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Resumo

Compiladores estáticos atuais implementam uma gama de otimizações de código que
utilizam informações sobre memória para gerar código eficiente. A eficácia destas
transformações, entretanto, é limitada pela imprecisão inerente de métodos estáticos
projetados para extrair insights úteis relacionados ao uso da memória, como análise de
aliases e inferência de tamanho de arranjos. Para tratar este problema, apresentamos
uma análise simbólica que combina informações estáticas e dinâmicas para inferir lim-
ites para operações de acesso à memória. Nós mostramos que nosso método é preciso,
sendo capaz de derivar limites simbólicos para 98% dos acessos à memória em Poly-

Bench, impondo um overhead insignificante em tempo de execução. Para mostrar que
nossa análise pode ser utilizada tanto para aumentar o alcance de transformações de
código existentes quanto possibilitar a implementação de novas otimizações mais agres-
sivas, nós apresentamos dois clientes distintos. O primeiro, uma técnica híbrida para
desambiguação de apontadores, utiliza nossa análise de intervalos de acesso para prover
ao compilador informações mais precisas sobre aliasing. Esta melhora na precisão nos
permite gerar binários que são 10% mais rápidos quando comparados ao maior nível
de otimização disponível no LLVM, um compilador de amplo uso na indústria. O se-
gundo é um arcabouço para anotação automática de código para execução na GPU,
que utiliza nossa inferência de intervalos de memória para gerar diretivas capazes de
transferir dados para o dispositivo externo. As anotações geradas por este arcabouço,
que chamamos de DawnCC, permitem speedups de mais de 100x em uma arquitetura
Nvidia e mais de 50x em uma arquitetura ARM.
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Abstract

Current static compilers implement a number of code optimizations that rely on precise
memory-related information to generate efficient code. The effectiveness of such trans-
formations, however, is bound by the inherent imprecision of static methods designed
to extract useful memory insights, such as alias analyses and array size inference. To
address this problem, we present a symbolic analysis that combines static and dynamic
information to infer access bounds for memory operations. We show that our method is
precise, being able to derive symbolic bounds for 98% of the memory accesses in Poly-

Bench, while imposing negligible runtime overhead. To show that our analysis can be
used to both improve the reach of current code transformations and enable new, more
aggressive optimizations, we present two distinct clients. The first, a hybrid pointer
disambiguation technique, uses our access range analysis to provide the compiler with
more precise alias information. This improvement in precision allows us to generate
binaries that are 10% faster when compared to the highest optimization level available
in LLVM, a industrial-strength compiler. The second is a framework that automatically
annotates code for GPU execution, using our memory range inference to generate di-
rectives capable of transferring data to the external device. The annotations generated
by this framework, which we call DawnCC, lead to speedups of over 100x in an Nvidia
architecture, and over 50x in an ARM architecture.
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Chapter 1

Introduction

Code optimizations rely heavily on memory-related information to yield performance
improvements. Knowledge of which pointers in a program can access the same regions
in memory, for instance, is essential for most loop transformations, automatic paral-
lelization, and any compiler pass that performs instruction reordering. Information
about the size of memory regions, as another example, is needed for passes that deal
with data placement, such as spatial locality optimizations and automatic generation of
code for heterogeneous architectures. Despite its importance, having meta-information
about memory available during compilation is the exception rather than the norm for
static compilers.

While being the target of extensive research in the last several decades, developing
efficient and precise analyses for static compilers capable of extracting useful memory
information still represents a great challenge. Checking if two instructions can write
to the same place in memory, for instance, is a hard task at compile time. Clang, one
of the most used C and C++ compilers nowadays, is not able to detect the absence of
dependence for 62% of the alias queries made during the compilation of the PolyBench

suite. This number is obtained enabling the five static alias analyses available in the
compiler [Alves et al., 2015]. Most of this lack of precision arise from the fact that the
compiler must give a conservative answer whenever the same pair of memory pointers
may alias or not depending on the execution context. Finding out the size of a memory
region, in the other hand, is a difficult problem even at runtime, as languages such as
C and C++ do not attach allocation size information to arrays and other structures,
contrary to more dynamic languages, like Java, C# or Python. In this work, we show
how an inference technique that combines static and dynamic information can be used
to tackle these and other problems regarding the precision of memory-related analyses.

In this work, we present a lightweight compiler analysis for C and C++ programs

1



2 Chapter 1. Introduction

capable of inferring symbolic access bounds for memory regions. Given a pointer and
a target region of code in the input program, our analyses derives a pair of symbolic
expressions, denoting the lowest and highest addresses that can be accessed through
that pointer within the region. The generated bound expressions are inserted at the
entry of the target region. Its symbols, which represent variable names from the original
program, are replaced at runtime by their actual values, thus yielding the final integer
access bounds. As range expressions are generated at compile time and solved at
runtime, we say that this analysis operates in a hybrid fashion, rather than being
completely static or completely dynamic. We show experimentally that our analysis is
able to infer symbolic bounds for 98% of the memory accesses found in the source code
of the benchmarks that compose the PolyBench suite.

To demonstrate the usefulness of the symbolic range analysis presented here, we
use it to both (i) improve current code optimizations available in industrial-strength
static compilers and (ii) enable new, more aggressive optimizations. For the first task,
we use our analysis to perform pointer disambiguation, extending the reach of transfor-
mations such as loop unrolling and automatic vectorization, implemented in the LLVM

compiler infrastructure. We also use the result of the pointer disambiguation technique
built around our range inference analysis to boost the optimizations performed by Polly,
a polyhedral framework for LLVM. For the second, we describe the implementation of
DawnCC, a framework that automatically annotates code to run on GPUs, in which
our symbolic access range analysis is an essential module. In the following subsections
we introduce and motivate these two clients of our analysis, which are investigated in
detail in Chapters 3 and 4.

1.1 Client I - Runtime Pointer Disambiguation

A fundamental chain in the compilation pipeline is the resolution of dependencies be-
tween memory locations. Solving such dependencies enables better instruction schedul-
ing as dependence information gives the compiler more freedom to reorder program
statements. The ability to disambiguate memory locations is also essential to enable
more specific optimizations, such as code vectorization [Karrenberg and Hack, 2011],
automatic parallelization [Lee et al., 2009; Yang et al., 2010], scalar promotion [Suren-
dran et al., 2014] and several loop transformations, such as fusion, fission, reversal,
interchanging, skewing and tiling [Wolfe, 1996, Ch.9]. Nevertheless, as important as
this problem is, the research community has not yet solved dependence analyses satis-
factorily.
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To solve memory dependencies effectively, compilers need an accurate alias anal-
ysis which tells, for each pair of pointers, if they must, may or may-not dereference
overlapping areas. However, solving these queries precisely is undecidable in the pres-
ence of procedure calls [Landi and Ryder, 1991], as aliasing may or may not happen
deppending on the calling context. In the absence of this feature, the problem becomes
NP-hard [Horwitz, 1997]. One of the goals of this work is to improve this scenario
by equipping compiler writers with a pointer disambiguation technique that lets them
address two challenges – the resolution of memory dependencies and the maintenance
of this solution across program optimizations – in a precise and efficient way.

We present different ways to distinguish memory regions at runtime. Section 3.3
introduces a hybrid pointer disambiguation technique based on our symbolic access
range analysis. Given a program region where memory is accessed, we generate – stat-
ically – the conditions that must be met so that memory locations do not overlap. We
compare it to a second hybrid method to produce such checks, based on the polyhedral
model [Bondhugula et al., 2008]. In Section 3.2 we discuss a totally dynamic pointer
disambiguation technique, which augments libc’s memory allocator with machinery
to associate size information with pointers. We can query this meta-data at runtime,
to check if two pointers may dereference areas that overlap.

We clone the regions guarded by dynamic checks, letting the compiler optimize
them with the extra knowledge that they are alias-free. At runtime we can query these
guards, and the result tells us when it is safe to jump into the optimized version of the
code.

The purely dynamic approach of Section 3.2, and the hybrid techniques of Sec-
tion 3.3 can be used independently, or combined. The former can be used more exten-
sively: it works for any pointer. The hybrid approaches have lower overhead, but they
only work for pointers whose bounds can be determined statically.

The dynamic disambiguation of pointers has been used in specific contexts before,
for instance, to enable automatic code parallelization [Rus et al., 2003]. Compilers for
C/C++ and other languages also commonly use guards and code versioning to enable
vectorization in the presence of pointer aliasing, but their use of versioning is commonly
limited to what is needed to permit classical inner-loop vectorization. As we aim to
enable the effective optimization of large and possibly complex loop nests, we propose
new techniques that are powerful enough to handle larger program regions and possibly
imperfectly nested, multi-level loop nests.

In Section 3.4 we validate these points. We have implemented our ideas in
the LLVM [Lattner and Adve, 2004] compilation infrastructure, and have used this
implementation to improve the effectiveness of Polly [Grosser et al., 2012], a loop-
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optimizer implemented on top of LLVM. We have tested our implementation on Poly-

Bench [Pouchet, 2014]. As we show in Section 3.4.1, the alias analyses currently avail-
able in LLVM, including a sub-cubic implementation of the Dyck-CFL-Reachability
algorithm [Zhang et al., 2013], are unable to disambiguate most of the memory access
in PolyBench. Our checks, on the contrary, can do this job. Consequently, we produce
code that is faster than the code that Polly-LLVM would produce in many cases. The
time that we take to generate the tests is negligible: we analyze the 30 benchmarks
available in PolyBench in milliseconds.

1.2 Client II - Automatic Annotation for Data
Parallelism and Offloading

Heterogeneous architectures formed by clusters of CPUs and GPUs give us, today,
a de facto standard in terms of high-performing computing, due to their widespread
adoption. To illustrate this statement, recently an implementation of conjugate gradi-
ents has been able to scale to 3.12 million heterogeneous cores on Tianhe-2, reaching
623 Tflop/s [Liu et al., 2016]. Currently, directive-based annotation systems stand
out among the several different techniques used to program these machines, mostly
because they require less platform-specific knowledge when compared to alternatives
such as CUDA. Examples of such systems include OpenMP [Jaeger et al., 2015], Ope-
nACC [Wienke et al., 2012] and OpenSs [Meenderinck and Juurlink, 2011]. The idea
behind this programming model is simple, yet appealing: annotations work as a meta-
language, which give developers the ability to grant parallel semantics to syntax orig-
inally written to run sequentially. Hence, developers can reap all the benefits from
modern parallel hardware, without having to worry too much about minutiae of con-
current programming, such as race conditions and deadlocks – such inconveniences are
left to the compiler. Success stories of such annotation systems abound, and, combined
with modern accelerators, they have led to substantial performance gains [Bertolli et al.,
2014; Reyes et al., 2012; Tabuchi et al., 2016; Wienke et al., 2012].

Nevertheless, annotating code to run in an accelerator device is still a difficult
task, which often requires familiarity with the input program that must be transformed.
Three challenges, in particular, are daunting: the discovery of parallel loops, the dis-
ambiguation of pointers, and the estimation of memory bounds. All these problems
have been attacked, in a way or another, by the programming language community.
Automatic parallelization has been the focus of much research, to the point that com-
pilers are able, today, to detect parallel loops with high accuracy [Baskaran et al.,
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2010]. Pointer disambiguation is another well studied problem [Hind, 2001], with fully
static [Andersen, 1994], fully dynamic [Duck and Yap, 2016], and hybrid solutions, with
the latter being one of the targets of this work. Finally, the problem of estimating with
high accuracy the bounds of memory regions has been tackled before [Nazaré et al.,
2014] and is extended here. And yet, in spite of all these advances, we still do not have
the necessary equipment that enables developers to annotate code automatically with
acceleration directives. In this work, we combine our symbolic memory range analysis,
hybrid pointer disambiguation, and traditional compiler analyses to solve this problem.
To this effect, we introduce a tool, DawnCC, which annotates code automatically.

The contributions of this new technology are the following: (i) we use our sym-
bolic range analyses to derive access bounds to memory regions, which lets us annotate
code with data-copy directives. These directives move data between the different pro-
cessors that constitute a heterogeneous parallel system. (ii) We use our hybrid pointer
disambiguation technique to enable the discovery of more parallel regions in the sequen-
tial source code, as it reduces dependencies between data. (iii) We resort to Ferrante
et al’s notion of Program Dependence Graph [Ferrante et al., 1987] to eliminate re-
dundant data-transfer primitives. This optimization, which we call copy coalescing,
lets us remove transfer operations between parallel regions marked as kernels. Fur-
thermore, as a by-product of the analyses that we perform, it lets us avoid moving
read-only data from accelerator back to host. Preserving the correct semantics of the
C program, when used in tandem with OpenMP 4.0 or OpenACC annotations, was
one of the core challenges that we had to surpass in this work. (iv) Finally, a key
challenge that we had to solve was how to bridge the gap between source code and
compiler’s intermediate representation. All the analyses and optimizations described
so far have been conceived to run on programs in the Static Single Assignment (SSA)
representation. Yet, our annotations must be inserted onto source code. Far from
being a “pretty-printing” problem, recovering high-level information from an optimized
low-level language turned out to be a non-trivial problem.

The final product that stems out of these contributions is a tool, henceforth called
DawnCC, that frees developers from the tedious and error prone task of inserting copy
directives in programs. This tool inserts OpenACC or OpenMP 4.0 annotations into
programs, with the goal of being more optimized and as readable as the annotations
inserted by a person. Annotated loops run on an accelerator. This transformation does
not require any intervention from users – it is completely automatic. In order to validate
these ideas, we have used DawnCC to transform programs present in PolyBenchGPU

1.

1
http://cavazos-lab.github.io/PolyBench-ACC/

http://cavazos-lab.github.io/PolyBench-ACC/
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In this suite, we are able to annotate and parallelize up to 95% of all the loops. The
net result is performance: by annotating loops automatically, we have been able to
observe speedups of up to 105x on a CPU-GPU based architecture.



Chapter 2

Symbolic Inference of Memory
Access Ranges

In this chapter we present an analysis capable of inferring symbolic integer bounds for
memory access operations. This method, however, is not new; we build on top of the
symbolic region analysis for arrays originally proposed by Rugina and Rinard [2000]
and thoroughly extended by Nazaré et al. [2014]. Our variant of this technique operates
on a simpler core language, with simpler and easier to compute range operations, while
still being precise enough to handle the majority of constructs found in real-world
programs. In the following sections we define the core representation upon which our
analysis operates, show how to derive symbolic ranges out of such a representation and,
finally, present a code generation strategy to convert the inferred symbolic expressions
into actual computation.

2.1 The Core Language

The technique we present in this chapter requires us to compute symbolic bounds
on expressions. Figure 2.1 defines the syntax of the programs that we handle: a
small subset of the expressions typically found in programming languages, enough to
describe most of the memory accesses and conditions that control the loops found in
actual programs, as we show experimentally. This core language is, however, not a
programming language. Its sole purpose is to identify which constructs are relevant
to our analyses. We do not convert input programs to it, but rather filter out any
code that does not belong to the subset that it represents. This language has only
assignments, dereferences, sequences of commands, and loops, about which we assume
a few facts that simplify the analyses that we will describe further.

7
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C ::= while v < v : C
| C;C
| v = E
| deref(v, v, n)

E ::= n
| v
| v + v
| n⇥ v
| v/un
| trunc(n, v)
| sign_ext(n, v)
| zero_ext(n, v)
| �(v, v)

Figure 2.1: The syntax of our core language. We let n 2 N.

Firstly, every loop in our language is controlled by a comparison such as vi < vn,
in which vn is a loop invariant value. The generalization of the techniques that we
discuss in this Section to the other three relational disjunctions, e.g., , >,� is trivial.
Such loops are called interval loops by Alves et al. [2014] and although simple, they
are very common. According to Alves et al., this format is found in 67% of all loops in
SPEC CPU 2006, a widely used bechmark suite with millions of lines of C and C++
code Henning [2006]. Secondly, we assume that vi is a canonical induction variable. An
induction variable is canonical if it is always incremented by one at each loop iteration.
There are standard techniques to canonicalize affine induction variables used in interval
loops [Appel and Palsberg, 2002]. An affine induction variable’s value is given by
b + i ⇥ s, where b is its initial value, s is its increment, and i counts the number of
iterations of the loop. Therefore, even assuming canonical induction variables, we are
still able to handle all the 67% of interval loops found in SPEC CPU 2006.

Example 1 Figure 2.2 shows an example program adapted from Chabbi and Mellor-
Crummey [2012] with construct that do not belong to our core language filtered out. We
have eliminated the control flow and the negation inside the loop, as these constructs
play no role in our analyses.

Because our core language is so uninvolved, we shall not provide a formal seman-
tics to it; instead, we shall describe a few of its constructs informally. The command
“deref(vp, vi, si)" denotes an array dereference: we are accessing the memory location
of size si at address vp+vi, where vp is a base pointer, and vi is an indexing expression,
as defined in Figure 2.1. This access can denote either a read or a write operation.
We distinguish sign and unsigned (u) operations. We are able to determine bounds
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l1: N = •

l2: i0 = 1

l3: i1 =ϕ (i0, i1)

l4: while i1 < N

l5: t = i1 − 1

l6: deref(r, t, 1)

l7: deref(a, i1, 1)

l8: deref(b, i1, 1)

l9: deref(r, t, 1)

l10: deref(b, i1, 1)

l11: i2 = i1 + 1

void copy(char* a, char* b, char* r, int N) {

  int i;

  for (i = 1; i < N; i++) {

    r[i-1] = a[i];

    if (!b[i]) {

      r[i-1] = b[i];

    }

  }

}

1
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(b)!(a)!

Figure 2.2: (a) example program adapted from Chabbi and Mellor-Crummey [2012]
and (b) a version of it re-written in our core language. The symbol • denotes an
unknown input. We have eliminated the control flow in Figure (b), as it has no influence
in our analysis.

of expressions involving signed and unsigned addition and multiplication, but we only
deal with unsigned division. We shall use the subscript u next to the division bar,
to indicate that it is unsigned. We only allow multiplications and divisions of expres-
sions by a constant. The operation “trunc(n, v)" converts the value carried by v into
an n-bits integer by removing v’s most significant bits. Nothing happens if v already
uses less than n bits. The operation “sign_ext(n, v)" does the opposite: it extends
the binary representation of v’s value to an n-bits integer. This extension preserves
v’s arithmetic sign. Similarly, “zero_ext(n, v)" does type extension, but fills the extra
most-significant bits with zeros. For reasons that we clarify in Section 2.2, we work on
programs in the Static Single Assignment (SSA) format [Cytron et al., 1991]; thus, our
core language defines �-functions. Induction variables are defined by �-functions.

2.2 Computing Symbolic Variable Bounds

If the same base pointer vp is dereferenced n times within a loop nest, then let
deref(vp, vi, si), 1  i  n be each one of these accesses. We generate code to com-
pute, for each vi, its lower and upper limits. We store the lower limit into a fresh
variable vil and the upper limit in another fresh variable viu. We estimate the largest
region M covered by the array via Equation 2.1.

M = max(v1u + s1, . . . , vnu + sn)

�min(v1l, . . . , vnl) + 1 (2.1)
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B(v1)! (_, vl1, vu1) B(v2)! (_, vl2, vu2)

G(v = v1 + v2) B B(v) (“vl = vl1 + vl2; vu = vu1 + vu2”, vl, vu)

B(v1)! (_, vl1, vu1)

G(v = n⇥ v1) B B(v) if n < 0 then (“vl = n⇥ v1l; vu = n⇥ v1u”, vl, vu)
else (“vl = n⇥ v1l; vu = n⇥ v1u”, vu, vl)

B(v1)! (_, vl1, vu1)

G(v = v1 /u n) B B(v) if n 6= 0 then (“vl = v1l /u n; vu = v1u /u n”, vl, vu)
else (“vl = 0; vu = MaxTpu(v) ”, vl, vu)

B(v1)! (_, vl1, vu1)

G(v = trunc(n, v1)) B B(v) if vl1 � �2n and v1u  2

n � 1

then (“vl = v1l; vu = v1u”, vl, vu)
else (“vl = MinTps(v) ; vu = MaxTps(v) ”, vl, vu)

B(v1)! (_, vl1, vu1)

G(v = sign_ext(n, v1)) B B(v) if vl1 � �2n and v1u  2

n � 1

then (“vl = �2n; vu = 2

n � 1”, vl, vu) else (“vl = v1l; vu = v1u”, vl, vu)

B(v1)! (_, vl1, vu1)

G(v = zero_ext(n, v1)) B B(v) if vl1 � �2n and v1u  2

n � 1

then (“vl = 0; vu = 2

n � 1”, vl, vu) else (“vl = v1l; vu = v1u”, vl, vu)

Figure 2.3: Abstract interpretation of arithmetic expressions in our core language. We
let MaxTps(v) ,MinTps(v) be the maximum and minimum values of variable v’s type.

The computation of M , in Equation 2.1, reads a few variables vij. We can estimate
the bounds of these variables using expressions produced by the code generator in
Figure 2.3. The rules in Figure 2.3 create a mapping B. B maps every variable vi

used as a dereference index into a tuple (I, vil, viu), such that I is a set of assembly
instructions, vil is the name of the variable that will hold vi’s lower bound and viu

is the name of the variable that holds vi’s upper bound. The assembly instructions
I will be used later to produce the runtime checks that we need to disambiguate
pointers, as well as data transfer directives. Because our mapping B is a function on
variable names, we require every variable name to be unique in the program. The SSA
representation [Cytron et al., 1991], so common in modern compilers, gives us this
property.
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2.2.1 Bootstrapping the Code Generator

When generating code, we must ensure that each instruction visited has all its operands
already mapped by B. To meet this requirement we must (i) define mappings for loop
invariant variables plus canonical induction variables, and (ii) visit instructions within
the loop in a pre-order of the program’s dominance tree. A loop invariant variable
is used within the loop, but defined outside it. To ensure (i), we “bootstrap" the
code generator with range information. We assume the existence of an environment R
which maps variables to their symbolic range intervals. Constructing R for programs
in our core language is a standard procedure in the compiler literature. A more formal
treatment on this subject is given by Nazaré et al. [2014]. If R(vi) = [l, u], then before
starting the traversal of the loop instructions, we perform the binding below for each
variable vi that we need to bootstrap:

B(vi) (“vil = l; viu = u”, vil, viu)

Example 2 The loop in Figure 2.2 (b) contains one invariant variable: N , and one
canonical induction variable: i1. A symbolic range analysis determines that R(N) =

[N,N ], and that B(i1) = [0, N ]. Thus, we start the mapping B with the following
bindings: B(N) = (“vNl = N ; vNu = N 00, vNl, vNu) and B(i1) = (“v1l = 0; v1u =

N 00, v1l, v1u).

As mentioned before, we visit the instructions in the loop body in a pre-order
traversal of that body’s dominance tree. During this traversal, G updates the map-
ping B. We let B(v)  t denote a new function B0, such that B0

= �x.if x =

v then t else B(x).

Example 3 When analyzing the body of the loop seen in Figure 2.2 (b), we visit
instructions in the order `5, `6, `7, `8, `9, `10, `11. Only variables i1 and t are used to
index arrays. B(i1) has been initialized in the bootstrapping phase. Upon visiting
`5 : t = i1 � 1, we find that B(t)! (“vtl = v1l � 1; vtu = vNu � 1”, vtl, vtu).





Chapter 3

Runtime Pointer Disambiguation

In this chapter, we show how our symbolic access range analysis can be used to build
a lightweight hybrid memory disambiguation pass. We compare our solution to two
other disambiguation methods: one hybrid as our own and another one fully dynamic,
implemented by two distinct research groups.

3.1 Overview

We shall use the functions in Figure 3.1 to motivate the ideas that we discuss in this
chapter1. Function array_sum_1 is a simple routine that sums up all the elements in
an array of integers. Figure 3.1 contains another version of this routine: array_sum_2.
This second implementation corresponds to the code that would be produced by a
traditional compiler technique: loop invariant code motion, which consists in moving
invariant computations outside loops. In our example, this computation is the load of
*s, which happens in line 3 of array_sum_1, and the store into acc, in line 4.

At first glance, these optimizations may seem easy venture for mainstream com-
pilers. However, that is not the case. We have fed array_sum_1 to three different
compilers: Clang 3.4, gcc 4.8.2 and icc 15.0, and none of them, at their highest op-
timization level, were able to produce array_sum_2. The culprit for this failure is
aliasing. Not knowing if acc and s alias or not, the compiler must assume such a pos-
sibility. In face of aliasing, the store at line 4 of array_sum_1 could change the result
of the load of s at line 3. The compiler cannot hoist the store into acc outside the loop
either. If acc overlaps any address within array src, then functions array_sum_1 and
array_sum_2 are not semantically equivalent. As a testimony of these limitations, it

1We use source code to illustrate our techniques, but all our optimizations happen at the compiler’s
intermediate representation level.

13



14 Chapter 3. Runtime Pointer Disambiguation

void array_sum_1(int *src, int *s, int *acc) {
  int i;
  for (i = 0; i < *s; i++) {
    *acc += src[i];
  }
}

void array_sum_2(int *src, int *s, int* acc) {
  int i;
  int N0 = *s;
  int N1 = *acc;
  for (i = 0; i < N0; i++) {
    N1 += src[i];
  }
  *acc = N1;
}

1
2
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7
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6

Figure 3.1: An example (array_sum_1) in which potential aliasing hinders compiler
optimizations such as loop invariant code motion as done in array_sum_2.

suffices to add the restrict keyword to the declaration of the arguments of function
array_sum_1, and all compilers will be able to vectorize that code.

In Figure 3.1, the possibility of aliasing is unfortunate, for it hinders the com-
piler from applying very effective optimizations: function array_sum_2 is substantially
faster than its original version. On an Intel Core i5 at 2.9GHz, using Clang 3.4 -O3,
array_sum_2 can be over 2.5⇥ faster than array_sum_1. Such speedup is possible
due to the extensive vectorization support that exists in the Intel hardware. Static
pointer analyses [Andersen, 1994; Pereira and Berlin, 2009; Zhang et al., 2013] cannot
enable this kind of optimization, because pointer overlapping may indeed happen in
Figure 3.1. In other words, nothing prevents function array_sum_1 from receiving the
same pointer as its actual parameters.

A purely dynamic approach to pointer disambiguation. The disambiguation of
pointers such as those passed to array_sum_1 as parameters requires runtime knowl-
edge. A possible way to make such knowledge available consists in modifying the
memory allocation system used by C. In this manner, we can tag different memory
regions with different identifiers to disambiguate pointers that refer to distinct alloca-
tions. Binding meta-information to pointers is not a new technique. It has been used
to secure programs written in C against out-of-bounds memory errors [Akritidis et al.,
2009; Nagarakatte et al., 2009; Necula et al., 2002; Serebryany et al., 2012]. In this
work, we use these techniques to disambiguate pointers in order to enable optimiza-
tions. Figure 3.2 illustrates such a use. In this example, we assume that T(p) returns



3.1. Overview 15

void array_sum_3(int* src, int* s, int* acc) {
  void *heapId_src = T(src);
  void *heapId_s   = T(s);
  void *heapId_acc = T(acc);

  if ((heapId_src != heapId_s)
  &&  (heapId_src != heapId_acc)
  &&  (heapId_s != heapId_acc)) {
          // Code region where aliasing will never happen
    int i;
    int N0 = *s;
    int N1 = *acc;
    for (i = 0; i < N0; i++) { N1 += src[i]; }
    *acc = N1;
  } else {
          // Code region where aliasing may happen
    int i;
    for (i = 0; i < *s; i++) {*acc += src[i];}
  }
}
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Figure 3.2: Modified version of array_sum_1 in which the compiler generates checks
to disambiguate pointers.

a unique identifier of the allocated memory block pointed by p. By combining these
runtime checks with code versioning, we can certify to the compiler that some program
regions are alias-free. Some compilers provide support for this type of interaction. The
LLVM intermediate representation, for instance, contains a noalias type modifier and
corresponding metadata to model the absence of possible pointer aliasing.

The technique that we have discussed in Figure 3.2 is totally dynamic: it relies
on a modified memory allocator to disambiguate pointers at runtime. Its main ad-
vantage is applicability: it gives us the opportunity to distinguish any pair of pointers
that refer to different allocations. On the other hand, it may impose a runtime over-
head on the program: metadata must be kept for each pointer, and depending on the
implementation, T(p) may not be O(1). This technique, for which we provide more
details in Section 3.2, was mainly designed and implemented by Fabian Gruber, from
INRIA-France [Alves et al., 2015]. For now, we present an alternative to this approach,
which combines checks produced statically with runtime knowledge.

A hybrid approach to pointer disambiguation. Figure 3.3 shows a different way
to carry out pointer disambiguation. In this example, we try to infer - statically -
conservative bounds on the memory referenced by the pointers that exist within a
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void array_sum_4(int *src, int *s, int *acc) {
  int len_src = (*s) * 4;
  if ((src + len_src <= s || src >= s + 4)
  &&  (src + len_src <= acc || src >= acc + 4)
  &&  (s + 4 <= acc || s >= acc + 4)) {

    ...
  } else {

    ...
  }
}

// Code region where aliasing may happen

// Code region where aliasing will never happen
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Figure 3.3: Modified version of array_sum_1 in which the program can inspect the
size of the region referenced by a pointer. Here sizeof(int) is considered to be 4.

given code region. These bounds are written as functions of variables used in that
area. The value of these variables may not be known statically. However, during the
execution of the program, once its flow reaches the entry of the region analyzed, we
can inspect these values, and use them to obtain a concrete estimate of the size of
allocated memory. When analyzing function array_sum_1 in Figure 3.1 we know that
pointers acc and s are constants – even though their contents may not be, due to
aliasing. Moreover, we know that the induction variable i, used to index src, ranges
from 0 to *s-1. In the absence of aliasing, this upper limit, e.g., *s, is invariant.
These observations give us the subsidies to generate the checks 2 seen in lines 2-5 of
Figure 3.3. In Section 3.3 we explain in deeper detail two strategies to produce these
checks without any intervention from the user. The first one, in Section 3.3.1, builds
on top of the Symbolic Range Analysis that we presented, both implemented by us
on top of LLVM. The second one, based on the Polyhedral Model, was proposed and
implemented by Johannes Doerfert and Tobias Grosser [Alves et al., 2015], the main
maintainers of Polly.

3.2 Purely Dynamic Pointer Disambiguation

We have implemented a memory allocator that lets us disambiguate pointers at run-
time [Alves et al., 2015]. To achieve this end, our allocator provides an efficient data
structure for querying the starting address of the heap allocation for arbitrary point-
ers. Disambiguation is enabled by the fact that this starting address, the base pointer,

2The checks are presented in C code for illustrative purposes. The actual expressions are generated
in LLVM’s Intermediate Representation and inserted in the final assembly
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void copy(char* a, char* b, char* r, int N) {

  int i;

  for (i = 1; i < N; i++) {

    r[i-1] = a[i];

    if (!b[i]) {

      r[i-1] = b[i];

    }

  }

}
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Figure 3.4: Example adapted from Chabbi and Mellor-Crummey [2012]. This program
contains code that is difficult to optimize due to aliasing.

uniquely identifies each heap allocation. The identifier for pointers that do not point
to a valid heap allocation is the null pointer, since that is never a valid heap address.
Our memory allocator works for programs written in C/C++; nevertheless, similar
techniques can be used in other programming languages that support pointer arith-
metic, including assembly languages. We have replaced libc’s malloc routine with an
implementation of our own. Our surrogate overwrites the implementations of malloc,
calloc realloc, aligned_alloc, posix_memalign and free with versions that up-
date the data structure used to query the heap allocation for a given pointer. This is
implemented as a red-black tree [Bayer, 1972] T that will provide us with logarithmic-
time access to this meta information. The additional data required for the tree is
embedded in a header directly before the user visible allocation. A tree lookup gives
us the address of the header and thus the unique identifier associated with the block of
memory that p can dereference. The actual memory allocations are performed via the
wrapped allocator. The sizes of all allocations are adjusted so they can fit the required
header for the search tree.

Whenever memory is allocated through libc’s malloc, we add an entry to T . An
assignment such as p = malloc(N) will assign p to the range [p, p + N [ in our red-
black tree. Notice that these intervals are bounded by arbitrary integers determined
at runtime, not symbols. That is possible because the values of p and N are known
at runtime. Now, assuming the program is correct, a pointer p1 derived from another
pointer p0 (e.g. p0 = p1 + c, c 2 N) will cause T (p0) = T (p1). Contrary to previous
work on program correctness [Akritidis et al., 2009; Nagarakatte et al., 2009; Serebryany
et al., 2012], our goal is to enable optimizations, not to find bugs in programs.

In this section, and also in Section 3.3, we shall be using the program in Figure 3.4
to illustrate our ideas. The program in the figure has been adapted from an example
used by Chabbi and Crummey [Chabbi and Mellor-Crummey, 2012] to illustrate per-
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// Innermost SESE region

// Outermost SESE region

void copy(char* a, char* b, char* r, int N) {

  int i;

 

  for (i = 1; i < N; i++) {

    r[i-1] = a[i];

    if (!b[i]) {

      r[i-1] = b[i];

    }

  }

}

Figure 3.5: Program of Figure 3.4 with Single-Entry, Single-Exit regions highlighted.

formance bugs. Function copy moves the contents of array a or b to buffer r. The
program contains two statements that store into r: the first at line 4, the second at line
6. If every cell of array b is zero, then both store instructions will be always performed
during the program’s execution. The double occurrence of the store instruction cannot
be optimized away, because if arrays b and r overlap, then the assignment at line 4
may change the outcome of the test that happens in line 5. In other words, due to
aliasing, we cannot convert that code into tmp = b[i]; r[i-1] = tmp != 0 ? tmp
: a[i]. Instead, we need to store r[i-1] before loading b[i], as the value of b[i]
may be changed by this store.

We insert runtime checks at the beginning of the subparts of a program called
Single-Entry-Single-Exit (SESE) regions [Ferrante et al., 1987]. SESE regions are sets
of basic blocks with a single incoming edge and a single outgoing edge to the rest of
the program’s control flow graph (CFG). We only insert tests at the beginning of SESE
areas because, in this way, we are certain that any program flow entering that region
will execute our tests. Figure 3.5 highlights two of the regions that exist in our original
example. Whenever we have a nested set of SESE blocks, we try to insert checks at the
outermost sector in which all the pointers to be tested are alive. We say that a variable
v is alive at a program point p if there exists a path from p to a use of v that does not go
across any redefinition of v. In Figure 3.4 we have three pointers to disambiguate. All
these pointers are alive at the entry of the outermost SESE sector within the function.
Our checks will be inserted at that point. Our approach is actually not limited to
SESE regions but can also support regions with multiple entries and exits, though this
complicates code versioning. The limitation to SESE regions in our implementation
stems from the fact that optimizations performed by Polly, the optimizer used in our
experiments, are restricted to such regions.
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void copy(char* a, char* b, char* r, int N) {

  int i;

  int heapId_a = T(a);

  int heapId_b = T(b);

  int heapId_c = T(c);

  if ((heapId_a != heapId_b)

   && (heapId_a != heapId_c)

   && (heapId_b != heapId_c)) {

          // Code region where aliasing will never happen
    ...

  } else {

          // Code region where aliasing may happen
    ...

  }

}
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Figure 3.6: Program after instrumentation.

char* copy_message(char* src, char* dst) {
  for (int i = 0; i < 4; i++) {
    dst[i] = src[i];
  }
}

struct message *msg =
            malloc(sizeof(struct message));
copy_message(&msg.s, &msg.d);
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Figure 3.7: Program that illustrates over-approximation of our purely dynamic ap-
proach.

Figure 3.6 shows our example program, after it has been instrumented with run-
time checks. The original program contains uses for three different pointers at the SESE
region that we are instrumenting. Thus, we had to insert checks to disambiguate three
pairs of memory regions. For the sake of simplicity, we insert O(N2

) checks at the be-
ginning of a region that contains N pointers. We avoid inserting some checks whenever
static pointer analysis is able to disambiguate pairs of pointers at compilation time.
As we show in Section 3.4, in practice our technique creates a small number of guards
per region.

At runtime we can query T for the unique identifier associated with p. The
cost of such a query is logarithmic in the number of allocations that are live in the
program at the time of the query. We know that two pointers, p0 and p1 cannot
dereference overlapping memory regions if T (p0) 6= T (p1). Notice that in the opposite
case, e.g., T (p0) = T (p1), it is still possible that p0 and p1 do not overlap, as the
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Figure 3.8: (a) Structure of the red-black nodes that we use to track memory size. (b)
Dynamic view of the red-black tree when the program flow reaches line 5 of Figure 3.6.

function copy_message, in Figure 3.7, illustrates. In this figure, the store and load at
line 3 cannot dereference the same memory address. Nevertheless, we have that the
base pointers of these stores will be associated with the same block of memory, which
is passed to copy_message in line 9. We adopt this conservative approach for two
reasons. First, it makes our implementation simpler. Second, when situations such as
that seen in Figure 3.7 happen, it may still be possible that we use static approaches
to avoid inserting dynamic guards. As an example, LLVM’s basic alias analysis is able
to disambiguate the two pointers in line 9 of Figure 3.7.

3.2.1 Implementation Details

Figure 3.8 shows a few implementation details of our memory allocator. The structure
of each node can be seen in Figure 3.8 (a). The part (b) of the figure shows a snapshot
of the tree. Each call to memory allocation routines such as malloc, calloc, realloc
and aligned_alloc is intercepted and the requested size is augmented to make room
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for meta-data. The extra memory region where we store this meta information shall
be called the node’s header. The actual pointer returned to the user references the
next address after this header. Besides the pointers used by the tree itself, e.g., left
and right, a node’s header also stores the size of the allocation and its alignment, as
we show in Figure 3.8 (a). Hence, on a 64 bit system, by default, our implementation
uses 32 bytes of data per allocation. Storing alignment information is required for
supporting aligned_alloc and related libc APIs. If the user requests memory with
a large alignment factor, then we also have to add some padding before the header,
to ensure that this header does not break the requested alignment. Large alignment
constants are usually the size of the cache line, or of the virtual memory page.

Our implementation gives us room for optimizations. Firstly, since the alignment
is always a power of two, we save space by only storing its binary logarithm, which
can be efficiently computed in different architectures, such as in x86 using the count-
leading-zeros (clz) instruction. Moreover, we have the guarantee that the header is
always aligned to 8 bytes; hence, we can safely encode the color of the red-black node in
the least significant bit of the parent pointer. The keys in the red-black tree are simply
the starting addresses of the nodes themselves. Therefore, they are directly available
while traversing the tree and do not need to be stored separately. A red-black tree is
an ordered search tree; thus, we can efficiently search for the allocation related to a
pointer p by finding the node with the largest address smaller than p.

In general we assume that the source program is correct and does not use invalid
pointers, so for a pointer that points past the end of an allocation we still return
the base pointer of the closest allocation. Nevertheless, for debug purposes, we still
store the size of each allocation in the nodes header, which allows us to detect such
erroneous pointers. For non-heap allocated memory regions, such as stack allocations,
our query function will not return an identifier and the disambiguation check will not
pass. Note that there are more specialized data structures for interval queries, such as
segment trees [Bentley and Friedman, 1979]. Segment trees support efficient queries
even with overlapping intervals, but since the intervals defined by the beginning and
end of allocations never overlap, we chose to use a simplified interval tree implemented
on top of a red-black tree [Cormen, 2009].

3.3 Hybrid Pointer Disambiguation

The purely dynamic approach that we have discussed in Section 3.2 is very precise,
being able to disambiguate pointers in many different scenarios, as we show experi-
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Pa: pairs of pointers that an off-the-shelf static analysis could not disambiguate
Pt: every possible pair of pointer in a SESE region
Pr = Pt − Pa: pairs of pointers that we must check at runtime

Polyhedron Analysis (Grosser 2011 - Sec 4.2.1) 
- or - Symbolic Range Analysis (Nazare et al. 
2014 - Sec 4.2.2)

R: v → [l, u]

For each pointer that 
appears in some element 
of Pr do Symbolic bounds 
computation (Sec. 4.2)

B: v → code sequence Code generation 
(Sec. 4.3)

Instrumented Program

SESE region is alias free?
Yes: optimized program
No: original code

At runtime

At compilation time

(Grosser 2011) 
(Chapter 3) 

Figure 3.9: Overview of the code generation methodology used in Section 3.3.

mentally; however, it has one shortcoming: queries such as T(a), T(b) and T(c) in
lines 3-5 of Figure 3.6 may be expensive. In our implementation, each such query is
logarithmic on the number of currently alive memory allocations. To avoid this cost,
we have designed a hybrid pointer disambiguation technique, which does not require us
to change the memory allocation library, and whose queries are O(1). In this section
we describe such approach.

Figure 3.9 presents a general overview of the approach that we advocate here.
For each SESE region in a program we run the steps seen in Figure 3.9. We combine
code versioning with runtime checks to give the compiler the opportunity to optimize
certain program regions assuming the absence of aliasing. To reduce the overhead
of the execution of the runtime checks, we may optionally prune some of these tests
away with a profiler. In other words, if a pair of pointers is found to alias with some
probability, we do not try to disambiguate those pointers dynamically.

In this section we explain how we generate the checks that we use to disam-
biguate pointers at runtime. To this end, we explain the actual computation of the
disambiguation checks in Section 3.3.1. We answer more practical questions, such as
where to insert the checks, in Section 3.3.3. We use the example first seen in Figure 3.4
to illustrate the notions introduced along these developments.
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3.3.1 Building Alias Checks From Symbolic Bounds

If M1 and M2 are estimations for the regions dereferenced by two different pointers p1
and p2, as defined in Section 2.2, then we say that they will not overlap if:

p1 +M1  p2 or p2 +M2  p1 (3.1)

To compute the region size Mp, we implemented and evaluated two approaches:
(1) bound computation based on the polyhedral model, and (2) bound computation
bootstrapped by symbolic range analysis presented in Chapter 2. The latter can be
used to disambiguate pointers for arbitrary regions without the need of a polyhedral
analysis while the former requires the polyhedral description of the SESE region. One
advantage of (2) is the fact that it can handle non-affine patterns of access while (1)
cannot; one advantage of (1) (when relations are affine) is the extra precision: it relies
on a relational analysis; hence, it is able to derive relations between variables, even if
these variables are not linked syntactically in the program text. The program below
illustrates this point:

void foo(int *u, int *v, int N, int S) {

int i;

int j = S;

for (i = 0; i < N; i++) { u[j] = v[i]; j++; }

}

The polyhedral-based approach (Section 3.3.2) relies on the relations between
integer points bounded by linear constraints. It can infer that index j is such that
S  j < S + N . On the other hand, the method based on range analysis tries to
infer symbolic bounds to variables. This method assigns [0, N � 1] to i, and [0,+1]

to j, because j is not bounded by the loop. Therefore, whereas the polyhedron-based
approach of Section 3.3.2 can deal with the program above, the technique based on
symbolic range analysis would not disambiguate pointers in this case 3.

3.3.2 Polyhedral Access Range Analysis

For the polyhedral access range analysis, in the context of the core language presented
in Section 2.1, we require all vi to be (piecewise) multidimensional affine functions fvi in

3Our implementation of the symbolic range analysis presented in Chapter 2 still works precisely
for this example, because it will use LLVM’s scalar-evolution analysis to infer bounds to variable j.
Scalar evolution is described in [Grosser et al., 2012, p.18].
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values invariant in the region (parameters) and induction variables of loops surrounding
deref(vp, vi, si). This excludes non-affine accesses, however the computation of access
ranges is a compositional task and a general range analysis can be applied to non-affine
expressions.

To get a symbolic range for all dynamic values of the access index vi we first
apply the access function fvi to the iteration domain of the access. Hence, we sym-
bolically compute the access index for each dynamic instance of deref(vp, vi, si) in the
multidimensional access space. The linearized minimal and maximal access indices of
any access to a base pointer vp are the bounds of the symbolic access range Mp. To
represent the access functions and the iteration domain we utilize the integer set li-
brary isl [Verdoolaege, 2010]. Using isl we also compute the lexicographical minimum
and maximum of the multidimensional access space, hence the respective minimal and
maximal access, to each base pointer. Note that for non-perfect loops, these bounds
can be produced around regions where the accesses are defined by affine functions. The
bounds we obtain are again modeled as piecewise affine expressions. To translate them
into actual program code, we pass these bounds to a polyhedral AST generator [Grosser
et al., 2015] which derives program code that can compute the array bounds at run-
time. During program execution, the parameter values in the bounds are known and
constant for one execution of the region. As a result, we obtain for each execution of a
region precise minimal and maximal access bounds. The parametric bounds we obtain
also let us identify accesses that can never be executed under the same parameter eval-
uation. Hence, if only one of two possible aliasing base pointers will be accessed for
fixed but unknown parameter values, then there is no need to generate runtime alias
checks.

3.3.3 Code Generation

Algorithm 3.10 inserts runtime checks in a program to disambiguate pointers. The
“goto" in line 5 executes whenever we can prove that two pointers, e.g., p1 and p2 do
not overlap. If we cannot offer such a proof, then we use the jump in line 6. These
checks are created for every pair of pointers used within a SESE region. Notice that
they are generated statically, but their execution happens dynamically. Thus, by filling
up the values in the tests with runtime values we can solve very complex “less-than”
checks, even those involving max and min expressions.

Finding a place to insert checks. The loops in any program written in our core
language (Figure 2.1) have the SESE property; this implies that these loops have a
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Algorithm 3.10: Let p1 and p2 be two pointers dereferenced within the same Single-
Entry-Single-Exit region, such that:

• p1 is dereferenced by a set of n instructions deref(p1, v11, s11), . . ., deref(p1, v1n, s1n)
• p2 is dereferenced by a set of m instructions deref(p1, v21, s21), . . ., deref(p1, v2m, s2m)
• B(v1j ) = (I1j, v1jl, v

1
ju), 1  j  n

• B(v2j ) = (I2j, v2jl, v
2
ju), 1  j  m

The following code sequence disambiguates p1 and p2. In this code, variables vM1 and
vM2 have fresh names:

1. I11; . . . ; I1n; I21; . . . ; I2m;
2. vM1 = max(v11u + s11, . . . , v

1
nu + s1n)�min(v1il, . . . , v

1
nl)� 1;

3. vM2 = max(v21u + s21, . . . , v
2
mu + s2n)�min(v2il, . . . , v

2
ml)� 1;

4. if p1 + vM1  p2 or p2 + vM2  p1
5. then goto “p1 and p2 do not overlap"
6. else goto “p1 and p2 overlap"

Figure 3.10: Generation of dynamic pointer checks.

header block H, and an exit block E, such that any node outside the loop can reach
any node inside only through H. Similarly, nodes within the loop can reach nodes
outside it only through E. H dominates and E post-dominates all the nodes in the
loop. In practice, not every loop in an actual assembly program has the SESE property,
yet the proportion is high: we have found that all but one of all the loops in PolyBench

are SESE. Thus, for practical reasons, we restrict our transformations to SESE loops.
We insert pointer checks in the pre-header of the outermost loop in a nest of loops.

The pre-header of a loop is the single predecessor of its header. If a pre-header does not
exist, i.e., the header has multiple predecessors, then we create one. We only create
a check to disambiguate a pair of pointers p1 and p2 if all the symbolic expressions
that the algorithm in Figure 3.10 needs for this check are available at the loop header.
Available expressions, a classic compiler analysis [Aho et al., 2006, Ch.9], gives us this
information.

Example 4 Continuing with our example, the disambiguation checks that we want to
insert in Figure 2.2 (b)’s program require only the value of variable N . The pre-header
of the loop that we analyze contains labels `1 and `2. We insert the check after `2. The
code sequence that constitutes our check is given by:
vN1 = N ; vNu = N ; vil = 1; v1u = N ; vtl = vil � 1; vtu = viu � 1; vM1 = vtu � vtl; vM2 =

vtu�vtl; if r+vM1 > b or b+vM2 > r goto p1, p2 do not overlap else goto p1, p2 overlap;

The expressions and checks that we produce here are not C code, but rather sets
of instructions in a compiler’s intermediate representation that will produce the final
values when executed. Our implementation, specifically, outputs expressions in LLVM
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Intermediate Representation. Later, in Section 4.2.2, we show how these generated
instructions can be converted back to valid C code. The computations generated by our
analyses also need to be guarded against type overflow to ensure complete correctness.
Many compilers, Clang being one of them, embed overflow checking infrastructure in
their intermediate representation. For the polyhedral-based disambiguation technique,
shown in the last section and implemented in Polly, overflow checks were added to
the produced range checks, without increasing their time complexity. The checks that
we insert usually contain sets of instructions that can be simplified. For instance,
the sequence in Example 4 computes vtu � vtl twice. One of these operations will be
removed by Kennedy’s redundancy elimination [Kennedy et al., 1999], a technology
readily available in modern compilers. In Section 4.2.2 we provide more details on how
the expressions that weproduce can be simplified.

3.4 Experiments

To validate the techniques that we discuss in this chapter, we have implemented them
on top of the LLVM [Lattner and Adve, 2004] compilation infrastructure and have used
it together with Polly

4. Polly [Grosser et al., 2012] is a loop optimizer built on top of
LLVM. It implements typical transformations, such as tiling and loop fusion to improve
the target program’s data locality. Several of these transformations are hindered by the
lack of aliasing information. The techniques that we introduce in this chapter provide
such information.

The polyhedral-based approach discussed in Section 3.3.2 was implemented in
Polly revision r236395, from May 3rd, 2015. The other two approaches, purely dynamic
and the hybrid version based on our symbolic range analysis, were implemented in
Polly revision r216844, from August 31st, 2015. The reason for these two versions is
pragmatic: the purely dynamic technique and the hybrid disambiguation based on our
range analysis are still reasearch artifacts, so their implementation was always carried
in a fixed version of LLVM. The polyhedral-based disambiguation, in the other hand,
is currently available in LLVM’s official repositories as production-ready code, thus it
must be continuously updated to keep consistency with any changes made to the source
of LLVM. Nevertheless, these versions of Polly apply different compiler optimizations on
the code that they produce. Thus, our experiments lets us know the speedup enabled
by a pointer disambiguation technique on top of the original compiler, and the capacity
of each technique to identify more optimizable regions. However, they should not be

4The versions of LLVM and Polly used in our experiments were obtained from LLVM’s main repos-
itory (http://llvm.org/svn/llvm-project) at revisions 217065 and 216844, respectively.

http://llvm.org/svn/llvm-project
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used to compare the runtime of the code produced by the three pointer disambiguation
approaches, given that the set of optimizations applied on these programs differs.

We have chosen to test our approach on PolyBench 4.0 [Pouchet, 2014]. This
suite is widely adopted by the polyhedral community and used in many works to eval-
uate the impact memory-related analyses and optimizations. PolyBench is composed of
benchmarks from different areas, such as data mining, linear algebra, and stencil algo-
rithms. PolyBench tests consist of two main parts: (i) the initialization of arrays that
will serve as input and output buffers, allocated either in the heap or the stack, and
(ii) a kernel that performs the main computation, usually composed of no more than
100 lines of code. PolyBench also provides a number of options that can be enabled or
disabled at the tester’s will, such as: different dataset sizes, automatic insertion of the
restrict keyword in pointer parameters, use of scalar values in loop bounds, and a
number of cache-related options. These options give us a more controlled environment
in which to test our runtime pointer disambiguation strategies. All the numbers that
we show have been obtained on an second generation (Sandy Bridge) Intel dual-core
i5 with a clock of 1.7GHz. The runtime numbers that we report are obtained on top
of LLVM-O3, and are the average of six executions of each benchmark.

Our goal, in this section, is to show that (i) our technique is effective, i.e., it
delivers runtime improvement on top of LLVM + Polly-O3; (ii) the amount of code
replication that we cause is affordable, given the runtime gains that we bring; and
(iii) purely static techniques cannot do better than we do. We address this third
point in Section 3.4.1, and leave the other two for Sections 3.4.2 and 3.4.3. A brief
discussion comparing our three different pointer disambiguation techniques is presented
in Section 3.4.4.

3.4.1 What can LLVM’s Purely Static Approaches Do?

Traditionally, compilers use static alias analyses to disambiguate pointers. It is well-
known in the literature that scalable implementations of such analyses are impre-
cise [Mock et al., 2001]. In this section we support this knowledge with data of our own.
We have performed an alias query for every pair of pointers in our benchmarks, using
the LLVM implementations of points-to analysis. LLVM uses five different techniques
to disambiguate pointers statically:

• type-based: C and C++ forbid aliasing between pointers of different types since
C89/C++98. Thus, this analysis flags pointers of different types as no-alias;

• global-refs-based: relies on the fact that globals that do not have their address
taken cannot alias anything;
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• basic: uses a suite of simple rules, i.e. the stack does not alias the heap or globals,
for instance;

• scalar-evolution-based: tries to place bounds on arrays, and based on these bounds
determines if they may overlap each other or not.

• Dyck-CFL-based: implements a context-free language (CFL) based context-
insensitive alias analysis. This algorithm is implemented after Zheng and Rugina
[2008] and Zhang Zhang et al. [2013].

The precision of queries is cumulative: if any of these five implementations is able to
disambiguate two pointers, than they are marked as no aliases. In our experiments, we
use all of these analysis in combination.

After applying these static analyses in PolyBench, we found out that each kind
of aliasing appears in the following percentages for pairs of pointers: may alias =
62.78%, must alias = 9.92%, no alias = 8.73% and partial alias = 18.57%. For three
benchmarks: lu, floyd-warshall and seidel-2d, the may-alias rate is lower than
20%. For six others, it is above 70% and for the rest it is above 50%. The percentages
for no-alias and must-alias is remarkably low, below 18% across all the benchmarks.
Only 8.7% of queries are no-alias. Hence, if we were to use a purely static approach to
disambiguate pointers, then there would be still over 62% of pairs whose relation we
would not know.

Notice that the PolyBench kernels do not contain overlapping arrays. Yet, as
discussed in the previous paragraphs, typical implementations of static analyses – even
in an industrial compiler – are not able to prove this fact. For PolyBench, fully inlining
all function calls would be sufficient to give the missing context, but as PolyBench uses
an allocation wrapper that is defined in a different translation unit, full inlining is only
possible when running link-time optimizations. For libraries, even optimizing at library
link-time is insufficient, as library functions can be called from outside the library with
parameters that may indeed alias. Hence, optimizing under the assumption of possible
aliasing is often necessary to maintain correctness. Inlining function calls or cloning and
specializing functions to handle these kind of problems has already been proposed by
Metzger and Stroud [Metzger and Stroud, 1993] or by Hall [Hall, 1991, Cp.5]. For cases
with insufficient static information (or limited analysis power) mainstream compilers
such as LLVM, gcc and icc use code versioning with run-time alias checks for specific
use cases, e.g. to prove correctness of inner-loop vectorization, but they commonly do
not use function specialization.

Figure 3.11 shows the increase in the number of loops within Static Control Parts
(SCoPs) that our three different pointer disambiguation approaches provide. A SCoP is
defined in Polly as a Single-Entry-Single-Exit region containing structured control flow
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Figure 3.11: Relative increase in the number of loops within Static Control Parts
when using our disambiguation approaches. The base values are the number of loops
optimized when using only LLVM’s static alias analyses. The three approaches provide
the same increase in almost all benchmarks.

(a combination of for-loops and if-then-else blocks) where control flow conditions, loop
bounds and memory offsets can be statically modelled as piecewise-affine expressions
in loop induction variables and SCoP-invariant variables (parameters). In other words,
a SCoP is a region of code that the compiler can safely analyse and optimize. The
purely dynamic approach of Section 3.2, and the hybrid approach of Chapter 2, which
is based on symbolic range analysis, identify 2.21x more loops within SCoPs than the
baseline compiler. Again, the baseline used in this experiment is Polly plus the five
static analyses available in LLVM. The polyhedron-based approach of Section 3.3.2
recognized 2.19x more loops within SCoPs than the baseline approach.

This increase is even more substantial when considering only kernel functions.
A kernel, in the PolyBench jargon, is the function that contains the bulk of the com-
putation that will be performed by a benchmark, thus being our main optimization
target. The numbers that we report in Figure 3.11 include loops that are not inside
a kernel, e.g., code in charge of initializing arrays or checking results. If we consider
only kernels, both the symbolic and purely dynamic approaches increase the number
of loops being optimized by 5.88x. The polyhedral-based technique, by its turn, recog-
nizes 5.56x more loops. This small difference between approaches is due to the use of
different compiler versions, as explained in the beginning of this section. We note that
all three approaches were able to correctly recognize all analyzable loops in the kernels
of the PolyBench suite. By “analyzable" we mean the loops that Polly could handle if
it had access to perfect aliasing information.

3.4.2 Hybrid Approaches

In this section, we present data that shows that the two hybrid approaches of Section 3.3
are effective and useful. Our goal is to demonstrate that these techniques can bring
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Figure 3.12: Execution time overhead of our hybrid approaches when compared to the
use of “restrict" in Polly. Our biggest overhead was in gramschmidt, which executes
in 5.19 seconds in its “restrict" version. When running on Polly augmented with our
polyhedral approach, this number grows to 7.86 seconds, being 1.5x slower, as the chart
shows.

Figure 3.13: Execution time improvement of our hybrid techniques when applied to
LLVM-O3. Our biggest speedup was in bicg, which is executed in 150 milliseconds
by LLVM-O3. Both of our hybrid approaches reduce this number to 56 milliseconds,
making it 2.7x faster, as the Figure shows.

speedup on top of highly optimized code, at the expense of an increase in code size.

3.4.2.1 Overhead of dynamic checks

Our dynamic checks incur negligible overhead on the PolyBench programs, as Fig-
ure 3.12 reports. To measure this overhead, we have modified Polly to assume absence
of aliasing in the source programs. We do it by adding the “restrict" keyword to the
arguments of the functions. This keyword, available since C99, tells the compiler that
a pointer does not share memory accesses with aliases in the scope of the function in
which that pointer is declared. If a function argument p is marked as “restrict", it
is still possible to derive new pointers out of it, such as p0 = p + 1. Thus, by using
this keyword, the programmer signs a contract with the compiler, specifying that the
memory pointed by p can only be accessed through it, or via one of its derived pointers.

PolyBench comes with an option to enable the “restrict" modifier for parameters
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of pointer type. In this case, Polly + LLVM-O3 optimize the same regions that we do,
but without having to resort to dynamic bound checks and code duplication. Hence,
this experiment lets us check the overhead of our dynamic checks. For a number of
benchmarks in Figure 3.12, our hybrid techniques are not as efficient as the “restrict"
keyword. In cases like gesummv and ludcmp, we need to disambiguate a large number
of pairs of pointers in the entry of regions that the compiler is not able to aggres-
sively optimize, even though our dynamic checks succeed at runtime. For instance, the
polyhedron-based approach of Section 3.3.2 inserts for the kernel function of ludcmp
a runtime check to disambiguate four base pointers (two read-only, two read-write).
This check performs for each of the twelve pointer pairs with at least one read-write
base pointer two comparisons as well as a boolean or and also requires eleven boolean
and operations to combine the conditions between pointer-pairs. For gramschmidt and
3mm, the symbolic approach can disambiguate more pointers than its polyhedral-based
counterpart. In doitgen, the opposite happens, i.e., the polyhedral version can analyze
more pointer pairs. This observation justifies the runtime difference observed in these
benchmarks. On average we see that the runtime of the polyhedral-based approach
(Section 3.3.2) is 2.8% slower and the runtime of the symbolic range analysis based
approach (Chapter 2) is 1.6% slower than using “restrict".

3.4.2.2 Speedup

Our ultimate goal is to speed up programs. We achieve this goal by giving the compiler
the opportunity to run more aggressive optimizations on said programs. There are
many different ways to test the benefits of our analysis. Compilers commonly provide
many options to select the transformations that are run on a given program and LLVM

is no exception. We have performed an extensive search in this space, and report
findings in this section. First, Figure 3.13 shows how each of our hybrid approaches
improves the runtime of LLVM-O3. On average, the polyhedral approach (Section 3.3.2)
improves LLVM-O3 by 8.7%. The range-based approach (Chapter 2) gives us a speedup
of 6.5%.

It is well known that the order in which optimizations are applied on a program
can influence the final runtime of its binary code [Kulkarni et al., 2006]. The numbers
reported in Figure 3.13 use the default optimization order of LLVM-O3. Thus, we can
go beyond the speedups seen in that figure by changing the order in which some of
the LLVM optimizations run. For instance, if we follow the insertion of our checks
with a round of loop invariant code motion, then we can hoist more load and store
operations outside loops. This strategy lets us convert array_sum_1 into array_sum_3
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Figure 3.14: Runtime improvement of our symbolic approach (Chapter 2) over LLVM-
O3, when followed by a round of loop invariant code motion. As in Figure 3.13, our
biggest speedup was in bicg, being 2.7x faster.

in Figure 3.1, for instance. Figure 3.14 shows the runtime numbers that we obtain in
this way, again, comparing against LLVM-O3. The only change that we performed in
this case was to run loop invariant code motion right after inserting the disambiguation
checks. This order is the same for all the benchmarks.

We have also evaluated the runtime benefit of our approaches when applied on top
of the combined optimization sequence of LLVM-O3 and Polly [Grosser et al., 2012].
The optimizations obtained by Polly’s scheduling optimizer and possibly enabled by
our run-time checks can include combinations of classical loop transformations, such
as strip mining, tiling, fission, fusion and interchange, but also transformations that
are difficult to express as a set of classical loop transformations. Figure 3.15 shows
these results. The speedups we report are for the default compile-time options of Poly-

Bench. PolyBench uses by default parametric loop bounds and fixed-sizes arrays. This
mismatch requires Polly to respect data-dependences that are only relevant when the
parametric loop bounds have a value that is larger than the corresponding fixed size
array dimensions. In practice, the loop bounds and the array dimensions always have
identical (or clearly related) sizes. When compiling PolyBench with scalar loop bounds
(-DPOLYBENCH_USE_SCALAR_LB) no spurious data-dependences hinder Polly optimiza-
tions and we see for the polyhedral-based approach a speedup of 18.5% comparing
LLVM-O3 and Polly with run-time alias checks against LLVM-O3 and Polly without
run-time alias checks.5

As Figure 3.15 shows, we have observed slowdowns in a few benchmarks: trisolv,
gemm, atax, etc. Several of these slowdowns are caused by Polly “optimizing” additional
or larger code regions that only become amenable for optimizations when using our
new alias-checking techniques. The transformations Polly applies are obtained through

5Since commit r222754 (25. November 2014), Polly can take optimistic assumptions to effectively
optimize PolyBench in its default configuration.
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Figure 3.15: Execution time improvement of our hybrid methods over Polly, running
on LLVM-O3. Our best result can be observed in covariance, which is executed in
4.29 seconds by Polly. Our polyhedral approach lowers this number to 1.29 seconds,
being 3.3x faster.

(a slightly modified) reimplementation of the Pluto scheduling optimizer [Bondhugula
et al., 2008]. Pluto optimizes the schedule of a SCoP by constructing an ILP problem
that minimizes data-dependences while maximizing tilability and parallelism. In this
process Pluto only considers data-dependences, but does not consider spatial local-
ity. As a result, the Pluto scheduling optimizer may choose schedules that are better
according to the criteria Pluto optimizes for, but which reduce spatial locality and con-
sequently performance. The original implementation of Pluto addresses this problem
by applying a set of post-scheduling optimizations that focus on spatial locality. The
(current) lack of these optimizations in Polly seems to be the main reason for non-
optimal code transformation choices and the performance regressions they imply. In
this work, the implementation and tuning of program optimizations is not our focus.
Instead, our goal is to disambiguate pointers with the lowest possible overhead aiming
to increase the applicability of program transformations. The choice of optimal trans-
formations is left to the compiler. Even if we only use LLVM optimizations, but exclude
Polly’s, it is still possible to observe slowdowns in some benchmarks. For instance, Fig-
ure 3.14 shows slowdowns in two benchmarks - jacobi-2d and trisolv. We account
this behavior to the choice and ordering of optimizations. Finding an optimal spot in
this space is still an open problem [Kulkarni et al., 2006].

3.4.2.3 Code Size Expansion

Figure 3.16 shows how much our technique increases the size of binaries. This expansion
is due to (i) the duplication of code, and (ii) the checks that we create to disambiguate
pointers at runtime. We have not created tests for nussinov, and seidel-2d, because
these benchmarks manipulate only one vector. Our checks are necessary only if the
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Figure 3.16: Code size expansion due to our optimization.

Figure 3.17: Execution time of our purely dynamic (Section 3.2) and combined (dy-
namic + hybrid) approaches when compared to our hybrid technique (Chapter 2).
ludcmp executes in 1.27 seconds when using our hybrid method. The purely dynamic
approach reduces this number to 1.00 second, being 1.2x faster, as the Figure shows.

optimizable region contains two or more different array accesses. Thus, for these two
benchmarks there was no code-size expansion.

3.4.2.4 On the precision of our memory access estimates

The disambiguation checks of our symbolic hybrid approach (Chapter 2) are not always
precise, but in some cases over-estimate the size of the accessed memory. We are inter-
ested in knowing how precise this over-estimation is. To this end, we have compared
our estimates of the lower and upper bounds of the range of accessed array addresses
against the results that we obtain using the dynamic approach of Section 3.2. We use
our memory allocator in the instrumented programs to check size estimates determined
statically against actual memory size. In PolyBench the estimation is perfectly accurate
as the accessed regions can be described lossless by both our static analyses.

3.4.3 The purely dynamic approach

Figure 3.17 shows a runtime comparison between the purely dynamic approach, dis-
cussed in Section 3.2, and the hybrid approach with the symbolic range tests seen in
Chapter 2. We show results for PolyBench. Overall, the runtime of the benchmarks was
very similar. We have observed that the hybrid approach is 6% faster. This number
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is the geometric mean of the execution times. The hybrid approach is faster because,
in general, its dynamic checks have a faster runtime, and it does not impose mem-
ory allocation and deallocation overheads. Whereas the purely dynamic checks are
O(lnn), n being the number of memory allocations currently live in the program, the
checks inserted by the hybrid approach execute in O(1). Nevertheless, this constant can
be high, because these guards may be formed by the combination of several complex
arithmetic expressions. This observation explains why the purely dynamic methodol-
ogy yields faster runtimes in some benchmarks. Additionally, the hybrid approach has
been used to disambiguate more pointer pairs. This happened whenever we could not
infer statically symbolic bounds for some pointers.

We have tried also to combine the purely dynamic approach and the hybrid ap-
proach of Chapter 2. In this case, whenever the hybrid approach could not generate
a test to disambiguate a pointer pair, we would resort to the purely dynamic disam-
biguation. Figure 3.17 also shows these results. This combination has produced slight
improvement on the runtime of the purely dynamic approach. We believe that we could
not observe a larger speedup because a substantial part of the cost of this technique
is due to the memory allocation overhead. For instance, we tried the purely dynamic
approach in SPEC CPU 2006’s 401.bzip2, a memory intensive benchmark Henning
[2006]. In this allocation-heavy benchmark, the purely dynamic approach slowed the
program down by 29%. Notice, however, that the purely dynamic technique does not
depend on a particular implementation of a memory allocator. Thus, we believe that
an interesting line of future research is to check if, and by how much, other implemen-
tations, such as SoftBounds [Nagarakatte et al., 2009], for instance, could reduce this
overhead.

3.4.4 Discussion

In this chapter, we have discussed very different techniques to disambiguate pointers
at runtime: the purely dynamic approach of Section 3.2, and the hybrid approach of
Section 3.3. Additionally, we have used two different methods to generate the checks
used in the hybrid approach, the polyhedrons of Section 3.3.2, and the symbolic range
analysis of Chapter 2. All these techniques have advantages and shortcomings, and, to
illustrate them, we shall rely on the programs seen in Figure 3.18.

The purely dynamic approach is more applicable, handling sparse data structures
such as linked-lists, for instance. Furthermore, it does not depend on the ability of a
static analyzer to infer bounds for arrays. For example, only the purely dynamic
approach lets us produce tests for function f0 in Figure 3.18. The hybrid approaches
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void f3(int *a, int *b, int N) {
  int i, j;
  for (i = 0; i < N; i++) {
    for (i = 0; i < N; i++) {
      a[i*j] += b[i];
    }
  }
}

void f2(int *u, int *v, int N) {
  int i;
  for (i = 0; i < N; i++) {
    if (N < 255)
      u[i] = i;
    else
      v[i] = i;
  }
}

void f1(char *u, char* v, int N) {
  int i, j;
  for (i = 0; i < N; i++) {
    u[i] = 0;
    for (j = 0; j < N; j++) {
      u[i] += v[j];
    }
  }
}
int main() {
  const int N = 100;
  char *v = malloc(2*N*sizeof(int));
  f1(v, (v+N), N);
  return 0;
}

void f0(int* src, int *acc) {
  int i;
  *acc = 0;
  for (i = 0; src[i]; i++) {
    *acc += src[i];
  }
}
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Figure 3.18: Examples of programs that illustrate advantages and disadvantages of
our different runtime pointer disambiguation techniques.

would fail in this case because the limits of the array src are not explicit in the loop.
The purely dynamic technique can also handle loops containing function calls and
non-affine array accesses, which are not addressed by the other strategies.

The main drawback of the purely dynamic method is the query time. Our im-
plementation of it uses a balanced tree to store meta-information associated with each
chunk of memory allocated during the execution of a program. In principle, we could
use other data structures to retrieve the meta-data associated with the blocks of al-
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located memory. We chose to implement our memory allocator with a red-black tree
because it is relatively easy to implement and it offers us reliable access times. Fur-
thermore, this data structure has been already used for similar purposes in the litera-
ture [Margiolas and O’Boyle, 2014]. Nevertheless, for memory intensive programs, the
red-black tree’s search time might bring in a non-negligible overhead. In it’s current
form the purely dynamic approach is completely ignorant of the underlying memory
it wraps, as long as it provides a libc like interface. While this makes our implemen-
tation trivially portable between different platforms and allocators, it also means that
we have to duplicate some metadata that most modern allocators already keep. In the
future we plan to modify a high performance allocator to remove the overhead of tree
queries for a large part of all allocations and significantly reduce the space overhead.

The hybrid approaches of Section 3.3 have lower overhead and work indepen-
dently of the program’s execution environment. Our experiments indicate that infer-
ring bounds for pointers statically should be preferred whenever possible. There are
also programs that the hybrid approaches can disambiguate, but the dynamic tech-
nique cannot. For instance, the latter method will not be able to disambiguate the
accesses to u[i] and v[j] in function f1 in Figure 3.18 (line 6), because these pointers
dereference addresses within the same allocated region, even though they operate over
disjoint address ranges.

In our experiments, we have not found programs that could be analyzed differently
by one of the two hybrid approaches of Section 3.3, but not for the other. Nevertheless,
we can create such examples by hand. For instance, both methods are able to analyze
function f2 in Figure 3.18; however, the polyhedron-based one, from Section 3.3.2,
will be able to infer – statically – that the accesses u[i] and v[i] are independent,
because for a given set of parameters either line 5 or line 7, but never both, can be run
during the execution of the kernel. On the other hand, this technique is not able to
produce tests for the program in function f3 in Figure 3.18. The culprit, in this case,
is the fact that the expression i * j is non-affine. The approach based on symbolic
range analysis can handle this example, although this feature is not yet available in
our implementation.





Chapter 4

DawnCC: Automatic Annotation
for Data Parallelism and Offloading

In this chapter, we present a second, more sophisticated client of our analysis: DawnCC;
a framework that automatically annotates C and C++ code to run on a GPU. This
tool relies on the symbolic access range analysis from Chapter 2 to emit directives
capable of offloading memory regions to an external device.

4.1 Overview

We use the Single Precision AX + Y (SAXPY) kernel in Figure 4.1 (a) to illustrate
the contributions of this chapter. This kernel is a standard function in Nvidia’s BLAS
library1. It simply performs a combination of multiplication by scalar plus addition
between corresponding cells of two vectors. It runs in linear time on a sequential
machine. However, it is O(1) in the Parallel Random-Access Machine (PRAM) model,
because there is no dependency between different iterations of the loop. In the high-
performance computing jargon, the SAXPY loop is called a doall.

Figure 4.1 (b) shows a direct translation of SAXPY to C for CUDA. CUDA’s
syntax is very similar to C’s; however, its semantics is substantially different. Part of
it, lines 1-7, is meant to run on a GPU; the rest, lines 9-11, is meant to run on a host
CPU. The code that runs on the GPU will be instantiated multiple times, once per
each logical thread. In this case, we have one thread per each valid index in the input
vectors. Even though C for CUDA is becoming commonplace among developers of
parallel applications, having to worry about concurrent semantics and communication

1
https://devblogs.nvidia.com/parallelforall/six-ways-saxpy/
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void
saxpy_serial(int n, float alpha, float *x, float *y) {
    for (int i = 0; i < n; i++) {
        y[i] = alpha*x[i] + y[i];
    }
}

__global__ void
saxpy_parallel(int n, float alpha, float *x, float *y) { 
    int i = blockIdx.x * blockDim.x + threadIdx.x; 
    if (i < n) {
        y[i] = alpha * x[i] + y[i];
    }
} 
...
// Invoke the parallel kernel: 
int nblocks = (n + 255) / 256; 
saxpy_parallel <<<nblocks, 256>>>(n, 2.0, x, y);
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Figure 4.1: (a) Standard C implementation of the Single Precision AX + Y (SAXPY)
kernel. (b) Same algorithm written in C for CUDA.

void saxpy_serial(int n, float alpha, float *x, float *y) {
  long long int tmp[2];
  tmp[0] = n -1;
  tmp[1] = ((tmp[0] > 0) ? tmp[0] : 0); // upper bound

  char x_y_alias_free = ((x >= y + tmp[1] + 1) ||
                                      (y >= x + tmp[1] + 1));

  #pragma acc data pcopy(y[0:tmp[1]]) \
                         pcopyin(x[0:tmp[1]]) \
                         if(x_y_alias_free)
  #pragma acc kernels loop independent \
                         if(x_y_alias_free)
  for (int i = 0; i < n; i++)
    y[i] = alpha*x[i] + y[i];
}

void saxpy_serial(int n, float alpha, float *x, float *y) {
  long long int tmp[2];
  tmp[0] = n -1;
  tmp[1] = ((tmp[0] > 0) ? tmp[0] : 0); // upper bound

  char x_y_alias_free = ((x >= y + tmp[1] + 1) ||
                                      (y >= x + tmp[1] + 1));

  #pragma omp target data map(to:x[0:tmp[1]]) \
                           map(tofrom:y[0:tmp[1]]) \
                           if(x_y_alias_free)
  #pragma omp parallel for if(x_y_alias_free)
  for (int i = 0; i < n; i++)
    y[i] = alpha*x[i] + y[i];
}
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Figure 4.2: (a) SAXPY annotated with OpenACC pragmas. (b) SAXPY annotated
with OpenMP pragmas. The gray area denotes code created automatically.

between multiple devices still restricts the use of this language.

To make GPUs more accessible to the everyday developer, the high-performance
computing community has designed a number of annotation systems. An annotation
system is a meta-language that changes the semantics of a host language. In our setting,
the host language is either C or C++, and the meta-language is either OpenACC or
OpenMP. Figure 4.2 shows the sequential SAXPY kernel annotated with (a) OpenACC
and (b) OpenMP pragma directives. Our DawnCC compiler inserts these pragmas, plus
all the code necessary for them to work, automatically.

DawnCC is a source-to-source compiler: it reads an ordinary C program and
produces a version of that program with annotations. In this process, DawnCC solves
two problems. First, it recognizes doall loops. Second, it inserts primitives to copy
data to and from the GPU. To deal with the first problem, the identification of doall
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loops, we use standard compiler analysis techniques [Wolfe, 1995, Ch.6]. Because these
techniques are already commonplace in the compiler’s literature, in this work we focus
on the second problem.

To insert data movement directives, such as pcopy in Figure 4.2 (a) and map
in Figure 4.2 (b), we need to infer the bounds of memory regions. In this example,
memory regions are the arrays x and y. We use the range inference from Chapter 2 and
the static analyses described in Section 4.2 to recover these limits. More importantly:
we do it using symbols present in the program code itself. For instance, at line 3 of
Figures 4.2 (a) and (b), we are using the symbol n to rebuild the limits of the arrays
x and y. These limits not only give us a way to copy data around, but they also let us
show that pointers do not overlap. In our example, the tests at line 6 of Figures 4.2
(a) and (b), built using the hybrid pointer disambiguation of Chapter 3, give us this
information. Whenever either of the inequalities y >= x + n+ 1 or x >= y + n+ 1

are true, we are sure that the vectors x and y do not overlap. We can only assume
that the loop is parallel once we are under this assumption. We emphasize that these
annotations have been produced without any intervention from a user. How we perform
such deed is the subject of the next section.

4.2 Static Analyses

In addition to the symbolic range inference of Chapter 2, DawnCC is built around a
number of other static analyses, such as the dependence analysis of Ferrante et al.
[1987]. In the rest of this section we explain how these compilation techniques work.
Figure 4.3 shows how the different analyses are related to each other in the compilation
flow of DawnCC.

4.2.1 Memory Disambiguation

The fact that we can infer the sizes of arrays gives us the possibility to disambiguate
pointers, as shown in Chapter 3. This disambiguation lets us eliminate spurious de-
pendencies in the source program due to pointer aliasing. Thus, it lets us potentially
increase the number of parallel regions that we can find. As described in Section 3.3.1,
if B1 = [l1, u1] and B2 = [l2, u2] are estimations for the regions dereferenced by two
different pointers p1 and p2, then we say that they will not overlap if:

p1 + l1 � p2 + u2 + 1 or p2 + l2 � p1 + u1 + 1
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Figure 4.3: Overview of DawnCC.

This test ensures that the regions covered by offsets that use p1 and p2 as base pointers
have empty intersection. For instance, if each element pointed by p1 takes 8 bytes, p2
cannot point to the 4th byte of the last memory position accessed through p1, whenever
either of the above inequalities hold.

Both OpenACC and OpenMP give us the equipment necessary to use this infor-
mation. Such equipment consists in conditional directives. A conditional directive only
takes effect if a given predicate is valid at runtime. Thus, whenever we might have alias-
ing between different pointers within a loop, we use conditional tests to disambiguate
them, as we illustrate in Example 5.

Example 5 The loop in saxpy_serial, in Figure 4.1 (a), contains accesses to two
pointers: x and y. Both have bounds [0, n � 1]. Thus, they will not alias if x >=

y + (n � 1) + 1, or if y >= x + (n � 1) + 1. This test is implemented at lines 6 and
7 of Figures 4.2 (a) and (b). The conditional pragmas that use the result of this test
appear at lines 9 through 12 of the annotated programs.

4.2.2 From Source to IR, and Back Again

DawnCC is built on top of the LLVM [Lattner and Adve, 2004] compilation framework,
whose intermediate representation is used as input for the static analyses presented
in this section. We chose to perform our analyses on the Intermediate Representation
(IR) of LLVM because we could, in this way, reuse already available analyses. However,
such benefit comes with a challenge: There exists a gap between LLVM’s IR and the
source code, and while we analyze the former, our annotations must, ultimately, be
inserted in the latter. This section explains how we have bridged this gap, using analysis
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void saxpy_3off(int n, float alpha, int *x, float *y) {
  for (int i = 3; i < n; ++i)
    y[i-3] = alpha*x[i] + y[i-3];
}

1
2
3
4

(a)

void saxpy_3off(int n, float alpha, int *x, float *y) {
  char x_y_alias_free = ((x+3) >= (y + max(0,n-4) + 1)) || (y >= (x + max(3,n-1) + 1));

  #pragma omp target map(x[3:max(3,n-1)-3+1], y[0:max(0,n-4)+1]) if(x_y_alias_free)
  #pragma omp parallel for if(x_y_alias_free)
  for (int i = 3; i < n; ++i)
    y[i-3] = alpha*x[i] + y[i-3];
}
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Figure 4.4: (a) example adapted from our original SAXPY code (Figure 4.1 (a)) and
(b) a version of it annotated with OpenMP 4.0 pragmas to run on a GPU.

developed by Gleison Mendonça, from UFMG Compilers Laboratory [Mendonça et al.,
2016]. While we focus on details of the LLVM’s IR as a means to provide the reader
with concrete examples, our ideas fit scenarios made of high-level languages other than
C/C++, and low-level languages other than LLVM bytecodes.

In low-level assemblies, array indexing expressions consist of load or store instruc-
tions. These instructions take as operand a memory address. Thus, finding the access
bounds for a given array means finding the bounds for the target addresses of each
load and store operation that can manipulate that array. Figure 4.4 (a) shows a small
variation of the SAXPY code seen in Figure 4.1 (a). Figure 4.5 (a) outlines the LLVM

instructions generated for the loop body2 in Figure 4.4 (a), line 3. The instruction
GetElementPtr computes the actual address of an element, given a base address and
the element’s index. The load and store operations in lines 13 and 21 of Figure 4.5 (a)
represent the accesses to array y. The load in line 4 was translated from the access to
x. If we apply the techniques from Chapter 2 on this program, then we get the code
in Figure 4.5 (b). These assembly instructions, when executed at runtime, yield the
lowest and highest addresses referenced through arrays x and y in our example, i.e.,
their access bounds.

Converting the low-level representation of array access bounds back into source
code is relatively easy: most operators in LLVM IR have a one-to-one mapping in C or
can be emulated by a small set of C operations. Using a bottom-up recursive conversion
strategy over the assembly in Figure 4.5 (b), we get the equivalent parenthesized C
expressions in Figure 4.6 (a). While these expressions meet the goal of expressing

2Names preceded by % represent virtual registers created by the compiler
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; lower bound for x: &(x[3])
%1 = getelementptr i32, i32* %x, i64 3
%2 = bitcast i32* %1 to i8*

; upper bound for x: &(x[max(3,n-1)])
%3 = add i32 %n, -1
%4 = icmp sgt i32 %3, 3
%5 = select i1 %4, i32 %3, i32 3
%6 = add i32 %5, -3
%7 = zext i32 %6 to i64
%8 = shl nuw nsw i64 %7, 2
%9 = getelementptr i32, i32* %x, i64 3
%10 = ptrtoint i32* %9 to i64
%11 = add i64 %8, %10
%12 = inttoptr i64 %11 to i8*

; lower bound for y: &(y[0])
%13 = bitcast float* %y to i8*

; upper bound for y: &(y[max(0,n-4)])
%14 = add i32 %n, -1
%15 = icmp sgt i32 %14, 3
%16 = select i1 %15, i32 %14, i32 3
%17 = add i32 %16, -3
%18 = zext i32 %17 to i64
%19 = shl nuw nsw i64 %18, 2
%20 = ptrtoint float* %y to i64
%21 = add i64 %19, %20
%22 = inttoptr i64 %21 to i8*
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; read x[i]
%2 = sext i32 %i to i64
%3 = getelementptr i32, i32* %x, i64 %2
%4 = load i32, i32* %3, align 4

%5 = sitofp i32 %4 to float
%6 = fmul float %alpha, %5

; read y[i-3]
%7 = sub nsw i32 %i, 3
%8 = sext i32 %7 to i64
%9 = getelementptr float, float* %y, i64 %8
%10 = load float, float* %9, align 4

%11 = fadd float %6, %10

; write y[i-3]
%12 = sub nsw i32 %i, 3
%13 = sext i32 %12 to i64
%14 = getelementptr float, float* %y, i64 %13
store float %11, float* %14, align 4

br label %inc
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Figure 4.5: (a) LLVM instructions generated for the body of the loop in line 3 of
Figure 4.4 (a); (b) LLVM assembly representing the symbolic access bounds of arrays
x and y.

(void*)((((int64_t)((((n-1)>3)?(n-1):3)-3))<<2)+((int64_t)(&x[3])))

(void*)((((int64_t)(max(n-1,3)-3))<<2)+((int64_t)(&x[3])))

(void*)((((int64_t)(max(n-1,3)-3))*4)+((int64_t)(&x[3])))

(void*)((int64_t)(&x[max(n-1,3)-3+3]))

(void*)((int64_t)(&x[max(n-1,3)]))

(void*)&x[max(n-1,3)]

(void*)(x+max(n-1,3))

max(n-1,3)

*4

0

void*

max(n-1,3)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

lower bound for x: (void*)(&x[3])
upper bound for x: (void*)((((int64_t)((((n-1)>3)?(n-1):3)-3))<<2)+((int64_t)(&x[3])))
lower bound for y: (void*)y
upper bound for y: (void*)((((int64_t)((((n-1)>3)?(n-1):3)-3))<<2)+((int64_t)y))

(a)

(b)

Figure 4.6: (a) C code generated for the symbolic bounds in Figure 4.5 (b); (b) steps
used to improve the readability of expressions that describes upper bound of x.
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access bounds in C code, they have two shortcomings. First, they are hard to read, a
fact that would decrease the maintainability of code automatically annotated. Second,
expressions used in OpenAcc/OpenMP’s memory transfer directives need bounds given
in terms of base addresses and integer access indexes. However, the expressions in
Figure 4.6 (a) use pointer arithmetic to compute actual addresses. In what follows, we
explain how we overcome these two problems.

Simplifying Bound Expressions To make limit expressions more readable, we per-
form a series of static simplifications. Most of these simplifications take advantage
of operations that are common to pointer arithmetic and address manipulation in C.
We explain below the transformations that we perform, exemplifying some of them in
Figure 4.5. This Figure shows, step by step, how the expression that computes the
upper bound for array x (Figure 4.6 (a)) can be simplified. Even though we illustrate
these transformations with C code, they are performed over the equivalent LLVM IR
representing the expression (Figure 4.5 (b)). The list of simplifications is as follows:

• conversion to min and max operations: limit expressions usually involve
a number of minimum and maximum operations. These, however, are usually
represented as a less than or greater than comparison followed by a selection
instruction in LLVM IR (e.g., lines 7-8 of Figure 4.5 (b)), or an equivalent con-
ditional ternary operation in C. Reducing this representation to a simple min or
max operation makes the code easier to read. Figure 4.6 (b) step (1) shows an
example of this reduction.

• static resolution of conditionals: oftentimes our range analysis generates
conditional operations based on relational expressions that can be trivially solved,
e.g. (n < n + 1). Whenever possible, we solve these conditionals statically,
eliminating the remaining dead branch.

• shift to mul and div conversion: most compilers convert multiplication or
division by powers of 2 into shift operations. Whenever possible, we undo this
optimization, as explicit multiplications and divisions make it easier for us to
identify pointer manipulation patterns. Step (2) of Figure 4.6 (b) illustrates this
simplification.

• simplification of array indexing: computing the address of an element in a
one-dimensional array involves (i) finding a base address and (ii) computing an
offset. If we identify this pattern in a set of instructions, then we can replace it
by the equivalent C expression using the brackets notation. Figure 4.6 (b)’s step
(3) demonstrates this simplification when applied onto the array x.
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• constant propagation: we solve any arithmetic operation that can be resolved
statically. E.g., Figure 4.6 (b) step (4).

• extraction of common subexpressions: at times, the symbolic access bounds
of different arrays use the same intermediate subexpressions. When this is the
case, we extract such expressions to temporary variables.

From Symbolic Bounds to Annotations The expressions generated by our analysis
compute the lowest and highest addresses that can be accessed in an array. To insert the
final directives, however, we need the lowest and highest integer values used to index
the array. After simplification, we often end up with a simple indexing expression
(Figure 4.6 (b) step (6)) from which we can easily tell the integer index apart (steps
(7) and (8)). Even for cases where the final bound expression is not as simple, we can
still compute the limit index by subtracting the base address of the array and diving
the result by its type size. Once we obtain readable integer indexes for all the access
bounds, we proceed to generate the annotated code seen in Figure 4.4 (b).

The aliasing test in line 2 of Figure 4.4 (b), which checks that arrays x and y do
not overlap, can be obtained by inlining the symbolic access bounds that we have just
computed into the restrictification inequality defined in Section 4.2.1. For data transfer
pragmas, however, the lowest and highest index are not enough: mapping clauses in
both OpenACC and OpenMP 4.0 determine the memory to be copied by specifying a
start index and an integer length. This offset determines how many memory positions
of an array should be transferred to the device, counting from the starting index.
While the start index will be the same as the lowest access index that we got using
our analysis, the length will be the number of memory positions between the access
limits. In other words, the length is the difference between the highest and lowest
access indexes plus one. The map clauses in line 4 of Figure 4.4 (b) show the resulting
transfer ranges derived for our example.

4.3 Data Transfer Optimizations

Instead of mimicking the work of programmers, accurate static analyses let us go
beyond what a human user can achieve with code annotation systems. The usual
workflow followed by a developer when annotating large programs for GPU paralleliza-
tion is to (i) reason about each loop nest in separate, (ii) decide if it should or not
be sent to the external acceleration device and (iii) insert data transfer and parallel
pragmas accordingly. This modus operandi is justified because loop nests contain most
of the parallelization opportunities in a program, and are usually small enough to be
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void corr(float *A, float *MEAN, float *STDEV, int m, int n) {
  for (int i = 0; i < m; i++) {
    for (int j = 0; j < n; j++)
      MEAN[i] += A[i*n+j];

    MEAN[i] /= n;
  }
  
  for (int i = 0; i < m; i++) {
    for (int j = 0; j < n; j++)
      STDEV[i] += (A[i*n+j] - MEAN[i]) * (A[i*n+j] - MEAN[i]);
  
    STDEV[i] = sqrt(STDEV[i] / n);
  }
}

void corr(float *A, float *MEAN, float *STDEV, int m, int n) {
  #pragma omp target map(to: A[:m*n]) \
                                      map(tofrom: MEAN[:m])
  #pragma omp parallel for
  for (int i = 0; i < m; i++) {
    for (int j = 0; j < n; j++)
      MEAN[i] += A[i*n+j];

    MEAN[i] /= n;
  }

  #pragma omp target map(to: A[:m*n], MEAN[:m]) \
                                      map(tofrom: STDEV[:m)
  #pragma omp parallel for  
  for (int i = 0; i < m; i++) {
    for (int j = 0; j < n; j++)
      STDEV[i] += (A[i*n+j] - MEAN[i]) * (A[i*n+j] - MEAN[i]);
  
    STDEV[i] = sqrt(STDEV[i] / n);
  }
}

void corr(float *A, float *MEAN, float *STDEV, int m, int n) {
  #pragma omp target data map(to: A[:m*n]) \
                           map(tofrom: MEAN[:m], STDEV[:m])
  {
    #pragma omp target
    #pragma omp parallel for
    for (int i = 0; i < m; i++) {
      for (int j = 0; j < n; j++)
        MEAN[i] += A[i*n+j];

      MEAN[i] /= n;
    }

    #pragma omp target
    #pragma omp parallel for  
    for (int i = 0; i < m; i++) {
      for (int j = 0; j < n; j++)
        STDEV[i] += (A[i*n+j] - MEAN[i]) * (A[i*n+j] - MEAN[i]);
  
      STDEV[i] = sqrt(STDEV[i] / n);
    }
  }
}
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R1 (whole function line 1)
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Figure 4.7: (a) example program adapted from the correlation benchmark, (b) code
produced following a simple per-loop annotation approach, (c) code produced using
the data environment feature of OpenMP 4.0, and (d) CFG for the program divided
into SESE regions.

amenable to human reasoning. Nevertheless, complex syntax and intricate iteration
spaces might cause developers to use redundant annotations in the effort to parallelize
programs. The function corr in Figure 4.7 (a), which was adapted from the correlation
benchmark in the PolyBenchGPU suite, gives us the opportunity to illustrate some of
these difficulties, as we explain in Example 6.

Example 6 The approach described in Section 4.2.2, once applied onto function corr
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in Figure 4.7 (a), gives us the code in Figure 4.7 (b). This second version of corr

executes all loop nests in the accelerator. As indicated by the directive in lines 2-3 of
the new program, the contents of arrays MEAN and A are sent to the device before the
loop in lines 5-10 of Figure 4.7 (b). MEAN, the output array, is brought back after
that loop finishes. For the second loop nest, MEAN, A, and STDEV are sent to the
GPU and STDEV is brought back. This gives us a total of seven transfer operations.

Annotating loop nests as completely separate objects may cause a developer to
miss optimization opportunities. One such opportunity is the reuse of memory transfer
operations across different nests of loops. Data transfer operations may impose a
prohibitive overhead when offloading code to a GPU [Gregg and Hazelwood, 2011].
Not sending to the external device the contents of arrays used solely as computation
output, or not bringing back input data can reduce this overhead. In this work we go
one step beyond: we coalesce data transfers of loops that operate on the same data.
For instance, in Figure 4.7 (b) both parallel loop nests operate over the array MEAN;
thus, it would be desirable to keep this memory region in the external device during
the execution of the whole function, rather than bringing it back between the loops,
contrary to what has been shown in Example 6. To achieve this end, both OpenMP
4.0 and OpenACC allow the user to explicitly define a data environment in the target
device. A data environment is a syntactic region that determines a set of memory
mappings between host and device, which are valid for any parallel region within the
environment block. In C/C++, data environments are scoped blocks, i.e., a region
delimited by braces. Example 7 shows the benefits of this optimization.

Example 7 Figure 4.7 (c) contains a data environment ranging from line 4 till line
22. In this new version of corr, the pragma in lines 2-3 states that arrays MEAN,
STDEV, and A must be sent to the GPU, and that MEAN and STDEV must be brought
back. Transfers to the GPU happen, semantically, at line 4. Transfers from the GPU
happen at line 22.

The reimplementation of Example 6, seen in Example 7, saves two data transfer
operations. This example shows a specific case of a general optimization, which we
call Coalescing of Data Transfer Operations. The goal of this optimization is to au-
tomatically encompass as many different parallel loops as possible in the same data
environment; hence, reducing the amount of data that needs to be transferred between
host and device. There are two main steps involved in this process: (i) finding which
loops should be surrounded by the same data environment (Section 4.3.1), and (ii)
inserting the actual copy block in the annotated source file (Section 4.3.2).
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4.3.1 Deciding which Loops can be Merged into Common

Transfer Blocks

To decide which loops should have their transfer operations coalesced, we first divide
the program’s control flow graph into SESE regions, as explained in Section 3.3.3.
Example 8 describes an instance of this division. To identify which of these regions we
can analyse, we resort to the symbolic range analysis seen in Chapter 2, plus classic
data dependence analysis [Ferrante et al., 1987]. These two techniques, once combined,
let us find the regions that we can optimize. We can analyze a region if we are able
to define the access bounds of all arrays used within its scope. An array has bounded
accesses if we can determine symbolic ranges for all the expressions used to index it
within the region of interest. A region of interest contains only parallel loops, which
we can run on the target accelerator. We want to enclose the largest of such regions
on a data environment. Example 9 provides some insight on this observation.

Example 8 Figure 4.7 (d) shows the structure of the CFG for the program in Fig-
ure 4.7 (a), with SESE regions highlighted (regions represented by a single basic block
or that are not meaningful to the example are not represented in the Figure).

Example 9 Going back to our running example of Figure 4.7, every array access has
limits known right at the start of region R1, the largest region in the function (Figure 4.7
(b)). DawnCC places data transfer operations around this region; hence, arriving at the
code seen in Figure 4.7 (c), which is semantically equivalent to the original program
seen in Figure 4.7 (a).

4.3.2 Carrying on with Coalescing into Source Code

As our intent is to insert annotations in the original source code, the intermediate
representation over which we run our static analyses should be as close to the input
program’s text as possible. To this extent, when generating a program’s CFG we
disable any optimization that can move code across different points of said CFG. One
particular optimization, however, cannot be disabled in most cases: the conversion to
Static Single Assignment Form (SSA) [Cytron et al., 1991]. A number of mainstream
compilers, such as Clang, GCC, ICC, HotSpot, and Mozilla’s IonMonkey, will convert
a program to SSA form when generating its intermediate representation. The virtual
names inserted in this process make it harder to map instructions in a program’s CFG
to its original text – a fact that Example 10, adapted from PolyBenchGPU’s fdtd_2d,
clarifies.



50
Chapter 4. DawnCC: Automatic Annotation for Data Parallelism and

Offloading

void fdtd_2d(float *Y, float *X, float *H, int m, int n) {
  for (int i = 1; i < m; i++) {
    if (shouldComputeY(i)) {
      for (int j = 0; j < n; j++)
        Y[i*n+j] = Y[i*n+j] - 0.5*(H[i*n+j] - H[(i-1)*n+j]);
    }

    for (int j = 1; j < n; j++)
      X[i*n+j] = X[i*n+j] - 0.5*(H[i*n+j] - H[i*n+(j-1)]);
  }
}
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void fdtd_2d(float *Y, float *X, float *H, int m, int n) {
  for (int i = 1; i < m; i++) {
    #pragma omp target data map(to: H[:m*n]) \
                    map(tofrom: Y[n:(m-1)*n], X[n:(m-1)*n])
    {
      if (shouldComputeY(i)) {
        #pragma omp target
        #pragma omp parallel for
        for (int j = 0; j < n; j++)
          Y[i*n+j] = Y[i*n+j] - 0.5*(H[i*n+j] - H[(i-1)*n+j]);
      }
  
      #pragma omp target
      #pragma omp parallel for
      for (int j = 1; j < n; j++)
        X[i*n+j] = X[i*n+j] - 0.5*(H[i*n+j] - H[i*n+(j-1)]);
    }
  }
}
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if %r goto %A
else goto %B

%r = shouldComputeY(%i)

%A

R5 (for line 4)

%B

R4 (if line 3)

R6 (for line 8)

R1 (whole function line 1)
R2 (for line 2)

R3 (if line 3 and for line 8)

(b)

Figure 4.8: (a) Example program adapted from the fdtd_2d benchmark, (b) SESE
regions in the program. (c) Unsafe annotations.

Example 10 Figure 4.8 (b) shows the SESE regions of function fdtd_2d, seen in
Figure 4.8 (a). The call to shouldComputeY in line 3 can yield side-effects. Thus,
dependence analysis tells us that the outer loop might not be parallel. The two inner
loops in lines 4-5 and 8-9, however, are stencil kernels that can be annotated to run in
the accelerator. In the CFG, the largest region for which we have full symbolic range
information (R3) goes from right before the if statement in line 3 to right after the
for loop in lines 8-9. However, the call to shouldComputeY is syntactically inside our
target region in the program’s text (lines 3 through 9), but falls outside of it in the
program’s CFG, due to the virtual name %r inserted during the SSA transformation.

Example 10 shows that a SESE region in a program’s CFG in SSA form may
not directly map to a SESE region in the original program text. In Example 10,
surrounding region R3 with a data transfer block in the source program (as seen in
Figure 4.8 (c)) could change its semantics. This modification happens if the call to
shouldComputeY modifies the values stored in arrays H, Y or X after they have been
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function fdtd_2d
[1:1 - 11:1]

for
[2:3 - 10:3]

for
[8:5 - 9:66]

if
[3:5 - 6:5]

for
[4:7 - 5:60]

void fdtd_2d(float *Y, float *X, float *H, int m, int n) {
  for (int i = 1; i < m; i++) {
    if (shouldComputeY(i)) {
      #pragma omp target map(to: H[(i-1)*n:2*n]) \
                                          map(tofrom: Y[i*n:n])
      #pragma omp parallel for
      for (int j = 0; j < n; j++)
        Y[i*n+j] = Y[i*n+j] - 0.5*(H[i*n+j] - H[(i-1)*n+j]);
    }
  
    #pragma omp target map(to: H[i*n:n]) \
                                        map(tofrom: X[i*n:n])
    #pragma omp parallel for
    for (int j = 1; j < n; j++)
      X[i*n+j] = X[i*n+j] - 0.5*(H[i*n+j] - H[i*n+(j-1)]);
  }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

(a) (b)

Figure 4.9: (a) Annotations produced by DawnCC for program in Figure 4.8 (a), (b)
scope tree.

sent to the GPU.

To ensure that our coalescing strategy is correct under SSA conversion, we resort
to a simple restriction: the data environment created to cover an analyzable SESE
region goes from the point right before its first parallel loop (including its preheader) to
the point right after its last parallel loop. SSA conversion does not change the structure
of loops nor moves computation across them. Thus, all computation inside the data
environment defined by the above restriction will be the same in both a program’s text
and in its CFG. Example 11 provides some intuition on why such approach is safe.

Example 11 If we were to surround region R3, in Figure 4.8 (b), with a data transfer
block, then this region should go from the loop in line 4 to the end of the loop in
lines 8-9 in Figure 4.8 (a). Thus, this data transfer block does not include the call
shouldComputeY. This exclusion holds in both the source text (Figure 4.8 (a)) and the
CFG (Figure 4.8 (b)).

Despite being safer, our augmented coalescing approach still suffers from one
problem: it is not always syntactically valid to surround different loops within the same
region with a data-transfer block. Inserting a block around both loops in Example 11
is not syntactically valid. The beginning of the block would fall inside the if in line 3
of Figure 4.8 (a) and its end would lay outside. To avoid such problems, we use a last
verification step. This check uses a data structure that we call a scope tree.



52
Chapter 4. DawnCC: Automatic Annotation for Data Parallelism and

Offloading

Ensuring Safety with Scope Trees A scope tree is a tree-like data structure in
which nodes represent statements in the source program that can create SESE regions
(statements such as for, if, and switch cases). Each node contains its text range: the
coordinates in the source code (line and column of the character in the text) that
represent its first and last character. For instance, the if statement in Figure 4.8 (a)
ranges from line 3 column 5 to line 6 column 5. This data structure can be constructed
using a C parser. The main property of a scope tree, which makes it useful to our
purposes, is that the range of any node falls either completely inside or completely
outside another node’s range, i.e., it has the property of balanced parentheses: if node
c1 is a child of node c0, then the lines that c1 cover lay within the lines that c0 represents.
Example 12 illustrates this property.

Example 12 Figure 4.9 (b) shows the scope tree for the function fdtd_2d, seen in
Figure 4.9 (a). This tree has the property of balanced parentheses. For instance, the
only node if spans lines 3 to 6. Its child, a node for, spans lines 4 to 5.

We say that a data environment block is safe to be inserted when it preserves the
property of balanced parentheses. This additional verification tells us that enclosing
the loops in region R3 of Figure 4.8 (b) is not syntactically safe, as we explained
above. The largest regions of our example that follow all desired properties and meet
all safety restrictions are now R5 and R6 of Figure 4.8 (b). Therefore, in this example,
each parallel loop should be annotated with separate data transfer operations. DawnCC

produces, in this case, the code seen in Figure 4.9 (a). Notice that the existence of
a well-defined scope tree is not essential for DawnCC: if this data structure is not
available or cannot be generated, the tool will use uncoalesced memory transfers to
parallelize code.

4.4 Experiments

We have evaluated our techniques using two different compilers and architectures. In
what follows we describe our methodology and discuss our results.
Benchmarks. We tested our analyses on the version of PolyBenchGPU used by Grauer-
Gray et al. [2012]. Each benchmark in PolyBenchGPU comes with five different sizes of
input; we present dynamic numbers for the three largest ones, namely medium, large
and huge (or extra large).
Hardware We experimented with the following setups:
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• Desktop: Intel Xeon CPU E5-2620, with 6 cores of 2.00GHz and 16 GB of
RAM (DDR2), running Linux Ubuntu 12.04 3.2.0, equipped with a GPU model
GeForce GTX 670, with 2 GB of RAM (CUDA Compute Capability 3.0).

• Phone: Exynos7420 AArch64 Processor with 4GB of RAM running Android
5.1.1 and equipped with a GPU model ARM Mali-T760 with 913 MB of RAM
and 8 parallel compute units.

Compilers We have used these compilers to translate annotated code to binaries:

• gpuclang: gpuclang version 2.0 (based on Clang 3.5.0). Runs on the phone
setup, and translates OpenMP to parallel code.

• pgcc: PGI C Compiler version 16.1 64bit. Runs on the desktop setup, and
translates OpenACC to parallel code.

4.4.1 Runtime Results

Desktop setup (DawnCC+pgcc [OpenACC]). Figure 4.10 shows the relative run-
time of annotated code compared against the same code, without our annotations.
Both binaries are produced by pgcc -O3. We run each program five times; bars show
averages. When probing the GPU’s execution time, we include the time to transfer
data to and from the GPU. Variance is negligible; hence, we will not provide error
intervals. We observe very large speedups in four benchmarks: 2MM, 3MM, Covar
and Gemm. These are embarrassingly parallel applications, which benefit substantially
from the SIMD execution model of a GPU. We have also observed slowdowns in six
benchmarks. These slowdowns happen in benchmarks that run for very short times.
To emphasize this point, we show absolute runtimes for largest inputs next to each
benchmark in Figure 4.10.

Phone setup (DawnCC+gpuclang [OpenMP]). Figure 4.11 shows the speedup
that we obtain when comparing the annotated code, compiled with gpuclang, against
Clang v3.5 -O3, on the phone setup. Each program has been executed five times, and
bars show averages. In this setup we observe speedups in more benchmarks, although
we have not gotten results as dramatic as those seen in the desktop setup. Again,
Gemm is the benchmark where we got the more noticeable gains. The less impressive
speedups are due to the fact that the difference, in terms of number of available cores,
between the Mali GPU and the Exynos CPU is smaller than the difference between
the GTX GPU and the Xeon CPU.



54
Chapter 4. DawnCC: Automatic Annotation for Data Parallelism and

Offloading

0.
08 0.

30 0.
59

0.
38

0.
32 1.
07

50
.2
5

67
.7
8

21
.6
4

67
.1
6

43
.1
8 67

.8
3

12
5.
37

17
5.
82

26
3.
52

0.001

0.01

0.1

1

10

100
Medium Large Huge

Figure 4.10: Desktop (DawnCC+pgcc vs pgcc) Speedup due to the annotations
inserted by DawnCC, compared to execution of sequential code on the Desktop setup.
Both programs, original and annotated, have been compiled with pgcc. Y-axis show
speedup, in number of times. The higher the bar, the better. Numbers represent
absolute runtime, in seconds, of benchmarks with largest inputs, running on the CPU.
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Figure 4.11: Phone (DawnCC+gpuclang vs gpuclang) Comparison between the
code that DawnCC has annotated with OpenMP pragmas and compiled with gpuclang,
and the benchmarks without the annotations. Y-axis show speedup, in number of
times. The higher the bar, the better. Numbers represent absolute runtime, in seconds,
of benchmarks with largest inputs, running on the CPU.

4.4.2 The Impact of Copy Coalescing

Figure 4.12 shows results produced by the copy coalescing optimization described in
Section 4.3. The reduction in the number of pragmas indicate how many regions in the
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# of pragmas # of copies Runtime (sec)
Benchmark Orig. Opt. Orig. Opt. Orig. Opt. Speedup
GESUMMV 1 1 7 7 • • •
BICG 3 1 10 7 0.80 0.70 14%
2DCONV 1 1 3 3 • • •
ATAX 3 1 10 6 0.81 0.70 16%
MVT 2 1 8 7 0.66 0.63 5%
3DCONV 1 1 3 3 • • •
SYRK 2 1 5 3 10.89 10.87 0.2%
SYR2K 1 1 4 4 • • •
GRAMSCHM 1 1 6 6 • • •
CORR 4 4 14 14 • • •
FDTD-2D 1 1 7 7 • • •
COVAR 3 1 9 6 0.92 0.90 2%
GEMM 1 1 4 4 • • •
2MM 2 1 8 7 1.08 1.06 2%
3MM 3 1 12 10 1.33 1.32 1%
Total 29 18 110 94

Figure 4.12: Results produced by the copy coalescing optimization of Section 4.3 in
the Desktop setup. “Orig.” denotes the original program, and “Opt.” its optimized
version. Runtime is the GPU’s, for the largest input size. The bullets in the last two
columns indicate benchmarks where no coalescing could be performed.

code had their transfer operations coalesced. The number of copies account for how
many arrays are transferred to the accelerator in each version. DawnCC has been able
to eliminate redundant copies in seven out of the 15 benchmarks available. Manual
inspection of the untouched benchmarks reveal the absence of further opportunities
for copy coalescing. In two benchmarks, Atax and Covar, DawnCC could produce a
transfer block that surrounds the entire program kernel. In the latter case, three loop
nests, containing seven loops, have been placed within a single transfer block. The
final result of this optimization is performance, as the two right columns in Figure 4.12
show.

Figure 4.13 (a) shows the percentage of speedup that we obtain with copy coa-
lescing. These numbers are modest for most of the benchmarks, but they refer to only
the time to copy data between host and device. The higher the asymptotic complexity
of the kernel, the lower will be the gains produced by copy coalescing, because the copy
cost is amortized on the program’s runtime cost. Nevertheless, if we consider only the
time to move data, then the results produced by copy coalescing are more noticeable,
as Figure 4.13 (b) shows. This figure outlines only the percentage of time saved to copy



56
Chapter 4. DawnCC: Automatic Annotation for Data Parallelism and

Offloading

0% 

4% 

8% 

12% 

16% 

BICG ATAX MVT SYRK COVAR 2MM 3MM

Medium
Large
Huge

0% 

10% 

20% 

30% 

40% 

50% 

BICG ATAX MVT SYRK COVAR 2MM 3MM

Medium
Large
Huge

(b)(a)

Figure 4.13: (a) Performance improvement due to the copy coalescing optimization
discussed in Section 4.3. Bars show percentage of speedup of optimized over non-
optimized code. The higher the bar, the better. (b) Percentage of copy time saved.
X% is the reduction in the time spent copying data. The higher the bar, the better.

data. In a few benchmarks, e.g., Atax, Bicg and Mvt, copy coalescing could reduce in
almost 50% the time spent in memory transfers.

4.4.3 DawnCC vs manual code annotation

Breno Campos, from the UFMG Compilers Lab., produced a manually annotated
version of each benchmark. We compared the code produced by our tool against this
version and against UniBench, a publicly available version of PolyBenchGPU annotated
with OpenMP 4.0 pragmas. The only difference between the manual annotations and
the code transformed automatically refers to annotating the loops that initialize the
data structures used in each benchmark. Performing this initialization on the accel-
erator is not worthwhile for these benchmarks, on account of the time to transfer
data. Therefore, the expert developer chose to leave these routines untouched, whereas
DawnCC has annotated all of them. However, these procedures run for a very short
time, compared with the execution time of each kernel. In the end, we have not been
able to measure significant differences between the runtime of manually and automati-
cally annotated programs. DawnCC has even correctly annotated each data that is only
read on the GPU as read-only, which avoids transferring them back to the CPU once
processed on the accelerator. Furthermore, DawnCC has been able to produce pointer
disambiguation tests, a task that the human developer has not performed. Such omis-
sion is due to the fact that dealing with memory indexing expressions is a tedious and
error prone task.

Limitations of our method can be more noticeable in the presence of less regular
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input programs. The symbolic range analysis used here is only capable of deriving
limits for array operations, which means that a human user would perform better at
annotating code that relies heavily in custom or more dynamic data structures. Addi-
tionally, our analysis cannot estimate bounds in the presence of function calls, which
could be overcome with techniques such as interprocedural bounded regular section
analysis [Havlak and Kennedy, 1991]. DawnCC is also limited to doall parallelism,
whereas an experienced developer could identify and take advantage of more refined
work division patterns, such as reduction operations. We emphasize, however, that
the majority of the programs that can take advantage of an external acceleration de-
vice are regular. As an example, PolyBenchGPU encompasses a set of core algorithms
widely targeted by hardware acceleration techniques and DawnCC is able to annotate
all kernels in it.





Chapter 5

Related Work

The symbolic access range analysis that we present in Chapter 2 is based on the work
of Rugina and Rinard [2000] on bound estimation for memory regions. In their paper,
Rugina and Rinard present a static region analysis capable of inferring symbolic bounds
for array accesses and investigate its use on the elimination of memory safety checks.
Contrary to our method, their technique restricts the set of symbolic bounds that can be
generated to linear expressions, whereas our analysis allows for different arithmetic and
type operators. Rugina and Rinard’s approach also uses integer linear programming to
derive symbolic bounds, which can be too expensive for many applications and larger
program sizes.

Nazaré et al. [2014] largely extended and investigated the use of symbolic range
analysis in different contexts. In their work, they provide a more formal description
to the problem of inferring symbolic ranges and are able to handle significantly more
complex expressions. Our inference analysis represents a simpler version of Nazaré et
al.’s approach, while still keeping acceptable precision, as we show experimentally. A
key difference of our work is that we propagate range information backwards in the pro-
gram graph, as done by Rugina and Rinard, whereas Nazaré et al.’s technique focuses
on propagating information from allocation points to array accesses, in a forward fash-
ion. Additionally, Nazaré et al. proposes a more refined renaming strategy to achieve
a sparser analysis, while we rely solely on SSA form, restricting our range inference
to interval loops to achieve a similar result. Campos et al. [2016] provide a thorough
investigation on how this difference affects the impact of the analysis in other code
optimization passes. When considering analysis clients, both Nazaré et al. and Rugina
and Rinard focus on static applications, like the elimination of array bound checks.
Here, however, we investigate in detail dynamic uses of symbolic range inference, with
the generation of bound expressions intended to be evaluated at runtime. As the nov-
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elty of our work lies on these applications, i.e., memory disambiguation and automatic
offloading, we provide an overview of previous work in these areas in the sections that
follow.

5.1 Literature on Memory Disambiguation

Profiling Based Alias Analysis. One of the inspirations for our work on pointer
disambiguation is the study performed by Mock et al. [2001], in which they have
shown that the pointer information produced by state-of-the-art static alias analy-
ses is markedly worse than the actual behavior observed at runtime. This work has
also inspired other groups [Guo, 2006; Da Silva and Steffan, 2006], which, differently
from us, use profiling to determine the probability that aliasing happens in practice. In
this case, a recovery mechanism is necessary to preserve the semantics of the program
in face of actual aliasing. Lin et al. [2003] provide some examples of different ways to
recover from wrong speculation.

This kind of speculative modus operandi has seen use in several other works [Ceze
et al., 2006; Fernández and Espasa, 2002; Huang et al., 1994; Da Silva and Steffan,
2006], which have in common the fact that a profiler is used to derive alias informa-
tion. This information is then made available to the program’s runtime environment.
For instance, Huang et al. [1994] have applied speculative pointer disambiguation to
solve dependencies in the context of a very long instruction word (VLIW) machine.
They assume that there is no dependence between some memory references that over-
lap with low probability. If this dependence is observed at runtime, then they rollback
the execution. They also mention that an alternative would be to branch to a different
version of the code, as we do. In Huang’s case, dependencies are resolved in hardware.
Similar approaches, implemented at the software level, have been proposed by Fernán-
dez and Espasa [2002] and Da Silva and Steffan [2006]. Chen et al. [2004] have designed
several enhancements on the basic speculative methodology to make it faster and more
accurate.

All these previous efforts apply optimizations assuming that pointers do not alias
at runtime: profiling enables code optimizations whenever it indicates that aliasing
happens with low probability. However, our approach is not speculative. Instead of
speculating, we replicate code, and use the runtime checks to decide where to branch.
Furthermore, contrary to us, none of these previous works tries to generate disam-
biguation checks statically.

Hybrid Pointer Disambiguation for Parallelism. Rus et al. [2003] generate stati-
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cally checks that disambiguate pointers at runtime. This technique to disambiguate
pointers differs from our work because the test that Rus et al. generate is a neces-
sary condition to enable loop parallelization. This constraint may lead to complex
dynamic checks that need to be simplified. Oancea and Rauchwerger [2012] have pro-
posed several ways to perform this simplification within a framework of logical inference
rules. They use, for instance, variable elimination in a Fourier-Motzkin style. Poste-
rior work [Oancea and Rauchwerger, 2015] has adopted similar ideas to disambiguate
induction variables that can be converted to a closed form. The method that we ad-
vocate in our work has the primary goal of overcoming the limitations of the static
analyses commonly applied on low-level intermediate program representations. We use
a lightweight approach that allows us to: (i) take advantage of existing compiler in-
frastructure (e.g. relational analysis); (ii) let the compiler make the decision of which
optimization to perform (e.g. among all possible polyhedral transformations); (iii)
generate simpler run-time checks; and (iv) improve the practicality of the static alias
analyses approaches which mainstream compilers use.

Memory Aliasing in Research Compilers. Research compilers such as Pluto [Bond-
hugula et al., 2008] or PPCG [Verdoolaege et al., 2013b] ignore memory aliasing when
applying state-of-the-art loop optimizations for cache locality, parallelism, vectoriza-
tion or accelerator usage. As a result, their transformations may change the program
behavior in case aliasing actually happens and an external alias analysis is not used.
Thus, in practice they may cause general code transformation to be unsound for ex-
isting C/C++ codes. Outside of a user controlled benchmark environment, pointer
disambiguation techniques such as the ones presented in this work are required to
maintain program correctness and enable the use of advanced loop optimizations.

Memory Aliasing in Static Compilers. Static compilers such as icc, IBM XL, gcc

or Clang all support some kind of loop versioning to enable optimizations such as
vectorization in the presence of pointer aliasing. For closed source compilers it is
difficult to understand how general their code versioning support indeed is, but the
experiment in Figure 3.1 suggest that at least icc, even for simple examples, does not
always apply loop versioning. Looking at the source code of gcc and Clang, we can
confirm that even their latest development versions1 only allow versioning of simple,
innermost loops, as it is required for loop vectorization and other transformations
that focus on innermost loops. Pointer disambiguation for complex loop nest or fully

1The upcoming gcc 5.3 and Clang 3.7 releases
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dynamic pointer disambiguation approaches, as we presented them, have not been used
by the static compilers that we analyzed.

5.2 Literature on Automatic Program Annotation
and Offloading

Annotation Systems. Annotation systems, such as OpenMP 4.0 [Jaeger et al., 2015],
OpenSs [Meenderinck and Juurlink, 2011] and OpenACC [Wienke et al., 2012] are a
simple, yet powerful alternative to the development of high-performance software. Such
systems are not a programming language per se; rather, they work as a meta-language,
which, once combined with a host-language, typically Fortran, or C, let developers
imbue standard syntax with parallel semantics. The emergence of such systems, has
led to a resurgence of interest in parallelizing compilers. OpenAcc, for instance, has
been a target of several different compilers, such as AccUll [Reyes et al., 2012], Omni
OpenAcc [Tabuchi et al., 2016], ipmacc [Lashgar et al., 2014], OpenARC [Kim et al.,
2015; Lee and Vetter, 2014] and pgcc [Ghike et al., 2014]. Similarly, OpenMP 4.0 is
already supported by several mainstream compilers, including gcc 4.9.0 (for C/C++),
gcc 4.9.1 (for Fortran), icc 15.0 (C/C++/Fortran) and LLVM’s Clang 3.7, which offers
partial support to OpenMP 4.0 for C/C++. Our tool, DawnCC, is not an OpenACC
or OpenMP 4.0 compiler; hence, it does not compete against the technologies that we
have just mentioned. Instead, DawnCC works one level up: inserting the annotations
that will be later translated by an OpenAcc or OpenMP 4.0 compliant compiler.

Automatic Parallelization. There exists an enormous corpus about the automatic
parallelization of software. For an overview about the classic techniques, we recommend
the book of Michael Wolfe [Wolfe, 1995]. However, the goal of our work is not to
parallelize programs; instead, we want to give programmers the tools to benefit from
latent parallelism already available in code. Thus, our interval analysis is needed only
when we use pragmas to offload code to an external device. We do not need data copy
directives when using OpenMP to parallelize for simple multithreading, for instance.
The research community has not yet tackled the problem of inserting copy directives
in programs, even though we have today a rich literature about automatic generation
of OpenMP code, which is represented by work such as Lee et al. [2009].

Automatic Offloading. A number of optimization frameworks based on the polyhe-
dral model have been used for automatic generation of OpenMP and GPU code [Ver-
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doolaege et al., 2013a; Baskaran et al., 2010]. These tools generate data copy library
calls by inspecting the iteration domains of arrays used within parallel loops. In prac-
tice, the symbolic limits generated by such frameworks and the ones generated by the
analysis chosen for this work present similar results, as we show on Chapter 3, each
having specific advantage scenarios. For instance, the method applied here can handle
non-affine regions of code, while the analyses implemented in polyhedral-based tools
usually generate simpler interval expressions, by performing static simplification, which
comes at the cost of a higher compilation time.





Chapter 6

Conclusion

This dissertation summarized two years of research work dedicated to extending the
reach of compiler optimizations through the use of better memory-related information.
We derived a precise, yet simple analyses capable of inferring symbolic ranges for mem-
ory operations, which we described in Chapter 2. The result of this analysis, bound ex-
pressions that can be solved at runtime, allowed us to design new code optimizations, as
well as improve existing ones. We tackled the long-standing problem of memory disam-
biguation for static compilers, by producing a hybrid pointer disambiguation technique
whose performance compares to or overcomes that of other state-of-the-art analyses.
This method allows LLVM to produce faster binaries in many different cases. We then
combined both our range analysis and disambiguation technique to produce DawnCC,
a framework that annotates code for GPU execution. During the implementation of
this framework, we put time and effort in the solution of other hard problems, such as
(i) replicating in high-level C code the result of analysis design to operate over inter-
mediate representation and (ii) generating human-readable symbolic expressions. The
annotations produced by DawnCC lead to speedups in different scenarios. We believe
that these contributions, published in respected Computer Science venues, represent a
meaningful advancement for the code analysis and optimization field. The source code
of all techniques presented here is available for download, as described in Section 6.2.

6.1 Contributions

Due to the myriad of subjects it touches in the code optimization field, this work has
a series of key contributions:

• We present a backwards hybrid symbolic analysis of memory access ranges and
evaluate its precision in a widely used benchmark suite.
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• We propose a lightweight pointer disambiguation technique and demonstrate that
it matches or surpasses the precision of more expensive methods, i.e, purely
dynamic and polyhedron-based, implemented by two other research groups.

• We describe the implementation of DawnCC, a framework to insert code offloading
annotations.

• We present a strategy to reduce the amount of data transferred between host and
device in programs annotated for GPU execution.

6.2 Publications and Software

The contributions presented in this master’s dissertation were the result of two fruitful
years of research work, published in a number of respected Computer Science venues:

• A case for a fast trip count predictor [Alves et al., 2014] - IPL’14:
describes a precursor of our symbolic analysis, capable of inferring ranges for
induction variables of simple interval loops. This technique was mainly directed
to innermost loops.

• Runtime Pointer Disambiguation [Alves et al., 2015] - OOPSLA’15 (ar-

tifact evaluated): description of our symbolic range analysis, hybrid pointer dis-
ambiguation technique, and comparison against two other disambiguation meth-
ods: the first, purely dynamic, was developed by Fabian Gruber, from INRIA-
France. The second, was developed by Johannes Doerfert and Tobias Grosser,
the main maintainers of Polly.

• Restritificação [Campos et al., 2015b] - SBLP’15 (best paper): though
not being its main focus, this paper includes a comparison of our technique to a
static forward disambiguation method and includes new experiments regarding
the impact of our analysis in loop transformations.

• Restrictifier: a tool to disambiguate pointers at function call
sites [Campos et al., 2015a] - CBSoft Tools’15 (best paper): includes
a description of the implementation of our analysis in the LLVM compilation
infrastructure and how client code transformations can use it to improve their
precision.

• Restrictification of Function Arguments [Campos et al., 2016] - CC’16:
presents a variation of our range analysis and disambiguation method, capable
of operating over whole functions rather than isolated regions. This improved
version also presents a best-effort mode, where symbolic ranges can be computed
even in the presence of procedure calls and other sources of imprecision. An
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additional comparison with methods developed by Henrique Nazaré and Victor
Campos from UFMG is also presented.

• Paralelização Automática de código com diretivas OpenACC [Moreira
et al., 2016] - SBLP’16: prototype version of DawnCC, capable of generating
simple OpenACC directives.

• Automatic Insertion of Copy Annotation in Data-Parallel Pro-
grams [Mendonça et al., 2016] - SBAC-PAD’16: full description of the
analyses and architecture of DawnCC, including a set of optimizations to reduce
data transfer overhead and the ability to generate both OpenACC and OpenMP
pragmas.

• DawnCC: Automatic Annotation for Data Parallelism and Offloading
- Submitted to ACM TACO: extended version of the SBAC-PAD paper for
a journal. Includes new optimization strategies to reduce the amount of data
transferred between host and device, partly implemented by Breno Campos from
UFMG, and a set of static simplifications capable of generating human-readable
symbolic expressions. The latter being developed by Gleison Mendonça, also
from UFMG.

Thanks to the diligent work of Breno Campos from the UFMG Compilers Lab., the
implementation of the techniques described in this work are available for public use in
the following addresses:

• http://github.com/periclesroalves/runtime-pointer-disambiguation:
implementation of our symbolic access range analysis on top of LLVM as well as
the code for our hybrid pointer disambiguation technique.

• http://github.com/gleisonsdm/DawnCC-Compiler: source code of the
DawnCC framework, including all of its composing analyses.

• http://cuda.dcc.ufmg.br/dawn/: online interface for the DawnCC compiler.
At this address the reader can upload its own source code and automatically
annotate it for GPU execution, using either OpenMP 4.0 or OpenMP.

6.3 Future Work

There are many small improvements that can be made to different parts of our work.
For our symbolic access range analysis, the use of interprocedural techniques such as
bounded regular section analysis [Havlak and Kennedy, 1991] could improve the pre-
cision in the presence of procedure calls. In our hybrid pointer disambiguation, better

http://github.com/periclesroalves/runtime-pointer-disambiguation
http://github.com/gleisonsdm/DawnCC-Compiler
http://cuda.dcc.ufmg.br/dawn/
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static simplification strategies could be implemented to reduce the runtime overhead of
the dynamic checks that it generates. Finally, DawnCC currently recognizes only doall
paralelism. The analyses on top of which the framework is built could be extended to
take advantage of other parallel patterns, such as reduction, for which both OpenMP
4.0 and OpenACC offer special directives.
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