
ANOMALY AGGLOMERATION AS SIGN OF

PRODUCT LINE INSTABILITIES

EDUARDO MOREIRA FERNANDES

ANOMALY AGGLOMERATION AS SIGN OF

PRODUCT LINE INSTABILITIES

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Eduardo Figueiredo

Belo Horizonte

Março de 2017

EDUARDO MOREIRA FERNANDES

ANOMALY AGGLOMERATION AS SIGN OF

PRODUCT LINE INSTABILITIES

Dissertation presented to the Graduate
Program in Ciência da Computação of the
Universidade Federal de Minas Gerais in
partial fulfillment of the requirements for
the degree of Master in Ciência da Com-
putação.

Advisor: Eduardo Figueiredo

Belo Horizonte

March 2017

© 2017, Eduardo Moreira Fernandes.
 Todos os direitos reservados

.

Ficha catalográfica elaborada pela Biblioteca do ICEx - UFMG

 Fernandes, Eduardo Moreira.

F363a Anomaly agglomeration as sign of product line
 instabilities. / Eduardo Moreira Fernandes. – Belo
 Horizonte, 2017.
 xxii, 68 f.: il.; 29 cm.

 Dissertação (mestrado) - Universidade Federal de
 Minas Gerais – Departamento de Ciência da Computação.

 Orientador: Eduardo Magno Lages Figueiredo.

 1. Computação – Teses. 2. Engenharia de software. 3.
 Linha de produtos de software. 4. Anomalias de código. I.
 Orientador. II. Título.

CDU 519.6*32(043)

Acknowledgments

To the almighty Lord, for giving me life, a bunch of dreams, and people to teach me
how to achieve them. To my family and parents, for the support in both sunny and
stormy days. I appreciate that. Also to the true friends from Brazil and all over the
world. Many thanks for the company and the best wishes.

To the advisor of this dissertation, as well as the qualified researchers and students
that I had the chance to work with. In addition, to the members of this dissertation
defense. To the Federal University of Minas Gerais (UFMG) family, for having me in
its institution during two key years of my academic life.

Finally, to the Graduate Program in Computer Science (PPGCC) of the Depart-
ment of Computer Science (DCC), as well as the Coordination for the Improvement
of Higher Education Personnel (CAPES). I appreciate every opportunity that I had,
including the financial support. Thank you very much.

ix

“Viciously have they attacked me from my youth,
yet they have not prevailed against me.”

(Psalms 129:2)

xi

Resumo

Uma Linha de Produtos de Software (LPS) é um conjunto de sistemas de software que
compartilham características comuns e variáveis. Para prover reúso em larga escala,
os componentes de uma LPS devem ser de fácil manutenção. Portanto, desenvolve-
dores devem identificar as estruturas de código anômalas – isto é, as anomalias de
código – que prejudicam a manutenção de LPSs. Caso contrário, mudanças em uma
LPS podem eventualmente propagar-se a características sem aparente inter-relação e
afetar diversos produtos da LPS. Após revisarmos a literatura, encontramos algumas
estratégias de detecção e várias ferramentas para detecção de anomalias de código. Em
geral, tanto as estratégias quanto as ferramentas apresentam resultados de detecção
similares, e algumas ferramentas são compatíveis com LPS. Assim, assumimos que a
detecção de anomalias individuais de código é um problema suficientemente tratado
pela literatura. Trabalhos anteriores frequentemente assumem que anomalias isoladas
são suficientes para caracterizar problemas de manutenção em LPS, ainda que cada
anomalia possa representar uma visão parcial, insignificante ou inexistente da extensão
de um problema. Portanto, tais estudos possuem dificuldades em caracterizar estru-
turas anômalas que indiquem problemas de manutenção em LPS. Nesta dissertação,
estudamos o contexto de cada anomalia e observamos que algumas anomalias podem es-
tar interconectadas, formando as chamadas aglomerações de anomalias. Duas ou mais
anomalias compõem uma aglomeração em LPS se afetam em conjunto uma caracterís-
tica, uma hierarquia de características ou um componente. Caracterizamos três tipos
de aglomeração de anomalias de código em LPS e investigamos o potencial de anoma-
lias aglomeradas, ou não-aglomeradas, representarem, no contexto de LPS, fontes de
um problema de manutenção específico: instabilidade. Analisamos diversas versões de
quatro LPSs orientadas por características. Nossos resultados sugerem que aglomer-
ação em hierarquia de características pode indicar até 89% de fontes de instabilidade
em LPS, provendo melhores resultados em comparação a anomalias não-aglomeradas.

Palavras-chave: Anomalia de Código, Linha de Produtos de Software, Instabilidade.

xiii

Abstract

Software Product Line (SPL) is a set of software systems that share common and
varying features. To provide large-scale reuse, the components of a SPL should be
easy to maintain. Therefore, developers have to identify anomalous code structures,
i.e., code anomalies, that are detrimental to the SPL maintainability. Otherwise, SPL
changes can propagate to seemly-unrelated features and affect various SPL products.
After reviewing the literature, we have found some detection strategies and several
tools for code anomaly detection. In general, both strategies and tools provide similar
detection results, and some tools are compatible with SPL. We then assume that the
problem of detecting single code anomalies is sufficiently covered by the literature.
Previous work often assume that each code anomaly alone suffices to characterize
SPL maintenance problems, though each single anomaly may represent only a partial,
insignificant, or even non-existent view of the problem extent. Consequently, previous
studies have difficulties in characterizing anomalous code structures that indicate SPL
maintenance problems. In this dissertation, we study the surrounding context of each
anomaly and observe that certain anomalies may be interconnected, thereby forming so-
called anomaly agglomerations. Two or more anomalies form an agglomeration in SPL
when they affect the same SPL structural element, i.e., a feature, a feature hierarchy, or
a component. We then investigate to what extent non-agglomerated and agglomerated
anomalies represent sources of a specific SPL maintenance problem: instability. We
analyze various releases of four feature-oriented SPLs. Our findings suggest that feature
hierarchy agglomerations indicate up to 89% of sources of instability, i.e., a better result
when compared with non-agglomerated anomalies.

Keywords: Code Anomaly, Software Product Line, Software Instability.

xv

List of Figures

1.1 Abstract Examples of Anomaly Agglomerations in SPL 4

2.1 Partial Design View of the MobileMedia SPL 9
2.2 Example of Instability in MobileMedia . 11

3.1 Number of Tools per Analyzed Programming Language 17
3.2 Percentage of Tools per Detected Code Anomaly 17

4.1 Abstract Example of Feature Agglomeration 24
4.2 Feature Agglomeration of SMSTransfer . 25
4.3 Abstract Example of Feature Hierarchy Agglomeration 26
4.4 Feature Hierarchy Agglomeration of MediaUtil 28
4.5 Abstract Example of Component Agglomeration 29

5.1 Feature Agglomeration of MediaManagement 41
5.2 Feature Hierarchy Agglomeration of MediaController 43
5.3 Component Agglomerations of MediaController 44

6.1 Abstract Example of Long Refinement Chain 48

xvii

List of Tables

3.1 Search String Designed for the Literature Review 15
3.2 Inclusion and Exclusion Criteria of the Literature Review 15
3.3 Detection Tools Available Online for Download 16
3.4 Features Provided per Code Anomaly Detection Tool 19
3.5 Novel Detection Strategies for Large Class and Long Method 21

5.1 General Information of the Target SPLs 33
5.2 Sources of Instabilities in SPL . 34
5.3 Software Metrics Used to Compose the Detection Strategies 35
5.4 Code Anomalies for Analysis . 36
5.5 Analysis Results for Non-Agglomerated Anomalies 37
5.6 Analysis Results for Agglomerated Anomalies 38
5.7 Precision and Recall per Type of Agglomeration 40

6.1 Examples of Code Anomalies in SPL, Adapted of Vale et al. (2014) 49
6.2 Agglomerations by Oizumi et al. (2016) versus This Dissertation 52

xix

Contents

Acknowledgments ix

Resumo xiii

Abstract xv

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Motivation . 2
1.2 Studies on Code Anomaly Detection 3
1.3 Proposed Anomaly Agglomerations in SPL 3
1.4 Evaluation of SPL Stability . 4
1.5 Dissertation Outline . 5

2 Background 7
2.1 Feature-Oriented Software Product Lines 7
2.2 SPL Maintenance Problems and Instability 10
2.3 Final Remarks . 12

3 Code Anomaly Detection 13
3.1 Literature Review on Detection Tools 14
3.2 Comparative Study of Detection Tools 17
3.3 Detection Strategies . 20
3.4 Final Remarks . 21

4 Anomaly Agglomeration in SPL 23
4.1 Feature Agglomeration . 24

xxi

4.2 Feature Hierarchy Agglomeration . 26
4.3 Component Agglomeration . 28
4.4 Final Remarks . 30

5 Evaluation of SPL Stability 31
5.1 Evaluation Settings . 31
5.2 Results for Non-Aglomerated Code Anomamies 37
5.3 Results for Agglomerated Code Anomalies 38
5.4 Threats to Validity . 45
5.5 Final Remarks . 46

6 Related Work 47
6.1 Code Anomalies in SPL . 47
6.2 Instability in SPL . 50
6.3 Code Anomaly Agglomerations . 51
6.4 Final Remarks . 52

7 Conclusion 55
7.1 Main Contributions . 56
7.2 Future Work . 57

Bibliography 59

xxii

Chapter 1

Introduction

Software Product Line (SPL) is a set of software systems that share common and
varying features (Pohl et al., 2005). Each feature is an increment in functionality of
the product-line systems (Apel et al., 2013). The combination of features generates
different products (Batory et al., 2003). SPL aims to provide large-scale reuse with
a decrease in the maintenance effort (Pohl et al., 2005). The implementation of a
feature can be distributed into one or more source files, called components. To support
large-scale reuse, the components and features of a SPL should be easy to maintain.
Therefore, developers should identify anomalous code structures, i.e., code anomalies,
that are detrimental to the SPL maintainability. Otherwise, changes can propagate to
seemly-unrelated features and affect various SPL products.

Code anomalies are symptoms of problems in a software system (Fowler, 1999).
They harm the software maintainability in several levels, e.g., by affecting classes and
methods (Fowler, 1999; Lanza and Marinescu, 2006). Code anomalies affect any system,
including SPL (Fenske and Schulze, 2015). A previous work states that SPL-specific
anomalies can be easier to introduce, harder to fix, and more critical than others, due
to the inherent SPL complexity (Medeiros et al., 2015). For instance, Long Refinement
Chain (Fenske and Schulze, 2015) affects the feature hierarchy. It hinders developers to
understand the code and perform proper changes. These changes might affect several
SPL products. Thus, understanding the negative impact of anomalies in the SPL
maintainability is even more important than in standalone systems, as their side effects
may affect multiple products. Still, there is little understanding about such impact.

Two approaches may support the detection of code anomalies in software prod-
uct lines (Moha et al., 2010). The manual detection relies on source code inspection
conducted by developers, a generally slow and error-prone activity (Munro, 2005). In
turn, the automated detection counts on the support of detection strategies or equiv-

1

2 Chapter 1. Introduction

alent techniques (Fard and Mesbah, 2013; Moha et al., 2010; Vidal et al., 2016). A
detection strategy is a composition of metric-based rules that defines when a specific
software component – e.g., a class, a method, or a package of the software systems – is
prone to contain a given type of code anomaly (Lanza and Marinescu, 2006).

1.1 Motivation

Some studies assume that each code anomaly alone suffices to characterize SPL mainte-
nance problems (Fenske and Schulze, 2015; Schulze et al., 2010). However, each single
anomaly may represent only a partial view of the problem. That is, a maintenance prob-
lem tends to scatter into different parts of the code (Moha et al., 2010). For instance,
Long Method is a method with too many responsibilities that, if isolated, represents a
punctual, simple problem (Fowler, 1999). In turn, Long Refinement Chain is a method
with too many refinements in different features (Fenske and Schulze, 2015) that, in
isolation, is not critical depending on the refined method. However, if we observe both
anomalies in the same method, we may assume an increasing potential of the anomalies
in hindering the SPL maintainability, since an anomalous long method is excessively
refined and causes a wider problem. As a result, previous studies have limitations to
characterize anomalous structures that indicate SPL maintenance problems.

On the other hand, a previous work (Oizumi et al., 2016) has observed that
certain anomalies may be interconnected, forming so-called anomaly agglomerations.
They investigated to what extent these anomaly agglomerations support the character-
ization of maintenance problems in single systems. The authors define a code anomaly
agglomeration as a group of two or more anomalous code elements directly or indirectly
inter-related in the source code of a system (Oizumi et al., 2016). However, they did
not characterize and studied specific types of anomaly agglomerations in SPLs.

Although a SPL is mostly similar to a general software system, such as an object-
oriented system, one should consider SPL-specific structural elements when agglomer-
ating anomalies. For instance, in feature-oriented SPLs (Apel et al., 2013), components
are constants that implement basic SPL resources, or refinements that add resources
to a given constant. Also, successive refinements to a constant, located in different SPL
features, form a refinement chain (Batory et al., 2003). A SPL product will contain the
implementation of all components of the refinement chain whose features are included
in the product. Consequently, the code anomalies that affect these components are also
included in the derived product. Thus, refinement chain is a SPL-specific structural
element that is relevant when proposing types of anomaly agglomerations in SPL.

1.2. Studies on Code Anomaly Detection 3

1.2 Studies on Code Anomaly Detection

In the first part of this dissertation (Fernandes et al., 2016), we present a systematic
literature review (Kitchenham and Charters, 2007), and a comparative study, of code
anomaly detection tools. We aimed at understanding the current support to single
anomaly detection, different anomalies, and target programming languages. Regarding
the literature review, we have found 84 tools, of which 29 are downloadable. Most of
the tools are compatible with Java, C, and C++, and a some are compatible with SPL.
The tools detect 61 different code anomalies, of which 20 are listed by Fowler (1999).
With respect to the comparative study, the tools performed with moderate recall and
high precision, in general. However, we observed that different tools tend to present
similar detection results for the same software system.

In the second part of this dissertation (Fernandes et al., 2017a), we investigate
different detection strategies for well-known code anomalies that affect any system,
including SPL, such as Large Class and Long Method (Fowler, 1999). For this pur-
pose, we conducted an ad hoc selection of detection strategies from the literature for
comparison with novel strategies for both anomalies, in the SPL context. As a result,
we have found a few different strategies proposed in the literature for each anomaly.
In addition, we observed that the strategies also tend to provide similar detection re-
sults, as in the case of detection tools. From the two first parts of the dissertation, we
assume that the problem of detecting single code anomalies is sufficiently covered by
the literature. Thus, we were able to investigate code anomaly agglomerations.

1.3 Proposed Anomaly Agglomerations in SPL

In the third part of this dissertation, we propose three novel types of anomaly agglom-
erations in SPL, namely feature agglomeration, feature hierarchy agglomeration, and
component agglomeration. The propose agglomerations rely on three key SPL struc-
tural elements, i.e., features, refinement chains, and components (Batory et al., 2003).
Figure 1.1 illustrates each agglomeration. The feature f1 has a feature agglomeration
composed of the components c1, c2, and c3. That is, at least one anomaly affects each
of these components, and all are located in the same feature. In turn, the components
c3 located in the features f1 and f2 form a feature hierarchy agglomeration. In other
words, each of these components are affected by at least one anomaly and, in addition,
they are hierarchically interconnected by a refinement relationship in the SPL. Finally,
the components c1 of the feature f1 and c4 of the feature f2 are affected by two or more
code anomalies each. Therefore, both components have a component agglomeration.

4 Chapter 1. Introduction

Figure 1.1. Abstract Examples of Anomaly Agglomerations in SPL

1.4 Evaluation of SPL Stability

Also in this dissertation, we investigate how often non-agglomerated versus agglom-
erated code anomalies occur in SPLs and whether they indicate sources of a specific
SPL maintenance problem: instability (Ampatzoglou et al., 2015). We chose insta-
bility for studying because (i) it is one of the most harmful maintenance problems in
software systems (Yau and Collofello, 1985), even in the SPL context, and (ii) previous
work (Figueiredo et al., 2009; Khomh et al., 2009) has found evidence that code anoma-
lies can induce to instability in software systems. We analyze different releases of four
feature-oriented SPLs, namely MobileMedia (Figueiredo et al., 2008), Notepad (Kim
et al., 2010), TankWar (Schulze et al., 2010), and WebStore (Gaia et al., 2014).

We perform our analysis in two steps described as follows. First, for each pro-
posed type of anomaly agglomeration, we compute the strength of the relationship
between agglomerations and instability in SPLs. For this purpose, we use Fisher’s
test (Fisher, 1922) to assess the statistical significance of the relationship, and Odds
Ratio (Cornfield, 1951) to compute the possibility of anomaly agglomerations in in-
dicating instability. Second, we compute the accuracy of anomaly agglomerations in
indicating sources of instability in the target SPLs, per type of agglomeration. We
compute recall and precision (Fawcett, 2006) to support the accuracy assessment.

As a result, our data suggest that feature hierarchy agglomerations and instability
are strongly related and, therefore, this type of anomaly agglomeration is an effective
indicator of instabilities. The high precision of 89% suggests that feature hierarchy can
support developers in anticipating SPL maintenance problems. These findings are quite
interesting because the implementation of feature-oriented SPLs is rooted strongly on
the notion of feature hierarchies. It indicates that developers of feature-oriented SPLs
should design carefully the feature hierarchies, since they might generate hierarchical
structures that hamper the SPL maintainability.

1.5. Dissertation Outline 5

1.5 Dissertation Outline

The remainder of this dissertation is organized as follows.
Chapter 2 provides background information to support the understanding of

this dissertation. We discuss feature-oriented SPLs and problems that harm the main-
tainability of product lines, such as instability.

Chapter 3 discusses the two first parts of this dissertation. First, we present a
systematic literature review and a comparative study of code anomaly detection tools.
Second, we present a comparative study of code anomaly detection strategies.

Chapter 4 proposes three novel types of code anomaly agglomerations in SPL,
namely feature, feature hierarchy, and component agglomeration. We rely on the main
structural elements of SPL to propose each agglomeration.

Chapter 5 describes an empirical study to evaluate our novel types of anomaly
agglomerations in the context of four feature-oriented SPLs. In this chapter, we present
the study goal and research questions, target SPLs, and protocols. We also present
and analyze the study results. Finally, we discuss threats to the study validity.

Chapter 6 discusses related work, including a study that proposes code anomaly
agglomerations in the context of object-oriented software systems.

Finally, Chapter 7 concludes this dissertation and presents future work.

Chapter 2

Background

Software Product Line (SPL) aims to provide reuse through a configurable set of sys-
tems that share features (Pohl et al., 2005). However, the SPL components should
be easy to maintain for effective reuse. Therefore, developers should identify and fix
code anomalies that harm the SPL maintainability. Code anomalies are symptoms of
problems in a system (Fowler, 1999). They affect SPLs (Fenske and Schulze, 2015) and
tend to be more critical in a SPL than in a single system (Medeiros et al., 2015). Pre-
vious work assume that each anomaly alone suffices to characterize SPL maintenance
problems (Fenske and Schulze, 2015; Schulze et al., 2010), though a single anomaly
may represent only a partial view of the problem extent. Thus, previous work have
limitations to characterize anomalous structures that harm the SPL maintainability.

This dissertation addresses the aforementioned limitations by supporting the
identification of major SPL maintenance problems. We propose three novel types
of anomaly agglomerations in SPL, i.e., three techniques to inter-relate anomalies that
affect different part of the SPL source code. Our study relies on a previous work that
proposes techniques to agglomerate code anomalies in single software systems (Oizumi
et al., 2016). We also evaluate each novel type of agglomeration as an indicator of a
specific SPL maintenance problem: instability. To provide support for understanding
the study presented in this dissertation, this chapter presents background informa-
tion. Section 2.1 presents basic concepts of feature-oriented software product lines.
Section 2.2 discusses SPL maintenance problems focused on instability.

2.1 Feature-Oriented Software Product Lines

Software Product Line (SPL) is a set of systems that share common and varying fea-
tures (Pohl et al., 2005). Software products derived from a SPL differ themselves by

7

8 Chapter 2. Background

specific sets of varying features (Pohl et al., 2005). Variability consists of all possi-
ble combinations of features that may compose a SPL product (Andrade et al., 2014).
Through systematic, large-scale reuse, SPL aims to reduce time-to-market and improve
software quality (Pohl et al., 2005). These advantages have attracted several organi-
zations, such as Boing, Bosch, and Toshiba, to apply SPLs successfully in industry
settings (Apel et al., 2013). Annotative (Liebig et al., 2010) and compositional (An-
drade et al., 2014) techniques are used to develop a SPL. Examples of these techniques
are preprocessors (Liebig et al., 2010) and aspect-oriented programming (Kiczales et al.,
1997), respectively. Although annotative techniques are easier to apply, they can lead
to several maintenance problems that compositional techniques aim to better address
by supporting the modularization of features (Kästner and Apel, 2008).

In this dissertation, we analyze SPLs developed using Feature-Oriented Program-
ming (FOP) (Batory et al., 2003). FOP is a compositional technique in which physi-
cally separated code units are composed, generally in compile-time or deploy-time, to
generate different product-line systems (Kästner and Apel, 2008). FOP aims to guide
the implementation of specific features in separated code units. As a broad concept,
feature orientation has been largely applied in industry to support the development of
SPLs (Lee and Muthig, 2006). The SPLs analyzed in this study are feature-oriented
and implemented using the AHEAD (Batory et al., 2003) language-specific technology
and the FeatureHouse (Apel et al., 2009) multi-language technology. Although a few
alternative technologies support FOP, such as CaesarJ (Mezini and Ostermann, 2004)
and FeatureC++ (Apel et al., 2005), the selected ones are relatively recent and rely on
prior techniques for implementing feature-orientation.

We discuss the main structural elements of feature-oriented SPLs as follows.

Features. In feature-oriented SPLs, each feature is an increment in functionality of
the product-line systems (Apel et al., 2013). The combination of features generates
different SPL products (Batory et al., 2003). Let us illustrate features, and also the
other main structural elements of feature-oriented SPLs, in the design level. Figure 2.1
presents the partial design view of MobileMedia (Figueiredo et al., 2008) in Release 7.
MobileMedia is a SPL for creation of mobile applications that manage media resources,
such as photos, music, and video. Figure 2.1 is a partial view of the SPL and represents
only some of the components of MobileMedia. It depicts four features of the SPL, de-
limited by dashed lines: MediaManagement, CreateMedia, Sorting, and SMSTransfer.
The first and second features implement management and creation of mobile media,
such as photos. The third feature implements sorting of media. Finally, the fourth
feature implements the SMS transfer between mobile devices.

2.1. Feature-Oriented Software Product Lines 9

Figure 2.1. Partial Design View of the MobileMedia SPL

Components. In both AHEAD and FeatureHouse, a SPL is implemented through
successive refinements, a technique in which complex systems are developed from an
original system by incrementally adding functionalities by means of components (Ba-
tory et al., 2003). In the context of feature-oriented SPLs, a component is a code unit
that partially implements the functionality of a feature. Components can be constants
or refinements. A constant corresponds to the basic implementation of a functionality.
In turn, a refinement is an implementation that refines a constant by adding or chang-
ing functionalities (Batory et al., 2003). A refinement can add attributes and methods
to a constant, or override existing methods of the constant. In this study, we assume
that a single source file implements exactly a constant or a refinement.

Listing 2.1 illustrates a constant called ExampleClass in AHEAD.The constant
has m attributes and n methods. Listing 2.2 presents a code that refines the constant
ExampleClass of Listing 2.1. Such refinement is explicitly declared in the source code
via the refines keyword (line 1). Note that, in this example, the refinement adds one
attribute and one method to the original implementation of ExampleClass.

Listing 2.1. Code Example of Component in AHEAD

1 public class ExampleClass {
2 private Type attr ibute_1 ;
3 . . .
4 private Type attribute_m ;
5 public Type method_1 () { . . . }
6 . . .
7 public Type method_n () { . . . }
8 }

10 Chapter 2. Background

Listing 2.2. Code Example of Refinement in AHEAD

1 public r e f i n e s class ExampleClass {
2 private Type attribute_m+1;
3 public Type method_n+1() { . . . }
4 }

Figure 2.1 depicts 14 different components, represented by boxes, distributed
along the four features. Lines connecting boxes indicate a refinement relationship, in
which there is a constant in the topmost feature and refinements in the features below.
Since constants are the basis for refinements, a refinement relationship imposes a hierar-
chy between features. As an example, SMSTransfer has one constant, SMSMessaging,
and two refinements, namely AddMediaToAlbum and MediaController. Therefore,
the SMSTransfer feature is in the topmost hierarchical level for one component, i.e.,
SMSMessaging, but not for the other two components.

Refinement Chains and Feature Hierarchies. In feature-oriented SPLs, a constant
can be refined in several features. Successive refinements of the same constant define a
refinement chain. When generating a SPL product, only the bottom-most refinement
of the chain is instantiated, because it implements all capabilities assigned to the
respective chain (Batory et al., 2003). In this dissertation, we also refer to refinement
chains as feature hierarchies, due to the order of components stablished by refinement
relationships. Let us consider Figure 2.1 to illustrate this concept.

In Figure 2.1, there is a refinement chain of MediaController that cuts across
three features: MediaManagement, Sorting, and SMSTransfer. Therefore, this refine-
ment chain encapsulates code fragments of these features. As an example, by including
the three features in a SPL product, the MediaController class resulting from this
feature composition includes code of all three features. Nevertheless, if the Sorting or
SMSTransfer features are not included in the SPL product, their respective refinements
– i.e., the parts of code implemented into the not included features – will not compose
the MediaController class. That is, only the resources implemented in the constant
will be included in the code of MediaController.

2.2 SPL Maintenance Problems and Instability

Software maintainability refers to how easy is to fix errors in a system when they
occur, or to evolve the system due to requirements changes (Schneidewind, 1987).
Previous work report that most of the development costs are related to maintenance
tasks (Bennett and Rajlich, 2000; Yau and Collofello, 1985). There are different sources

2.2. SPL Maintenance Problems and Instability 11

of problems that harm software maintainability, from human factors such as the exper-
tise of developers code (Anquetil et al., 2007) to technical aspects of the system as code
readability, modularization, and the instability of software components (Ampatzoglou
et al., 2015; Baggen et al., 2012; Bennett and Rajlich, 2000).

To provide the assessment of maintainability in software systems, different tech-
niques have been applied (Baggen et al., 2012; Yamashita and Moonen, 2013a). Some
examples of techniques are the analysis of software metrics (Baggen et al., 2012) and
the identification of anomalous code structures (Yamashita and Moonen, 2013a). We
discuss below, in detail, a specific problem that harm maintainability, called instability.

Instability. Instability is the probability of a software system to change, due to
changes performed in different parts of the source code (Ampatzoglou et al., 2015).
A previous work (Yau and Collofello, 1985) states that most of the maintenance efforts
are spent by developers in changing source code. Consequently, instability is signifi-
cantly detrimental to the SPL maintainability. Stability is even more important for
SPL than for single (i.e., non-configurable) software systems, since changes applied to
one feature can propagate to other features and affect seemly-unrelated configurations
of a product line (Conejero et al., 2009).

Figure 2.2 depicts instability in the context of this dissertation. In this figure,
there are two parts of code extracted from the AddMediaToAlbum component of the
SMSTransfer feature, in Releases 6 and 7 of MobileMedia. As the name suggests, this
component is responsible for adding media to an album. Earlier, the whle SPL aimed
at handling with photo only. Later, though, it has evolved to handle with additional
types of media, such as music and video. Several component changed because of that
evolution, including AddMediaToAlbum. Although this scenario reflects an evolution in
the SPL requirements, the component change could have been avoided if MobileMedia
supported a fully reusable structure for different media. Consequently, we assume that
this change causes an instability that harms the SPL maintainability.

Figure 2.2. Example of Instability in MobileMedia

12 Chapter 2. Background

2.3 Final Remarks

This chapter presented the basic concepts of feature-oriented product lines and SPL
maintenance problems with focus on instability. Our main goal with this chapter
was to provide sufficient information to support the comprehension of the study pro-
posed in this dissertation. First, we presented the main compositional elements of
feature-oriented SPLs, namely components, features, and feature hierarchies. Second,
we discusses the impact of instability on the SPL maintainability.

After understanding the implementation concepts of feature-oriented SPLs, we
discuss in details another relevant topic for understanding this dissertation, i.e., the
detection of code anomalies. In the next chapter, we present three studies that compose
this dissertation aimed at investigating the state-of-the-art on anomaly detection. First,
we discuss a systematic literature review on code anomaly detection tools. Second, we
present a comparative study of detection tools. Third, we present a comparative study
of detection strategies for code anomalies.

Chapter 3

Code Anomaly Detection

Code anomalies are symptoms of deeper problems in the source code of a software
system (Fowler, 1999). These anomalies may occur in different elements of the system,
such as components and methods. Moreover, the use of variability mechanisms in a SPL
can introduce code anomalies, such as Inter-Feature Code Clones and Long Refinement
Chain (Fenske and Schulze, 2015). As an example, a Long Refinement Chain occurs
when a method has too many successive refinements in different features. It harms the
SPL maintainability because it makes harder to understand the side effects caused by
changing a feature with respect to the whole product line (Fenske and Schulze, 2015).

There are two main approaches aimed at detecting anomalies: manual and au-
tomated detection (Moha et al., 2010). In the manual detection, developers rely on
abstract definitions of types of code anomalies to identify the anomalous code structures
that harm the maintenance of a system (Munro, 2005). Fowler (1999) summarizes 22
different anomalies for object-oriented systems, such as Large Class, Feature Envy, and
Shotgun Surgery. The author characterizes each anomaly focused on the code aspects
that suggest the occurrence of the anomaly. For instance, Large Class is characterized
by an overload of knowledge and responsibilities in a class, e.g., in terms of its number
of attributes and methods. Alternatively to the manual detection, two techniques sup-
port the automated anomaly detection, i.e., detection strategies and tools (Fard and
Mesbah, 2013; Moha et al., 2010; Vidal et al., 2016).

In this chapter, we present our rely on our preliminary studies to discuss both
techniques: detection strategies and tools. Section 3.1 discusses a systematic literature
review on code anomaly detection tools. Section 3.2 presents a comparative study
of the tools identified in the literature review. Section 3.3 discusses the findings of
a comparative study of detection strategies for two anomalies that harm the SPL
maintainability: Large Class and Long Method (Fowler, 1999).

13

14 Chapter 3. Code Anomaly Detection

3.1 Literature Review on Detection Tools

Software maintenance and evolution are expensive activities and may represent up
to 75% of the software development costs (Liu et al., 2012). One reason for this
fact is that the development efforts focus on addition of new functionality or bug
correction rather than on design maintainability improvement (Dig et al., 2007). Code
anomalies are an important factor affecting the quality and maintainability of a software
system (Hall et al., 2014). A code anomaly is any symptom of quality problem in
a software system (Fowler, 1999). For instance, Duplicated Code occurs when two
distinct parts of code implement the same functionality (Fowler, 1999). It may harm
the maintainability of a system (Bellon et al., 2007).

Code anomalies can be detected in source code by either using manual or auto-
mated analyses (Moha et al., 2010). Tools support automated analysis usually relying
on different detection strategies, such as metric-based strategies (Tsantalis et al., 2008).
Since there are many code anomaly detection tools proposed in the literature, it is hard
to enumerate them and say what code anomalies they are able to detect. Additionally,
many tools are restricted to detect code anomalies in specific programming languages.
Therefore, by providing a coverage study, we can catalogue which anomalies are de-
tected in each programming language, for instance.

Previous work (Fontana et al., 2012; Moha et al., 2010) investigate the impact
of code anomalies on the software quality and maintainability. For instance, Fontana
et al. (2012) present a literature review covering seven code anomaly detection tools
and evaluate four of these tools in terms of their detection results. Similarly, Moha et al.
(2010) compares different detection tools. The authors compute recall, i.e., the rate of
anomaly detections, and precision, i.e., the rate of correct anomaly detections (Fawcett,
2006) for these tools. However, none of these studies provides an extensive overview of
the research topic with a comparative study of detection tools.

In the first part of this dissertation (Fernandes et al., 2016), we provide a sys-
tematic literature review (SLR) (Kitchenham and Charters, 2007) on code anomaly
detection tools. For each tool, we present its main features, such as its developed
programming language, compatible languages for anomaly detection, supported code
anomalies, and other relevant information. We assume that some developers may find it
difficult to choose the most appropriate tool according to their needs. Moreover, some
available tools may be using redundant strategies for detection of code anomalies. To
assess both assumptions, we provide an overview of the state of the art regarding code
anomaly detection tools. With this study, we aim to support developers in finding
tools, and researchers in identifying opportunities for future work.

3.1. Literature Review on Detection Tools 15

Literature Review Protocol. There are several alternative terms for code anomaly in
the literature, such as bad smell, code smell, and design anomaly. Aimed at identifying
the largest set of studies that propose or use code anomaly detection tools, we designed
the search string presented in Table 3.1. Note that we used the “*” symbol to represent
multiple terms that derive from a given prefix. As an example, the terms tools and
tooling are valid derivations of tool*.

Table 3.1. Search String Designed for the Literature Review

(tool* AND (bad smell* OR design smell* OR code smell* OR architecture smell*
OR design anomaly* OR code anomaly*))

Table 3.2 summarizes the inclusion and exclusion criteria we applied in our liter-
ature review. Aiming to restrict the papers included, we defined four inclusion criteria
and three exclusion criteria. For instance, as inclusion criteria papers published in the
Computer Science area and, as an example of exclusion criteria, papers should be at
least two pages long. We decided to include only papers published after 2000 in our
study because of the publication of the Refactoring book by Fowler (1999) in 1999.
This book defines the most well-known code anomalies.

Table 3.2. Inclusion and Exclusion Criteria of the Literature Review

Inclusion Criteria Exclusion Criteria
Papers published in Computer Science Papers published before 2000

Papers written in English Papers shorter than two pages
Papers available in electronic format Websites, leaflets, and grey literature

Propose or use detection tools

We run the designed search string in July 2015 in six electronic data sources:
ACM Digital Library1, IEEE Xplore2, Science Direct3, Scopus4, Web of Science5, and
Engineering Village6. BibTeX and text files (in this case, converted to BibTeX) were
imported to a reference management tool. We manually download the BibTeX files of
papers from ACM Digital Library, one by one, because it does not support automatic
downloading. For the other electronic data sources, we were able to download the
BibTeX or text file automatically.

We discuss some of our SLR findings as follows.
1http://dl.acm.org/
2http://ieeexplore.ieee.org/
3http://www.sciencedirect.com/
4http://www.scopus.com/
5http://webofknowledge.com/
6http://www.engineeringvillage.com/

16 Chapter 3. Code Anomaly Detection

Detection Tools. Through the SLR, we have found 84 code anomaly detection tools
proposed or used in research papers. 29 out of the 84 tools are available online for
download. Table 3.3 lists the 29 downloadable tools. The complete list of tools with
references is available in Fernandes et al. (2016).

Table 3.3. Detection Tools Available Online for Download

Borland Together (Yamashita and Moonen, 2013b),
CCFinder/CCFinderX (Kamiya et al., 2002), Checkstyle (Fontana et al., 2013),
Clone Digger (Bulychev and Minea, 2008), Code Bad Smell Detector (Hall et al.,

2014), Colligens (Medeiros, 2014), ConcernReCS (Alves et al., 2012),
ConQAT (Deissenboeck et al., 2005), DECKARD (Jiang et al., 2007),

DuDe (Wettel and Marinescu, 2005), Gendarme (Parnin et al., 2008), inCode (?),
inFusion (Fontana et al., 2013), IntelliJ IDEA (Fontana et al., 2015),

iPlasma (Marinescu et al., 2005), Java Clone Detector (JCD) (Juergens et al.,
2009), jCosmo (Van Emden and Moonen, 2002), JDeodorant (Tsantalis et al.,

2008), NiCad (Cordy and Roy, 2011), NosePrints (Parnin et al., 2008),
PMD (Copeland, 2005), PoSDef (Chaudron et al., 2014), SDMetrics7,

SpIRIT/JSpIRIT (Vidal et al., 2015), Stench Blossom (Murphy-Hill and Black,
2010), SYMake (Tamrawi et al., 2012), TrueRefactor (Griffith et al., 2011),

Understand (Singh et al., 2014), Wrangler (Li and Thompson, 2010)

Figure 3.1 presents the number of tools that aim to detect code anomalies in some
of the most popular programming languages. We presented data for nine of the top-ten
most popular programming languages based on the IEEE Spectrum8 ranking. Only
for the R language, the sixth most used programming language worldwide, we did not
find a code anomaly detection tool. This ranking relies on data from different sources,
such as GitHub, Google, and Stack Overflow. Although nine of the 10 most popular
languages have at least one detection tool, there is a concentration of proposed tools
for only three languages: Java, C, and C++. Moreover, languages with increasing
popularity9, such as PHP and JavaScript, have few compatible tools. These findings
point out to a research opportunity in less explored languages.

Code Anomalies. We have found that the tools aim to detect 61 different anomalies.
20 out of the 61 anomalies are listed by Fowler (1999). Figure 3.1 presents the top-ten
most frequent code anomalies detected by the tools. Overall, Duplicated Code, Large
Class, and Long Method are the anomalies that most of the tools aim to detect.

8http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages
9http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages

3.2. Comparative Study of Detection Tools 17

Figure 3.1. Number of Tools per Analyzed Programming Language

Figure 3.2. Percentage of Tools per Detected Code Anomaly

3.2 Comparative Study of Detection Tools

Also in the first part of this dissertation (Fernandes et al., 2016), we conducted a com-
parative study of detection tools for two well-known code anomalies: Large Class and
Long Method (Fowler, 1999). The comparison of tools aimed at assessing agreement,
recall, precision, and applicability of the tools. Thus, we aimed at understanding the
actual support of tools to detect single code anomalies. For this purpose, we selected
four detection tools, namely inFusion (Fontana et al., 2013), JDeodorant (Tsantalis
et al., 2008), JSpIRIT (Vidal et al., 2015), and PMD (Copeland, 2005). These four
tools are free for use, designed to detect the two mentioned code anomalies, and they
we extracted from the 29 tools available online for download and identified in our SLR.

18 Chapter 3. Code Anomaly Detection

Tool Selection Protocol. The tool selection process was conducted as follows. First,
we chose the Java programming language to study, since it is the most common lan-
guage tools analyze, as shown in Figure 3.1. In addition, we restricted the set of tools to
include only tools that are free for use, at least in a trial version. After applying these
criteria to the tools listed in Table 3.3, we end up with eight tool, namely Checkstyle,
inFusion, iPlasma, JDeodorant, PMD, JSpIRIT, Stench Blossom, and TrueRefactor.
However, Checkstyle, iPlasma, TrueRefactor, and Stench Blossom have been later dis-
carded by different reasons, as discussed below.

In our study, we discarded Checkstyle because it was not able to detect any
instance of the studied code anomalies in the selected software systems. We also
discard iPlasma because we could not run the tool properly. In addition, we are aware
that the same research group developed both iPlasma and inFusion. Therefore, these
tools probably follow similar detection strategies. We have not used TrueRefactor in
this comparative study because it does not provide an executable file in the package
we downloaded. Finally, we also discarded Stench Blossom because it lacks a code
anomaly occurrence list, since it is a visualization tool with no listing feature. Thus,
it is difficult to validate the results by computing recall, precision, and agreement.

Agreement, Recall, and Precision of the Tools. In this study, we analyzed two
software systems: MobileMedia (Figueiredo et al., 2008), Release 9 (object-oriented
version), and JUnit10, Release 4. JUnit is an open source Java testing framework
and MobileMedia is a SPL for applications that manage media on mobile devices. In
the case of MobileMedia, we used reference lists with 7 Large Classes and 6 Long
Methods provided by experts in the system. Thus, we were able to compute recall
and precision. However, in the case of JUnit, we did not have reference lists of code
anomalies. Consequently, we limited our analysis to the agreement computation.

To assess agreement of the detection tools, we compute the AC1 statistic coef-
ficient (Gwet, 2014). It computes a value between 0 and 1, and reports the level of
agreement using a scale that ranges from Poor, i.e., agreement smaller than 0.2, to
Very Good, i.e., agreement higher than 0.8 (Altman, 1991). As a result, we identified
a high agreement (in general, equals Very Good) among the tools with respect to the
detection results for both MobileMedia and JUnit, although JDeodorant provided a
larger list of code anomaly instances in comparison with the other tools. Therefore, we
concluded that the tools provided redundant detection results.

We also computed precision and recall of the tools for MobileMedia, in terms
of true positives (TP), false positives (FP), true negatives (TN), and false negatives

10https://github.com/junit-team/junit

3.2. Comparative Study of Detection Tools 19

(FN) (Fawcett, 2006). TP is the number of code elements identified as anomalous that
are actually affected by an anomaly. FP is the number of code elements identified as
anomalous that are not affected by an anomaly. TN is the number code elements not
identified as anomalous that are actually not affected by an anomaly. Finally, FN is
the number of code elements not identified as anomalous but affected by an anomaly.
The formulas for precision (P) and recall (R) are illustrated in Equations 3.1 and 3.2.

P =
TP

TP + FP
(3.1)

R =
TP

TP + FN
(3.2)

As a result, we observed low-to-medium rates of recall for the tools, in addition
to high rates of precision. For instance, the tools provided up to 67% of recall, in the
case of JSpRIT for Long Method, but the four tools achieved very low precision rates
(14%) in the case of Large Class. On the other hand, the tools generally provided high
precision, with values higher than 50% (up to 100%) except in the case of JDeodorant,
for both Large Class and Long Method.

Applicability of the Tools. We observed that some desired features are missing in
the four tools of our comparative study. These features, if available, could improve
the applicability, i.e., the user experience, of the tools. Table 3.4 list the five desired
features per detection tool. We assigned an “X” to the tools that support each feature.
For instance, only inFusion provides all five features, although two of the features are
available only in the full and paid version of the tool. In addition, with respect to the
Highlight Anomaly Occurrences feature, we expected that all tool highlight the location
of each detected anomaly in the source code. All four detection tools somehow support
this feature. Finally, for the Result Export feature, we expected that anomaly detection
results were easy to export to an output file from all tools. However, most of the tools
do not provide means to export results. In fact, only JDeodorant supports this feature
in a free tool version, and inFusion supports the feature in a paid tool version.

Table 3.4. Features Provided per Code Anomaly Detection Tool

Feature inFusion JDeodorant JSpIRIT PMD
Allow Detection Settings X X X X

Detected Anomaly Filtering X (in paid version) X - X
Graph Visualization X - - -

Highlight Anomaly Occurrences X X X X
Result Export X (in paid version) X - -

20 Chapter 3. Code Anomaly Detection

3.3 Detection Strategies

A detection strategy is a composition of metric-based rules that defines when a specific
software component has a code anomaly (Lanza and Marinescu, 2006). An anomalous
component can be a class, a method, or a package in an object-oriented software
system, for instance (Fowler, 1999). Detection strategies aim to support developers
in assessing the maintainability of a system by combining software metrics in a more
abstract level than the use of metrics isolately (Munro, 2005). To effectively support the
code anomaly detection and, consequently, the maintainability of systems, detection
strategies have to provide reasonable detection results (Almeida et al., 2004). Different
strategies have been proposed for detecting several code anomalies (Abílio et al., 2015;
Fenske and Schulze, 2015; Lanza and Marinescu, 2006).

In the second part of this dissertation (Fernandes et al., 2017a), we investigated
detection strategies for two well-known code anomalies that may affect any system,
including SPL: Large Class (Fowler, 1999) and Long Method (Lanza and Marinescu,
2006). With this study, we aimed to deeply investigate the literature support in the
context of single anomaly detection. Due to the lack of different strategies for SPL-
specific code anomalies, e.g., Long Refinement Chain (Fenske and Schulze, 2015), we
limited our study to the comparison of strategies for general purpose anomalies. Our
study analyzed three feature-oriented SPLs of a product-line repository (Vale et al.,
2015): Berkeley DB (Rosenmüller et al., 2009), MobileMedia (Figueiredo et al., 2008),
and TankWar (Schulze et al., 2010).

Study Protocol and Findings. OFirst, we compared detection strategies of the lit-
erature to assess if they are effective in the SPL context. Although we found different
strategies for both Large Class and Long Method, they provided similar detection re-
sults. Second, we proposed novel strategies per anomaly and compared them with the
existing ones. Table 3.5 presents the novel strategies. We derived the thresholds per
metric via Vale’s Method (Vale and Figueiredo, 2015). Given a benchmark of software
systems, the method computes four thresholds that rely on percentile of the metric val-
ues extracted from the systems. As a result, we observed a slight increase of accuracy
in our strategies in comparison with the existing ones.

In addition, we discussed the drawbacks of each strategy to provide insights that
support new strategies for SPL. For instance, some metrics of length and complexity,
such as Number of Parameters (NP) (Lorenz and Kidd, 1994) and McCabe’s Cyclo-
matic Complexity (Cyclo) (McCabe, 1976), may not contribute to the identification
of Long Method in feature-oriented SPLs. In our study, we considered these metrics

3.4. Final Remarks 21

as intuitive means to identify methods with excessive responsibilities. However, we
observed that the analyzed SPLs generally present very low values for these metrics.
Thus, we found difficult to identify Long Method instances in the product lines via
NP and Cyclo, even though we derived low threshold for both metrics. This fact may
related with the fact that feature-oriented SPLs take advantage of refinement chains
to increment the functionalities of a method among SPL features. Thus, Each single
component tend to be small and have low cyclomatic complexity.

Table 3.5. Novel Detection Strategies for Large Class and Long Method

Code Anomaly Description and Impact on SPL

Large Class
(Fowler, 1999)

A class with excessive knowledge and responsibilities. In SPL, a Large
Class may be the source of an inflated feature that requires a more

appropriate decomposition. Moreover, this anomaly may be the source of
non-modularized features, suggesting the need of feature extraction

Large Class = (LOC > 77) AND (NOA > 4) AND (NOM > 10) AND (WMC > 17)

Long Method
(Fowler, 1999)

A method with too many responsibilities. Although this code anomaly is
not exclusive to SPL, it can indicate problems if the different

responsibilities relate to different features, for instance
Long Method = (MLOC > 13) AND (NP > 2) AND (Cyclo > 3)

3.4 Final Remarks

This chapter presented the first and second parts of this dissertation, in which we stud-
ied single code anomaly detection. First, we presented a literature review on detection
tools (Fernandes et al., 2016). We have found 84 tools for several programming lan-
guages, such as Java, C, and C++. We also presented a comparative study of tools. As
a result, we found evidence that the available tools tend to provide similar detection
results. Second, we discussed the findings of comparative study of detection strategies.
Our comparison focused on two code anomalies that harm the SPL maintainability:
Large Class and Long Method (Fowler, 1999). In general, the detection strategies also
provided similar results for the same system, as observed in the case of detection tools.

After discussing the current techniques for code anomaly detection, i.e., detection
tools and strategies, we characterize types of anomaly agglomerations that support
the identification of SPL maintenance problems. In the next chapter, we propose
three novel types of code anomaly agglomerations in the SPL context. For each type
of anomaly agglomerations, we first present an informal definition with an abstract
example. Second, we discuss the rationale and applicability of the agglomerations.
Third, we formally define the type of anomaly agglomerations. Fourth, we discuss an
example extracted from the source code of the MobileMedia SPL.

Chapter 4

Anomaly Agglomeration in SPL

Code anomalies are symptoms of deeper problems in a software system (Fowler, 1999).
They make a source code element difficult to understand and, consequently, to main-
tain. Any software system is prone to have code anomalies (Macia et al., 2012).
Even the SPL variability can introduce anomalies, e.g., because of feature interac-
tions (Fenske and Schulze, 2015). As an example, Long Refinement Chain occurs when
a method has too many successive refinements in different features of the product line.
It harms the SPL maintainability because it makes harder to understand the side ef-
fects caused by changing the implementation of a feature or selecting a different set of
features to compose a specific SPL product (Fenske and Schulze, 2015).

In general, code anomalies provide hints of maintenance problems in a software
system (Fowler, 1999). However, each single anomaly may represent only a partial view
of the problem. Due to the scattering of many maintenance problems throughout the
source code, it is difficult to completely understand them (Moha et al., 2010). Thus,
to provide a wider and more complete view of problems in a SPL, we propose three
novel types of anomaly agglomerations. The proposed agglomerations rely on the main
structural elements of feature-oriented SPLs, i.e., features, feature hierarchies, and com-
ponents (Batory et al., 2003). We based our propositions on a previous work (Oizumi
et al., 2016) that proposes anomaly agglomerations for object-oriented systems.

The remainder of this chapter is organized as follows. Section 4.1 proposes fea-
ture agglomerations. Section 4.2 proposes feature hierarchy agglomerations. Section 4.3
proposes component agglomerations. For each type of anomaly agglomerations, we
present an informal definition with an abstract example, the rationale for proposing
the agglomerations, and a formal definition with a real example extracted of Mobile-
Media (Figueiredo et al., 2008), a SPL for media management in mobile devices.

23

24 Chapter 4. Anomaly Agglomeration in SPL

4.1 Feature Agglomeration

This section proposes the feature agglomeration. A feature agglomeration is a group,
with minimum length equals 2, formed by all anomalous components of a single fea-
ture. In other words, each component affected by at least one code anomaly, e.g.,
Long Method (Fowler, 1999), Divergent Change (Lanza and Marinescu, 2006), or Long
Refinement Chain (Fenske and Schulze, 2015), contributes to form a feature agglom-
eration in the feature that it is located. Figure 4.1 illustrates an abstract example of
feature agglomeration, composed by the boxes colored in gray and with bold font.

Figure 4.1. Abstract Example of Feature Agglomeration

There is a simple reason for considering a feature as a natural grouping of code
anomalies, i.e., Feature-Oriented Programming (FOP) expects that developers imple-
ment all components related to a specific SPL functionality into the same feature (Apel
et al., 2013; Batory et al., 2003). Although there might be no explicit, syntactic re-
lationship among components of the same feature, they are typically located in the
same folder at the SPL source code. Thus, grouping components by feature reflects
the semantic relationship among components in feature-oriented SPLs.

With our definition of feature agglomeration, we hypothesize that the occurrence
of different anomalies in components of the same feature are indicators of SPL main-
tenance problems. In other words, we consider anomalies from different components
as a single anomalous structure at the feature-level. We expect that this wider view
of anomalies may better indicate problems that harm the SPL maintainability. We
formally define feature agglomeration as follows. In summary, if there are two or more
anomalous components c in a feature f (i.e., c→ f), there is a feature agglomeration.

Definition 1.
Let f be a feature and c be an anomalous component.
Let c→ f when an anomalous component c contributes to implement f .
A feature agglomeration of f is a set of anomalous components C in which there
exists a relation c→ f , ∀c ∈ C and |C| ≥ 2.

4.1. Feature Agglomeration 25

We discuss an example of feature agglomeration that occurs in the SMSTransfer
feature of MobileMedia (Figueiredo et al., 2008) as follows.

SMSTransfer. In Figure 4.2, the feature SMSTransfer has three components, namely
AddMediaToAlbum, MediaController, and SMSMessaging. Only the two last compo-
nents are anomalous, with one and three anomalies respectively. Long Parameter List
affects MediaController. This anomaly in isolation provides only a limited view of
SPL maintenance problems in the level of methods. In turn, SMSMessaging has Large
Class, Long Method, and Shotgun Surgery. Such anomalies, by themselves, provide
interesting hints of problems in the anomalous component. For instance, Large Class
and Long Method suggest an overload of responsibilities in the component.

Figure 4.2. Feature Agglomeration of SMSTransfer

However, we expect to have a better comprehension of problems in the SPL by
agglomerating these anomalies. If we consider the feature agglomeration formed in SM-
STransfer, we may draw wider observations. While the instance of Large Class suggests
a need of delegating the excessive responsibilities of SMSMessaging to other classes, we
have Long Parameter List in MediaController. Let us assume that (i) components
of a single feature interact to provide a SPL functionality and (ii) MediaController
uses the overloaded component SMSMessaging. Thus, there is a possibility of changes
in the SMSMessaging component that impact on the stability of the MediaController
component. As a conclusion, we see a potential of feature agglomerations to improve
our observation regarding the SPL maintenance problems in the level of features.

Summary of Feature Agglomeration. In general, we expect that feature agglomer-
ation supports effectively the developers to understand the SPL maintenance problems
that affect multiple source files, in the same feature, that implement together inter-
related product-line functionalities.

26 Chapter 4. Anomaly Agglomeration in SPL

4.2 Feature Hierarchy Agglomeration

This section proposes the feature hierarchy agglomeration. A feature hierarchy agglom-
eration is a set, with minimum length equals 2, composed by all anomalous components
of a single feature hierarchy. In other words, each components with one or more code
anomalies contributes to form a feature hierarchy agglomeration in the refinement chain
it belongs to. Figure 4.3 provides an abstract example of feature hierarchy agglomera-
tion, formed by the boxes in gray and with bold font.

Figure 4.3. Abstract Example of Feature Hierarchy Agglomeration

In FOP, each component is a constant or a refinement (Apel et al., 2013; Fenske
and Schulze, 2015). In order to refine the basic functionalities of a constant, i.e.,
to add or change the resources of the constant, a refinement defines an explicit inter-
component, hierarchical relationship called refinement chain (Batory et al., 2003). Such
relationship between the refined constant and the refinement is defined syntactically
via the keyword refines. Thus, grouping components by refinement chain reflects the
syntactic relationship among components in a FOP-based product line.

Extracted from MobileMedia, Listings 4.1 and 4.2 illustrate refinements in
AHEAD. In Listing 4.1, the constant PhotoViewController of feature MediaMan-
agement implements a controller with one method (initCommandsMap) and one at-
tribute (commands). In Listing 4.2, the keyword refines into the refinement of feature
CopyMedia indicates that PhotoViewController in feature CopyMedia refines the
previously defined constant. In this example, the refinement extends the behavior of
initCommandsMap by adding two new commands to the map. The original method is
called in the refinement chain through the keyword Super. The base code and different
feature modules are composed via the AHEAD tool suite (Apel et al., 2011) or the
FeatureHouse composer (Apel et al., 2009), depending on the adopted technique.

4.2. Feature Hierarchy Agglomeration 27

Listing 4.1. Code Sample Extracted of Feature MediaManagement

1 public class PhotoViewControl ler {
2 protected Map commands ;
3 public void initCommandsMap () {
4 commands = new HashMap () ;
5 }
6 . . .
7 }

Listing 4.2. Code Sample Extracted of Feature CopyMedia

1 public r e f i n e s class PhotoViewControl ler {
2 public void initCommandsMap () {
3 Super () . initCommandsMap () ;
4 commands . put ("Copy" , new CopyPhoto ()) ;
5 commands . put ("Save␣Photo" , new SaveCopiedPhoto ()) ;
6 }
7 }

By defining feature hierarchy agglomeration, we assume that anomalies affecting
different components of the same refinement chain are indicators of SPL maintenance
problems. This assumption relies on the hierarchical dependency among components
that inter-relate explicitly via refinements in the SPL feature model. We expect that
the wide view provided by the analysis of an entire refinement chain provides better
indicators of SPL maintenance problems, when compared with the analysis of individ-
ual components of the SPL. A formal definition of feature hierarchy agglomeration is
presented as follows. In summary, if there are two or more anomalous components c
in a refinement chain r (i.e., c→ r), there is a feature hierarchy agglomeration.

Definition 2.
Let r be a refinement chain and c be an anomalous component.
Let c→ r when an anomalous component c belongs to r.
A feature hierarchy agglomeration of r is a set of anomalous components C in which
there exists a relation c→ r, ∀c ∈ C and |C| ≥ 2.

We describe an example of feature hierarchy agglomerations that occurs in the
MediaUtil feature hierarchy of MobileMedia as follows.

MediaUtil. In Figure 4.4, two components MediaUtil form a refinement chain that
cuts through the features MediaManagement and Sorting. Long Parameter List affects
both components. In addition, the component of the MediaManagement feature has

28 Chapter 4. Anomaly Agglomeration in SPL

Large Class and Long Method. By analyzing each anomalous component, these anoma-
lies indicate the occurrence of one or more maintenance problems that affect parts of
the implementation of MediaUtil. However, the analysis of agglomerated components
may improve this view of problems in the entire SPL.

Figure 4.4. Feature Hierarchy Agglomeration of MediaUtil

In fact, the occurrence of Large Class and Long Method in a constant has impacts
that we better understand when considering the entire refinement chain. In this case,
the constant MediaUtil has one refinement below it in the feature hierarchy of the
SPL. Thus, both anomalies may cause major maintenance problems in the SPL, since
a product derived from the SPL that includes the features MediaManagement and
Sorting will inherit all anomalies of the constant. In this context, the feature hierarchy
agglomeration indicates that both Large Class and Long Method in MediaUtil are
even more critical than we may assume based on the individual component analysis.

Summary of Feature Hierarchy Agglomeration. We assume that the impact of
anomalies agglomerated by feature hierarchy is wider than we may observe via the
analysis of individual SPL components. Thus, feature hierarchy agglomeration aims to
indicate problems that affect a scattered concern associated with multiple features.

4.3 Component Agglomeration

In this section, we propose the component agglomeration. A component agglomeration
is a set with two or more anomalous code elements of a component such that the
set is affected by at least two types of code anomalies. For instance, a class with a
Large Class (Fowler, 1999), in addition to methods affected by Long Method (Lanza
and Marinescu, 2006), contributes to form a component agglomeration in the SPL
component it is implemented. The same applies to the anomalous methods. Figure 4.5
presents an abstract example of component agglomeration.

4.3. Component Agglomeration 29

Figure 4.5. Abstract Example of Component Agglomeration

Components in FOP are code units that implement part of a SPL funcional-
ity (Batory et al., 2003). Thus, we considered the code level of components as an
intuitive way of grouping code elements that implement part of the product line. Such
code elements, i.e., classes and methods, inter-relate explicitly by composing a sin-
gle source file. Although this type of agglomeration is not specific to SPL, we defined
component agglomeration as a mechanism to identify wider SPL maintenance problems
that the analysis of single code anomalies are not able to support.

We provide a formal definition of component agglomeration as follows. In sum-
mary, if there are two or more anomalous code elements e in a component c (i.e.,
e → c), with at least two different types of code anomaly affecting such components,
there is a component agglomeration.

Definition 3.
Let c be a component and e be a code element.
Let e→ c when a code element e belongs to c.
A component agglomeration of c is a set of anomalous code elements E when there
exists a relation e → c ∀e ∈ E, |E| ≥ 2, and at least two types of code anomalies
affect E.

We discuss an example of component agglomerations in the
MediaListController component of MobileMedia as follows.

MediaListController. The code anomalies that affect the component
MediaListController are, namely, Long Method, Long Parameter List, and Long
Refinement Chain. The occurrence of the three anomalies in MediaListController

30 Chapter 4. Anomaly Agglomeration in SPL

represents, as a whole, a major threat to the component stability. This threat is
mostly related to the several changes that the three anomalies may require to be fixed
in the source code. Therefore, the component agglomeration has an important role in
the identification of major maintenance problems.

Summary for Component Agglomeration. We expect that, by defining component
agglomeration, we may support the identification of major SPL maintenance problems
in a component caused by inter-related code anomalies.

4.4 Final Remarks

This chapter proposed three novel types of code anomaly agglomerations in the con-
text of feature-oriented SPLs. For each type of agglomeration, we provided a formal
definition, an abstract example, and a real example collected from the source code of
MobileMedia (Figueiredo et al., 2008). Such examples aimed to motivate the use of
agglomerated code anomalies in SPL for identifying major problems that harm the SPL
maintainability. We expect that agglomerations provide a wider view of the problem
extent in comparison with non-agglomerated code anomalies.

The examples provided in this chapter suggest the applicability of our types
of code anomaly agglomeration in the identification of SPL maintenance problems.
However, an evaluation of each type of agglomeration is required for us to draw further
conclusion on the effectiveness of agglomerating anomalies in SPL. Thus, the next
chapter presents an empirical study to evaluate the three proposed types of anomaly
agglomerations. We describe the study settings, present and discuss the results.

Chapter 5

Evaluation of SPL Stability

In this dissertation, we propose three novel types of code anomaly agglomeration in
SPL: feature agglomeration, feature hierarchy agglomeration, and component agglomer-
ation. We rely on a previous work (Oizumi et al., 2016) that proposes agglomerations
for object-oriented systems. By taking into account the main structural elements of
feature-oriented SPLs, we aim to support a wider analysis of SPL maintenance prob-
lems than provided by the analysis of individual, non-agglomerated code anomalies.
For each type of anomaly agglomerations, we provide illustrative examples extracted
from the MobileMedia SPL (Figueiredo et al., 2008). However, we have to evaluate the
effectiveness of anomaly agglomerations in identifying SPL maintenance problems.

For this purpose, we present in this chapter an empirical study to evaluate our
novel types of anomaly agglomerations. The remainder of this chapter is organized
as follows. Section 5.1 describes the evaluation settings, including research questions,
target SPLs, and study protocols. Section 5.2 present the evaluation results for non-
agglomerated code anomalies. Section 5.3 presents the results for each type of anomaly
agglomeration. Section 5.4 discusses threats to the study validity.

5.1 Evaluation Settings

In this dissertation, we aim to investigate whether non-agglomerated and agglomerated
anomalies indicate SPL maintenance problems. Thus, we evaluate our three novel types
of anomaly agglomerations, namely feature, feature hierarchy, and component agglom-
eration. Given the extensive variety of problems that harm the SPL maintainability,
we chose instability. We specifically investigate sources of instability in SPL. That is,
we are concerned with the factors leading to frequent changes in SPL components. In
particular, we investigate to what extent code anomaly agglomerations support the

31

32 Chapter 5. Evaluation of SPL Stability

identification of sources of instability in SPLs. In other words, we are concerned about
the relationship between agglomerated code anomalies in indicating parts of code that
change frequently and, therefore, are instable.

To guide our study, we designed two research questions (RQs). We present and
discuss each of them as follows.

RQ1. Can non-agglomerated code anomalies indicate instability in SPL?
We did not find previous studies that investigate non-agglomerated anomalies as

indicators of instability in SPL. Therefore, with RQ1, we assess if non-agglomerated
anomalies can provide instability hints in SPL. In this study, we consider a component
as instable in a SPL if it has changed in at least two releases of the SPL. We made this
decision based on two observations as follows. First, there are few available releases
per SPL under analysis, seven at most. Second, after a manual analysis of the selected
SPLs, we observed several components that change only two times but contain various
code anomalies. Thus, we determined two as a minimum amount of changes. Note
that we do not consider comment-related changes in the count of instability.

RQ2. Can agglomerated code anomalies indicate instability in SPL?
RQ2 focuses on the investigation of whether our three types of code anomaly

agglomerations can be indicators of instability. We address this question according to
two perspectives, i.e., strength (RQ2.1) and accuracy (RQ2.2), discussed as follows.

RQ2.1. How strong is the relationship between agglomerations and instability?
To answer RQ2.1, we compute the strength of the relationship between each type

of agglomeration and instability. That is, we assess the potential of agglomerated
anomalies in indicating instabilities. We say a relationship is strong if agglomerated
anomalies identify at least 100% more instabilities than non-agglomerated anomalies.
We chose this rounded percentage based on the guidelines of Lanza and Marinescu
(2006). With a threshold of 100%, we aim to assure that the agglomerated anomalies
actually performed better than non-agglomerated anomalies.

RQ2.2. How accurate is the relationship between agglomerations and instability?
To answer RQ2.2, we compute the accuracy of agglomerations in identifying in-

stability, in terms of precision and recall. In other words, we assess if agglomerated
anomalies are able to identify instability (i.e., recall) and if the agglomerated anomalies
can correctly identify instabilities in feature-oriented SPLs (i.e., precision).

Target SPLs. For this study, we selected four SPLs implemented in AHEAD
or FeatureHouse from different domains: MobileMedia (Figueiredo et al., 2008),

5.1. Evaluation Settings 33

Notepad (Kim et al., 2010), TankWar (Schulze et al., 2010), and WebStore (Gaia
et al., 2014). MobileMedia provides products for media management in mobile de-
vices (Ferreira et al., 2014; Vale et al., 2015). Notepad aims to generate text edi-
tors (Vale et al., 2015). TankWar is a war game for personal computers and mobile
devices (Schulze et al., 2010). Finally, WebStore derives Web applications with product
management (Ferreira et al., 2014; Vale et al., 2015).

Table 5.1 provides general information on the target feature-oriented SPLs. The
first and second columns describe the SPL name and respective domain. The third
column provides the number of releases available per SPL. The fourth and fifth columns
provide the number of features and components for each SPL. We selected these SPLs
for some reasons. First, these SPLs are part of a SPL repository proposed in a previous
work (Vale et al., 2015). Second, they have been published and investigated in the
literature (Ferreira et al., 2014; Schulze et al., 2010). Third, there are different releases
for each SPL. This variety of releases allows us to compute instability for the SPLs
throughout consecutive releases. Fourth, developers of these SPLs were available for
consultation, except in the case of Notepad.

Table 5.1. General Information of the Target SPLs

SPL Domain Releases Features Components
MobileMedia Media Management 7 25 141
Notepad Text Editor 2 13 32
TankWar Game 7 32 92
WebStore E-Commerce 6 13 86

According to the developers of the four SPLs, each of them evolved to address
different issues. The initial design of MobileMedia supported photo management only.
However, MobileMedia evolved to implement management of other media types, such
as video and music. This evolution required a revision of the SPL assets (Ferreira
et al., 2014). Notepad was completely redesigned in the two available releases (Kim
et al., 2010). Developers added new functions and created new features to ease the
introduction of new functions and to improve the modularization of features. TankWar
evolved only to refactor the SPL without changing any functions but to improve its
maintainability. Finally, WebStore initially supported a few payment types and data
management options, for instance. As WebStore evolved, it has changed to cover other
new functionalities. Although WebStore and MobileMedia have similar evolution sce-
narios, the initial development of WebStore took into account future planned evolutions
to make the SPL more stable (Ferreira et al., 2014).

34 Chapter 5. Evaluation of SPL Stability

Study Protocol 1: Identifying Sources of Instabilities. We first computed insta-
bility per SPL, based on the number of changes per component between releases. For
this purpose, we count an instability index if the component changes between consec-
utive releases. In this study, we used the instability computed for MobileMedia and
WebStore by a previous work Ferreira et al. (2014). To increase the data reliability,
and to compute instability for TankWar and Notepad, we used the WinMerge tool1.
The tools provides a visual comparison of source files from two different systems.

After, we identified the main sources of instability per SPL, based on the changed
components. After, we computed the sources of instabilities, i.e., the reasons that lead
to instability per component. We aimed at identifying groups of SPL components with
similar sources of instability. As an example of source, we have the addition of a new
feature the SPL that may affect the implementation of several components. Whenever
was possible, we validated the detected instability with developers of the target SPLs
by showing them the numbers obtained per component.

Table 5.2 presents the sources of instabilities identified in the four SPLs. The first
column indicates the category and the sum of affected components per source. The
second column presents the description of each source of instability. The last line (i.e.,
Others) represents the sources of instability that we were not able to categorize. As an
example, we named Add Crosscutting Feature when a new feature is added to the SPL
and it affects the implementation of existing features. This particular instability is
interesting in SPL because, according to the Open/Closed Principle, software entities
should be open for extension, but closed for modification (Meyer, 1988).

Table 5.2. Sources of Instabilities in SPL

Source Description # of Affected
Components

Add Crosscutting
Feature

When we add a new feature to the SPL and,
consequently, the new functionalities are of interest of

components from several existing features. Many
components from different features change

122

Change from
Mandatory to

Optional

When we distribute the implementation of an existing
feature to: (i) a new, basic mandatory feature, and (ii) a

new optional feature, with specific functionalities
19

Distribute Code
among Features

When we extract code parts of a component from an
existing feature and, then, distributed these code parts

to components from existing features
39

Pull Up Common
Feature Code

When we extract code parts that are common into child
features to a parent feature above in the feature

hierarchy
63

Others General sources unrelated explicitly to SPL
maintenance, e.g., attribute renaming 195

1http://winmerge.org/

5.1. Evaluation Settings 35

Study Protocol 2: Identifying Anomalies and Agglomerations. Our process of
identifying code anomalies consists in three steps: (i) to define the anomalies for study,
(ii) to define the metric-based detection strategies to identify each anomaly, and (iii) to
apply the defined detection strategies to each SPL. A detection strategy is a composi-
tion of metric-based rules that defines when a specific software component is prone to
contain a code anomaly (Lanza and Marinescu, 2006). Table 5.3 lists the 11 software
metrics used to compose the strategies used in our study.

Table 5.3. Software Metrics Used to Compose the Detection Strategies

Metric Level Abbreviation Metric Name and Reference

Classes

CBO Coupling between Objects (Chidamber and Kemerer, 1994)
LOC Lines of Code (Lorenz and Kidd, 1994)
NCR Number of Constant Refinements Abílio et al. (2015)
NOA Number of Attributes (Lorenz and Kidd, 1994)
NOM Number of Methods (Lorenz and Kidd, 1994)
WMC Weighted Methods per Class (Chidamber and Kemerer, 1994)

Methods

Cyclo McCabe’s Cyclomatic Complexity McCabe (1976)
MLOC Method Lines of Code (Lorenz and Kidd, 1994)
NMR Number of Method Refinements (Abilio et al., 2016)
NP Number of Parameters (Lorenz and Kidd, 1994)

NOOr Number of Operations Overrides (Miller et al., 1999)

Table 5.4 presents the list of code anomalies that we investigate with the re-
spective detection strategies. Due to the limited set of software metrics available for
computation per SPL, we adapted the detection strategies from the literature (Lanza
and Marinescu, 2006) whenever possible, per code anomaly. We extracted the metric
values per SPL via the VSD tool (Vale et al., 2015). We derived the thresholds per
metric via the Vale’s Method (Vale and Figueiredo, 2015).

Our analysis relies mostly on general purpose anomalies, except for Long Refine-
ment Chain (Fenske and Schulze, 2015), but all of them relate somehow to the SPL
composition. These anomalies affect the source code of SPLs in different levels, in-
cluding feature hierarchies. For instance, Divergent Change is a class that changes due
to divergent reasons (Lanza and Marinescu, 2006). If these reasons relate to different
features, this anomaly may harm the SPL modularization. Long Method is a method
with too many responsibilities (Fowler, 1999). This anomaly is harmful in SPLs if
the responsibilities of the method relate to different features, for instance. Finally,
Long Refinement Chain (Fenske and Schulze, 2015) is a method with excessive number
of successive refinements. This SPL-specific anomaly is harmful since it hampers the
understanding of side effects of changes in the generation of SPL products.

36 Chapter 5. Evaluation of SPL Stability

Table 5.4. Code Anomalies for Analysis

Code Anomaly Description and Impact on SPL

Data Class
(Fowler, 1999)

A class composed only of attributes, getters, and setters. Its lack of
responsibilities suggests that other classes may manipulate the Data Class
too much. Since SPL design requires modularization, we should eliminate

Data Class
Data Class = (NOA > High) AND (NOM < High)

Divergent Change
(Fowler, 1999)

A class that changes due to multiple, divergent reasons. In SPL, these
reasons can relate to different features, indicating problems in the SPL

design, for instance
Divergent Change = (NOA > High) AND (CBO > High) AND (NOM > High)

Large Class
(Fowler, 1999)

A class with excessive knowledge and responsibilities. In SPL, a Large
Class may be the source of an inflated feature that requires a more

appropriate decomposition. Moreover, this anomaly may be the source of
non-modularized features, suggesting the need of feature extraction

Large Class = (LOC > High) AND (CBO > Low) AND (WMC > High)

Lazy Class
(Fowler, 1999)

A class with little knowledge and few responsibilities. In SPL, a small
portion of lines of code can eventually affect a refinement chain as a whole.

Consequently, it may affect negatively many features and SPL
functionalities or, sometimes, at least a group of products

Lazy Class = [(LOC < Low) AND (WMC < Low)] OR (CBO < Low)

Long Method
(Fowler, 1999)

A method with too many responsibilities. Although this code anomaly is
not exclusive to SPL, it can indicate problems if the different

responsibilities relate to different features, for instance
Long Method = (MLOC > High) AND (Cyclo> High)

Long Parameter List
(Fowler, 1999)

A method with an extensive list of parameters. Groups of parameters can
be inter-related eventually. In SPL, this relation may suggest the need of

new components to gather these parameters, for instance
Long Parameter List = (NP > High)

Long Refinement
Chain (Fenske and
Schulze, 2015)

A method with excessive number of successive refinements. This
SPL-specific code anomaly harms maintainability when adding a new

refinement or changing a method, because it hinders the understanding of
side effects of a particular refinement for the generation of a SPL product

Long Refinement Chain = (NMR > High)

Shotgun Surgery
(Fowler, 1999)

A class whose changes affect many other classes. Such classes can belong
to different features, for instance. Therefore, the occurrence of Shotgun

Surgery in SPL may indicate problems in the SPL design
Shotgun Surgery = (NOA > High) AND (CBO > Low) AND (NOM > High)

Once detected the anomalies, we computed manually our three novel types of
anomaly agglomerations per SPL. Other researchers double-checked the results in order
to prevent errors. In case of divergence, the researches re-computed the agglomerations.

Study Protocol 3: Correlating Agglomerations and Instabilities. To answer our
research questions, we defined a criterion for correlating agglomerations and instabili-
ties. Consider a general agglomeration that can be either a feature, a feature hierarchy,
or a component agglomeration. We say that such agglomeration indicates an instabil-
ity when there exists an instable code element in the feature, feature hierarchy, or

5.2. Results for Non-Aglomerated Code Anomamies 37

component that have the agglomeration. Even though agglomerations and instabilities
may be located in more than two anomalous elements, we consider sufficient if the
agglomeration is affected by at least one instability problem. Thus, an agglomeration
fails to indicate instability when none of its components relates to an instability.

5.2 Results for Non-Aglomerated Code Anomamies

First, we investigate whether non-agglomerated code anomalies are sufficient indicators
of instabilities in SPL. Therefore, we aim to answer RQ1.
RQ1. Can non-agglomerated code anomalies indicate instability in SPL?

In this study, we computed the statistical significance of the relation between
non-agglomerated anomalies and instabilities via Fisher’s exact test (Fisher, 1922).
Such test returns a p-value that, given a confidence interval, indicates if the obtained
results are statistically significant. In addition, we computed Odds Ratio (Cornfield,
1951) to compute the possibility of the presence or absence of a property (i.e., the
anomaly non-agglomeration) to be associated with the presence or absence of other
property (i.e., instability). Since Odds Ratio compares the possibilities of presence
and absence for each property, we have to compute both the number of anomalies
that agglomerated and do not agglomerate, as well as the number of instabilities and
stabilities. We computed both statistics via the R tool2.

Table 5.5 presents the results for non-agglomerated anomalies. The first col-
umn lists each feature-oriented SPL. The second column presents the number of non-
agglomerated anomalies that indicate instabilities. The third column presents the
number of agglomerated anomalies that do not indicate instabilities, i.e., they indicate
stability. Finally, the fourth column presents the total number of anomalies per SPL.

Table 5.5. Analysis Results for Non-Agglomerated Anomalies

SPL Non-Agglomerated
and Instability

Agglomerated and
Stability

Total Number of
Code Anomalies

MobileMedia 1 11 87
Notepad 0 1 24
TankWar 0 2 106
WebStore 0 4 29

By comparing the second and third columns, we observe that for the 4 feature-
oriented SPLs the number of non-agglomerated anomalies that indicate instability is
very low. In general, this number is even lower than the number of agglomerated

2https://cran.r-project.org/

38 Chapter 5. Evaluation of SPL Stability

anomalies that indicate stability. Since each SPL has several code anomalies (fourth
column), we may assume that anomaly agglomerations are potentially useful for identi-
fying instabilities in SPL. In addition, considering all the four analyzed SPLs, we have
a p-value of 0.1488 and Odds Ratio equals 0.0816. Thus, our results suggest that the
possibility of a non-agglomerated anomaly to indicate instabilities is close to 0 when
compared with an agglomerated anomaly.

Summary for RQ1. Our data suggest that non-agglomerated anomalies may not
suffice to indicate instabilities in SPL. The low number of non-agglomerated anomalies
that indicate instabilities supports this finding. On the other hand, there is a potential
for agglomerations in indicating instabilities.

5.3 Results for Agglomerated Code Anomalies

In this section, we analyze the relationship between agglomerations and instabilities.
We aim to answer RQ2 decomposed into RQ2.1 and RQ2.2 discussed as follows.
RQ2.1. How strong is the relationship between agglomerations and instability?

Table 5.6 presents the results per type of agglomeration. The first column lists
each proposed type of agglomeration. The second column presents the number of
anomaly agglomerations that indicate correctly an instability, considering the four
SPLs we analyze. The third column presents the number of non-agglomerations that
do not indicate instability. We omitted the number of non-agglomerations that indicate
instability since we discuss these data previously in Section 5.2. The last two columns
present the p-value computed via Fisher’s test and the results obtained for Odds Ratio.

Table 5.6. Analysis Results for Agglomerated Anomalies

Type of
Agglomeration

Agglomeration
and Instability

Non-Agglomeration
and Stability p-value Odds Ratio

Feature 31 6 1 1.1598
Feature Hierarchy 28 13 0.0478 3.8492

Component 28 124 0.8761 0.9290

Regarding the number of agglomerations that indicate instability in the target
SPLs, we observed that an average of 94%, 78%, and 32% of the anomaly agglom-
erations indicate two or more instable components for feature, feature hierarchy, and
component agglomeration, respectively. Note that, for all types of agglomerations, we
obtained similar numbers of agglomerations that indicate instability, but the values of
non-agglomerations that indicate stability vary according to the type of agglomeration.

5.3. Results for Agglomerated Code Anomalies 39

Regarding p-value, we assume a confidence level higher than 95%. Only feature hierar-
chy agglomerations presented p-value lower than 0.05 and, therefore, it is the only type
of agglomeration with statistical significance with respect to the correlation between
anomaly agglomerations and instabilities in SPL.

Regarding Odds Ratio, we have a value significantly greater than 1 only for fea-
ture hierarchy agglomerations, around 3.8. It means that the possibility of a feature
hierarchy agglomeration to relate with instabilities is almost 4 times higher than a non-
agglomerated code anomaly. For the other two types of agglomerations, we have values
close to 1 and, therefore, we may not affirm that such types of agglomerations have
more possibilities to “host” instabilities when compared to non-agglomerated anoma-
lies. Therefore, with respect to RQ2.1, we conclude that the relationship between
agglomerations and instabilities is only strong for feature hierarchy agglomeration.
This observation is quite interesting, since in FOP the features encapsulate the imple-
mentation of functionalities of the SPL. Besides that, our data suggest the refinement
relationship may hinder this encapsulation by causing instability into multiple features.
This problem is even more critical since the instabilities caused by a feature hierarchy
agglomeration can eventually propagate to several seemly-unrelated SPL products.

We highlight that the relationship computed via Odds Ratio, i.e., the correlation
between anomaly agglomerations and instability, does not imply in a cause-effect rela-
tionship. In other words, we may not affirm that the agglomerations are the cause of
instability, but that there is a high proportion of agglomeration that indicate instability.

We also investigate the accuracy of anomaly agglomerations in indicating insta-
bility in SPLs. We then compute accuracy in terms of precision and recall (Fawcett,
2006) per agglomeration. In other words, we aim to answer RQ2.2 as follows.

RQ2.2. How accurate is the relationship between agglomerations and instability?

To assess accuracy of each type of agglomeration, we compute precision and re-
call in terms of true positives (TP), false positives (FP), true negatives (TN), and false
negatives (FN) (Fawcett, 2006). TP is the number of agglomerations that indicate
correctly instabilities. FP is the number of agglomerations that indicate incorrectly
instabilities, i.e., indicate stability. TN is the number of non-agglomerations that does
not indicate instability. Finally, FN is the number of non-agglomerations that indicate
instability. The formula adopted to compute precision and recall (Fawcett, 2006) are
presented in Equations 5.1 and 5.2, respectively.

P =
TP

TP + FP
(5.1)

40 Chapter 5. Evaluation of SPL Stability

R =
TP

TP + FN
(5.2)

Since even small-sized systems have several anomalies (Macia et al., 2012), de-
velopers should focus their maintenance effort on anomalies that represent the most
critical maintenance problems. Thus, agglomerating anomalies can reduce the search
space for finding those problems. We focus our analysis on accuracy computed in terms
of precision and recall. In this dissertation, we compute precision and recall per type of
agglomeration considering all instable components, regardless the sources of instability
of each component. We made this decision because some instable components have
multiple sources that relate to different types of agglomeration. For instance, the com-
ponent MediaController of the MediaManagement feature has changed in Release 4
of MobileMedia SPL as a consequence of two sources of instability: Add Crosscutting
Feature and Distribute Code Among Features.

Table 5.7 presents precision (P), recall (R), and the number of instable compo-
nents indicated per type of anomaly agglomerations (#IC). This table also presents
median, mean, and standard deviation for the results obtained for the four SPLs under
analysis. We provide a discussion of our results per type of agglomeration as follows.

Table 5.7. Precision and Recall per Type of Agglomeration

Agglomeration Feature Feature Hierarchy Component
SPL P R #IC P R #IC P R #IC

MobileMedia 76% 72% 65 100% 59% 30 50% 10% 8
Notepad 50% 20% 4 75% 50% 8 50% 25% 3
TankWar 92% 61% 37 82% 82% 66 65% 23% 17
WebStore 75% 60% 26 100% 24% 10 0% 0% 0
Median 76% 61% 32 91% 54% 20 50% 16% 6
Mean 73% 53% 33 89% 54% 29 41% 14% 7

Std. Dev. 15% 20% 22 11% 21% 23 25% 10% 6

Feature Agglomeration. The first three columns in Table 4 correspond to the results
for feature agglomeration. We observed a precision with median of 76% and mean of
73%. We then observe that each 3 out of 4 feature agglomerations indicate instabilities.
These results are expressive if we consider that agglomerations aim to provide a precise
indication of instability, based on the high frequencies of code anomalies that may occur
in any software system, including software product lines.

Regarding recall, we obtained a mean of 53%, with median of 61%, for the SPLs
under analysis. We observed a percentage of recall equals or higher than 60% in 3
out of 4 SPLs. Indeed, low percentages of recall are expected in this study, since not
all instabilities in SPL are related to anomalous code structures. Through a manual

5.3. Results for Agglomerated Code Anomalies 41

analysis of the four SPLs, we identified various sources of instability that do not relate
with code anomalies. For instance, in MobileMedia some components have changed
from one release to another because of the inclusion of new functionalities by means of
features (e.g., in Releases 1 to 2). In TankWar, some components have changed due to
the inclusion of FOP-specific mechanisms (e.g., in Releases 2 to 3).

Note that, for Notepad, the low rates of both precision and recall may be justified
by the small percentage for both instable and anomalous components. As an example,
Notepad has only 37.5% of instable components, against 58.9%, 79.3%, and 44.2%
for MobileMedia, TankWar, and WebStore, respectively. Despite of that, in general,
our results suggest that there is a high rate of feature agglomerations that, possibly,
may indicate instabilities in the SPLs. However, since we did not observe statistical
significance for this type of agglomeration (see Table 5.6), we may not affirm that
feature agglomerations are indicators of instability in SPLs.

To illustrate the effectiveness of a feature agglomeration in indicating instability,
let us consider the following example extracted from MobileMedia.

Example 1: The MediaManagement feature. Figure 5.1 presents the Me-
diaManagement feature with four components: Constants, MediaController,
MediaListScreen, and MediaUtil. For each component, we have the respective num-
ber of code anomalies represented by “#” on the upon-right side of the component. All
these components are anomalous and, therefore, this set of components corresponds to
a feature agglomeration. By analyzing in details each anomalous component separately,
we observe that only Constants and MediaListScreen have less than two anomalies,
with Lazy Class and Long Refinement Chain respectively. Although both anomalies
are symptoms of maintenance problems in the constant, they provides a limited view
of problems that affect the SPL as a whole.

Figure 5.1. Feature Agglomeration of MediaManagement

In turn, by analyzing the entire feature agglomeration, we may observe wider
issues. As an example, the components MediaController and MediaUtil have both
Long Method and Long Parameter List. In general, these anomalies relate to high

42 Chapter 5. Evaluation of SPL Stability

difficulty to maintain the affected code elements, the methods in this case. Since
components of the same feature implement the same functionality, we expect that they
access and use to one another. Thus, these anomaly occurrences in the same feature
may lead to major maintenance problems in the entire feature. Moreover, attempts to
treat these problems can lead to the overall feature maintainability issues.

In fact, the feature agglomeration formed by components from the MediaMan-
agement feature (Figure 5.1) indicated relevant instabilities generated by a source of
instability categorized as Distribute Code Among Features (see Table 5.2 for detailed
description). In this case, the implementation of the component BaseController from
feature Base, the most important controller of the SPL, was distributed to several fea-
tures including MediaManagement. Consequently, this distribution of source code to
other features made the components of the feature agglomeration instable.

Feature Hierarchy Agglomeration. The fourth, fifth, and sixth columns in Table 4
present precision, recall, and the number of instable components (#IC) for the analysis
of feature hierarchy agglomeration. We obtained values similar to the first analysis,
with respect to the feature analysis. First, regarding precision, we have a mean value
of 89%, the highest value among types of agglomeration. These data suggest that the
only a few feature hierarchy agglomerations, i.e., related to a refinement chain formed
by components and its refinements, are not related to instabilities. We additionally
obtained a mean recall of 54% for the target SPLs That is, the best value among ag-
glomeration types. This result indicates that a significant number of feature hierarchy
agglomerations are candidates to indicate instabilities. We conclude that the feature
hierarchy agglomeration is an indicator of instabilities in SPL.

To illustrate feature hierarchy agglomerations that indicated instability, let us
consider the following example extracted from MobileMedia.

Example 2: The MediaController feature hierarchy. In Figure 5.2, the features
MediaManagement, Sorting, and SMSTransfer have a component MediaController

each. Such components form a refinement chain. However, only the components of
MediaManagement and SMSTransfer are anomalous and compose a feature hierarchy
agglomeration. Both are instable and affected by Long Parameter List, an anomaly
the provides a limited view of the extent of maintenance problems. In addition, the
component located in the feature MediaManagement has Large Class, Long Method,
and Long Refinement Chain. Although each anomaly provides hints of problems in the
respective components, a view of the feature hierarchy may help us reasoning about
major problems in the whole refinement chain.

5.3. Results for Agglomerated Code Anomalies 43

Figure 5.2. Feature Hierarchy Agglomeration of MediaController

Note that the component MediaController of feature MediaManagement is a
constant and, therefore, the components below in the feature hierarchy are refine-
ments. This constant has four code anomalies, as aforementioned. This number is
high, since the highest number of anomalies in a component of MobileMedia was five,
for MediaAccessor of feature Base. Thus, the concentration of anomalies affecting lo-
cally MediaController suggests the occurrence of one or more problems. Besides that,
there are two other components refining the constant. Because of Long Parameter List,
it may indicate an overload of responsibilities in the anomalous method. Consequently,
such anomaly is even more critical than the individual analysis may suggest.

In fact, the feature hierarchy agglomeration formed by components of the refine-
ment chain of MediaController indicated several relevant sources of instability. For
instance, this agglomeration captured the instability caused by a source categorized
as Pull Up Common Feature Code (Table 5.2). In this case, due to the addition of
new types of media in MobileMedia, it was reorganized the implementation of feature
CopyPhoto into two features: CopyPhoto and CopyMedia. This change affected all
components from the agglomeration in terms of instability.

Component Agglomerations. The three last columns in Table 4 present precision,
recall, and and the number of instable components (#IC) for the analysis of component
agglomeration. In this case, we obtained values significantly different when compared
to the feature agglomeration analysis. With respect to the four SPLs, we obtained
a mean precision of 41%. This result points that less than a half of the observed
component agglomerations relate, in fact, to instabilities. Based on these data, we
may not affirm that this type of agglomerations is effective in indicating instabilities.
Moreover, we obtained a mean recall of 14% for the SPLs. This result is very low when
considering that systems tend to present several instable components and anomalies.

44 Chapter 5. Evaluation of SPL Stability

The low rates of precision and recall for component agglomeration may relate
with the fact that this type of agglomeration analyses a single source file. Note that
a single file tends to have less changes than a set of multiple files, as analyzed by
both feature and feature hierarchy agglomerations. Consequently, the effectiveness of
component agglomerations in identifying instability may have been negatively affected
by the low number of possible instable files. Therefore, our data suggests that the
component agglomeration is not an indicator of instabilities in SPL.

In spite of the low rates of precision and recall, we observed interesting cases
of component agglomerations that indicate instabilities. Let us consider the following
example, extracted from MobileMedia, to illustrate how component agglomerations
support the identification of instability in SPL.

Example 3: The MediaController component. In Figure 5.3, the component with
the highest amount of anomalies is MediaController of the feature MediaManage-
ment. Four anomalies with potential to harm the SPL maintainability occur in this
component, namely Large Class, Long Method, Long Parameter List, and Long Refine-
ment Chain. By analyzing each anomaly separately, we limit our observations to the
possible problems that the respective anomalies may cause.

Figure 5.3. Component Agglomerations of MediaController

In turn, by agglomerating anomalies that affect the same component, we may
draw observations that are more conclusive. For instance, if we consider Large
Class and Long Method separately, we may overlook two important issues regarding
MediaController. First, this component is a constant and many other components
refine its implementation. Second, this component has a Long Refinement Chain that
makes code harder to understand and evolve. This anomaly, summed to Large Class
and Long Method, tend to harm the SPL maintainability even more.

In fact, code elements from the component MediaController, of the feature
MediaManagement, indicated correctly different sources of instability. These sources
include the following sources of instability in SPL (Table 5.2): Distribute Code among

5.4. Threats to Validity 45

Features regarding the implementation of component BaseController from feature
Base and Pull Up Common Feature Code regarding the reorganization of feature Copy-
Photo. We discuss both sources previously in this section, for feature agglomeration
and feature hierarchy agglomeration.

Summary for RQ2. Our data suggest that feature hierarchy is the most effective
type of agglomeration for identification of sources of instability in SPLs, due to the p-
value lower than 0.05 (given a 95% confidence interval) and highest Odds Ratio close to
3.8. When compared to non-agglomerated anomalies, with Odds Ratio equals 0.08, we
observe that feature hierarchy agglomeration is 3.8 times more effective in identifying
instabilities. The high precision of 89% for this type reinforces our findings.

5.4 Threats to Validity

We rely on the guidelines of Wohlin et al. (2012) to discuss threats to the study validity
with respective treatments as follows.

Construct and Internal Validity. We carefully designed our study for replication.
However, a major threat to our study is the set of metrics used in the detection strategy
composition. This set is restricted to the metrics provided by the SPL repository (Vale
et al., 2015) adopted in our study. To minimize this issue, we selected some well-
known and largely studied metrics, such as McCabe’s Cyclomatic Complexity (Cyclo)
(McCabe, 1976). The list of detection strategies used in this study is available in the
research website (Fernandes et al., 2017c). Regarding the small length of the analyzed
SPLs, we highlight the limited number of SPLs available for research, as the limited
number of releases for the available SPLs. The low number of available releases has
lead us to consider a component as instable if it has changed in two or more releases.
To minimize this issue, we analyzed the SPLs in all available releases. Finally, we
conducted the data collection carefully. To minimize errors, two authors checked all
the collected data and re-collected the data in case of divergence.

Conclusion and External Validity. We designed a data analysis protocol carefully.
To compute the statistical significance and strength of the relationship between ag-
glomerations and instabilities, we computed the Fisher’s test (Fisher, 1922) and Odds
Ratio (Cornfield, 1951), two well-known and reliable techniques. We also computed
precision and recall for the accuracy analysis of agglomerations, based on previous
work (Oizumi et al., 2016). These procedures aim to minimize issues regarding the

46 Chapter 5. Evaluation of SPL Stability

conclusions we draw. Two authors checked the analysis to avoid missing data and re-
conducted the analysis to prevent biases. Regarding the generalization of findings, we
expect that our results are extensible to other SPL development contexts than FOP.
However, further investigation is required.

5.5 Final Remarks

This chapter presented an empirical study to evaluate our three novel types of code
anomaly agglomerations, namely feature, feature hierarchy, and component agglomer-
ation. First, we described the evaluation settings, including research questions, the
target set of SPLs for analysis, and three study protocols for data collection and anal-
ysis. Our evaluation relied on four feature-oriented SPLs: MobileMedia (Figueiredo
et al., 2008), Notepad (Kim et al., 2010), TankWar (Schulze et al., 2010), and Web-
Store (Gaia et al., 2014). As a result, we observed that feature hierarchy agglomeration
was able to identify instaiblities in SPL with the highest rates of precision and recall
in comparison with the other types of agglomeration.

In the next chapter, we discuss related work. Our discussion relies on studies
that investigate (i) the impacts of anomalies on the SPL maintainability, (ii) techniques
for identification of maintenance problems in SPL, and (iii) the use of code anomaly
agglomerations as indicators of maintenance problems in object-oriented systems.

Chapter 6

Related Work

In this dissertation, we propose three novel types of anomaly agglomerations for feature-
oriented SPL. An anomaly agglomeration occurs when two or more code anomalies
inter-relate in the SPL source code. Each proposed agglomeration relies on the main
SPL structural elements, i.e., features, feature hierarchies, and components. By propos-
ing different types of anomaly agglomerations in SPL, we aim to support the identi-
fication of SPL maintenance problems that we may not identify with an analysis of
a single code anomaly. Also in this dissertation, we evaluate the agglomerations as
indicators of a specific problem that harms the SPL maintainability: instability.

This chapter discusses previous work that relate to ours as follows. Section 6.1
presents studies that characterize or investigates code anomalies in the SPL context.
Section 6.2 discusses previous work that propose techniques for identifying sources
of instability in SPL. Section 6.3 presents previous work that propose or apply code
anomaly agglomerations as indicators of maintenance problems in object-oriented soft-
ware systems. We also relate the previous work with this dissertation.

6.1 Code Anomalies in SPL

Code anomalies characterize symptoms of problems in the source code of a software
system (Fowler, 1999). In general, code anomalies affect any system (Macia et al., 2012)
and may occur in different code levels, such as components and methods (Fowler, 1999;
Lanza and Marinescu, 2006). In the SPL context, variability mechanisms can introduce
code anomalies in the product line (Fenske and Schulze, 2015). For instance, Long
Refinement Chain is a method with several successive refinements in different features.
It harms the SPL maintainability because it makes difficult to understand the side
effects caused by changing a feature with respect to the whole product line (Fenske and

47

48 Chapter 6. Related Work

Schulze, 2015). Developers can identify code anomalies manually or automatically with
the support of detection strategies, i.e., well-defined rules based on the characteristics
of an anomaly (Marinescu, 2004), or detection tools (Moha et al., 2010).

Previous work (Andrade et al., 2014; Apel et al., 2013; Fenske and Schulze, 2015)
has characterized and investigated code anomalies in SPL. Apel et al. (2013) discussed
the use of code anomalies as indicators of potentially inadequate feature modeling or
implementation. The authors provided a list of 14 code anomalies, such as Unused
Feature and Fat Products, that affect different phases of the SPL engineering. For
instance, Unused Feature is a feature that has never been included in SPL products
and, therefore, should be discarded. Fat Products are products derived from a SPL
that are too large and contain unnecessary functionalities, even after the configuration
of a product that fits the client needs. It suggests that the feature modeling should be
revised and optional code fragments may be extracted, for instance.

Similarly, Fenske and Schulze (2015) provided a catalog code anomalies, such
as Annotation Bundle, Inter-Feature Code Clones, and Long Refinement Chain, that
capture the notion of variability in SPL. In addition, the authors conduct an empirical
study with SPL researchers to evaluate the relevance of the catalog of code anoma-
lies. Long Refinement Chain is characterized as a method with too many refinements
in different SPL features. This anomalous code structure may hinder developers in
understanding the refineed method and performing proper changes. Figure 6.1 illus-
trates a Long Refinement Chain of ExampleClass. The feature f1 implements the
constant ExampleClass with one attribute and one method. The other features refine
the constant by adding attributes and methods. For instance, fn adds one attribute
and one method. As far as a method is refined, it makes harder to understand the
functionalities provided by a SPL product that includes the bottom-most refinements.

Figure 6.1. Abstract Example of Long Refinement Chain

6.1. Code Anomalies in SPL 49

Andrade et al. (2014) investigated code anomalies that affect the architecture of
a SPL. For this purpose, they studied four code anomalies proposed for other contexts
than SPL, in order to assess their occurrence on a sample SPL. As a result, they could
not find occurrences of the four anomalies in the analyzed SPL. After, the authors
proposed and discussed Feature Concentration, a SPL-specific code anomaly. Feature
Concentration occurs when too many features are implemented in a single architectural
unit. It suggests that the implementation of features in the SPL should be reviewed to
prevent the overload of specific architectural units.

Finally, Vale et al. (2014) present a systematic literature review on code
anomalies that affect SPLs implemented in different techniques, such as Aspect-
Oriented Programming (AOP) (Kiczales et al., 1997) and Delta-Oriented Programming
(DOP) (Schaefer et al., 2010). The authors have found 70 code anomalies proposed in
the literature. The anomalies were organized into three groups. The first group has the
anomalies that affect a SPL in the lowest implementation level, i.e., the source code.
The second group gathers anomalies that affect a SPL mostly in the architecture level.
The third group contains the anomalies that affect in both code and architecture level.

Table 6.1 lists some of code anomalies identified by Vale et al. (2014). In addi-
tion, the table lists code anomalies proposed by (Fenske and Schulze, 2015) after the
publication of the literature review. The first column presents the name of each code
anomaly. The second column provides the technique for SPL implementation that may
be affected by each anomaly. Finally, the third column describes the code anomalies.

Table 6.1. Examples of Code Anomalies in SPL, Adapted of Vale et al. (2014)

Code Anomaly Technology Definition
Annotation Bundle

(Fenske and Schulze, 2015) FOP A method with too many variable parts. It may difficult
the maintainability of the method

Duplicated Features
(Schulze et al., 2013) DOP Two features have similar code implementations. It harms

the SPL maintainability
Empty Features

(Schulze et al., 2013) DOP A feature that has no effect on generated SPL products.
It harms the SPL maintainability

God Aspect
(Macia et al., 2011) AOP An aspect that implements two or more concern. It hamrs

the SPL modularity
Inter-Feature Code Clones
(Fenske and Schulze, 2015) FOP Duplicated parts of code that are located in different

features. It harms the SPL maintainability
Large Aspect

(Piveta et al., 2006) AOP A long aspect with too many code elements. It harms the
aspect understandability

Lazy Aspect
(Piveta et al., 2006) AOP An aspect that has only a few responsibilities. It harms

the SPL maintainability
Long Refinement Chain

(Fenske and Schulze, 2015) FOP A method with too many successive refinements in
different features. It harms the SPL maintainability

Unused Features
(Schulze et al., 2013) DOP A feature implemented in the SPL but not used by any

product. It harms the SPL maintainability

50 Chapter 6. Related Work

Summary of Code Anomalies in SPL. We have found interesting previous work
(Andrade et al., 2014; Apel et al., 2013; Fenske and Schulze, 2015) that investigates
code anomalies in SPLs. All studies discuss the negative impacts of code anomalies
in the SPL maintainability. In addition, they provide evidence on the importance of
detecting and fixing code anomalies to prevent critical problems in the SPL design and
the derivation of SPL products, for instance.

6.2 Instability in SPL

Instability is the probability of a software system to change, due to changes performed
in different parts of the source code (Ampatzoglou et al., 2015). A previous study
(Yau and Collofello, 1985) discusses that instability is significantly detrimental to the
SPL maintainability. In general, instability is even more critical in SPL than in single
software systems, because changes in one feature can propagate to other features and
affect seemly-unrelated SPL products (Conejero et al., 2009).

Previous work (Cafeo et al., 2013; Figueiredo et al., 2008) has investigated insta-
bility in SPLs. For instance, Cafeo et al. (2013) conducted a study on software metrics
as indicators of instabilities in evolving SPLs implemented using the aspect-oriented
programming (Kiczales et al., 1997). For this purpose, the authors compared two sets
of metrics. The first set is composed by general purpose metrics. The second set is
composed by SPL-specific metrics related to feature dependency, i.e., that capture key
properties of features in a SPL. The results indicated that the feature dependency
metrics are better indicators of instability than the traditional metrics.

Figueiredo et al. (2008) presented another empirical study on instability in evolv-
ing SPLs. This study relies on design instability analysis and the evolution of two
aspect-oriented SPLs through realistic development scenarios. The authors aimed to
assess different aspects of design instability in the target product lines, such as fea-
ture modularization, feature dependency, and change propagation. As a result, they
presented various development scenarios that affect the design stability of SPLs.

Summary of Instability in SPL. We have found relevant studies (Cafeo et al., 2013;
Figueiredo et al., 2008) that investigate instability and its impact on SPL. In general,
these studies emphasize that some implementation characteristics of the SPL imple-
mentation may induce to critical instability problems. They provide means to assess
the instability in SPL, mainly focused on the aspect-oriented programming paradigm.

6.3. Code Anomaly Agglomerations 51

6.3 Code Anomaly Agglomerations

Code anomalies are symptoms of problems in the source code of a software sys-
tem (Fowler, 1999). Such anomalies may support the identification of different main-
tenance problems in any system, including a SPL (Fenske and Schulze, 2015; Schulze
et al., 2010). However, each single code anomaly may represent only a limited view
of the problem extent. This limited view is a consequence of the scattered location
of several maintenance problems into different parts of the code (Moha et al., 2010).
Therefore, a solution for that limitation could be analyzing the inter-relations of code
anomalies, i.e., the anomaly agglomerations (Oizumi et al., 2016).

Previous work (Oizumi et al., 2016; Yamashita and Moonen, 2013a) has investi-
gated agglomerated anomalies as indicators of maintenance problems in systems. For
instance, Yamashita and Moonen (2013a) conducted a study on the impact of inter-
related anomalies on the maintenance of object-oriented systems. The authors assumed
that, although individual anomalies harm the maintainability of systems, the interac-
tions among anomalies may also be harmful. Their work evaluates the interactions
among 12 code anomalies to understand how such interactions relate to maintenance
problems. As a result, the authors concluded that anomalies located in the same
software artifact tend to inter-relate and affect the system maintainability.

In particular, Oizumi et al. (2016) presented the most closely work to ours. The
authors conducted an empirical study on the use of code anomaly agglomerations as
indicators of design problems in object-oriented source code. For this purpose, they
proposed types of code anomaly agglomerations that rely on source code elements. The
authors showed that agglomerations are better indicators of design problems than code
anomalies analyzed individually. The results suggested that some types of agglomer-
ation could indicate problems with accuracy higher than 80%. However, the authors
did not explore code anomaly agglomerations in the context of SPL.

Table 6.2 compares the types of anomaly agglomerations proposed by Oizumi
et al. (2016) with the agglomerations proposed in this dissertation. The first column
presents the study that proposes the agglomerations. The second column informs how
each type of code agglomerations is located in the SPL. The Implicit location means
that the inter-relation of code anomalies is not explicit in the source code. In turn,
the Explicit location means that the inter-relation of anomalies is explicit in the source
code. The third column provides the name of each type of agglomeration. Finally, the
fourth column describes the types of anomaly agglomerations.

52 Chapter 6. Related Work

Table 6.2. Agglomerations by Oizumi et al. (2016) versus This Dissertation

Study Location Type of
Agglomeration Description

This
dissertation

Implicit Feature Two or more anomalous components located in
the same feature

Explicit Feature Hierarchy Two or more anomalous components located in
the same refinement chain

Explicit Component Two or more anomalous code elements in the
same components with two or more anomalies

Oizumi et al.
(2016)

Implicit Semantic Two or more anomalies that affect code
elements with the same concern

Explicit Inter-Component Two or more anomalous design components
with one or more anomalous elements each

Explicit Intra-Component Two or more anomalous code elements located
in the same design component

By analyzing Table 6.2, we observe that both studies propose three types of
anomaly agglomerations, two of which take into account explicit inter-relations of code
anomalies. In fact, this dissertation proposes novel types of anomaly agglomerations
in the SPL context based on the agglomerations proposed by Oizumi et al. (2016).
Moreover, both studies propose agglomerations that rely on concerns. A concern is
an abstraction for a requirement of the software systems (Sommerville, 2010). Oizumi
et al. (2016) propose semantic agglomeration as a group of anomalies that affect parts
of code implementing the same concern. In turn, this dissertation proposes feature
agglomeration that is a group of anomalous components of the same SPL feature and,
therefore, they implement the same product-line concern.

Summary of Code Anomaly Agglomerations. After reviewing the literature, we
have found studies (Oizumi et al., 2016; Yamashita and Moonen, 2013a) that evaluate
the potential of code anomaly agglomerations in indicating software maintenance prob-
lems. Overall, both studies assume that the analysis of inter-related anomalies may
indicate more critical, relevant problems than the analysis of individual anomalies.
Moreover, these studies actually observed the expected benefits of grouping anomalies
as agglomerations. In despite of that, none of them target on feature-oriented SPLs
and instability, as we did in this dissertation.

6.4 Final Remarks

This chapter discussed studies closely related to the scope of this dissertation, i.e., code
anomaly agglomerations as indicators of instability in SPL. Our discussion was divided
into three research topics as follows. First, we presented previous work that introduce

6.4. Final Remarks 53

and investigate the occurrence of code anomalies in SPL. Second, we discussed studies
aimed at investigating instability in software systems, including a study targeting on
SPL. Finally, we discuss related work that focuses on agglomerating code anomalies to
support the identification of maintenance problems in software systems. At this point,
we build a link between these studies and this dissertation that focuses on a specific
SPL maintenance problem: instability.

Although some of the work discussed in this chapter (Oizumi et al., 2016; Ya-
mashita and Moonen, 2013a) investigated the inter-relation of code anomalies in object-
oriented systems, none of them neither have used the investigated code anomaly ag-
glomerations in the SPL context as indicators of instability. Nevertheless, they provided
evidence that encourages the use of code anomalies in the context of SPL as well as the
use of metrics that capture the properties of SPLs. Thus, their results justify the usage
of code anomalies like Large Class, Long Method, and Shotgun Surgery. Similarly, the
research conducted by Cafeo et al. (2013) motivated to use code anomalies that can
capture properties of SPLs like Long Refinement Chain.

In the next chapter, we conclude this dissertation. First, we provide an overview
of the main contributions of this dissertation. Second, we discuss opportunities for
future work derived from the contributions and limitation of our study.

Chapter 7

Conclusion

Code anomalies are symptoms of problems in the source code of a software sys-
tem (Fowler, 1999). Each code anomaly harms the system maintainability in a dif-
ferent level (Fowler, 1999; Lanza and Marinescu, 2006), by affecting packages, classes,
or methods. As an example, Large Class is a class with too much knowledge of the
system and too many responsibilities. It makes difficult to understand the source code
and to perform maintenance tasks in the system. Code anomalies affect any software
system, including software product lines (SPL) (Fenske and Schulze, 2015). Moreover,
a previous work (Medeiros et al., 2015) states that SPL-specific code anomalies can
be easier to introduce, harder to fix, and more critical than others, due to the in-
herent complexity of SPLs. Therefore, developers should identify and eliminate code
anomalies that harm the SPL maintainability whenever possible.

Previous work (Fenske and Schulze, 2015; Schulze et al., 2010) assume that in-
dividual code anomalies are sufficient to characterize maintenance problems in a SPL.
However, each anomaly in isolation may represent only a partial view of the problem
extent. Thus, previous studies have limitations to characterize anomalous code struc-
tures that indicate SPL maintenance problems. To address these limitations, previous
work (Oizumi et al., 2016; Yamashita and Moonen, 2013a) investigate to what extent
agglomerating code anomalies may support the characterization of maintenance prob-
lems in object-oriented software systems. However, we still lack similar studies in the
SPL context and focused on a specific SPL maintenance problem: instability.

To fill the aforementioned lack of studies, this dissertation presented our research
on anomaly agglomerations as indicators of instability in SPL. We proposed novel
types of anomaly agglomerations in SPL and evaluated them. The remainder of this
chapter is organized as follows. Section 7.1 summarizes the main contributions of this
dissertation. Finally, Section 7.2 discusses opportunities for future work.

55

56 Chapter 7. Conclusion

7.1 Main Contributions

This dissertation aimed at contributing mainly to the SPL community and to the
whole Software Engineering (SE) community. The dissertation is organized in three
parts discusses as follows. First, we provided a systematic literature review on code
anomaly detection tools (Fernandes et al., 2016). We also conducted a comparative
study of the tools identified in the review, some of them compatible with SPL. Second,
we conducted a comparative study of detection strategies for code anomalies that
affect SPLs (Fernandes et al., 2017a). Through this study, we discussed aspects to
take into account when proposing novel detection strategies for SPL. As a summary of
our preliminary findings, we presented another work (Fernandes and Figueiredo, 2016).
We then discussed our study goals and findings with a broad audience of SE. After, we
refined our study in order to improve the quality of this dissertation.

Third, in this dissertation, we proposed three novel types of anomaly agglomer-
ations in SPL, namely feature, feature hierarchy, and component agglomeration. Each
type of anomaly agglomeration relies on a different structural element of feature-
oriented SPLs. A feature agglomeration occurs if there are two or more anomalous
components located in a single SPL feature. A feature hierarchy agglomeration occurs
when two or more anomalous components belong to a single feature hierarchy, i.e., they
are explicitly inter-related via a refinement relationship that cuts across the SPL fea-
tures. A component agglomeration occurs when two or more anomalous code elements
of a component are affected by at least two different code anomalies.

Also in this dissertation, we investigated whether non-agglomerated anomalies
are indicators of instability in SPL. In fact, our findings suggest that non-agglomerated
anomalies do not support the identification of anomalous code structures that cause
instability and, consequently, harm the SPL maintainability. We then investigated to
what extent the novel types of anomaly agglomerations indicate instability in SPL.
Our study relied on the analysis of four feature-oriented SPLs from different domains:
MobileMedia (Figueiredo et al., 2008), Notepad (Kim et al., 2010), TankWar (Schulze
et al., 2010), and WebStore (Gaia et al., 2014). As a result, we observed that feture
hierarchy agglomeration suffices to indicate instabilities in SPL. The observed statistical
significance and high rates of recall and precision for this type of agglomeration reinforce
our findings. Overall, we have found that anomaly agglomerations may effectively
support the identification of instabilities in SPLs. We presented our main findings of
third part of this dissertation in another work (Fernandes et al., 2017b).

7.2. Future Work 57

7.2 Future Work

We present some opportunities for future work as follows.

• To conduct a large-scale evaluation of our three novel types of anomaly agglom-
erations for feature-oriented SPLs. This dissertation relies on the evaluation of
only four feature-oriented SPLs. Thus, the generalization of our findings has an
inherent threat. As an example of evaluation, we may analyse a larger set of
FOP-based SPLs, with several releases, and from other domains.

• To conduct a empirical study in controlled environment with our three novel
types of anomaly agglomerations for feature-oriented SPLs. For instance, we may
conduct a case study in industry settings to assess if the proposed agglomerations
actually support developers in identifying SPL maintenance problems. We also
may assess if agglomerations support saving maintenance efforts.

• To develop and evaluate an anomaly agglomeration detection tool for feature-
oriented SPLs. In this dissertation, we manually computed the agglomerations
per SPL because of the small size and number of available releases per SPL.
However, the automated detection of anomaly agglomerations could support both
the developers that use the agglomerations to identify SPL maintenance problems
and the researchers that conduct large-scale studies.

• To propose other types of anomaly agglomerations for feature-oriented SPLs.
Our novel agglomerations rely on the main SPL structural elements, i.e., features,
feature hierarchies, and components. However, we may explore other elements.
For instance, in this dissertation we did not take into account the constraints
among features that limit the inclusion of an optional or alternative feature.
These constraints may support us in understanding the inter-relation of code
anomalies that affect different SPL features.

• To investigate the cause-effect relationship among code anomalies that belong
to the same agglomeration. In this study, we assume that code anomalies that
form an agglomeration inter-relate. However, we do not characterize how such
inter-relation occurs, except by the fact that they are located in a single SPL
structural element. Therefore, we may explore the types of code anomaly that
lead to the occurrence of other types of anomaly, and the implications of that
relationship in the SPL maintainability.

58 Chapter 7. Conclusion

• To investigate other techniques for SPL implementation. For instance, Aspect-
Oriented Programming (Kiczales et al., 1997) is a technique that modularizes
the SPL concerns of a system into code units called aspects. Another technique,
Delta-Oriented Programming (Schaefer et al., 2010), aims to improve the flex-
ibility of FOP-based SPLs via delta modules, i.e., code units that add, mod-
ify, and remove code of the SPL features. Both techniques have different SPL
structural elements that we may explore with agglomerations. In addition, we
may investigate other SPL maintenance problems than instability, such as error-
proneness (Liebig et al., 2010) and understandability (Kästner et al., 2008).

Bibliography

Abílio, R., Padilha, J., Figueiredo, E., and Costa, H. (2015). Detecting Code Smells
in Software Product Lines: An Exploratory Study. In Proceedings of the 12th Inter-
national Conference on Information Technology: New Generations (ITNG), pages
433–438.

Abilio, R., Vale, G., Figueiredo, E., and Costa, H. (2016). Metrics for Feature-Oriented
Programming. In Proceedings of the 7th International Workshop on Emerging Trends
in Software Metrics (WETSoM), pages 36–42.

Almeida, E., Alvaro, A., Lucrédio, D., Garcia, V., and Meira, S. (2004). RiSE Project:
Towards a Robust Framework for Software Reuse. In Proceedings of the 5th Inter-
national Conference on Information Reuse and Integration (IRI), pages 48–53.

Altman, D. (1991). Practical Statistics for Medical Research. Chapman & Hall.

Alves, P., Santana, D., and Figueiredo, E. (2012). ConcernReCS: Finding Code Smells
in Software Aspectization. In Proceedings of the 34th International Conference on
Software Engineering (ICSE), pages 1463--1464.

Ampatzoglou, A., Chatzigeorgiou, A., Charalampidou, S., and Avgeriou, P. (2015).
The Effect of GoF Design Patterns on Stability: A Case Study. IEEE Transactions
on Software Engineering (TSE), 41(8):781–802.

Andrade, H., Almeida, E., and Crnkovic, I. (2014). Architectural Bad Smells in Soft-
ware Product Lines: An Exploratory Study. In Proceedings of the 11th Working
Conference on Software Architecture (WICSA), pages 1–12.

Anquetil, N., Oliveira, K., Sousa, K., and Dias, M. (2007). Software Maintenance Seen
as a Knowledge Management Issue. Information and Software Technology (IST),
49(5):515–529.

59

60 Bibliography

Apel, S., Batory, D., Kästner, C., and Saake, G. (2013). Feature-Oriented Software
Product Lines. Springer.

Apel, S., Kästner, C., and Lengauer, C. (2009). FeatureHouse: Language-Independent,
Automated Software Composition. In Proceedings of the 31st International Confer-
ence on Software Engineering (ICSE), pages 221–231.

Apel, S., Leich, T., Rosenmüller, M., and Saake, G. (2005). FeatureC++: On the
Symbiosis of Feature-Oriented and Aspect-Oriented Programming. In Proceedings
of the 4th International Conference on Generative Programming and Component
Engineering (GPCE), pages 125–140.

Apel, S., Speidel, H., Wendler, P., von Rhein, A., and Beyer, D. (2011). Detection
of Feature Interactions using Feature-Aware Verification. In Proceedings of the 26th
International Conference on Automated Software Engineering (ASE), pages 372–375.

Baggen, R., Correia, J. P., Schill, K., and Visser, J. (2012). Standardized Code Quality
Benchmarking for Improving Software Maintainability. Software Quality Journal
(SQJ), 20(2):287–307.

Batory, D., Sarvela, J., and Rauschmayer, A. (2003). Scaling Step-Wise Refinement. In
Proceedings of the 25th International Conference on Software Engineering (ICSE),
pages 187–197.

Bellon, S., Koschke, R., Antoniol, G., Krinke, J., and Merlo, E. (2007). Comparison and
Evaluation of Clone Detection Tools. IEEE Transactions on Software Engineering
(TSE), 33(9):571–591.

Bennett, K. and Rajlich, V. (2000). Software Maintenance and Evolution: A Roadmap.
In Proceedings of the Conference on the Future of Software Engineering, co-located
with the 22nd International Conference on Software Engineering (ICSE), pages 73–
87.

Bulychev, P. and Minea, M. (2008). Duplicate Code Detection Using Anti-unification.
In Proceedings of the 2nd Spring/Summer Young Researchers’ Colloquium on Soft-
ware Engineering (SYRCoSE), pages 51–54.

Cafeo, B., Dantas, F., Cirilo, E., and Garcia, A. (2013). Towards Indicators of Instabil-
ities in Software Product Lines: An Empirical Evaluation of Metrics. In Proceedings
of the 4th International Workshop on Emerging Trends in Software Metrics (WET-
SoM), pages 69–75.

Bibliography 61

Chaudron, M., Katumba, B., and Ran, X. (2014). Automated Prioritization of Metrics-
Based Design Flaws in UML Class Diagrams. In Proceedings of the 40th EUROMI-
CRO Conference on Software Engineering and Advanced Applications (SEAA), pages
369–376.

Chidamber, S. and Kemerer, C. (1994). A Metrics Suite for Object Oriented Design.
IEEE Transactions on Software Engineering (TSE), 20(6):476–493.

Conejero, J., Figueiredo, E., Garcia, A., Hernández, J., and Jurado, E. (2009). Early
Crosscutting Metrics as Predictors of Software Instability. In Proceedings of the 47th
International Conference on Objects, Components, Models and Patterns (TOOLS
EUROPE), pages 136–156.

Copeland, T. (2005). PMD Applied: An Easy-to-Use Guide for Developers. Centennial
Books.

Cordy, J. and Roy, C. (2011). The NiCad Clone Detector. In Proceedings of the 19th
International Conference on Program Comprehension (ICPC), pages 219–220.

Cornfield, J. (1951). A Method of Estimating Comparative Rates from Clinical Data:
Applications to Cancer of the Lung, Breast, and Cervix. Journal of the National
Cancer Institute, 11(6):1269–1275.

Deissenboeck, F., Pizka, M., and Seifert, T. (2005). Tool Support for Continuous
Quality Assessment. In Proceedings of the 13th International Workshop on Software
Technology and Engineering Practice (STEP), pages 127–136.

Dig, D., Manzoor, K., Johnson, R., and Nguyen, T. N. (2007). Refactoring-Aware
Configuration Management for Object-Oriented Programs. In Proceedings of the
29th International Conference on Software Engineering (ICSE), pages 427–436.

Fard, A. and Mesbah, A. (2013). JSNose: Detecting JavaScript Code Smells. In
Proceedings of the 13th International Working Conference on Source Code Analysis
and Manipulation (SCAM), pages 116–125.

Fawcett, T. (2006). An Introduction to ROC Analysis. Pattern Recognition Letters,
27(8):861–874.

Fenske, W. and Schulze, S. (2015). Code Smells Revisited: A Variability Perspective. In
Proceedings of the 9th International Workshop on Variability Modelling of Software-
Intensive Systems (VaMoS), pages 3–10.

62 Bibliography

Fernandes, E. and Figueiredo, E. (2016). Detecting Code Anomalies in Software Prod-
uct Lines. In Proceedings of the 6th Theses and Dissertations of CBSoft (WTDSoft),
co-located with the 7th Brazilian Conference on Software: Theory and Practice (CB-
Soft), pages 1–8.

Fernandes, E., Oliveira, J., Vale, G., Paiva, T., and Figueiredo, E. (2016). A Review-
based Comparative Study of Bad Smell Detection Tools. In Proceedings of the 20th
International Conference on Evaluation and Assessment in Software Engineering
(EASE), pages 1–12.

Fernandes, E., Souza, P., Ferreira, K., Bigonha, M., and Figueiredo, E. (2017a). De-
tection Strategies for Modularity Anomalies: An Evaluation with Software Product
Lines. In Proceedings of the 14th International Conference on Information Technol-
ogy: New Generations (ITNG), pages 1–6.

Fernandes, E., Vale, G., Sousa, L., Figueiredo, E., Garcia, A., and Lee, J. (2017b).
No Code Anomaly is an Island: Anomaly Agglomeration as Sign of Product Line
Instabilities. In Proceedings of the 16th International Conference on Software Reuse
(ICSR), pages 1–16.

Fernandes, E., Vale, G., Sousa, L., Figueiredo, E., Garcia, A., and Lee, J. (2017c).
No Code Anomaly is an Island: Anomaly Agglomeration as Sign of Product Line
Instabilities – Data of the Study. http://labsoft.dcc.ufmg.br/doku.php?id=

about:no_code_anomaly_is_an_island. [Online; accessed February 11, 2017].

Ferreira, G., Gaia, F., Figueiredo, E., and Maia, M. (2014). On the Use of Feature-
Oriented Programming for Evolving Software Product Lines: A Comparative Study.
Science of Computer Programming (SCP), 93(A):65–85.

Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A.,
Soares, S., Ferrari, F., Khan, S., Castor Filho, F., and Dantas, F. (2008). Evolving
Software Product Lines with Aspects: An Empirical Study on Design Stability. In
Proceedings of the 30th International Conference on Software Engineering (ICSE),
pages 261–270.

Figueiredo, E., Silva, B., Sant’Anna, C., Garcia, A., Whittle, J., and Nunes, D. (2009).
Crosscutting Patterns and Design Stability: An Exploratory Analysis. In Proceedings
of the 17th International Conference on Program Comprehension (ICPC), pages 138–
147.

http://labsoft.dcc.ufmg.br/doku.php?id=about:no_code_anomaly_is_an_island
http://labsoft.dcc.ufmg.br/doku.php?id=about:no_code_anomaly_is_an_island

Bibliography 63

Fisher, R. (1922). On the Interpretation of χ2 from Contingency Tables, and the
Calculation of P. Journal of the Royal Statistical Society, 85(1):87–94.

Fontana, F., Mangiacavalli, M., Pochiero, D., and Zanoni, M. (2015). On Experi-
menting Refactoring Tools to Remove Code Smells. In Proceedings of the Scientific
Workshops on the 16th International Conference on Agile Software Development
Proceedings of the (XP), page 7.

Fontana, F., Zanoni, M., Marino, A., and Mantyla, M. (2013). Code Smell Detection:
Towards a Machine Learning-based Approach. In Proceedings of the 29th Interna-
tional Conference on Software Maintenance (ICSM), pages 396–399.

Fontana, F. A., Braione, P., and Zanoni, M. (2012). Automatic Detection of Bad
Smells in Code: An Experimental Assessment. Journal of Object Technology (JOT),
11(2):1–38.

Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Object Tech-
nology Series. Addison-Wesley.

Gaia, F., Ferreira, G., Figueiredo, E., and Maia, M. (2014). A Quantitative and
Qualitative Assessment of Aspectual Feature Modules for Evolving Software Product
Lines. Science of Computer Programming (SCP), 96(2):230–253.

Griffith, I., Wahl, S., and Izurieta, C. (2011). TrueRefactor: An Automated Refactoring
Tool to Improve Legacy System and Application Comprehensibility. In Proceedings
of the 24th International Conference on Computer Applications in Industry and En-
gineering (CAINE).

Gwet, K. (2014). Handbook of Inter-Rater Reliability: The Definitive Guide to Mea-
suring the Extent of Agreement Among Raters. Advanced Analytics, LLC.

Hall, T., Zhang, M., Bowes, D., and Sun, Y. (2014). Some Code Smells have a Signif-
icant but Small Effect on Faults. ACM Transactions on Software Engineering and
Methodology (TOSEM), 23(4):1–39.

Jiang, L., Misherghi, G., Su, Z., and Glondu, S. (2007). DECKARD: Scalable and Ac-
curate Tree-based Detection of Code Clones. In Proceedings of the 29th International
Conference on Software Engineering (ICSE), pages 96–105.

Juergens, E., Deissenboeck, F., Hummel, B., and Wagner, S. (2009). Do Code Clones
Matter? In Proceedings of the 31st International Conference on Software Engineering
(ICSE), pages 485–495.

64 Bibliography

Kamiya, T., Kusumoto, S., and Inoue, K. (2002). CCFinder: A Multilinguistic Token-
based Code Clone Detection System for Large Scale Source Sode. IEEE Transactions
on Software Engineering (TSE), 28(7):654–670.

Kästner, C. and Apel, S. (2008). Integrating Compositional and Annotative Ap-
proaches for Product Line Engineering. In Proceedings of the Workshop on Mod-
ularization, Composition, and Generative Techniques for Product Line Engineering,
co-located with the 7th International Conference on Generative Programming and
Component Engineering (GPCE), pages 35–40.

Kästner, C., Apel, S., and Kuhlemann, M. (2008). Granularity in Software Product
Lines. In Proceedings of the 30th International Conference on Software Engineering
(ICSE), pages 311–320.

Khomh, F., Di Penta, M., and Gueheneuc, Y.-G. (2009). An Exploratory Study of the
Impact of Code Smells on Software Change-Proneness. In Proceedings of the 16th
Working Conference on Reverse Engineering (WCRE), pages 75–84.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., and
Irwin, J. (1997). Aspect-Oriented Programming. In Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP), pages 220–242.

Kim, C., Bodden, E., Batory, D., and Khurshid, S. (2010). Reducing Configurations
to Monitor in a Sofware Product Line. In Proceedings of the 1st International Con-
ference on Runtime Verification (RV), pages 285–299.

Kitchenham, B. and Charters, S. (2007). Guidelines for Performing Systematic Lit-
erature Reviews in Software Engineering. Technical Report, Version 2.3, EBSE
Technical Report.

Lanza, M. and Marinescu, R. (2006). Object-Oriented Metrics in Practice: Using Soft-
ware Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented
Systems. Springer Science & Business Media.

Lee, J. and Muthig, D. (2006). Feature-Oriented Variability Management in Product
Line Engineering. Communications of the ACM, 49(12):55–59.

Li, H. and Thompson, S. (2010). Similar Code Detection and Elimination for Erlang
Programs. In Proceedings of the 12th International Symposium on Practical Aspects
of Declarative Languages (PADL), pages 104–118.

Bibliography 65

Liebig, J., Apel, S., Lengauer, C., Kästner, C., and Schulze, M. (2010). An Analysis of
the Variability in Forty Preprocessor-Based Software Product Lines. In Proceedings
of the 32nd International Conference on Software Engineering (ICSE), pages 105–
114.

Liu, H., Ma, Z., Shao, W., and Niu, Z. (2012). Schedule of Bad Smell Detection and
Resolution: A New Way to Save Effort. IEEE Transactions on Software Engineering
(TSE), 38(1):220–235.

Lorenz, M. and Kidd, J. (1994). Object-Oriented Software Metrics: A Practical Guide.
Prentice-Hall.

Macia, I., Garcia, A., and von Staa, A. (2011). An Exploratory Study of Code Smells
in Evolving Aspect-Oriented Systems. In Proceedings of the 10th International Con-
ference on Aspect-Oriented Software Development (AOSD), pages 203–214.

Macia, I., Garcia, J., Popescu, D., Garcia, A., Medvidovic, N., and von Staa, A. (2012).
Are Automatically-Detected Code Anomalies Relevant to Architectural Modularity?
An Exploratory Analysis of Evolving Systems. In Proceedings of the 11th Interna-
tional Conference on Aspect-Oriented Software Development (AOSD), pages 167–
178.

Marinescu, C., Marinescu, R., Mihancea, P., and Wettel, R. (2005). iPlasma: An Inte-
grated Platform for Quality Assessment of Object-Oriented Design. In Proceedings
of the 21st International Conference on Software Maintenance (ICSM), pages 77–80.

Marinescu, R. (2004). Detection Strategies: Metrics-Based Rules for Detecting Design
Flaws. In Proceedings of the 20th International Conference on Software Maintenance
(ICSE), pages 350–359.

McCabe, T. J. (1976). A Complexity Measure. IEEE Transactions on Software Engi-
neering (TSE), 2(4):308–320.

Medeiros, F. (2014). An Approach to Safely Evolve Program Families in C. In Pro-
ceedings of the SIGPLAN Conference on Systems, Programming, and Applications:
Software for Humanity (SPLASH), pages 25–27.

Medeiros, F., Kästner, C., Ribeiro, M., Nadi, S., and Gheyi, R. (2015). The Love/Hate
Relationship with the C Preprocessor: An Interview Study. In Proceedings of the
29th European Conference on Object-Oriented Programming (ECOOP), volume 12,
pages 495–518.

66 Bibliography

Meyer, B. (1988). Object-Oriented Software Construction. Prentice Hall.

Mezini, M. and Ostermann, K. (2004). Variability Management with Feature-Oriented
Programming and Aspects. ACM SIGSOFT Software Engineering Notes (SEN),
29(6):127–136.

Miller, B., Hsia, P., and Kung, C. (1999). Object-Oriented Architecture Measures.
In Proceedings of the 32nd Hawaii International Conference on Systems Sciences
(HICSS), pages 1–18.

Moha, N., Gueheneuc, Y.-G., Duchien, L., and Le Meur, A.-F. (2010). DECOR:
A Method for the Specification and Detection of Code and Design Smells. IEEE
Transactions on Software Engineering (TSE), 36(1):20–36.

Munro, M. (2005). Product Metrics for Automatic Identification of “Bad Smell” Design
Problems in Java Source-Code. In Proceedings of the 11th International Symposium
on Software Metrics (METRICS), pages 1–9.

Murphy-Hill, E. and Black, A. (2010). . An Interactive Ambient Visualization for Code
Smells. In Proceedings of the 5th Symposium on Software Visualization (SOFTVIS),
pages 5–14.

Oizumi, W., Garcia, A., Sousa, L., Cafeo, B., and Zhao, Y. (2016). Code Anomalies
Flock Together: Exploring Code Anomaly Agglomerations for Locating Design Prob-
lems. In Proceedings of the 38th International Conference on Software Engineering
(ICSE), pages 440–451.

Parnin, C., Görg, C., and Nnadi, O. (2008). A Catalogue of Lightweight Visualizations
to Support Code Smell Inspection. In Proceedings of the 4th Symposium on Software
Visualization (SOFTVIS), pages 77–86.

Piveta, E., Hecht, M., Pimenta, M., and Price, R. (2006). Detecting Bad Smells in
AspectJ. Journal of Universal Computer Science (J.UCS), 12(7):811–827.

Pohl, K., Böckle, G., and van Der Linden, F. J. (2005). Software Product Line En-
gineering: Foundations, Principles and Techniques. Springer Science & Business
Media.

Rosenmüller, M., Apel, S., Leich, T., and Saake, G. (2009). Tailor-Made Data Man-
agement for Embedded Systems: A Case Study on Berkeley DB. Data & Knowledge
Engineering (DKE), 68(12):1493–1512.

Bibliography 67

Schaefer, I., Bettini, L., Bono, V., Damiani, F., and Tanzarella, N. (2010). Delta-
Oriented Programming of Software Product Lines. In Proceedings of the 14th Inter-
national Conference on Software Product Lines (SPLC), pages 77–91.

Schneidewind, N. (1987). The State of Software Maintenance. IEEE Transactions on
Software Engineering (TSE), 13(3):303–310.

Schulze, S., Apel, S., and Kästner, C. (2010). Code Clones in Feature-Oriented Software
Product Lines. In Proceedings of the 9th International Conference on Generative
Programming and Component Engineering (GPCE), pages 103–112.

Schulze, S., Richers, O., and Schaefer, I. (2013). Refactoring Delta-Oriented Soft-
ware Product Lines. In Proceedings of the 12th International Conference on Aspect-
Oriented Software Development (AOSD), pages 73–84.

Singh, V., Snipes, W., and Kraft, N. (2014). A Framework for Estimating Interest
on Technical Debt by Monitoring Developer Activity Related to Code Comprehen-
sion. In Proceedings of the 6th International Workshop on Managing Technical Debt
(MTD), pages 27–30.

Sommerville, I. (2010). Software Engineering. Addison-Wesley.

Tamrawi, A., Nguyen, H. A., Nguyen, H. V., and Nguyen, T. N. (2012). SYMake: A
Build Code Analysis and Refactoring Tool for Makefiles. In Proceedings of the 27th
International Conference on Automated Software Engineering (ASE), pages 366–369.

Tsantalis, N., Chaikalis, T., and Chatzigeorgiou, A. (2008). JDeodorant: Identification
and Removal of Type-Checking Bad Smells. In Proceedings of the 12th European
Conference on Software Maintenance and Reengineering (CSMR), pages 329–331.

Vale, G., Albuquerque, D., Figueiredo, E., and Garcia, A. (2015). Defining Metric
Thresholds for Software Product Lines: A Comparative Study. In Proceedings of the
19th International Conference on Software Product Line (SPLC), pages 176–185.

Vale, G. and Figueiredo, E. (2015). A Method to Derive Metric Thresholds for Soft-
ware Product Lines. In Proceedings of the 29th Brazilian Symposium on Software
Engineering (SBES), pages 110–119.

Vale, G., Figueiredo, E., Abílio, R., and Costa, H. (2014). Bad Smells in Software
Product Lines: A Systematic Review. In Proceedings of the 8th Brazilian Symposium
on Software Components, Architectures and Reuse (SBCARS), pages 84–94.

68 Bibliography

Van Emden, E. and Moonen, L. (2002). Java Quality Assurance by Detecting Code
Smells. In Proceedings of the 9th Working Conference on Reverse Engineering
(WCRE), pages 97–106.

Vidal, S., Marcos, C., and Díaz-Pace, J. A. (2016). An Approach to Prioritize Code
Smells for Refactoring. Automated Software Engineering (ASE), 23(3):501–532.

Vidal, S., Vazquez, H., Diaz-Pace, J. A., Marcos, C., Garcia, A., and Oizumi, W.
(2015). JSpIRIT: A Flexible Tool for the Analysis of Code Smells. In Proceedings of
the 34th International Conference of the Chilean Computer Science Society (SCCC),
pages 1–6.

Wettel, R. and Marinescu, R. (2005). Archeology of Code Duplication: Recovering
Duplication Chains from Small Duplication Fragments. In Proceedings of the 7th
International Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting (SYNASC).

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., and Wesslén, A. (2012).
Experimentation in Software Engineering. Springer Science & Business Media.

Yamashita, A. and Moonen, L. (2013a). Exploring the Impact of Inter-Smell Rela-
tions on Software Maintainability: An Empirical Study. In Proceedings of the 35th
International Conference on Software Engineering (ICSE), pages 682–691.

Yamashita, A. and Moonen, L. (2013b). To What Extent Can Maintenance Problems
be Predicted by Code Smell Detection? – An Empirical Study. Information and
Software Technology (IST), 55(12):2223–2242.

Yau, S. and Collofello, J. (1985). Design Stability Measures for Software Maintenance.
IEEE Transactions on Software Engineering (TSE), 11(9):849–856.

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Studies on Code Anomaly Detection
	1.3 Proposed Anomaly Agglomerations in SPL
	1.4 Evaluation of SPL Stability
	1.5 Dissertation Outline

	2 Background
	2.1 Feature-Oriented Software Product Lines
	2.2 SPL Maintenance Problems and Instability
	2.3 Final Remarks

	3 Code Anomaly Detection
	3.1 Literature Review on Detection Tools
	3.2 Comparative Study of Detection Tools
	3.3 Detection Strategies
	3.4 Final Remarks

	4 Anomaly Agglomeration in SPL
	4.1 Feature Agglomeration
	4.2 Feature Hierarchy Agglomeration
	4.3 Component Agglomeration
	4.4 Final Remarks

	5 Evaluation of SPL Stability
	5.1 Evaluation Settings
	5.2 Results for Non-Aglomerated Code Anomamies
	5.3 Results for Agglomerated Code Anomalies
	5.4 Threats to Validity
	5.5 Final Remarks

	6 Related Work
	6.1 Code Anomalies in SPL
	6.2 Instability in SPL
	6.3 Code Anomaly Agglomerations
	6.4 Final Remarks

	7 Conclusion
	7.1 Main Contributions
	7.2 Future Work

	Bibliography

