
MAPPING GEOGRAPHIC CONCEPTUAL

SCHEMAS TO NOSQL GRAPH DATABASES

DANILO BOECHAT SEUFITELLI

MAPEAMENTO DE ESQUEMAS CONCEITUAIS

GEOGRÁFICOS PARA BANCOS DE DADOS

NOSQL EM GRAFO

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Mirella Moura Moro
Coorientador: Clodoveu A. Davis Jr.

Belo Horizonte

Agosto de 2016

DANILO BOECHAT SEUFITELLI

MAPPING GEOGRAPHIC CONCEPTUAL

SCHEMAS TO NOSQL GRAPH DATABASES

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Mirella Moura Moro
Co-Advisor: Clodoveu A. Davis Jr.

Belo Horizonte

August 2016

c© 2016, Danilo Boechat Seufitelli.
Todos os direitos reservados.

Boechat Seufitelli, Danilo

S496m Mapping Geographic Conceptual Schemas to
NoSQL Graph Databases / Danilo Boechat Seufitelli.
— Belo Horizonte, 2016

xxiv, 56 f. : il. ; 29cm

Dissertação (mestrado) — Universidade Federal de
Minas Gerais – Departamento de Ciência da
Computação.

Orientadora: Mirella Moura Moro
Coorientador: Clodoveu A. Davis Jr.

1. Computação - Teses. 2. Modelagem Conceitual.
3. Bancos de dados geográficos. 4. NoSQL. 5. Bancos
de dados em grafos. I. Orientadora. II. Coorientador.
III. Título.

CDU 519.6*72(043)

“I dedicate to all who had a moment of weakness. It will not hurt forever, so do
not let it affect what is best in you.”

ix

Acknowledgments

First and foremost, I’d like to thank God for all the opportunities that I have had in
my life. I also want to thank my advisors, Mirella and Clodoveu, for their patience and
support. This work would not have been possible without their assistance.

I also want to thank my parents José Antonio and Cristiane and brothers Bruno
and Claudia for the care, support, patience and understanding that I need to fly around
the world to achieve my goals.

I need to thank Elaine Muniz, for her kindness, support, patience and for always
believing in me. She is my daily inspiration.

My most sincere thanks to the colleagues and friends who helped so much during
my studies: Alberto Ueda, Guilherme Vezula, Ivan Nunes, Janaína Henriques, Jhielson
Montino, Michel Melo, Michele Brandão, Natália Gonçalves, Paulo Nonaka, Pedro
Onofre, Ramon Pereira and Thiago Rodrigues.

Last but not least, I want to thank all my old friends, whose friendship has
grown since I was a little kid: Aquila Ditzz, Carolina Silveira, Cynthia Medeiros,
Erika Vieira, Felipe Almeida, Guilherme Borges, Rodrigo Torquato, Tatiane Martins,
Thawler Andrade, Valéria Alves and Victor Silveira. If I have forgotten your name,
I am so sorry. There are many important people in my life, they are too many to
remember.

This work is supported by a CAPES scholarship. This financial support is grate-
fully acknowledged.

xi

“Tell me and I forget, teach me and I may remember, involve me and I learn.”
(Benjamin Franklin)

xiii

Resumo

A modelagem conceitual geográfica, assim como a modelagem conceitual tradicional,
é uma atividade básica em projetos de aplicações geográficas. Os modelos conceituais
geográficos fornecem primitivas para representar a geometria e a topologia dos dados
geográficos, que são geralmente armazenados em documentos GML (Geography Markup
Language) ou em bases de dados espaciais. O projeto conceitual deve ser independente
dos mecanismos subjacentes a serem usados para a implementação do banco de da-
dos. Um bom esquema conceitual pode ser mapeado para vários esquemas físicos, de
modo que o aplicativo pode se beneficiar das melhores características do sistema de
gerenciamento de banco de dados utilizado em sua implementação. Permite também a
reutilização total ou parcial do esquema, uma vez que a parte modelada do mundo real
pode ser percebida de forma semelhante por diferentes aplicações. No entanto, mode-
los conceituais que consideram dados geográficos e aplicações, tais como a Técnica de
Modelo de Objeto para Aplicações Geográficas (OMT-G), incluem uma maior varie-
dade de primitivas de representação para classes e relacionamentos. Ao mesmo tempo,
vários sistemas de gerenciamento de banco de dados alternativos, que implementam
novos paradigmas de representação e estruturas de dados, surgiram recentemente com
o nome genérico de NoSQL (ou não apenas SQL). Esta dissertação define procedimen-
tos e algoritmos para implementar o mapeamento entre esquemas OMT-G e esquemas
lógicos e físicos baseados em grafos NoSQL. Um exemplo abrangente do processo pro-
posto é apresentado. Conclusões indicam que mapear esquemas conceituais geográficos
para esquemas híbridos (relacionais e grafos) físicos pode ser desejável no futuro, a fim
de combinar as melhores características de cada alternativa de implementação.

Palavras-chave: Modelagem Conceitual, Bancos de Dados Geográficos, NoSQL, Ban-
cos de Dados em Grafos.

xv

Abstract

Geographic conceptual modeling, as traditional conceptual modeling, is a basic ac-
tivity in the design of geographic applications. Geographic conceptual models pro-
vide primitives to represent the geometry and the topology of geographic data, which
are generally stored in Geography Markup Language (GML) documents or in spatial
databases. Database design at the conceptual level must be independent from the un-
derlying mechanisms that implement the database. A good conceptual schema can be
mapped to various physical schemas, so that the application can benefit from the best
characteristics of the database management system used in its implementation. It also
allows total or partial schema reuse, since the modeled part of the real world can be
perceived in a similar manner by different applications. However, conceptual models
that consider geographic data and applications, such as the Object Modeling Tech-
nique for Geographic Applications (OMT-G), include a wider variety of representation
primitives for classes and relationships. At the same time, a number of alternative
database management systems, which implement novel representation paradigms and
data structures, have recently arisen with the generic name of NoSQL (or not only
SQL). This dissertation defines rules and algorithms to implement the automatic map-
ping between OMT-G schemas and NoSQL graph-based logical and physical schemas.
A comprehensive example of the proposed process is presented. Conclusions indicate
that mapping geographic conceptual schemas to hybrid (relational and graph) physical
schemas may be desirable in the future, in order to combine the best characteristics
from each implementation alternative.

Keywords: Conceptual Modeling, Geographic Databases, NoSQL, Graph Databases.

xvii

List of Figures

1.1 The building blocks of the Property Graph 3

2.1 WKT representations . 8

3.1 Georeferenced and Conventional classes. 17
3.2 Geo-object classes. 17
3.3 Geo-field classes. 17
3.4 Relationships. 18
3.5 Generalizations. 19
3.6 DE-9IM over spatial object interactions. 22

4.1 Mapping geographic classes to vertices. 27
4.2 Mapping of conventional, topological and aggregation relationships 29
4.3 Mapping relationships to edges . 30
4.4 Mapping Arc-Node relationships . 31
4.5 Mapping Total/Disjoint relationships . 32
4.6 Mapping Total/Overlapping relationships 32
4.7 Mapping Partial/Disjoint relationships . 33
4.8 Mapping Partial/Overlaid relationships . 34
4.9 Mapping Overlapping Conceptual Generalization relationships 34
4.10 Mapping Disjoint Conceptual Generalization relationships 35
4.11 Sample OMT-G schema . 36
4.12 Logical Graph Schema . 37

5.1 Overview of Mapping Process . 39
5.2 Sample Graph Schema . 40
5.3 Neo4j graph schema . 44

xix

List of Tables

2.1 Comparison Table of Neo4j Editions . 12

4.1 Mapping Geometry Types . 26

5.1 Sample dataset (random data) . 41
5.2 Comparison between SQL, NoSQL and Hybrid solutions 48

xxi

Contents

Acknowledgments xi

Resumo xv

Abstract xvii

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objective and Contributions . 4
1.4 Organization . 4

2 Related Work 5
2.1 Concepts and Current Technology . 5

2.1.1 Spatial Data . 5
2.1.2 Spatial Data Modeling . 6
2.1.3 Spatial Database Management Systems 7
2.1.4 Data Integrity . 8
2.1.5 Spatial Integrity . 9
2.1.6 Non-Relational Databases (NoSQL) 9
2.1.7 Neo4J . 11

2.2 Recent Work . 13
2.3 Considerations . 14

3 OMT-G 15
3.1 Overview . 15

xxiii

3.2 Class Diagram . 16
3.2.1 Class Structure . 16
3.2.2 Relationships . 17

3.3 Spatial Integrity Constraints . 18
3.3.1 Geo-field spatial integrity constraints 19
3.3.2 Spatial relationships integrity constraints 20
3.3.3 Geo-object spatial integrity constraints 20
3.3.4 Topological integrity constraints 21

4 Mapping OMT-G to Graph Logical Schemas 25
4.1 Mapping Steps . 25

4.1.1 Step 1: Classes . 26
4.1.2 Step 2: Class attributes . 28
4.1.3 Step 3: Binary relationships and aggregations 28
4.1.4 Step 4: Generalizations and specializations 31

4.2 Example . 35
4.3 Considerations . 37

5 Physical Mapping Process 39
5.1 Mapping Steps . 40

5.1.1 Step 1: Spatial Layer . 41
5.1.2 Step 2: Nodes . 42
5.1.3 Step 3: Relationships . 42
5.1.4 Step 4: Associating the node ID 43
5.1.5 Step 5: Adding nodes to layer 43

5.2 Physical Integrity Constraints . 44
5.3 Hybrid Schema . 47
5.4 Considerations . 48

6 Conclusion 49

Bibliography 51

Appendix A Commands of The Neo4j Schema 55

xxiv

Chapter 1

Introduction

1.1 Context

Many spatial data modeling methods extend the entity-relationship model for describ-
ing geographic data. While the result of such data modeling processes is usually as-
sociated with relational database management systems (DBMS), other non-relational
spatial solutions are used by very large Geographic Information Systems (GIS). With
the NoSQL (Not Only SQL) arrays taking over Big Data, data models that easily fit
relational DBMS are being translated and adapted into other systems. However, this
may not prove optimal when handling large amounts of data, as it is not so easy to
choose which mapping strategy (or even more than one) to maintain, either on rela-
tional or non-relational DBMS. Therefore, modeling strategies based on the systems
requirements and features are necessary.

Modeling spatial classes must consider that the association of primary and foreign
keys applied to numbers and strings provide an easy way to join tables, but may not be
possible with geospatial attributes. Spatial representations can be seen as a multidi-
mensional attribute that by its nature is not prone to simple joining, as the interaction
between two spatial objects may depend on geometric shapes. While a conventional
join is determined by a binary predicate, the outcome of spatial relationships can be
complex and must be calculated dynamically.

Considering that spatial relationships cannot be represented as foreign key asso-
ciations, Borges et al. demonstrated how spatial data characteristics make modeling
more complex and proposed the Object Modeling Technique for Geographic Applica-
tions (OMT-G) [5]. OMT-G uses specific UML (Unified Modeling Language) primitives
in class diagrams and introduces geographic features to increase the semantic repre-
sentativeness of the model. Thus, OMT-G provides primitives to model topology and

1

2 Chapter 1. Introduction

geometry as part of geographic data, and defines spatial classes and relationships [5].
OMT-G is currently used by various governmental, industrial and academical organi-
zations such as Prodabel1, INPE2, UFMG3 and UFV4 [22].

When mapping spatial objects into a DBMS, the relational systems usually end
up with normalized tables (with some exceptions focusing either on performance or data
redundancy) containing spatial columns. The same does not apply to NoSQL DBMSs,
in which there might be more than one way to encode a spatial class. Geographic
conceptual modeling is independent from physical schemas, but it should be possible
to map a given schema to various types of DBMS, provided there is support for spatial
data types and relationships.

1.2 Motivation

According to Newman [34], complex networks are data networks where the relation-
ships between the elements is as or more important than the elements themselves. To
represent them through graphs, the relationships are described by edges and elements
by vertices. Using traditional database models to store and manage complex networks
can generate bottlenecks in the data handling, due to the large amount of existing data.
In addition, traditional models are not able to explore the fundamentals of graphs with
respect to their relationships, neighborhoods and standards [2]. Therefore, a database
model based on graphs that is able to meet the peculiarities of complex networks is
more appropriate. According to Angles and Gutierrez [2], there are several advan-
tages to using the graph model, including (i) more natural data modeling for complex
networks; (ii) easier queries over the graph structure, for instance, to return adjacent
vertices; (iii) a higher level of abstraction, by working directly with graphs and related
operations, facilitating data manipulation by the developer; and (iv) more efficient
graph algorithms in graph database implementations.

Indeed, the use of NoSQL graph databases as a DBMS solution to store data in
applications in increasing, mostly because they make it easier to handle large volumes
of data in an unstructured way [9]. However, integrating data between applications
requires these applications to manage the same dataset. Thereby, defining rules to
create logical graph schemas is an important step in the design of applications in order
to promote systems interoperability. A positive point about the logical graph model is

1PRODABEL: https://prodabel.pbh.gov.br/
2INPE: http://www.inpe.br
3UFMG: http://www.ufmg.br
4UFV: http://www.ufv.br

1.2. Motivation 3

Figure 1.1: The building blocks of the Property Graph5
.

the independence of a DBMS’s physical implementation. Logical model depends only
on the DBMS type, as graph, relational, document- and column-oriented.

For example, a property graph model is a generic way to encode conceptual
schemas, as in Figure 1.1. A property graph is similar to an object schema or an
entity-relationship diagram. Property graphs contain connected entities (nodes) that
can hold any number of attributes (key-value-pairs). Nodes can be tagged with la-
bels representing their different roles in a domain. Labels contextualize node and
relationship properties and serve to attach metadata, such as indexing or constraint
information, to certain nodes. Relationships provide directed, named and semantically
relevant connections between two node-entities. A relationship always has a direction,
a type, a start node and an end node. As nodes, relationships can have any proper-
ties. In most cases, relationships have quantitative properties, such as weights, costs,
distances, ratings, time intervals or strengths.

Current studies [1, 4, 8, 9] do not address the mapping process from a geographic
conceptual modeling to a NoSQL approach, as the graph model. Geographic data
can be modeled as a graph, especially when the data represent networks, such as
electrical systems, roads or rivers. Recent studies by Santos et al. [38] showed that
graph databases, when used to store and query a large amount of geographic data, are
able to outperform relational databases in specific query types (as urban routing and
position tracing).

5Available at https://neo4j.com/developer/graph-database/. Accessed June 27, 2016.

https://neo4j.com/developer/graph-database/

4 Chapter 1. Introduction

1.3 Objective and Contributions

The objective of this dissertation is to define and implement a mapping from a geo-
graphic conceptual schema to a graph database, and is divided in two parts. First, we
propose mapping procedures and algorithms to transform OMT-G schemas into logical
graph schemas. Then, we develop a diagrammatic way to describe such logical schemas.
We also highlight the limitations in graph modeling the logical schemas as well as the
implementation requirements to handle integrity constraints. Second, we define how
to map such logical graph schemas into physical graph schemas, using Neo4J DBMS
with spatial extensions in order to validate the proposed logical schemas mapping pro-
cess. We show that implementing integrity constraints on Neo4j is a challenge because
Neo4j does not provide triggers (as in RDMBSs) to check consistency of data. Finally,
we finish this work arguing that graph databases can solve parts of the schema (as
network relationships) in a hybrid approach that considers the best of relational and
graph models.

1.4 Organization

Chapter 2 describes related work and background concepts about spatial features in
databases. We also cover spatial integrity constraints and NoSQL databases.

Chapter 3 provides an overview the OMT-G model primitives for conceptual
modeling of geographic data. We explain how the modeling technique works, includ-
ing diagrams to represent spatial objects and the integrity constraints adopted in the
modeling, based on the original definitions from [5, 6].

Chapter 4 introduces our mapping methodology by explaining each processing
stage and defining rules to convert a conceptual OMT-G schema to a logical graph
schema. An algorithm is presented to guide the mapping process sequence.

Chapter 5 explains the steps for mapping the logical graph schema to a physical
graph schema. We use Neo4j6 in this step because it natively implements graph storage
and a spatial plugin, Neo4j-Spatial7.

Finally, Chapter 6 presents conclusions and future work.

6Neo4j: http://www.neo4j.org/
7Neo4j-Spatial: http://www.neo4j.org/develop/spatial

http://www.neo4j.org/
http://www.neo4j.org/develop/spatial

Chapter 2

Related Work

This chapter reviews relevant concepts and studies in topics related to this work. The
chapter is organized as follows: Section 2.1.1 presents a summary about spatial data,
Section 2.1.2 discusses the importance of spatial data modeling, Section 2.1.3 provides
a basic view on how spatial database management systems (DBMSs) work, includ-
ing spatial data management. Section 2.1.4 highlights the main strategies to ensure
data integrity, while Section 2.1.5 refers to spatial data integrity constraints. Section
2.1.6 revises the main concepts of NoSQL databases. Section 2.1.7 presents the Neo4j
DBMS. Section 2.2 discusses the related work and, finally, Section 2.3 presents our
final considerations.

2.1 Concepts and Current Technology

2.1.1 Spatial Data

Spatial data are any type of data that describe phenomena that are associated with
any spatial dimension [13, 26]. Nowadays, there is a large number of capable devices
to register geographic information (as smartphones, tablets, gps and others), as well
as an increasing number of applications that use such kind of data (as Facebook1,
Instagram2, Waze3 and others).

Geographic data have geometry and topology. Geometry is for property metrics
wherein relationships are defined starting from primitive geometric features as points,
lines and polygons that depict geometric entities. There are two geometric data types:

1Facebook: http://www.fb.com
2Instagram: http://www.instagram.com
3Waze: http://www.waze.com

5

http://www.fb.com
http://www.instagram.com
http://www.waze.com

6 Chapter 2. Related Work

Vector data and Raster data. Vector data include points, lines, and polygons, all of
which are representations of the space occupied by real-world entities. Raster data
are characterized as an array of points, where each point represents the value of an
attribute for a real-world area [28, 41].

Topological properties (non-metrics) are based in relative positions of objects in
the space, as connectivity, guidance (from, to), adjacency and contention. Some geo-
graphic entities have topological properties that are unaltered by elastic deformations.
Examples include the link of a region and the connectivity between road intersections
and road segments. Primitives are required for representing networks, graphs, and par-
titions as high-level entities [19]. Partitions relate to networks which associate regions
with other regions by relationships, such as next or adjacent. It is natural to use a
direct construction for networks and dividers in modeling, for example. Some spatial
concepts can be measured both in geometric and topological domain[28].

2.1.2 Spatial Data Modeling

The spatial data model is the set of concepts that describe the structure and the oper-
ation of a geographic database. Each component can be visualized in different levels of
complexity and details, i.e. according to the need of comprehension and representation
from different entities of information system interest and their interactions. There are
two main conceptual models to user for geographic data: GeoFrame and OMT-G.

GeoFrame, proposed by Jugurta and Iochpe [30], provides a diagram of basic
classes, using the graphical UML notation. The GeoFrame has two base classes for
any geographic applications, the classes THEME and GEOGRAPHICREGION. All
geographic applications have as main objective the management and manipulation of a
set of data for a given region of interest, creating a geographic database. For example,
in a GIS application, the urban area can be specified as the geographic region of
interest (GEOGRAPHICREGION). For such a geographic regions, the following topics
(THEME) could be defined: limits of the urban area, road network, neighborhoods,
buildings (e.g. schools, hospitals), public transport, and areas of garbage collection.

OMT-G, proposed by Borges et al. [5], is an object-oriented data model to geo-
graphic applications that provide primitives to model geometry and topology of spatial
data. It also supports different topological structures, multiple views of objects and
the spatial relationships. We chose OMT-G as conceptual modeling technique because
it was developed by our research team and has the OMT-G Designer, an online dia-
gramming application to design geographic database systems and applications based
on OMT-G data model [31]. Therefore, OMT-G is further detailed in Section 3.

2.1. Concepts and Current Technology 7

2.1.3 Spatial Database Management Systems

A Spatial Database Management System offers data and spatial queries by using spatial
indexes and efficient algorithms to manipulate geographic information [19]. A spatial
database supports both conventional and spatial data. Conventional data describe the
features, and spatial data describe the geographic location and the geometric shape of
spatial objects. Spatial objects are modeled to depict real-world elements by simple
geometric forms such as points, lines and polygons. The main database spatial exten-
sions are Oracle Spatial, PostGIS, MySQL Spatial Extension and IBM DB2 Spatial
Extender.

All data stored in a DBMS is ultimately in binary form. Storing geometry into a
DBMS requires to define the internal format. There are currently two approaches4.

One approach is to utilize the native way to organize, represent and store
geometries. The data are built into DBMS according to their shape, such as
SDO_GEOMETRY in Oracle Spatial or ST_GEOMETRY in IBM DB2 Spatial Ex-
tender. The data are still binary data, but they are organized in accordance with
the expected format for geometric data by the DBMS. This data type (built into the
DBMS) is called as native geometry type. Native Spatial DBMS also supports that data
type with additional infrastructure, such as the automatic creation of spatial indexes
or the provision of DBMS server commands that understand that data type.

The other approach is to utilize a generic data type, which is used at DBMSs
that do not specify a pre-defined way to organize binary data to represent geometries.
Almost all modern DBMS packages provide a generic binary data type to store un-
structured binary data by the DBMS. This data type (not built into the DBMS) is
called as non-native geometry type.

Although using non-native geometry types allows storing geometries within
general-purpose, DBMS products without requiring a special "spatial" form of a
DBMS, require a GIS application that supports the geometry formats to be used.
Thereby, the OpenGIS Consortium (OGC) had defined two standard ways to express,
transfer and store the same spatial-objects information at spatial databases: the Well-
Known Text (WKT) form and the Well-Known Binary (WKB) form. Both WKT and
WKB include information about the type of the object and the coordinates that shape
the object [36]. For example, Figure 2.1 illustrates the WKT format.

4Extracted from: http://www.georeference.org/doc/spatial_dbms.htm. July, 2016

http://www.georeference.org/doc/spatial_dbms.htm

8 Chapter 2. Related Work

Figure 2.1: WKT representations5

2.1.4 Data Integrity

Applying data integrity guarantees the quality in terms of consistency and accuracy
of data. Therefore, integrity restrictions ensure these data properties in a relational
database (i.e., ensure that data assertively represent the modeled reality). For example,
if an employee is inserted with the employee ID value of 123, the database should not
allow another employee to be inserted/updated with the same ID value [3, 18].

There are four categories of data integrity. Entity integrity specifies a table
line as an exclusive entity from determined table; i.e., each line is unique within a
table. It is defined through constraints like UNIQUE and PRIMARY KEY. Domain
integrity ensures all data in a column have a pre-defined set of valid values. Examples
of such constraint include: choosing the correct data type, the length for a column, and
the set of possible values for an attribute. Referential integrity preserves the defined
relationships between tables when rows are inserted or deleted. It is usually defined
through FOREIGN KEY and CHECK constraints. User integrity allows the user to
define business rules that do not fit into other categories of integrity.

5Available on: https://goo.gl/bCkIUm. Accessed May 24, 2016.

https://goo.gl/bCkIUm

2.1. Concepts and Current Technology 9

2.1.5 Spatial Integrity

Besides the regular data integrity constraints (explained in the previous section), spatial
databases must also be compliant with constraints specific for the geo data. There are
three may types, as follows [7].

Topological Integrity Constraints. Topology is the study of geometrical properties
and spatial relations [16]. Then, this kind of constraint ensures the geographic bound-
eries of the objects. Modeling city neighborhoods is an example of this constraint: one
neighborhood must be contained within the city limits, and there must not be any
spot in the municipal territory that does not belong to some neighborhood. Logically,
a neighborhood cannot belong to different cities.

Semantic Integrity Constraints. These constraints concern the meaning of geo-
graphic features. Specifically, they verify if a database state is valid due to the proper-
ties of the objects stored. An example is: a building cannot be intercepted by a street
segment.

User Defined Integrity Constraints. User defined integrity constraints allow
database consistency to be maintained as defined by the equivalent of “business rule”
in non-spatial DBMS. This type of constraint acts, for instance, on the location of
a gas station, which must lie farther than 200 meters from any existing school. The
municipal permitting process must consider this limitation in its analysis.

2.1.6 Non-Relational Databases (NoSQL)

Nowadays, the term Big Data is a trending topic on academy and industry, with
Characteristics usually shorten as “4 Vs”: Volume, Velocity, Variety and Veracity.
Volume describes the huge amount of storage data, velocity implies that the data is
highly updatable, variety denotes that data may be stored in various formats (such
as structured and semi-structured), and veracity portrays the uncertainty of the data
due to inconsistent and incomplete data [25].

Non-relational databases are designed to scalable horizontal growth in order to
support many reading and writing operations per second. All of those features contrast
to traditional DBMSs that do not scale well when distributed across multiple servers.
According to Cattell [10], the main features of these systems are: (i) to horizontally
scale by adding new servers; (ii) to replicate and distribute across multiple servers; (iii)
to provide a simple interface or access protocol (different from complex SQL languages);
(iv) to be parallelizable and have a competition system weaker than transactions in
relational DBMSs (with the option of reading, written and shared locks); (v) to have

10 Chapter 2. Related Work

an efficient distribution of index and memory usage, and (vi) to have the ability to
change records attributes dynamically.

There are four common architectures to handle NoSQL data: key-value, column-
oriented, document-oriented and graph-oriented [27, 37].

Key-value. The key-value storage architecture is the simplest NoSQL databases
model: a value assigned to a key. This method persists the data in a non-structured
way (schema-less). Thus, data can be stored in a programming language data type
or an object [37, 39]. The most popular databases that supports this storage model
are the Riak6, Redis7, Memcached DB8, HamsterDB9, Amazon DynamoDB10 and the
Voldemort Project11.

Columnar. A column-oriented NoSQL database organizes the data in a structured
way and stores data from the same column continuously on the disk (as opposed to re-
lational databases, where the rows are stored contiguously). Such systems are designed
to comply with three issues: large number of columns, nature scarce data and frequent
schema changes. Changing the storage project can result in better performance in some
operations as aggregations, the ad-hoc supports, and dynamic query. Most columnar
databases are compatible with MapReduce, which speeds up the processing of a huge
amount of data, so as to distribute the problem in many systems [24, 27, 39]. The
most popular open source column-oriented databases are: MonetDb12, Hypertable13,
HBase14 and Cassandra15.

Document. The document term of a document-oriented database refers to the set
of key-value pairs, usually in JSON (instead of documents and tables from traditional
DBMSs). These documents are self-explained and have hierarchical tree structure,
which can contain maps, collections and scalar values. The document-oriented database
considers the document as a whole, instead of several key-value pairs. It allows docu-
ments with different structures to be grouped in the same set. The document-oriented
databases support document indexes, including not only primary identifiers but docu-
ment properties [21]. Typical examples of document-oriented databases include: Mon-

6Riak: http://basho.com/riak/
7Redis: http://redis.io/
8Memcached DB: http://memcached.org/
9HamsterDB: http://hamsterdb.com/

10Amazon DynamoDB: http://aws.amazon.com/pt/dynamodb/
11Voldemort Project: http://www.project-voldemort.com/voldemort/
12MonetDB: https://www.monetdb.org/Home
13Hypertable: http://hypertable.com/home/
14HBase: http://hbase.apache.org/
15Cassandra: http://cassandra.apache.org/

2.1. Concepts and Current Technology 11

goDB16, CouchDB17 and Terrastore18.

Graph. The graph-oriented database is another schema-less category that stores non-
relational data. It consists in a set of nodes and edges: each node represents an
entity (as person or company), and each edge represents a link or relations between
two nodes. In a graph database, each node is defined by an unique identifier, a set
of sink and/or input edges and a set of key-value pairs. Each edge is defined by
a unique identifier, a source node and/or target node, and a property set. Graph
databases apply graph theory to store information about the relationship between
nodes. The friend relations between people in social networks is the most common
example. The relationship between items and attributes in recommendation engines is
another. Relational databases are not able to store data relationships between people,
and the query types can be complex, slow and unpredictable [20]. The main graph
databases are: Neo4j19, HypergraphDB20 and AllegroGraph21.

Among the different NoSQL architectures, we chose the graph approach because
geographical data can easily be seen as a graph, mainly to represent geographic net-
works (as road, hydrographic, electric and others). Also, graph promotes better per-
formance in network queries as shown by Santos et al. [38]. We chose the Neo4j as
physical database implementation because it has a native graph storage and a spatial
plugin. Next, we briefly present Neo4j main features.

2.1.7 Neo4J

Neo4J is an open source NoSQL graph database management system developed by Neo
Technology, Inc. The Neo4j is characterized by its developers as an ACID-compliant
transactional database with native graph storage and processing [33]. Neo4j is the
most popular graph database according to db-engines.com22, in July 2016.

Neo4j offers different feature sets for editions of the graph database management
system: the Neo4j Community Edition is the basic, fully functional, high-performance
graph database, licensed under the free GNU General Public License (GPL) v3; and
the Neo4j Enterprise Edition, as a more complex edition, dual licensed under Neo4j
commercial license as well as under the free Affero General Public License (AGPL)

16MongoDB https://www.mongodb.org/
17CouchDB: http://couchdb.apache.org/
18Terrastore: https://code.google.com/p/terrastore/
19Neo4j: http://neo4j.com/
20HypergraphDB: http://www.hypergraphdb.org/index
21AllegroGraph: http://allegrograph.com/
22DB-Engines Ranking: http://db-engines.com/en/ranking

12 Chapter 2. Related Work

Table 2.1: Comparison Table of Neo4j Editions

Edition Enterprise Community
Property Graph Model x x
Native Graph Processing & Storage x x
ACID x x
Cypher - Graph Query Language x x
Language Drivers most popular languages x x
REST API x x
High-Performance Native API x x
HTTPS (via Plug-in) x x

Performance & Scalability Features
Enterprise Lock Manager x -
Cache Sharding x -
Clustered Replication x -
Cypher Query Tracing x -
Property Existence Constraints x -
Hot Backups x -
Advanced Monitoring x -

v3 [33]. Table 2.1 compares the Neo4j Editions. The current Neo4j version is 3.0.1
released in May 2016.

Neo4j is implemented in Java and accessible from software written in other lan-
guages using the Cypher Query Language (CQL) through Java API or RESTful HTTP
API. Cypher is Neo4j’s open graph query language. Cypher is a declarative, pattern-
matching query language that makes graph database management systems understand-
able and workable for any database user using an ascii-art syntax [33].

In Neo4j, everything is stored as an edge, a node or an attribute in order to create
the graph. Each node and edge can have any number of attributes (key-value pairs).
The nodes are related by the edges that intertwine creating paths in an organized
manner with explicit relations. Nodes can be labeled, as the table names in relational
databases. Labels can be used to narrow searches. Every edge must have a relationship
type, and there are no restriction about the number of edges between two nodes.
The pattern representation is inspired by traditional graph representation of circles
and arrows. Vertex patterns are represented in parenthesis; and edge patterns in
brackets between hyphens, one of which with a right angle bracket to indicate the edge
direction. For example, the expression (a)-[r:RELATED]->(b) is interpreted as two
vertex patterns a and b and one edge pattern r, type RELATED, that starts on vertex
a and ends in vertex b [33].

2.2. Recent Work 13

2.2 Recent Work

Bugiotti et al. [8] proposed a database design methodology for NoSQL systems, based
on NOAM (NoSQL Abstract Model), an innovative abstract data model to NoSQL
databases that exploits the similarity of various NoSQL systems and specifies an in-
dependent representation of the application data system. The methodology aims to
project a good representation of application data in a NoSQL database, to support
scalability, performance and consistency of the new generation of web applications.
The experiments showed that the NoSQL database design should be done carefully,
because it affects the performance and consistency of data access operations and its
methodology provides an effective tool for choosing between different alternatives.

Due to spatial data features, as explained in Section 2.1.1, along with the flexi-
bility of non-relational databases, there is no geographic data modeling technique that
fits all applications as a unique and ideal model because there are various implemen-
tations of NoSQL technology. NoSQL solutions can provide the necessary efficiency
for applications using geographic data. Amirian et al. [1] provided a survey of the
main characteristics of the huge volume of geospatial data and its possible solutions
for management and treatment. They point an overview of the main types of NoSQL
solutions, their advantages and disadvantages, and the challenges in managing these
large volumes of data in the development of a geospatial data server using standard
web geospatial services with a NoSQL XML database as a backend.

A similar context is clinical data, which are usually organized in a hierarchical
form and stored as free text and number. For those, Lee et al. [29] analyzed three
database models (NoSQL, XML and native XML) regarding three features: query
performance, scalability and extensibility. Results showed that a NoSQL database is
the best choice as to query speed, while XML is advantageous in terms of scalability,
flexibility and extensibility, which are essential for dealing with the characteristics of
clinical data (dynamic, sporadic and heterogeneous in essence).

Yet a different perspective is to separate the data using two different models for
persistence. For example, to help decide which portion of the data of a company is
persisted as XML and part as relational data, Moro et al. [32] described the ReXSA, a
tool that tackles the challenge of designing hybrid database schemes. ReXSA evaluates
and recommends a database schema that combines relational and XML models from a
note of the data information model of a company. It has the advantage of considering
qualitative properties of the information model as reuse, evolution and performance
profiles to decide how to persist the data.

14 Chapter 2. Related Work

2.3 Considerations

Spatial data management is not easy mostly because the spatial data particularities
and the many tools to treat these data. Although there is a tendency to increase the
sharing of geospatial data, mainly with the help of systems that work over the Internet,
little has been done to facilitate the reuse of modeling geographic database solutions in
this new database paradigm, NoSQL. As explained in Section 2.1.6, NoSQL can provide
an efficient way to managing these spatial data as a great solution to the increasing
demand for faster geographic applications.

However, modeling non-relational database, whether for geographic data or not,
is a non-trivial activity, because each application requires a modeling that fits its needs.
Nevertheless, a good modeling promotes characteristics such as scalability, flexibility
and extensibility and also provides schema reuse, or much of it.

There are different proposals for modeling non-conventional data, especially in
XML as a NoSQL DBMS. Therefore, this dissertation advances the state of the art of
NoSQL modeling by providing the primitives to map a OMT-G conceptual schema to
a logical graph model schema.

Chapter 3

OMT-G

This chapter briefly overviews the OMT-G model primitives for conceptual modeling of
geographic data. We explain how the modeling technique works, including the diagrams
to represent spatial object classes and their relationships, and the specification of spatial
integrity constraints from the conceptual schema.

3.1 Overview

OMT-G, proposed by Borges et al. [5], is an object-oriented data model for geographic
applications that provides primitives to model the geometry and topology of spatial
data, with support to topological structures, multiple views of objects and spatial
relationships. It is an extension of UML, and therefore all conventional database com-
ponents can be specified as well. OMT-G also includes tools to specify representation
transformation processes, to support multiple representations and the specification of
various presentation alternatives for each spatial representation.

According to Borges et al. [5], OMT-G is based on three main concepts: classes,
relationships and spatial integrity constraints. Classes and relationships define the
basic primitives that are used to create static schemas of applications. Spatial integrity
constraints guarantee the necessary conditions to preserve database consistency.

OMT-G proposes the use of three different diagrams in the modeling of a geo-
graphic application:

• Class Diagram: all classes are specified along with their representations and
relationships. From this diagram, it is possible to derive a set of spatial integrity
constraints that must be observed in the implementation.

15

16 Chapter 3. OMT-G

• Transformation Diagram: transformations between primary and secondary
representations of real world objects are specified, allowing the identification of
methods required for each transformation.

• Presentation Diagram: used to specify visualization options for each class,
including screen display views and map printouts.

Next, a brief description of class diagram primitives (classes and relationships)
is given, along with spatial integrity constraints. Transformation and presentation
diagrams will not be discussed, since they are not used in the mapping to NoSQL
schemas discussed in this dissertation. More details on OMT-G can be found in [5, 6].

3.2 Class Diagram

3.2.1 Class Structure

The OMT-G model uses UML class diagram primitives and introduces geographic
features to increase its capacity of represent the semantics of spatial data. OMT-G
includes primitives to model the geometry and topology of geographic data. Thus,
it supports structures such as spatial aggregations, networks and topological relation-
ships.

Classes and relationships are the basic primitives to create OMT-G schemas. Two
types of classes are proposed by the OMT-G model: georeferenced and conventional,
as shown in Figure 3.1. Conventional classes do not include geographic features and
behave as UML classes. Spatial classes include a geographic representation, which
can be individualized, associated to real world elements (geo-objects) or continuously
distributed in space (geo-fields).

A geo-object with geometry class describes objects whose spatial representation
can be abstracted as simple geometric shapes, such as points, lines, and polygons, as
shown in Figure 3.2. Examples include, respectively, bus stop, curb line, and municipal
limits. A geo-object with geometry and topology represents objects that have both a
geometric representation and a role in a network, i.e., topological connectivity prop-
erties, such as network nodes and arcs. Such representations are specifically suited to
the representation of spatial network structures, such as electrical distribution systems,
hydrographic networks, or road networks. A geo-field represents variables that contin-
uously cover the space of interest, such as soil type, temperature and relief, and can
usually be seen as a surface. Geo-fields can be represented as isolines, tessellations,

3.2. Class Diagram 17

Figure 3.1: Georeferenced and Conventional classes.

Figure 3.2: Geo-object classes.

Figure 3.3: Geo-field classes.

planar subdivisions, triangulated irregular networks (TIN) or sets of samples, as shown
in Figure 3.3.

3.2.2 Relationships

Relationships can also be simple associations, as in UML relationships, or spatial.
Spatial relationships include topological relationships (such as contains, within, over-
laps, and others), network relationships (arc-node networks) and spatial aggregations
(whole-part aggregations, e.g. country-state). Figure 3.4 illustrates these relationships.

18 Chapter 3. OMT-G

(a) Simple association (b) Spatial relationship

(c) Arc-node relationship (d) Spatial aggregation

Figure 3.4: Relationships.

OMT-G also provides a primitive for generalization and specialization. Its be-
havior is similar to conventional object-oriented hierarchies, in which the geographic
representation used for the superclass is inherited by all subclasses. The distinction
between generalization and specialization depends on the nature of the classes being
represented. Generalizations and specializations can be total or partial; in a total gen-
eralization, all instances must belong to at least one subclass. The can also be disjoint
or overlapping; in a disjoint generalization, an instance can belong to at most one
subclass.

Conceptual generalization is a primitive that allows for multiple geographic rep-
resentations. In this kind of generalization, the superclass has no geographic repre-
sentation, and each subclass can have a different representation. Attributes defined
for the superclass are inherited by the subclasses. The geographic representation of
the subclass can be defined according to its intended representation scale (or range
of scales), or it can be taken as an alternative way to represent the same object in
different contexts. Instances in subclasses of conceptual generalizations can be either
disjoint or overlapping.

3.3 Spatial Integrity Constraints

The semantics of class and relationship primitives in OMT-G leads to the specifica-
tion of several types of spatial integrity constraints. There are three kinds of such
constraints: (1) geo-field constraints, (2) spatial relationship constraints, and (3) geo-
object constraints. The individual constraints are formally defined next. More infor-
mation about OMT-G spatial integrity constraints can be found in [5, 7, 14].

3.3. Spatial Integrity Constraints 19

(a) Generalization (b) Conceptual generalization

Figure 3.5: Generalizations.

3.3.1 Geo-field spatial integrity constraints

Since geo-fields are expected to cover the entire space of interest, the first constraint
(C1) is meant to ensure that full coverage. The other geo-field integrity constraints
relate to the nature of each type of representation, ensuring that they are correct from
the standpoint of the semantics of the intended representations.

C1: Planar Enforcement Rule. Let F be a geo-field and P be a point such that
P ⊂ F . Then a value V (P) = f(P, F), i.e., the value of F at P , can be univocally
determined.

C2: Isoline. Let F be a geo-field and {vo, v1, ..., vn} be n+1 points in the plane. Let
a0 = v0v1, a1 = v1v2, ..., an−1 = vn−1vn be n segments, connecting the points. These
segments form an isoline L, if, and only if, (i) the intersection of adjacent segments in
L is only the extreme point shared by the segments (i.e., ai ∩ ai+1 = vi+1), (ii) non-
adjacent segments do not intercept (i.e., ai ∩ aj = ∅, for all i, j such that j 6= i + 1),
and (iii) the value of F at every point P such that P ∈ ai, 0 ≤ i ≤ n− 1, is constant.

C3: Tesselation. Let F be a geo-field. Let C = {c0, c1, ..., cn} be a set of regularly-
shaped cell covering F . C is a tesselation of F if and only if for any point P ⊂ F there
is exactly one corresponding cell ci ∈ C and, for each cell ci the value of F is given.

C4: Planar Subdivision. Let F be a geo-field. Let A = {A0, A1, ..., An} be a set
of polygons such that Ai ⊂ F for all i such that 0 ≤ i ≤ n − 1. A forms a planar
subdivision representing F if and only if for any point P ⊂ F , there is exactly one
corresponding polygon Ai ∈ A, for which a value of F is given (that is, the polygons
are non-overlapping and cover F entirely).

C5: Triangular Irregular Network (TIN). Let F be a geo-field. Let T =

20 Chapter 3. OMT-G

{T0, T1, ..., Tn} be a set of triangles such that Ti ⊂ F for all i such that 0 ≤ i ≤ n− 1.
T forms a triangular irregular network representing F if, and only if, for any point
P ⊂ F , there is exactly one corresponding triangle Ti ∈ T , and the value of F is known
at all of vertices of Ti.

3.3.2 Spatial relationships integrity constraints

Primitives that specify spatial relationships between geo-object classes are expected
to behave in a precise way. The following spatial integrity constraints determine the
expected behavior for each spatial relationship primitive.
C6: Arc-Node Network. Let G = N,A be a network structure, composed of a set of
nodes N = {n0, n1, ..., np} and a set of arcs A = {a0, a1, ..., aq}. There is a relationship
between members of A and N according to the following constraints: (i) for every node
ni ∈ N there must be at least one arc ak ∈ A; (ii) for every arc ak ∈ A there must be
exactly two nodes ni, nj ∈ N .
C7: Arc-arc Let G = {A} be a network structure, composed of a set of arcs A =

{a0, a1, ..., aq}. Then the following constraint applies if: (i) every arc ak ∈ A must be
related to at least one other arc ai ∈ A, where k 6= i.
C8: Spatial Aggregation. Let P = {p0, p1, ..., pn} be a set of geo-objects. Then P

forms another object W by spatial aggregation if, and only if, (i) pi ∩W = pi for all
i such that 0 ≤ i ≤ n, and (ii) (W ∩

⋃n
i=0 pi) = W , and (iii) ((pi touches pj) ∨ (pi

disjoint pj)) = TRUE for all i, j such that i 6= j.
Besides constraints C6, C7 and C8, OMT-G defines integrity constraints based

on topological relationships, which appear in class diagrams as particular spatial rela-
tionships. While the modeler can define any kind of spatial relationship required by
the application, most situations can be specified using Egenhofer’s [16] 9-intersection
matrix [12, 16], also adopted by OGS standards. These constraints are presented and
discussed separately, in Section 3.3.4.

3.3.3 Geo-object spatial integrity constraints

The spatial representation of geo-objects as lines and polygons also implies an expected
geometric configuration. A major concern is on the existence of self-intersections along
polygonal lines or on the boundaries of polygons. Self-intersections cause problems for
geometric algorithms, and are usually banned from the representation of geo-objects.
C9: Line. Let vo, v1, ..., vn be n+ 1 points in the plane. Let a0 = v0v1, a1 = v1v2, ...,
an−1 = vn−1vn be n segments, connecting the points. These segments form a polygonal

3.3. Spatial Integrity Constraints 21

line L if, and only if, (i) the intersection of adjacent segments in L is only the extreme
point shared by the segments (i.e., ai ∩ ai+1 = vi+1), (ii) non-adjacent segments do not
intercept (that is, ai ∩ aj = � for all i, j such that j 6= i+ 1), and (iii) v0 6= vn−1, that
is, the polygonal line is not closed.
C10: Simple Polygon. Let vo, v1, ..., vn be n+1 points in the plane, with n > 3. Let
s0 = v0v1, s1 = v1v2, ..., sn−2 = vn−2vn−1 be a sequence of n - 1 segments, connecting
the points. These segments form a simple polygon P if, and only if, (i) the intersection
of adjacent segments in P is only the extreme point shared by the segments (i.e.,
si ∩ si+1 = vi+1), (ii) non-adjacent segments do not intercept (i.e., si ∩ sj = � for all
i, j such that j 6= i+ 1), and (iii) v0 = vn−1, that is, the polygon is closed.
C11: Polygonal Region. Let R = {P0, P1, ..., Pn−1} be a set formed by n simple
polygons in the plane, with n > 1. Considering P0 to be a basic polygon, R forms a
polygonal region if, and only if, (i) Pi ∩ Pj = /, for all i 6= j , (ii) polygon P0 has its
vertices coded in a counterclockwise fashion, (iii) Pi disjoint Pj for all Pi 6= P0 in which
the vertices are coded counterclockwisely, and (iv) P0 contains Pi for all Pi 6= P0 in
which the vertices are coded clockwisely.

3.3.4 Topological integrity constraints

The identification of topological relationships in conceptual modeling is usually done
with natural language expressions, such as "contains", or "crosses". Naturally, the
names that would be used by modelers to specify topological relationships in conceptual
modeling can vary widely, and their interpretation by other humans can also vary.
Egenhofer et al. [15, 16, 17] argues that human languages are more imprecise as to
verbal definitions of spatial relationships, and therefore misinterpretation can easily
occur. To that effect, they proposed a simpler model, considering the intersections
between two polygons as to their interiors and boundaries, configuring a 4-intersection
matrix. Egenhofer and Franzosa [16] showed that there are only 8 viable configurations,
and a name has been assigned to each of them, in an attempt for standardization. The
eight relationships are called disjoint, meet, equal, inside, contains, coveredBy, covers
and overlap.

However, the extension of the 4-intersection matrix to other types of geometries
proved to be difficult and error-prone. Clementini et al. [11, 12, 16] proposed an ex-
tended model that has been used as the standard procedure to topologically compare
two geospatial objects. It translates the relationship between two geometries into a
set of outcomes based on a decision tree. An example of the result matrix, called the
Dimensionally Extended nine-Intersection Model (DE-9IM) can be seen in Figure 3.6.

22 Chapter 3. OMT-G

Figure 3.6: DE-9IM over spatial object interactions1.

The intersection of the interiors is a two-dimensional area, so that matrix cell’s value
equals 2, indicating that the object resulting from that operation is a two-dimensional
object, i.e., a polygon. When intersections are over single lines, that matrix cell’s
value equals 1, indicating that a one dimensional object is the result. When the poly-
gons touch over single points, that portion of the matrix equals 0, which indicates the
0-dimensional point objects as results. When there is no intersection between compo-
nents, the respective matrix value is set to a Boolean false. Likewise, when any kind
of intersection is sufficient to configure a relationship, a Boolean True is used.

The DE-9IM model has been adopted by the OGC and implemented in OGC-
compliant spatial database management systems, such as Oracle Spatial and PostGIS.

Spatial integrity constraints must be mapped to the physical design phase and
physically implemented in geographic database management systems. For instance, a
CHECK clause can use spatial functions to ensure the geometric consistency of objects
represented by lines or polygons. However, ensuring the consistency of aggregations
or arc-node relationships is more complicated, usually requiring the development of

1OpenGeo Suite: http://suite.opengeo.org/

http://suite.opengeo.org/

3.3. Spatial Integrity Constraints 23

triggers. Some applications for which there are performance limitations may choose
not to implement the spatial integrity constraints directly in the database, an prefer
creating procedures to check for inconsistencies from time to time.

Therefore, OMT-G class diagrams and the other components of the conceptual
schema should contain all necessary information to ultimately be used to generate the
spatial database structures, constraints and rules that must ensure the database’s in-
tegrity. Borges et al. [6] present an algorithm, inspired by Elmasri and Navathe [18],
that allows for the mapping between an OMT-G class diagram and an object-relational
schema, which includes basic geometric representations as part of relations, along with
conventional attributes. A list of conventional and spatial integrity constraints is also
obtained. From the object-relational schema, a physical schema for spatially extended
relational databases is easily derived, but spatial integrity constraints must be imple-
mented using triggers, checks and assertions. Hora et al. [22] implemented an OMT-G
mapping to generate Oracle physical schemas and XML schemas, including basic trig-
gers for the first case. Lizardo et al. [31] show the creation of an online interactive
modeling tool for OMT-G that includes Hora et al.’s mapping, and adds an alternative
mapping algorithm to PostGIS, including spatial integrity constraints. Hora et al. [23]
propose a methodology and an algorithm to map arcs and nodes, organized in a network
using spatial relationships, from a OMT-G schema to a GML document. Seufitelli et
al. [40] identify the challenges in mapping OMT-G primitives for NoSQL paradigms in
order to integrate relational and non-relational databases, creating a hybrid approach.

In the next chapter, we present an algorithm created to map OMT-G schemas
to spatially extended NoSQL database managers that implement the graph database
model. As shown in Chapter 2, previous works propose modeling methodologies di-
rectly created for NoSQL, taking int consideration both the characteristics of the mod-
eled data classes and the NoSQL manager’s features and limitations. To the best of
our knowledge, this is the first mapping algorithm for the mapping of spatial databases
to NoSQL platforms.

Chapter 4

Mapping OMT-G to Graph Logical
Schemas

This chapter introduces the procedures for mapping OMT-G to graph primitives. Such
primitives include spatial representations, conventional and spatial relationships, gen-
eralizations, attributes and constraints. Section 4.1 describes the mapping steps, and
Section 4.2 details an example of transformation process from a conceptual schema
OMT-G to a graph logical schema. Lastly, Section 4.3 highlights some main aspects
and challenges of mapping.

4.1 Mapping Steps

Mapping an OMT-G schema to a graph logical schema requires dealing with graph
properties that do not exist on the traditional mapping to relational schemas. Graphs
are defined by nodes connected through arcs, rather than by classes and relationships.
Hence, mapping to graphs has limitations and may require additional constraints to
adequately encode the semantics from the conceptual schema.

Next, we introduce the mapping steps summarized by Algorithm 1. Each step is
described formally along with a discussion on limitations and implementation require-
ments. The formal procedures are based on the following definitions.
OMT-G Schema. Let O = {C,R} be an OMT-G schema with C = {c1, c2, ..., cn}
as a set of spatial/conventional classes and R = {r1, r2, ..., rn} as the set of their
spatial/conventional relationships.
Graph Schema. Let G = (V,E) be a geographic schema represented by a labeled
graph where V = {v1, v2, ..., vn} is a set of nodes for spatial and non-spatial objects,
and E = {e1, e2, ..., en} is the set of their spatial or conventional relationships (edges).

25

26 Chapter 4. Mapping OMT-G to Graph Logical Schemas

Algorithm 1 General Mapping Algorithm
Input: OMT-G Conceptual Schema O
Output: Graph Logical Schema G

1: Create an Empty Graph
2: for each class C in O do
3: Create a correspondent vertex v
4: for each class attribute do
5: Create a correspondent attribute in v
6: end for
7: end for
8: for each relationship r ∈ R between classes c1 and c2 in O do
9: Create an edge e between correspondent vertices v1 and v2

10: end for
11: for each generalization relationship R in O do
12: Create a labeled edge e between correspondent vertices to represent it
13: end for

Table 4.1: Mapping Geometry Types

OMT-G Representation OpenGIS Representation
(Simple Features Specification)

Geo-Object Point Point
Geo-Object Line LineString
Geo-Object Polygon Polygon
Geo-Object Network Node Point
Geo-Object Unidirectional Arc LineString
Geo-Object Bidirectional Arc LineString
Geo-Field Sampling Point
Geo-Field Isolines LineString and/or Polygon
Geo-Field Planar Subdivision Polygon
Geo-Field Triangulation Point (nodes) e Polygon (triangles)
Geo-Field Tessellation GeoRaster, long binary field

4.1.1 Step 1: Classes

Starting from any class in an OMT-G schema, map the class to a graph vertex. The
geographic representation type from the OMT-G class is represented by an attribute
called geom. The geom attribute is defined according to Table 4.1. Conventional
OMT-G classes do not include the geom attribute. Figure 4.1 shows the mapping from
a planar subdivision class to a vertex with a geom attribute of the type Polygon. The
formal procedure for the class mapping is as follows.

Procedure 1. Conventional and Spatial Classes: For each class ci ∈ O, create a
vertex vi ∈ V (except for uni or bidirectional arc classes and Generalization/Special-

4.1. Mapping Steps 27

Figure 4.1: Mapping geographic classes to vertices.

ization classes). If ci is a spatial class, create an attribute in vi called geom with the
geometry according to the class type, indicated by OGC representation. For Point,
Node or Sampling classes, create a Point type attribute. For Line, Unidirectional Arc
or Bidirectional Arc classes, create a LineString type attribute. For Polygon or Pla-
nar Subdivision classes, create a Polygon type attribute. For Isoline classes create a
LineString and/or Polygon attribute. For Triangulation classes, create a Point type
attribute. Triangulation vertices will contain a self-edge to interconnect the triangular
irregular network. To the Tessellation classes, create a GeoRaster attribute (represent-
ing the grid cells). For conventional classes, the geom attribute does not exist (as it is
intrinsic to geographical objects).

Limitations. This step does not consider the particular cases of Unidirectional and
Bidirectional Arc classes (as they will not have a correspondent node in G). Such cases
are treated by step 3. This step also does not consider Generalization/Specialization
classes because they are treated in Step 4. The logical schema does not show the planar
subdivision constraint, i.e., it contains no elements with which to verify whether poly-
gons are always neighboring or distinct. Nor does the logical schema show constraints
in whole-part aggregations. For instance, consider a class City of Planar Subdivision
type and a class District of polygon type. Both Polygon and Planar Subdivision types
are transformed to nodes with a geographic attribute of polygon type. Thereby, ver-
ifying that City is geometrically composed by the union of districts is not directly
achievable by simply traversing the graph.

Implementation Requirements. Preserving the schema semantics is required to im-
plement the corresponding integrity constraints for each geographic class layout (topo-
logical constraints). Such constraints are explained in Chapter 3.

28 Chapter 4. Mapping OMT-G to Graph Logical Schemas

4.1.2 Step 2: Class attributes

In this step, all class attributes and their constraints are mapped to corresponding
attributes of vertices or edges. Key attributes are underlined. Attribute constraints
are mapped into a JSON format (key-value pairs). The formal procedures for the class
attributes mapping are as follows.

Procedure 2. Attributes: For each simple or multivalued attribute ai of each class
ci ∈ O, create an element pi in vi ∈ V that represents the ci class according to its type.

Procedure 3. Attribute Constraints: For each attribute ai of each class ci ∈ O that
is a primary key, add the key attribute in vi (underlined). In case of a foreign key type,
add a keyref attribute. If ai is multivalued, append minimum and maximum cardinality
constraints, as minOccurs and maxOccurs in vi, for example phone: {minOccurs: 1,
maxOccurs: 3}. If there is a constraint on string length, e.g. String[15], add in ei the
attribute maxLength with the max string size allowed, for example cpf: {maxLeng:11}.
If ai has domain constraints, e.g. sex={M, F}, add in vi the attribute enumeration
with the values, for example sex: {enumeration: M, F}.

Limitations. Foreign keys are not considered in graphs, because relationships are
treated directly through edges connecting vertices. NoSQL databases use key-value
pairs to store their attributes. Thereby, there is a limitation on attribute constraints.

Implementation Requirements. The usage of foreign keys requires implementing
referential integrity constraints. Constraints of length, domain and type requires imple-
menting such attribute constraints to guarantee them. In the case of spatial attributes,
geographic functions must be used to verify the attribute correctness. The uniqueness
of vertices and edges requires implementing primary key constraints.

4.1.3 Step 3: Binary relationships and aggregations

This step maps relationships between classes to edges in the graph. Such edges relate
graph vertices obtained in Step 1. Figure 4.3 shows an example of mapping relation-
ships. Unidirectional Arc and Bidirectional Arc classes are mapped to edges that relate
to Node type vertices. In graph databases, edges may store attributes as well. Thereby,
geographic relationships involving OMT-G arcs and nodes are implemented using an
attribute geom in the edge, containing the arc’s geometry. Other types of edges, such
as the ones used to materialize other relationships, do not have a geom attribute. In
graphs, relationship name attributes directly indicate the nature of the relationship,
because each edge between two nodes can assume only one role. For instance, Belo

4.1. Mapping Steps 29

Figure 4.2: Mapping of conventional, topological and aggregation relationships

Horizonte (City instance) contains a Federal University (Building instance). The rel-
Name attribute of the edge that connects these two instances contains the name of the
actual relationship, in this case“contains”.

The attributes occurA and occurB are created to guarantee the desired cardinal-
ity. These attributes keep occurrences of nodes A and B connected by an edge. Figure
4.2 shows a graphical notation to represent the cardinality of relationships in graphs.
The arrow direction indicates the foreign key location. For example, a relationship one-
to-many (1:N) between two classes A and B has a foreign key of A in B. Double arrow
indicates a relationship many-to-many (N:N), and a single arrow implies a relationship
at most 1 (1:N). Then, single bidirectional arrow indicates a one-to-one relationship
(1:1). Finally, a filled arrow means that the foreign key cannot be null (NOT NULL),
and a blank arrow that the foreign key can be null. The formal procedures for the
binary relationships and aggregations mapping are as follows.

Procedure 4. Conventional and Spatial Relationships: For each simple asso-
ciation, topological and aggregation relationships ri ∈ R between classes ci, cj ∈ C,
create an edge ei between vertices vi, vj ∈ V . Such vertices represent the corresponding
classes in O. For cardinalities, create an attribute occurA in ei for ci and ocurrB in
ei for cj. Create an attribute relName in ei to name the relationship between classes
as: contains, is part of, belongs to and others. Aggregations (i.e. “whole-part” aggre-

30 Chapter 4. Mapping OMT-G to Graph Logical Schemas

Figure 4.3: Mapping relationships to edges

gations) are handled as relationships with (1:1) cardinality in whole-classes and (1:N)
cardinality in part-classes.

Procedure 5. Arc-node Relationships: For each unidirectional or bidirectional
class ci ∈ C, transform it into an edge ei between vertices vi ∈ V that are vertices
of Node type (point). Create a geom attribute with the class geometry in edge ei.
The flow direction of the relationship (uni or bidirectional) is denoted in the logical
schema by arrows. The attribute relName describes the name of relationship (e.g.
CONTAINS_STREET for a road network). Figure 4.4 illustrates this case. Figure
4.4 (a) shows an OMT-G schema fragment, Figure 4.4 (b) shows the proposed graph
schema, and Figure 4.4 (c) shows a road network graph instance.

Procedure 6. Arc-arc Relationships: For each arc-arc relationship ri ∈ R of a
class ci ∈ C, where ci is a Arc type class (bi or unidirectional), create a self-edge ei

in vertex vi ∈ V that represents ci. The attribute relName describes the name of
relationship. Create a geom attribute with the class geometry in edge ei. The flow
direction of the relationship (uni or bidirectional) is represented by arrows. Figure 4.4
presents examples of such procedure.

Limitations. Notice that arc-arc relationship is not possible to be converted into a
graph, since there is no corresponding class in OMT-G that could be mapped as a
graph node. Thus, the edges of an Arc type are not connected to any node.

4.1. Mapping Steps 31

Figure 4.4: Mapping Arc-Node relationships

4.1.4 Step 4: Generalizations and specializations

This step maps all generalizations and conceptual generalizations from a conceptual
schema to labeled edges. Conceptual generalization models different representations
for the same geographical object in the real world. It can vary according to shape or
scale. For example, a river can be perceived as the space between its margins or by
the polygon occupied by water (varying in shape). Varying in scale, a school may be
represented by an area (Polygon) on a larger scale and by a symbol (Point) on a smaller
scale. According to total/partial and disjoint/overlapping properties of generalizations,
the cardinality of the relationships between instances of the superclass and instances of
the subclasses need to be constrained. The formal procedures for the generalizations
and specializations mapping are as follows.

Procedure 7. Total/Disjoint Generalization: For each total/disjoint generaliza-
tion ri ∈ R, create one vertex vi ∈ V for each subclass in the schema (specialization
classes) depicted by a double circle. To represent the superclass, these vertices must
have two labels. The first label provides the superclass name, and the second one pro-
vides the subclass name. This second label is different in each vertex to represent its
correspondent class in the OMT-G schema. This relationship is treated as a one-to-
one (1:1) relationship. The geom attribute is created to explicit the vertex geometry.
Subclass attributes are created in the correspondent vertices. Figure 4.5 shows this
relationship.

Procedure 8. Total/Overlapping Generalization: For each total/overlapping
generalization ri ∈ R, create a vertex vi ∈ V for each subclass in the model (specializa-

32 Chapter 4. Mapping OMT-G to Graph Logical Schemas

Figure 4.5: Mapping Total/Disjoint relationships

Figure 4.6: Mapping Total/Overlapping relationships

tion classes) depicted by a double circle. To represent the general class, these vertices
must have two labels. The first label provides the general class name, and the second
one provides the specialization class name. This second label is different in each vertex
to represent its correspondent class of OMT-G schema. This relationship is treated as
a one-to-many (1:N) relationship. The geom attribute is created to explicit the vertex
geometry. Subclass attributes are created in the correspondent vertices. Figure 4.6
illustrates this relationship.

Procedure 9. Partial/Disjoint Generalization: For each partial/disjoint gener-
alization ri ∈ R, create a super type vertex vi ∈ V to represent the most generic class.

4.1. Mapping Steps 33

Figure 4.7: Mapping Partial/Disjoint relationships

For each subclass, create a sub type vertex vi ∈ V depicted by a double circle. This
relationship is treated as a one-to-many (1:N) relationship. In the super vertex, create
a geom attribute to specify its geometric type. The sub type vertices are no geometric.
They are used to relate the geometry of the super vertex to the role specified by the
sub vertex through a labeled relationship. Figure 4.7 illustrates this relationship.

Procedure 10. Partial/Overlapping Generalization: For each partial/overlap-
ping generalization ri ∈ R, create a super type vertex vi ∈ V to represent the most
generic class. For each subclass, create a sub type vertex vi ∈ V depicted by a double
circle. This relationship is treated as a zero-to-many (0:N) relationship. In the super
vertex, create a geom attribute to specify its geometric type. The sub type vertices are
not geometric. They are used to relate the geometry of the super vertex to the role
specified by the sub vertex through a labeled relationship. In this case, the edges are
depicted by a dotted arrow to indicate that can or cannot exist a “subvertex”. Figure
4.8 shows this relationship.

Procedure 11. Overlapping Conceptual Generalization: For each overlapping
conceptual generalization ri ∈ R, create a super type vertex vi ∈ V to represent the
most generic class. For each subclass, create a subvertex vi ∈ V depicted by a double
circle. This relationship is treated as a zero-to-many (0:N) relationship. Here, the super
vertex does not have a geometric attribute. The subtype vertices have a geometric
attribute according to their geometry. Figure 4.9 illustrates this relationship.

Procedure 12. Disjoint Conceptual Generalization: For each disjoint conceptual
generalization ri ∈ R, create a supervertex vi ∈ V to represent the most generic
class. For each subclass, create a subvertex vi ∈ V depicted by a double circle. This

34 Chapter 4. Mapping OMT-G to Graph Logical Schemas

Figure 4.8: Mapping Partial/Overlaid relationships

Figure 4.9: Mapping Overlapping Conceptual Generalization relationships

relationship is treated as zero-to-many (0:N) relationship. Again, the supervertex does
not have a geometric attribute. The subvertices have a geometric attribute according
to their geometry. Figure 4.10 shows this relationship.

Limitations. In graphs, the generalization/specialization relationships are charac-
terized by the edges between vertices. Such edges are labeled to characterize the
generalization/specialization. For instance, consider the following: a Block can con-
tain a School, which can be Public or Private. In this case, there is a Total/Disjoint
relationship between School and Public/Private classes, with School as a superclass
and Public and Private as subclasses. Modeling it in a graph requires a labeled edge
as “CONTAINS_SCHOOL” from a Block vertex instance to a School vertex instance,

4.2. Example 35

Figure 4.10: Mapping Disjoint Conceptual Generalization relationships

that is Private or Public, as in Figure 4.5. The labeled edge takes the role of the School
class; thereby, the School class is suppressed in the graph schema.

Implementation Requirements. Ensuring the consistency of generalization rela-
tionships requires implementing integrity constraints. However, such constraints must
consider the labeled edges assuming the role of sub or superclasses. Also, ensuring
the number of edges starting from a node requires implementing integrity constraints.
Such constraints are important when just one subnode type is allowed in the schema.

4.2 Example

Figure 4.11 presents an example of an OMT-G schema. It can be seen as a directed
graph G, where the edge direction indicates the cardinality (i.e. (1:1)) and the nesting
of the structure (i.e. (1:1) →(1:N)). Algorithm 1 provides the sequence of steps to
transform the conceptual geographic schema to a logical graph schema, as detailed in
Section 4.1. The resulting graph schema is shown in Figure 4.12.

Each class of Figure 4.11 was mapped into a vertex of a graph, except the Building
(generalization) and Segment (network bidirectional arc) classes, which are mapped in
procedures 5 and 7. The resulting vertices are Region, District, Block, Building Public,
Building Private, Address, Place and Crossing. These vertices are mapped according
to procedure 1 of Step 1, which ensures that all conventional and spatial classes have
their correspondent vertices in the resulting graph. The geom attribute results from
mapping the geographic representation type indicated in OMT-G class primitives. For
instance, the Region class is a Planar Subdivision according to OMT-G schema, and

36 Chapter 4. Mapping OMT-G to Graph Logical Schemas

Figure 4.11: Sample OMT-G schema

its geometry type is a Polygon in the mapped vertex. Similarly, the Address class,
represented by points in OMT-G, is mapped as a point to the geom attribute. Table
4.1 sums up this mapping step.

Attributes and their constraints are mapped to the vertex and edges according to
procedures 2 and 3 of Step 2. For instance, the number attribute of the Address class is
included in the Address vertex. A specific procedure evaluates when an attribute needs
to be added into the schema to guarantee semantics. For instance, attributes occurA:
(1:1) and occurB: (0:N) are created in the edge between Block vertex and Building
Public and Building Private vertices. Such attributes describe the vertices’ cardinalities
(procedure 4 of Step 3). The attribute relName: CONTAINS_BUILDING describes
the name of the relationship (procedure 4 of Step 3).

Relationships between vertices are mapped according to procedures 4, 5 and 6
of Step 3 and summed up in Figure 4.2. For instance, there is a unidirectional edge
starting from District vertex to the Block vertex. Such edge is depicted by a filled ar-
row showing the cardinality of the relationship, that is 1:N. The arrow is filled because
the foreign key cannot be null. In case of Building class there is a total/disjoint gen-
eralization, because an building can only be public or private. To map generalizations
according to procedure 7 of Step 4, the superclass (Building) must be excluded. Such
classes have a double label at the vertex corresponding to each subclass (Building,
Public and Private).

4.3. Considerations 37

Figure 4.12: Logical Graph Schema

4.3 Considerations

In this chapter, we presented steps to perform the mapping from a geographic concep-
tual schema (OMT-G) to a logical graph schema. We introduced procedures and an
algorithm to execute the mapping process as well as a diagrammatic way to draw a log-
ical graph schema. All geographic primitives were considered from OMT-G (classes, re-
lationships and attributes), including a new approach to map generalizations to graphs,
which requires a direct representation through labeled edges and vertices in the graph
schema.

Logical schemas are not built with the features of a specific DBMS in mind,
but rather are required to generically move towards the subjacent data structures
of a DBMS class, such as relational (tables), document-oriented (hierarchies), graph-
oriented (graphs) and others. Some integrity constraints can be represented in the
graph logical schemas and others cannot, as detailed in the steps of the mapping
process. However, the implementation of these integrity constraints should be done in
a specific DBMS, using its tools to enforce data consistency.

38 Chapter 4. Mapping OMT-G to Graph Logical Schemas

In the next chapter, we introduce the mapping process from a logical graph
schema to a physical graph database using Neo4j. We explain how to create nodes and
their relationships, as well as the integrity constraints that are supported by Neo4j.

Chapter 5

Physical Mapping Process

Mapping an OMT-G schema to a physical schema is similar to of conventional con-
ceptual schemas when only non-geographic primitives are considered (e.g., Entity-
Relationship). However, the semantics of spatial classes and their relationships exceed
those of conventional representations, and must be preserved in the database imple-
mentation, especially spatial integrity constraints.

This chapter introduces the steps to mapping a logical graph schema to a physical
graph schema, using Neo4j as a graph DBMS. As an overview, Figure 5.1 presents the
whole transformation process: it starts with a conceptual geographic schema (in OMT-
G) that goes through transformation rules and becomes a logical graph schema, which
is mapped to the physical graph database. Next, Section 5.1 provides the steps to build
the physical schema, Section 5.2 discusses the physical integrity constraints, Section
5.3 proposes a hybrid schema, highlighting its pros and cons, and Section 5.4 discusses
some main aspects and challenges of such a mapping.

Figure 5.1: Overview of Mapping Process

39

40 Chapter 5. Physical Mapping Process

Figure 5.2: Sample Graph Schema

5.1 Mapping Steps

Mapping a geographical logical schema to a specific DBMS requires adopting the
DBMSs strengths and working around its limitations. Each DBMS (relational or non-
relational) has a number of peculiarities, and the limitations should be overcome ac-
cording to the needs expressed in the conceptual design. Thereby, this section provides
steps to map a previously modeled graph logical schema to the Neo4j DBMS. The
mapping is described using the Cypher Query Language. Figure 5.2 shows the logi-
cal schema to be mapped, as a running example, which corresponds to the example
discussed in Section 4.

Next, we present the mapping steps as summarized in Algorithm 2. In each step,
we highlight the Neo4j limitations when they occur. The dataset in Table 5.1 must be
considered as part of mapping process, as Neo4j does not have a previously materialized
schema, as traditional relational databases do. Structuring and storing data into Neo4j
requires inserting data in the moment of graph creation.

5.1. Mapping Steps 41

Algorithm 2 Physical Mapping Algorithm
Input:Graph Logical Schema
Output: Graph Physical Schema
1: Create a Spatial Label
2: Create Nodes and their constraints
3: Create Relationthips and their constraints
4: Associate the nodes id
5: Add nodes to layer

Table 5.1: Sample dataset (random data)

Id Entity Name Of City/District Coordinates
C1 City Belo Horizonte - POLYGON((30 10, 40 40, 20 40, 10 20, 30 10))
D1 District Ouro Preto C1 POLYGON((15 20, 18 25, 15 25, 17 14, 15 40))
D2 District Belvedere C1 POLYGON((20 35, 25 38, 35 33, 30 30, 24 25, 20 35))
E1 Public Edification MPMG D2 POINT(28 35)
E2 Public Edification PU_Belvedere D2 POINT(26 30)
E3 Private Edification FAMINAS D2 POINT(23 33)
E4 Private Edification Drugstore Araujo D1 POINT(18 20)
E5 Public Edification CEFET-MG D1 POINT(20 16)
C1 Crossing 1 D1 POINT(40 50)
C2 Crossing 2 D2 POINT(45 35)
C3 Crossing 3 D2 POINT(25 20)
S1 Segment X Street C1, C2 LINESTRING(40 50, 42 38, 45 35)
S2 Segment Y Street C2 LINESTRING(25 20, 35 30, 45 35)

5.1.1 Step 1: Spatial Layer

The primary type that defines a collection of geometries is a Layer. A layer contains an
index for querying. In Neo4j, the EditableLayerImpl is the default editable layer imple-
mentation and can handle any type of simple geometry, including Point, LineString and
Polygon, as well as Multi-Point, Multi-LineString and Multi-Polygon, as standardized
by the Open Geospatial Consortium (OGC). A layer is a generic implementation that
ignores any topological constraints that must be observed on the data, because each
geometry is stored separately in a single property of a node. The storage format is
WKB, or Well Known Binary, which is an OGC standard binary format to geographic
geometries that is used by most popular spatial databases.

Creating the spatial layer requires running a command (REST call) on the Neo4J
web console as follows.

:POST <dir>/<action> {"LAYER": <layer>, "FORMAT": <format>, "NodePropertyName": <nodeProperty>}

where the tag <dir> is the graph storage directory, tag <action> is an action to be
run, tag <layer> names the layer, tag <format> is the layer format that is going to be
utilized, and tag <nodeProperty> specifies the node attribute that contains the geo-

42 Chapter 5. Physical Mapping Process

graphic data. For instance, the following code creates an EditableLayer (tag <action>)
called geom on a graph that stores geographic data with WKT format on attributes
called coordinates.

:POST /db/data/ext/SpatialPlugin/graphdb/addEditableLayer {"layer" : "geom", "format" : "WKT", "nodeProper-
tyName" : "coordinates"}

5.1.2 Step 2: Nodes

Next task is to insert nodes into the graph. In this case, each node in the logical schema
becomes a node label into Neo4j’s graph. Nodes in Neo4j have labels to group similar
nodes. Such labels work as table identifiers in relational databases. It is possible to
create nodes with multiple labels, for instance, to create node instances for general-
ization or specialization. Neo4j automatically inserts unique IDs in every node. Thus,
there is no need to create identifiers manually. Node integrity constraints are described
in more detail in Section 5.2.

As in the previous step, a REST call must be run to insert the node data as
follows.

:POST <dir>/<action> { "STATEMENTS" : [{ "STATEMENT" : <statement>, "PARAMETERS" : <parame-
ters>}]}

where the tag <dir> specifies the graph directory, tag <action> specifies an action to
be executed, tag <statement> has the insertion Cypher statement and tag <param-
eters> contains the statement parameters. For instance, the following code creates a
node to store Belo Horizonte data.

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "create (bh:City {data}) return id(bh)",
"parameters" : { "data" : { "name" : "Belo Horizonte", "coordinates" : "POLYGON ((30 10, 40 40, 20 40, 10 20, 30
10))"}}}]}

where the <action> is a committed transaction, the <statement> is the Cypher com-
mand to insert a node and the <parameters> are the data themselves. The commands
to insert the other nodes are listed in Appendix A.

5.1.3 Step 3: Relationships

At this step, all relationships between the created nodes are established. In graphs,
relationships (edges) between nodes are important to correct behavior, because graph
databases (as Neo4J) mainly implement graph algorithms to traverse the graph to
answer queries. Note that the integrity constraints from relationships are treated in

5.1. Mapping Steps 43

Section 5.2. Creating relationships between nodes previously created requires running
a command as follows. Tags work as explained in Step 2.

:POST <dir>/<action> { "STATEMENTS" : [{ "STATEMENT" : "<statement>"}]}

For instance, the following code creates the relationship HAS_DISTRICT be-
tween node instances of City and District:

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "MATCH (a:City), (b:District), CREATE
(a)[:HAS_DISTRICT]>(b)"}]}

Similarly, the relationships between instances of District and Building must be
created. However, they require retrieving the right Buildings to associate to the right
District, because each Building must be associated to a single district. Such con-
straint is guaranteed by the relationships (edges) between nodes. Creating the road
network relationships between Crossing nodes (which are related by an edge labeled
as “STREET”) requires retrieving the right crossing nodes to relate them with seg-
ment edges. Neo4J allows including geometries in edges to store spatial networks. To
this example, there are two edges containing a linestring geometry to represent street
segments. Lastly, the relationship “HAS_CROSSING” between District and Crossing
nodes must be created. The commands to create all relationships of this example are
in Appendix A.

5.1.4 Step 4: Associating the node ID

In order to enable spatial queries with Cypher, Neo4j requires that every geo-indexed
node has a property called id with the value of the node identifier. To execute this
operation, the command tags works as previously explained changing only the Cypher
statement. Thus, the command to this step is as follows.

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "match (n) set n.id=id(n)" }]}

5.1.5 Step 5: Adding nodes to layer

Lastly, the nodes must be added to the spatial layer created in Step 1. Such step is
required to enable the spatial queries. Then, the REST call is as follows.

:POST <dir>/<action> {"LAYER" : "<layer>", "NODE" : "<node>"}

44 Chapter 5. Physical Mapping Process

Figure 5.3: Neo4j graph schema

Where tag <dir> is the graph directory, tag <action> is the action to be done,
tag <layer> specifies a layer (previously created) and tag <node> is a node (specified
by its id) to be add to a layer. However, this process must be done for every single
node that has a coordinate property, only changing the node id in the end of the REST
call. For instance, the command to add the node with id 5 is as follows.

:POST /db/data/ext/SpatialPlugin/graphdb/addNodeToLayer {"layer" : "geom", "format" : "node" :
"http://localhost:7474/db/data/node/5"}

After all of these steps, the sample schema is created in Neo4j as illustrated in
Figure 5.3. In the next section, we discuss the physical integrity constraints in Neo4j.

5.2 Physical Integrity Constraints

The consistency of data are ensured by integrity constraints. As shown in Chapter
2, the integrity constraints are: entity, domain, referential, topological, semantic and
user-defined. However, Neo4j does not adopt a previous schema and does not have
the same concept of triggers and procedures as in relational databases. Thus, certain
integrity restrictions might not be verified. Next, we highlight the main aspects of
physical integrity constraints.

Entity Integrity Constraint. In Neo4j, each created node has a unique identifier.
Thereby, it is possible to create several nodes with the same attributes. However, Neo4j
has the unique property constraints to ensure that property values are unique for all

5.2. Physical Integrity Constraints 45

nodes with a specific label. Unique constraints do not mean that all nodes must have a
unique value for the properties. However, nodes without the property are not subject
to this rule. Such constraint is defined as follows:

CREATE CONSTRAINT ON (<alias><nodeLabel>) ASSERT <alias>.<nodeProperty> IS UNIQUE

Where tag <alias> is an alias for node instances, tag <nodeLabel> is the label
from nodes that participate of such constraint, and tag <nodeProperty> is the spe-
cific property to be guaranteed. Such constraint works as primary key constraints in
relational databases. For instance, the following code applies such constraint to the
sample schema on name property of City, District and Building node labels.

CREATE CONSTRAINT ON (c:City) ASSERT c.name IS UNIQUE

CREATE CONSTRAINT ON (d:District) ASSERT d.name IS UNIQUE

CREATE CONSTRAINT ON (e:Building) ASSERT e.name IS UNIQUE

As Neo4j creates a unique identifier automatically, there is no need to create
constraint unique to the code property. This constraint ensures that a Building cannot
be Private and Public at the same time, for example.

Constraints can be added after a label is already in use. However, it requires
that existing data complies with such constraints. Otherwise, the constraints will not
be created. When adding unique constraints, Neo4j adds an index on that property
implicitly. Thus, there is no need to do that separately. If a constraint is dropped but
still has an index on such property, an index must to created explicitly.

Neo4j has a property existence constraint to ensure that a property exists for all
nodes with a specific label, or for all relationships with a specific type. However, the
property existence constraints are only available in the Neo4j Enterprise Edition. For
example, the following code applies such restriction on the City node.

CREATE CONSTRAINT ON (c:City) ASSERT exists(c.Name)

The property existence constraint can also be applied in relationships. Creating a
constraint to guarantee that all relationships with a certain type have a certain property
requires the syntax ASSERT exists(variable.propertyName) in moment of constraint
creation.

46 Chapter 5. Physical Mapping Process

Domain Integrity Constraint. In Neo4j, properties are key-value pairs where the
key is a string. Property values can be either a primitive or an array of one primitive
type: boolean, byte, short, int, long, float, double, char or string. However, there
is no way to validate the input data. If this restriction must be used, it must be of
application responsibility. Null values are not allowed in Neo4j. If a property has null
values, such property must be removed.

Referential Integrity Constraint. Relationships between nodes are a key point of
graph databases as they allow finding related data. In Neo4j, a relationship connects
exactly two nodes, ensuring a valid start node and an end node. Neo4j does not allow
to remove nodes that have connections with other nodes. Removing a node requires to
delete their relationships first.

Neo4j does not require the use of primary and foreign keys. The relationships are
defined through labeled edges. Relationships are equally well traversed in either direc-
tion. Hence, there is no need to add duplicate relationships in the opposite direction
(e.g., to improve traversal or performance).

Topological Integrity Constraint. The topological constraints ensure consistency
of data regarding their topology. Neo4j offers topological functions for verifying and
querying spatial data: Contain, Cover, Covered By, Cross, Disjoint, Intersect, In-
tersect Window, Overlap, Touch, Within and Within Distance. However, Neo4j does
not have the concept of triggers (as in relational databases) to keep data consistency.
Thereby, using such restriction in Neo4j requires extending Neo4j through plugins to
solve the topological integrity constraints.

Semantic Integrity Constraint. The semantic of geographic data must also be
verified through topological functions. For example, a building cannot be intercepted
by a street segment. Thereby, a routine must be implemented to check and validate
the data. Such routine (trigger) demands to extend Neo4j through plugins.

User-defined Integrity Constraint. The user-defined constraints act as business
rule of a schema. For instance, a gas station must lie farther than 200 meters from any
existing school. However, as the other integrity constraints, the only way to validate
the user-defined constraints is by extending the Neo4j through plugins.

NoSQL graph databases are designed to be flexible, without concerning about
integrity constraints. Such property can be seen in Neo4j, which requires extending its

5.3. Hybrid Schema 47

functionalities by building plugins to use the most of integrity constraints (geographical
or not). Hence, using integrity constraints in Neo4j becomes complex. However, Neo4j
can be used in a hybrid solution combining its advantages (such as explicit network
relationships) with the advatantages of relational model (such as the implemented
integrity constraints). A hybrid solution can improve the quality of geographical data
storing. Next, we discuss a hybrid approach to NoSQL and SQL databases.

5.3 Hybrid Schema

NoSQL databases do not solve all problems and do not replace traditional relational
databases. NoSQL databases goal is very specific: filling gaps left by the relational
model (such as sharding and a better performance on a huge amount of data). It is
also an alternative way to provide persistence, which may be more suitable for specific
projects, i.e., not necessarily to all projects. The one-size-fits-all no longer exists.

Each database paradigm (relational or NoSQL) is designed to get better perfor-
mance in distict scenarios (e.g., operations, data structures and data volume). For in-
stance, relational databases ensure the integrity of structured data; key-value databases
allow a quick data access using a key (as hash table); document databases store nested
data (as JSON); graph databases store data in which their topology and relationships
are important (as network relationships); and columnar databases store data in columns
(as opposed to relations). However, implementing a hybrid approach can combine ben-
efits of each database paradigm, such as relational and non-relational. Such approach
may be called polyglot persistence [35].

In case of geographical data, a hybrid approach can improve the data manage-
ment. Specifically, Santos et al. [38] show that graph databases (Neo4j) get better
performance for network queries (as Urban Routing and Position Tracing) in compari-
son to relational databases (PostGIS). However, as previously discussed in Section 5.2,
making Neo4j to ensure the integrity constraints of spatial data is a hard task, because
Neo4j does not have sufficient tools. On the other hand, relational solutions for spatial
data are more mature to treat integrity constraints.

In this case, a solution that combines the advantages of graph databases (network
relationships) with the advantages of relational databases (data integrity) can make
a geographical system faster. For instance, network queries are sent to the graph
database and the others to the relational one, and data integrity is verified by the
relational database. The aspects of such solution is summarized in Table 5.2 with their
pro and cons.

48 Chapter 5. Physical Mapping Process

Table 5.2: Comparison between SQL, NoSQL and Hybrid solutions

Solution Pro Cons
Relational More mature Lower performance*

More used Complex to network relationships
Spatial integrity constraints Not ideal to cluster
ACID Model-dependent

Graph Explicit network relationships Spatial integrity constraints
Higher performance on network relationships Less used
Ideal to cluster Schemaless
More flexible ACID/CAP

Hybrid Approach Data consistent
Higher performance on network relationships
Spatial integrity constraints

5.4 Considerations

In this chapter, we presented the mapping from a geographic conceptual schema (OMT-
G) to a physical graph schema using the Neo4j’s Cypher query language. The mapping
process started from a sample logical graph schema to the physical schema in Neo4j.

The resulting graph of the case study is well connected. However, having a dis-
connected graph (i.e., a set of smaller graphs instead of only one) is also a possibility,
and Neo4j can handle it easily. In this case, a disconnected graph works as discon-
nected relations (tables) in relational databases. Specifically, Neo4j spatial functions
are able to query disconnected spatial nodes that contain geometries. For instance, the
spatial function Contain retrieves all nodes with a point geometry in a delimited area.
However, having disconnected graphs to store spatial data may jeopardize using graph
algorithms to traverse the whole graph.

Unlike conceptual schemas, physical schemas depend on a specific DBMS imple-
mentation, which may result in challenges for storing and managing data. For instance,
integrity constraints on Neo4j require constructing plugins to extend its functionali-
ties, because Neo4j does not have triggers (as relational databases do). Hence, a hybrid
approach can be utilized to combine advantages of both relational and graph models.

A previous work of our research group has appointed advantages of NoSQL
databases to spatial data [38]. Specifically, Neo4j had higher performance in net-
work queries. On the other hand, other types of spatial queries got better performance
when running on SQL solutions (e.g., PostGIS) or even in other NoSQL approaches, as
document-oriented databases (MongoDB). Thus, an integration between a schemaless
model and a structured schema can provide many benefits, as shown in Section 5.3.
However, such polyglot persistence requires a deep research to cover all restrictions and
limitations of both models, SQL and NoSQL.

Chapter 6

Conclusion

This work has introduced a methodology to map geographical conceptual schemas
(OMT-G) to graph logical schemas. Given a conceptual model, the hardest part of
mapping process is to define which class is mapped to a node and how to convert rela-
tionships to edges. Another challenge is identifying how to keep the model semantic,
respecting both the spatial integrity constraints and non-spatial constraints. Specifi-
cally, we presented an algorithm to map an OMT-G schema to a logical graph schema.
Such algorithm has a sequence of steps with a formal procedure to reach the mapping
as well as the implementation requirements that highlights key aspects to ensure the
integrity constraints.

This work has also presented an algorithm to map a logical graph schema to a
physical graph schema. To demonstrate such step, Neo4j was chosen as a physical
graph database. A logical schema does not depend on a specific database implemen-
tation, it depends only on the database type (e.g. relational, graph, document, etc).
However, when mapping a logical schema to a specific database, it means adopting the
its strengths and limitations. In case the Neo4j, we highlighted the positive aspects as
the facility to create network relationships by labeled edges, and the negative aspects
as the absence of mechanisms to verify integrity constraints. The initial results of this
dissertation are published at [40].

Although Neo4j has a series of limitations to handle spatial data, its use as part
of storing solution is not ruled out. Thus, we started a discussion of a hybrid ap-
proach considering Neo4j for manage network relationships. The positive and negative
points in adopting a hybrid schema are presented, to help a database designers decide
which the better storage solution. However, a further study is required to detail the
integration process between the NoSQL and SQL architecture.

Ideas for improving and extending this work include:

49

50 Chapter 6. Conclusion

• Extend this study to other NoSQL approaches. Proposes methodolo-
gies to mapping geographical conceptual schemas to other NoSQL approaches as
document-oriented and column-oriented.

• Study spatial performance metrics by different modeling techniques.
There are many possibilities to model a NoSQL approaches. However, we need
to test if there are performance rise by using different modelling strategies.

• Develop a Hybrid Spatial DBMS that encapsulates multiple data mod-
els/mapping strategies. We note that systems focused on a single model (for
instance, the network model and the urban routing category) usually excel in a
particular scenario, but have a underperforming on the rest. Thus, a hybrid ap-
proach using NoSQL and SQL solutions may be used to get better performance
in different spatial queries.

Bibliography

[1] Amirian, P., Basiri, A., and Winstanley, A. (2013). Efficient Online Sharing of
Geospatial Big Data Using NoSQL XML Databases. In 2013 Fourth International
Conference on Computing for Geospatial Research and Application (COM. Geo),
pages 152--152. IEEE.

[2] Angles, R. and Gutierrez, C. (2008). Survey of Graph Database Models. ACM
Computing Surveys (CSUR), 40(1):1.

[3] Beard, B. (2016). Practical Maintenance Plans in SQL Server: Automation for the
DBA, chapter Checking Database Integrity, pages 33--43. Apress, Berkeley, CA.

[4] Boaventura Filho, W., Olivera, H. V., Holanda, M., and Favacho, A. A. (2015).
Geographic data modeling for NoSQL document-oriented databases. The Seventh
International Conference on Advanced Geographic Information Systems, Applica-
tions, and Services - GEOProcessing 2015, page 72.

[5] Borges, K. A. V., Davis, C. A., and Laender, A. H. (2001). OMT-G: An Object-
Oriented Data Model for Geographic Applications. GeoInformatica, 5(3):221--260.

[6] Borges, K. A. V., Davis Jr., C. A., and Laender, A. H. F. (2005). Modelagem
conceitual de dados geográficos. In Casanova, M., Câmara, G., Davis Jr., C. A.,
Vinhas, L., and Ribeiro, G., editors, Bancos de Dados Geográficos, pages 83–136.
MundoGeo Editora.

[7] Borges, K. A. V., Laender, A. H. F., and Davis, Jr., C. A. (1999). Spatial Data
Integrity Constraints in Object Oriented Geographic Data Modeling. In Proceedings
of the 7th ACM International Symposium on Advances in Geographic Information
Systems, pages 1--6, Kansas City, Missouri, USA.

[8] Bugiotti, F., Cabibbo, L., Atzeni, P., and Torlone, R. (2014). Database Design
for NoSQL Systems. In International Conference on Conceptual Modeling., volume
8824, pages 223--231, Atlanta, USA.

51

52 Bibliography

[9] Carafoli, L., Mandreoli, F., Martoglia, R., and Penzo, W. (2016). A Data Manage-
ment Middleware for ITS Services in Smart Cities. Journal of Universal Computer
Science, 22(2):228--246.

[10] Cattell, R. (2011). Scalable SQL and NoSQL Data Stores. SIGMOD Rec.,
39(4):12--27.

[11] Clementini, E. and Di Felice, P. (1996). A Model for Representing Topological Re-
lationships between Complex Geometric Features in Spatial Databases. Information
sciences, 90(1):121--136.

[12] Clementini, E., Di Felice, P., and van Oosterom, P. (1993). A Small Set of Formal
Topological Relationships Suitable for End-User Interaction. In 3rd International
Symposium on Spatial Databases, pages 277--295, National University of Singapore.

[13] Câmara, G. (1996). Caracterização de Dados Geográficos. In Câmara, G.,
Casanova, M. A., Hemerly, A. S., Magalhães, G. C., and Medeiros, C. M. B., ed-
itors, Anatomia de Sistemas de Informação Geográfica, pages 37–48. Instituto de
Computação - UNICAMP.

[14] Davis Jr., C. A., Borges, K. A. V., and Laender, A. H. F. (2005). Deriving Spatial
Integrity Constraints from Geographic Application Schemas. In Rivero, L. C., Doorn,
J. H., and Ferraggine, V. E., editors, Encyclopedia of Database Technologies and
Applications, pages 176–183. Idea Group.

[15] Egenhofer, M. J. (1989). A Formal Definition of Binary Topological Relation-
ships. In Third International Conference on Foundations of Data Organization and
Algorithms, pages 457--472, Paris, France.

[16] Egenhofer, M. J. and Franzosa, R. D. (1991). Point-Set Topological Spatial Rela-
tions. International Journal of Geographical Information System, 5(2):161--174.

[17] Egenhofer, M. J. and Herring, J. (1990). A Mathematical Framework for the
Definition of Topological Relationships. In Fourth international symposium on spatial
data handling, pages 803--813, Zurich, Switzerland.

[18] Elmasri, R. and Navathe, S. (2009). Fundamentals of Database Systems. Addison-
Wesley, Menlo Park, CA, 6th edition.

[19] Güting, R. H. (1994). GraphDB: Modeling and Querying Graphs in Databases. In
Proceedings of the 20th International Conference on Very Large Data Bases, pages
297--308, Santiago de Chile, Chile.

Bibliography 53

[20] Hashem, H. and Ranc, D. (2015). An Integrative Modeling of BigData Processing.
International Journal of Computer Science and Applications, 12(1):1–15.

[21] He, C. (2015). Survey on NoSQL Database Technology. Journal of Applied Science
and Engineering Innovation Vol, 2(2):50--54.

[22] Hora, A. C., Davis Jr, C. A., and Moro, M. M. (2010). Generating XML/GML
Schemas from Geographic Conceptual Schemas. In IV Alberto Mendelzon Workshop
on Foundations of Data Management, Buenos Aires, Argentina.

[23] Hora, A. C., Davis Jr, C. A., and Moro, M. M. (2011). Mapping Network Relation-
ships from Spatial Database Schemas to GML Documents. Journal of Information
and Data Management, pages 67–74.

[24] Hu, Y. and Dessloch, S. (2014). Defining Temporal Operators for Column Oriented
NoSQL Databases. In 18th East-European Conference on Advances in Databases and
Information Systems, pages 39–55, Ohrid, Republic of Macedonia.

[25] Jagadish, H. V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J. M.,
Ramakrishnan, R., and Shahabi, C. (2014). Big Data and Its Technical Challenges.
Communications of the ACM, 57(7):86--94.

[26] Junglas, I. A. and Watson, R. T. (2008). Location-Based Services. Communica-
tions of the ACM, 51(3):65--69.

[27] Kaur, K. and Rani, R. (2013). Modeling and Querying Data in NoSQL Databases.
In 2013 IEEE International Conference on Big Data, pages 1--7. IEEE.

[28] Laurini, R. and Thompson, D. (1992). Fundamentals of Spatial Information Sys-
tems. Academic Press.

[29] Lee, K. K.-Y., Tang, W.-C., and Choi, K.-S. (2013). Alternatives to Relational
Database: Comparison of NoSQL and XML Approaches for Clinical Data Storage.
Computer methods and programs in biomedicine, 110(1):99--109.

[30] Lisboa F., J. and Iochpe, C. (1999). Specifying Analysis Patterns for Geographic
Databases on the Basis of a Conceptual Framework. In Proceedings of the 7th ACM
International Symposium on Advances in Geographic Information Systems, pages
7--13, Kansas City, Missouri, USA.

[31] Lizardo, L. E. O. and Davis, C. A. (2014). OMT-G Designer: A Web Tool for
Modeling Geographic Databases in OMT-G, pages 228--233. Springer International
Publishing.

54 Bibliography

[32] Moro, M. M., Lim, L., and Chang, Y.-C. (2007). Schema Advisor for Hybrid
Relational-XML DBMS. In Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, pages 959--970, Beijing, China.

[33] Neo4j (2016). Neo4j Graph Database: Unlock the Value of Data Relationships.
Available at: http://neo4j.com/product/. Accessed in June 06, 2016.

[34] Newman, M. E. (2003). The Structure and Function of Complex Networks. SIAM
review, 45(2):167--256.

[35] Oliveira, F. R. and del Val Cura, L. (2016). Performance Evaluation of NoSQL
Multi-Model Data Stores in Polyglot Persistence Applications. In Proceedings of the
20th International Database Engineering & Applications Symposium, pages 230--235,
New York, NY, USA.

[36] POSTGIS (2016). Using PostGIS: Data Management and Queries. Available at:
http://postgis.net/docs/using_postgis_dbmanagement.html. Accessed in May
31, 2016.

[37] Sadalage, P. J. and Fowler, M. (2012). NoSQL Distilled: A Brief Guide to the
Emerging World of Polyglot Persistence. Pearson Education.

[38] Santos, P. O., Moro, M. M., and Jr., C. A. D. (2015). Comparative performance
evaluation of relational and nosql databases for spatial and mobile applications. In
Proceedings of 26th International Conference Database and Expert Systems Applica-
tions - DEXA, pages 186--200, Valencia, Spain.

[39] Saxena, M., Ali, Z., and Singh, V. K. (2014). NoSQL Databases- Analysis, Tech-
niques, and Classification. Journal of Advanced Database Management & Systems,
1(2):13--24.

[40] Seufitelli, D. B., Moro, M. M., and Davis Jr, C. A. (2015). Desafios no Mapeamento
de Esquemas Conceituais Geográficos para Esquemas Físicos Híbridos SQL/NoSQL.
In GeoInfo, pages 119--124, Campos do Jordão, São Paulo.

[41] Shekhar, S., Coyle, M., Goyal, B., Liu, D.-R., and Sarkar, S. (1997). Data Models
in Geographic Information Systems. Communications of the ACM, 40(4):103--111.

http://neo4j.com/product/
http://postgis.net/docs/using_postgis_dbmanagement.html

Appendix A

Commands of The Neo4j Schema

Here we provide the commands to create the nodes and relationships of the example.

Creating nodes:

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "create (bh:City {data}) return id(bh)",
"parameters" : { "data" : { "name" : "Belo Horizonte", "coordinates" : "POLYGON ((30 10, 40 40, 20 40, 10 20, 30
10))"}}}]}

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "create (op:District {data}) return id(op)",
"parameters" : { "data" : { "name" : "Ouro Preto", "coordinates" : "POLYGON ((15 20, 18 25, 15 25, 17 14, 15 40))"
}}}]}

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "create (cas:District {data}) return id(cas)",
"parameters" : { "data" : { "name" : "Belvedere", "coordinates": "POLYGON ((20 35, 25 38, 35 33, 30 30, 24 25, 20
35))" }}}]}

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "create (mpmg:Edification:Public {data})
return id(mpmg)", "parameters" : { "data" : { "name" : "MPMG", "gov" : "State", "coordinates": "POINT (28 35)"
}}}]}

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "create (pu:Edification:Public {data}) return
id(pu)", "parameters" : { "data" : { "name" : "PU_Belvedere", "gov" : "Municipal", "coordinates": "POINT (26
30)" }}}]}

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "create (fam:Edification:Private {data}) return
id(fam)", "parameters" : { "data" : { "name" : "FAMINAS", "type" : "University", "coordinates": "POINT (23 33)"
}}}]}

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "create (dru:Edification:Private {data}) return
id(dru)", "parameters" : { "data" : { "name" : "Drugstore Araujo", "type" : "Pharmacy", "coordinates": "POINT
(18 20)" }}}]}

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "create (cef:Edification:Public {data}) return
id(cef)", "parameters" : { "data" : { "name" : "CEFET-MG", "gov" : "Federal", "coordinates": "POINT (20 16)"
}}}]}

55

56 Appendix A. Commands of The Neo4j Schema

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "create (cros1:Crossing {data}) return
id(cros1)", "parameters" : { "data" : { "name" : "1", "coordinates": "POINT (40 50)" }}}]}

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "create (cros2:Crossing {data}) return
id(cros2)", "parameters" : { "data" : { "name" : "2", "coordinates": "POINT (45 35)" }}}]}

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "create (cros3:Crossing {data}) return
id(cros3)", "parameters" : { "data" : { "name" : "3", "coordinates": "POINT (25 20)" }}}]}

Creating relationships:

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "MATCH (a:District{ name: ’Ouro Preto’ }),
(b:Edification{ name: ’Drugstore Araujo }), CREATE (a)-[:CONTAINS]->(b)"}]}

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "MATCH (a:District{ name: ’Ouro Preto’ }),
(b:Edification{ name: ’CEFET-MG’ }), CREATE (a)-[:CONTAINS]->(b)"}]}

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "MATCH (a:District{ name: ’Belvedere’ }),
(b:Edification{ name: ’MPMG’ }), CREATE (a)-[:CONTAINS]->(b)"}]}

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "MATCH (a:District{ name: ’Belvedere’ }),
(b:Edification{ name: ’PU_Belvedere’ }), CREATE (a)-[:CONTAINS]->(b)"}]}

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "MATCH (a:District{ name: ’Belvedere’ }),
(b:Edification{ name: ’FAMINAS’ }), CREATE (a)-[:CONTAINS]->(b)"}]}

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "MATCH (a:Crossing{name:’1’}),
(b:Crossing{name:’2’}), CREATE (a)-[:STREET {name: ’X Street’, coordinates: ’LINESTRING(40 50, 42 38, 45
35)’}]->(b)"}]}

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "MATCH (a:Crossing{name:’2’}),
(b:Crossing{name:’3’}), CREATE (a)-[:STREET {name: ’Y Street’, coordinates: ’LINESTRING(25 20, 35 30, 45
35)’}]->(b)"}]}

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "MATCH (a:District{name: ’Ouro Preto’}),
(b:Crossing{name: ’1’}) CREATE (a)-[:HAS_CROSSING]->(b)"}]}

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "MATCH (a:District{name: ’Belvedere’}),
(b:Crossing{name: ’2’}) CREATE (a)-[:HAS_CROSSING]->(b)"}]}

:POST /db/data/transaction/commit { "statements" : [{ "statement" : "MATCH (a:District{name: ’Belvedere’}),
(b:Crossing{name: ’3’}), CREATE (a)-[:HAS_CROSSING]->(b)"}]}

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objective and Contributions
	1.4 Organization

	2 Related Work
	2.1 Concepts and Current Technology
	2.1.1 Spatial Data
	2.1.2 Spatial Data Modeling
	2.1.3 Spatial Database Management Systems
	2.1.4 Data Integrity
	2.1.5 Spatial Integrity
	2.1.6 Non-Relational Databases (NoSQL)
	2.1.7 Neo4J

	2.2 Recent Work
	2.3 Considerations

	3 OMT-G
	3.1 Overview
	3.2 Class Diagram
	3.2.1 Class Structure
	3.2.2 Relationships

	3.3 Spatial Integrity Constraints
	3.3.1 Geo-field spatial integrity constraints
	3.3.2 Spatial relationships integrity constraints
	3.3.3 Geo-object spatial integrity constraints
	3.3.4 Topological integrity constraints

	4 Mapping OMT-G to Graph Logical Schemas
	4.1 Mapping Steps
	4.1.1 Step 1: Classes
	4.1.2 Step 2: Class attributes
	4.1.3 Step 3: Binary relationships and aggregations
	4.1.4 Step 4: Generalizations and specializations

	4.2 Example
	4.3 Considerations

	5 Physical Mapping Process
	5.1 Mapping Steps
	5.1.1 Step 1: Spatial Layer
	5.1.2 Step 2: Nodes
	5.1.3 Step 3: Relationships
	5.1.4 Step 4: Associating the node ID
	5.1.5 Step 5: Adding nodes to layer

	5.2 Physical Integrity Constraints
	5.3 Hybrid Schema
	5.4 Considerations

	6 Conclusion
	Bibliography
	A Commands of The Neo4j Schema

