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Resumo

Neste trabalho é apresentado um modelo para o Mecanismo Humano de Processamento
Textual e uma implementação deste modelo na forma de uma linguagem de progra-
mação de nome JSpy. Este sistema é capaz de descrever informação estruturada de
forma muito adequada à representação de Linguagem Natural. Isso possibilita que sig-
nificados semânticos complexos sejam expressados em poucas linhas de código e com
naturalidade. A avaliação do sistema é feita resolvendo-se um conjunto de problemas,
propostos por Weston et al., que avaliam diferentes habilidades de processamento tex-
tual. Os scripts criados para solucionar estes testes foram capazes de descrever de
forma concisa as soluções de cada teste, utilizando poucas linhas de código e obtendo
resultados precisos.

Keywords: Sistemas de Resposta, Compreensão de Linguagem Natural, Casa-
mento de Padrão.
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Abstract

In this work, we present a model for the Human Sentence Processing Mechanism and
an implementation of this model called JSpy Programming Language. This system is
capable of describing structured information in a very appropriated way for representing
Natural Language. Allowing complex meanings to be expressed in few lines of code.
The system is evaluated by resolving a set of problems related to specific parsing skills
proposed by Weston et al. The scripts designed to solve these tests were capable of
concisely describing the solutions for each skill test, using a short number of lines and
obtaining accurate results.

Keywords: Question Answering, Natural Language Understanding, Pattern Match-
ing.
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Extended Abstract

1. Introduction

The human brain is considered by some the most powerful computer designed by
nature. The effort to understand even parts of it has inspired many researchers in
different areas of knowledge. Among them, researchers in Psycholinguistics and Natural
Language Processing (NLP) have directed their efforts on building models to replicate
the human mechanism responsible for parsing, understanding and producing Natural
Language, also known as the Human Sentence Processing Mechanism (HSPM, Crocker
[1996]).

In this work, we present 2 concepts: (1) The JSpy Model designed to describe
the Human Sentence Processing Mechanism and (2) the JSpy Programming Language
that is an implementation of this model in the form of a modern and well-structured
programming language. The JSpy Programming Language is based on Python and
JavaScript, making it very familiar to modern programmers. The key feature of the
language is the JSpy Matcher construct that describes an expressive pattern matching
system. The JSpy Matcher design makes use of familiar tools as Regular Expressions
and modern programming languages concepts to implement a plausible HSPM im-
plementation that is comprehensible and easy to experiment with. This work aims
to provide new insights on how the HSPM represents information, meaning and data
structures, as well as providing a tool to illustrate and explore the possibilities of this
model.

2. Methodology

To evaluate JSpy as a whole, we have solved 17 from the 20 bAbI problems (We-
ston et al. [2015]). These problems are a set of carefully planned Question Answering
problems, designed for testing different skill sets expected from Natural Language Un-
derstanding tools. Each problem of the 20 is responsible for testing the capacity of a

xvii



program to solve a different NLU task. The resulting scripts solve all the tasks with
superior accuracy in comparison to the current state of the art and require very few
lines of code. This does not indicate this model is superior to Neural Networks based
approaches since the later works with unsupervised learning. However, the fact all
the scripts are short and simple support the claim that their architecture is a good fit
for representing Natural Language concepts and thus suggesting that the JSpy Model
might actually be a good model for the HSPM.
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Chapter 1

Introduction

The human brain is considered by some the most powerful computer designed by
nature. The effort to understand even parts of it has inspired many researchers in
different areas of knowledge. Among them, researchers in Psycholinguistics and Natural
Language Processing (NLP) have directed their efforts on building models to replicate
the human mechanism responsible for parsing, understanding and producing Natural
Language, also known as the Human Sentence Processing Mechanism (HSPM, Crocker
[1996]). Several models have been proposed as plausible options to describe the HSPM,
among them we can list the Augmented Transition Networks for Natural Language
(Woods [1970]), the Pereira and Warren’s Definite Clause Grammars for language
analysis (Pereira and Warren [1980]) and ultimately the Neural Networks designed
for Natural Language Processing (Goldberg [2015]). In NLP Neural Networks are
currently the most popular model and is capable of obtaining accurate results in areas
such as image and voice recognition and information extraction often performing even
better than humans. However when facing tasks on the field of Natural Language
Understanding (NLU) still present low accuracy compared to humans. Also, when
using Neural Networks to replicate the behavior of the HSPM it can only learn small
artificial languages and scales poorly as discussed in Chater and Manning [2006].

Understanding and producing text in human language can, arguably, be the most
complex activity humans do. It integrates feelings, emotions, memory and a variety
of information processing systems on each time its used to write or read a message.
It not just differentiates humans from animals, but it is often considered (Noormo-
hamadi [2008], Miller [1962]) the most important step towards understanding human
intelligence. A successful model for text comprehension could bring new paradigms
for Artificial Intelligence, Machine-Learning, Human-Computer Interaction and also
on other fields such as Psychology and Biology (Graham-Rowe [2007]).

1



2 Chapter 1. Introduction

Although the first attempts at NLU started as early as 1964, with Bobrow’s STU-
DENT (Bobrow [1964]), the progress in the area has been slow. Some computational
models have achieved some success in describing the human language structure such as
Woods’s ATNs (Woods [1970]), however, they struggled when dealing with larger frac-
tions of the human language at once. In recent years there has been an increasing effort
on text comprehension with Neural Networks and Machine Learning techniques that
are capable of dealing with big chunks of information, solving several real-world Nat-
ural Language problems. However, the stochastic nature of these techniques prevents
them from expressing well-defined structures on their internal models. As a result,
NLU problems that require well-defined structures such as (1) Question Answering,
(2) Summarization and (3) Automatic Dialog are still mostly unsolved.

In this work, we present two concepts: (1) The JSpy Model designed to describe
the Human Sentence Processing Mechanism and (2) the JSpy Programming Language
that is an implementation of this model in the form of a modern and well-structured
programming language. The JSpy Model for the HSPM was created to provide an
adequate architecture for storing and processing information for Natural Language
Parsing systems. The model can be roughly described in three steps: (1) how to
represent perceptual information, (2) how to represent patterns, and use them, and (3)
how to group these patterns into conceptual groups that offer a substantial number of
interesting features.

The JSpy Programming Language is based on Python and JavaScript, making
it very familiar to modern programmers. The key feature of the language is the JSpy
Matcher construct that describes an expressive pattern matching system and is de-
signed accordingly to the conceptual groups described in JSpy Model. The JSpy
Matcher design makes use of familiar tools as Regular Expressions and modern pro-
gramming languages concepts to implement a plausible HSPM implementation that is
comprehensible and easy to experiment with. This work aims to provide new insights
on how the HSPM represents information, meaning and data structures, as well as
providing a tool to illustrate and explore the possibilities of this model.

To evaluate JSpy as a whole, we have solved 17 from the 20 bAbI problems (We-
ston et al. [2015]). These problems are a set of carefully planned Question Answering
problems, designed for testing different skill sets expected from Natural Language Un-
derstanding tools. Each problem of the 20 is responsible for testing the capacity of a
program to solve a different NLU task. The resulting scripts solve all the tasks with
superior accuracy in comparison to current state of art and require very few lines of
code. This does not indicate this model is superior to Neural Networks based ap-
proaches since the later works with unsupervised learning. However, the fact all the
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scripts are short and simple support the claim that their architecture is a good fit
for representing Natural Language concepts and thus suggesting that the JSpy Model
might actually be a good model for the HSPM.

1.1 Thesis Statement

In this work, we present a framework, called JSpy, on which is possible to develop NLU
applications easily, rapidly and using a model that actually fits the Natural Language
nuances. The JSpy “matcher ” is simple and flexible enough to describe a diversity
of structures that together are capable of organizing meaning and explicitly dealing
with ambiguities with the support of a modern and flexible programming language.
Furthermore, JSpy is based on a novel HSPM (Crocker [1996]) model that can be
easily experimented with and is likely to provide new insights on how to organize and
process semantic and syntactic information.

1.2 Thesis Organization

On Chapter 2 we present a brief explanation of related works and discuss their relation
to JSpy. Section 3.1 explains the JSpy Model, introduce some considerations about its
properties and discuss its supporting arguments and features. Section 3.2. describes
the JSpy Language implementation, its syntax, design decisions and discuss in details
how closely it is related to the JSpy Model. On Chapter 4 the JSpy Language is
tested against a set of tasks proposed by Facebook researchers (Weston et al. [2015]),
the methodology is explained and its results are compared with results from other
NLU technologies. Finally on Chapter 5, the conclusion, the model is revised and the
supporting arguments are discussed; On the end of this chapter, a list of future works
is presented and briefly described.

Additional information about the JSpy Grammar is available on Appendix A.
Appendix B discuss in more depth the semantics of the JSpy Language in comparison
with JavaScript and finally Appendix D proves the capacity of the model to express
complex data types if required.





Chapter 2

Background and Related Work

In this section, we present concepts and previous works that are related to the JSpy
Model and Programming Language.

2.1 Patom Theory

The Ball et al.’s Patom Theory (Ball et al. [2012]) describes a model for organizing
and processing information within the brain, with an approach similar to JSpy. Ball’s
company: Pat Inc. has developed a proprietary implementation of this model using
Neural Networks that is claimed to be capable of extracting structured meaning from
texts and voice input in a very reliable manner. The two models are similar, however,
JSpy Model is much more complete and concretely described being more likely to give
better insights and be of more use to the scientific community. Furthermore, JSpy
Language is open-source and as so can be tested and experimented with by anyone.

2.2 Augmented Transition Networks

The Augment Transition Networks (ATNs) designed by Woods (Woods [1970]) is a
powerful and efficient model for describing language in terms of a Transition Network
and it is as powerful as a Turing Machine as proved in Bates [1978]. The differential
that makes it possible is the use of recursion tied to the fact that custom code can be
inserted on each transition, helping to validate it and allowing the extraction of useful
information. The ATNs are very capable of expressing much of the same concepts as
the JSpy Matcher implementation and has been used in early attempts to model the
Human Sentence Parsing Mechanism (Kaplan [1972]). JSpy differs from ATNs first

5



6 Chapter 2. Background and Related Work

in its conception: ATNs were designed to express grammar as an efficient automaton,
while JSpy was designed as a model for the organizing and processing meaning for NLU
applications. As a consequence of this JSpy has at least 3 conceptual differences: (1)
JSpy includes the idea of ambiguities in text not as a corner case but as an expected
case, (2) JSpy is less concerned with efficiency, (3) JSpy accepts on the fly updates on
its own internal structures (as humans do when learning). An extra difference between
the two models is the age of them: JSpy Language, being newer is designed with
modern programming languages concepts and features, with the idea of facilitating the
programmer’s job as much as possible.

2.3 Intelligent Personal Assistants

Intelligent Personal Assistants (IPAs) as described in Gong [2003] were designed as an
human-interaction tool, designed to help humans perform computer tasks such as a
simple query or command. Examples of such agents include Apple’s Siri, Google Now
and Microsoft’s Cortana. IPAs are a product of current work of art Natural Language
Processing tools, and as described by Valin (Valin [2016]), they are more closely related
to Machine Learning, than with the Natural Language Understanding field. This brings
some advantages when solving simple tasks: It does not require to fully understand
the text to give a likely good answer. However, it struggles to deal with complex
language constructs, since it does not attempt to understand the underlying structure
of a sentence. This makes it useful for interpreting small contextualized texts, but
incapable of fully understanding larger Natural Language sentences as JSpy proposes.

2.4 Wolfram

Wolfram technologies (Wolfram Research [2016]) have produced impressive results in
NLU. In special Wolfram Alpha Website1 is capable of interpreting fairly complex Nat-
ural Language queries answering with human readable graphs numbers and statistics.
Wolfram Programming Language which is the system used to create all Wolfram prod-
ucts is a highly symbolic programming language. One resemblance of this system with
the theory presented here is the fact that Wolfram Language has a built-in pattern
matching system2 that is responsible for evaluating what to do with the arguments of
a function. However, to fully understand the theory used by Wolfram or to compare

1http://www.wolframalpha.com/

http://www.wolframalpha.com/
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Wolfram Language with JSpy is complicated, since all Wolfram products are propri-
etary.

2.5 bAbI Facebook’s Project

The 20 bAbI toy problems proposed by Facebook researchers (Weston et al. [2015])
were designed to test different skill sets required by Natural Language Processing and
NLU applications. Each problem is composed of simulated stories where actors interact
in a virtual world; each story is intermixed with questions about the virtual actors,
and the answers are made available after a TAB character, so that machine learning
programs can use it as train sets. These tests were designed for training machine learn-
ing tools and then evaluating their aptitude for emulating Natural Language parsing
skills required for NLU tasks. They are also ideal for evaluating the JSpy fitness for
modeling and implementing each of these skills.

2http://reference.wolfram.com/language/guide/PatternMatchingFunctions.html

http://reference.wolfram.com/language/guide/PatternMatchingFunctions.html




Chapter 3

A new Approach for Natural
Language Parsing

In this chapter, we will explain JSpy in details. The first part, Section 3.1, will focus on
the JSpy Model, while the second part, Section 3.2, will describe the important aspects
of JSpy programming language and of the JSpy Matcher construct that implements
the model.

3.1 A Model for the Human Sentence Processing

Mechanism

The creation of a model for describing Natural Language is a challenge, ambiguities
occur often, and even if grammars can describe part of its rules, there is no good
way yet to describe “meaning” or to comprehend abstract sentences. This section will
explain the model and how these features are treated by it. However, before this there
are some considerations regarding the current research context:

3.1.1 Situating the model on the HSPM research context

3.1.1.1 Choosing the Level of Abstraction:

As discussed by Fodor and Pylyshyn [1988] when discussing a model for something as
complex as the human brain it is first necessary to make explicit the chosen level of
abstraction we will be referring to. While Neural Networks are great at doing what
they do, they are not a complete model of the human brain in the same way transistors
can not fully explain a computer and atoms can not fully explain the natural world.

9



10 Chapter 3. A new Approach for Natural Language Parsing

The JSpy Model is built on top of the abstraction of patterns to describe a plausi-
ble HSPM model. The pattern abstraction, in turn, can be naturally described in terms
of Neural Networks. As a consequence, the JSpy Model, however not exactly a connec-
tionist model by itself, is fully established on top of it. Furthermore, a demonstration
of this argument is available on Section 3.1.11.3.

3.1.1.2 Objective as opposed to Stochastic:

The JSpy Model is an objective model of the HSPM in the sense it does not rely on
probabilities or statistics. This choice was made to keep the model comprehensible
and extensible, meaning that the focus of the model is on the structural organization
of information instead of features such as performance, generalization or automatic
learning. This is not the same of saying these features cannot be included in the
model: it just states these were not the conceptual focus of the project and aligning
the model to these paradigms will be left as a future work.

3.1.1.3 Architectural Choices:

As it is well explained by Crocker [1996] there are some common architectural choices
regarding HSPM models. The JSpy Model’s architecture is on the parallel and inter-
active branch, following more closely the connectionist approach. This means that the
patterns are expected to be processed in parallel when possible and the information
produced by any part of the system can be used interactively by any other parts.

3.1.1.4 Performance Concerns:

Regarding specific algorithms for sentence parsing the JSpy Model does not address
them directly. As explained in the previous section this project focus on structural
matters or matters of Competence (Ford, Marilyn, Bresnan, Joan W., and Kaplan
[1982]) instead of on performance concerns such as the specific parsing features
proposed by the studies on the Garden-Path Theory (Milne [1982]). Nonetheless, this
does not necessarily mean the Model is incompatible with such studies, this question
is likely to be addressed in future works.

3.1.1.5 Regarding a Similar Theory: the Patom Theory

It is important to point out that this model holds some resemblance with Ball et al.’s
Patom Theory. Both models describe the HSPM as pattern matching system. They
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both also describe the meaning processing mechanism as a consequence of the design
and interactions of the patterns as an interconnected system.

3.1.1.6 Some final considerations about design decisions:

The JSpy Model was designed to fit for human Competence skills such as:

• Explicitly dealing with ambiguities (returning all information regarding each in-
terpretation for later resolution)

• The possibility to learn or update a new sentence or word at any time (including
during execution) and with little effort.

• The possibility to pursue multiple tasks at the same time, such as processing
contextual information and textual information simultaneously.

Theses choices take into account the connectionist aspects of the brain, i.e. its
natural parallelism (Feldman [1985]), the interactive aspect of the human learning be-
havior (Skinner [1969]) and the importance of having access to contextual information
as discussed by Davis and Veloso [2016].

This design provides some interesting properties and insights that will hopefully
lead us to further researches in future.

The rest of this section will first provide a complete explanation of the model and
afterward discuss some important properties of it, like whether it is Turing Complete
and how exactly it can be implemented on top of Neural Networks.

3.1.2 Describing Information: The Snapshots

To recognize text and words it is necessary to have a consistent way to describe the
expected text. This is valid for the human brain, as well as it is for this model.

In the human brain, these events are represented as internal signals produced by
sensory receptors such as eyes, ears, tongue and skin (Wessells [1982], Haag and Borst
[1998]). While in a computer they would be likely represented as byte arrays.

In this model, the most granular chunk of information considered will be labeled
a Snapshot, borrowing Ball et al.’s description (Ball et al. [2012]). A Snapshot is
responsible for working as a building block for describing any kind of information on a
chosen context. For instance, a pixel could be chosen as the Snapshot in the context
of describing figures, but since pixels are encoded as bytes, one could argue that a
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byte array is a better choice of representation. Since our effort is to describe language,
we will often restrict the Snapshot concept to characters. But it is important to keep
in mind the full depth of the Snapshot concept for it allows the HSPM to integrate
information from different kinds of sources fulfilling the constraints model (Elman et al.
[2004]) where the recognition of each input is subject to information and constraints
from several contexts.

When choosing a set of Snapshots to represent an input context there are multiple
alternatives on how to do so. For example, we could make the arbitrary choice of
representing language with phonemes instead of letters and it would likely have an
equivalent outcome for describing language. This is also valid for people, learning
different languages is further complicated by the difference in the building blocks each
person’s brain was built upon. For example, Japanese speakers are used to a phonetic
alphabet, as such, they have a hard time hearing and pronouncing single consonants,
i.e. consonants not paired with a vowel since these sounds do not exist in their phonetic
model.

The important thing when choosing a set of Snapshots as the tiles for a pattern
system is that they should be unique and capable of expressing all the signals expected
to be produced and/or received. It is also preferable, for simplicity, to avoid redundancy
among them: avoiding creating complex Snapshots when they could be described as a
sequence of smaller ones.

3.1.3 Building Patterns from Snapshots

To create an actual Pattern and describe real world events, a set of Snapshots must be
grouped together. There is arguably three types of operations that could describe the
occurrence of a Snapshot in relation to other Snapshots to form patterns:

• Simultaneous-occurrence:
When both must happen at the same time.

• Alternate-occurrence:
When any of them might happen and would mean the same thing.

• Relative-occurrence:
When it is expected for one of them to happen before or after the other.

However, in the way characters are currently represented it is not possible for two
of them to occur simultaneously. It could, however, be argued that the occurrence of
a letter together with an accent would represent a simultaneous occurrence. But, for
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simplicity, our chosen set of Snapshots will be based on the Unicode convention: each
character, with an accent and without it, are considered separated representations, not
being possible for two of them to occur at the same time in a text string.

Another point deserving attention is that the Relative-occurrence operation
should possibly include other types of relations; for example, when evaluating pat-
terns in a figure one might argue that the occurrence of one pattern above or below
the other has an important meaning. However, this does not concern our task, and
therefore we will consider only the linear occurrence relationship between letters.

If the reader has experience with the capabilities of Regular Expressions (REs)
he might have noticed the concepts of alternate and relative occurrence can be easily
expressed by them. For this reason, REs will be used as an artifice to help to describe
the model in this section and afterward as part of the JSpy Language’s syntax as well.
For an introduction to regular expressions, there are plenty of resources available online.
For an overview of the concept see Aho and Ullman [1992] on the Regular Expressions
topic.

Finally, these three operations can be described using the abstraction of Neural
Networks; A full demonstration will be available on Section 3.1.11.3.

3.1.4 Snapshot Polymorphism: A Pattern is a Snapshot as well

Now that we have defined what a pattern is, we should go a step back and notice that
the event of a pattern being recognized can also be considered an input for the pattern
matching mechanisms. Inside the brain we could argue that this event would produce
an electric signal no different from the signal of a snapshot, thus making the pattern
recognition itself a new type of snapshot.

The consequence of this feature is that an entire pattern could be used to build
a more complex pattern using the same rules explained in the previous section. For
example to denote a pattern formed by the word “foo” or “bar”, such as denoted by
the regular expression “foo|bar”, would actually mean to build a pattern formed by an
alternate-occurrence relationship between the patterns “foo” and “bar”.

This feature also modularizes the architecture of the pattern matching. Making
the meaning of pattern to depend, recursively, on other patterns spread across the
system. This behavior makes it comparable to Recursive Transition Networks (Nier-
haus [2009]) which are a basic structural concept behind the Augmented Transition
Networks described in Chapter 2.
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3.1.5 Pattern Grouping and its Consequences

At this point, we already discussed (1) how a pattern can be treated as a Snapshot, (2)
that Snapshots can be joined together in the form of an alternate-occurrence relation-
ship. With these two features described emerges a new possibility, it is now possible
to join together a group of patterns as a pattern itself. For example, similar objects
such as “door” and “window” could be joined on a group. To facilitate the use of this
group lets give it a label such as “open-able objects”.

This important construct will be referenced later as a Pattern Group, i.e. a
pattern built by joining several patterns using the alternate-occurrence relationship.

Such a group could then be used on further patterns, for example, to interpret a
phrase such as “open the door” one could describe it as a concatenation between the
pattern “open the ” and the “open-able objects” group; Borrowing JSpy syntax1, such
a pattern would look like this:

pattern = "open the (openable_objects)"

This concept brings generalization to the model. A single pattern like the one
described above can now work with several different objects, instead of a single one.
Also since the system is bound to be Dynamic one group can be updated at any time,
making it capable of storing run-time information and even learning new words.

This feature has a special importance in the matter of building a comprehensible
knowledge base: Using labels to group patterns allows our expressions to be readable,
and also, in the case of JSpy Language, to store different sets of information in different
parts of the code.

3.1.6 Expressing Boolean Logic

Another natural consequence of Snapshot Polymorphism is that a single pattern recog-
nition can now depend on multiple other patterns to be recognized simultaneously as
well. This is possible by building a pattern using the simultaneous-occurrence rela-
tionship described in Section 3.1.3. This feature is useful as a guard to restrict the
recognition of specific patterns to specific contexts. For example, a pattern might be
constructed to be recognized only if the pattern “run” and the pattern of “being under-
water” are recognized simultaneously, and could possibly be linked with the meaning
of “swim away”.

1Although the syntax used in the example is similar to JSpy it was slightly simplified to make
sure it is easy to comprehend
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This feature allows for patterns to be sensitive to contextual information avail-
able in the form of several other patterns on the system. We could even describe
Boolean variables and literals in terms of patterns: A pattern that is never recognized
is equivalent to False, while a pattern that is always recognized is equivalent to True.
And finally, a Boolean expression could be described as a pattern built by using both
the simultaneous-occurrence and the alternate-occurrence relationships to represent
operations “and” and “or” respectively.

This concept of Boolean Expressions differs from the Pattern Groups construct
in the matter of purpose: This construct is designed to be used as a context sensi-
tive mechanism. Thus, allowing different parts of the system to be used in different
environmental contexts.

This construct will be later referenced by the name of Pattern Boolean Ex-
pressions on sections 3.1.8.2 and 3.1.10.

3.1.7 Describing Meaning

JSpy Model approach to meaning can be defined in terms of the set of internal reactions
caused as a response to an input stimulus. That is to say that the model should be
capable of extracting information from the text, saving it internally when required
and producing a comprehensible response for each input. To produce this reaction
the model will rely on three internal features for processing meaning: (1) Information
Forwarding, (2) Saving Global State and (3) External Calls.

Before explaining these 3 concepts keep in mind that the recognition of a pattern
as discussed on section 3.1.4 produces a signal that might trigger the recognition of
other patterns.

That said, the concept of Information Forwarding means that after the recog-
nition of a pattern the information used during the matching will be available on the
system and can be accessed by other patterns. This way the recognition of a pattern
may activate a chain of other patterns effectively splitting the task among different
modules. Each one might then consider a small part of the input information available
implementing a “divide and conquer” strategy to simplify the task of meaning reso-
lution. In practice, this represents a recursive resolution of meaning where the final
modules will receive a mitigated version of the input. The effective resolution of the
meaning will be performed by the 2 remaining features explained below.

The concept of Saving Global State is the possibility of saving some kind
of information temporarily or in the long term. This is required to implement some
equivalent to a working memory mechanism which is a required feature for language
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(Baddeley [2003]), and also to offer a feature of run-time learning mechanism. To
express this feature with the elements already present on our model we will describe
this capability as the possibility of defining new patterns or forgetting old ones. This
process can be described as the process of activating and inhibiting neural links. The
interesting aspect of this choice is that it is enough to represent several data types, as
exemplified in Appendix D.

The External Calls concept derives from the feature described on Section 3.1.4:
When a pattern is recognized it produces a signal that is accessible by other parts
of the system. The External Calls concept extends this definition: These signals can
also be received by other parts of the brain outside the HSPM (if there is any real
division). This means that a recognition of a pattern in the brain might mean that a
signal will be sent to a muscle or a gland, causing external responses as consequence of
a stimulus recognition. The equivalent concept for a computer implementation of this
model would be to access other devices or programs of the computer.

These 3 features allow to the system to (1) recursively break down information
into smaller pieces, (2) save information on the global state and finally (3) produce
external responses when required.

3.1.7.1 A pseudo-language for denoting meaning

Now that we have described what a pattern is and which operations are applicable to it,
and we have described the 3 features that implement the meaning of a pattern we can
now introduce an artifice to illustrate all these concepts in the form of a programming
language.

This pseudo-language will be used later to demonstrate properties of the model.
A short description of the language is available below. This short version should
be enough to understand the demonstrations, however, if the reader prefers a full
description is available on Appendix C.

The language will consist of 2 data types, 3 pattern-build operators, and 2 func-
tions. The 2 data types are the Pattern and the Input, they will be described using
the following syntax:

pattern = "open the (openable_object)obj;"

input = ’input formed by literal characters’

To express the 3 pattern build operations, i.e. the 3 relationship operations
described on Section 3.1.3 we will define these 3 operators:
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// The alternate-occurrence operator:

foo_or_bar = "foo" | "bar"

foo_or_bar = "foo|bar"

// The simultaneous-occurrence operator:

foo_and_bar = "foo" & "bar"

foo_and_bar = "foo&bar"

// The relative-occurrence operator:

foo_before_bar = "foo" + "bar"

foo_before_bar = "foobar"

The operators "&" and "+" are also applicable on inputs, joining them together im-
plying they occurred simultaneously or one after the other.

There is also a common case that is used often to describe pattern groups:

S = S | "new member of the pattern group"

S = S | "another new member of the pattern group"

To facilitate this common case lets define one extra operator, the group forming oper-
ation, equivalent to the operation described above:

S |= "new member of the pattern group"

S |= "another new member of the pattern group"

To describe the meaning associated with a pattern we will write it after the pattern
enclosed on curly brackets, e.g.:

pattern = "open the (openable_object)obj;" {

// pseudo-code here

}

Please note that the name “obj” will reference the input captured by the
"openable_object" group if the pattern is recognized.

Finally, to forward the input of a recognized pattern to another pattern we will
use the “match” function, and to make an external call we will use the “call” function.
The final example below should illustrate how these features can be used:
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context = "box|lamp|sink" {

// Send a signal to another part of the system:

call(print, ’The object is present!’)

}

pattern = "is a (objects)obj; present in the context?" {

// This will only execute the meaning of context

// if obj is present on context pattern:

context.match(obj)

}

3.1.8 Dealing with ambiguities

As noted before, distributed processing is a core concept of this model. In fact, all the
operations of parsing, creating and removing patterns are expected to run in parallel
in several parts of the system at the same time. As such, the normal behavior is not to
obtain a single possible interpretation of every aspect of the environment, but rather
to evaluate all of them and expose the collected information to the rest of the system.
For example, when a human reads an ambiguous sentence it will not perceive a single
interpretation and forget about the other one, it will most likely concern with both of
them and try to guess the most reasonable response to this input. A response, in this
case, might even be to consider both interpretations as possibly true and take actions
that respect any restriction both of them impose.

Ambiguity resolution then is not just a matter of removing ambiguous interpre-
tations from consideration as soon as possible, but rather to make sure to reduce the
interpretations to a point where it is possible to make reasonable decisions based on
the remaining ones. Reducing the possible interpretations to a single one is a require-
ment imposed mostly by demands on the external environment such as: answering a
question, making a decision or planning a course of action to deal with some problem.

3.1.8.1 Defining ambiguity

Ambiguities in this model arise when an input stimulus trigger multiple recognitions
from different patterns, or even from the same pattern. After each recognition the
meaning function associated with the pattern is then responsible for forwarding any
important information.

If the ambiguity in question must be resolved, the system should provide a pattern
that will recognize that kind of ambiguity and use the forwarded information to take
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an appropriated action.
The next section will explain the possible methods these ambiguity resolution

patterns might take to resolve them.

3.1.8.2 Solving Ambiguities

Most ambiguities are solved by simple grammatical restraints, i.e. most patterns won’t
match the input, leaving the system to deal only with the ones that have. The rest
of this section will describe three mechanisms for dealing with the remaining types of
ambiguities.

The first mechanism for reducing the total number of interpretations is by using
Pattern Boolean Expressions to prevent invalid recognitions when contextual informa-
tion is enough to do so. To exemplify this consider the response of “running away”, this
response would be linked to patterns that detect danger, such as an imminent attack.
However, there are more than one possible response for “running away”: If on foot it
means actually running, if swimming it means “swim away”, and on a car, it would
mean “drive away” and so on. In this case, a Boolean check for the presence of water,
or a car might be enough to discard some interpretations.

The second type of ambiguities are those that can be solved but would require
a complex model to be solved. As an example of this type of ambiguity consider the
sentence: “He drove down the road in his car”; In this sentence, it is not clear whether
he drove on a road using his car, or if he drove on the road that was inside his car. The
second interpretation is quickly dismissed by any human being, for a road is unlikely
to fit inside a car. However, this notion is not so clear for a machine, since it would
require it to understand concepts related to the space occupied by objects.

For these problems, the human approach is to try to reason about whether each
interpretation is feasible by comparing it to an internal model of how the world is.
For JSpy Model to solve such a problem it would require at least the possibility to
implement such models internally and to have them available when evaluating such a
sentence. The design of such models of the real world is not to be discussed here, but
it is important to notice that the presence of these models might be the only way to
solve such kind of problems. Thankfully, the JSpy Model is comparable to a Turing
Machine, making this implementation possible (see Section 3.1.11.2).

The third and final method is either asking for help or guessing, i.e. when there
is no reliable way to choose a meaning what remains is to rely on external resources or
statistical methods.

With this design, the model is believed to provide enough tools for an implemen-
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tation to solve simple ambiguities by pattern matching, complex solvable ambiguities
by designing internal models suitable for the task and unsolvable ambiguities by any
means available.

Since it is not possible to enumerate all the possible ambiguities in such a complex
model. A feasible solution is to implement the resolutions for these ambiguities over
time as the problems arise from the usage of the system. This approach might not be
optimal, but we could argue that humans suffer from the same problem, often requiring
help to make sense of real-world problems.

3.1.9 Unsupervised Learning

Since it is argued that this model is compatible with Neural Networks it should be
expected to be possible to train it in the same way, i.e. with unsupervised learning
methods. However as stated on Section 3.1.1 regarding the objective aspect of this
model, it was built with the intent to describe structure rather than performance. As
consequence of this choice, the matter of how to create such a network using some
unsupervised learning technique was not considered yet.

However, we can guess some properties of such system. It would most likely
consist on a paradigm of Competitive Activation as described in Crocker [1996]. Less
successful patterns would most likely be discarded and the ones that are often successful
would be preserved. We could also consider the possibility of automatically generating
new patterns based on existing ones either for creating optimized paths for frequent
inputs or by joining together similar ones when generalization is possible.

Also, since it is not possible to pursue in parallel all the possible paths of a
grammar built using such a system a ranking should be considered where the system
would first attempt to interpret the most successful patterns and only in case of failure
pursuing the others. This follows the Bounded, Ranked Parallel approach described in
Crocker [1996].

Time restrictions and memory load restrictions should also be included in such
algorithm. Patterns that take too long complete the evaluation or are too much memory
inefficient should be demoted in favor of the more efficient ones, and patterns that never
complete in time should be discarded.

Furthermore, this aspect of the model is more strongly related to areas such
as Artificial Intelligence, Machine Learning, and Unsupervised Neural Networks and
would greatly benefit from concepts from these areas. Further studying and describing
this aspect of the model is left as a future work.
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3.1.10 Distinguishing Features

The description of the model is now complete, and several important features have been
described. In this section, they will be organized in a set of nine different features. This
features will later be used in Section 4 to provide insights of the applicability of each
of them on practical experiments. Most features listed below are already present on
the JSpy Language, the two that aren’t are explained at the end of this section.

1. Explicit Ambiguity Resolution
Ambiguities can never be discarded implicitly by the implementation as described
in Section 3.1.8 Instead, the solving mechanism should have access to all infor-
mation available, including internal solution models that might be useful.

2. Dynamic Pattern Updates
It must be possible to add, remove or modify patterns, as well as add and remove
them from existing Pattern Groups during run-time.

3. Distributed Processing Feasibility
This feature is an important concept: As inefficient as this model might be to im-
plement in a Von Neumann machine the possibility of designing it on a hardware
fit for parallel processing might compensate for this problem.

4. Support for Ad Hoc models
In Section 3.1.7 it is described how complex processing structures can be built
from the pattern concepts alone. The important aspect of this feature is to
enforce that any implementation of the model must be capable of solving problems
normally solved by programming languages. This system should be capable of
describing specific models to solve specific real-world problems, making possible
to ultimately describe Meaning and deal with ambiguities appropriately.

5. Snapshot Polymorphism
A pattern must be able to make references to other patterns as well as pattern
groups, as described in section 3.1.4 and 3.1.5

6. Recursive reasoning delegation
It must be possible for a recognized pattern to forward the meaning resolution
task to other patterns recursively. This feature is described in Section 3.1.7

7. Boolean Logic Mechanisms
It must be possible for patterns to be associated with Boolean mechanisms for
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refuting invalid pattern recognitions when the context is enough to make the
decision. This feature is described by the model on Section 3.1.6.

8. Represent Data
It must be possible to represent different types of data. The model explains
this feature as a consequence of different configurations of a pattern network on
Section 3.1.5, 3.1.6, and Appendix D. However, these pattern based structures
can be replaced by equivalent implementations; For example in JSpy Language,
the basic data containers are Maps and Lists.

From these features, only feature 2 is not yet implemented on the JSpy Language
but it is scheduled to be added to the implementation soon.

3.1.11 Discussing the Model

The model was built using few premises to describe a big architectural framework
for text parsing. Here we will demonstrate some important properties that emerge
from this architecture in order to support the plausibility of the JSpy Model construct.
Please note that many of the demonstrations will rely on the pseudo-language described
on Section 3.1.7 and better explained on Appendix C.

3.1.11.1 The Model as a Grammar

One interesting aspect of this model is that it produces a structure capable of naturally
representing a grammar. Consider for example a simple context-free grammar such as:

S → ABC
A → aA
B → S | A
C → λ

Such grammar could be easily represented using the pseudo-language of the model like
this:

S = "(A)(B)(C)"

A = "a(A)"

B = "(S)" | "(A)"

C = ""

This grammar could then be used to parse an input like this:
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S.match(’aaa’)

This facility to express grammar is accounted by the Strong Competence Hypothesis
(Ford, Marilyn, Bresnan, Joan W., and Kaplan [1982]). This hypothesis states that
it is likely that there is a strong correlation between the structural artifices used to
describe language (i.e. grammar) and the internal representation used by the Human
Sentence Parsing Mechanism.

3.1.11.2 The model as a Turing Machine

Suppose we want to implement a Turing Machine using our pseudo-language. To do
that we would require 4 things:

• A data tape

• A cursor marker on this tape

• A state register

• A set of rules

As a replacement for our data tape, we will use the input signal, i.e. a sequence
of characters. For simplicity lets consider this input to be restrained to the alphabet
A = {a,b,c}, or in terms of the pseudo-language:

A = "a" | "b" | "c"

A* = "(A);a" | "(A);b" | "(A);c" | ""

The second aspect is the cursor, i.e. a special sign on the input that will be used
to denote the current position of the Turing Machine. To add it to our data tape we
will create a startup rule responsible for setting it in place:

Startup = "(A*)input;" { MT.match(’:’ + input) }

// MT will be our Turing Machine:

MT = ...

For the the third aspect, the state register, lets add a parallel signal (with the
operator “&”) for denoting the current state. For that lets update our “Startup” pattern
to also include a “Start” state:
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Startup = "(A*)input;" { MT.match(’:’ + input & ’Start’) }

// MT will be our Turing Machine:

MT = ...

Finally, to create the Turing Machine we must be able to specify the rules. To
make these rules more general lets define some wild-cards for describing the state
changes:

• “CS” will be the Current State.

• “NS” will be the Next State.

In a rule if “CS” differs from “NS” we would have a state change. We can then
implement the rules like this:

// Move right rule:

MT |= "(A*)left;" + ":(A)c;" + "(A*)right;" & "CS" {

MT.match(left + c + ’:’ + right & ’NS’)

}

// Move left rule:

MT |= "(A*)left;" + "(A)c;:" + "(A*)right;" & "CS" {

MT.match(left + ’:’ + c + right & ’NS’)

}

// Replace a for b and move right:

MT |= "(A*)left;" + ":a" + "(A*)right;" & "CS" {

MT.match(left + ’b:’ right & ’NS’)

}

// Insert Symbol ’a’

MT |= "(A*)left;" + ":(A)c;" + "(A*)right;" & "CS" {

MT.match(left + ’:a’ + c + right & ’NS’)

}

// Remove Symbol ’a’

MT |= "(A*)left;" + ":a" + "(A*)right;" & "CS" {

MT.match(left + ’:’ right & ’NS’)
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}

With these 5 types of rules we can implement any kind of computation. To stop
the Turing Machine it is only necessary to reach a state for which there are no rules
defined, e.g.:

MT |= "(A*)left;" + ":a" + "(A*)right;" & "CS" {

MT.match(left + right & ’Final State’)

}

Also, since Turing Machines are deterministic and serial it should be a good idea
to avoid designing multiple rules matching the same patterns.

To run this Turing Machine, just send it an initial input signal:

Startup.match(’abc’)

This property of the JSpy Model accounts for the fact that some kind of compu-
tation is necessary to correctly understand language as mentioned on Section 3.1.8.2
about the ambiguity resolution mechanisms. This is demonstrated in Chapter 4, where
the Natural Language tasks require a model and a computational process to obtain the
correct results.

This is also the prerogative used to implement the JSpy Language as modern
programming language: since the model is already Turing Complete inserting program-
ming languages facilities will not falsify the implementation as a correct representation
of the model.

3.1.11.3 The Model as a Neural Network

As was mentioned before, the model is compatible with Neural Networks, where each
pattern would be represented by a group of neurons connected in conformance to the
design of a pattern. In this section, we will demonstrate how it would be possible
to design a network for text recognition in conformance with the JSpy Model. The
demonstration will be made one property at a time, namely:

• How to represent Snapshots

• How to emulate the 3 Snapshot Operations

• How to emulate the 3 Meaning Operations
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How to represent Snapshots: Since a Snapshot is just an encoded signal from
the external environment, let us start considering that our environment contains only
characters and that they are represented using 8 bits of information using the ASCII
encoding. It is easy to demonstrate how a single neuron can be configured to recognize
only a single character encoding. Figure 3.1. exemplifies such design.

Figure 3.1. An artificial neuron encoding a single character as an Snapshot
signal. The sum of the inputs will only hit the threshold of 1 when the exact bits
that represent the character "a" are set.

How to emulate the 3 Snapshot Operations: To emulate each operation a differ-
ent set of neurons must be connected in an accordance with a specific design. For the
sake of simplicity, all the neurons described will have an activation threshold of 1 and
use as activation function the sum of all its active inputs weights.

The Simultaneous-Occurrence Design: This design exemplified on Figure
3.2. is composed by 1 neuron receiving input from the output layer of 2 different sub-
networks (i.e. patterns). This neuron should only be activated when both subnetworks
are active at the same time, meaning that the sum of both its weights should add up to
1. On the example of Figure 3.2. each input has a weight of 0.5 causing the threshold
of the neuron to be activated only if both are active simultaneously.

The Alternate-Occurrence Design: This design exemplified on Figure 3.3.
is similar to the last one, also composed by 1 neuron receiving input from the output
layer of 2 different subnetworks. This neuron should be activated when either of its
subnetworks is active, meaning that the weight of each input should be enough to reach
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Figure 3.2. Simultaneous-occurrence relationship implemented in terms of Neu-
ral Networks. Pattern 1 and Pattern 2 represent the output layer of 2 subnet-
works, while “Op &” is the neuron responsible for effectively implementing the
simultaneous-occurrence operation.

its threshold. On the example, each input has a weight of 1 causing the threshold of
the neuron to be activated when either or both of them are active.

Figure 3.3. Alternate-occurrence relationship implemented in terms of Neural
Networks. Pattern 1 and Pattern 2 represent the output layer of 2 subnetworks,
while “Op |” is the neuron responsible for effectively implementing the alternate-
occurrence operation.

The Relative-Occurrence Design: This design exemplified on Figure 3.4.
is very different from the others, it is intended to represent a sequence of events in
time. As such, it will assume there is a time delay between the activation of a neuron
and the arrival of its output on the next neuron, and it will harness this property
to implement the concept. This design is composed of a series of neurons where the
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activation of the first is only dependent on external input while the activation of the
others is dependent not only on the external input but also on the activation of the
neuron that precedes it on the series. This way although they are all receptive to the
same input source, a recognition will only happen if the expected characters arrive in
the correct sequence. In the example of Figure 3.4. the expected characters are the
letters “abc” in that sequence.

Figure 3.4. Relative-occurrence relationship implemented in terms of Neural
Networks. This network receives a single character as input at a time. Each
of the red arrows represents the recognition of one specific character and will
only be active if the respective character is read from the input. Between each
transition there is a time delay, making the system sensitive to the order of the
input sequence. This example in special would recognize only the sequence: “abc”.

How to emulate the 3 Meaning Operations: The meaning section of the model
3.1.7 describes 3 operations required for describing meaning: (1) Performing External
Calls, (2) Information Forwarding and (3) Saving Global State. These operations rely
on properties of Neural Networks and will be explained below.

Information Forwarding Mechanism: When a Neural Network starts pro-
cessing a signal its input neurons are activated and at this moment all the information
about it is available to be forwarded. However, it is still too soon to implement the
forwarding operation, since the input has not been recognized yet by the rest of the
network. Then it becomes necessary to either store this information somewhere or to
make sure these neurons will stay active until the network finishes evaluating the input.
Either case is easy to implement, in the first case, i.e. if the neurons are not capable
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of staying active for long enough all they have to do is to forward the information to
other intermediary neurons until there is enough time for the evaluation to complete.

After the completion, given that the input information is still available forwarding
it is a matter of connecting the correct neurons from one network with the other. Figure
3.5 exemplifies such a design: Once Network A receives an input and recognizes it the
joined signals of the recognition and the Input Neuron 2 are used to activate one of
the input neurons of Network B, effectively forwarding the information. This could be
repeated with several neurons if necessary and at the same time Network B can receive
as input other sources of information. Note that in this example it is assumed that the
input neurons stay active for long enough for the evaluation to finish, not requiring an
intermediate neuron to store the information.

Figure 3.5. Information Forwarding operation implemented in terms of Neural
Networks. The forward input neuron from Network B is only activated after and
if Network A recognizes the input.

Performing External Calls: This operation is quite similar if not the same
of the Information Forwarding operation. The only difference is that the informa-
tion is forwarded to others parts of the brain unrelated with the sentence processing
mechanism.

Saving Global State: The existence of this property as explained on Section
3.1.7 is to provide a method for describing working memory and the possibility of
learning. Explaining how this process would work without manual intervention is
beside the point of this paper for the same reasons discussed on the Unsupervised
Learning section 3.1.9.
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However since all the patterns are created by manually configured relations
between neurons, it follows that having enough spare neurons to use, then it should be
possible to calibrate them using the 3 relationship operations to create new patterns
on demand.

Discussing the Model as a Neural Network: The compatibility between the
JSpy Model and an underlying neuronal implementation ties it to the Connectionist
(Feldman [1985]) approach of Cognition Models. This is also in conformance with
Fodor and Pylyshyn [1988] conclusion that, just like in other areas of study2, it should
be required models in different levels of abstraction to fully explain the conceptual
structures of the human brain.

3.1.11.4 Upper limit for calculation’s time

One aspect of the HSPM that should be expected of HSPM models is that it stops
pursuing parallel interpretations once a satisfactory one is recognized. This feature
also used by Nematzadeh et al. [2014] to support his model and is named the Limited
Calculations requirement.

Such feature could be implemented using the JSpy Model. For that, we must
consider that for each required task there should be a stimulus (i.e. a signal) detectable
by the patterns that would indicate they should start working. Once a satisfactory
solution to the problem was found the demand for solving this problem would end
and the pattern responsible for emitting this signal would stop, causing the remaining
processes to stop as well.

Moreover, it is likely that such a feature would emerge naturally from the concept
of the Unsupervised Learning mechanics described on Section 3.1.9. Patterns sensitive
to such a stimulus would stop early when detected they were no more required, while
patterns insensitive to it would keep going expending memory load and processing
time. Since the proposed system would reward patterns that expend fewer resources
the former would have priority on the ranking system, and the later would most likely
be discarded over time.

3.1.11.5 Incrementality Property

The incrementality property as explained by Crocker [1996] is an expected feature of
an HSPM model and consists of the ability of gathering information incrementally as

2 Fodor and Pylyshyn [1988] exemplify this argument, arguing that although rocks are made of
atoms, it is not feasible to explain Geology in terms of Atomic Theory.
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the text is parsed, making it possible to produce partial guesses of what is being said
even if the sentence parsing is not yet complete.

To demonstrate the model is sensible for this requirement the example below
demonstrates, although naively, that it is possible to extract useful information from
the text structure even before the main pattern has been fully parsed:

A = "(any_single_symbol);"

// Any number of repetitions of A:

A* = "(A*);(A);" | "(A);" | ""

actor_set = "cat|dog|bird|rat"

verb_set = "catch|drop|bring|eat"

noun_set = "cheese|ball|journal|rat"

Startup = "(A*)text;" {

// Emit a second input in parallel:

empty_scenario = ’a:v:o’

AP.match(text & empty_scenario)

}

// Actor Parser:

AP = "the (actor_set)actor; (A*)rest;" & "a:v:o" {

scenario = actor + ’:v:o’

VP.match(rest & scenario)

}

// Verb Parser

VP = "(verb_set)verb; (A*)rest;" & "(A*)a;:v:o" {

scenario = a + ’:’ + verb + ’:o’

NP.match(rest & scenario)

}

// Noun Parser

NP = "the (object_set)obj;" & "(A*)a;:(A*)v;:o" {

scenario = a + ’:’ + v + ’:’ + obj

SR.match(scenario)
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}

// Scenario Recognition:

SR |= "(A*)actor;:eat:(A*)object;" {

// Pass this information to the responsible module:

call(’eat’, Actor=actor, Object=object)

}

To start the recognition it would only require calling the Startup pattern with an input
like this:

Startup.match(’the rat eat the cheese’)

Then it would trigger the following calls:

AP.match(’the rat eat the cheese’ & ’a:v:o’)

// actor = rat:

VP.match(’eat the cheese’ & ’rat:v:o’)

// verb = eat:

NP.match(’cheese’ & ’rat:eat:o’)

// obj = cheese:

SR.match(’rat:eat:cheese’)

call(’eat’, Actor=’rat’, Object=’cheese’)

In this example even if the original input was not complete, it would be possible to
extract useful information about the concepts involved in accordance with the require-
ment of Incrementality.

3.2 JSpy Syntax and Design

JSpy was designed as a modern scripting language; Its syntax is based on JavaScript
and most of its semantics were inspired in Python. Most of the complex aspects of
the underlying model were carefully hidden or replaced by surrogates that are more
familiar to programmers.
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The usual way to use it is to write a script in the JSpy Language and then ask the
interpreter to run it; that is, of course after downloading and compiling the interpreter
code.3 An alternative way to use it is by running the interpreter with no arguments:
This will open the REPL (Read-Evaluate-Print Loop) mode of the interpreter, allowing
the user to write a command and immediately see the result on the screen; useful for
testing commands and syntax.

The following sections are divided into two parts: The first one explains briefly
how JSpy syntax and semantics were conceived and why. The second one explains in
detail the core part of the language designed to interpret and decode patterns from
the text, also called the JSpy “Matcher ” concept. Resources for understanding JSpy
in more length are available at Appendix A and B as well as on the JSpy project’s
page.4

3.2.1 Why JSpy? And not an Existing Language?

The JSpy language was originally proposed as a supporting language for the, now
called, JSpy Matcher concept. By the time the most important goal of the project
was to make it easy to use, and so the language should be simple. As the project
developed it was proposed to enhance JSpy Language as a fully featured programming
language, where the Matcher concept would fit inside it as a built-in construct. This
design would not only make the language more familiar to newcomers, but also make
it a lot more powerful, and expressive.

In short, the reason for the JSpy language to be created was because JSpy Matcher
required a meaning resolution component that would fully embrace its features. If
this tool was adapted to fit inside an existing programming language it would not be
possible to benefit from the syntax. Making this tool, that is already complex in nature,
to become complex to use, discouraging newcomers from learning it. Nonetheless,
studying if the Matcher concept can be adapted gracefully in an existing programming
language is included as a future work.

3.2.2 JSpy Design Requirements

When designing JSpy there were two guidelines:

• The language should be comfortable and easy to learn.

3Instructions available on the project’s page
4https://github.com/jSpy-pl/jSpy

https://github.com/jSpy-pl/jSpy
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• It should be as powerful and featured as possible without losing sim-
plicity.

To better fulfill both requirements JSpy was based on existing programming lan-
guages; The reasoning is that the easiest language to learn is the one you already
know.

Python was the first choice, for it is designed to keep programmers comfortable
and make readable code. But its syntax, however beautiful, is not easy to parse, making
it a less desirable choice to implement. Because of that problem JavaScript has been
taken into consideration. The final implementation has gathered most of JavaScript
syntax and some concepts of it like prototypical inheritance and closures. In other
parts where JavaScript’s learning curve is a burden for newcomers, the behavior of the
language was modified with concepts considered more intuitive.5 These more intuitive
concepts were mostly inspired by Python.

To learn JSpy syntax and grammar please read Appendix A, to learn the differ-
ences between JSpy’s semantics and JavaScript’s, please read Appendix B, finally, to
test the language in first hand, check the instructions on the project’s page.6 This sec-
tion will not bother the reader by fully explaining the merits of the JSpy programming
language as a whole since the part that actually implements the model is the Matcher
construct. Further on, examples using the JSpy Language will be kept simple as to be
self-explainable.

3.2.3 JSpy Matcher: Design

The JSpy Matcher construct was designed as the starting point for the entire pattern
recognition process, and it effectively implements most of the features described in
Section 3.1.10; later on this section, these features will be referenced by the name
“JSpy Features” for short. These features were first presented in Section 3.1.10 as
an enumerated list between the numbers 1 to 8. Later this number will be used to
reference specific features of the model, i.e.: JSpy Feature 1 references the first feature
while JSpy Feature 8 references the last one.

To describe the JSpy Matcher in the terms of the JSpy Model, the Matcher
construct is analogous to the Pattern Groups concept described in Section 3.1.5. As
such it contains the following features:

5 One example of this learning curve burden is that JavaScript has some error prone syntax issues:
For example, if the user fails to formally declare a variable before using it, this variable will be declared
in global scope, possibly causing undesired side effects.

6https://github.com/VinGarcia/JSpy

https://github.com/VinGarcia/JSpy
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1. Is labeled by an unique name

2. It contains a number of patterns inside it

3. Each pattern contains an optional callback function, responsible for
describing its meaning

However, JSpy uses a different nomenclature: The Matcher construct is composed
of a set of “Hooks”, where each hook is a pattern followed optionally by the callback
function.

To express these concepts JSpy syntax offers a relatively simple syntax, exempli-
fied on the Matcher below:

matcher matcher_name {

"simple pattern (group_name);" {

// ... callback code ...

}

"more simple";

}

This Matcher contains two hooks, the first one makes reference to a named group
“group_name”. The second one, more simple, contain only literal characters. The
second pattern was included in the example to show two things: (1) It is possible for
multiple patterns to be declared at once inside a Matcher, and (2) it is possible with
this syntax to omit the callback function by replacing it by a single semicolon.

There is also an additional syntax facilitation for cases where the Matcher is
expected to contain only a single Hook. In this case, the outer brackets can be omitted
as exemplified below:

matcher single_hook "simple pattern (group_name);" {

// ... callback code ...

}

A Matcher on JSpy Language is a normal statement, as such it can be declared
in any part of the code7 where a “function” or a “for” loop could be declared. Please
take a look at Appendix A for further details on the grammar of the language.

The name of the Matcher, in this case: “single_hook”, is made available on the
local scope, and can later be referenced as an instance of the Matcher Class. The
interface for this class will be detailed in Section 3.2.3.4.

7 This is not entirely true, there is currently a bug that might cause unexpected behavior if a
Matcher is declared inside a function or nested in another Matcher’s callback.
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Figure 3.6. Matcher design

Figure 3.2.3 illustrates the matcher design and structure. In the following sec-
tions, different aspects of the Matcher will be explained in details to provide a deeper
understanding of the potential of this construct.

3.2.3.1 JSpy Patterns

JSpy Patterns are very similar to normal Regular Expressions (RegExps) with the
visible exception of the references to the named groups between brackets, that do
not exist in normal RegExps, at least not with the same meaning. These patterns
are capable of representing all the same concepts of RegExps mostly with the same
syntax.8 A short explanation of the concepts involving these patterns will follow with
illustrative examples.

Some basic RegExps functionalities such as describing classes of characters be-
tween square brackets and using the Kleene Star operator for describing repetition
work as expected:9

"[Nn]ame"

matches the text: ’name’ or ’Name’.

8 These patterns were designed and implemented more than 3 years ago and were not updated
to meet the design standards used on the rest of the language: their syntax was not based on ei-
ther Python nor JavaScript regular expressions, making them a little bit harder to learn and less
comfortable to use. A review of this syntax is scheduled for future versions.

9There is a small issue regarding the Kleene Star operator, but it will be discussed together with
other bugs and issues on the end of this section.
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"[1-9][0-9]*"

matches any integer number not starting with 0.

It is also possible to group together characters using round brackets as in normal
RegExps, however it requires a special syntax to make it different from named group
references:

"("00")*"

matches any text with an even number of zeros

Some RegExp features are, however, not yet implemented in these expressions.
As a consequence the disjunction operator is not expressed by the usual pipe operator
“|” instead it is represented only inside the round brackets notation and using a comma
to separate each item:

"("first", "second");"

would match either word, ’first’ or ’second’

The same applies to named groups, more of one of them can be represented be-
tween round brackets as a disjunction, even sharing the brackets with quoted patterns:

"("first", named_group, "second");"

This feature is of special importance for it implements JSpy Feature 5, allowing
a pattern to be composed of other pattern or pattern groups.

The ‘+’ operator and the ‘?’ operator are also not present in this implementation
yet. The main reason was because they are not indispensable. They are, however,
expected to be present in future versions of the language.

One extra feature not yet mentioned of these patterns is the possibility of cap-
turing named groups. To do so, it is only necessary to specify a variable name for a
round bracket construct:

"("first", "second")captured_value;"

Whichever value that will be matched by the either of the patterns between
brackets will be saved on the variable “captured_value”, and it will be made available
inside the callback function.
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3.2.3.2 Hook’s Callbacks

A hook’s callback is the function attached to its pattern. These callbacks have a set
of arguments described by the named capturing groups of the pattern and are capable
of returning a value. In the example below the callback function will receive two
arguments: arg1, and arg2. Then it will return “True” if both arguments’ values are
the same:

matcher m "is this (word)arg1; equal to (word)arg2;?" {

return arg1 == arg2

}

This design was chosen to facilitate the processing of the information extracted
from the text. The syntax used inside the callback function is the JSpy Language
syntax, accepting any kind of valid JSpy statement or expression.

The presence of normal JSpy code inside this callbacks is important for it allows
the meaning of the pattern to be resolved using any solution model that JSpy is capable
of describing. This effectively implements JSpy Feature 4.

The callback function’s scope is hierarchically subject to the scope where the
Matcher was declared and to the scope where it is being executed. As such it also has
access to variables declared on these scopes, even if some of them were declared after
the Matcher declaration. In short, this scope hierarchy was designed to work just like
in JavaScript functions.

This scope hierarchy allied to the fact that the Matcher name is made available
on the scope it is declared allows for a callback to recursively execute its own Matcher
or even other Matchers it has access to. This effectively implements the JSpy Feature
6, allowing the meaning of a pattern to be resolved through recursive pattern execution
calls.

3.2.3.3 Hook’s Return Values and Explicit Ambiguity Resolution

It is important to note that when a hook is executed it is possible to result in more
than one interpretation of the text. The toy example below illustrates this possibility:

matcher m "("tes","te")val1;("t","st")val2;" {

return list(val1, val2)

}
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This example pattern would match the string “test” twice: One of the matches
would assign “tes” to val1 and “t” to val2, the other one would assign “te” to val1 and
“st” to val2.

Ambiguous situations, as stated by the JSpy Feature 1, are expected by the
JSpy Model. Thus, the solution for this problem is explicit and not complicated: the
callback will be executed twice and the return values of these callbacks will be grouped,
resulting in a list of the returned values such as this:

[ ["tes", "t"], ["te", "st"] ]

It is also possible for the callback to deny the recognition of the pattern, which is
useful in eliminating invalid ambiguities when enough information is already available.

This feature is the simpler way JSpy found to implement JSpy Feature 7: The
possibility to revoke a recognition based on a Boolean evaluation of the current context.

To exemplify this feature the example below will revoke the match if val1 does
not equal the string “tes”:

matcher m "("tes","te")val1;("t","st")val2;" {

if (val1 == "tes") {

return list(val1, val2)

} else {

// Explicit return None to deny a match:

return None

}

}

As a consequence if we executed the matcher above with the text “test” it would
this time return only one value:

[ ["tes", "t"] ]

3.2.3.4 Calling and Executing Matchers

Matchers are a construct of the JSpy Language, and as such, they can be called from
within the language. A common workflow is to declare a set of matchers and functions,
read an input file and then execute a matcher designed as the “root” for each line of
that file.

Matchers can be invoked in a total of four different ways. The matcher below
will produce a total of three results for each time it is matched with the word “test”,
and it will be used to exemplify the different ways of calling a matcher.
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matcher ambiguous {

"("tes","te")v1;("t", "st")v2;" {

return ’hook1: ’ + v1 + ’-’ + v2;

}

"test" {

return ’hook2: ’ + text;

}

}

If one wants to handle all the different interpretations and then choose the correct
one manually he should invoke the Matcher with the “match_all” function:

result = ambiguous.match_all(’test’)

The content of the result variable would then contain a list with three strings as
shown below:

[ "hook1: tes-t", "hook1: te-st", "hook2: test" ]

Other forms of calling the Matcher include:

• “match_one(’test’)” to output only the first match, e.g.:
“hook1: tes-t”

• “match(’test’)” to output a boolean indicating true for at least one
match and false otherwise.

• “count(’test’)” indicating how many matches have been found, or 0 if
none was.

3.2.4 JSpy’s User-friendly Syntax and Features

JSpy is made to support the Matcher concept. Thus, its syntax and features were
created to be powerful and easy to learn. While the syntax was mostly inspired in
JavaScript, the features of the language are closer to Python. Hopefully, this language
will feel familiar to both Python and JavaScript users. The key features of the JSpy
language are:

• Strongly-typed dynamic variables (like Python)
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• Built-in dictionaries, lists, strings and related functions.

• Iterators, if statements, for-range loops, and functions.

• Inheritance with prototypes implemented to look and work like classical inheri-
tance.

3.2.5 JSpy’s Known Issues

There are also some issues that are not yet fixed or implemented. Most of them are
related to the JSpy Pattern syntax and implementation, since these were designed a
long time ago, and are in need of a review.

Among these pattern specific bugs and issues we can list:

• The “*” operator does not match an empty string as it should.

• Calling the “*” operator over a round bracket group might cause a
segmentation fault.

• The overall syntax is unrelated to either Python or JavaScript’s Reg-
ular Expressions, complicating the learning curve.

• Characters escaping is not being treated correctly, for example, the
TAB character denoted as “\t” fails to recognize the actual TAB char-
acter when it is received as input for the pattern.

• Declaring Matcher in anywhere but on the most external scope of the
program may cause unexpected behaviors.

The rest of JSpy Language, on the other hand, is more robust; And contain only
two issues to be pointed out:

• It is not prepared to deal with UTF-8 character encoding yet, only
ASCII.

• The error messages of the system are not yet very clear, making it
hard to determine the actual line of the bug.

Furthermore, there are some features that are scheduled to be implemented and
might deserve some attention:

• When a matcher is referenced inside a pattern, the return value of the
referenced matcher is not accessible to the pattern’s callback.
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• It is not possible yet to add or remove hooks from an existing Matcher.

• There are some built-in functions that are not available yet, but should
be in the final implementation.

• The type “boolean” does not exist yet. Boolean values are instead
treated as integer values where 0 means false and anything else means
true.



Chapter 4

Experiments

The experiments described in this chapter were used to show the applications of the
JSpy Features on different problems specifically designed to test different skill sets for
psycholinguistic tasks.

The scripts and data discussed in this chapter are available on this address:
github.com/VinGarcia/bAbI. The instructions to download and run the project are
available directly on the project’s page.

4.1 Data

The dataset we used for this evaluation is called bAbI, and it was obtained from
http://fb.ai/babi. The data is split into a number of 20 tasks, and each task
comprises a series of stories and each story is comprised of a series facts and questions,
to exemplify, a simple story looks like this:

• 1 Mary went to the cinema.

• 2 John traveled to the park.

• 3 Where is Mary? |Answer:cinema|

• 4 ... more facts and questions might follow ...

For each of the 20 types of tasks, there are several stories stored in a single file.
The beginning of a story is denoted by a line starting with the number “1” and the
sum of questions from each file adds up to exactly 1000. This way solving correctly
900 questions on a single task corresponds to an accuracy of 90%.

43
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All of the questions are noiseless and a human able to read that language can
potentially achieve 100% accuracy.1 Questions within each task demand a different
skill-set to be answered.

In this experiment we have attempted to solve 17 from the 20 bAbI tasks, leaving
out only tasks 18, 19 and 20. The list below describes each of the tasks we used:

• Multiple supporting facts
This skill is tested by tasks 1, 2 and 3. It consists of questions where informa-
tion has to be extracted from a number of supporting statements to answer the
question. So, to answer the question “Where is the apple?”, one has to combine
information from two sentences “John is in the office” and “John picked up the
apple”.

• Multiple argument relations
This skill is tested by tasks 4 and 5. It consists of questions where the order in
which the words appear in the question is crucial to their meaning. For instance,
the questions “What is south of the bedroom?” and “What is the bedroom south
of?” have exactly the same words, but a different order, with different answers.

• Yes/no questions
This skill is tested by task 6 and consists of the capacity of the program to answer
true or false to simple questions with a single supporting fact.

• Counting and Listing
This skill is related to processing a set of items as the answer. Task 7 tests if the
program is capable of counting the number of valid answers, Task 8 tests if the
program is capable of displaying the answers in the form of a list, e.g. “apple,
journal, football”.

• Simple Negation and Indefinite Knowledge
This is tested by tasks 9 and 10. The former tests if the program is capable
of effectively comprehending simple negation such as: “Fred is no longer in the
office”. While the later tests the capacity of expressing doubt when not sure
about the answer. This doubt is tested in terms of indefinite sentences like “John
is either in the office or in the kitchen”.

1That is true to almost all tasks, however, tasks 2, 5, 14 and 16 present some few questions
regarding insufficient information (e.g. ask where john was before informing it), but these are quite
rare being restricted to less than 3% of the questions.
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• Basic coreference
This skill is tested by task 11. It consists of facts as “John was in the office. Then
he went to the studio”. To answer questions about facts like this, it is crucial to
detect that “he” is a reference for “John”.

• Conjunctions
This skill is tested by task 12. It consists of multiple subjects within a single
sentence. For instance: “Mary and John were in the office”.

• Compound coreference
This skill is tested by task 13. It consists of sentences where the pronoun can
refer to multiple actors. For instance: “John and Mary went to the office. Then
they went to the garden”.

• Time Reasoning
This skill is tested by task 14. It tests the capacity of understanding time ex-
pressions such as: “John went to the cinema yesterday”, or “This afternoon Mary
traveled to the office”. The questions of this task, inquire about the order of the
events: “Where was Mary before the park?”.

• Basic deduction and induction
These skills are tested by tasks 15 and 16. They consist of answering questions
that require the use of deductive or inductive reasoning by means of inheritance
of properties. For instance: “Sheep are afraid of wolves. Mary is a sheep. What
is Mary afraid of?”.

• Positional reasoning
This skill is tested by task 17. It consists of reasoning about the position of
objects. For instance, the statement “The red sphere is to the right of the blue
square.” might be followed by a question in the format: “Is the red sphere to the
right of the blue square?”.

4.2 Reasoning-based Implementation and

Evaluation

We implemented a system prototype on top of JSpy using the bAbI dataset described
above. In this section, we explain how JSpy handled questions within each task.
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4.2.1 Ontology

To answer questions within each task, a simple ontology was built using Matcher in-
stances to describe all concepts required by the task. The most basic definitions de-
scribed how to recognize “names”, “words” and “numbers” and were required by all tasks
in the bAbI dataset.

Furthermore, concepts as groups of synonyms and groups of names belonging to a
certain class were defined using Matcher instances with one Hook for each name and no
Callbacks. In order to better illustrate this, the following code snippet was extracted
from the ontology of one of the JSpy solutions:

matcher number "[0-9]*";

matcher word "[a-zA-Z]*";

matcher name "[A-Z][a-z]*";

matcher move {

"moved";

"journeyed";

"went back";

"went";

"travelled";

}

This ontology was inserted manually into the system, and there is no available
way yet to produce this type of ontology automatically from online resources. The
reason for that is the strong relation between JSpy and its model for the HSPM:
Humans do not learn thousands of concepts in an instant, and neither does the model.
However, this is not the same as saying it is impossible for the model to make use of
online resources as WordNet and other thesaurus, but preparing the system to receive
them is a task for future works.

4.2.2 Loading and Parsing

For parsing the training data associated with each task, it was first needed to read each
file and separate it into stories. Each story start is identified by a line starting with
the number 1, e.g.: “1 Mary moved to the bathroom.”. The stories were then parsed
and executed one by one. After each parse, a “reset()” function was called to erase all
data extracted from the previous story.
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To solve each of the different tasks the process used was similar: (1) first the types
of statements of the story were identified, (2) a Hook Expression was then created to
match them and extract relevant information (e.g. names) and finally (3) a Callback
was designed for each hook to update an internal model. When the question statement
was asked, this model was then used as the source for obtaining the answer. To
illustrate this process, consider a task with two types of statements:

• A movement statement: “1 Mary went to the office”

• A question statement: “2 Where is Mary? R: office”

For parsing it a Matcher instance was created with two Hooks, one for updating
the last position of each actor, and the other to compare the model answer with the
actual correct answer extracted from the text. The code snippet below displays the
JSpy syntax used to describe this parser:

matcher read {

"(number); (name)n; (move); to the (place)p;" {

where_is[n] = p;

}

"(number); Where is (name)n;? R: (word)A;" {

guess = where_is[name]

compare_results(guess, A);

}

}

4.2.3 Solutions to bAbI Tasks

In this section, we will explain the model used to solve some of the tasks, and then
list which of the nine JSpy Features cited on Section 3.1.10 were required to solve the
problem. From these features two were used on every task, they were:

• Support for Ad Hoc models: Since every task required a solution model.

• Snapshot Polymorphism: Since every pattern used for parsing contained ref-
erences to patterns used to describe the ontology.

Supporting facts (tasks 1 to 3) The first three tasks from the bAbI dataset were
about answering a question based on a number of supporting facts. The third task was
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the more complex one requiring a total of three supporting facts. Since all three tasks
are similar we will focus only on the third to illustrate the process and the challenges.
This task consisted of four different types of statements implicating in four different
Hooks:

• A move statement: “3 John moved to the bathroom.”

• A pick up item statement: “4 John grabbed the football.”

• A drop item statement: “5 John left the football.”

• A question statement: “Where was the football before the bathroom? R:
toilet”

The implementation to answer questions within this task only needed to track
the inventory of each actor with a Dictionary, and to track a history of the position of
each object with a vector. Then, when an item was moved from some place to another
by an actor, it was just necessary to save this new position on the vector. Answer the
question was then possible by iterating backward through the respective item vector.

Two Argument Relations (task 4) The fourth bAbI task required reasoning about
relations between environment objects, more precisely: positional relations. It was
used a total of three types of statements from which two were questions:

• A relation statement: “3 The office is north of the kitchen.”

• A direct question statement: “4 What is north of the garden? R: toilet”

• An indirect question statement: “5 What is the garden north of? R: toilet”

In this task a special concept of opposition between north and south, east and
west needed to be added to the ontology. This concept was inserted directly into the
ontology, using the callback feature of the patterns in all four directions to add more
information to the matched string:

matcher direction {

"north" return { ’text’: ’north’, ’opposed’: ’south’ };

"south" return { ’text’: ’south’, ’opposed’: ’north’ };

"east" return { ’text’: ’east’, ’opposed’: ’west’ };

"west" return { ’text’: ’west’, ’opposed’: ’east’ };

}
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This special usage of the callbacks of the Matcher “direction” required the JSpy
Feature 6: Recursive Reasoning.

To solve this task, each place was represented by a class instance that kept track
of its neighbors in all four directions. Answering the questions consisted of checking
the neighbor at the cited direction or the neighbor in the opposed direction in the case
of the indirect question statement.

Three Argument Relations (task 5) This task was built around the relation of
giving items; Each time an actor give an item for someone else there were three names
involved: The giver, the taker and the object that was given/taken. There were a
total of six relevant statements in this task, one of which was the “giving” statement:
“(name)n1; (give); the (object)obj; to (name)n2;”, and the other five were questions.
These questions regarded the three terms of the giving relation in different ways:

1. “What did (name)n1; give to (name)n2;?”

2. “Who received the (object)obj;?”

3. “Who gave the (object)obj;?”

4. “Who did (name)n; give the (object)o; to?”

5. “Who gave the (object)obj; to (name)n;?”

To solve this task it was only required to record every transaction between
characters in a list, and when asked a question to search the most recent matching
transaction backward on this list.

Yes/No Questions (task 6) This task dealt with the same problem of task 1: Actors
moved on the environment, and then it was asked where they were at the end. The
questions, however, were a little different, instead of asking where the actor was, it
asked if he was in a specific location, so the correct answer would be “Yes” or “No”.

To solve this task the model used was very simple: A dictionary keeping track of
the last known place each actor has been seen, where the key of the dictionary is the
actor’s name and the value the location. To answer the Yes/No questions it was only
required to compare the location specified on the question with the current location
on the dictionary, and answer “Yes” if they were the same and “No” otherwise.

Basic Coreference (task 11) The next bAbI task dealt with coreference in a simple
context, where after one actor has moved from someplace to another place a new
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statement referred to him as “he” or “she”. To solve this task it was necessary to add
the concept of male and female names so that the four actors of the story were divided
as two males and two females. These stories were told using a total of three types of
statements:

• A move statement: “3 Mary went to the office.”

• A coreference statement: “4 Then she moved to the garden.”

• A question statement: “5 Where is Mary? R: garden”

To solve this task the JSpy Matcher used the JSpy Feature 6: Recursion
Reasoning. The Callback of the coreference statement was responsible only for
identifying the reference and then replacing “he” or “she” for the proper name of the
actor. After that, it would feed back the system with a new string such as: “Mary
moved to the bathroom”. This solution effectively decouples the task of identifying
the actor and the task of resolving the movement of the actor, shortening the number
of lines required and simplifying the code.

Compound Coreference (task 13) This bAbI task involves the skill sets for iden-
tifying conjunction and coreference. And as so it was composed of three types of
statements:

• A move statement: “3 Mary and John went to the office.”

• A coreference statement: “4 Then they moved to the garden.”

• A question statement: “5 Where is Mary? R: garden”

But for simplicity, we reutilized the Hooks from the basic coreference task. Now
instead of “he” or “she” we kept track of the pronoun “they” and saved the last seen
actors in a vector container.

To solve the coreference we still used the recursive approach: Each coreference
sentence like “They moved to the office” was recursively reevaluated with proper names
of the characters: “Mary and John moved to the office”.

Interpreting the conjunction concept was then facilitated again by the use of
recursion: The names of the actors involved in the conjunction were extracted from
the text, and then a new simpler sentence was produced, such as: “Mary moved to the
office” and “John moved to the office”. Please note that this approach would work even
if there was a list of several actors involved in the conjunction, greatly facilitating the
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process.

Basic deduction (task 15) This bAbI task was about deduction and there was a
total of three different types statement:

• “Mice are afraid of Cats.”

• “Gertrude is a mouse.”

• “What is Gertrude afraid of?”

To answer questions in this task we needed to add the concept of plural and
singular to the ontology, so that “Mice” was related to “mouse” and “Wolf” to “Wolves”.
This was possible by adding that information on the matchers responsible for describing
them on the ontology:

matcher animal {

"[Mm]ice" return ’mouse’;

"[Ww]olves" return ’wolf’;

"[Cc]ats" return ’cat’;

"[Ss]heep" return ’sheep’;

}

This model for “animal” was possible by using JSpy Feature 6: The Recursive
Reasoning.

Further, to solve the logical deduction part we have used the prototypical
inheritance feature: A species was defined as an object and an animal as an object
whose prototype was its species. So the attribute “afraid_of” of each animal was
stored in its super class, making it trivial to answer the question statements.

Basic induction (task 16)
The induction task was similar to the deduction one, but this time it was necessary

to guess the color of an animal given the knowledge of other animals of his same species.
To store this knowledge it was necessary to save information about the species

on a prototype and to instantiate each animal as a child object of this prototype.
When an animal was said to have a certain color, this information was stored on its
prototype. Consequentially when the model was asked the color of an animal all it
had to do was to search the color of its species.
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Positional reasoning (task 17)
This task tests the problem of relative positions of geometric objects, and is

composed of only two types of statements:

• A relative positional statement:
“The blue square is to the left of the triangle.’

• A question about relative positions of objects:
“Is the pink rectangle to the right of the blue square?”

This task, as well as task 4, dealt with the problem of positional reasoning. But
in task 4 the questions regarded only the immediate neighborhood of the objects. As
such if object A was to the left of object B and B was to the left of object C, it was
not required for the program to comprehend by transitivity that the object A must
also be to the left of object C. In this task, however, it is necessary, and since there
are no absolute coordinates for any given object the only way to identify this type of
transitive relationship is by performing a Breath First Graph Search.

To solve this problem, given its extra complexity it was possible to apply JSpy
Features in new interesting ways. For example, each geometrical form described by the
problem might optionally be associated with a color, e.g. “The blue square”. For be
possible for the Matcher on the ontology section of the code to represent this informa-
tion it was necessary for it to make a reference to other matchers on the ontology. The
result works much like a grammar:

matcher form {

"(color); (form);";

"rectangle";

"square";

"triangle";

"sphere";

}

Furthermore to denote the concept of opposed directions and the concept of
relative positions as Cartesian coordinates it was required for the respective Matcher
to return all this information. The resulting structure of the Matcher is shown below:

matcher position {

"below" return {

’pos’: ’below’,
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’oppose’: ’above’,

’offset’: {’x’: 0, ’y’: -1}

};

"above" return {

’pos’: ’above’,

’oppose’: ’below’,

’offset’: {’x’: 0, ’y’: 1}

};

"to the right of" return {

’pos’: ’right’,

’oppose’: ’left’,

’offset’: {’x’: 1, ’y’: 0}

};

"to the left of" return {

’pos’: ’left’,

’oppose’: ’right’,

’offset’: {’x’: -1, ’y’: 0}

};

}

To solve the problem a model was used to search part of the graph and update the
relative positions of each object every time a new relation was parsed. This solution
although not optimal was still capable of obtaining a result superior to those of the
baselines as shown on 4.1 on the end of the next section.

It is important to note that it is perfectly possible to implement the Breath First
Search using JSpy, and thus obtaining an optimal algorithm to solve this task. It was
not done for time restraints.

4.2.4 Evaluation

In this section, we report the results of the evaluation of the proposed JSpy frame-
work. First, we present the baselines used for comparison. Then, we discuss the results.

Baselines The n-gram classifier baseline is inspired by the baselines in Richardson
et al. [2013], but applied to the case of producing a 1-word answer rather than a
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multiple choice question. We also used a structured SVM (Support Vector Ma-
chines) Joachims et al. [2009], which incorporates coreference resolution. Another
baseline is LSTM Sutskever et al. [2014] (long short term memory Recurrent Neural
Networks) which works by reading the story until the point they reach a question
and then have to output an answer. Finally, we also provide performance comparison
against state-of-the-art machine learning memory networks Sukhbaatar et al. [2015].

Results Table 4.1 shows the results in terms of accuracy, that is, the fraction of correct
answers provided by the system2. JSpy solutions performed extremely well on all tasks,
offering superior results than the baselines. It is important to notice, however, that
JSpy solutions are specialized, requiring applied knowledge and understanding of the
problem. Still, Table 4.2 shows a number of lines required to produce QA solutions
using JSpy as to offer a metric for the complexity of the Natural Language skill required.
This complexity is divided into three steps, namely: ontology, model (reasoning), and
parsing. It is clear that JSpy solutions are simple due to the small number of lines
required to implement them.

Task n-gram LSTM Struct. SVM Mem. Nets JSpy

1 - Single supporting fact 0.36 0.50 0.99 1.00 1.00
2 - Two supporting facts 0.02 0.20 0.74 1.00 0.98
3 - Three supporting facts 0.07 0.20 0.17 0.20 1.00
4 - Two argument relations 0.50 0.61 0.98 0.71 1.00
5 - Three argument relations 0.20 0.70 0.83 0.83 0.99
6 - Yes/no questions 0.49 0.48 0.99 0.47 1.00
7 - Counting 0.52 0.49 0.69 0.68 1.00
8 - Lists/sets 0.40 0.45 0.70 0.77 1.00
9 - Simple negation 0.62 0.64 1.00 0.65 1.00
10 - Indefinite knowledge 0.45 0.44 0.99 0.59 1.00
11 - Basic coreference 0.45 0.72 1.00 1.00 1.00
12 - Conjunction 0.09 0.74 0.96 1.00 1.00
13 - Compound coreference 0.26 0.94 0.99 1.00 1.00
14 - Time reasoning 0.19 0.27 0.99 0.99 0.97
15 - Basic deduction 0.20 0.24 0.96 0.74 1.00
16 - Basic induction 0.43 0.23 0.24 0.27 0.99
17 - Positional reasoning 0.46 0.51 0.61 0.54 0.78

Table 4.1. Accuracy on bAbI tasks for different methods.

2Baseline results were obtained directly from Weston et al. [2015].
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Task Ontology Model Parsing Total

1 - Single supporting fact 20 1 10 31
2 - Two supporting facts 41 28 53 122
3 - Three supporting facts 41 31 48 120
4 - Two argument relation 19 24 18 61
5 - Three argument relations 47 26 61 134
6 - Yes/no questions 20 2 11 33
7 - Counting 46 13 49 108
8 - Lists/sets 40 29 36 105
9 - Simple negation 20 2 22 44
10 - Two argument relation 23 23 18 64
11 - Basic coreference 33 8 25 66
12 - Conjunction 20 1 16 37
13 - Compound coreference 27 2 24 53
14 - Time reasoning 30 10 25 65
15 - Basic deduction 10 7 19 36
16 - Basic induction 17 15 18 50
17 - Positional reasoning 45 54 38 137

Table 4.2. Number of lines for programming solutions to each bAbI task.





Chapter 5

Conclusions

This work has described two concepts: The JSpy Model and its implementation the
JSpy Programming Language. The JSpy Model was designed as a model for the Human
Sentence Parsing Mechanism (HSPM), and as such, it complies with a number of
features expected of such model:

1. Strong Competence Hypothesis:
Its internal organization is similar to a grammar structure (see Section 3.1.11.1).
This feature, although not a definitive plausibility proof, is supported by the
Strong Competence Theory (Ford, Marilyn, Bresnan, Joan W., and Kaplan
[1982]), that states that there must be resemblances between the internal models
of the HSPM and the real world patterns we use to describe language.

2. Turing Completeness Property:
It is capable of expressing complex computations when required (see Section
3.1.11.2). We have observed that in some types of sentences and also on the 20
bAbI tasks that some kind of computational power is a requirement for truly un-
derstanding language and meaning. As such this Turing Completeness property
was necessary and instrumental when solving the 17 bAbI tasks accurately.

3. Compatible with connectionist architectures:
All the features and premises used by the model can be fully supported by the
Artificial Neural Networks model, since they are naturally implementable using
neurons as an underlying architecture (see Section 3.1.11.3). This ties our model
with the connectionist approach and promises future researches on the appli-
cability of Unsupervised Learning techniques and the applicability of Machine
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Learning techniques to obtain better results when an objective answer is not
enough.

4. Incrementality Property: The model is capable of evaluating text incremen-
tally extracting information as soon as it is possible and thus, allowing partial
interpretations when necessary just like expected by the Incrementality Property.
This property is based on observations on human capabilities (Crocker [1996])
when understanding text, and it is easy to observe that even before finishing
reading a sentence humans already have a partial interpretation about what the
sentence is saying.

5. Upper Calculation Limit: The model is also capable of expressing an upper
limit for its calculations. Although such property has to be manually implemented
as a boolean flag on the current state of the model. We have argued on Section
3.1.11.4 that such property would emerge naturally when using the Unsupervised
Learning techniques described on Section 3.1.9. We argued that patterns that
continued to calculate after the demand for them was extinct would expend more
time and memory resources making them most likely candidates for removal from
the system, while patterns sensible to this property would be prioritized.

On the evaluation section, we make an experimental use of the JSpy Language as
a tool for parsing Natural Language sentences and stories. The results demonstrated
that the language is concise and capable of expressing all the concepts required by
the bAbI tasks. This success in representing the structural and semantics concepts
required by the tasks using only a few lines of code suggests the underlying model, i.e.
the JSpy Model, is adequate for describing Natural Language.

Finally the JSpy Language syntax, and in special the JSpy Matcher construct is
capable of expressing the most important features of the model and at the same time
hiding the most complex aspects. This, hopefully, should facilitate the use, compre-
hension, and experimentation of the JSpy framework by other researchers.

5.1 Future Works

Several future works are planned, some were already mentioned others are first pre-
sented below:

• Studying the feasibility of Unsupervised Learning:
As stated on Section 3.1.9 the model still lacks a proper mechanism for allowing
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Unsupervised Learning. But since the model is compatible with Neural Networks
we are confident that it is, nonetheless, possible to design such mechanism.

• Study if the model can be fully implemented in other programming
languages
The reason for creating JSpy Language instead of implementing the model inside
a popular programming language like Python was to be sure that the syntax
of the language would embrace the model instead of imposing an obstacle for
it. However, now that the JSpy Matcher offers a concrete example of how an
implementation of this model should look like, it is the right moment to study
how many of the important features of the model could be implemented in other
programming languages.

• Review the JSpy Pattern’s syntax:
The current syntax, and also the implementation of the patterns used by the
JSpy Language are not a strong asset of the implementation: The syntax is not
very simple and it is not based on JavaScript or Python’s regular expressions.
Also, most of the bugs of JSpy are caused by implementation problems on that
part of the code.

• Study possible methods for collecting information for the ontology
automatically instead of manually:
Currently, the only way to add new information to the ontology is manually. This
is not acceptable if the goal is to fully comprehend Natural Language. To fill this
ontology automatically there are two possibilities: either the language will have
to be implemented with some automatic learning mechanism or it will need to be
able to harness data from available online resources. The latter option is likely
the most feasible in the short term, and should probably be pursued first.

• Study different architectures to implement the model
Since the model was inspired on a cognitive mechanism, implementing it on a
Von Neumann machine might not be the most efficient approach. It might be
interesting to consider the design of an architecture specialized on implementing
this model or to implement it using GPUs.
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Appendix A

JSpy Grammar

The JSpy grammar was based on JavaScript’s grammar and as such they are very
similar with the noted minor differences:

• The name “matcher” is a reserved key-word for JSpy, but it has no meaning for
JavaScript.

• There is a new construct called “Matcher” that only exists in JSpy.

• C-like “for” statements (e.g. for(i=0; i<n; ++i) ) do not exist in JSpy; The only
“for” loop available is the “for-in” loop: for(name in expression)

• It is not possible (or necessary) to write “var” inside a for loop like it is in
JavaScript. This means that the following construct would represent a syntax
error: “ for(var name in expression) ”

• Some constructs are not yet implemented, but will in the future. For instance
“ try−catch−finally ” and the “switch ” constructs are among these.

Having said that, the grammar follows below. Please note that between any two
symbols of the grammar a sequence of zero or more white-space characters is acceptable,
but this will not be made explicit on the grammar for simplicity.

A.1 JSpy Statements Grammar:

This first topic will focus on the grammar regarding the JSpy Statements, it will
provide a good overview of the language. The next two sections will explain the
symbols: “ expressions ” and “JSpyRegEx ” That are very complex and as such should
be explained in separate.
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s tmt → for−s tmt | i f−s tmt | wh i l e−s tmt |
var−s tmt | f unc t i on−s tmt | matcher−s tmt |
’{ ’ b l ock−s tmt ’} ’ | e x p r e s s i on

d e l im i t e r → ’ ; ’ | ’\n ’

var−name → [ a−zA−Z_ ] [ a−zA−Z0−9_]∗

b l ock−s tmt → s tmt d e l im i t e r b l ock−s tmt | λ

for−s tmt → ’ for ’ ’ ( ’ var−name ’ in ’ e x p r e s s i on ’ ) ’ s tmt

i f−s tmt → ’ i f ’ ’ ( ’ e x p r e s s i on ’ ) ’ s tmt |
’ i f ’ ’ ( ’ e x p r e s s i on ’ ) ’ s tmt ’ e l s e ’ s tmt

whi l e−s tmt → ’ wh i l e ’ ’ ( ’ e x p r e s s i on ’ ) ’ s tmt

var−s tmt → ’ var ’ var−name |
’ var ’ var−name ’= ’ e x p r e s s i on |
’ var ’ var−name ’ , ’ var−s tmt |
’ var ’ var−name ’= ’ e x p r e s s i on ’ , ’ var−s tmt

func t i on−s tmt → ’ f unc t i on ’ var−name ’ ( ’ arguments ’ ) ’
’{ ’ b l ock−s tmt ’} ’

arguments → var−name | var−name ’ , ’ arguments

matcher−s tmt → ’ matcher ’ var−name ’{ ’ hook− l i s t ’} ’ |
’ matcher ’ var−name hook−d e c l

hook− l i s t → hook−d e c l hook− l i s t | λ

hook−d e c l → ’" ’ JSpyRegEx ’" ’ ’ ; ’ |
’" ’ JSpyRegEx ’" ’ ’{ ’ b l ock−s tmt ’} ’
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A.2 JSpy Expression’s Grammar:

Within the expression grammar, there are some operators that do not exists in
JavaScript. They were inspired by Python and implemented accordingly such as the
power operator (∗∗ ), the tuple constructor operator (,) and the formatting operator
(%)

e x p r e s s i on → token | token op token

op → ’+ ’ | ’− ’ | ’∗ ’ | ’/ ’ | ’∗∗ ’ | ’ , ’ | ’% ’

token → s t r i n g | i n t | r e a l | r e f e r e n c e | l i t e r a l |
’ ( ’ e x p r e s s i on ’ ) ’ | f unc t i on−c a l l

s t r i n g → ’" ’ ( [^"\n ] | ’\" ’ )∗ ’" ’
’ ’ ’ ( [^ ’\ n ] | ’ \ ’ ’ )∗ ’ ’ ’

i n t → [+−]? [0−9]+

r e a l → [+−]? [0−9]∗\.[0−9]+ |
[+−]? [0−9]+\.[0−9]∗

r e f e r e n c e → var−name |
r e f e r e n c e ’ . ’ var−name |
r e f e r e n c e ’ [ ’ e x p r e s s i on ’ ] ’ |
r e f e r e n c e ’ [ ’ s t r i n g ’ ] ’ |
r e f e r e n c e ’ [ ’ i n t ’ ] ’

var−name → [ a−zA−Z_ ] [ a−zA−Z0−9_]∗

l i t e r a l → ’None ’ | ’True ’ | ’ False ’ | i n l i n e−f u n c t i on

func t i on−c a l l → i n l i n e−f u n c t i on ’ ( ’ e x p r e s s i on ? ’ ) ’ |
r e f e r e n c e ’ ( ’ e x p r e s s i on ? ’ ) ’

i n l i n e−f u n c t i on → ’ f unc t i on ’ ’ ( ’ arguments ’ ) ’
’{ ’ b l ock−s tmt ’} ’
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arguments → var−name ’ , ’ arguments | var−name | λ

A.3 JSpy Advanced Regular Expression’s Grammar:

The JSpy Regular Expressions were designed as a superset of normal regular expres-
sions. In order to simplify the grammar the symbol “RegEx” will denote JavaScript
Regular Expressions with one difference: The “(” symbol can only appear after a back-
slash e.g.: “\(”, as to avoid ambiguity in the grammar.

Please note that, as this document was written, the parser for these expressions
still presented some bugs and unwanted complexity, and an architectural review is being
planned. This review might change drastically the overall syntax of these expressions,
but for now, they are as described bellow. Also differently from the rest of the grammar
spaces are not ignored, and will be considered part of the expression from now on:

JSpyRegEx → matcher−exp | matcher−exp JSpyRegEx

matcher−exp → RegEx |
’ ( ’ d i s j un c t i on− l i s t ’ ) ’ var−name ’ ; ’
’ ( ’ d i s j un c t i on− l i s t ’ ) ’ var−name ’∗ ’

d i s j un c t i on− l i s t → matcher−r e f e r e n c e ’ , ’ d i s j un c t i on− l i s t |
matcher−exp ’ , ’ d i s j un c t i on− l i s t |
matcher−exp

matcher−r e f e r e n c e → var−name



Appendix B

JSpy vs JavaScript Semantics

JSpy, as the name implies, was inspired by two popular scripting languages: JavaScript
and Python. While most of the syntax was gathered from JavaScript, the semantics
were inspired by Python to be easier to learn, understand and harder to introduce
bugs.

The main changes are listed below.

B.1 For-in Loops

The “for-in” loops implemented by JSpy use JavaScript syntax but its behavior was
based on Python. The most important difference between these 2 implementations is
the behavior when the loop is iterating over a list:

// JavaScript:

for(var i in [’a’, ’b’, ’c’]) {

console.log(i) // Would print: 0 1 2

}

// JSpy:

for(i in [’a’, ’b’, ’c’]) {

print(i) // Would print: a b c

}
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B.2 Iterators and Generators

In JavaScript until the ECMAs Script 5, generators and iterators were undefined. In
ECMAs Script 6 it was finally defined, but the syntax differs from the one described
here.

Iterators are a concept designed to be used on for-in loops. These loops are capable
of iterating over four data types: Lists, Maps, Strings and Iterators. Some built-in
functions of the language return Iterators, such as the “list.reverse()” function:

for(item in vector.reversed()) {

// Do something

}

On each iteration, the object returned by the “reversed()” function will produce
a new item, run the loop’s code and then proceed on producing the next item.
This differs from an iteration over a list, since the iterator is not required to keep
all items in memory at once, instead it has the liberty of producing only when asked to.

Generators is a concept that will be added to the language in future versions, and
consists of a concise way for the programmer to build an Ad Hoc iterator. Describing
a generator is much like describing a normal function; however, instead of returning a
single value, this function will return the next value each time it is asked to do so.

For that to be possible a generator has a special return statement: The “yield”
statement. Every time a generator yields it returns a value and pauses its execution.
After the loop is executed and the function will be asked again for the next item,
and then it will resume executing from where it stopped until it finds the next “yield”
statement.
An example of the syntax and usage of this concept is illustrated below, however, the
syntax used is not yet implemented on JSpy Language:

generator my_gen(arg) {

while (arg > 0) {

yield arg;

arg = arg - 1

}

}
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for (item in my_gen(3)) {

print(val) // Would print: 3 2 1

}

B.3 Reversed Index Feature

To facilitate iterating over a list in JSpy, as in Python, offers the possibility of indexing
with negative numbers: This feature allows to access the last position of a vector using
the index of “-1” and the N’th item from the back of the list by indexing with “-N”.

B.4 Implicitly Declared Variable’s Scope

An implicit declaration of a variable in both JavaScript and JSpy is when a programmer
makes an assignment on a variable before declaring it using the special “var” statement:

function F1() {

my_var = ’inside function’;

}

In JavaScript, this variable would be implicitly assigned to the global scope, while
in JSpy this variable would be implicitly assigned to the local scope. This means that
in JavaScript it is easier to declare a global variable by accident, the example below
illustrates this difference using the function “F1” declared earlier:

// JavaScript:

F1()

console.log(my_var) // Would print: ‘inside function’

// JSpy

F1()

print(my_var) // Would throw an undefined variable exception

This change was designed for two reasons: (1) it protects the programmer from
accidentally declaring global variables and (2) this saves the programmer from having
to declare explicitly all the variables he uses with the “var” statement, possibly saving
some time.

One important aspect of this feature is that the variable will not be implicit
declared on the local scope if it already exists in a higher hierarchy scope. Otherwise,
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it would not be possible to make assignments on global variables from inside functions.
The example below illustrates this feature in JSpy Language:

var external1;

function F2() {

external1 = 1

external2 = 2

internal = 3

}

F2()

var external2;

print(external1, external2) // Would print: 1 2

print(internal) // Would throw an undefined variable exception

Moreover if the programmer wants to force a variable to be declared in local scope it
may use the “var” statement to enforce that:

var V1 = ’external’, V2 = ’external’

function F3() {

// Declared on local scope:

var V1 = ’F3’;

// Using the external variable ‘V2’:

V2 = ’F3’;

}

F3()

print(V1) // Would print: ‘external’

print(V2) // Would print: ‘F3’

Finally if the user wants to force a variable to be declared in global scope intentionally,
the key-word “global” contains a reference to the global scope and may be used like to
achieve this:

function F4() {

var V1 = ’internal’;

global.V1 = ’global’
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}

F4()

print(V1) // Would print: ‘global‘

B.5 Global Scope Protection

When working with libraries overwriting a built-in function might cause unpredictable
behavior on the program. However, imposing to programmers the task of memorizing
all built-in global variables as to avoid overwriting them is error-prone and likely to
cause discomfort for the programmer.

As an alternative JSpy has two layers of protection for the global scope variables:
The first is that the default scope of any program is not the global scope itself, instead,
it is a child scope from the global one. This protects locally declared variables from
being visible by external libraries. The second layer is that assignments to global
variables work as if no global variable existed: Causing the program to declare a local
variable with that name. This prevents the user from accidentally overwriting any
built-in functions:

// Both statements will declare a new local variable:

var list = None;

map = None;

// Global variables remain intact:

print(global.list) // [Function: list]

print(global.map) // [Function: map]

If the user wants to overwrite or to declare a global variable it is still possible to be
done with this syntax:

global.list = ’new value’

global.map = ’new value’

B.6 Named Arguments for Functions

In Python it is possible to make explicit which argument is being passed on a function
call like this:
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def func(a, b, c):

print(a, b, c)

func(1, 2, 3) # This would print: 1 2 3

func(a=1, b=2, c=3) # This would also print: 1 2 3

It is even possible to change the order of the arguments:

func(b=2, b=1, c=3) # This would also print: 1 2 3

This Python feature is very useful in two situations:

• When a function has several default arguments, and the user only wants to use
one of them. In JavaScript, the solution is either to join the optional arguments
into a single object instance or to set all the default arguments, the programmer
does not want to change, to null and the one he intends to change to the desired
value. In both cases, it is complicated and verbose.

• When calling a function, adding the name of argument together with its value
can often be used as documentation, making it easier for other programmers to
understand what that argument is there for.

For that reason, this feature was included on JSpy. However, for avoiding am-
biguities on the language JSpy replaced the ‘=’ by the colon character ‘:’. It is then
possible to do the same thing in JSpy, with a slightly different syntax:

function func(a, b, c) {

print(a, b, c)

}

func(1, 2, 3) // This would print: 1 2 3

func(’a’: 1, ’b’: 2, ’c’: 3) // This also would print: 1 2 3

func(’b’: 2, ’a’: 1, ’c’: 3) // This also would print: 1 2 3

In future versions of the language, it is expected for the quotes to be optional, making
this syntax less verbose.
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B.7 Prototypical Inheritance

In JavaScript the syntax used to implement inheritance is very different from the way
it is in most languages, especially Java and C++, as exemplified below:

function F(value) { this.value = value }

F.prototype.attribute = ’Attribute’

var instance = new F(’Value’)

console.log(instance.attribute) // Attribute

console.log(instance.value) // Value

We believe this syntax to be unnecessarily verbose and a little complicated to be
learned. Especially the concept of calling the “new” operator over a function instead
of doing it on a class definition. In JSpy the syntax for doing the same thing was
modified:

var F = {

’__init__’: function(value) { this.value = value },

’attribute’: ’Attribute’

}

var instance = new F(’value’)

console.log(instance.attribute) // Attribute

console.log(instance.value) // Value

This syntax is believed to be easier to understand and to be more friendly for
programmers that are used to programming in Java and C++. One of the advantages
is that the “new” operator is called upon the “class definition”, making it more familiar.

With this syntax the prototype is declared as a “map” and the constructor function
is optionally declared inside it using a reserved name: “__init__”.

There is, however, one feature that is not yet implemented: There is no way yet
for any function of this object to refer to it’s “super” function as it would be expected on
a classic inheritance system. This feature is expected to be included in future versions.





Appendix C

JSpy Model’s Pseudo-Language

This Appendix will explain the Pseudo-Language used to exemplify and demonstrate
properties of the JSpy Model. This language was created with minimal facilities in
order of truthfully expressing the inherent properties of the model.

C.1 Data Types:

To start the description of the model lets start with our first data type the Pattern.
The pattern can be represented using a syntax similar to regular expressions:

"open the (openable_objects)"

The second type of data we will describe is the Input data type. Inputs will be described
as character sequence enclosed in single quotes and all characters within it are meant
to be read as literal with no special meaning:

’open the box’

C.2 Basic Operations

To make possible to reference specific patterns and inputs we will assign names to
them. For that, we will use the assignment operator and the possibility of adding a
variable name to a capturing group, in this case, the “var_name” variable will contain
the input captured by the “openable_objects” group:

pattern = "open the (openable_objects)var_name;"
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The pattern forming relationships described on Section 3.1.3 also need to be represented
on this language. For that we will create 3 operators to describe them:

// The alternate-occurrence operator:

pattern = "foo" | "bar"

pattern = "foo|bar"

// The simultaneous-occurrence operator:

pattern = "foo" & "bar"

pattern = "foo&bar"

// The relative-occurrence operator:

pattern = "foo" + "bar"

pattern = "foobar"

The operations "&" and "+" can also be used on Inputs with a similar meaning, e.g.:

// The simultaneous-occurrence operator:

simultaneous_input = "foo" & "bar"

// The relative-occurrence operator:

concatenated_input = "foo" + "bar"

There a common case that is used often to form pattern groups:

S = S | "new member of the pattern group"

S = S | "another new member of the pattern group"

To facilitate this common case lets define one extra operator, the group forming oper-
ation, equivalent to the operation described above:

S |= "new member of the pattern group"

S |= "another new member of the pattern group"

C.3 Describing Meaning

When necessary to associate a meaning to a pattern as explained on Section 3.1.7,
we will write it after the pattern declaration and enclosed with curly brackets, as
exemplified below:



C.3. Describing Meaning 79

pattern = "open the (openable_objects)var_name;" {

// ... pseudo-code here ...

}

C.3.1 Saving Global State:

For fully accounting for the Saving Global Scope feature there are 2 requirements:

1. The possibility of declaring and updating patterns.

2. The possibility of inhibiting or erasing existing patterns when necessary.

The first requirement is actually dealt with by the syntax explained so far, how-
ever, to provide the second we will require an additional operator, the Inhibition Op-
erator :

// Given an existing pattern:

pattern = "foo|bar"

// Using the inhibition operator on it will remove any parts

// of the pattern that matched the given input signal:

new_pattern = pattern - ’foo’

The resulting "new_pattern" above would be equivalent to the pattern "foo"
and would no more recognize the input ’bar’ .

C.3.2 Information Forwarding:

For making possible to interact with our patterns, and therefore, to implement the
information forwarding feature, we will define a function called "match":

pattern = "foo|bar"

pattern.match(’foo’)

C.3.3 Performing External Calls:

And for sending signals to external modules, effectively implementing the External
Calls feature, we will define a function called "call":
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pattern = "foo" {

// Send an external call:

call(do_something)

// If necessary additional arguments will

// be allowed after the external device name:

call(print, text=’foo’)

}

C.4 An Illustrative Example:

To illustrate this syntax the example below implement some arbitrarily chosen opera-
tions:

// Remember the objects available on the current context:

context = "box|door"

open = "open the (openable_objects)obj;" {

// Example of a conditional behavior:

"(context)" {

call("open", object=obj)

}.match(obj)

// The code above would only be executed if

// the input ’obj’ is recognized by the ‘context’

// pattern.

}

add_item = "add (openable_objects)obj;" {

// Add an ’obj’ to the context:

context = context | obj

}

remove_item = "remove (openable_objects)obj;" {

// Remove an ’obj’ from the context:

context = context - obj

}
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This pseudo-language is used on appendix D and on some parts of the text to
illustrate several properties of the model.





Appendix D

Describing Data with JSpy Patterns

This section will demonstrate that it is possible to emulate some reasonable complex
structures using only the features attributed to the patterns of the JSpy Model.

To fully comprehend the examples here it is advisable to read Appendix C.

D.1 Describing a Dictionary Container

A dictionary is given by a pair of key and value. The concepts described by the JSpy
Model are ideal to provide this functionality, so, for example, this three patterns:

value = ’none’

Dict |= "key1" { value = ’value1’ }

Dict |= "key2" { value = ’value2’ }

Dict |= "key3" { value = ’value3’ }

Would be enough to declare a dictionary named “my_dict” and containing three
values with three different keys. To erase or create a new value it would be just a
matter of creating the respective pattern. And to have access to one of these values it
would be required to use the “match()” function like this:

Dict.match(’key3’);

returned_value = value

And it would return “value3” in this case.
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D.2 Describing a List Container

First let us declare a pattern to describe the alphabet of symbols:

// Alphabet:

A = "(any_single_symbol)"

// Any number of repetitions:

A* = "(A*);(A);" | ""

To implement a list container it is necessary to keep the information in an in input
loop:

// Loop operation, when no extra input is detected

// the information is kept in a loop:

L |= "(A*)list;" & "" {

L.match(list)

}

At any moment an additional input might be sent to the system, making it realize one
of the four operations:

output = ’’

// Head operation, for recovering the first item

L |= "(A*)head;:(A* | ":")tail;" & "head" {

output = head;

L.match(head + ’:’ + tail)

}

// Tail operation, for recovering the rest of the list:

L |= "(A*)head;:(A* | ":")tail;" & "tail" {

output = tail;

L.match(head + ’:’ + tail)

}

// Push operation, for adding a new element:

L |= "(A*)head;:(A* | ":")tail;" & "push:(A*)value;" {

L.match(value + ’:’ + head + ’:’ + tail)
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}

// Pop operation, for removing and element:

L |= "(A*)head;:(A* | ":")tail;" & "pop" {

L.match(tail)

}

With this setup it is possible to create a list by triggering the loop:

L.match(’value1:value2:value3’)

To recover information it is necessary to add a second input to the loop with the desired
command:

// To have the first item available on the output variable:

L.match(’head’)

// output == ’value1’

// To have the tail available on the output variable:

L.match(’tail’)

// output == ’value2:value3’

// To add a new item to the list:

L.match(’push:value4’)

// To remove an item from the list:

L.match(’pop’)
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