
DETECÇÃO DE CÓDIGO CLONADO USANDO

SEQUÊNCIA DE CHAMADAS DE MÉTODOS

ALEXANDRE MARTINS PAIVA

DETECÇÃO DE CÓDIGO CLONADO USANDO

SEQUÊNCIA DE CHAMADAS DE MÉTODOS

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como re-
quisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Eduardo Figueiredo

Belo Horizonte

Maio de 2016

ALEXANDRE MARTINS PAIVA

ON THE DETECTION OF CODE CLONE WITH

SEQUENCE OF METHOD CALLS

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Eduardo Figueiredo

Belo Horizonte

May 2016

c© 2016, Alexandre Martins Paiva.
Todos os direitos reservados.

Paiva, Alexandre Martins

D1234p On the Detection of Code Clone with Sequence of
Method Calls / Alexandre Martins Paiva. — Belo
Horizonte, 2016

xxiv, 76 f. : il. ; 29cm

Dissertação (mestrado) — Federal University of
Minas Gerais

Orientador: Eduardo Figueiredo

1. Code clones. 2. detection method. 3. method
calls. I. Título.

CDU 519.6*82.10

À minha esposa, Christiane, principal incentivadora deste mestrado, dedico este
trabalho. Serei sempre grato pelo seu apoio irrestrito!

Aos meus filhos, André e Ana Clara, dedico este trabalho. Peço desculpas pela
ausência nos momentos em que tive que dedicar ao mestrado. Como Baby costumava
dizer, eu estava escrevendo a história detalhada da minha vida, tão infinito parecia ser
este texto aqui escrito. Obrigado pela paciência!

À minha mãe, Celina, também dedico este trabalho. Minha mãe jamais chamou
minha atenção por qualquer motivo (é uma estratégia de educação meio arriscada, a
qual não recomendo a ninguém). Como a única exceção, ela jamais admitiu que eu
faltasse à aula. Guardei este exemplo vitorioso: a educação em primeiro lugar, como
o único bem material realmente importante.

À Tia Glória, minha madrinha, dedico este trabalho. Tia Glória é a pessoa mais
agradável que conheço, detentora da maior rede social, do maior número de seguidores
e de curtidas, vivendo a vida exclusivamente no mundo real.

Por fim, dedico este trabalho ao meu pai, Sérgio, às minhas irmãs, Stella, Tina
e Ângela, e demais pessoas que gostam de mim.

Que um dia eu possa retribuí-los...

ix

Acknowledgments

Quando comecei o mestrado, não imaginava que seria uma trajetória tão boa e tão
árdua. Nesta universidade maravilhosa, que me traz agradáveis recordações da minha
graduação, reencontrei o privilégio de estar em sala de aula. Concluo aqui uma etapa
importante e muito marcante da minha vida. A todos que conviveram comigo neste
período, meus sinceros agradecimentos!

A Deus, agradeço por cada dia que me foi concedido.
De maneira especial, gostaria de agradecer ao meu orientador, Dr. Eduardo

Figueiredo. Sua dedicação, sua paciência, sua organização, seu incentivo e, sobretudo,
sua sabedoria foram fundamentais para que eu pudesse desenvolver e concluir este
trabalho.

Agradeço à FITec - Fundação para Inovações Tecnológicas -, especialmente aos
meus amigos Leonardo Resende e Eugênio Daher, que me permitiram conciliar as
atividades do trabalho com as atividades acadêmicas. Também da FITec, agradeço ao
Prof. Antônio Hamilton, que prontamente escreveu minha recomendação ao curso de
mestrado do DCC.

Em parágrafo dedicado, agradeço imensamente ao melhor gerente que já tive na
vida, Ricardo Alves, pela gentileza e prestatividade, não somente durante o mestrado,
mas em todos os momentos que trabalhamos juntos. Sem a sua eterna boa vontade,
este trabalho não teria se realizado.

Agradeço ao meu gerente na Ericsson, Daniel Rosa, pelas muitas oportunidades
que confiou a mim. Agradeço também por ter permitido que minhas atividades profis-
sionais fossem conciliadas com meus interesses pessoais, em especial, este curso.

Agradeço ao Dr. Marco Túlio Valente por ter me aceitado como seu aluno em
disciplinas isoladas e por ter posteriormente me recomendado como aluno de mestrado
do DCC.

Agradeço aos professores Dr. Humberto Torres Marques Neto e Dra¯ Mariza
Bigonha por ter aceitado o convite para compor a banca de defesa.

Agradeço aos colegas do curso pelos momentos de aprendizado e descontração,

xi

aos colegas do Labsoft pelas valiosas contribuições ao trabalho, deixando um abraço
ao amigo e co-autor, Johnatan.

Agradeço ao meu país por ter me dado esta oportunidade e levo comigo a obri-
gação de devolver o investimento em benefícios para a sociedade.

Peço desculpas àqueles que por ventura eu tenha esquecido de agradecer, mas
que contribuíram de alguma forma com este trabalho.

Muito obrigado!

xii

“Ainda que eu falasse as línguas dos homens e dos anjos, e não tivesse amor, seria
como o metal que soa ou como o sino que tine.

E ainda que tivesse o dom de profecia, e conhecesse todos os mistérios e toda a
ciência, e ainda que tivesse toda a fé, de maneira tal que transportasse os montes, e

não tivesse amor, nada seria.”
(Coríntios 13:1-2)

xiii

Resumo

Desenvolvedores de software geralmente copiam e colam código de uma parte do sistema
para outro. Essa prática, chamada de clonagem de código, dispersa uma mesma lógica
em diferentes pontos do sistema, dificultando as tarefas de manutenção e evolução.
Vários métodos têm sido propostos objetivando localizar códigos clonados para poste-
rior eliminação. No entanto, alguns tipos de códigos clonados são difíceis de encontrar,
especialmente quando as partes recebem diferentes alterações. Este trabalho propõe
um método para detectar códigos clonados. Esse método se baseia em busca de códigos
clonados em sistemas de código aberto analisando sequências similares de chamadas
de métodos. O método proposto foi implementado em uma nova ferramenta, chamada
McSheep. Os resultados obtidos pelo método foram comparados com códigos clona-
dos detectados por uma ferramenta largamente utilizada, chamada PMD. Por fim, um
estudo foi realizado com 25 desenvolvedores. Por meio de inspeção de código, os partic-
ipantes desse estudo analisaram um conjunto específico de códigos clonados detectados
pela ferramenta McSheep. Esse estudo mostrou que mais de 90 % dos participantes
concordaram com o método com relação aos trechos de código. Portanto, os resultados
indicam que a análise de sequência de chamadas de métodos é uma estratégia válida
para localização de códigos clonados.

xv

Abstract

Software developers usually copy and paste code from one part of the system to an-
other. This practice, called code clone, spreads same logic over the system, hindering
maintenance and evolution tasks. Several methods were proposed in order to detect
code clones for further elimination. However, some types of code clones are hard to
detect, specially when clones receive different changes. This work proposes a method
for detecting code clones. This method relies on searching code clones in software
systems by analyzing similar sequences of method calls. The proposed method was
implemented in a new open source tool, called McSheep. Our results were compared
with code clones detected by a state of the practice tool, called PMD. The comparison
results indicate that the proposed method is able to detect code clones, since McSheep
and PMD detected a common set of code clones. Additionally, the comparison showed
that both tools are complementary, since each one detected an exclusive set of code
clones. In addition, a user study was conducted with 25 developers. By means of code
inspection, participants analyzed the code clones detected by our method. This user
study showed that more than 90% of subjects agree with the code clones found by the
method. Therefore, results indicate that analyzing sequences of method calls is a valid
strategy for code clone detection.

xvii

List of Figures

2.1 Original Source Code for Code Clone Types Example. 6
2.2 Code Clones Type 1 and Type 2. 6
2.3 Code Clones Type 3. 7
2.4 Code Clone Type 4. 8

3.1 Sequence of method calls inside method countAvailablePapers. 14
3.2 Sequence of method calls in the class scope. 16
3.3 Variability of method calls in a sequence. 17
3.4 Snippet adapted from DialogPresenter class of FacebookAndroid. 17
3.5 Order of method calls in a for statement. 17
3.6 Methods ToolchainsBuildingException.toMessage and ModelBuildingExcep-

tion.toMessage extracted from Maven. 19

4.1 McSheep Steps for Code Clone Detection. 24
4.2 Code clone detected by coincident sequence of method calls. 26
4.3 Methods GenericCatalogDAO.getCategory and GenericCatalog-

DAO.getProducts extracted from PetStore. 31

5.1 Expected set of code clones candidates presented by tool. 34
5.2 Relation between different configurations. 34
5.3 Code clone detected in the ArgoUML by both McSheep and PMD. 38
5.4 Code clone detected in the ArgoUML only by the PMD. 39
5.5 Code clone detected in the ArgoUML only by the McSheep. 40

6.1 Survey Case 1. 45
6.2 Survey First Step. 46
6.3 Survey Second Step. 46
6.4 Subject Profiles. 47
6.5 Number of agreements per Survey Case. 48

xix

6.6 Code snippet with the lowest level of acceptance. 49
6.7 Code 1: One of two cases with 100% of agreement. 50
6.8 Code 2: One of two cases with 100% of agreement. 51
6.9 Agreement per Object Oriented Programming Expertise. 52
6.10 Percentage of agreement per Java Expertise. 52
6.11 Percentage of agreement per Bad Smell Expertise. 53
6.12 Percentage of agreement per Code Duplication Expertise. 53
6.13 Percentage of agreement per Development Expertise. 54

A.1 Characterization Form . 63

B.1 Question 1. 65
B.2 Question 2. 66
B.3 Question 3. 67
B.4 Question 4. 68
B.5 Question 5. 69
B.6 Question 6. 70
B.7 Question 7. 71
B.8 Question 8. 72
B.9 Question 9. 73
B.10 Question 10. 74
B.11 Question 11. 75
B.12 Question 12. 76

xx

List of Tables

3.1 Sequences of method calls of ToolchainsBuildingException.toMessage and
ModelBuildingException.toMessage. 20

4.1 Hash list with method call as key and where call occurs as values. 26
4.2 Hash list with method as key and its method calls as values. 26
4.3 Systems selected for analysis. 28
4.4 Method calls scattering. 28
4.5 Code clones candidates per configuration. 29

5.1 Code Clones Found: McSheep and PMD. 37

xxi

Contents

Acknowledgments xi

Resumo xv

Abstract xvii

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 Motivation, Problem Description, and Goal 1
1.2 The Proposed Solution . 2
1.3 The Method Evaluation . 3
1.4 Dissertation Outline . 3

2 Background and Related Work 5
2.1 Code Clones . 5
2.2 Code Clone Detection Techniques . 8
2.3 Related Work . 10
2.4 Final Remarks . 11

3 The Proposed Method 13
3.1 The Method Strategy . 13
3.2 The Sequence of Method Calls . 14
3.3 The Sequences Grouped by Class or Method 15
3.4 The Order of Method Calls in Java . 16
3.5 The Size of Coincident Sequences . 18
3.6 The Code Clone Candidates . 21
3.7 Final Remarks . 21

xxiii

4 Automated Method in Action 23
4.1 Tool Support . 23
4.2 Selected Systems . 27
4.3 Code Clone Candidates . 27
4.4 Final Remarks . 32

5 Comparative Evaluation 33
5.1 Study Settings . 33
5.2 The PMD Tool . 35
5.3 Results and Discussion . 36
5.4 Threats to Validity . 39
5.5 Final Remarks . 41

6 User Study 43
6.1 Study Settings . 44
6.2 Results and Discussion . 47
6.3 Threats to Validity . 55

6.3.1 Construct Validity . 55
6.3.2 Internal Validity . 55
6.3.3 External Validity . 55
6.3.4 Conclusion Validity . 56

6.4 Final Remarks . 56

7 Conclusions and Future Work 57

Bibliography 59

Appendix A Characterization Form 63

B Survey Questions 65

xxiv

Chapter 1

Introduction

A common decision made by a software developer when coding is to reuse existing code
as reference [Rattan et al., 2013]. Reasons vary and are not mutual exclusive. They
include getting an idea of how to solve a specific problem or using something already
tested [Ducasse et al., 1999]. Copying existing code fragments and pasting them with or
without modifications into other parts of the system is called code clone, an important
area of software engineering research [Rattan et al., 2013; Ducasse et al., 1999; Roy
et al., 2009]. However, this practice is a bad smell [Fowler, 1999] and leads to problems
during software development and maintenance tasks. The reason is that code clones
duplicate logic and, therefore, increases points of refactoring and error fixing.

In order to find and eliminate code clones, several methods and tools have been
proposed. The most common strategies are based on tree [Wahler et al., 2004], pro-
gram dependency graph (PDG) [Krinke, 2001; Komondoor and Horwitz, 2001], text
[Johnson, 1993], token [Hummel et al., 2010], metrics [Marinescu, 2004; Kontogiannis,
1997], and hybrid techniques [Göde and Koschke, 2011]. This variety of strategies
allows detection of different types of code clones, offering methods that best fit dif-
ferent projects. Although the number of different methods for code clone detection is
considerable, the research of new methods remains an open research field.

1.1 Motivation, Problem Description, and Goal

One of the reasons for code clone detection being an active software engineering research
field is that there are virtually endless possibilities of changes in a copied and pasted
code, generating code clones not detected by existing strategies. Another reason is that
programming languages have been created and evolved. These programming languages
can introduce new syntax or change existing ones. These and other reasons lead to code

1

2 Chapter 1. Introduction

clones not covered by existing methods [Khan et al., 2014]. Therefore, the motivation
of this work is to contribute in this open research field: code clone detection.

In order to contribute, this work relies on the following observation of the code
clone problem. When a code is copied from one part of the system and pasted into
another, all the instructions (declarations, statements, operations, method calls, etc.)
of the original code come together. Therefore, a code clone is a repetition of sequence of
instructions in different points of one (or more) systems. After the code clone operation,
the parts can evolve independently, receiving different changes. These changes make
harder to detect the code clone. However, part of the original sequence of method calls
is supposed to be preserved, since the original computation is one of the reasons for
code cloning.

The main goal of this dissertation is to propose and evaluate a new method for
code clone detection based on similar sequences of method calls. The method strategy
is to detect code clones comparing similar sequences of method calls in different parts
of the target system. Our method analyzes the correlation between code clones and
sequences of method calls.

1.2 The Proposed Solution

The first step of our method is to collect all the method calls of a target system. For
a given system, the method calls occur in a scope of a class or a method. Therefore,
the collected method calls are grouped by class or by method, according to the scope
where they can be found. Once method calls are collected, our strategy is to find out
which similar sequences occur in different parts of the system. These sequences, in
order to be considered as a code clone candidate, must contain a minimum number of
coincident method calls. In addition, part of this sequence must be continuous.

The proposed method relies on detecting code clones in Java systems. The detec-
tion method is supported by a tool, called McSheep, which aims to extract code clones
comparing sequences of method calls. First, the software artifacts are downloaded from
software repositories and the Java files are extracted. These Java files are then parsed
in order to extract all method calls. Each individual method call with more than one
point of occurrence is a starting point to look for code clones. Finally, McSheep out-
puts the code clone candidates, that is, the code snippets with the same sequence of
method calls (with a minimum size) found in different locations.

1.3. The Method Evaluation 3

1.3 The Method Evaluation

The results gathered by the detection method are compared to a widely used code clone
detection tool, called PMD. Both tools ran against the same 14 systems (ArgoUML,
Ecommerce 2, Ecommerce 21, Facebook Android, Health Watcher, JBoss, Junit, Learn
Engh, Maven, Mobile Media, PetStore, Restaurant Open, Restaurantr, and Telestrada)
and code clones are collected. The code clones found by our method are compared to
code clones found by the PMD. The agreement between these different methods reveals
that both are complementary. Since they have different strategies, different results were
found.

There are three groups of code clones as follows. The first group are the code
clones detected by the PMD and not detected by our method. This group indicates
that some types of code clones are not possible to be detected using our strategy.
The second group are the code clones detected by our method and by the PMD. This
group indicates that the proposed strategy is able to detect code clones found by other
strategies. Since PMD has found the same group of clones, there is a higher expectation
of being true positives. The third group is the most important for this study. It includes
the code clones found by our method and not found by the PMD.

In a controlled environment, code clones of the third group (found by our method
and not found by the PMD) were evaluated by 25 developers by means of code inspec-
tion. The preliminary results show that, in general, more than 90% of subjects agree
with the code clones found by our method. Subjects did not confirm only 2 out of 12
code clone candidates. Even these cases, the decision whether they are code clones or
not was not a consensus. Indeed, in these two cases, subjects were divided half to half
in their opinions. Therefore, results so far indicate that analysis of method calls is a
prominent strategy for detecting code clones.

1.4 Dissertation Outline

This dissertation is structured in seven chapters as follows.

Chapter 2 provides a background overview of code clone detection.

Chapter 3 explains the proposed method in order to detect code clones using
sequence of method calls.

Chapter 4 presents the 14 systems analyzed using the proposed method along
with data collected.

Chapter 5 presents a comparison of the proposed method and PMD results.

4 Chapter 1. Introduction

Chapter 6 describes a user study conducted in order to evaluate our results by
means of code inspection.

Chapter 7 summarizes the results and indicates future work.

Chapter 2

Background and Related Work

Code clone detection is an active research area of software engineering. The crescent
number of publications and conferences dedicated to this theme confirms its impor-
tance. This chapter overviews background information for this dissertation and dis-
cusses some related work on code clone detection. The main goal of this work is to
propose a new method for code clone detection based on similar sequences of method
calls. Therefore, this chapter intends to detail related background before present the
proposal method in Chapter 3. This chapter additionally reviews some related work
in the literature regarding code clone detection and compares them with our work.

This chapter is structured as follows. Section 2.1 provides a background overview
of code clone, introducing its concept, classification, importance in software engineer-
ing, and needs for detection. Section 2.2 presents some current code clone detection
techniques, outlining the most adopted detection strategies. Section 2.3 discusses some
selected works related to code clone detection and compares them with our work. Fi-
nally, final remarks of this chapter are presented in Section 2.4

2.1 Code Clones

Code clones are exactly or nearly similar code fragments within a single software system
[Mondal et al., 2014] or in cross-project context [Oliveira et al., 2015]. Programmers
copy and paste existing code as helper practice on new development or maintenance of
existing features. Usually, copied code contains tested algorithm, clear solution, good
ideas, and suchlike reasons for cloning. In addition, some external factors, such as time
pressure or productivity evaluation in lines of code, lead to cloning practice [Ducasse
et al., 1999].

5

6 Chapter 2. Background and Related Work

There are two main kinds of similarity between code fragments: textual similar
and functional similar code clones. Fragments can be similar based on the similarity
of their program text, or they can be similar based on their functionality (independent
of their text) [Roy and Cordy, 2009; Keivanloo et al., 2014]. The first kind of clone
is often the result of copying a code fragment and pasting into another location. A
code fragment frag2 is a clone of another code fragment frag1 if they are similar by
some given definition of similarity. That is, f (frag1) = frag2 where f is the similarity
function. Two fragments that are similar to each other form a clone pair (frag1, frag2).
Whenever more than two fragments are similar, they form a clone class or clone group
[Koschke et al., 2006].

Different types proposed in the literature express the degree of similarity [Göde
and Koschke, 2011]. One of the most common classification is Types 1, 2, and 3 for
textual similar [Bellon et al., 2007] and Type 4 for functional similar [Gabel et al., 2008]
code clones. Figure 2.1 shows a code snippet which transverses a database cursor. For
each record, a new Project object is added to a list. Finally, this list is returned. This
code snippet, taken from one of our case studies, is used as original source code of all
four types of code clones.

Original
Resu l tSet r s = stmt . executeQuery (query) ;
boolean ok ;
for (ok = r s . f i r s t () ; ok ; ok = r s . next ())
{

r e s u l t s . add (new Pro j ec t (r s . g e t In t (1))) ;
}
return r e s u l t s ;

Figure 2.1. Original Source Code for Code Clone Types Example.

Type 1
Resu l tSet r s=stmt . executeQuery (query) ;
boolean ok ; // Cursor control ;
for (ok= r s . f i r s t () ; ok ; ok= r s . next ()){

r e s u l t s . add (new Pro j ec t (r s . g e t In t (1))) ;
}
return r e s u l t s ;

Type 2
Resu l tSet e = stmt . executeQuery (query) ;
boolean hasV ;
for (hasV=e . f i r s t () ;hasV ;hasV=e . next ()){
projects . add (new Pro j ec t (e . g e t In t (1))) ;

}
return projects ;

Figure 2.2. Code Clones Type 1 and Type 2.

The four specific types are commonly defined as [Roy et al., 2009]:

• Type 1: identical code fragments except for variations in white space, tabs,
layout, and comments. Figure 2.2 shows in the left box an example of code clone
Type 1. Comparing to original code (Figure 2.1), the highlighted areas present

2.1. Code Clones 7

some removed spaces, a new comment, and changed curly brace position. These
changes are irrelevant for the compiler, characterizing the code clone Type 1;

• Type 2: structurally/syntactically similar code fragments, except for changes in
identifiers, literals, types, layout, and comments. Figure 2.2 shows in the right
box an example of code clone Type 2. Comparing to original code (Figure 2.1),
the highlighted areas present variables renamed, along with some removed blank
spaces, and changed curly brace position. The generated code is identical since
the code fragment is structurally/syntactically similar, characterizing the code
clone Type 2;

• Type 3: code fragments that have been copied with further modifications like
statement insertions/deletions in addition to changes in identifiers, literals, types,
and layouts. Figure 2.3 shows in the top left box an example of code clone Type
3. Comparing to original code (Figure 2.1), the highlighted area presents an
instruction removed, rs.getInt(1). The code fragment is similar to the original
one, except for the removed piece. Figure 2.3 also shows in the top right box
an example of code clone Type 3. Comparing to original code (Figure 2.1), the
highlighted area presents an instruction added, LOG.debug(). The code fragment
is similar to the original one, except for the added piece. Finally, Figure 2.3
shows in the bottom box a third example of code clone Type 3. Comparing to
original code (Figure 2.1), the highlighted area presents an instruction changed,
Project project = new Project(rs.getInt(1)). The code fragment is similar to the
original one, except for the changed piece including a new variable. All these three

Type 3 - Deletion
Resu l tSet r s = stmt . executeQuery (query) ;
boolean ok ;
for (ok = r s . f i r s t () ; ok ; ok = r s . next ())
{

r e s u l t s . add (new Pro j ec t ()) ;
}
return r e s u l t s ;

Type 3 - Insertion
Resu l tSet r s = stmt . executeQuery (query) ;
boolean ok ;
for (ok = r s . f i r s t () ; ok ; ok = r s . next ())
{
LOG.debug("Processing...");
r e s u l t s . add (new Pro j ec t (r s . g e t In t (1))) ;

}
return r e s u l t s ;

Type 3 - Update
Resu l tSet r s = stmt . executeQuery (query) ;
boolean ok ;
for (ok = r s . f i r s t () ; ok ; ok = r s . next ())
{
Project project = new Project(rs.getInt(1));
r e s u l t s . add (project) ;

}
return r e s u l t s ;

Figure 2.3. Code Clones Type 3.

8 Chapter 2. Background and Related Work

Type 4
Resu l tSet r s = stmt . executeQuery (query) ;
if (!rs.first()) {
return results;
}
do {

r e s u l t s . add (new Pro j ec t (r s . g e t In t (1))) ;
} while (rs.next());
return r e s u l t s ;

Figure 2.4. Code Clone Type 4.

boxes represent code fragments modified regarding one or more instructions in
comparison with original code, characterizing the code clone Type 3;

• Type 4: functionally similar code fragments without being textually similar.
Figure 2.4 show an example of code clone Type 4. Comparing to original code
(Figure 2.1), the highlighted areas present the rewritten code which has the same
functionality of original one, but implemented with a different syntax. This new
implementation is computational identical of its original counterpart, although
syntactically different, characterizing the code clone Type 4.

In this work, we focus on textual similar code clones, although our method,
detailed in Chapter 3, should be able to detect some types of functional similar code
clones.

2.2 Code Clone Detection Techniques

Several works have been proposed in the literature for code clone detection [Ducasse
et al., 1999; Oliveira et al., 2015; Gabel et al., 2008; Koschke et al., 2006; Krinke, 2001;
Wahler et al., 2004; Hummel et al., 2010; Komondoor and Horwitz, 2001; Baxter et al.,
1998; Paiva and Figueiredo, 2014]. Although the techniques vary considerably, previ-
ous work [Roy et al., 2009] presents the most adopted code clone detection strategies
and compares the methods. The most common code clone detection strategies are
based on tree [Wahler et al., 2004], program dependency graph (PDG) [Krinke, 2001;
Komondoor and Horwitz, 2001], text [Johnson, 1993], token [Hummel et al., 2010],
metrics [Marinescu, 2004; Paiva and Figueiredo, 2014; Kontogiannis, 1997], and hybrid
techniques [Göde and Koschke, 2011].

Two techniques that use graphs are tree-based and program dependency graph-
based. In the tree-based clone detection strategy [Baxter et al., 1998], a program
under observation is first transformed into an abstract syntax tree (AST). For every

2.2. Code Clone Detection Techniques 9

sub-tree in the AST, a hash value is computed and identical sub-trees are identified
via identical hash values. In order to detect similar (not identical) sub-trees, the sub-
trees have to be pairwise compared. Variables, statements, operations, among other
elements that compose AST nodes, have influence on clone detection. In the program
dependency graph-based clone detection strategy (PDG), starting from every pair of
matching nodes, isomorphic sub graphs for ideal clones are constructed, which can be
replaced by function calls automatically. This strategy cannot analyze big programs
due to limitations of the underlying PDG generating infrastructure [Komondoor and
Horwitz, 2001].

Other two techniques for code clone detection are text-based and token-based. A
text-based clone detection strategy aims to find clones that differ at most in code for-
mat layout (spacing, tabs, and alignment) and comments. This technique uses textual
extraction, hash calculation, and further comparison in order to detect similar frag-
ments of code as candidates to code clone. Upon text extraction, some normalization is
applied. Typically, transformation of source code in a pretty-print format making lay-
out unified before analysis [Johnson, 1993; Ducasse et al., 1999]. A token-based clone
detection strategy [Hummel et al., 2010] claims to provide cloning information for clone
management. An index is created by the first time and new code can be added later.
This strategy provides a way to handle real-time monitoring of code clones during
development.

Some code clone detection strategies are applied alone, such as metrics based
strategy, or mixed with others as hybrid clone detection strategies. In the metrics-based
clone detection strategy [Roy et al., 2009], metrics for code fragments are gathered
and sorted in a specific order. The code fragments can be units such as files, classes,
functions, and statements. Searching for clones is the second part of the process, where
similar metrics indicate code clone. A hybrid clone detection strategy mixes two (or
more) techniques in order to use the best of both worlds in a complementary way, for
example, mixing tree-based and metrics-based strategies. In this hybrid clone detection
strategy, metrics are calculated on top of an AST generated by parsing the source code.

Type 4 code clones are well known hard to detect by existing techniques. It ap-
pears that only PDG-based techniques are likely to produce good results with this kind
of code clones. PDG-based techniques use data and control flow information, which
remains unchanged across reordering of declarations and data independent statements.
However, even PDG-based tools are unlikely to detect some Type 4 code clone scenar-
ios without exhaustive source transformation [Roy et al., 2009]. In addition, practical
detection of code clones remains an open research field. For this reason, this work
proposes a detection method inspired by the PDG-based techniques. However, in-

10 Chapter 2. Background and Related Work

stead of creating a complete graph of dependencies, we focus on sequences of similar
dependencies by means of method calls.

2.3 Related Work

Several works were proposed in the literature for code clone detection [Roy et al.,
2009]. Although the techniques vary considerably, as presented in Section 2.2, the
most common strategies are based on program dependency graph (PDG) [Krinke, 2001;
Komondoor and Horwitz, 2001], text based [Johnson, 1993], tree based [Wahler et al.,
2004], token-based [Hummel et al., 2010], and hybrid techniques [Göde and Koschke,
2011].

One of the first experiments in terms of code clone compared three state-of-the-
art clone detection and two plagiarism detection tools [Burd and Bailey, 2002]. The
authors were able to verify all clone candidates. The case study used only one modest
size system. The validation subjectivity makes their findings less than definitive.

A token-based strategy [Hummel et al., 2010] claims to provide real-time cloning
information for clone management of very large systems. Their work relies on being,
at the same time, incremental and scalable. An index is created by the first time and
new code can be added later. This provides a way to handle real-time monitoring of
code clones during development. We have such characteristic in the proposed method
(Chapter 3) because we use a hash list that can be incremented upon new code analysis.
However, token-based methods are somehow dependent of the same type and number
of variables, statements, and all elements transformed in tokens. This limitation is not
the case of our strategy because only method calls are considered. The method calls
are also tokens because they have exactly the same full name all over the code.

Another work available in the literature is based on PDG [Komondoor and Hor-
witz, 2001]. Starting from every pair of matching nodes, they construct isomorphic sub
graphs for ideal clones, which can be replaced by method calls automatically. They
cannot analyze big programs due to limitations of the underlying PDG generating
infrastructure. The main similarity with our method calls analysis strategy is that
clones found are also likely to be meaningful computations, thus candidates for ex-
tract method refactoring. As an important advantage, our method has no restrictions
regarding the analyzed program size.

In another structure comparing work [Baxter et al., 1998], a program under ob-
servation is first transformed on an abstract syntax tree (AST). For every sub-tree in
the AST, a hash value is computed and identical sub-trees are identified via identical

2.4. Final Remarks 11

hash values. In order to detect similar (not identical) sub-trees, the sub-trees have to
be pairwise compared. Variables, statements, operations, among other elements that
compound AST nodes, have influence on the clone detection. Changes of implemen-
tation style in the copied code, such as return, continue, or break ; for or while lead
to code clones Type 4, hardening the detection. Our method ignores those elements,
increasing the detection of this kind of intricate code clone scenarios.

Most of those clone detection strategies presented in Section 2.2 are implemented
as open source, freeware, or commercial tools. Although the tools have been tested
against single software systems, the detection accuracy became worse when cross-
projects detection take place. Oliveira et al. [2015] have shown that, in cross-project
contexts, reasonable detection rates are only achieved for Type 1 code clones and by a
limited number of tools. As examples, cross-projects detection is important for library
creation across projects or even for plagiarism detection. However, previous work has
shown that existing techniques fail to detect cross-project code clones [Oliveira et al.,
2015].

2.4 Final Remarks

This chapter presented concept of code clone, its common classification, and research
importance for software engineering. The code clone background structure started
exposing reasons leading developers to create code clones, practice sometimes unavoid-
able. In a sequence, this chapter presented the two main kind of similarities, textual
and functional, and the most common classifications regarding degree of similarity,
Types 1, 2, 3, and 4. Complementing the background, this chapter presented the most
adopted code clone detection techniques, which are text, tree, token, metrics, PDG,
and hybrid. Finally, this chapter discussed some related work in the literature and
compared with our proposed code clone detection method.

The goal of this chapter was to prepare the reader with concepts used in this
dissertation, producing insights regarding code clone detection. In particular, this
chapter prepares the reader for Chapter 3, which relates all the concepts in order to
outline the detection method proposed in this dissertation work.

Chapter 3

The Proposed Method

The proposal of a new method for detecting code clone worth pursuing. The parts
that compound a code clone can evolve independently, hindering further detection.
This chapter describes the method proposed in this work for detecting code clones
using sequence of method calls. Since this dissertation proposes a new method for
detecting code clones, this chapter explains the method, methodology, and implemen-
tation, before report this method in action in Chapter 4.

This chapter is structured as follows. Section 3.1 provides the strategy behind de-
tection of code clone using sequence of method calls. Section 3.2 describes the sequence
of method calls concept. Section 3.3 introduces how the sequences are grouped. Sec-
tion 3.4 details some aspects of the order of method calls in Java. Section 3.5 describes
the size of coincident sequences. Section 3.6 concludes what the method considers as
code clone candidate. Finally, Section 3.7 presents the final remarks of this chapter.

3.1 The Method Strategy

One of the reasons for a developer to copy and paste a code snippet from a part of
a software system to another, creating a code clone, is to get the original computa-
tion. The original code does something that solves totally or partially the problem
in analysis by the developer. After the code clone action, the developer can apply
some changes. However, part of the original computation is supposed to be preserved,
since the developer wanted the computation provided by original code. That is, the
computation provided by the original order of method calls.

In order to achieve a specific goal, a method coordinates statements, handles data,
and calls other methods. The order of these method calls usually matters and should
be preserved. In other words, it is not possible to change the order of most method

13

14 Chapter 3. The Proposed Method

calls; otherwise, the final computation results in something completely different. This
work proposes to detect code clones identifying a sequence of method calls in the exact
same order in different parts of a software system.

3.2 The Sequence of Method Calls

Figure 3.1 shows an example of sequence of method calls inside the method countAvail-
ablePapers, which belongs to the class PaperManager. In the scope of this method,
three method calls occur: papers.size(), papers.get(), and paper.isAvailable(). The
methods size() and get() belong to the List class, since the parameter papers is de-
clared as List<Paper>. The method isAvailable() belongs to the Paper class, since
the variable paper is declared as Paper.

1 package com.example.managers;
2

3 import java.util.List;
4 import com.example.Paper;
5

6 public class PaperManager {
7

8 int countAvailablePapers(List <Paper > papers){
9 int total = 0;

10 for (int i = 0; i < papers.size(); i++){
11 Paper paper = papers.get(i);
12 if (!paper.isAvailable())
13 continue;
14 total ++;
15 }
16 return total;
17 }
18

19 ...

Figure 3.1. Sequence of method calls inside method countAvailablePapers.

Our method identifies coincident sequences of method calls in different system
locations and considers that these locations are performing similar computation. This
coincidence could be a code clone if the locations have exact the same method calls.
However, a system could have methods with the same names in different classes. For
example, the method toString() is commonly implemented by various classes in a Java
system. Therefore, method calls should be uniquely identified in the entire system. In

3.3. The Sequences Grouped by Class or Method 15

order to achieve this uniqueness, the complete class name, i.e., including the Java
package, is added as prefix to the method name. For instance, the method calls
of the example in Figure 3.1 are stored as java.util.List.size, java.util.List.get, and
com.example.Paper.isAvailable. For simplification purposes, we omit packages in the
examples of this dissertation.

3.3 The Sequences Grouped by Class or Method

The sequence of method calls are grouped by location where it is found. The most com-
mon group is a method inside a class, as shown in Figure 3.1. The sequence is stored
as belonging to method com.example.managers.PaperManager.countAvailablePapers.
However, the Java language allows method calls outside a method, although inside the
class declaration scope. As an example, Figure 3.2 contains a snippet of the Eviction-
ResourceDefinition class, part of JBoss [JBoss, 2016]. In the scope of this class, there
are the method calls pathElement, SimpleAttributeDefinitionBuilder 1, getLocalName,
setXmlName, setAllowExpression, setFlags, EnumValidator 1, setValidator, ModelN-
ode1, name, set, setDefaultValue, and build. All these method calls occur outside a
method of the EvictionResourceDefinition class.

Occurrences of the same sequence of method calls at different points of a
system launches a suspicious of code clone. Our assumption is based on the fact
that the same sequences of method calls do similar computation. As the number
of identical method calls becomes higher, more likely a code clone is. To reinforce
this idea, the fact that the sequence has method calls from different classes in the
same order increases the probability of being a code clone. Since a class provides a
specific service or encapsulates common behaviors, mixing method calls of different
classes should lead to a more strong similar computation. Figure 3.3 shows an
example. The (a) side in Figure 3.3 is a snippet of the ArgoUML system. The
constructor Lexer (class org.argouml.language.csharp.importer.csparser.main.Lexer)
calls the method Hashtable.put multiple times in a sequence. The (b) side in
Figure 3.3 is a snippet of the PetStore system. The method extractCreditCard
(class com.sun.j2ee.blueprints.petstore.controller.web.actions.CustomerHTMLAction)
calls in a sequence the methods HttpServletRequest.getParameter(), String.trim(),
String.equals(), ArrayList.ArrayList(), and ArrayList.add(). The (b) side sequence is
a more complex computation and has a higher probability of being code clones when
found duplicated, although the (a) side could be part of a code clone as well. This

1In this work, we consider object instantiation as a method call to the class constructor.

16 Chapter 3. The Proposed Method

1 package org.jboss.as.clustering.infinispan.subsystem;
2

3 import org.jboss.as.controller.PathElement;
4 import org.jboss.as.controller.

↪→ SimpleAttributeDefinitionBuilder;
5 ...
6

7 public class EvictionResourceDefinition extends
↪→ SimpleResourceDefinition {

8

9 static final PathElement PATH = PathElement.pathElement(
↪→ ModelKeys.EVICTION , ModelKeys.EVICTION_NAME);

10

11 // attributes
12 static final SimpleAttributeDefinition STRATEGY = new

↪→ SimpleAttributeDefinitionBuilder(ModelKeys.STRATEGY ,
↪→ ModelType.STRING , true)

13 .setXmlName(Attribute.STRATEGY.getLocalName())
14 .setAllowExpression(true)
15 .setFlags(AttributeAccess.Flag.

↪→ RESTART_ALL_SERVICES)
16 .setValidator(new EnumValidator<>(EvictionStrategy.

↪→ class , true , false))
17 .setDefaultValue(new ModelNode().set(

↪→ EvictionStrategy.NONE.name()))
18 .build();
19 ...

Figure 3.2. Sequence of method calls in the class scope.

work does not investigate whether calls to different methods are more likely to be
a code clone. The example here intends to present our assumption that the same
sequence of method calls does similar computation, leading to code clones.

3.4 The Order of Method Calls in Java

The order of method calls should be preserved in a sequence. This order should follow
the exact order of code execution, since we are looking for similar computation. The
identification of similar computations is not always trivial when parsing Java code,
which requires understanding specific cases. The code execution usually follows the
order it was written. That is, lines from top to bottom and according to the English

3.4. The Order of Method Calls in Java 17

public Lexer (. . .) {
. . .

keywords . put ("byte " , TokenID . Byte) ;
keywords . put (" bool " , TokenID . Bool) ;
keywords . put (" char " , TokenID . Char) ;
keywords . put ("double " , TokenID . Double) ;
keywords . put (" decimal " , TokenID . Decimal) ;
keywords . put (" f l o a t " , TokenID . Float) ;
keywords . put (" i n t " , TokenID . Int) ;
keywords . put (" long " , TokenID . Long) ;
keywords . put (" ob j e c t " , TokenID . Object) ;
keywords . put (" sbyte " , TokenID . SByte) ;

. . .
}

(a) Sequence of the same method call multiple times.

private CreditCard extractCred i tCard (. . .) {
ArrayList m i s s i ngF i e l d s = null ;
S t r ing creditCardNumber = reques t .

↪→ getParameter ("credit_card_number")
↪→ . tr im () ;

i f (creditCardNumber . equa l s ("")) {
i f (m i s s i ngF i e l d s == null) {

m i s s i ngF i e l d s = new ArrayList () ;
}

// t h i s need to be i n t e r n a t i o n a l i z e d
mi s s i ngF i e l d s . add ("Credi t Card") ;

. . .
}

(b) Sequence with method calls of different classes.

Figure 3.3. Variability of method calls in a sequence.

reading, from left to right. However, some execution cases do not match the order that
the code was written. The two following examples illustrate cases like that.

As a first example, Figure 3.4 contains a snippet of the DialogPresenter class, part
of FacebookAndroid. As shown in this code, the order of method calls is getCallId (1),
toString (2), getLatestKnownVersion (3), and setupProtocolRequestIntent (4). This
order is not the written order from top to bottom and from left to right. The reason is
that the parameters of the method setupProtocolRequestIntent need first to be built. In
addition, English reading is kept when getCallId is called before toString, since toString
is a method of the object returned by getCallId.

Nat iveProtoco l . s e tupProtoco lReques t Intent (4)(appCall . g e tCa l l I d () (1) . t oS t r i ng () (2) ,

Nat iveProtoco l . getLatestKnownVersion () (3)) ;

Figure 3.4. Snippet adapted from DialogPresenter class of FacebookAndroid.

As a second example, Figure 3.5 contains a for statement with numbered order
of method calls execution. As shown in this code, the order of method calls is first (1),
hasNext (2), getInt (3), and next (4). The Java language states that next() is called
after all method calls inside the for scope, i.e., inside braces when present or next line
when there are no braces. In this case, there is only one call inside the braces, getInt().

for (r s . f i r s t () (1) ; r s . hasNext () (2) ; r s . next () (4)) {

r s . g e t In t (1) (3) ;
}

Figure 3.5. Order of method calls in a for statement.

18 Chapter 3. The Proposed Method

3.5 The Size of Coincident Sequences

Our work is based on searching and comparing the same sequences of method calls in
different points of a system. In order to characterize this coincident sequence, we have
established two parameters to determine its size:

1. The total number of coincident method calls;

2. The maximum size of continuous coincident method calls.

The first coincident method call is the sequence start and the last coincident
method call is the sequence end. Therefore, the total number of coincident method calls
is the count of all matches, starting from the first coincidence until the last coincidence.
However, the sequences are not necessarily continuous when comparing to each other
because the code where the coincident sequence was extracted can have method calls
that do not belong to this sequence. That is, method calls between the sequence start
and the sequence end code that are not coincident. The maximum size of continuous
coincident method calls is the size of the longest sequence with all elements matching
without any different call.

Figure 3.6 shows two methods with the same name toMessage extracted from (a)
ToolchainsBuildingException and (b) ModelBuildingException classes of Maven. The
coincident method calls are highlighted. The sequence starts at line 3 of both methods
with the method call StringWriter and ends at line 23 with the method call toString
in both methods. The size of the coincident sequence of method calls between the
two methods is 17. In addition, we observe that the longest sequence of continuous
coincident method calls is 7. This value occurs two times. First occurrence starts at
line 3 and ends at line 7 of both methods, interrupted by the method call of length at
line 8 of (b) side. The second occurrence of the longest sequence of continuous coinci-
dent method calls starts at line 8 of ToolchainsBuildingException.toMessage and at line
13 of ModelBuildingException.toMessage. It ends at line 13 of ToolchainsBuildingEx-
ception.toMessage and at line 19 of ModelBuildingException.toMessage, interrupted by
method call getLocation of (a) side.

Table 3.1 shows two sequences of method calls extracted from the code of Fig-
ure 3.6. The first and third columns are the lines where the method call was found. The
second and fourth columns indicate the method calls found. The first two columns are
data from the ToolchainsBuildingException.toMessage method. The last two columns
are data from the ModelBuildingException.toMessage method. The method calls high-
lighted in bold are the coincident ones. That is, the ones found in both methods. For in-
stance, the method call StringWriter is highlighted in bold because it was found on both

3.5. The Size of Coincident Sequences 19

1 private stat ic St r ing toMessage (Lis t<Problem> problems)
2 {
3 Str ingWri te r bu f f e r = new StringWriter(1024) ;
4 Pr intWriter wr i t e r = new PrintWriter(bu f f e r) ;
5 wr i t e r .print(problems . size ()) ;
6 wr i t e r .print((problems . size () == 1) ? " problem was " : " problems were ") ;
7 wr i t e r .print(" encountered whi l e bu i l d i ng the e f f e c t i v e t o o l c ha i n s ") ;
8 wr i t e r .println () ;
9 for (Problem problem : problems)

10 {
11 wr i t e r .print(" [") ;
12 wr i t e r .print(problem .getSeverity ()) ;
13 wr i t e r .print("] ") ;
14 wr i t e r .print(problem .getMessage ()) ;
15 St r ing l o c a t i o n = problem . getLocat ion () ;
16 i f (! l o c a t i o n . isEmpty ())
17 {
18 wr i t e r .print(" @ ") ;
19 wr i t e r . p r i n t (l o c a t i o n) ;
20 }
21 wr i t e r .println () ;
22 }
23 return bu f f e r . toString () ;
24 }

(a) Method toMessage of ToolchainsBuildingException class.

1 private stat ic St r ing toMessage (S t r ing modelId , L i s t<ModelProblem> problems)
2 {
3 Str ingWri te r bu f f e r = new StringWriter(1024) ;
4 Pr intWriter wr i t e r = new PrintWriter(bu f f e r) ;
5 wr i t e r .print(problems . size ()) ;
6 wr i t e r .print((problems . size () == 1) ? " problem was " : " problems were ") ;
7 wr i t e r .print(" encountered whi l e bu i l d i ng the e f f e c t i v e model") ;
8 i f (modelId != null modelId . l ength () > 0)
9 {

10 wr i t e r . p r i n t (" f o r ") ;
11 wr i t e r . p r i n t (modelId) ;
12 }
13 wr i t e r .println () ;
14 for (ModelProblem problem : problems)
15 {
16 wr i t e r .print(" [") ;
17 wr i t e r .print(problem .getSeverity ()) ;
18 wr i t e r .print("] ") ;
19 wr i t e r .print(problem .getMessage ()) ;
20 wr i t e r .print(" @ ") ;
21 wr i t e r .println(ModelProblemUtils . formatLocat ion (problem , modelId)) ;
22 }
23 return bu f f e r . toString();

(b) Method toMessage of ModelBuildingException class.

Figure 3.6. Methods ToolchainsBuildingException.toMessage and Model-
BuildingException.toMessage extracted from Maven.

methods at the same position. This highlight does not happen for the method format-
Location because it was found only at line 21 of the ModelBuildingException.toMessage
method. In addition, the fifth column shows the total counter of coincident method
calls and the sixth column shows the counter of continuous coincident method calls.
We can observe that this last counter resets on every occurrence of a non-coincident
method call.

20 Chapter 3. The Proposed Method

Table 3.1. Sequences of method calls of ToolchainsBuildingException.toMessage
and ModelBuildingException.toMessage.

ToolchainsBuildingException.toMessage ModelBuildingException.toMessage
Line # Method call Line # Method call Coincident Continuous

3 StringWriter 3 StringWriter 1 1
4 PrintWriter 4 PrintWriter 2 2
5 size 5 size 3 3
5 print 5 print 4 4
6 size 6 size 5 5
6 print 6 print 6 6
7 print 7 print 7 7

8 length
10 print
11 print

8 println 13 println 8 1
11 print 16 print 9 2
12 getSeverity 17 getSeverity 10 3
12 print 17 print 11 4
13 print 18 print 12 5
14 getMessage 19 getMessage 13 6
14 print 19 print 14 7
15 getLocation
16 isEmpty
18 print 20 print 15 1
18 print 21 formatLocation
21 println 21 println 16 1
23 toString 23 toString 17 2

3.6. The Code Clone Candidates 21

3.6 The Code Clone Candidates

If two or more points in the system have the same sequence of method calls (with a
minimum size), they form a code clone candidate. However, the ideal size of a sequence
is not easy to be chosen. If the size is small, e.g. with three method calls, it is expected
to find too many coincident sequences and, by consequence, too many false positive
code clones. On the other hand, if the chosen size of a sequence is a big value, for
example, 20 method calls, it is expected too many false negatives. In order to address
these issues, our configuration contains sequence parameters to be changed through
different experiments. The first parameter is the total number of coincident method
calls. The second parameter is the maximum size of continuous coincident method
calls. The code of Figure 3.6 is detected as code clone if the first parameter is at most
17 and the second parameter is at most 7. Table 3.1 shows in the latest two columns
these two values respectively.

3.7 Final Remarks

This chapter described the proposed method for detecting code clone using sequence
of method calls. First, we presented the idea behind considering a coincident sequence
of method calls as being code clones. The proposed method was detailed by parts and
these parts were related to each other.

The chapter objective was to provide knowledge about why, how, and which data
was collected. In Chapter 4, the proposed method is applied to a set of 14 selected
software systems.

Chapter 4

Automated Method in Action

One of the contributions of this work is to provide an open source tool that implements
the proposed method. This chapter provides details about this tool, developed for code
clone detection following the proposed method. This chapter also presents the systems
analyzed by the proposed method and the code clones found. In addition, this chapter
shows examples of data gathered from real-world systems with different characteristics.
Therefore, this chapter is a bridge between Chapter 3, where a new method for detecting
code clones is proposed, and the next two chapters, which evaluate code clone detected
by this method.

This chapter is structured as follows. Section 4.1 presents the developed tool,
called McSheep, for code clone detection following the proposed method. Section 4.2
presents the criteria for selecting the systems and some metrics of the chosen projects.
Section 4.3 presents the clones found by the proposed method. Finally, Section 4.4
presents the final remarks of this chapter.

4.1 Tool Support

We implemented a tool in order to extract code clones according to our method. The
tool, called McSheep, is able to detect coincident sequences of method calls in different
system points. The method workflow starts from filtering files from systems written
in Java, proceeds by parsing Java files in order to select all method calls, continues
by comparing coincident sequences of method calls at different locations, and finally
points code clone candidates.

Figure 4.1 shows the processes executed by the McSheep in order to provide the
results. These processes perform the following actions in the McSheep workflow:

23

24 Chapter 4. Automated Method in Action

Figure 4.1. McSheep Steps for Code Clone Detection.

Process 1) Filter - The input for Process 1 are the project files inside a specific folder,
represented by “Project Sources”. McSheep is able to open all zip files in
that folder and extract files. This process, represented by a filter, receives
as input all the extracted files and ignores all the non-Java artifacts, out-
putting only the Java files to be parsed on the next process.

Process 2) Parser - This process receives as input the Java files filtered on the previous
process and proceeds parsing each one. The parser used is JavaParser1.
JavaParser is a Java 1.8 Parser with Abstract Syntax Tree (AST) generation
and visitor support. The AST records the source code structure, Javadoc,
and comments. JavaParser implements the Visitor Pattern [Gamma et al.,
1994]. For each Java element visited in the source file, a specific visitor
method is called. This visitor implementation allows the tool to select
what is important, i.e., method calls. Of course, comments, expressions,
statements, and any other elements are ignored. This feature differs from
traditional methods. Therefore, only analysis of method calls takes place.
For the sake of this study, the data to be collected is method calls, but
some other Java elements are important and used as follows.

McSheep collects the data with help of the JavaParser engine. JavaParser
receives a Java file as input and reports to the tool all classes found inside

1http://javaparser.github.io/javaparser/

4.1. Tool Support 25

that file, along with import statements. These imports are used to identify
the complete package where a class came from.

For each class, McSheep extracts and stores all methods belonging to
that class (always using the JavaParser visitor pattern schema). For each
method, the tool extracts and stores all method calls. Taking the Fig-
ure 3.1 as example, McSheep stores the method countAvailablePapers and
the calls List.size(), List.get(), and Paper.isAvailable(). At this time, the
imports collected are used to uniquely identify a class and hence a call.
Therefore, McSheep stores the calls as java.util.List.size, java.util.List.get,
and com.example.Paper. McSheep also records the exact order of occur-
rence for each call inside the method. The result of the parsing process is
a database with the sequences of method calls.

Process 3) Detection - This process receives as input the database with all method
calls of the system grouped by methods. The goal of this step is the search
of code clones. Each unique method call is a key in a hash list which
value is a list of methods where such method call was found. In addition,
it is stored the execution order that this method call occupies, once the
method executes a sequence of method calls in a specific order. McSheep
transverses the hash list searching for keys with more than one method in
their list. Once a method call is located in two or more methods of the
system, McSheep compares these methods. All method calls in positions
above and below the current method call in a transversed hash list are then
compared.

The total number of coincident method calls and the maximum size of con-
tinuous coincident method calls are compared with McSheep configuration.
If these values are equals or greater than configured threshold, McSheep
considers this sequence as a code clone candidate.

Table 4.1 shows the hash list created as result of parsing the entire code of Fig-
ure 4.2, where the complete package name was omitted. Each hash element contains
the method call as key and a list of method locations/position where that method call
was found. For instance, the method call List.get was found at position (2) in method
foo1 and at position (2) in method foo2.

Observe that, as this data structure is a hash list, the order of keys is not under
control. List.get is shown first in the hash list intentionally. In addition, there is a
hash list of methods with each method as key and all method calls, ordered as they

26 Chapter 4. Automated Method in Action

1 int foo1(List <Paper > papers){
2 int total = 0;
3 for (int i = 0; i < papers.size(); i++) {
4 Paper paper = papers.get(i);
5 if (!paper.isAvailable())
6 continue;
7 total ++;
8 }
9 return total;

10 }
11

12 int foo2(List <Paper > list) {
13 int count = 1, papers = 0;
14 while (count <= list.size()) {
15 if (list.get(count -1).isAvailable()) {
16 papers = papers +1;
17 }
18 count = count +1;
19 }
20 return papers;
21 }

Figure 4.2. Code clone detected by coincident sequence of method calls.

key value
Method call List of methods (position)
List.get foo1 (2), foo2 (2)
List.size foo1 (1), foo2 (1)
Paper.available foo1 (3), foo2 (3)

Table 4.1. Hash list with method call as key and where call occurs as values.

appear in respective method, as value. Table 4.2 shows this hash list. For instance,
the first element of this hash list is the method foo1 as key. The value of this element
is the list of calls List.size, List.get, and Paper.available ordered as they are executed
in foo1 method.

key value
Method List of method calls
foo1 List.size, List.get, Paper.available
foo2 List.size, List.get, Paper.available

Table 4.2. Hash list with method as key and its method calls as values.

4.2. Selected Systems 27

Figure 4.2 contains an example of a code clone that could be detected by coinci-
dent sequences of method calls. The algorithm retrieves the first key: List.get. There
is a list of methods where List.get is called: foo1 and foo2, both as second call in the
order of calls. Then, the algorithm lookup the list of methods (which contains foo1
and foo2 as values). The algorithm interrupts the verification for List.get when detects
that there is another coincidence above: List.size. Only when the first method call co-
incident is found that the algorithm will navigate through all method calls in order to
retrieve the complete sequence. Moreover, this navigation happens when List.size is
the key being checked. Starting from List.size, the algorithm detects the whole chain
of coincidences. Now, a code clone with a three-call sequence is pointed.

4.2 Selected Systems

The proposed method presented in Chapter 3 starts with selection of the target
projects. These software projects are supposed to contain all sort of code clones.
Therefore, some criteria shall be settled in order to select projects as representative
as possible within a large set of possibilities. Finally, once selected, these projects are
ready to be submitted to McSheep in order to view the proposed method in action.

With this objective in mind and using a set of criteria commonly adopted in
similar studies involving code analysis [Vidal et al., 2015], we selected 14 software
projects. All chosen systems are written in Java, open source, and have an active
community of users and contributors. Along with these features, the systems were also
selected from different domains and with varying sizes. The system sizes started from
the smallest with 1,116 lines of code to the biggest with 392,405 lines of code. The
number of classes varies from 13 to 6,452.

Table 4.3 shows the systems selected for analysis using the proposed method.
The first column contains the system name (Systems), followed by the column with
number of code lines (LOC), and Number of classes (Classes). For instance, Mobile
Media is a system with 3,025 lines of code and 51 classes.

4.3 Code Clone Candidates

The method proposed in Chapter 3 was applied on each selected system. Table 4.4
lists these projects in the first column. The second and third columns present, for each
system, the numbers of total method calls and distinct method calls. This values show
that all systems have method calls scattered across the classes. This observation is

28 Chapter 4. Automated Method in Action

Table 4.3. Systems selected for analysis.

Systems NLOC Classes
Restaurantr 1,116 13
Telestrada 3,660 213
Learn Engh 2,114 41
Mobile Media 3,015 51
Ecommerce 21 3,883 96
Health Watcher 5,990 88
Ecommerce 2 56,734 718
PetStore 17,866 308
Junit 25,916 392
Facebook Android 36,277 250
Restaurant Open 39,231 406
Maven 78,471 938
ArgoUML 195,363 1,922
JBoss 392,405 6,452

true since distinct method calls are always smaller than the total number of method
calls. The ratio of distinct calls by total calls is a mean of about 35%.

Table 4.4. Method calls scattering.

System Total Distinct
Restaurantr 399 230
Telestrada 688 304
Learn Engh 920 381
Mobile Media 1,419 449
Ecommerce 21 1,706 561
Health Watcher 2,301 491
Ecommerce 2 5,987 1,982
PetStore 6,105 2,352
Junit 8,221 2,932
Facebook Android 12,773 4,428
Restaurant Open 19,416 5,616
Maven 31,267 9,543
ArgoUML 82,435 23,582
JBoss 160,040 51,755

Once the number of distinct method calls is smaller than total of method calls,
we observe the possibility of method calls been spread all over the system. In addition,
there is the possibility of finding the same sequence of method calls in different points
of code. Table 4.5 confirms this possibility. This table shows each system in the first
column, followed by the results for three configurations in the subsequent second, third,

4.3. Code Clone Candidates 29

Table 4.5. Code clones candidates per configuration.

Configuration
System 10-5 15-7 20-10
Restaurantr 0 0 0
Telestrada 1 0 0
Learn Engh 7 2 0
MobileMedia 15 8 4
Ecommerce 21 103 42 11
Health Watcher 70 21 11
Ecommerce 2 617 203 88
PetStore 56 20 8
JUnit 0 0 0
Facebook Android 7 1 1
Restaurant Open 378 168 62
Maven 58 19 9
ArgoUML 771 175 47
JBoss 888 273 102
Total 2,971 932 343

and fourth columns. The title of result columns contains the configuration values sepa-
rated by dash. The values are respectively the minimum size of coincident method calls
and the minimum size of continuous coincident method calls. For instance, the title 10-
5 of the second column means code clones detected with at least 10 coincident method
calls and at least 5 continuous coincident method calls. Therefore, Table 4.5 shows
that our proposed method detected 56 code clone candidates in PetStore matching
10-5 configuration criteria.

For illustration, one of these code clone candidates found by our method is shown
in code snippets of Figure 4.3. This sequence of method calls in this pair of meth-
ods is what McSheep detected as code clone candidate. The sequence of method
calls is getDataSource, getConnection, toString, printSQLStatement, buildSQLState-
ment, executeQuery, getString, getString, getMessage, CatalogDAOSysException, and
closeAll. These 11 method calls are in the exact same order in two different methods,
satisfying the minimum number of coincident method calls, configured as 10. The
longest sequence of continuous coincident method calls is: getDataSource, getConnec-
tion, toString, printSQLStatement, buildSQLStatement, and executeQuery. These six
method calls are in the exact same continuous sequence in the two methods, satisfying
the minimum size of continuous coincident method calls, configured as 5.

Observing the code snippet of both methods, we detect similar computation: con-
nect to database, debug, build and execute query, handle the result, handle exception,

30 Chapter 4. Automated Method in Action

and close resources. The types and data handled by method calls are different, but the
logic is similar. Chapters 5 and 6 evaluate whether or not these candidates are actual
code clones.

4.3. Code Clone Candidates 31

1 public Category getCategory (S t r ing categoryID , Loca le l o c a l e) throws
↪→ CatalogDAOSysException {

2 Connection connect ion = null ;
3 Resu l tSet r e s u l t S e t = null ;
4 PreparedStatement statement = null ;
5 try {
6 connect ion = getDataSource () .getConnection () ;
7 S t r ing [] parameterValues = new St r ing [] { l o c a l e . toString () , categoryID } ;
8 i f (TRACE) {
9 printSQLStatement(sq lStatements , XML_GET_CATEGORY, parameterValues) ;

10 }
11 statement = buildSQLStatement(connect ion , sq lStatements , XML_GET_CATEGORY,

↪→ parameterValues) ;
12 r e s u l t S e t = statement . executeQuery () ;
13 i f (r e s u l t S e t . f i r s t ()) {
14 return new Category (categoryID , r e s u l t S e t .getString (1) , r e s u l t S e t .get-

String (2)) ;
15 }
16 return null ;
17 } catch (SQLException except ion) {
18 throw new CatalogDAOSysException("SQLException : " + except ion .getMessage ()) ;
19 } f ina l ly {
20 closeAll(connect ion , statement , r e s u l t S e t) ;
21 }
22 }

(a) Method getCategory of GenericCatalogDAO class.

1 public Page getProducts (S t r ing categoryID , int s t a r t , int count , Loca le l o c a l e) throws
↪→ CatalogDAOSysException {

2 Connection connect ion = null ;
3 PreparedStatement statement = null ;
4 Resu l tSet r e s u l t S e t = null ;
5 try {
6 connect ion = getDataSource () .getConnection () ;
7 S t r ing [] parameterValues = new St r ing [] { l o c a l e . toString () , categoryID } ;
8 i f (TRACE) {
9 printSQLStatement(sq lStatements , XML_GET_PRODUCTS, parameterValues) ;

10 }
11 statement = buildSQLStatement(connect ion , sq lStatements , XML_GET_PRODUCTS,

↪→ parameterValues) ;
12 r e s u l t S e t = statement . executeQuery () ;
13 i f (s t a r t >= 0 r e s u l t S e t . abso lu t e (s t a r t + 1)) {
14 boolean hasNext = fa l se ;
15 L i s t products = new ArrayList () ;
16 do {
17 products . add (new Product (r e s u l t S e t . g e tS t r i ng (1) . tr im () , r e s u l t S e t .get-

String (2) , r e s u l t S e t .getString (3))) ;
18 } while ((hasNext = r e s u l t S e t . next ()) (−−count > 0)) ;
19 return new Page (products , s t a r t , hasNext) ;
20 }
21 return Page .EMPTY_PAGE;
22 } catch (SQLException except ion) {
23 throw new CatalogDAOSysException("SQLException : " + except ion .getMessage ()) ;
24 } f ina l ly {
25 closeAll(connect ion , statement , r e s u l t S e t) ;
26 }
27 }

(b) Method getProducts of GenericCatalogDAO class.

Figure 4.3. Methods GenericCatalogDAO.getCategory and GenericCatalog-
DAO.getProducts extracted from PetStore.

32 Chapter 4. Automated Method in Action

4.4 Final Remarks

This chapter detailed McSheep, a tool designed to extract data according to the pro-
posed method. As described step by step, McSheep was developed for parsing Java
files of systems in order to detect code clones candidates as per strategy. The chapter
also presented the selected systems for data extraction along with the criteria used for
choosing the target systems. In addition, this chapter presented the proposed method
in action against 14 real-world software systems. Furthermore, the chapter showed the
code clones candidates detected using coincident sequence of method calls.

The chapter goal was to show the code clones candidates detected upon execution
of the proposed method. In Chapter 5, these code clone candidates are compared to
the results of other code clone detection tool, called PMD.

Chapter 5

Comparative Evaluation

Several tools implement different strategies for code clone detection. Therefore, by
choosing one of these tools and running against the same systems we used with Mc-
Sheep, we have a mechanism for comparison with our proposed method. This chapter
evaluates the code clone candidates detected in Chapter 4 by McSheep in comparison
with the code clones detected by other tool, called PMD. The goal of this chapter is
to compare our method presented in Chapter 3 with a different code clone detection
method, the token-based implemented by the PMD. Although both methods detected
some code clones candidates in common, the agreement between them was low. There-
fore, the comparison results shown that both methods are complementary. Addition-
ally, this chapter analyzes the threats to validity of this comparative evaluation.

This chapter is structured as follows. Section 5.1 provides the study settings,
detailing the criteria to classify the detected code clone candidates. In addition, the
section describes the chosen tool, called PMD, along with the reasons of this choice.
Section 5.3 presents and analyzes the results. Section 5.4 discuss threats to validity of
the comparison. Finally, Section 5.5 presents the final remarks of this chapter.

5.1 Study Settings

In order to validate the code clones candidates detected by the McSheep, the first strat-
egy is to compare its results with results of a code clone detection tool commonly used
by developers and established in the literature. Additionally, this tool uses a different
strategy for code clone detection in order to reveal which scenarios are best covered by
each method. The chosen tool is PMD [PMD, 2002], described in Section 5.2.

This comparison leads to three group of clones, as presented in Figure 5.1. This
figure has a circle representing the code clone candidates found by the McSheep and

33

34 Chapter 5. Comparative Evaluation

a circle representing the candidates found by other code clone detection tool, namely
PMD. These two circles have an intersection set, which are the code clone candidates
detected in common by both tools. Therefore, the three groups are, as shown in
Figure 5.1:

(1) Group of code clones candidates detected by both tools.

(2) Group of code clones candidates detected exclusively by the McSheep.

(3) Group of code clones candidates detected exclusively by the PMD.

Figure 5.1. Expected set of code clones candidates presented by tool.

According to Table 4.5 of Chapter 4, we ran McSheep with three different config-
urations: 10-5, 15-7, and 20-10. Following these configurations in this order, the results
are always a set that contains the next configuration. That is, results of configuration
10-5 contains results of configuration 15-7, which by its turn contains results of config-
uration 20-10. As explained in Chapter 3, these dash-separated values are respectively
the total number of coincident method calls and the maximum size of continuous coin-
cident method calls. Therefore, if a total of 20 coincident method calls is reached, the
total of 15 and 10 are also achieved. The formula in Figure 5.2 shows the mathematical
relation between different ran configurations.

The results used for comparison are the ones gathered by executing McSheep with
configuration 20-10. That is, this configuration considered code clone candidates when

C(10−5) ⊇ C(15−7) ⊇ C(20−10)

Figure 5.2. Relation between different configurations.

5.2. The PMD Tool 35

two or more methods have at least 20 coincident method calls in the same order and at
least 10 continuous coincident method calls. The reason of choice is that configuration
20-10 is the most conservative, since its results are present in all other sets. The
contrary is not true.

Before discussing the results, it is important to understand that each tool has
different strategy for code clone detection. While McSheep considers code clone only
between methods, PMD can consider a code clone with lines spread over multiple
methods. Therefore, a single PMD code clone can be matched in two or more McSheep
code clones. In addition, all McSheep candidates are enclosed inside methods. The
method signature is never part of the McSheep code clone, what differs from PMD
analysis. These distinct approaches lead to conventions about the intersection set of
code clones between both tools. This work considers that both tools found the same
code clone when there is an intersection between start and end lines of each code clone
pair. For example, if McSheep detects a code clone between lines 5 and 10 and PMD
detects a code clone between lines 3 and 9, this work considers that both tools detected
the same code clone.

5.2 The PMD Tool

As mentioned before, the chosen code clone detection tool was PMD1 [PMD, 2002].
PMD is a source code analyzer. It finds common programming flaws like unused
variables, empty catch blocks, unnecessary object creation, and so forth. It supports
Java, JavaScript, PLSQL, Apache Velocity, XML, and XSL. PMD has more than 6
million downloads since the project was started in 2002.

According to the documentation, PMD is a code quality tool that scans Java
source code and looks for potential problems like:

• Possible bugs - empty try/catch/finally/switch statements.

• Dead code - unused local variables, parameters, and private methods.

• Suboptimal code - wasteful String/StringBuffer usage.

• Overcomplicated expressions - unnecessary if statements, for loops that could be
while loops.

• Code clone detection - copied/pasted code means copied/pasted bugs.
1https://pmd.github.io/

36 Chapter 5. Comparative Evaluation

Along with this developer community acceptance, PMD is widely accepted in the
literature for finding bugs and code smells [Rutar et al., 2004; Roy et al., 2009]. Specif-
ically regarding code clone detection, PMD includes CPD, the copy-paste-detector.
CPD detects code clones in several programming languages, such as Java, C, C++,
and C#. CPD uses token-based for code clone detection, a strategy different from the
one implemented by the McSheep, sequence of method calls based. Therefore, PMD, a
state of the practice tool, was considered relevant choice for the comparison proposed
in this chapter.

5.3 Results and Discussion

The same systems were submitted for analysis of PMD and the code clones detected
were compared to the ones detected by the McSheep using the previous described
configuration, 20-10. Table 5.1 shows the number of code clones candidates detected
by the McSheep and the PMD for each analyzed system. Each row of this table
contains the data of the respective system. The last row contains the global total. The
columns with a positive sign contain the total of clones found by the tool above them
and confirmed by the other tool. The columns with a negative sign contain the total
of clones found exclusively by the tool above them, i.e., not found by the other tool.
The last two columns contains Cohen’s Kappa agreement [Gwet, 2014] of one tool in
relation to another. For instance, the row for system ArgoUML shows that McSheep
found 21 code clones that were also detected by the PMD. The same row also shows
that PMD found 25 code clones that were also detected by the McSheep. Figure 5.3
presents one of these clones.

In addition, the McSheep found 26 code clones that are not detected by the
PMD and the PMD found 253 code clones not detected by the McSheep. Therefore,
the PMD agreement with McSheep results is 45% and the McSheep agreement with
PMD results is 9%. The last row of this table shows that McSheep detected 343
(156+187) code clones candidates and PMD detected 853 (179+674) code clone can-
didates. The complete list of code clones, including the visualization, can be reached
at http://ampaiva.github.io/mcsheep.

The first analysis of Table 5.1 shows that the overall agreement between both tools
is low. Common levels of agreement for Kappa are Poor (< 0.20), Fair (0.21 to 0.40),
Moderate (0.41 to 0.60), Good (0.61 to 0.80), and Very Good (0.81 to 1.00) [Altman,
1991]. The average PMD agreement with McSheep is 45% and the McSheep agreement
with PMD is 21%. The Moderate and Fair agreements indicate that McSheep and PMD

5.3. Results and Discussion 37

Table 5.1. Code Clones Found: McSheep and PMD.

McSheep PMD Kappa
System + - + - McSheep PMD
Restaurantr 0 0 0 0 0% 0%
Telestrada 0 0 0 9 0% 0%
Learn Engh 0 0 0 0 0% 0%
Mobile Media 1 3 1 2 25% 33%
Ecommerce 21 3 8 3 1 27% 75%
Health Watcher 7 4 6 1 64% 86%
Ecommerce 2 35 53 38 64 40% 37%
PetStore 3 5 3 28 38% 10%
JUnit 0 0 0 1 0% 0%
Facebook Android 1 0 1 3 100% 25%
Restaurant Open 22 40 27 46 35% 37%
Maven 5 4 5 26 56% 16%
ArgoUML 21 26 25 253 45% 9%
JBoss 58 44 70 240 57% 23%
Total 156 187 179 674 45% 21%

are complementary tools. Since both tools have a certain level of agreement, there are
code clones that both tools detect in common. This is the first positive result for the
strategy based on method calls used by the McSheep. Figure 5.3 presents a code clone
detected by both McSheep and PMD tools. This pair of code snippets were extracted
from the ArgoUML system. The left side is the snippet between lines 76 and 111 of
the ComponentInstanceNotationUml class. The right side is the snippet between lines
76 and 111 of the NodeInstanceNotationUml class. The method call sequences are the
same in both snippets and there are more than 20 method calls. Therefore, McSheep
detected this code clone candidate. PMD also detected this code snippet as being code
clone because there are more than 100 language equal tokens in the same order.

The 674 code clones detected exclusively by the PMD (Table 5.1) is an expected
result. This total confirms that the method used by the McSheep cannot detect some
types of code clones that the PMD token-based strategy can. Figure 5.4 presents a
code clone detected only by the PMD. This pair of code snippets were extracted from
the ArgoUML system. The left side is the snippet between lines 2095 and 2124 of
the CPPLexer class. The right side is the snippet between lines 2132 and 2161 of the
same class. This example shows that the number of equal language tokens between
both sides is bigger than 100, favoring detection by the PMD token-based method.
In addition, we can notice that there are only three method calls: matchRange at
lines 2105 e 2142, matchRange again, this time at lines 2116 and 2153, and match at
lines 2121 and 2158. The total number of method calls and the maximum sequence
of method calls are three. Therefore, these code snippets do not match the McSheep
configuration criteria used.

Other important result is the 187 code clone candidates detected exclusively by
the McSheep (Table 5.1). This total reveals that the method used by the McSheep can

38 Chapter 5. Comparative Evaluation

St r ing s = text . tr im () ;
i f (s . l ength () == 0) {

return ;
}
i f (s . charAt (s . l ength () − 1) == ’ ; ’) {

s = s . sub s t r i ng (0 , s . l ength () − 2) ;
}

S t r ing name = "" ;
S t r ing bases = "" ;
St r ingToken ize r t ok en i z e r = null ;

i f (s . indexOf (" : " , 0) > −1) {
name = s . sub s t r i ng (0 , s . indexOf (" : ")) .

↪→ tr im () ;
bases = s . sub s t r i ng (s . indexOf (" : ") + 1)

↪→ . tr im () ;
} else {

name = s ;
}

t ok en i z e r = new Str ingToken ize r (bases , " , ")
↪→ ;

L i s t<Object> c l a s s i f i e r s = new ArrayList<
↪→ Object >() ;

Object ns = Model . getFacade () . getNamespace (
↪→ modelElement) ;

i f (ns != null) {
while (t ok en i z e r . hasMoreElements ()) {

St r ing newBase = token i z e r .
↪→ nextToken () ;

Object c l s = Model . getFacade () .
↪→ lookupIn (ns , newBase . tr im ())
↪→ ;

i f (c l s != null) {
c l a s s i f i e r s . add (c l s) ;

}
}

}

Model . getCommonBehaviorHelper () .
↪→ s e t C l a s s i f i e r s (modelElement ,

c l a s s i f i e r s) ;
Model . getCoreHelper () . setName (modelElement ,

↪→ name) ;

(a) Snippet code of the ComponentInstanceNotationUml
class.

S t r ing s = text . tr im () ;
i f (s . l ength () == 0) {

return ;
}
i f (s . charAt (s . l ength () − 1) == ’ ; ’) {

s = s . sub s t r i ng (0 , s . l ength () − 2) ;
}

S t r ing name = "" ;
S t r ing bases = "" ;
St r ingToken ize r t ok en i z e r = null ;

i f (s . indexOf (" : " , 0) > −1) {
name = s . sub s t r i ng (0 , s . indexOf (" : ")) .

↪→ tr im () ;
bases = s . sub s t r i ng (s . indexOf (" : ") + 1)

↪→ . tr im () ;
} else {

name = s ;
}

t ok en i z e r = new Str ingToken ize r (bases , " , ")
↪→ ;

L i s t<Object> c l a s s i f i e r s = new ArrayList<
↪→ Object >() ;

Object ns = Model . getFacade () . getNamespace (
↪→ modelElement) ;

i f (ns != null) {
while (t ok en i z e r . hasMoreElements ()) {

S t r ing newBase = token i z e r .
↪→ nextToken () ;

Object c l s = Model . getFacade () .
↪→ lookupIn (ns , newBase . tr im ())
↪→ ;

i f (c l s != null) {
c l a s s i f i e r s . add (c l s) ;

}
}

}

Model . getCommonBehaviorHelper () .
↪→ s e t C l a s s i f i e r s (modelElement ,

c l a s s i f i e r s) ;
Model . getCoreHelper () . setName (modelElement ,

↪→ name) ;

(b) Snippet code of the NodeInstanceNotationUml class.

Figure 5.3. Code clone detected in the ArgoUML by both McSheep and PMD.

detect different code clones compared to the PMD token-based strategy. Figure 5.5
presents a code clone detected only by the McSheep. This pair of code snippets were
extracted from the ArgoUML. The left side is the snippet between lines 80 and 105 of
the CrInvalidJoinTriggerOrGuard class. The right side is the snippet between lines 79
and 116 of the CrNoTriggerOrGuard class. The sequence of right side is interrupted
at line 86 and restart at line 91 (comment of line 90 in the left side is ignored by
our method). There is a new interruption at line 98 and a new restart at line 105.
These gaps presented at the right side are not enough to our method disconsider these

5.4. Threats to Validity 39

{
switch (LA(1)) {
case ’ a ’ : case ’ b ’ : case ’ c ’ : case ’ d ’ :
case ’ e ’ : case ’ f ’ : case ’ g ’ : case ’ h ’ :
case ’ i ’ : case ’ j ’ : case ’ k ’ : case ’ l ’ :
case ’m’ : case ’ n ’ : case ’ o ’ : case ’ p ’ :
case ’ q ’ : case ’ r ’ : case ’ s ’ : case ’ t ’ :
case ’ u ’ : case ’ v ’ : case ’w ’ : case ’ x ’ :
case ’ y ’ : case ’ z ’ :
{

matchRange (’ a ’ , ’ z ’) ;
break ;

}
case ’A ’ : case ’B ’ : case ’C ’ : case ’D ’ :
case ’E ’ : case ’F ’ : case ’G ’ : case ’H ’ :
case ’ I ’ : case ’ J ’ : case ’K ’ : case ’L ’ :
case ’M’ : case ’N ’ : case ’O ’ : case ’P ’ :
case ’Q ’ : case ’R ’ : case ’ S ’ : case ’T ’ :
case ’U ’ : case ’V ’ : case ’W’ : case ’X ’ :
case ’Y ’ : case ’Z ’ :
{

matchRange (’A ’ , ’Z ’) ;
break ;

}
case ’_ ’ :
{

match (’_’) ;
break ;

}
default :

(a) Snippet code (lines 2095-2124) of the CPPLexer class.

do {
switch (LA(1)) {
case ’ a ’ : case ’ b ’ : case ’ c ’ : case ’ d ’ :
case ’ e ’ : case ’ f ’ : case ’ g ’ : case ’ h ’ :
case ’ i ’ : case ’ j ’ : case ’ k ’ : case ’ l ’ :
case ’m’ : case ’ n ’ : case ’ o ’ : case ’ p ’ :
case ’ q ’ : case ’ r ’ : case ’ s ’ : case ’ t ’ :
case ’ u ’ : case ’ v ’ : case ’w ’ : case ’ x ’ :
case ’ y ’ : case ’ z ’ :
{

matchRange (’ a ’ , ’ z ’) ;
break ;

}
case ’A ’ : case ’B ’ : case ’C ’ : case ’D ’ :
case ’E ’ : case ’F ’ : case ’G ’ : case ’H ’ :
case ’ I ’ : case ’ J ’ : case ’K ’ : case ’L ’ :
case ’M’ : case ’N ’ : case ’O ’ : case ’P ’ :
case ’Q ’ : case ’R ’ : case ’ S ’ : case ’T ’ :
case ’U ’ : case ’V ’ : case ’W’ : case ’X ’ :
case ’Y ’ : case ’Z ’ :
{

matchRange (’A ’ , ’Z ’) ;
break ;

}
case ’_ ’ :
{

match (’_’) ;
break ;

}
case ’ 0 ’ : case ’ 1 ’ : case ’ 2 ’ : case ’ 3 ’ :

(b) Snippet code (lines 2132-2161) of the CPPLexer class.

Figure 5.4. Code clone detected in the ArgoUML only by the PMD.

sequences as being code clone candidate. On the other hand, the token-based method
used by the PMD does not consider this pair of code fragments as being code clones,
since the gaps have relevant weight in its detection strategy.

5.4 Threats to Validity

This section discusses some threats to validity the comparative evaluation presented in
this chapter. The threats list is by no means exhaustive. The goal here is to analyze the
procedures taken during comparative evaluation and understand, for example, possible
fails or wrong conclusions.

The comparison was performed with a single tool, PMD, which implements a
specific code clone detection strategy, namely token-based. Hence, the set of tools and
techniques are not completely representative. However, PMD is a state of practice
tool, widely used by developers. In addition, the token-based technique was not able
to detect some types of code clones detected by our method. Therefore, the subset
represented by our choice for comparison is valid, since our proposal is a complementary
method.

40 Chapter 5. Comparative Evaluation

Object dv = Model . getFacade () . getTarget (t r)
↪→ ;

i f (! (Model . getFacade () . i sAPseudostate (dv))
↪→) {
return NO_PROBLEM;

}

// WFR Trans i t i ons , OMG UML 1.3
Object k = Model . getFacade () . getKind (dv) ;
i f (! Model . getFacade () .

equalsPseudostateKind (k ,
Model . getPseudostateKind () .

↪→ getJo in ())) {
return NO_PROBLEM;

}

boolean hasTr igger =
(t != null Model . getFacade () .

↪→ getName (t) != null
Model . getFacade () . getName (t) .

↪→ l ength () > 0) ;
i f (hasTr igger) {

return PROBLEM_FOUND;
}
boolean noGuard =

(g == null
| | Model . getFacade () . ge tExpres s ion (

↪→ g) == null
| | Model . getFacade () . getBody (Model .

↪→ getFacade ()
. ge tExpres s ion (g)) == null

| | Model . getFacade () . getBody (Model .
↪→ getFacade ()

. ge tExpres s ion (g)) . t oS t r i ng
↪→ () . l ength () == 0) ;

(a) Snippet code of the CrInvalidJoinTriggerOrGuard class.

Object t a r g e t = Model . getFacade () . getTarget
↪→ (t r a n s i t i o n) ;

i f (! (Model . getFacade () . i sAPseudostate (
↪→ t a r g e t))) {
return NO_PROBLEM;

}

Object t r i g g e r = Model . getFacade () .
↪→ ge tTr igge r (t r a n s i t i o n) ;

Object guard = Model . getFacade () . getGuard (
↪→ t r a n s i t i o n) ;

Object source = Model . getFacade () . getSource
↪→ (t r a n s i t i o n) ;

// WFR Trans i t i ons , OMG UML 1.3
Object k = Model . getFacade () . getKind (t a r g e t

↪→) ;
i f (Model . getFacade () .

equalsPseudostateKind (k ,
Model . getPseudostateKind () .

↪→ getJo in ())) {
return NO_PROBLEM;

}
i f (! (Model . getFacade () . i sAState (source)))

↪→ {
return NO_PROBLEM;

}
i f (Model . getFacade () . getDoAct iv i ty (source)

↪→ != null) {
return NO_PROBLEM;

}
boolean hasTr igger =

(t r i g g e r != null
Model . getFacade () . getName (t r i g g e r)

↪→ != null
Model . getFacade () . getName (t r i g g e r)

↪→ . l ength () > 0) ;
i f (hasTr igger) {

return NO_PROBLEM;
}

boolean noGuard =
(guard == null
| | Model . getFacade () . ge tExpres s ion (

↪→ guard) == null
| | Model . getFacade () . getBody (

Model . getFacade () . ge tExpres s ion
↪→ (guard)) == null

| | Model
. getFacade () . getBody (Model .

↪→ getFacade () .
↪→ getExpres s ion (guard))

(b) Snippet code of the CrNoTriggerOrGuard class.

Figure 5.5. Code clone detected in the ArgoUML only by the McSheep.

5.5. Final Remarks 41

Fourteen Java open source projects were randomly selected from software sys-
tems. Hence, the set of selected systems are not completely representative. How-
ever, all 14 systems have been developed by various organizations and contributors,
are technically different, belong to varied domains, and provide substantially distinct
functionalities. In addition, each tool detected, commonly or exclusively, code clone
candidates, achieving our comparative proposal.

We used the default configuration for the PMD analysis, which is 100 tokens.
Since McSheep is a new tool, there is no default configuration yet. Therefore, for the
McSheep analysis, we chosen the most conservative configuration, which requires at
least a 20-10 coincident sequence of method calls for considering a code clone candidate.
Although should have ideal values for comparison, this choice seems to be fair, since
both methods achieved complementary results.

The recorded values cannot be reliable, because there may be counting errors due
to losses, duplications, or wrong case assessments. In order to minimize such counting
errors, we automated the whole process between collecting the data and outputting the
results. However, the automated process is also error prone. Therefore, for reducing
the possible fails of the automated process, we tried to cover all known cases using unit
tests, which improves the reliability of our code and results. In addition, we performed
a visual inspection, manually checking various cases for quality assurance.

The execution of both tools were done using the same machine and operating
systems. We take this specific care, although it is unlikely that the execution envi-
ronment has influence on the results. We argue that the results are deterministic, not
being influenced by performance factors.

The tools used for comparison implement methods to detect cloned code written
in Java. Although the methods may be adapted for code clone detection in systems
written using other languages, the results cannot be extended for these languages. For
now, this extension is reserved for future work.

5.5 Final Remarks

This chapter evaluates of code clone candidates detected by our method in comparison
with results of a state of the practice tool. First, we explained the candidates with the
results of each tool. In a sequence, we presented the chosen tool, called PMD, and the
reasons of this choice. Furthermore, we presented the comparison results, analyzing
the common code clones candidates found and the differences. Finally, the chapter
discussed some possible threats to validate the comparative evaluation.

42 Chapter 5. Comparative Evaluation

The chapter objective was to evaluate the method by means of a comparison with
results of a widely used tool. Chapter 6 is the next in sequence and describes a user
study in order to evaluate the group of code clone candidates detected by our method
and not by the PMD.

Chapter 6

User Study

Our method was able to detect code clone candidates not detected by the other tool,
PMD. These code clone candidates need manual inspection in order to evaluate the
results. This chapter details a user study for evaluation of code clones detected as de-
scribed in Chapter 4. The goal of this chapter is to provide an empirical validation on
top of data gathered using proposal method of Chapter 3. A survey containing 12 code
clones detected by proposed method was submitted to 25 subjects. The subjects were
asked to answer whether each pair of code is clone or not. In addition, the subjects
should explain their reason of choice. Prior to the survey, subjects filled in a character-
ization form with background profile. Moreover, survey results were analyzed against
subject profiles. In general, more than 90% of subjects agree with extracted code as
being clones. Additionally, this chapter analyzes the threats to validity this research
evaluating the most common aspects upon planning and conducting an experiment.
We discuss four categories of threats: conclusion validity, internal validity, construct
validity, and external validity.

This chapter is structured as follows. Section 6.1 provides the complete descrip-
tion of applied survey in order to evaluate code clones detected by proposal method.
Section 6.2 presents the survey results and uses graphical analyzes for correlating opin-
ions trends with subject profiles. Section 6.3 discuss threats to validity the experiment
divided in subsections for each threat category. Finally, Section 6.4 presents the final
remarks of this chapter.

43

44 Chapter 6. User Study

6.1 Study Settings

The proposed method detected code clones in different systems with different sizes.
Part of these code clones were detected exclusively by the McSheep and not detected
by the PMD. Therefore, it is necessary to validate these specific McSheep results.

“Is it code clone?” This is the question raised for each code clone extracted by
the proposed method. In the 14 systems, the method found 187 code clones that are
not detected by the PMD. In order to answer this question for these code clones, we
executed a user study. Subjects of this user study gave their opinion regarding a set of
clones. They had to decide whether a pair of methods contains code clone. In addition,
they were required to fill in a free text explaining the reason of choice. Due the high
number of clones, just a sample of them was submitted to manual inspection.

The user study was composed of 25 subjects, i.e., 25 participants. The subjects
were undergraduate and graduate students. Each subject filled in a characterization
form1. This form intends to collect profile data. The form questions were regarding
skills on the following areas: English, Object Oriented Programming, Java Program-
ming, Bad Smells, Code Clone, and General Development Experience. The characteri-
zation form asked the subjects to self-classify their skills on related areas. The options
of expertise level are Few, Moderate, or Expert. The complete characterization form is
available at Appendix A. The goal of collecting profile data is further correlation with
main survey described below.

The main survey was submitted to the subjects via specialized website2. Each
subject was invited to answer the question “Is it code clone?” for 12 code snippet pairs.
The code snippet pairs were code clones candidates detected by the proposed method.
These code snippet pairs were randomically chosen from the total amount of code
clones detected. Figure 6.1 shows the first case to be analyzed by the subjects during
survey. The set of code clones was the same for all subjects. Appendix B contains all
the survey questions formed by the 12 code snippet pairs.

All subjects received a thirty minutes training session previous starting answering
the survey. This training was divided in two parts. First, a quick background regarding
code clones. This background included an explanation about refactoring code clones
[Fowler, 1999]. Although Pull up and Extract Method are the most recommended
approaches for refactoring, only Extracted Method was exemplified due time restriction.
Since Pull Up is somehow similar to Extracted Method, this had no significant relevance
in the training.

1https://eSurv.org?u=characterizationform
2https://eSurv.org/?u=iscodeclone

6.1. Study Settings 45

Figure 6.1. Survey Case 1.

The second part of the training took care of explaining how the survey will be.
The training instructor taught the subjects regarding the survey and expected answers.
That is, for each code snippet, the subject should start answering “Yes” or “No” for
“Is it code clone?” question. At that time, an explanation regarding reason of choice
was required as well. In order to provide to the subjects the maximum information
at hand, the first steps of survey were the resume of training main points. Figure 6.2
shows the survey first step with instructions recalling what should be done in sequence.
Figure 6.3 shows the survey second step containing an example of expected analysis
of subject. In addition, the training slides were available to the subjects all the time
upon survey application.

46 Chapter 6. User Study

Figure 6.2. Survey First Step.

Figure 6.3. Survey Second Step.

Resuming, we applied a user study to examine the method detections. In a
controlled environment, 25 developers, by means of code inspection, evaluated 12 code
snippets extracted by the proposed method. The goal of this controlled experiment
is to collect information regarding how developers see the code clone pointed by our
proposal.

6.2. Results and Discussion 47

6.2 Results and Discussion

Figure 6.4 shows the subject profiles collected data. The x-axis contains columns for
each knowledge level (Few, Moderate, and Expert) per profiles. The y-axis represents
the absolute number of subjects per knowledge level. We observe that most subjects
have just few experience level in the asked areas since the majority of them are under-
graduate students.

Figure 6.4. Subject Profiles.

Figure 6.5 shows overall agreements per case. This figure is ordered from lowest
to highest agreement. That is, Case 1 of figure is not necessarily the first one in the
survey. Said that, we hereafter name cases considering the order of acceptance instead
of order of survey application.

Preliminary results show that, in general, more than 90% of subjects agree with
extracted code as being clones. Only in 2 out of 12 cases, around 50% of subjects do
not agree with the codes as being clones. Such cases are input for method algorithms
improvement. Therefore, results so far indicate that a coincident sequence of method
calls can be code clone.

We observe some relation between subject profile and trend to consider each case
as code clone or not. These relations are not meaningful for the cases which option was
total consensus (cases 11 and 12). However, for cases with certain level of disagreement
it is important to analyze. That is the Case 1, represented in Figure 6.6. This figure has

48 Chapter 6. User Study

Figure 6.5. Number of agreements per Survey Case.

the code snippet with the lowest level of acceptance. Four method calls are common
in both methods: ArrayList(), iterator(), hasNext(), and next(). They are highlighted.

Although some cases got different answers, divergent judgment express how diffi-
cult is to have an agreement regarding cases like that. Below is transcript two different
points of view for Case 1. Subjects with moderated knowledge in Object Oriented
Programming wrote both points of view:

“Yes. Although they are very different from each other, the codes do the same
thing, which is to collect all the items to the Collection. The difference is that the first
method differentiates each type that is collecting while the second method only reads. I
consider this type of cloning type 4.”

“No. Although similar, the methods do very different calculations to be extracted
to a generic method. The parameters of the methods and the objects returned are very
different from the methods.”

The subjects agree that textual code of each method is very different. However,
while the first subject considers both code as doing same computation, the second
subject does not. The point of view of each subject depends on seeing a way to
refactor the code. Therefore, in some cases it is not possible to say precisely whether
it is or not code clone only with subject judgment.

Figure 6.7 and Figure 6.8 are respectively the Code snippet 1 and Code snippet
2 that compound one of two cases with 100% of agreement. One could guess that

6.2. Results and Discussion 49

1 private Co l l e c t i on doWork(St r ing xmlMessage) throws JMSException , XMLDocumentException
↪→ , MailContentXDE . FormatterException , FinderException , Trans i t ionExcept ion {

2 ArrayList ma i l i n gL i s t = new ArrayList () ;
3 PurchaseOrderLocal po = null ;
4 OrderApproval approval = OrderApproval . fromXML(xmlMessage , entityCatalogURL ,

↪→ validateXmlOrderApproval) ;
5 Co l l e c t i on c o l l = approval . g e tOrder sL i s t () ;
6 I t e r a t o r i t = c o l l . iterator () ;
7 while (i t != null i t .hasNext ()) {
8 ChangedOrder co = (ChangedOrder) i t .next () ;
9 S t r ing sub j e c t = MAIL_SUBJECT + co . getOrderId () ;

10 po = poHome . findByPrimaryKey (co . getOrderId ()) ;
11 St r ing emai lAddress = po . getPoEmailId () ;
12 mailContentXDE . setDocument (new DOMSource(co .toDOM())) ;
13 mailContentXDE . s e tLoca l e (Loca l eUt i l . getLocaleFromStr ing (po . getPoLocale ())) ;
14 St r ing message = mailContentXDE . getDocumentAsString () ;
15 Mail mailMsg = new Mail (emailAddress , sub ject , message) ;
16 St r ing xmlMail = mailMsg . toXML() ;
17 ma i l i n gL i s t . add (xmlMail) ;
18 }
19 return mai l i n gL i s t ;
20 }
21
22 public Co l l e c t i on getAl l I t ems () {
23 Co l l e c t i on l i C o l l = getLineItems () ;
24 i f (l i C o l l == null) return (null) ;
25 ArrayList re tVal = new ArrayList () ;
26 I t e r a t o r i t = l i C o l l . iterator () ;
27 while ((i t != null) (i t .hasNext ())) {
28 LineItemLocal l o c = (LineItemLocal) i t .next () ;
29 retVal . add (l o c . getData ()) ;
30 }
31 return (re tVal) ;
32 }

Figure 6.6. Code snippet with the lowest level of acceptance.

this agreement should be a case of code clone with exact same text in each method.
However, analyzing the case we notice that is a code clone with various code changes
between methods. These changes include names of variables, order of declarations,
insertions of method calls, handling of different object types, use of conditionals in
distinct points, and even use of loop statements only in one side.

The following text is an interesting opinion regarding this case given by a subject
that considers himself as a Java Programmer with few expertise level:

“Yes. Many parts of the codes are exactly alike, with change of position between
instructions. In addition, several variables have the same name. In both codes, you
can see exactly the same instructions, connection, search parameters, creation of SQL
statement, SQL query to run, and even SQL exceptions treatment.”

The analysis above refers to generic cases, which represents the edges of agree-
ment: lowest acceptance and highest acceptance. The subjects profile do not affect
the conclusions. On the other hand, if they do, this was ignored for a while. Next
analysis tries to associate subjects profile with trends of answers. Some graphs were

50 Chapter 6. User Study

extracted from data in order to allow such analysis. The number of subjects for each
profile varies considerably. Therefore, we treat them as percentage.

We start analyzing Figure 6.9, which shows Agreement per Object Oriented Pro-
gramming expertise (OOP). The ones that have few OOP expertise tends to indicate
more code snippets as code clone, especially for Cases 3, 4, 5, and 9. Subjects with few
OOP expertise were not overcome in eight of 12 cases. This tendency can be justified
by the fact that they avoid thinking about how to refactor the clone code. Maybe they
only focus on snippets of coincidence detection.

Graph of Figure 6.10 shows how subjects with Java expertise behave when they
analyses Java code searching for clones. Some cases are pairwise in terms of tendencies.
Some examples are 5-9, 4-6-7-8. Although 2 is the opposite of 5-9 and 9, we can
interpret the trends as somehow similar. The Java Expertise seems to be an important
profile when a subject is deciding about code clones and the way they can be refactored.

Some trends deserve special attempting. That is the graph represented in Fig-
ure 6.11. That case compares the agreement per case for Bad Smell Expertise. Subjects
that consider themselves as expert in Bad Smell gave unanimous opinion for all cases,
regardless of these opinions being positive or negative.

No subjects self-evaluate themselves as code duplication expert. Figure 6.12
shows this phenomenal as a graph. However, there is a tendency of subjects with few
expertise consider code snippets of survey as code clone. We can observe in the graph

1 public Category getCategory (S t r ing categoryID , Loca le l o c a l e) throws
↪→ CatalogDAOSysException {

2 Connection connect ion = null ;
3 Resu l tSet r e s u l t S e t = null ;
4 PreparedStatement statement = null ;
5 try {
6 connect ion = getDataSource () .getConnection () ;
7 S t r ing [] parameterValues = new St r ing [] { l o c a l e . toString () , categoryID } ;
8 i f (TRACE) {
9 printSQLStatement(sq lStatements , XML_GET_CATEGORY, parameterValues) ;

10 }
11 statement = buildSQLStatement(connect ion , sq lStatements , XML_GET_CATEGORY,

↪→ parameterValues) ;
12 r e s u l t S e t = statement . executeQuery () ;
13 i f (r e s u l t S e t . f i r s t ()) {
14 return new Category (categoryID , r e s u l t S e t . g e tS t r i ng (1) , r e s u l t S e t .

↪→ ge tS t r i ng (2)) ;
15 }
16 return null ;
17 } catch (SQLException except ion) {
18 throw new CatalogDAOSysException("SQLException : " + except ion .getMessage ()) ;
19 } f ina l ly {
20 closeAll(connect ion , statement , r e s u l t S e t) ;
21 }
22 }

Figure 6.7. Code 1: One of two cases with 100% of agreement.

6.2. Results and Discussion 51

1 public Page getProducts (S t r ing categoryID , int s t a r t , int count , Loca le l o c a l e) throws
↪→ CatalogDAOSysException {

2 Connection connect ion = null ;
3 PreparedStatement statement = null ;
4 Resu l tSet r e s u l t S e t = null ;
5 try {
6 connect ion = getDataSource () .getConnection () ;
7 S t r ing [] parameterValues = new St r ing [] { l o c a l e . toString () , categoryID } ;
8 i f (TRACE) {
9 printSQLStatement(sq lStatements , XML_GET_PRODUCTS, parameterValues) ;

10 }
11 statement = buildSQLStatement(connect ion , sq lStatements , XML_GET_PRODUCTS,

↪→ parameterValues) ;
12 r e s u l t S e t = statement . executeQuery () ;
13 i f (s t a r t >= 0 r e s u l t S e t . abso lu t e (s t a r t + 1)) {
14 boolean hasNext = fa l se ;
15 L i s t products = new ArrayList () ;
16 do {
17 products . add (new Product (r e s u l t S e t . g e tS t r i ng (1) . tr im () , r e s u l t S e t .

↪→ ge tS t r i ng (2) , r e s u l t S e t . g e tS t r i ng (3))) ;
18 } while ((hasNext = r e s u l t S e t . next ()) (−−count > 0)) ;
19 return new Page (products , s t a r t , hasNext) ;
20 }
21 return Page .EMPTY_PAGE;
22 } catch (SQLException except ion) {
23 throw new CatalogDAOSysException("SQLException : " + except ion .getMessage ()) ;
24 } f ina l ly {
25 closeAll(connect ion , statement , r e s u l t S e t) ;
26 }
27 }

Figure 6.8. Code 2: One of two cases with 100% of agreement.

that only in two cases, 2 and 10, there was a superior acceptance by moderate expertise
subjects in comparison with few expertise ones. The conclusion for Figure 6.12 is similar
to of Figure 6.9, that is, more expertise, more caution.

All previous graphs reveals different point of view for Cases 5, 6, and 7. However,
all four experts in development subjects completely agreed with such cases as being code
clone. This can be observed in graph of Figure 6.13. Those cases have in common only
the use of try/catch blocks. Probably, the subjects found the same way to refactoring
this code.

That is interesting to see how background has influence in the way of thinking.
Overall discussion regarding relationship between a subject profile and tendency of
agreement with code clone is reserved for future work.

52 Chapter 6. User Study

Figure 6.9. Agreement per Object Oriented Programming Expertise.

Figure 6.10. Percentage of agreement per Java Expertise.

6.2. Results and Discussion 53

Figure 6.11. Percentage of agreement per Bad Smell Expertise.

Figure 6.12. Percentage of agreement per Code Duplication Expertise.

54 Chapter 6. User Study

Figure 6.13. Percentage of agreement per Development Expertise.

6.3. Threats to Validity 55

6.3 Threats to Validity

Since the user study involves several steps, the various threats to its validity needs
analysis. This analysis allows us to validate the results for the selected code clone
cases directly submitted to user study participants and expand to the entire set of
code clones found by the method in action. Therefore, we analyzed whether the results
can be generalized to a broader population. We discuss four categories of threats:
construct validity, internal validity, external validity, and conclusion validity [Wohlin
et al., 2012].

6.3.1 Construct Validity

Fourteen Java open source projects were randomly selected from software systems.
Hence, the set of selected systems are not completely representative. However, all 14
systems have been developed by various organizations and contributors, are technically
different, belong to varied domains, and provide substantially distinct functionalities.

6.3.2 Internal Validity

Our qualitative research method does not guarantee completeness of our results. Most
of the results depend on the selected participants opinion and experience. However,
we applied other code clone detection tools in order to avoid any infeasibility in our
study. Furthermore, the authors know the benchmark of systems.

6.3.3 External Validity

We cannot claim that our findings can be held true for other software projects with
larger size. Then, more studies on other systems are necessary to validate our find-
ings. The subjects of our user study are students with different profiles. The use of
students in experiments can directly influence the results, making the generality of our
study be limited. However, works in the literature using students in experiments claim
that the results of experiments with students are similar to the results of experienced
professionals [Salman et al., 2015], so that the results are reliable with reality. The
result shows that our approach is able to detect clones that are missed by other tools.
Moreover, our approach misses clones detected by other tools. Therefore, we consider
our method as a complementary approach to improve the state-of-art of clone detection
mechanisms.

56 Chapter 6. User Study

6.3.4 Conclusion Validity

Based on our data, we may conclude that there is a positive relationship regarding
whether or not it is code clone. That is, subjects with higher knowledge in some fields
tend to have a more critical view than those with lower knowledge, presenting the
relationship between theory and observation. These threats to validity were mitigated
because the authors have read the justifications of subjects. Thus, the conclusions are
solidified in the justifications presented by the subjects in an experimental form.

6.4 Final Remarks

This chapter described the user study for evaluation of code clones detected which had
25 subjects with different developer profiles. First, we explained how code clones were
selected for survey. In a sequence, we detailed the user study settings, which includes
subjects training about code clones. Furthermore, we presented the survey application
methodology, expected answers, and goals to achieve.

Continuing the chapter, it was presented the survey results with more than 90%
of subjects agreeing with extracted code as being clones. The results were analyzed by
means of graphs correlating subject profiles with given answers.

Finally, the chapter presented the possible threats to validate the user study.
The chapter objective was to validate the real data collected with a group of

developers responsible for analyzing whether code clones detected are valid or not.
Chapter 7, the next in sequence, points the conclusions of this work and includes
discussions for future work.

Chapter 7

Conclusions and Future Work

In this research, we proposed a method to detect code clone using method calls analysis.
The strategy was to find coincident sequence of method calls in different points of a
system. Given a configured size, the coincident sequence of different method calls in two
or more methods was a code clone detected. The proposed method was implemented
by a tool, called McSheep. The proposed method was able to detect code clones
using different configurations. For instance, McSheep detected 343 code clones with a
sequence of at least 20 coincident method calls.

The same systems were submitted to analysis of another code clone detection
tool, called PMD. The code clones detected by the PMD were compared to our method
results. The code clones were categorized in three groups: the ones detected by both
tools, the ones detected exclusively by the PMD, and the ones detected exclusively by
the McSheep. The comparative evaluation indicated that both tools could be used in
a hybrid strategy.

In order to evaluate the code clones detected exclusively by the proposed method
and not detected by the PMD, a user study was conducted. In a controlled environment,
25 developers by means of code inspection evaluated code clones extracted by our
method. The preliminary results show that, in general, more than 90% of subjects
agree with the code clones presented. Only in 2 out of 12 cases, around 50% of subjects
do not agree with the method results. Therefore, results so far indicate that method
calls analysis is a valid strategy for detecting code clones.

The main contribution of this paper are:

• to propose a new technique to detect code clones using method calls analysis.
Variables, operations, and control statements are ignored during analysis, which
focus exclusively in method calls. This method is somehow different of other

57

58 Chapter 7. Conclusions and Future Work

techniques, being a complementary way of finding code clones using hybrid de-
tection;

• to create a tool that implements the proposed method, making it available a free
for downloading at http://ampaiva.github.io/mcsheep/;

• to compare the method results with a state of practice tool, called PMD;

• to conduct a user study with developers in order to evaluate the code clones
found exclusively by our method.

Upon finishing this dissertation, we found many directions for future work. The
list below is far from being exhaustive, presenting only some insights about what we
or others interested in this subject can do from now on:

• provide a way to find the sequence size parameters that best fit a specific project.
The approach taken here is most an empirical evaluation and the values used
were the same for all analyzed projects. However, we believe that a research can
determine a better choice according to the project characteristics;

• extend the research to other languages than Java;

• expand the analysis of private methods calls. Since private methods can only be
called locally, this call is never identical in code clones and always interrupts an
identical sequence of method calls;

• create a comparative study with other code clone detection methods, pointing
the main advantages of each one and indicating possible uses as hybrid solutions;

• apply a new user study with more subjects, focusing in which type of code clone
candidate is more likely and unlikely to be considered code clone.

Bibliography

Altman, D. G. (1991). Practical Statistics for Medical Research. Chapman & Hall.

Baxter, I. D., Yahin, A., Moura, L., SantAnna, M., and Bier, L. (1998). Clone detection
using abstract syntax trees. In Proceedings of International Conference on Software
Maintenance (ICSM).

Bellon, S., Koschke, R., Antoniol, G., Krinke, J., and Merlo, E. (2007). Comparison
and evaluation of clone detection tools. IEEE Transactions on Software Engineering
(TSE), pages 577--591.

Burd, E. and Bailey, J. (2002). Evaluating clone detection tools for use during pre-
ventative maintenance. In Proceedings of the 2nd IEEE International Workshop on
Source Code Analysis and Manipulation (SCAM), pages 36--43.

Ducasse, S., Rieger, M., and Demeyer, S. (1999). A language independent approach for
detecting duplicated code. IEEE International Conference on Software Maintenance
(ICSM).

Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Addison
Wesley.

Gabel, M., Jiang, L., and Su, Z. (2008). Scalable detection of semantic clones. In
Proceedings of the 30th International Conference on Software Engineering (ICSE),
pages 321--330.

Gamma, E., Helm, R., Johnson, R., and J.Vlissides (1994). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley.

Göde, N. and Koschke, R. (2011). Frequency and risks of changes to clones. Interna-
tional Conference Software Engineering (ICSE), pages 311--320.

Gwet, K. (2014). Handbook of Inter-Rater Reliability: The Definite guide to Measuring
the Extent of Agreement Among Raters. Advanced Analytics, USA.

59

60 Bibliography

Hummel, B., Juergens, E., Heinemann, L., and Conradt, M. (2010). Index-based code
clone detection: incremental, distributed, scalable. In Proceedings of International
Conference on Software Maintenance (ICSM), pages 1--9. IEEE.

JBoss (2016). Jboss. http://www.jboss.org/. Accessed: 2016-03-29.

Johnson, J. H. (1993). Identifying redundancy in source code using fingerprints. In
Proceedings of the Conference of the Centre for Advanced Studies on Collaborative
research: Software Engineering, pages 171--183. IBM Press.

Keivanloo, I., Rilling, J., and Zou, Y. (2014). Spotting working code examples. In
Proceedings of the 36th International Conference on Software Engineering (ICSE),
pages 664--675.

Khan, M., Roy, C., and Schneider, K. (2014). Active clones: Source code clones
at runtime. Proceedings of the Eighth International Workshop on Software Clones
(IWSC).

Komondoor, R. and Horwitz, S. (2001). Using slicing to identify duplication in source
code. In Eigth International Static Analysis Symposium (SAS), pages 40--56.

Kontogiannis, K. (1997). Evaluation experiments on the detection of programming
patterns using software metrics. In Proceedings of the 3rd Working Conference on
Reverse Engineering (WCRE), pages 44--54.

Koschke, R., Falke, R., and Frenzel, P. (2006). Clone detection using abstract syntax
suffix trees. Working Conference Reverse Engineering (WCRE), pages 253--262.

Krinke, J. (2001). Identifying similar code with program dependence graphs. In Pro-
ceedings of the 8th Working Conference on Reverse Engineering, pages 301--309.

Marinescu, R. (2004). Detection strategies: Metrics-based rules for detecting design
flaws. In Proceedings of International Conference on Software Maintenance (ICSM),
pages 350--359.

Mondal, M., Roy, C., and Schneider, K. (2014). Late propagation in near-miss clones:
An empirical study. Proceedings of the Eighth International Workshop on Software
Clones (IWSC).

Oliveira, J., Fernandes, E., and Figueiredo, E. (2015). Evaluation of duplicated code
detection tools in cross-project context. In 3rd Workshop on Software Visualization,
Maintenance, and Evolution (VEM), pages 49–56.

http://www.jboss.org/

Bibliography 61

Paiva, A. and Figueiredo, E. (2014). Do concern metrics support code clone detection?
In 11th Workshop on Software Modularity (WMOD), pages 130–136.

PMD (2002). Pmd. https://pmd.github.io/. Accessed: 2016-03-29.

Rattan, D., Bhatia, R., and Singh, M. (2013). Software clone detection: a systematic
review. Information and Software Technology (IST).

Roy, C. K. and Cordy, J. R. (2009). A mutation/injection-based automatic frame-
work for evaluating code clone detection tools. In Software Testing, Verification
and Validation Workshops, 2009. ICSTW ’09. International Conference on, pages
157–166.

Roy, C. K., Cordy, J. R., and Koschke, R. (2009). Comparison and evaluation of
code clone detection techniques and tools: A qualitative approach. Sci. Comput.
Program., 74(7):470--495. ISSN 0167-6423.

Rutar, N., Almazan, C., and Foster, J. (2004). A comparison of bug finding tools
for java. In Software Reliability Engineering, 2004. ISSRE 2004. 15th International
Symposium on, pages 245–256. ISSN 1071-9458.

Salman, I., Misirli, A., and Juristo, N. (2015). Are students representatives of profes-
sionals in software engineering experiments? In Software Engineering (ICSE), 2015
IEEE/ACM 37th IEEE International Conference on, volume 1, pages 666–676.

Vidal, S. A., Bergel, A., Marcos, C., and Díaz-Pace, J. A. (2015). Understanding
and addressing exhibitionism in java empirical research about method accessibility.
Empirical Software Engineering, pages 1--34.

Wahler, V., Seipel, D., Wolff, J., and Fischer, G. (2004). Clone detection in source
code by frequent itemset techniques. In Source Code Analysis and Manipulation,
2004. Fourth IEEE International Workshop on, pages 128–135.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., and Wesslén, A. (2012).
Experimentation in software engineering. Springer, Norwell, MA, USA.

https://pmd.github.io/

Appendix A

Characterization Form

The characterization form is available online at
https://eSurv.org?u=characterizationform.

Figure A.1. Characterization Form

63

Appendix B

Survey Questions

This appendix contains all questions of survey described in Section 6.1.

public Node toDOM(Document document) {
Element root = document . createElement (XML_PURCHASEORDER) ;
root . s e tAt t r i bu t e (XML_LOCALE, l o c a l e . t oS t r i ng ()) ;
XMLDocumentUtils . appendChild (document , root , XML_ORDERID, order Id) ;
XMLDocumentUtils . appendChild (document , root , XML_USERID, use r Id) ;
XMLDocumentUtils . appendChild (document , root , XML_EMAILID, emai l Id) ;
XMLDocumentUtils . appendChild (document , root , XML_ORDERDATE, dateFormat . format (

↪→ orderDate)) ;
Element element = (Element) document . createElement (XML_SHIPPINGINFO) ;
element . appendChild (sh ipp ing In f o .toDOM(document)) ;
root . appendChild (element) ;
e lement = (Element) document . createElement (XML_BILLINGINFO) ;
element . appendChild (b i l l i n g I n f o .toDOM(document)) ;
root . appendChild (element) ;
XMLDocumentUtils . appendChild (document , root , XML_TOTALPRICE, t o t a lP r i c e) ;
root . appendChild (cred i tCard .toDOM(document)) ;
for (I t e r a t o r i = l i n e I t ems . i t e r a t o r () ; i . hasNext () ;) {

LineItem l ine I t em = (LineItem) i . next () ;
root . appendChild (l i n e I t em .toDOM(document)) ;

}
return root ;

}

public Node toDOM(Document document) {
Element root = document . createElement (XML_LINEITEM) ;
XMLDocumentUtils . appendChild (document , root , XML_CATEGORYID, categoryId) ;
XMLDocumentUtils . appendChild (document , root , XML_PRODUCTID, productId) ;
XMLDocumentUtils . appendChild (document , root , XML_ITEMID, itemId) ;
XMLDocumentUtils . appendChild (document , root , XML_LINENUM, lineNumber) ;
XMLDocumentUtils . appendChild (document , root , XML_QUANTITY, quant i ty) ;
XMLDocumentUtils . appendChild (document , root , XML_UNITPRICE, un i tPr i c e) ;
return root ;

}

Figure B.1. Question 1.

65

66 Appendix B. Survey Questions

public stat ic void main (St r ing [] a rgs) {
i f (args . l ength <= 1) {

St r ing f i leName = args . l ength > 0 ? args [0] : " Invo i c e . xml" ;
try {

TPAInvoiceXDE invoiceXDE = new TPAInvoiceXDE () ;
invoiceXDE . setDocument (new StreamSource (new Fi leInputStream (new F i l e (

↪→ f i leName)) , f i leName)) ;
System . e r r . p r i n t l n (" f i leName : " + fi leName + " , order Id=" + invoiceXDE .

↪→ getOrderId () + " l i n e I t emId s=" + invoiceXDE . getL ineI temIds ()) ;
System . e x i t (0) ;

} catch (IOException except ion) {
System . e r r . p r i n t l n (except ion) ;
System . e x i t (2) ;

} catch (XMLDocumentException except ion) {
System . e r r . p r i n t l n (except ion . getRootCause ()) ;
System . e x i t (2) ;

}
}
System . e r r . p r i n t l n ("Usage : " + TPAInvoiceXDE . class . getName () + " [f i l e −name] ") ;
System . e x i t (1) ;

}

public stat ic void main (St r ing [] a rgs) {
i f (args . l ength <= 1) {

St r ing f i leName = args . l ength > 0 ? args [0] : "Mail . xml" ;
try {

Mail mail = Mail . fromXML(new StreamSource (new Fi leInputStream (new F i l e (
↪→ f i leName)) , f i leName)) ;

System . out . p r i n t l n (Mail . fromXML(mail . toXML()) . getContent ()) ;
System . e x i t (0) ;

} catch (IOException except ion) {
System . e r r . p r i n t l n (except ion) ;
System . e x i t (2) ;

} catch (XMLDocumentException except ion) {
System . e r r . p r i n t l n (except ion . getRootCause ()) ;
System . e x i t (2) ;

}
}
System . e r r . p r i n t l n ("Usage : " + Mail . class . getName () + " [f i l e −name] ") ;
System . e x i t (1) ;

}

Figure B.2. Question 2.

67

private Co l l e c t i on doWork(St r ing xmlMessage) throws JMSException , XMLDocumentException
↪→ , MailContentXDE . FormatterException , FinderException , Trans i t ionExcept ion {
ArrayList ma i l i n gL i s t = new ArrayList () ;
PurchaseOrderLocal po = null ;
OrderApproval approval = OrderApproval . fromXML(xmlMessage , entityCatalogURL ,

↪→ validateXmlOrderApproval) ;
Co l l e c t i on c o l l = approval . g e tOrder sL i s t () ;
I t e r a t o r i t = c o l l . i t e r a t o r () ;
while (i t != null i t . hasNext ()) {

ChangedOrder co = (ChangedOrder) i t . next () ;
S t r ing sub j e c t = MAIL_SUBJECT + co . getOrderId () ;
po = poHome . findByPrimaryKey (co . getOrderId ()) ;
S t r ing emai lAddress = po . getPoEmailId () ;
mailContentXDE . setDocument (new DOMSource(co .toDOM())) ;
mailContentXDE . s e tLoca l e (Loca l eUt i l . getLocaleFromStr ing (po . getPoLocale ())) ;
S t r ing message = mailContentXDE . getDocumentAsString () ;
Mail mailMsg = new Mail (emailAddress , sub ject , message) ;
S t r ing xmlMail = mailMsg . toXML() ;
ma i l i n gL i s t . add (xmlMail) ;

}
return mai l i n gL i s t ;

}

public Co l l e c t i on getAl l I t ems () {
Co l l e c t i on l i C o l l = getLineItems () ;
i f (l i C o l l == null) return (null) ;
ArrayList re tVal = new ArrayList () ;
I t e r a t o r i t = l i C o l l . i t e r a t o r () ;
while ((i t != null) (i t . hasNext ())) {

LineItemLocal l o c = (LineItemLocal) i t . next () ;
r e tVal . add (l o c . getData ()) ;

}
return (re tVal) ;

}

Figure B.3. Question 3.

68 Appendix B. Survey Questions

public Co l l e c t i on getAl l I t ems () {
Co l l e c t i on l i C o l l = getLineItems () ;
i f (l i C o l l == null) return (null) ;
ArrayList re tVal = new ArrayList () ;
I t e r a t o r i t = l i C o l l . i t e r a t o r () ;
while ((i t != null) (i t . hasNext ())) {

LineItemLocal l o c = (LineItemLocal) i t . next () ;
r e tVal . add (l o c . getData ()) ;

}
return (re tVal) ;

}

public Co l l e c t i on processPendingPO () throws FinderException {
ArrayList i n v o i c e s = new ArrayList () ;
Co l l e c t i on c o l l = supplierOrderLocalHome . f indOrdersByStatus (OrderStatusNames .

↪→ PENDING) ;
i f (c o l l != null) {

I t e r a t o r i t = c o l l . i t e r a t o r () ;
while ((i t != null) (i t . hasNext ())) {

Suppl i e rOrderLoca l order = (Suppl i e rOrderLoca l) i t . next () ;
S t r ing newInvoice = null ;
try {

newInvoice = processAnOrder (order) ;
} catch (XMLDocumentException xe) {

System . out . p r i n t l n ("OrderFul f i l lmentFacade : " + xe) ;
}
i f (newInvoice != null) {

i n v o i c e s . add (newInvoice) ;
}

}
}
return i n v o i c e s ;

}

Figure B.4. Question 4.

69

public Category getCategory (S t r ing categoryID , Loca le l o c a l e) throws
↪→ CatalogDAOSysException {
Connection connect ion = null ;
Resu l tSet r e s u l t S e t = null ;
PreparedStatement statement = null ;
try {

connect ion = getDataSource () . getConnect ion () ;
S t r ing [] parameterValues = new St r ing [] { l o c a l e . t oS t r i ng () , categoryID } ;
i f (TRACE) {

printSQLStatement (sq lStatements , XML_GET_CATEGORY, parameterValues) ;
}
statement = buildSQLStatement (connect ion , sq lStatements , XML_GET_CATEGORY,

↪→ parameterValues) ;
r e s u l t S e t = statement . executeQuery () ;
i f (r e s u l t S e t . f i r s t ()) {

return new Category (categoryID , r e s u l t S e t . g e tS t r i ng (1) , r e s u l t S e t .
↪→ ge tS t r i ng (2)) ;

}
return null ;

} catch (SQLException except ion) {
throw new CatalogDAOSysException ("SQLException : " + except ion . getMessage ()) ;

} f ina l ly {
c l o s eA l l (connect ion , statement , r e s u l t S e t) ;

}
}

public Page getProducts (S t r ing categoryID , int s t a r t , int count , Loca le l o c a l e) throws
↪→ CatalogDAOSysException {
Connection connect ion = null ;
PreparedStatement statement = null ;
Resu l tSet r e s u l t S e t = null ;
try {

connect ion = getDataSource () . getConnect ion () ;
S t r ing [] parameterValues = new St r ing [] { l o c a l e . t oS t r i ng () , categoryID } ;
i f (TRACE) {

printSQLStatement (sq lStatements , XML_GET_PRODUCTS, parameterValues) ;
}
statement = buildSQLStatement (connect ion , sq lStatements , XML_GET_PRODUCTS,

↪→ parameterValues) ;
r e s u l t S e t = statement . executeQuery () ;
i f (s t a r t >= 0 r e s u l t S e t . abso lu t e (s t a r t + 1)) {

boolean hasNext = fa l se ;
L i s t products = new ArrayList () ;
do {

products . add (new Product (r e s u l t S e t . g e tS t r i ng (1) . tr im () , r e s u l t S e t .
↪→ ge tS t r i ng (2) , r e s u l t S e t . g e tS t r i ng (3))) ;

} while ((hasNext = r e s u l t S e t . next ()) (−−count > 0)) ;
return new Page (products , s t a r t , hasNext) ;

}
return Page .EMPTY_PAGE;

} catch (SQLException except ion) {
throw new CatalogDAOSysException ("SQLException : " + except ion . getMessage ()) ;

} f ina l ly {
c l o s eA l l (connect ion , statement , r e s u l t S e t) ;

}
}

Figure B.5. Question 5.

70 Appendix B. Survey Questions

public void showMediaList (S t r ing recordName , boolean sor t , boolean f a v o r i t e) {
i f (recordName == null) recordName = getCurrentStoreName () ;
MediaContro l l er mediaContro l l e r = new MediaContro l l er (midlet , getAlbumData () , (

↪→ AlbumListScreen) getAlbumListScreen ()) ;
mediaContro l l e r . s e tNextCont ro l l e r (this) ;
MediaListScreen mediaList = null ;
i f (getAlbumData () instanceof ImageAlbumData) mediaList = new MediaListScreen (

↪→ MediaListScreen .SHOWPHOTO) ;
i f (getAlbumData () instanceof MusicAlbumData) mediaList = new MediaListScreen (

↪→ MediaListScreen .PLAYMUSIC) ;
i f (getAlbumData () instanceof VideoAlbumData) mediaList = new MediaListScreen (

↪→ MediaListScreen .PLAYVIDEO) ;
mediaList . setCommandListener (mediaContro l l e r) ;
mediaList . initMenu () ;
MediaData [] medias = null ;
try {

medias = getAlbumData () . getMedias (recordName) ;
} catch (UnavailablePhotoAlbumException e) {

Aler t a l e r t = new Aler t ("Error " , "The l i s t o f i tems can not be recovered " ,
↪→ null , AlertType .ERROR) ;

Display . ge tDi sp lay (midlet) . se tCurrent (a l e r t , Display . getDi sp lay (mid let) .
↪→ getCurrent ()) ;

return ;
}
i f (medias == null) return ;
i f (s o r t) {

bubbleSort (medias) ;
}
for (int i = 0 ; i < medias . l ength ; i++) {

i f (medias [i] != null) {
i f (f a v o r i t e) {

i f (medias [i] . i s F avo r i t e ()) mediaList . append (medias [i] . getMediaLabel ()
↪→ , null) ;

} else mediaList . append (medias [i] . getMediaLabel () , null) ;
}

}
setCurrentScreen (mediaList) ;

}

private boolean playVideoMedia (S t r ing selectedMediaName) {
InputStream storedMusic = null ;
try {

MediaData mymedia = getAlbumData () . getMediaInfo (selectedMediaName) ;
incrementCountViews (selectedMediaName) ;
i f (mymedia instanceof MultiMediaData) {

storedMusic = ((VideoAlbumData) getAlbumData ()) . getVideoFromRecordStore (
↪→ getCurrentStoreName () , selectedMediaName) ;

PlayVideoScreen p l ay s c r e e = new PlayVideoScreen (midlet , storedMusic , ((
↪→ MultiMediaData) mymedia) . getTypeMedia () , this) ;

p l ay s c r e e . s e tV i s i b l eV id eo () ;
P layVideoContro l l e r c o n t r o l l e r = new PlayVideoContro l l e r (midlet ,

↪→ getAlbumData () , (AlbumListScreen) getAlbumListScreen () , p l ay s c r e e) ;
c o n t r o l l e r . setMediaName (selectedMediaName) ;
this . s e tNextCont ro l l e r (c o n t r o l l e r) ;

}
return true ;

} catch (ImageNotFoundException e) {
Aler t a l e r t = new Aler t ("Error " , "The s e l e c t e d item was not found in the

↪→ mobile dev i c e " , null , AlertType .ERROR) ;
Display . ge tDi sp lay (midlet) . se tCurrent (a l e r t , Display . getDi sp lay (mid let) .

↪→ getCurrent ()) ;
return fa lse ;

} catch (Pers istenceMechanismException e) {
Aler t a l e r t = new Aler t ("Error " , "The mobile database can open t h i s item 1" ,

↪→ null , AlertType .ERROR) ;
Display . ge tDi sp lay (midlet) . se tCurrent (a l e r t , Display . getDi sp lay (mid let) .

↪→ getCurrent ()) ;
return fa lse ;

}
}

Figure B.6. Question 6.

71

public I t e ra to rDsk g e t S p e c i a l i t y L i s t () throws RepositoryExcept ion ,
↪→ ObjectNotFoundException {
L i s t l i s t aE sp = new ArrayList () ;
S t r ing s q l = "SELECT ∗ FROM SCBS_especialidade" ;
Resu l tSet r s = null ;
try {

Statement stmt = (Statement) this .mp. getCommunicationChannel () ;
r s = stmt . executeQuery (s q l) ;
i f (! r s . next ()) {

throw new ObjectNotFoundException ("") ;
}
do {

Med i c a l Spe c i a l i t y esp = search ((new I n t eg e r (r s . g e tS t r i ng (" codigo "))) .
↪→ intValue ()) ;

l i s t aE sp . add (esp) ;
} while (r s . next ()) ;
r s . c l o s e () ;
stmt . c l o s e () ;

} catch (Pers istenceMechanismException e) {
throw new Repos i toryExcept ion (ExceptionMessages .EXC_FALHA_PROCURA) ;

} catch (SQLException e) {
throw new Repos i toryExcept ion (ExceptionMessages .EXC_FALHA_PROCURA) ;

} f ina l ly {
try {

mp. releaseCommunicationChannel () ;
} catch (Pers istenceMechanismException e) {

throw new Per s i s t enc eSo f tExcep t i on (e) ;
}

}
return new Conc r e t e I t e r a t o r (l i s t aE sp) ;

}

public I t e ra to rDsk getDiseaseTypeLis t () throws RepositoryExcept ion ,
↪→ ObjectNotFoundException {
L i s t l i s t a t d = new ArrayList () ;
S t r ing s q l = "SELECT ∗ FROM SCBS_tipodoenca" ;
Resu l tSet r s = null ;
try {

Statement stmt = (Statement) this .mp. getCommunicationChannel () ;
r s = stmt . executeQuery (s q l) ;
i f (! r s . next ()) {

throw new ObjectNotFoundException (ExceptionMessages .EXC_FALHA_PROCURA) ;
}
do {

DiseaseType td = pa r t i a l S e a r ch ((new I n t eg e r (r s . g e tS t r i ng (" codigo "))) .
↪→ intValue ()) ;

l i s t a t d . add (td) ;
} while (r s . next ()) ;
r s . c l o s e () ;
stmt . c l o s e () ;

} catch (Pers istenceMechanismException e) {
e . pr intStackTrace () ;
throw new Repos i toryExcept ion (ExceptionMessages .EXC_FALHA_BD) ;

} catch (SQLException e) {
System . out . p r i n t l n (s q l) ;
e . pr intStackTrace () ;
throw new Repos i toryExcept ion (ExceptionMessages .EXC_FALHA_BD) ;

}
return new Conc r e t e I t e r a t o r (l i s t a t d) ;

}

Figure B.7. Question 7.

72 Appendix B. Survey Questions

public void updateComplaint (Complaint complaint) throws Transact ionException ,
↪→ RepositoryExcept ion , ObjectNotFoundException , ObjectNotVal idException {
try {

getPm () . beg inTransact ion () ;
complaintRecord . update (complaint) ;
getPm () . commitTransaction () ;

} catch (Repos i toryExcept ion e) {
getPm () . r o l l backTransac t i on () ;
throw e ;

} catch (ObjectNotFoundException e) {
getPm () . r o l l backTransac t i on () ;
throw e ;

} catch (Transact ionExcept ion e) {
getPm () . r o l l backTransac t i on () ;
throw e ;

} catch (Exception e) {
getPm () . r o l l backTransac t i on () ;

}
}

public void update (Employee employee) throws Transact ionException , Repos itoryExcept ion
↪→ , ObjectNotFoundException , ObjectNotVal idException {
try {

getPm () . beg inTransact ion () ;
employeeRecord . update (employee) ;
getPm () . commitTransaction () ;

} catch (Transact ionExcept ion e) {
getPm () . r o l l backTransac t i on () ;
throw e ;

} catch (ObjectNotVal idException e) {
getPm () . r o l l backTransac t i on () ;
throw e ;

} catch (ObjectNotFoundException e) {
getPm () . r o l l backTransac t i on () ;
throw e ;

} catch (Exception e) {
getPm () . r o l l backTransac t i on () ;

}
}

Figure B.8. Question 8.

73

public stat ic Schedule s t r ingToHorar io (S t r ing hora r i oSt r , int formato) throws
↪→ Inva l idDateExcept ion {
St r ing segundoStr = null , minutoStr = null , horaStr = null ;
Schedule ho ra r i o = null ;
try {

switch (formato) {
case (Schedule .FORMATO1) :

horaStr = ho ra r i oS t r . sub s t r i ng (0 , 2) ;
minutoStr = ho ra r i oS t r . s ub s t r i ng (3 , 5) ;
segundoStr = ho ra r i oS t r . sub s t r i ng (6 , 8) ;
break ;

case (Schedule .FORMATO2) :
segundoStr = ho ra r i oS t r . sub s t r i ng (0 , 2) ;
minutoStr = ho ra r i oS t r . s ub s t r i ng (2 , 4) ;
horaStr = ho ra r i oS t r . sub s t r i ng (4 , 6) ;
break ;

default :
ho ra r i o = null ;
break ;

}
ho ra r i o = new Schedule (segundoStr , minutoStr , horaStr) ;

} catch (Exception nb) {
throw new Inva l idDateExcept ion (ho ra r i oS t r) ;

}
return hora r i o ;

}

public stat ic Date stringToData (S t r ing dataStr , int formato) throws
↪→ Inva l idDateExcept ion {
St r ing diaStr , mesStr , anoStr ;
S t r ing minutoStr , segundoStr , horaStr ;
Date data = null ;
try {

switch (formato) {
case (FORMATO1) :

d i aSt r = dataStr . sub s t r i ng (0 , 2) ;
mesStr = dataStr . sub s t r i ng (3 , 5) ;
anoStr = dataStr . s ub s t r i ng (6 , 10) ;
data = new Date (d iaStr , mesStr , anoStr) ;
break ;

case (FORMATO2) :
d i aSt r = dataStr . sub s t r i ng (0 , 2) ;
mesStr = dataStr . sub s t r i ng (3 , 5) ;
anoStr = dataStr . s ub s t r i ng (6 , 10) ;
horaStr = dataStr . s ub s t r i ng (11 , 13) ;
minutoStr = dataStr . s ub s t r i ng (14 , 16) ;
segundoStr = dataStr . sub s t r i ng (17 , 19) ;
data = new Date (segundoStr , minutoStr , horaStr , d iaStr , mesStr , anoStr

↪→) ;
break ;

case (FORMATO3) :
d i aSt r = dataStr . sub s t r i ng (0 , 2) ;
mesStr = dataStr . sub s t r i ng (2 , 4) ;
anoStr = dataStr . s ub s t r i ng (4 , 8) ;
break ;

default :
data = null ;
break ;

}
} catch (Exception nb) {

throw new Inva l idDateExcept ion (dataStr) ;
}
return data ;

}

Figure B.9. Question 9.

74 Appendix B. Survey Questions

public Page getItems (St r ing productID , int s t a r t , int count , Loca le l o c a l e) throws
↪→ CatalogDAOSysException {
Connection connect ion = null ;
PreparedStatement statement = null ;
Resu l tSet r e s u l t S e t = null ;
try {

connect ion = getDataSource () . getConnect ion () ;
S t r ing [] parameterValues = new St r ing [] { l o c a l e . t oS t r i ng () , productID } ;
i f (TRACE) {

printSQLStatement (sq lStatements , XML_GET_ITEMS, parameterValues) ;
}
statement = buildSQLStatement (connect ion , sq lStatements , XML_GET_ITEMS,

↪→ parameterValues) ;
r e s u l t S e t = statement . executeQuery () ;
i f (s t a r t >= 0 r e s u l t S e t . abso lu t e (s t a r t + 1)) {

boolean hasNext = fa l se ;
L i s t i tems = new ArrayList () ;
do {

int i = 1 ;
i tems . add (new Item (productID , r e s u l t S e t . g e tS t r i ng (i++) . tr im () ,

↪→ r e s u l t S e t . g e tS t r i ng (i++) , r e s u l t S e t . g e tS t r i ng (i++) . tr im () ,
↪→ r e s u l t S e t . g e tS t r i ng (i++) . tr im () , r e s u l t S e t . g e tS t r i ng (i++) ,
↪→ r e s u l t S e t . g e tS t r i ng (i++) , r e s u l t S e t . g e tS t r i ng (i++) , r e s u l t S e t .
↪→ ge tS t r i ng (i++) , r e s u l t S e t . g e tS t r i ng (i++) , r e s u l t S e t . g e tS t r i ng (i
↪→ ++) , r e s u l t S e t . getDouble (i++) , r e s u l t S e t . getDouble (i++))) ;

} while ((hasNext = r e s u l t S e t . next ()) (−−count > 0)) ;
return new Page (items , s ta r t , hasNext) ;

}
return Page .EMPTY_PAGE;

} catch (SQLException except ion) {
throw new CatalogDAOSysException ("SQLException : " + except ion . getMessage ()) ;

} f ina l ly {
c l o s eA l l (connect ion , statement , r e s u l t S e t) ;

}
}

public Item getItem (St r ing itemID , Loca le l) throws CatalogDAOSysException {
Connection c = null ;
PreparedStatement ps = null ;
Resu l tSet r s = null ;
Item r e t = null ;
try {

c = getDataSource () . getConnect ion () ;
ps = c . prepareStatement (GET_ITEM_STATEMENT, Resu l tSet .TYPE_SCROLL_INSENSITIVE,

↪→ Resu l tSet .CONCUR_READ_ONLY) ;
ps . s e t S t r i n g (1 , l . t oS t r i ng ()) ;
ps . s e t S t r i n g (2 , itemID) ;
r s = ps . executeQuery () ;
i f (r s . f i r s t ()) {

int i = 1 ;
r e t = new Item (r s . g e tS t r i ng (i++) . tr im () , r s . g e tS t r i ng (i++) . tr im () , r s .

↪→ ge tS t r i ng (i++) , itemID , r s . g e tS t r i ng (i++) . tr im () , r s . g e tS t r i ng (i++)
↪→ , r s . g e tS t r i ng (i++) , r s . g e tS t r i ng (i++) , r s . g e tS t r i ng (i++) , r s .
↪→ ge tS t r i ng (i++) , r s . g e tS t r i ng (i++) , r s . getDouble (i++) , r s . getDouble (
↪→ i++)) ;

}
r s . c l o s e () ;
ps . c l o s e () ;
c . c l o s e () ;
return r e t ;

} catch (SQLException se) {
throw new CatalogDAOSysException ("SQLException : " + se . getMessage ()) ;

}
}

Figure B.10. Question 10.

75

private St r ing getSubTagAttribute (Element root , S t r ing tagName , S t r ing subTagName ,
↪→ St r ing a t t r i b u t e) {
St r ing r e tu rnS t r i ng = "" ;
NodeList l i s t = root . getElementsByTagName (tagName) ;
for (int loop = 0 ; loop < l i s t . getLength () ; loop++) {

Node node = l i s t . item (loop) ;
i f (node != null) {

NodeList ch i l d r en = node . getChildNodes () ;
for (int innerLoop = 0 ; innerLoop < ch i l d r en . getLength () ; innerLoop++) {

Node ch i l d = ch i l d r en . item (innerLoop) ;
i f ((c h i l d != null) (c h i l d . getNodeName () != null) c h i l d . getNodeName

↪→ () . equa l s (subTagName)) {
i f (c h i l d instanceof Element) {

return ((Element) ch i l d) . g e tAt t r ibute (a t t r i b u t e) ;
}

}
}

}
}
return r e tu rnS t r i ng ;

}

public stat ic St r ing getSubTagValue (Element root , S t r ing tagName , S t r ing subTagName) {
St r ing r e tu rnS t r i ng = "" ;
NodeList l i s t = root . getElementsByTagName (tagName) ;
for (int loop = 0 ; loop < l i s t . getLength () ; loop++) {

Node node = l i s t . item (loop) ;
i f (node != null) {

NodeList ch i l d r en = node . getChildNodes () ;
for (int innerLoop = 0 ; innerLoop < ch i l d r en . getLength () ; innerLoop++) {

Node ch i l d = ch i l d r en . item (innerLoop) ;
i f ((c h i l d != null) (c h i l d . getNodeName () != null) c h i l d . getNodeName

↪→ () . equa l s (subTagName)) {
Node grandChild = ch i l d . g e tF i r s tCh i l d () ;
i f (grandChild . getNodeValue () != null) return grandChild .

↪→ getNodeValue () ;
}

}
}

}
return r e tu rnS t r i ng ;

}

Figure B.11. Question 11.

76 Appendix B. Survey Questions

public int de l e t e (S t r ing s q l) throws SQLException {
PreparedStatement prepared = null ;
int count = 0 ;
try {

prepared = connect ion . prepareStatement (s q l) ;
preparedStatementList . add (prepared) ;
prepared . execute () ;
count = prepared . getUpdateCount () ;

} catch (SQLException e) {
System . out . p r i n t l n (" − Error during execut ion o f the f o l l ow i n g SQL Statement

↪→ −> [" + sq l + "] " + e . t oS t r i ng ()) ;
throw e ;

}
return count ;

}

public void update (S t r ing s q l) throws SQLException {
try {

PreparedStatement prepared = connect ion . prepareStatement (s q l) ;
preparedStatementList . add (prepared) ;
prepared . execute () ;
int rowsUpdated = prepared . getUpdateCount () ;
i f (rowsUpdated == 0) {

System . out . p r i n t l n (" − The record to be updated does not e x i s t s in
↪→ database ") ;

throw new SQLException () ;
}

} catch (SQLException e) {
System . out . p r i n t l n (" − Error during execut ion o f the f o l l ow i n g SQL Statement

↪→ −> [" + sq l + "] " + e . t oS t r i ng ()) ;
throw e ;

}
}

Figure B.12. Question 12.

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation, Problem Description, and Goal
	1.2 The Proposed Solution
	1.3 The Method Evaluation
	1.4 Dissertation Outline

	2 Background and Related Work
	2.1 Code Clones
	2.2 Code Clone Detection Techniques
	2.3 Related Work
	2.4 Final Remarks

	3 The Proposed Method
	3.1 The Method Strategy
	3.2 The Sequence of Method Calls
	3.3 The Sequences Grouped by Class or Method
	3.4 The Order of Method Calls in Java
	3.5 The Size of Coincident Sequences
	3.6 The Code Clone Candidates
	3.7 Final Remarks

	4 Automated Method in Action
	4.1 Tool Support
	4.2 Selected Systems
	4.3 Code Clone Candidates
	4.4 Final Remarks

	5 Comparative Evaluation
	5.1 Study Settings
	5.2 The PMD Tool
	5.3 Results and Discussion
	5.4 Threats to Validity
	5.5 Final Remarks

	6 User Study
	6.1 Study Settings
	6.2 Results and Discussion
	6.3 Threats to Validity
	6.3.1 Construct Validity
	6.3.2 Internal Validity
	6.3.3 External Validity
	6.3.4 Conclusion Validity

	6.4 Final Remarks

	7 Conclusions and Future Work
	Bibliography
	A Characterization Form
	B Survey Questions

