model

Our second model was created with a microscopic focus. The idea is to show
the representation of nodes movement through the analytical equations presented in
Section 3.2. Signal propagation and communication have been abstracted assuming
an Isolated approach. Our microscopic model takes into account position, speed, and
acceleration of the vehicles. For this, an overtaking vehicle scenario is implemented.
This has been done to demonstrate the viability of PMC usage to check microscopic
aspects. This model also is written in the PRISM language. Fragments of the models
are presented below and the complete version can be found in the supplementary
material at [Ferreira et al., 2014a].
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Figure 5.7: Probability of Semaphore Interchange for each Protocol

Figure 5.8 illustrates the proposed scenario. There are three vehicles involved.
The car c1 will overtake the truck, called Leader, which travels slower. However, the
vehicle c2 is coming in the opposite direction. In this situation, c1 may not see c2, due to
weather conditions or lack of attention. This scenario will happen in 200 meters. Thus,
the model should answer questions such as “What is the probability of a collision?”.

Figure 5.8: Overtaking vehicle scenario

Figure 5.9 depicts the models variables. Each vehicle maintains its current
position and velocity. The variable lane informs where c1 is located. If lane is
equal to 1, the vehicle is on right-hand side (default road), otherwise the car is on
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left-hand side. In other words, the vehicle is trying to overtake. The constants
desired_speed_car, desired_speed_truck and RS (Road side) constrain the model
and they are respectively represented in m/s, m/s and m. The carCrash variable
indicates whether c1 and c2 collided at some point in time.

Model variables
lane : [1..2]; //lane’s c1 (1 - right lane, 2 - left lane)
carCrash : bool;

// speed
v_c1 : [0..desired_speed_car];
v_c2 : [0..desired_speed_car];
v_l : [0..desired_speed_truck]; //leader speed

// position
pos_c1 : [1..RS];
pos_c2 : [1..RS];
pos_l : [1..RS]; //initial value should obey a minimum distance (truck_size+min_gap_car)

Figure 5.9: Variables of model

This model becomes interesting because it does not have a specific initial state.
This is achieved by the code shown in Figure 5.10. The implemented predicate states
that vehicles c1 and c2 in the opposite directions are separated by RS meters and there
is a leader (truck) between them, which will be overtaken by c1. However, the leader
position and the initial speed of all involved can be a combination of values. This
creates several scenarios to be automatically explored. An interesting abstraction was
adopted to c2’s position. It starts at position one of its lane, however, its real location
on the road is given by RS − pos_c2. We have chosen to insert the car c1 in the left
lane (lane = 2) if it is forced to slow down in the initial state, c1 also starts at this
lane whether its initial speed will overlap the truck’s position.

Initialization of variables
init

(pos_l>=truck_size+min_gap_car)&(pos_c1=1)&(pos_c2=1)&
(lane=( (v_c1>pos_l)|(a_c1 <= 0)?2:1))&
(v_c1>=0&v_c1<=desired_speed_car)&
(v_c2>=0&v_c2<=desired_speed_car)&
(v_l>=0&v_l<=desired_speed_truck)&
(carCrash=false)

endinit

Figure 5.10: Initial states for the model

The vehicles position is given by Equation 3.3 implemented in the PRISM
language, which involves the initial position, velocity, acceleration, and time. Each
transition of the model represents a time period that is defined by the constant t. The
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accelerations of the vehicles are calculated by the IDM model previously presented in
Section 3.2. The new speed is given by Equation 3.4 and it also depends on the vehicle
acceleration. Figure 5.11 describes a fragment of the model responsible for calculating
the acceleration and position of vehicle c1. The formulas are similar for other vehicles.

As mentioned in Section 3.2, the IDM expression combines the free-road
acceleration strategy, given by afree(v) = a[1 − (v/v0)

δ] with a deceleration strategy,
given by abrake(s, v,∆v) = −a(s∗/s)2. Therefore, Equation 3.1 has been algebraically
split during implementation, because the vehicles do not suffer deceleration when there
are no obstacles ahead. Thus, when the vehicle c1 overtakes the leader, c1 does not
suffer slowdown, while the truck’s acceleration, which used to have free way, starts to
be influenced by the new c1’s position.

Accelaration and Position Formulas
formula a_c1_free = AM_car - AM_car * pow(v_c1 / desired_speed_car, exponent);
formula a_c1_obst = a_c1_free - a_brake_c1;
formula a_c1 = (overtook|lane=2?a_c1_free: (pos_l>=RS?a_c1_free:a_c1_obst));

formula a_brake_c1 = AM_car * pow(des_dyn_dis_c1 / deltaD_c1, 2);
formula des_dyn_dis_c1 = min_gap_car + max(0.0, v_c1 * T_car + (v_c1 * deltaV_c1) /

(2*pow(AM_car*BM_car,0.5) ));
formula deltaV_c1 = v_c1 - v_l;
formula deltaD_c1 = max(pos_l - pos_c1 - truck_size,1);//"max 1" to avoid division by zero

formula muv_c1 = (v_c1 + ( a_c1*pow(time,2)) / 2) > 0 ?
(v_c1 + (a_c1*pow(time,2)) / 2) : (-1 * (v_c1 + (a_c1*pow(time,2)) / 2));

Figure 5.11: IDM model implementation

TheMod_vC1 module and theMod_dC1 presented in Figure 5.12 are responsible
for the transitions in the model assigning the new position and speed to vehicle c1,
again, the modules are similar to other vehicles involved. The ChangingLane module
controls the lane change of c1. In case the vehicle is able to overtake according to
the conditions presented by Mobil model (Subsection 3.2.1), the vehicle changes to
left lane. If c1 is on the left lane and already overtook the leader, then c1 returns to
the default lane. This modules are synchronized by label “m” what it is placed inside
the square brackets. This last module is also responsible for detecting a crash, which
happens when c1 and c2 are in the same lane and the coordinates are overlaid or the
deceleration calculated by the Torricelle equation (Equation 3.5) is unfeasible to be
executed in a normal situation.
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Modules proposed
module Mod_vC1

// speed
[m] (pos_c1 <= RS)&(v_c1 <= desired_speed_car) ->

(v_c1’ = min(max(ceil(v_c1 + a_c1)*time,0),desired_speed_car));
endmodule

module Mod_dC1
// position
[m] (pos_c1 <= RS) -> (pos_c1’ = min( (ceil(pos_c1 + muv_c1)),RS) );

endmodule

module ChangingLane
[m] (pos_c1 <= RS) -> (lane’ = ((lane = 2)&(pos_c1 >= (pos_l+min_gap_car+car_size)))?1:

((lane = 1)&(can_change_lane))?2:lane);

[] (CanotDecelaration | (
( (pos_c1>=(RS-pos_c2))&(pos_c1<=(RS-pos_c2-car_size)) )

|
( ((pos_c1-car_size)>=(RS-pos_c2))&((pos_c1-car_size)<=(RS-pos_c2-car_size)) )

)
) & (lane=2) -> (carCrash’ = true);

endmodule

Figure 5.12: Modules implementation

5.4 Results for the microscopic model

Finally, the model built using PRISM language can be verified. The idea is to check the
correctness of IDM code and analyzing different situations about the modeled scenario.
The behavior of the model, as well as the time to build and check are shown in Table
5.3, where we have 7 properties. For some, we have varied the number of initial states
by command filter. The experiments have been performed in an Intel(R) Xeon(R) CPU
X3323, 2.50 GHz which has 17 GB of RAM memory.

Table 5.3: Model statistics for different proprierties.

Figure – Property States Transitions Initial States TBuilding TCheck
Figure 5.13 – 1 386243 386243 38400 2384.512 s 1.91 s
Figure 5.15 – 1 386243 386243 38400 2115.274 s 2.656 s
Figure 5.15 – 4 386243 386243 38400 2119.281 s 0.333 s
Figure 5.16 – 5 386243 386243 1 2111.286 s 11.739 s
Figure 5.16 – 6 386243 386243 1 2118.044 s 11.943 s
Figure 5.19 – 8 386243 386243 38400 2107.819 s 5.418 s
Figure 5.19 – 9 386243 386243 38400 2360.838 s 2.876 s

First, we have formulated properties related to the correctness of different aspects
of the model in order to verify if it shows the expected behavior, such as the speed or
acceleration. For example, the vehicles never exceed the desired limit of the road. In
order to express this we have used the operators P>=1 for certainty (therefore we expect
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the result true), G to demonstrate for every path the velocity is not greater than the
allowed speed along the road. This property can be seen in Figure 5.13. The second
property checks if the vehicles will be in motion as soon as the model is initiated.
Finally, we have checked if the velocity never reaches negative values in some situation
as deceleration movements. For three properties the results were true, which they were
the expected values. The verifications were made for vehicle c1, however they can be
easily modified to others involved.

Desired Speed, Movement and Speed Behavior Properties

(1) P>=1 [ G v_c1 <= desired_speed_car ]
The vehicles never exceed the speed limit of the road.

(2) P>=1 [ G X pos_c1 > 1 ]
What is the probability the vehicle move in the first instant of time.

(3) P>=1 [ G v_c1 >= 0 ]
There is no negative speed in the movement.

Figure 5.13: Correctness properties

5.4.1 Car-crash situation

In order to analyze some situations about the scenario, several interesting questions
can be made. For example, the first property in Figure 5.15 checks the probability of
occurrence of car-crash. The presented result was: [0.0, 1.0] for range of values over
initial states. The answer shows that there are situations without accident, however
car-crash also happen to vehicles. The third property in the same figure checks the
average probability of accident taking into account all initial states. Thus, this scenario
has 98 percent of initial states resulting in collision. The fourth property only confirms
the results of these two properties mentioned before. The high accident rate happens
because c1 always try the maneuver independently of the initial states. Thus, the
vehicle c1 executes the overtaking even starting with zero meters by second, an unreal
conditional in practice. It is a non-probabilistic query and the result was true for the
question “Is there any situations without accident?”. The E (there exists) operator asks
whether some path from a state satisfy a particular path formula. If the result is true,
a witness will be generated. In this case, the model checker returned a counterexample
depicted in Figure 5.14, which represents the initial state with values to the respective
variables.
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Figure 5.14: Counterexample to situations without accidents

Coming backing to the second property, it answers the question, “is there a
possibility to finish the scenario without overtake?”, in other words, the leader reaches
the end before c1. The result was [0.0, 1.0] considering the range of values over initial
states. Thus, there are cases with overtake and others without this movement.

Car-crash Scenario Properties

(1) P=? [ F (carCrash=true) ]
What is the probability of an accident occurs?

(2) P=? [ ((pos_c1<RS & carCrash=false)U(pos_l>=RS & carCrash=false)) ]
What is the probability of not occurring overtakes in this scenario?

(3) filter(avg, P=? [ F carCrash=true ], "init")
What is the average probability over all initial states that an accident occurs?

(4) E [ F (carCrash=false) & (pos_c1>=RS) ]
Is there at least one path which does not lead to an accident?

Figure 5.15: Properties of overtake

As we mentioned above, the operator E has an excellent feature to generate a
counterexample (a path reaching a “goal” state). Using this witness, for instance to
property 4, we can thoroughly analyze the situation of accidents in the scenario. Since
we have included rewards in our model, we are able to quantify the speed, acceleration
and movement over time in this counterexample. Some implemented rewards and
properties are shown in Figure 5.16. The latter using the filter command to check
specifically the counterexample available. The operator R is responsible for getting the
values from rewards commands.

Figure 5.17 depicts the result of analysis. The graphs show the position of the
three vehicles over the time. The line with triangular point-shape (label lane for car1 )
varies between 10 and 20 and it shows the lane of the vehicle c1 during overtaking.
The first value means that c1 is in the default lane (right-hand lane), the value 20

means that the vehicle is traveling in the left-hand lane to overtake. The Graph 5.17a
shows the behavior of vehicles without collision.

Note that c1 overcomes the leader at the instant 7.5 and when the positions of
c1 and c2 overlap, the first one already returned to the right-hand lane. Similar to
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Movement
and Lane Rewards
rewards "dLeader"

true : pos_l;
endrewards

rewards "dCar"
true : pos_c1;

endrewards

rewards "dCarOpposite"
true : pos_c2;

endrewards

rewards "laneCar"
true : lane;

endrewards

Movement and Lane Quantitative Properties

(5) filter(max,R{“dCar”}=? [ I=T ],
(pos_l=19)&(pos_c1=1)&(pos_c2=1)&(lane=1)&
(v_c1=0)&(v_c2=0)&(v_l=0)&(carCrash=false))

What is the expected distance reward for the vehicle c1
on the road at time T?

(6) filter(max,R{“laneCar”}=? [ I=T ],
(pos_l=19)&(pos_c1=1)&(pos_c2=1)&(lane=1)&
(v_c1=0)&(v_c2=0)&(v_l=0)&(carCrash=false))

What is the expected lane reward for the vehicle c1 on
the road at time T?

(7) filter(max,RS-R{“dCarOpposite”}=? [I=T],
(pos_l=50)&(pos_c1=1)&(pos_c2=1)&(lane=1)&
(v_c1=0)&(v_c2=0)&(v_l=0)&(carCrash=false))

What is the expected distance reward for the vehicle c2
on the road at time T? (With different initial conditions)

Figure 5.16: Movement and Lane Rewards and Quantitative Properties

property 4, we can generate counterexamples of an accident scenario. The Graph 5.17b
shows this situation and it is easy to notice the positions overlapped at time 10. In
this case, c1 is in the left-hand lane indicating the collision.

Figure 5.18 shows the evolution of the acceleration and velocity of c1 and
leader (truck) in the scenario of overtaking without collision. Speeds rise according
to acceleration until reaching the maximum limit of the road. As the acceleration
of the truck is slower and the speed limit is lower, the car can overtake with ease.
It is interesting to note that the acceleration modeled with IDM is affected by lane
change of c1. Right at the instant 2, the acceleration of c1 rises abruptly. Because
in this moment, the driver concludes to be more advantage changing to the left-hand
lane, instead of to keep on default track. As c1 is reaching the desired speed, the
acceleration is decreasing. It happens in a linear fashion. The truck also reduces the
acceleration linearly as the desired speed is reached. At time 8, the deceleration is
slightly more accentuated due to the entrance of the c1 on the default lane, as soon as
overtaking is completed.

Analysis regarding to the time spent in overtake or performed all the route by
each vehicle can also be computed. Figure 5.19 shows two examples of this verification
type. These property using the reward “step”, responsible for providing the value 1 for
each state change in the model, which is equivalent to 1 second in real scenery. The
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(a) Movement in a normal overtake

(b) Movement with accident

Figure 5.17: Scenario analysis

properties use the operator F (Reachability “reward”), which associate the reward with
each path of the model.

According to Kwiatkowska and Norman [2011], the reward property “F prop”
corresponds to the accumulated reward along a path, until a satisfying property prop
is reached. State rewards for the prop-satisfying state reached are not included in the
accumulated value. In the case where the probability of reaching a state satisfying prop
is less than 1, the reward is equal to infinity.

Property 8 calculates the overtake time, which results in collision for all possible
initial states, thus the presented result was a value range of [8.0, infinity] seconds.
The infinity value represents the initial states without collision. In other words, initial
states that have probability less than 1. Therefore, to find the maximum time limit for
the collision it is enough to analyze the log file which it will have the travel time for
all initial states and their successors, that is available due to the parameter “print” in
the filter command. However, the range of minimum and maximum time of collision
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(a) Acceleration evolution

(b) Speed evolution

Figure 5.18: Acceleration and speed analysis in a free car-crash overtake

Time Reward
rewards "steps"

true : 1;
endrewards

Time Properties

(8) filter(print, R{“steps”}=? [ F carCrash=true ],
“init”)
Calculates the lowest and highest time to c1 collide during
its journey.

(9) filter(print, R{“steps”}=? [ F carCrash=false
& pos_c1=RS ], “init”)
Computes the maximum and minimum time to c1 completes
the route without collision.

Figure 5.19: Time Rewards and Properties
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are [8.0, 11.0], in other words, the shortest time of accident is 8 seconds and the
longest time happens at instant 11. Thus, they can be simulated, respectively with
the initial states presented in Figures 5.20a and 5.20b. Furthermore, graphs as shown
in Figures 5.17 and 5.18 can be generated for more detailed analysis based on these
counterexamples.

(a) Minimum time of collision

(b) Maximum time of collision

Figure 5.20: Initial state for counterexample (unsuccessful overtaking)

In a similar way, property 9 calculates the minimum and maximum time for
successful overtaking. This also takes into account all possible initial states. Thus,
the range of values presented were among [13.0, Infinity] seconds. Again, for all initial
states in which the probability of F to be satisfied is less than 1, it is assigned the infinity
value. Thus, analyzing the PRISM log file in order to remove the infinity value, we can
identify the following range of values [13.0, 16.0], Figures 5.21a and 5.21b show their
respectively initial states as counterexamples.

(a) Minimum time without collision

(b) Maximum time without collision

Figure 5.21: Initial state for counterexample (successful overtaking)

5.5 Conclusions

It is essential to test and analyze VANETs in order to prevent loss of life. Simulation
is widely used to check new protocols and applications. However, the simulator has to
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deal with two hitherto unconnected worlds, which must now work together (network
and traffic). In this context, there are challenges that must be addressed by the research
community. Nevertheless, an efficient alternative technique is the Model Checking.

In this chapter we presented the formal modeling and analysis of two models
using Probabilistic Model Checking with different abstraction. The detail level can
be different according to type of application. In order to verify performance in an
Entertainment Application, a macroscopic vision could be enough. However, Traffic
Safety Applications may require a more detailed analysis. Thus, some analytical
formulas to represent position, speed, and even acceleration are necessary.

However, a macroscopic vision about a crossroad managed by a semaphore
with different parameters was modeled. After, an overtaking vehicle scenario was
implemented. The latter uses some analytical formulas to represent position, speed,
and acceleration. This is done to show how our proposed modeling will be built. The
first model suggests that prioritizing roads with heavy traffic can be a good alternative
to improve traffic bottlenecks. This could increase traffic flow, improving the proposed
Virtual Traffic Lights protocol. The other model shows a huge chance of an accident.
But there are situations without collision.

In general, during implementation we noticed some limitations in language, for
example, the absence of some mathematical functions and the lack of subroutine
(function and procedure) and formal parameters. This fact impairs the legibility of
the model and makes difficult the implementation/maintainability. However, the IDM
and MOBIL model can be perfectly implemented and used in PRISM.

The implementation of motion provides important information such as
instantaneous speed, acceleration and position through reward, besides answering
questions regarding the probability that an event occurs. The modules responsible
for the movement can be easily coupled with network protocols modules. In addition,
the modeling is easily adaptable under various situations, such as multilane highway
or an intersection. For example, to implement a curve road, simply, it is necessary to
change the limited speed to a value less than a straight road, thus vehicles will reduce
the speed. Thus, it abstracts itself for a certain distance that the vehicle is crossing a
curve.

Nevertheless, through the coupling of movement modules presented in this study
with models, which represent communication and signal propagation, it will be possible
to do a full analysis of protocols and applications. In other words, VANET verifications
will consider network, signal propagation and movement. Thus, protocols such as
Virtual Traffic Light can be easily studied and through model checking advantages, as
to be completely automatic and exhaustively, it will identify abnormal situations.



Chapter 6

Our guidelines to analyze VANETs
in model checking

Outline. In this chapter we present our guidelines to model and analyze VANETs.
Our work proposes the use of probabilistic model checking to perform a complete test.
We are indicating some steps during the planning and a structure during the encoding,
which includes mobility, communication and signal propagation aspects. Besides, an
example of source code in PRISM language is presented.

6.1 Introduction

The modeling of a problem could be considered as an art. Researchers have to represent
a system in full measure using abstractions, that is, they have to capture the main
properties of a system using a language without extrapolating the limits that the
technique requires it. Thus, it is necessary to remove irrelevant issues and abstract
relevant details in a simplified form. These abstractions could be a problem, because
sometimes it involves experience, which is gained through hands-on or studying adopted
solutions and the available documentation. One problem is that model checking is still
little used during analysis in VANET. Thus, researchers have difficulties in knowing
which aspects need to be addressed and what the level of detail to treat those aspects
is.

This work proposes guidelines to help researchers during analysis of protocol
in VANETs. We want to assist beginners and experienced people. The guidelines
are proposed taking as a basis our modeling experience from biological system to
protocols in vehicular and computer networks [Braz et al., 2013b; Ferreira et al., 2015a].
Moreover, we also use some guidelines for simulation ([Barnett et al., 2012; Veysey and
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Moran, 2013; EPEC, 2015]) and some technical standards documents [OMB, 2007].
Our purpose is to provide a modeling structure to help researchers focus on the most
essential issues of the problem, that is, we are suggesting guidelines in order that the
attention of analysis will be directed to the real problem. However, our structure is
not meant to stifle the modeling, but instead, it raises questions that should be taken
into account.

An introduction to the VANET was shown in Chapter 2, PMC was studied
in Chapter 4 and a formal probabilistic analysis of a protocol in vehicular ad-hoc
network is presented in Chapter 7. All these concepts are part of these guidelines,
mainly the last one, where we have proposed a complete modeling structure which
includes mobility, communication and signal propagation modules. As said before, it
is necessary once communication could give new behavior or direction to the vehicles
and the new ones could affect the network moving away or grouping the nodes, what
interferes directly in the broadcast.

The objective of our modeling guidelines is to supply a consistent and plausible
approach to the development of VANETs models in probabilistic model checking. The
guidelines should be seen as a reference point and not as a rigid standard. They provide
direction on the scope and common approaches to represent protocols/applications.
The continual evolution of modeling through adaptation and innovation is encouraged.

The guideline provides an approach to model that is supported by a series of
progression stages. Figure 6.1 illustrates the proposed modeling process. The feedback
loops allow the process to go back to the prior stages. For instance, the researcher
may judge that the model implementation is inadequate which can mean revisiting the
design stage.

Figure 6.1: Guideline steps

In the planning stage, the researchers should agree about the model’s intended
use and the modeling objectives, in other words, what questions it should answer. At
this point, it involves identifying and describing the processes that control or influence
the vehicle’s movement, the studied application and how the signal propagation is
influenced.
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The design and implementation stages involve a series of decisions on how
to best implement the planning in a mathematical modeling environment. The
decisions required at this stage include selection of the analytical models, selection
of an appropriate granularity, besides the definition of the temporal representation
used in the model.

At the end, a final report should describe the model and all information created
through the modeling process. The report should be accompanied by all model files
and supporting data. Thus, the results presented in the report can, if necessary, be
reproduced as well as the model can be used in future studies.

Throughout the guidelines, key statements or paragraphs (of particular
importance or interest) are presented in highlights or in boxes for added emphasis:

• a set of numbered guiding principles for the associated stage in the modeling
process (starting with the first step-letter and numbered consecutively within
each step) – see example below

– Guiding Principle P.1: The modeling objectives...

• examples of concepts or principles (numbered consecutively within each step and
provided in plain text boxes), for instance:

– Example 1: Project objectives...

6.2 Planning

The process starts with planning stage, which focuses on gaining clarity about the
problem and on the objective of the model. This involves all available data and
knowledge of the product under study. It is never possible for one model to answer all
questions on VANETs behavior. Thus, the model should be a goal.

Besides, the objectives should be used regularly throughout the analysis process
as a guide to how the model should be designed, implemented and used to the tests. The
main tasks in this phase are: 1) to establish the context which the model development
is being undertaken; 2) to guide how the model will be designed, constructed and
executed and 3) to provide criteria for assessing whether the model is adequate for
purpose and whether it has yielded the answers to the questions it was designed to
address.

Moreover, at this stage, we have to keep in mind the weakness presented by
the model checking technique, mainly the state-explosion-problem, which says that the
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number of states in a model is exponential in the size of its description, it may just take
too much time and typically also too much space to explore all these states. However,
a wide environment, as a modeled city in model checking could be impossible, even
using a computer with high processing power. Thus, specific scenario or a group of
them, such as intersections, curves, streets or stretch of roads are more feasible. Hence,
it is very important to determine the scenario’s length and how many vehicles will pass
through it. Therefore, we have formulated some guiding principles for planning a
VANET model:

Guiding Principle P.1: Modeling objectives should be prepared early in analysis
and they should state how the model could specifically contribute to the successful
completion or progress of the protocol or application.

Guiding Principle P.2: Obtaining as much knowledge as possible about the studied
product. In addition, getting earlier skills in analysis using Probabilistic Model
Checking is very important.

Guiding Principle P.3: Target questions should be agreed upon and documented at
an early stage of the project to help clarifying expectations.

Guiding Principle P.4: Which scenarios can reproduce the usage of product should
be agreed and documented at an early stage.

Example 1: Project objectives and modeling objectives

Vehicular Warning System

Project objective: A collision avoidance system is an automobile safety system
designed to reduce the severity of an accident. It uses radar and sometimes laser and
camera to detect an imminent crash. Once the detection is done, these systems either
provide a warning to the driver when there is an imminent collision or take action
autonomously.
Modeling objective: Studying only the communication aspect, finding what is the
best timeout to the packages to the safety channel.
Scenario: There are three vehicles involved. The car c1 and a truck are in the same
direction. The vehicle c2 is coming in the opposite side and must be reported by c1
about a wild animal presence in c2′s lane on its next road curve. This scenario will
happen in 200 meters.
Main question(s): Will the car be alerted in time?
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6.3 Design

Design phase involves describing how the researcher intends to create and to represent
a conceptual model, which is responsible for providing a description of suitable
analytical models. One should think how they will be encoded and performed, as well
as deciding on the model size, the measures standards, the type of probabilistic model
and other aspects such as, the initial conditions, the parameterisation of the model and
which model checker is the best to current analysis.

Conceptual model involves identifying and describing the processes that control
or influence the movement and the signal propagation conditions. This conceptual
document should consider the physical processes, in this regard, it provides information
on how it is expected to impact on vehicles’ acceleration and non-line-of-sight (NLOS)
during communication. Moreover, our guidelines encourage regular reassessment of
the conceptual model at all stages of the project. It is also encouraged to propose and
maintain alternative conceptual model for as long as possible through the modeling
project. In some cases, this may lead to the development and use of alternative
mathematical models.

According to Barnett et al. [2012], a mathematical model describes the physical
processes of a system using one or more governing equations. An analytical model
makes simplified assumptions to enable solution of a given problem (e.g. a parameter
called “free acceleration exponent” has a value to determine whether the gain of speed
occur on a wet road).

Therefore, we have formulated some guiding principles for design a VANET
model:
Guiding Principle D.1: The level of detail within the model should be chosen, based
on the modeling objectives, the availability of processing power and its complexity.
Guiding Principle D.2: Analytical models could be considered to explore the
significance of the uncertainty associated with different views of how the system
operates.
Guiding Principle D.3: An architecture of modeling should be adopted. This
architecture should represent the movement, the signal propagation and the network.
Furthermore, it must have the goal of facilitating the changes of analytical models.
Guiding Principle D.4: The size, measures standards, the types of probabilistic
models should be chosen to reflect the modeling objectives.
Guiding Principle D.5: Initial conditions and parameterisation should be thought.
Guiding Principle D.6: The model checker should provide sufficient features to be
able to adequately represent all issues mentioned in the design’s guiding principle.
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Example 2: Design stage

Vehicular Warning System

Level of detail: Microscopic level – vehicles with realistic movements
Analytical models: The movement will be represented by Intelligent Driver
Model [Kesting et al., 2010] and the propagation signal modeled by Nakagami
model [Nakagami, 1960].
Standards: to mimic the protocol 802.11p with rate of 100ms to broadcast beacon
messages.
Architecture: Like proposed by Boban and Vinhoza [2011] (integrating movement,
network and signal propagation)
Initial conditionals: Vehicles in opposite directions separated by 100 meters. All
vehicles traveling at maximum speed of the road.
Model checker: Prism model checker (requirements: free license, probabilistic
behavior, rewards and parametrized capability)

6.3.1 Type of models

Probability is an important component in the design and analysis of software and
hardware systems. Traditionally, probability could be used to model unreliable or
unpredictable behavior and with this purpose we have been proposing the usage of
probabilistic model checking (PMC). This technique is able to calculate the likelihood
of the occurrence of certain events during the execution of a system [Kwiatkowska
et al., 2007].

PMC can be built using several types of probabilistic models. We
have constructed our modeling through both important methods: discrete and
continuous-time Markov chains (DTMCs and CTMCs). These methods were chosen
because they implement computation tree logic (CTL) and their extensions with the
reward operators. Thus, properties specifications are essentially identical to both
methods.

DTMC admits probabilistic choices, in the sense that one can specify the
probability of making a transition from one state to another. On the other hand,
CTMC, frequently used in performance analysis, represents continuous real-time
models and probabilistic choice: one can specify the rate of making a transition
from one state to another. Probabilistic choice, in this model, arises through race
conditions when two or more transitions in a state are enabled. Moreover, while each
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transition between states in a DTMC corresponds to a discrete time-step, in a CTMC
the transitions occur in real time [Kwiatkowska et al., 2007].

6.3.2 Level of detail

According to Levins [1966], during the models development, there is always a
trade-off between realism, precision and generality, it is not possible to maximize all
simultaneously. Thus, the design step involves simplifying the studied systems, which
could be inherently complex, in order to mimic the key behaviors. However, there
is no perfect way to simplify a problem, therefore, we are proposing a microscopic
modeling to represent small scenarios, thus, we do not worry about path trip modeling
(see Section 3.1). We are also abstracting origin, destination and the routes to reach
their final address. Moreover, the standards to bring the vehicles into the models
again within these small scenarios could be used to implement a traffic generator
(Section 3.2.2).

Nevertheless, the modeling could adopt the concept map for realistic mobility
models presented in Figure 3.4 to reach a good level of detail. The transitions between
states representing realistic movement will be done through car following models.
According to Section 3.2, this representation can model vehicle interaction, which
includes the microscopic aspects, such as lane changing and decreasing/increasing the
speed due to the surrounding traffic. For instance, the IDM model, which shows a
crash-free collective dynamics, exhibits controllable stability properties and implements
an intelligent braking strategy with smooth transitions between acceleration and
deceleration.

External influences are the impact of VANET communication on the motion
patterns. The signal propagation also is modeled using analytical models. We have
been proposing the usage of Stochastic ones, since discussed in Section 3.2.2, they are
more realistic. These models can distinguish cars of trucks, to apply different speed
constraints and considering distinct topologies or clusturing of vehicles, such as those
introduced in Sections 5.3 and 7.1.

6.3.3 Initial conditional and limits

Another interesting issue is how the model will be initialized. The initial state is
defined by the initial value for all variables and the researcher must be aware about
this starting state. Typically, if the initial value of a variable is omitted, it is assumed
to be the lowest value in the range (or false for a Boolean). However, it is necessary
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to check this information or to make the initial value explicit by declaration. It is also
necessary to define if there will be more than one initial state and whether the verifier
supports this feature.

If on the one hand we must think about the initial conditions, on the other,
the limits of the modeling should be discussed. We think that a clear definition of
boundaries model are a key factor for achieving a reliable analysis. These limitations
can be arising from insufficient information and mainly by the model incapacity to
capture real-world complexity. In other words, there are limitations arising from
simplifications imposed by the analytical models chosen. For instance, the classic
implementation of IDM did not copy realistic response in case of critical situations
such as collision, however, the extended versions solve this problem.

Furthermore, pedestrian and cyclist flows, for example, can limit the capacity for
other road users through increased delays. The pedestrian volume and crossing times
could impact the road user capacity and should ideally also be considered. The effects
of pedestrians and cyclists must be included in the modeling, however, the IDM does
not treat this question.

6.3.4 Measure units

As a last issue concerning the level of detail, we would like to highlight aspects about
network throughput and measure units. An analysis could use different types of
measure, for instance, applying kilometers to the position and hours to time or even
centimeters and milliseconds for the respective greatness. It is reasonable to think the
smaller the granularity, more accurate the model will be. However, we have to avoid the
explosion of states during the verification in the meantime give a good accuracy. Thus,
the researchers should to find a compromise, for instance, meters (m) and seconds (s)
could be good units to be adopted by movement modules.

With regard to the network capacity, several studies to measuring wireless ones
have been done [Teixeira et al., 2014; Lin et al., 2012; Neves et al., 2011], basically,
they have tried to estimate the number of received package. The transmission capacity
of these studies are relative to weather condition, the environment and the specified
parameters according to the type of observed application. For example, we could
consider a network with an average bitrate of 3Mbps in a VANET application, which
exchanges packets data with 1,500 bytes. In this example we use a simple calculation
to represent the amount of package at network:
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3 Mbps = 3, 000, 000 bits/s

= 375, 000 bytes/s

= 250 packages/s

Therefore, regarding a network composed by three vehicles, we could considerate
that each node will transmit approximately 83 packages (250/3). If we are going
to think in a transmission rate, a car transmits a package every 0.083 ms –
83(packages)/1000(ms).

6.3.5 Architecture

Our guidelines propose a modeling with a microscopic focus. The idea is to describe
the nodes’ movement through analytical models. Furthermore, formulas represent
signal propagation, which work according to the distance between the nodes. The
communication will consider the signal propagation in a non-deterministic fashion.
The movement could take into account the position, the speed and the acceleration.

Figure 6.2 shows an abstraction of the proposed idea. This model is divided
into three wide groups (gear) implemented by modules and/or formulas in some model
checker language. The groups exchange data among each other and it can change
their behavior according to the interaction. We have been moving toward groups
with higher cohesion and lower coupling to represent motion, signal-propagation and
network. Thus, we can change parts of the modeling according to our need. For
instance, change modules responsible for an urban street to a highway, or change the
code responsible for signal propagation of expressions for the log-normal shadowing
path-loss to Nakagami model ([Van Eenennaam, 2008]).

The black arrows (Figure 6.2) indicate the basic flow of information among the
groups. The network (VANET application) will inform, for example, if the cars must
move forward, change lanes or stop. This can be represented by Boolean variables. The
movement modules will provide the distance between vehicles that will be accessed
by the formulas of the propagation model, which will calculate the communication
probability to the network group. Figure 6.3 depicts the same structure, however in a
lower level of implementation (more details are presented in Section 6.4.1).
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Figure 6.2: Proposed Architecture

6.3.6 Model checker

We believe that an important step in the modeling process is the model checker
selection, in which all possible options are considered. There are a wide variety of
available tools, with a number of different capabilities suited to different kinds of
problems. However, according to Strunk et al. [2006] the variety poses two problems.
First, it is difficult for researchers outside of these specific domains to understand
what capabilities exist in practice. Second, while the variety is of great benefit to
practitioners, it is intimidating to know which tool to choose for a particular problem,
when no comprehensive discussion comparing and contrasting the different tools is
available. Nevertheless, for our guidelines, the following features are useful when
choosing a tool:

• Multiple user interfaces (graphical and prompt interfaces)

• Software license

• Portability

• Language properties

PRISM is free and it is a multi-platform. It has two versions of PRISM, one
based on a graphical user interface (GUI) and the other based on a command line
interface. Both use the same underlying model checker. The latter is useful for running
large batches of jobs, leaving long-running model checking tasks in the background.
However, GUI allow users to interact using several input tools, giving to the developers
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more freedom to display the information, images and other elements. Furthermore,
PRISM includes also a simulator, a tool which can be used to generate sample paths
(executions) through a PRISM model. From the GUI, the simulator allows you to
explore a model by interactively generating such paths. This is particularly useful
for models’ debugging during development and for running error checks on completed
models [Kwiatkowska and Norman, 2011].

In addition to the desirable features of the tool, there are some critical resources
to encode the presented architecture in Section 6.3.5, which are:

• Modeling probabilistic behavior

• Synchronization ability

• Parameterisation capability

• Multiple initial-states possibility

• Rewarded structures

In order to represent movement, signal propagation and network some features
are required. For instance, the skill of supporting probabilistic behavior is necessary
to represent the uncertainties of the propagation medium in wireless communication,
thus, the messages delivery can be treated in a non-deterministic way. Furthermore,
modules synchronization must also be present. Thus, we can force two or more modules
to simultaneously update their variables, for example, the position and speed of vehicles
should be changed together. Another important aspect is the capability of quantifying
the behavior, such as rewarded structures offered by main model checkers.

Languages to model VANETs and to specify properties must have a good
readability and writability for researchers with an intermediate level of knowledge
in model checking. One of the most important criteria for judging a programming
language is the ease with which programs can be read and understood. In this case,
the readability is yet more significant, once, no specialists in model checking could use
our guidelines. Thus, the language syntax must favor the understanding and the ease
of maintenance. Moreover, we have to measure the ease of the properties specification
language to argue the constructed model, i.e., the writability to specify the continuous
stochastic logic, which are used to give information about the probability of an event’s
occurrence and to question about rewards/ cost of transitions or states.

According to Goguen [1984] the parameterized programming is a powerful
technique for the reliable reuse of software. However, we ought as often as possible
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parameterize the models and look for tools that allow such action. On the PRISM,
the values of constants may be declared permanently in the source code or informed
before execution via command line or GUI. This latter way to input values serves
as parameters, which can be used to define the size of the variables or the initial
values of them. Furthermore, constants can be used in conditional statements for state
transitions, changing the model behavior. For example, a change of state depends on
the value inserted in a constant called procotol, which could setup a flooding or a gossip
behavior.

6.4 Implementation and Analysis

At this step, the design is encoded. Here, a model checker is required, in such way that
verifications can be performed. In general, the step of implementation and analysis in
our guidelines involves following the three basic steps of model checking: (1) specifying
the properties that the system must satisfy; (2) constructing the formal model of the
system, which should capture all the essential properties and (3) running the model
checker to validate the specified properties.

Here we have to pay attention to the following principles:

Guiding Principle I.1: A model should be constructed according to the design, and
documented as built.

Guiding Principle I.2: It is recommended and sometimes essential to construct the
models by increments of versions.

Guiding Principle I.3: Adopting naming convention during encoding could improve
the readability and consequently the maintainability.

Guiding Principle I.4: Following the basic architecture implementing the movement,
data exchange and signal propagation designed.

Guiding Principle I.5: Performing basic tests to ensure that the model is working
properly before the target questions.

Concerning the Principle I.1, like in the software development process, following
the generated documents in all steps is very important. For example, to allow a
substitute researcher in any eventuality or even to make transparent the testing and
possible troubleshooting during the modeling. If it is necessary to do any adequacy in
this implementation phase, then is important returning to previous stages and updating
the documents.

Figure 6.1 shows the modeling as an incremental process, i.e., the planning, the
design and implementation are revisited (changed) as more is learned about the system
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(Guiding Principle I.2). Another factor responsible for the constant feedback loop
is the size of the probabilistic model (the number of states/ transitions), which is
critical to perform model checking, since both the time and memory required are often
proportional to the model size. Unfortunately, it is very easy to create models that are
extremely large. Below there are a few general tips for the reducing model size according
to Kwiatkowska and Norman [2011], which we think it is interesting to reproduce in
our guidelines.

• Look for variables that have unnecessarily large ranges and try to reduce them.
Even if your model needs large variables, it is generally a good strategy to first
get a smaller version building successfully and then scale it up afterwards.

• Similarly, can you (if only temporarily) reduce the number of modules/
components of your model? Start with the smallest number of components
possible and then add others one by one.

• Do you have any inter-dependencies between variables? For example, perhaps
you have some variables which are simply functions of other variables of the
model. Even if these are convenient for model checking, they can be replaced
with formulas or labels, which do not contribute to the state space.

• Do any variables include more detail than is necessary for the model? Perhaps
this can be exploited in order to reduce the number of variables in your model.

• More generally, are any aspects of the model not relevant to the properties that
you are interested in? If so, start with a simpler, more abstract version of the
model and then add more details if possible.

About the verification of the implemented model, we initially advise the creation
of simple properties responsible for answer basic questions, for example, to test whether
the vehicles are respecting the speed limits and the proposed scenario and also if the
analytical model that represents the signal propagation is producing the correct values.
Furthermore, another technique aiming to improve the quality of the model, is to
employ the simulation prior to perform the model checking. The simulation can be
used effectively to get rid of the simpler category of modeling errors. Eliminating these
simpler errors before any form of checking, may reduce the cost and time-consuming
verification effort.

Regarding the Guiding Principle I.3, several researchers could read your model,
thus, we ought to have in mind that a good code not only works, but it also must be
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readable and easy to maintain. Proper naming is a critical component of making the
code productive. For this reason, strict naming conventions are a core aspect of all
coding standards. Adobe Resource Center [2016] gives advices about this issue and we
think it is interesting to mention some in our guidelines:

• Limit your use of abbreviations – Use abbreviations consistently. An abbreviation
must clearly stand for only one thing. For example, the abbreviation “Mod” might
represent “module”.

• Concatenate words to create names.

• Use mixed-cases (upper and lower case) when you concatenate words to
distinguish between each word for readability. For example, select “carCrash”
rather than “carcrash”. Another solution it is to use underline to separate them.

• Name a module by describing the process or item, such as “scheduler” to a module
responsible by organizing of different processes working in synchronism.

• Don’t use nondescriptive names for formulas or variables.

• Keep all names as short as possible.

• Remember to keep names descriptive.

In addition to naming conventions, try to repeat the same names to aspects
that have already been modeled in another scenarios or studied protocols. For
example, for all created scenarios use the constant RS (Road size) to parameterize
the road length. Thus, the reader will be most comfortable when analyzing another
code. In Example 3 is depicted a table of naming convention. This type of table
could be attached to the final report in order to facilitate the study of the created model.

Example 3: Naming convention adopted

Token Pattern Example
Formulas employed the prefix: f_ f_dist_c1_c2

Constants used capital letters RS (Road Size), T (Time)

Vehicles
used the form: <type><unique_id>

type=[c–“car”, t–“truck”, l–“leader” ]
c1, t1

Modules
obey the form: Mod_<function>_<vehicle>

function=[spd–“speed”, pos–“position”, node–“network”]
Mod_spd_c1

Variables employed the form: <vehicle>_<descriptive_name> c2_crashed
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6.4.1 Encoding (Guiding Principle I.4)

Figure 6.3 shows an intermediate-level encoding of proposed architecture in
Section 6.3.5. This figure shows the abstraction to one vehicle named c1. However, for
other cars the coding is similar. Once most model checkers requires it, the first step is to
choose which type of model will be used, stating for example, if the behavior is discrete
or continuous. In this case, some properties could be enabled during analysis and the
user should work with rate instead of probability. At our figure, blocks represents
that a choice can easily be made without affecting drastically the code, for instance,
to choice between dtmc or ctmc.

After, we are proposing a parameter section in the code. Since our solution uses
analytical formulas, the modeling perhaps requests to evaluate the closed-form solution.
In this case, all of the model parameters need to be set up appropriately. Thus, using
a section, the user will always declare constants in the beginning of the file and use
capital letters as naming conventions.

Three gears in the proposed architecture (Figure 6.2) are implemented by three
different parts of the codes. Each part is bounded by dotted rectangles of different
borders. The rectangles represent black-boxes. That is, the user can change some
internal behavior, however, this will not affect the implementation of other parts. We
can still change the whole rectangle (gear), for instance, if the researcher desires a
different scenario with the same protocol and the signal propagation formula.

To maintain a high cohesion and a low coupling between the parts of the code,
the coupling point has to be defined in each rectangle. These hook-codes are shown
as the beginning of the arrows. For instance, the formulas “f_prob_c1_c2” and
“f_prob_c2_c3” could be implemented by different blocks (analytical models), however
the names should remain the same. Another example are the formulas that are used to
give the distance among vehicles (lines 9-10). Thus, the user could represent motions
with uniform (u.m.) or non-uniform movement (n.u.m), this latter, yet has the option
to mimic the accelaration (acc.) in real way by analytical models such as IDM. However,
one more time, the names of the hook-codes (f_dist_1_2 and f_dist_2_3 ) should
remain the same.

The arrows in Figure 6.3 also show the information flow among the parts of the
code. The thinnest arrow shows that the probability of communication is calculated by
considering the distance among the vehicles. In turn, the smallest arrow (below) shows
that the protocol under study will consider whether a message arrived, according to
the probability provided. Finally, the vehicle will move according to commands passed
by the protocol (longest arrow).



118 Chapter 6. Our guidelines to analyze VANETs in model checking

Figure 6.3: Enconding of Proposed Architecture
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The first block in Figure 6.3 represents the movement using two modules
synchronized per vehicle (label “m”), because the position and the velocity should
be updated in the same time. The second rectangle represents the studied protocol.
The number of modules by vehicles could vary according to the studied application.
Here, the directed graph represents the different states which a protocol can admit, an
usual form to represent it, as shown by Figures 3.9, 3.10b. It is important to remember
that the amount of modules in this part is also relative to the number of vehicles. The
last box is usually depicted by formulas regarding to the signal propagation, which will
depend on the selected analytical model.

The last module, named Scheduler, is essential to our architecture, once is
responsible for alternating the state change responsible for representing the movement
and the sending of the messages. For instance, during “T” time unit, a vehicle can
move once and each vehicle is able to send 3 packages. In this module, the discrete and
continuous implementation model are different, by the fact that the first one works
with probability and the second with rates. See an example of the code in Example 4.

Example 4: Rates module – synchronizing CTMC modules in Prism Language

const double c1_c2_send_rate = T/0.333; //(sent time is 0.333 seconds or 3 msgs/s)
const double max_send_rate = T/13.50; //(mean inter-arrival/sent time is 13.5 seconds)
const double movement_rate = 1/T; //(movement rate by T second)

module Mod_Scheduler
[n1n2] true -> (c1_c2_send_rate*prob_c1_c2 <= 0 ? max_send_rate :

c1_c2_send_rate*prob_c1_c2) : true;
[n2n1] true -> (c1_c2_send_rate*prob_c1_c2 <= 0 ? max_send_rate :

c1_c2_send_rate*prob_c1_c2) : true;
[m] true -> movement_rate : true;

endmodule

Example 4 shows the dynamics of the scenarios, which has two vehicles moving
and sending messages. Its motion rate is defined by the constant movement_rate
and the broadcast between node1 and node2 obeys the c1_c2_send_rate. A common
technique, as used here, is to make one action passive, with rate 1 (other modules)
and one action active, which actually defines the rate for the synchronized transition
(carried out by Mod_Scheduler).

Figure 6.4 depicts a random path generated by Prism during the execution of
Example 4. This path exemplifies our architecture. The first column shows which
block of code is responsible for the state transitions in the current step, as soon as
the motion is performed. Then, the network exchanges information according to the
rate, which is influenced by the probability of communication. The third column shows
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the transition time, which is randomly generated in this path during the information
exchange. Moreover, according to the rate, the movements occur about every one
second. The other columns are exclusive on this example, they report when the vehicles
have a message to be computed.

Figure 6.4: Execution path of the proposed architecture

6.4.2 Basic analysis (Guiding Principle I.5)

The model ends with the rewards definitions, which allows the quantification of different
aspects of the model, such as states and transitions. The possibilities of analysis using
rewards and other operators are countless in a modeling with the proposed architecture.
They can be made concerning to the movement, the network or signal propagation.
Furthermore, they may involve more than one gear of our structure, for instance, finding
out how many messages are received by the vehicles in a particular distance.

Figures 6.5–6.10 show basic rewards which can be included in the model, such
rewards are used, for instance, to check whether the movement and the acceleration
are proper, in addition to analyzing the probability and the rate of the messages sent
in order to ensure they are consistent with the distance between vehicles. Finally, the
messages sent by network modules could be computed as well.

The verification will depend on the analysis purpose and the studied scenario.
However, in this sub-section, we have proposed some simple queries which can be
performed to check whether the model is working correctly. These issues are:

1. Verify the vehicles’ acceleration.
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rewards "acc_c1"

true : f_acc_c1>=0 ? f_acc_c1 :
(-1*f_acc_c1)+1000;

endrewards

Figure 6.5: Acceleration reward
rewards "rate_c1c2"
true : (c1_c2_send_rate*f_prob_c1_c2 <= 0 ?

max_send_rate :
c1_c2_send_rate*f_prob_c1_c2);

endrewards

Figure 6.6: Rate reward
rewards "probability_1_2"
true : f_prob_c1_c2;

endrewards

Figure 6.7: Probability reward

rewards "spd_C1"
true v_c1;

endrewards

Figure 6.8: Speed reward
rewards "mov_c1"
[m] true : f_mu_c1;

endrewards

Figure 6.9: Position reward
rewards "C1receivedFromC2"
[n1n2] true : 1;

endrewards

Figure 6.10: Received msgs.

2. Verify if the vehicles are obeying the speed limit and the acceleration.

3. Verify if the new positions are related to the speeds.

4. Verify if the rates and probabilities are according to the distances among vehicles.

5. Verify if the messages are sent/received according to the rates and probabilities.

We can apply these rewards at the same scenario presented in Example 4, where
two cars moving at constant speed in the same direction. The vehicle c1 is 1 m/s
faster than c2 and this latter one is initially six meters ahead. The communication
range is only 5 meters and they broadcast message in one-hop protocol. However,
Example 5 shows the minimum queries to analyze the correctness of a model using
our architecture and their respective results.

Example 5: Testing the basic structure in Prism language

–Verifying the vehicles’ acceleration and speed:
Property I – R{"acc_C1"}=?[I=time]

Property II – R{"spd_C1"}=?[I=time]
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Graphs above show the expected behavior to uniform movement, where the
acceleration is zero to the vehicle c1 and c2, i.e., the vehicles maintain their
constant speeds, such as proposed by Example 3.

–Verifying the vehicles’ movement:

Property I – InitPosC1+R{"mov_c1"}=? [ C<=time ]

Graph above shows the vehicles’ position, where the movement is compliant
to the speed. Vehicle c1 is 1 m/s faster than c2, which is overcome in the instant
6.

–Verifying the signal propagation:

Property I – R{"probability_1_2"}=? [ I=time ]

Property II – R{"rate_c1c2"}=? [ I=time ]
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First chart above shows the vehicles’ connection probability, which is a direct
consequence of the distance between c1 and c2. Note that the connection possible
is certain when the vehicles are closer, reaching 100% when both vehicles have the
same position at the instant 6. Rate of broadcast between c1 and c2 is depicted
on second graph, which has the same curve of the first one. When the probability
is 100% the network throughput is all used (3 msgs by second), on the other hand,
when the vehicles are further the throughput is closer to zero.

–Verifying the network:
Property I – R{"C1receivedFromC2"}=? [ C<=time ]

Last graph shows the cumulative number of messages received by c1 and c2.
Near to the instant 6 the number of messages has a fastest growing. At the
beginning and end of the line, are required three seconds to broadcast about 5

packets. Therefore, obeying the rate of throughput.

6.5 Final report

The final reporting connects all communication during planning, design and
construction. The model, all the collected data and the information generated through
the analysis process need to be archived in the report, so the results presented can be
reproduced and the model can be used in future studies. Besides, it may be interesting
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to do a staged reporting, which implies writing progress reports with researchers after
each stage in the project.

As said, the modeling process collects and generates a large amount of data
and information. The visualization of such dataset can be a hard task, but it is
essential to the communicating to report the model results. However, the researchers
are encouraged to use traditional graphics, such as time series, scatter plots and
maps/diagrams of conceptual models to let the communication more suited and
intuitive. Nevertheless, our guidelines to this step are:
Guiding Principle R.1: The reports should be prepared following all the stages.
Guiding Principle R.2: Model data and results should be presented using clear
approaches to visualization.
Guiding Principle R.3: A model archive should be created to allow the model results
to be reproduced exactly.

The archiving has a dual goal; first, it must allow for exact reproduction of the
results presented in the model report, and, second, it serves as a repository for all data,
information and knowledge accumulated through the modeling process to facilitate
future analysis of the VANET applications.

The steps of these guidelines can be used as a template for reporting the analysis.
Table 6.1 gives an example of a model-report structure. It is important to remember
that, as our guidelines, these are suggestions and it is up to the researchers to decide
the necessary sections.

Table 6.1: Proposal to final report structure

Item Title Description

01 Title report The title should reflect the project following by
author’s name and the date of production.

02 Contents A table of contents including the titles or descriptions
of the first-level headers.

03 Planning All issues addressed in this step, e.g., objectives
and scenario.

04 Design All issues addressed in this step, e.g., types of
probabilistic models and which model checker.

05 Implementation All issues addressed in this step, e.g., which analytical
models will be used and the naming convention adopted.

06 Conclusions Deduction of model findings and recommendations
for further analysis.

07 References Full references of cited literature.

08 Appendices Models and other files created during modeling which
are important to the understanding of the analysis.
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6.6 Conclusion

We have presented our modeling guidelines to supply a consistent and plausible
approach to the development of VANETs models in probabilistic model checking. The
guidelines are a point of reference and not a rigid standard. In other words, it provides
direction on the scope and common approaches to represent protocols/applications.
Moreover, a continual evolution of this guidelines is encouraged.

Our guidelines provide a sequence of steps where important issues which the
researchers should not omit have been defined. During the design phase we have
proposed an architecture that includes microscopic aspects to represent movement,
network and signal propagation. Thus, our modeling structure helps the researchers to
focus on the most essential issues of the problem.

The created model following our guidelines can explore information regarding to
movement and communication. For instance, find the distance out until a message is
received or a probability of connection among vehicles. By following our steps relevant
issues could be raised regarding to which model checker is better, the importance of
measures standards and thinking, as soon as possible, questions like: “What are the
objectives?” and “What scenario could be used during the tests?”. Moreover, the
guidelines show a flow of actions and what the minimum necessary to document all the
analysis is.

Our architecture cares about low coupling of modules that represent movement,
network and signal propagation. Thus, we can reimplement some of them and reuse
others. This makes future analysis easier, because there will be a know-how about
what aspects we must model and a knowledge base could be created. Furthermore,
the studies obeying a same level of specification can be compared in an easier way.
Thus, our guidelines are aligned with our goal to improve the quality of the analysis
in VANETs.





Chapter 7

Our Complete Model to Verify
VANETs

Outline. In this chapter we exemplify our proposal for the formal verification of
VANET in a complete way. This is done through one model using analytical formulas
in PRISM language. We have used the modeling structure proposed in our guidelines
which includes mobility, communication and signal propagation modules. We present
an analysis of a Vehicular Warning System involving three automobiles. The case study
shows the influence of the initial positions, speed and timeout on communication.

7.1 Proposed Method

We have proposed a structured model which will guide future analysis in VANET.
This model is divided in three wide groups composed by modules and/or formulas.
However, there are modules responsible for node’s movement and others ones by
messages transmissions. The groups exchange data with each other and can change
their behavior, for instance, a message requiring that the vehicle stop.

Our model was created with a microscopic focus. The idea is to describe the
nodes’ movement through the Equations 3.1 and 3.2. The signal propagation has
been represented using analytical formulas (Equations 3.16 and 3.17), which work
according to the distance among the nodes. Thus, the communication will considered
the signal propagation in a non-deterministic fashion. However, the interaction between
traffic and communication systems can be represented more realistically. Furthermore,
our microscopic model takes into account position, speed, acceleration and the data
exchanged among the vehicles.

127
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Figure 7.1 illustrates a proposed scenario to demonstrate the feasibility of the
method. There are three vehicles involved. The car c1 will overtake the truck, called
Leader, which travels slower. The vehicle c2 is coming in the opposite direction and
must be reported by c1 about a wild animal presence in c2′s lane. This scenario will
happen in 200 meters. However, the model must answer questions such as “Will the
car be alerted in time?”.

An interesting feature of the model is that it does not have a specific initial state.
The restriction implemented specifies only that vehicles c1 and c2 are in opposite
directions, they are separated by RS meters and there is a leader between them.
However, the leader position and the initial speed of all involved can be a combination
of values. This creates several scenarios to be explored. The initial state also defines
that there are no vehicles transmitting a message.

Figure 7.1: c1 overtakes the Leader, while c2 comes in the opposite direction.

The model fragment in Figure 7.2 shows the modules representing the position
and speed of vehicle c1. The first command of module Mod_dC1 describe the changes
of c1’s position given by x = x_i+vt+(a/2)t2. Each transition of the model represents
a time period that is defined by the constant t. The acceleration was calculated by
the IDM (Section 3.2) which was implemented by formula a_c1_free. Since there are
no obstacles ahead just the free-road acceleration strategy was considered. Similarly,
module Mod_vC1 gives new speed by v = v_i+ at.

The Network model was inspired by Boulis et al. [2008]. However, the nodes in
VANET are always active. Thus, they receive or send messages all the time. We are
considering a 1-hop flooding protocols (gossiping-style can be easily adapted). In this
scenario, beacons messages are not modeled and the analysis considers only emergency
ones. The vehicle c1 is the source node and it sends messages according to a timeout.
The other nodes (leader and c2) only receive and forward.
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formula a_c1_free = AM_car - AM_car * pow(v_c1 / desired_speed_car, exponent);
formula muv_c1 = (v_c1 + ( a_c1*pow(time,2)) / 2) > 0 ?

(v_c1 + (a_c1*pow(time,2)) / 2) :
(-1 * (v_c1 + (a_c1*pow(time,2)) / 2));

module Mod_vC1
v_c1 : [0..desired_speed_car]; // speed in m/s

[m] (pos_c1 <= RS) & (v_c1 <= desired_speed_car) ->
(v_c1’ = min(max(ceil(v_c1 + a_c1)*time,0), desired_speed_car));

endmodule

module Mod_dC1
pos_c1 : [1..RS]; //(Road Size) position in meters

[m] (pos_c1 <= RS) -> (pos_c1’ = min( (ceil(pos_c1 + muv_c1)),RS) );
endmodule

Figure 7.2: Movement modules implementation in the PRISM language.

Figure 7.3 depicts a fragment of Network group. Each module has a variable
send_i which indicates whether the vehicles have messages to be transmitted. If the
value is one, then the node received a message and has to broadcast it. Otherwise, the
vehicle did not receive messages or already sent it. The variable time_c1 is responsible
to indicate the period for the next transmission. The constant Tout indicates the
maximum timeout for this forwarding.

module node_c1
time_c1: [1..Tout];
send_c1: [0..1];
[n] (send_c1=0)&(time_c1=Tout) -> (send_c1’=1);
[n] (send_c1=0&pos_c1>=RS)|(send_c1=0&time_c1<Tout) -> (send_c1’=0);
[n] (send_c1=1) -> (send_c1’=0);
[s] time_c1=Tout -> (time_c1’=1);
[s] time_c1<Tout -> (time_c1’=time_c1+1);

endmodule

module node_l
send_l: [0..1];
[n] (send_l=0)&(pos_l<RS) -> recvpl: (send_l’=1)+(1-recvpl):(send_l’=0);
[n] (send_l=0)&(pos_l>=RS) ->(send_l’=0);
[n] (send_l=1) -> (send_l’=0);

endmodule

Figure 7.3: Network module implementation in the PRISM language.

Signal propagation is implemented as the probability p of a PRISM command.
In Figure 7.3 the formula recvpl formalizes this behavior. We are following the
implementation proposed by Boulis et al. [2008] where it is necessary to compute
the transmission powers, the signal-to-noise ratios and thresholds for each node. The
difference is that we have computed dynamically the rxi,j from Equation 3.12,
according to the movement of the vehicles instead of constant declarations.

Interactions between multiple modules, i.e. simultaneous changes in their state,
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are modeled using synchronization, which is specified by sync labels (placed inside the
square brackets) in front of guarded commands. In our model the Movement modules
are labeled with “m”. The Network modules use the “n” label and additional modules
take “s”.

Finally, Figure 7.4 shows the module responsible for alternating the group
execution. First the movement is executed, then the network and finally some
operations such as incrementing the timeout. The last one is necessary so that the
link-probability is not affected by other state transitions.

module scheduler
turn: [1..3];// init 1;
[m] turn=1 -> (turn’ = 2); //movement
[n] turn=2 -> (turn’ = 3); //network
[s] turn=3 -> (turn’ = 1); //setup

endmodule

Figure 7.4: Synchronize Module implementation in the PRISM language.

In order to quantify the model, we have added rewards, which count each time
when a condition is true. Figure 7.7 and 7.8 show rewards able to quantify the number
of messages sent by c1 and the receiving probability of c2, respectively. Figure 7.9
shows the code, responsible for providing a distance traveled by c2 for each change of
state in the modules labeled by “[m]”. The formula muv_c2 is similar to the presented
in Figure 7.2. Reward for c2’s acceleration and the power transmission between nodes
c1 and c2 are represented by Figures 7.5 and 7.6 respectively. PRISM language does
not support negative rewards, thus, we have added an overhead value in negative
amounts which the properties must consider.

rewards "aCar2"
true : accC2>=0 ? accC2 :

(-1*accC2)+1000;
endrewards

Figure 7.5: Acceleration reward
rewards "Pc1_c2"
true : rxDB_c1_c2<0 ?

-1*(rxDB_c1_c2)+1000 :
rxDB_c1_c2;

endrewards

Figure 7.6: Power Transm. reward

rewards "sByC1"
[m] send_c1=1:1;

endrewards

Figure 7.7: Sent msg reward
rewards "recvpC2"
true : recvpC2;

endrewards

Figure 7.8: Prob. reward
rewards "muvCar2"
[m] true : ceil(muv_c2);

endrewards

Figure 7.9: Distance reward
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7.2 Results

In order to analyze some situations about the proposed scenario, several interesting
questions can be made and some parameters like the Timeout (Tout) can be explored.
We have divided the analysis by group to facilitate its understanding.

7.2.0.1 Propagation model

The model can supply the power transmission behavior or the communication
probability between c1 and c2. Two properties below show their formal specification,
respectively1:

I) ∇R{‘‘Pc1_c2’’}=? [ I=t ]

II) R{‘‘recvpC2’’}=? [ I=t ]

Figure 7.10 shows the minimum and maximum behavior over time for the first
property. These two extremes are given by different initial states and are related to the
approach speed between c1 and c2. As the vehicles are further away, the transmission
power is weaker, when they are closer force is stronger.

Figure 7.10: The average minimum and maximum of power transmission.

Property II shows three different ways of transmissions from c1 to c2. The
first one, only c1 broadcasts the message and the sending is performed all the time
(Tout=1 ). The next one has the same Tout, however leader sends other types of
messages (i.e., there is noise). The last situation obeys the Tout=2 and the Flooding
protocol (nodes broadcast the same messages). Figure 7.11 shows the minimum and
maximum probability of the three behaviors in the order presented here.

Some comparisons can be done: at the beginning of the vehicles approaching,
c2 does not receive messages because of the distance between nodes. The remoteness

1Symbol ∇ represents the condition evaluation:
(property > overhead)?(−1 ∗ property − 1000) : property
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(a) Probability of successful reception when only c1 sending.

(b) Probability of successful reception when c1 and c2 sending.

(c) Probability of successful reception in flooding protocol.

Figure 7.11: Signal propagation analysis of c1 and c2 communicating.

causes the same behavior. The Graph 7.11a shows a higher probability to receive the
message than 7.11b, because the noise disturbs the signal. The Graph 7.11c has the
best maximum probability because the leader broadcasts the packet received by c1.
Thus, the probability of c2 receiving the message is higher. The oscillation in this case
is happening due the timeout and the synchronous behavior of the modeled nodes.
However, the Graph 7.11a presents the best minimum probability, due to the absence
of noise and timeout oscillation.

7.2.0.2 Network model

Regarding messages, we have decided to verify what is the ratio between c1 ’s sent
messages and c2 ’s received ones (Property III ). Another question is (Property IV ):
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what is the probability that c2 receives a message directly from c1? This last query
shows only a curiosity, because the more important is c2 to be alerted, regardless of who
sent the message. Thus, the main question is (Property V ): what is the probability
that c2 receives a message? Three properties below show respectively these formal
specification 2:

III) R{"rByC2"}=? [F ‘‘finished’’]/R{"sByC1"}=? [F ‘‘finished’’]

IV) P=? [F (send_c1=1&send_l=0&send_c2=0) &

(X (send_c1=0&send_c1=0&send_c2=1)]

V) P=? [ F (send_c2=1) ]

Table 7.1 shows the results for Property III. We can notice that Tout set up to
4 is a fine option since the received maximum ratio is the highest, due to the reduced
broadcast and it has a good lower bound when compared to other results.

Table 7.1: Property Results

Timeout Property III Property V Property VI

2 [0.28, 0.56] [1.00, 1.00] [25, 103]
3 [0.20, 0.75] [0.99, 1.00] [35, 103]
4 [0.25, 0.99] [0.87, 1.00] [48, 137]
5 [0.01, 0.79] [0.02, 1.00] [48, 84]

Property IV resulted in the range of [1.03E-5, 1.0], which is the probability over
all initial states. This property becomes interesting when we study the counterexamples
created. After their analysis, we notice that the leader’s initial positions are related
with the results, as well as the speed between c1 and the leader. The further away
the leader begins, greater the probability of directly communication. It seems obvious
because the leader will cross c2, thus, c1 and c2 can transmit directly. In other case,
the c1’s speed is high enough to overtake the leader and they will communicate as
desired. However, we can find through PRISM the best and worst situation to happen
this data exchange.

Figure 7.12 show some analysis over the results to Timeout=2. It represents a
probability of direct communication according to leader initial positions which varies
from 17 to 200 meters, once that the scenario assumes a fixed position to the others
involved. Thus, it was necessary to find the best initial speeds to the vehicles. The

2“finished” represents (pos_l=RS) & (pos_c1=RS) & (pos_c2= RS)
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graph shows the best probability when c1, c2 and leader assume the respective initial
speeds 5, 0 and 0 m/s. The worst case is given by values 3, 5 and 5 m/s, in same order.
This last does not contain the minimum probability and we traced the two situations
which include this value which have the speeds 3, 1, 0 and 4, 0, 1 in m/s. The series
are coincident and the minor value of probability is obtained when the leader starts in
position 62 in both cases.

Figure 7.12: Probability of direct message reception

Table 7.1 also shows the results of Property V. The lowest timeout is sure about
the warning. Setting the period of message to 3 we have the same probability with
a lower traffic of messages. However, there is a higher chance of c2 not receiving
the warning if the last two values are used. Analyzing the result we noticed that the
average is lower to the timeout = 4 when the leader is in an initial position above 100

meters. For example, the values 3, 5, 3, 1 , 1, 197 to the respective variables v_c1,
v_c2, v_l, pos_c1, pos_c2, pos_l when the probability is about 0.93. The results to
the higher timeout are also influenced by the distance of the leader, but also by the
large period of time to send the next message in a scenario as fast as proposed.

7.2.0.3 Movement model

As important as to know the probability of receiving the message is to determine:
What are the longer and shorter distances until c2 receives the message? Thus, we can
find out if it is possible to break in time. Another question is: “What is the expected
deceleration for c2 to stop?”. Two properties below show respectively these formal
specifications:

VI) R{"muvCar2"}=? [ F send_c2=1 ]

VII) filter(max, ∇R{"aCar2"}=? [ I=t ],(pos_l=70)&(v_c1=5)

&(v_c2=0)&(v_l=5)&....&(time_c1=Tout))
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Table 7.1 also shows the results for Property VI. These minimum and maximum
distance until c2 to receive the message can be explored using the counterexample
provided by PRISM. Therefore, we edited the model to start a braking/deceleration
in c2 when the condition send_c2=1 is true. Thus, it is possible to analyze the
impact of speed and the distance between current position and the end of road
when c2 receives the warning message. Therefore, it was necessary to implement
the deceleration strategy to complement the code presented in Figure 7.2 and change
the guard condition to maintain the value 1 to variable send_c2, since it was assigned.
Both re-implementations were made only for c2’s modules.

Property VII makes usage of the filter command to check specifically the
counterexample available by previous property. Thus, we can explore the bounds
of distance to different timeouts. The filter in this property represents an example
of variables that affect the lower limit, such as the initial speeds and leader position.
Properties to the upper limits are similar and it was omitted.

Figure 7.13 shows the results of properties above, it indicates c2’s acceleration
evolution. The first graph features the lower limit, i.e. the c2 traveled few meters
until it receive the warning. Thus, there is larger space and more time to stop. The
deceleration is smoother and slower until to steady at zero. Graph 7.13a shows that
the acceleration’s behavior is not affected by timeout, because the warning is received
in the beginning. The oscillation at the end is the action modeled by IDM which tries
to copy the idea of the stop-and-follow a few meters of the obstacle. The accentuated
oscillation is caused by the use of the integer variables in this work.

Graph 7.13b presents the deceleration to the upper limit, i.e. the c2 receives a
message as close as possible to the end. Thus, it will have a lower space and time to
stop. Acceleration oscillates more sharply and steady at zero in a shorter time than
first one. This is uncomfortable for the vehicle occupants. Besides, the timeout set up
to 4 presents an abrupt slowdown, while a comfortable braking is about 3 m/s2 [Wang
et al., 2004]. In this scenario, coincidentally, timeout=5 had the same behavior set to
the value 2. However, for timeout=3 the deceleration is more abrupt at the beginning,
but still acceptable, after it follows the pattern of the lowest timeout.

The results suggest that over large distances, the timeout does not affect the
deceleration. Surprisingly, for shorter distances the timeout=5 results in a more
comfortable slowdown than the value 4. However, the probability to receive the
message decreases with these values. Using a timeout of 2 or 3, the deceleration is
comfortable regardless of the distance between sender and receiver, besides there is a
higher probability of communicating. Value 3 is better because it generates less traffic
than 2 and it has a communication probability of 99%, respected values, against 100%
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(a) Larger distance to stop.

(b) Shorter distance to stop.

Figure 7.13: The acceleration behavior in two different scenarios.

to the lowest timeout.

7.3 Conclusion

We have presented a formal modeling and analysis of VANET application using
Probabilistic Model Checking to represent a Vehicular Warning System. A microscopic
vision was proposed to provide a detailed understanding. This was possible using
analytical formulas to represent position, speed, acceleration and signal propagation.
Some setup were explored, such the time to retransmit the message (timeout). The
model shows the influence that the timeout, initial speeds and leader position have
on communication. Varying from 2 to 100% the chance of message’s reception.
Furthermore, the study suggests that timeout value set up to 3 is a good option over
all initial states in the modeled scenario.

This work serves as a guide to verify VANETs in a complete way, addressing
motion, network and signal propagation. It is able to extend static network models
considering smooth motion and human driving patterns in its mathematical link layer,
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considering speed constraints and obstacles.
Regarding to the model’s scalability, is hard to predict the number of cars which

a given scenario can support. This occurs by the nature of model checking, where the
increase of a single variable or a simple change in the variable declaration order may
increase significantly the number of states in the model. For the presented scenarios
in this work, up to eight vehicles were supported on a computer with 64 Gigabytes
of memory. However the amount of cars can be reduced according to the level of
detail (number and size of the variables) that the studied protocol requires. A possible
solution to this problem is to increase the granularity from microscopic to mesoscopic.
Thus, one or more cars are dealt in detail and another vehicle will represent the influence
of a vehicles group.





Chapter 8

Conclusions

Outline. This chapter summarizes this research and discusses directions for future
study. Section 8.1 presents the conclusion of this thesis. Section 8.2 lists our
contributions and the Section 8.3 presents the future work.

8.1 Final Remarks

Vehicular Ad Hoc Networks are an important part of the Intelligent Transportation
Systems and perform the integration and communication between sensors, vehicles
and fixed equipment on the roadside. VANETs are a special kind of Mobile Ad-hoc
Networks, where vehicles with processing power and wireless communications create
a spontaneous network along the roads. In this context, industry and academia have
been developing standards and prototypes for vehicular networks, which have huge
commercial value. Thus, several applications have been proposed, from entertainment
to the prevention of accidents. However, these last ones should be executed without
error, once they involve human lives, therefore, it is essential to test and analyze them
in order to prevent loss of life.

Simulation is widely used to check new protocols and applications. However, there
are challenges that must be addressed by the research community like the specifications
of APIs for coupling traffic flow and networking simulators, the modeling how drivers
react to the additional information provided by VANETs and the use of Real-world
measurements to capture the probabilistic effects of small scale fading that have a
significant impact on packet reception.

An efficient alternative approach is the Probabilistic Model Checking, which we
apply in this research for the verification and analysis of VANETs. Three models with
incremental levels of detail were presented sequentially. A model for an intersection

139
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of two urban roads managed by a virtual traffic signal and another model responsible
for investigating an overtake situation, both with the focus on vehicular movement.
The last analysis has studied a Vehicular Warning System, which shows the influence
that the timeout, the initial speeds and the leader position have on communication.
All these tests have been built using the PMC tool called PRISM. We noticed that
different types of abstractions can be created. Thus, microscopic or macroscopic models
can be produced. The analysis has proved to be very useful. They can show the
probability that an event occurs and tests involving acceleration, velocity or distance
can be extracted.

The conceptual map presented in Figure 3.4, which represents the functionalities
of a realistic vehicular mobility model can be created in PMC. Motion constraints
can be modeled taking into account streets, highways, crossroads, curve roads and other
vehicles. Traffic generator can be implemented defining different kinds of vehicles
(cars, emergency vehicles, trucks) in a macroscopic and in a microscopic way. The
Time can be parameterized to describe different mobility configurations for a specific
time of the day and finally, the impact of a communication protocol or any other source
of information on the motion patterns can be implemented synchronizing the modules
responsible for movement and network, implementing the External influences.

This research has shown that PMC can be used to model and analyze the flow
of vehicles managed by VANETs. It extends the traditional use of model checking
for verification just from communication protocols (network model) to the analysis of
movements patterns (mobility model) in vehicular networks. Thus, PMC can be used to
obtain valuable information of VANET in a simple and complete way. In other words,
VANET verifications will consider network, signal propagation and movement. This
type of analysis can provide a better understanding of how the VANET can influence
in urban traffic. Thus, protocols and applications can be easily studied and through
model checking advantages, abnormal situations can be identified.

Finally, we have presented our modeling guidelines to supply a consistent
and plausible approach to the development of VANETs models in probabilistic
model checking. It provides direction on the scope and common approaches to
represent protocols/applications. Moreover, a continual evolution of this guidelines
is encouraged.

Our guideline provides a sequence of steps where important issues which the
researchers should not omit have been defined. During the design phase we have
proposed an architecture that includes microscopic aspects to represent movement,
network and signal propagation. Thus, our modeling structure will help the researchers
to maintain focus on the most essential issues of the problem.
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Our architecture cares about low coupling of modules that represents movement,
network and signal propagation. However, we can reimplement some of them and use
others; this makes future analysis easier, because there will be a know-how about what
aspects we must model and a knowledge base could be created. Furthermore, the
studies, which obey the same level of specification, can be compared in an easier way.
Thus, our guidelines are aligned with our goal to improve the quality of the analysis
in VANETs.

We can also conclude that scalability is not a serious problem for our modeling
guidelines, since we are proposing small scenarios, for example, intersections or avenues
fragment. In addition, critical situations involving few vehicles, for instance, despite
the number of vehicles on a highway, in an overtake maneuver, only the faster one, the
overtaken vehicle and the first car coming in the opposite direction are important for
the modeling. As another example, following the same principle, for the leader election
in a virtual traffic sign, only the vehicles ahead are candidates for leadership, so, using
until four cars in a lane and only one, in the other direction are enough to generate
plausible results.

In addition, our work provides an introduction to VANETs and a critical
presentation of the simulators usage in this type of network. The state of the art
in virtual traffic lights is also presented and finally, a survey showing the main ideas
on how the related works are modeling VANET protocols is depicted.

8.2 Our Contributions

We could briefly listing our main contributions like:

• In contrast to the related works which treat non-determinism to broadcast the
messages to static nodes, we take into account traffic flow, computer networks
and radio-propagation according to the movement;

• This work contributes to formal analysis in VANETs presenting a modeling
structure with a microscopic granularity, which describes the traffic flow in details
together with a stochastic way to represent the possibility of receiving a message
with a probability p according to each vehicle’s position;

• We proposed guidelines for building and verifying vehicular networks using our
modeling. Thus, future works may use the suggested instructions to create the
models with a similar abstraction level making the studies and results comparable.
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They consider important questions like non-determinism to broadcast the
messages. However, traffic flow, computer networks and radio-propagation are
necessary and rarely explored together in this field. Furthermore,

8.3 Future work

The guidelines and the modeling approach for vehicular network proposed in this thesis
must be complemented by the following future work:

• A complete study should be done to determine which probabilistic model checkers
are the best to our guidelines. Our work requires some minimum features, such as
the ability to quantify states and transitions, however studies regarding processing
time and memory spent using our basic modeling structure were not performed.
Moreover, a language with more advanced mathematical features will give more
expressiveness for the encoding of both signal propagation and movement models.

• Our models’ implementation have been using discrete-time Markov chains (
DTMCs) or continuous-time Markov chains (CTMCs). However, several other
types of probabilistic models could be used, such as probabilistic automaton
(PAs) or probabilistic timed automata (PTAs). Thus, a comparative study
raising the various arguments in favour of and against these approaches to encode
our guidelines could be performed.

• A detailed study regarding to the best analytical method to represent the signal
propagation using our guidelines must be carried out. This study must find
out the best trade-off between realism and effectiveness, i.e. the communication
should be represented in a realistic way and at the same time it has to be
implementable in the main model checkers used by academic and industrial
community, i.e. the software must support the mathematical functions proposed
by the model. In addition, this analytical model can not forbid the spent time
to process the analysis.

• A detailed study regarding to the best analytical method to represent the
movement of vehicles according to our guidelines should be performed. This
study should also find out the best trade-off between realism and the ability
to promote the desired results, that is, it has to be implementable in the main
probabilistic model checkers and it cannot spend much time during the analysis
processing.
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• We have realized that it is easy to adapt the mobility model to various situations.
For instance, to implement a curve road, it is necessary to just change the desired
speed to a lower value than the used on a straight road, so the vehicles will
reduce the speed. Thus, we can abstract, for a certain distance, that the vehicles
consider this slower speed while crossing the curve. However, through these type
of abstractions, many short traffic scenarios could be implemented and made
available to the community. Furthermore, could be created properties templates
to explore each scenario. These basic queries should be well documented to guide
initial researchers, the idea is to encourage changes and increases in a tutorial
format.

• Creating an integrated development environment (IDE) for encoding models
in the vehicular network analysis, among several aspects: the software should
intuitively allow, through graphic user interface, the choice of different scenarios,
signal propagation and mobility models, besides the number and types of
vehicles. Thus, the tool could generate the models following our proposed
structure, so that, the researcher could focus only on the representation of the
protocol/application under study. This software should also accept the inclusion
of new scenarios and analytical formulas. Furthermore, the software could
facilitate the creation and maintenance of a database about model checking in
VANETs. This action would help to make more popular the usage of this formal
method and ensure the correct operation of the proposed applications/protocols
in vehicular networks.
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