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Resumo

Este trabalho aborda o problema de segmentação hierárquica de vídeos. Segmen-

tação hierárquica de vídeo é um conjunto de segmentações de vídeo em diferentes

níveis de detalhe em que as segmentações em níveis de detalhe mais grosseiras

podem ser produzidas a partir de fusões simples das regiões de segmentações em

níveis de detalhes mais �nos. O nível hierárquico corresponde a uma escala de

observação, que pode ser processada de várias formas, dependendo da medida de

dissimilaridade utilizada para calcular todas as escalas. Neste trabalho, a segmen-

tação hierárquica de vídeo é transformada em um problema de particionamento de

grafo em que cada parte corresponde a um supervoxel do vídeo. Assim, é apresen-

tada uma nova abordagem para a segmentação hierárquica de vídeo, que calcula

uma hierarquia de partições por uma reponderação do grafo original, usando uma

medida de dissimilaridade simples em que uma segmentação not too coarse pode

ser facilmente inferida. Usando a abordagem proposta foram desenvolvidos dois

métodos de segmentação hierárquica de vídeo: um aplicado à segmentação de

vídeos completo e outro aplicado a segmentação de vídeo por streaming. Tam-

bém foi desenvolvida uma extensa análise comparativa, considerando as avaliações

quantitativas que mostram a precisão, facilidade de uso e coerência temporal dos

métodos propostos. Além disso, é proposto um método de oversegmentation, que

melhora tanto a precisão quanto o custo computacional dos métodos propostos.

De acordo com os resultados experimentais, a hierarquia inferida pelos métodos

propostos produz bons resultados quando aplicada à segmentação de vídeo e com-

parados com os métodos encontrados na literatura.

Palavras-chave: Segmentação hierárquica de vídeo baseada em grafos, escala de

observação, supervoxel.
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Abstract

This work addresses the problem of hierarchical video segmentation. Hierarchical

video segmentation is a set of video segmentations at di�erent detail levels in which

the segmentations at coarser detail levels can be produced from simple merges of

regions from segmentations at �ner detail levels. The hierarchical level corresponds

to a scale of observation, that can be processed in several ways, depending on the

dissimilarity measure used to calculate all scales. In this work, the hierarchical

video segmentation is transformed into a graph partitioning problem in which each

part corresponds to one supervoxel of the video, thus we present a new approach

for hierarchical video segmentation, which computes a hierarchy of partitions by a

reweighting of the original graphs, using a simple dissimilarity measure in which a

not too coarse segmentation can be easily inferred. Using the proposed approach,

we developed two methods of hierarchical video segmentation, an applied full video

segmentation; and another applied to streaming video segmentation. We also

provide an extensive comparative analysis, considering quantitative assessments

showing accuracy, ease of use, and temporal coherence of our methods. In addition,

we propose an oversegmentation method, able to enchance the accuracy and the

computational cost of our methods. According to the experimental results, the

hierarchy inferred by our methods produced good results when applied to video

segmentation and compared with the methods in the literature.

Palavras-chave: Hierarchical Graph-Based Video Segmentation, Observation

Scale, Supervoxel.
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Chapter 1

Introduction

Content-Based Visual Information Retrieval (CBVIR) is still a major challenge for

Computer Science. The main objective is the development of autonomous systems

that reproduce the capabilities of the human visual system to interpret visual data

that is able to adequately respond to visual stimuli. However, interpreting visual

data is not an easy task for computers because an image may have thousands of

pixels. So, an automatic image interpretation may become a di�cult task and,

often, very expensive. For example, what do you see in Figure 1.1(a)? Do you see

people, a dog, a ball? For the human eye, it could be easy to identify these objects,

but the computer must compute 38,400 pixels with 17,362 distinct colors. Thus,

the computer needs to organize the pixels so that they can be represented as an

object of interest, as illustrated in Figure 1.1(b), where the red color represents

the dog, the green color represents the ball and so on.

(a) (b)

Figure 1.1. Example image: (a) original image, (b) labeled image.

1



2 Chapter 1. Introduction

The process of grouping perceptually similar pixels into regions is known as

image segmentation [Gonzalez and Woods, 2011] which, as shown in Figure 1.1, is

not an easy task for the computer. The segmentation process organizes the input

data in structures with relevant semantic content. These structures correspond to

objects, or parts of objects, that will aid in the image interpretation and analysis

process [Pedrini and Schwartz, 2007]. When working with videos, the challenge is

even greater, since the visual information of each image, also called frame, must

be temporally propagated according to the next image. As can be seen in Figure

1.2, the visual information (for example, the ball labeled with green color) changes

into spatiotemporal form in the video frame sequences.

Figure 1.2. Example of frames from video: The original frames are illustrated
in the �rst row and the labeled frames in the second row.

The interpretation of the data in a video is a complex activity. So a step

of video segmentation may be necessary to partition the data set into structures

with relevant semantic content to aid in the analysis process. We can �nd in the

literature several algorithms of video segmentation, which mostly are extensions of

image segmentation techniques. Some of these algorithms simply apply image seg-

mentation techniques to the video frames without considering temporal coherence

[Chen et al., 2007; Winnemoller et al., 2006]. Others can preserve the temporal

information as supervoxels, which is a set of spatially continuous voxels1 that have

similar appearance (intensity, color, texture, etc.) [Veksler et al., 2010; Xu et al.,

1A voxel has three coordinates (x; y; t), in which time is represented as the third dimension.
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2012]. As can be seen in Figure 1.2, the ball labeled with green color and the dog

labeled with red color are both supervoxels note that supervoxels may have di�er-

ent sizes and shapes that vary according to the visual content processed. Moreover,

note that people (in Figure 1.2) are represented by di�erent supervoxels. Once a

supervoxel is only one spatially continuous voxel, each person would be a di�erent

supervoxel.

The video segmentation in supervoxels is not an easy task, since it is neces-

sary to preserve the spatiotemporal coherence of segmented information in every

frame of the video. In this work, we address the hierarchical video segmentation

subject, that extends the concepts of hierarchical image segmentation, in order to

consider the spatiotemporal information present in a video. A hierarchical image

segmentation is a set of image segmentations at di�erent detail levels in which

the segmentations at coarser detail levels can be produced from simple merges

of regions from segmentations at �ner detail levels, as illustrated in Figure 1.3.

Therefore, the segmentations at �ner levels are nested with respect to those at

coarser levels. Hierarchical methods have the interesting property of preserving

spatial and neighboring information among segmented regions [Guimarães et al.,

2012]. The hierarchical level corresponds to a scale of observation, that can be

processed in several ways, depending on the dissimilarity measure used to calcu-

late all scales, and the relationship among them, as proposed by Felzenszwalb and

Huttenlocher [2004].

The majority of the hierarchical segmentation methods produces hierarchical

levels from the merger of the previous level, and so on, but with a high computa-

tional cost, as a coarser level always depends on computation of all previous levels.

Guimarães et al. [2012] proposed an e�cient hierarchical segmentation method

based on the observation scales, that produces the complete set of segmentations

at every scale. Thereby, it is possible to provide all scales of observations, instead

of only one segmentation level.

In this work, we present a new approach to hierarchical video segmenta-

tion, which extends the image segmentation method proposed by Guimarães et al.

[2012] to video segmentation. We use observation scale applied to the hierarchi-

cal video segmentation. Our approach removes the need for parameter tuning in

the calculations of hierarchical levels. In other words, the proposed hierarchical



4 Chapter 1. Introduction

video segmentation approach is not dependent on the hierarchical level, and con-

sequently, it is possible to compute any level without computing the previous ones,

thus the time for computing a segmentation is almost the same for any speci�ed

level. Our approach for hierarchical video segmentation using an observation scale

computes a hierarchy of partitions by a reweighting of the original graph in which

a segmentation can be easily infered, and the temporal coherence is related to the

graph transformation used. Exploring this graph transformation and the use of

scale observation in hierarchical video segmentation is the subject of this thesis.

A B C D E F

G

H

I

J

K

coarser level

�ner level

Figure 1.3. Example of hierarchical segmentation.
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1.1 Motivation

Along with recent technological advances of computers in general, the video data

has become more and more accessible and plays an increasingly important role

in our everyday life. Today, even commonly used consumer hardware, such as

notebooks, mobile phones, and digital photo cameras, allow to create videos. At

the same time, faster internet access and growing storage capacities enable to

direcly publish and share videos with others.

However, despite the increasing importance of video data, the possibilities to

analyze it in an automated fashion are rather limited. Computer vision systems

are far behind the capabilities of human vision. For instance, video search in large

scale databases archives is currently only feasible with costly manual annotation.

Web search engines commonly rely mainly on textual data, such as descriptions

or tags, in order to retrieve relevant videos.

Another example are human action classi�cation applications. The task of

human action classi�cation is the process of naming human actions based on the

video content and can be de�ned as follows: given a pre-determined set of actions,

we need to classify an unlabelled action from an video in one of these types.

Action recognition and classi�cation in videos is a topic of interest in many re-

cent researches. Extending the two main stages discussed by Poppe [2010], several

researches focus their models in (i) description, (ii) representation, (iii) classi�ers

and (iv) data �ltering.

We remark the e�ort applied to the task due to some di�erent points, as

the relevance of the topic, such its application to security systems or data re-

trieval framework, or as the growing amount of data available requiring feasible

computation with limited resources. This scenario creates a growing trend of us-

ing temporal video segmentation as preprocessing for action recognition, aiming

to create a better representation of the action movement or data reduction for

video processing. The idea is that the segmentation methods could partitionate

videos into coherent constituent parts, to easily carry out the classi�cation based

on the obtained segments. Most segmentation works rely on creating a better

representation of actions.

Niebles et al. Niebles et al. [2010] proposed a strategy for modeling temporal
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structure of decomposable motion segments for activity classi�cation. They used

a discriminative model that encodes a temporal decomposition of video sequences,

and appearance models for each motion segment. In Zhou and Wang [2012], Qiang

and Gang proposed a new representation of local spatio-temporal cuboids based

on atomic actions that represent the basic units of human actions.

In Sekma et al. [2013], the authors presented a motion descriptor for human

action recognition that is based on both the accordion representation of the video

and its temporal segmentation into elementary motion segments.

In Ma et al. [2013], the authors presented a representation called hierarchical

space-time segments. This representation creates a tree with video segments con-

taining body parts, detected using a boundary map. The tree is then pruned using

visual cues exploring the relation between segments. The remaining segments are

tracked foward and backward in time and represented by a Bag-of-Word (BoW)

model. The goal of this approach is to create an unsupervised method to extract

relevant space-time segments to represent a video.

In Guo et al. [2016], the authors focused in a mid-level representation of a

graph-based approach, that combines two descriptions to represent the video: one

spatio-temporal segmentation using motion word and dense trajectories, and an

iterative procedure to obtain discriminative patches by a learning-based clustering.

They use the identi�ed patch to locate the discriminative area and describe the

supervoxels that fall inside this area using a Histogram of Oriented Gradient.

Spatio-temporal motion and appearance context information around pixels

can deliver more complex motion and appearance structures. In Peng et al. [2013],

the authors proposed a motion boundary based dense sampling strategy, called

Dense Trajectories Motion Boundary DT-MB, to reduce the number of trajectory

preserving the power of dense trajectory using a group of spatio-temporal context

descriptor. Likewise, in Yi and Lin [2015], the authors proposed a mid-level ap-

proach to represent and model the spatio-temporal relationship of video elements

for the purpose of human activity classi�cation in unconstrained environments.

In Jain et al. [2014], the authors proposed the use of tubelets, i.e., mid-level

representation from successive mergings of the spatio-temporal segmentations, to

perform action localization.

In the same way, we understand that video segmentation can be an important



1.2. Challenges 7

task in the analysis and interpretation of video data, because it facilitates the

decomposition of video in structures with relevant semantic content that to aid in

the automatic processing by computers.

1.2 Challenges

According to Grundmann et al. [2010a], are three major challenges for developing

methods of video segmentation comprise: temporal coherence, automatic process-

ing and scalability.

Temporal coherence is related to the propagation of visual information

present in each frame of the video consistently. When performing image segmen-

tation, the expected result is the grouping of its visual information individually.

When working with the video segmentation, the result expected is that the indi-

vidual information of each frame is propagated consistently to subsequent frames,

thus, increasing the e�ciency of segmentation. Getting a good video segmenta-

tion and keeping the most of the spatiotemporal coherence is a major challenge

because of the volume of data that is processed. There are at least three di�erent

processing paradigms for video segmentation [Xu et al., 2012] that can in�uence

the treatment of temporal coherence, as illustrated in Figure 1.4:

• Frame-by-frame: processing such that each frame is independently seg-

mented, but no temporal information is used. Even though it is fast, the

results and temporal coherence are poor. Although frame-by-frame pro-

cessing is e�cient and can achieve high-performance in spatial respects, its

temporal stability is limited.

• Stream processing: segmenting the video by parts where the segments of the

current frame is based only on a few previously processed frames. It is an

online processing, and the results are good and e�cient in terms of time and

space complexity, where each video frame is processed only once and does

not change the segmentation of previous frames.

• Whole video processing (full video): uses all the video frames in the segmen-

tation process, creating a 3D volume processing that represents a model for
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the whole video. It is a bidirectional multi-pass process. The results are the

best, but the complexity is too high to process long and streaming videos.

This approach has high computational cost and often impractical in long

videos.

Figure 1.4. Three di�erent processing paradigms for video segmentation. [Xu
et al., 2012].

Automatic processing is related to the correct identi�cation of video objects

(semantically related regions) and its variation over the video, without knowing

a priori, which regions to track, what frames contain those regions, or the time-

direction for tracking (forward or backward). The objective is to get a good seg-

mentation of video objects without the need for a manual process, i.e., without the

need for a user to indicate any feature which facilitates the segmentation process.

Since scalability is related to computer resources required to perform the

video segmentation, given the large amount of pixels or features in a video, video

segmentation approaches tend to be slow and to need large memory. Consequently,

previous advances concentrate on short video sequences (usually less than a second)

or reduce complexity, which can adversely a�ect long-term temporal coherence.

The majority of the full video segmentation methods end up consuming a lot of

memory and so is applied to short videos, thus limiting their use. In addition, the

streaming methods have better scalability because they require a smaller amount

of memory.

Despite the large amount of existing video segmentation methods, they still

have limitations related to these challenges. This thesis proposes a hierarchical
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video segmentation approach that uses the observation scale with the goal of ex-

tending the good results found in the image segmentation application. Thereby,

we obtain a video segmentation method that is scalable, that has a good coher-

ence spatiotemporal and present a good segmentation of the objects presents in

the video.

1.3 Hypotheses

Our main hypothesis is that applying the Observation Scale method to the video

segmentation will produce an e�ective hierarchical video segmentation.

Also, the following secondary hypotheses are considered and validated in this

thesis:

• The ways to transform the video data into a graph can change the e�ective-

ness of the observation scale method.

• By using the observation scale method, it is possible to obtain a video

segmentation method that has a good temporal coherence, is scalable and

presents a correct segmentation.

Formally, the thesis problem statement can be formulated as follows.

Given a video, how to represent its visual content to performing an e�ective

segmentation by using an observation scale?

1.4 Contributions

The main result of this thesis is a graph-based hierarchical video segmentation ap-

proach using an observation scale that produces good quantitative and qualitative

results when applied to video segmentation. We propose two methods to apply

our approach; using the full video and another using the streaming method. The

great advantage of streaming method is the ability to run a video stream without

the need of having all the video in memory, achieving to segment of consecutive

frames blocks considering the temporal information present throughout the video.
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In addition, we propose an oversegmentation method, which also uses our obser-

vation scale approach to improve the accuracy and the computational cost of our

methods for video segmentation.

During the development of this research, parts of the work were published in

order to disseminate the results achieved, namely:

Journal

• De Souza, K. J. F., Araújo, A. de A., Patrocínio Jr., Z. K. G., and Guimarães,

S. J. F. (2014). Graph-based hierarchical video segmentation based

on a simple dissimilarity measure. Pattern Recognition Letters, 47(0):85

- 92.

Conferences

• De Souza, K. J. F., Araújo, A. de A., Patrocínio Jr., Z. K. G., Cousty, J.,

Najman, L., Kenmochi, Y., Guimarães, S. J. F. (2016). Decreasing the

number of features for improving human action classi�cation. In

SIBGRAPI 2016 (XXIX Conference on Graphics, Patterns and Images), São

José dos Campos, Brazil.

• De Souza, K. J. F., Araújo, A. de A., Guimarães, S. J. F., Patrocínio Jr.,

Z. K. G., and Cord, M. (2015). Streaming graph-based hierarchical

video segmentation by a simple label propagation. In SIBGRAPI

2015 (XXVIII Conference on Graphics, Patterns and Images), Salvador,

Brazil.

• De Souza, K. J. F., Araújo, A. de A., Patrocínio Jr., Z. K. G., Cousty, J.,

Najman, L., Kenmochi, Y., and Guimarães, S. J. F. (2013). Hierarchical

video segmentation using an observation scale. In SIBGRAPI 2013

(XXVI Conference on Graphics, Patterns and Images), Arequipa, Peru.

1.5 Outline

This work is organized as follows.
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Chapter 2 - Background Knowledge. In Chapter 2, we present the related

works in hierarchical video segmentation with a discussion of the charac-

teristics related to the objectives of this work. Moreover, we present some

fundamental concepts which serve as basis for the understanding and devel-

opment of this work.

Chapter 3 - Hierarchical Video Segmentation. In Chapter 3, we provide a

detailed description of our approach to hierachical video segmentation.

Chapter 4 - Experimental Results. In Chapter 4, we present the experimen-

tal results with a detailed quantitative and qualitative analysis.

Chapter 5 - Conclusions and future works. Finally, we present our conclud-

ing remarks and discuss future work directions.

Appendix A - Parameters for video graph creation per dataset. In Ap-

pendix A, we present some additional results of our experiments.





Chapter 2

Background Knowledge

In this chapter, we present some fundamental theoretical knowledge to the un-

derstanding of this work. In Section 2.1, we present related works on hierarchical

video segmentation with a discussion of the characteristics aiming to the objectives

of this work. In Section 2.2 presents some fundamental concepts about graphs,

hierarchies and the dissimilarity measure adopted in this work. Finally, in Section

2.3 we present the concept of the observation scale used in this work.

2.1 Related Work

In this work, video segmentation refers to the segmentation of videos into di�erent

spatiotemporal regions, called supervoxels. It has been an active research topic

in the last few years, and some dataset are available to compare di�erent video

segmentation algorithms [Xu and Corso, 2012; Galasso et al., 2013; Xu and Corso,

2016]. More speci�cally, we address the subject of hierarchical graph based video

segmentation. Graph-based segmentation methods are commonly employed for

video segmentation, the nodes represent the superpixels or supervoxels and edges

represent the similarities [Felzenszwalb and Huttenlocher, 2004; Grundmann et al.,

2010a]. Each supervoxel de�nes a spatiotemporal region in video that has similar

information, like color, texture, motion, etc. The supervoxel hierarchies contain

rich multiscale decompositions of video content, where various structures can be

found at various levels.

13
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A hierarchy can be represented by a tree, specially, as minimum spanning

tree, and its use for image segmentation was popularized by Felzenszwalb and Hut-

tenlocher [2004], who proposed a graph-based algorithm for image segmentation

(so-called GB), that de�ne a predicate for measuring the evidence for a boundary

between two regions using a graph-based representation of the image. Their al-

gorithm runs in time nearly linear in the number of image pixels, which makes it

suitable for extension to spatiotemporal segmentation. A sample output from this

segmentation algorithm is shown in Figure 2.1.

Figure 2.1. Segmentation result obtained by [Felzenszwalb and Huttenlocher,
2004].

In [Grundmann et al., 2010a], the authors proposed a hierarchical graph-

based video segmentation algorithm (so-called GBH), that applies the same tech-

nique presented by Felzenszwalb and Huttenlocher [2004] to merge regions. Re-

gions are described by local Lab histograms. At each step of the hierarchy, the

edge weights are set to be the χ2 distance between the Lab histograms of the con-

nected two regions. Their algorithm builds on an oversegmentation of the above

spatiotemporal graph-based segmentation. It then iteratively constructs a region

graph over the obtained segmentation, and forms a bottom-up hierarchical tree

structure of the region (segmentation) graphs. Even though this method presents

high quality segmentations with a good temporal coherence and with stable region

boundaries, for computing a video segmentation according to a speci�ed level, it is

necessary to compute all lower (�ner) segmentations. A sample output from GBH

segmentation is shown in Figure 2.2.

The methods based on Nyström method [Fowlkes et al., 2001, 2004] and
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Figure 2.2. Segmentation result obtained by GBH segmentation. The original
frames are illustrated in the �rst row. The following rows, from top to bottom,
illustrate the results obtained by GBH with di�erent hierarchical levels.

segmentation by weighted aggregation (so-called SWA) [Sharon et al., 2000, 2006;

Corso et al., 2008] optimize the same normalized cut criterion [Shi and Malik, 2000].

In [Fowlkes et al., 2001], the Nyström approximation was proposed to solve the

eigenproblem. Their work demonstrated segmentation on relatively low-resolution,

short videos and randomly sample points from the �rst, middle, and last frames.

However, this method is not scalable as the number of supervoxels and the length

of video increase. Sampling too many points makes the Nyström method require

too much memory, while sampling too few gives unstable and low performance.

The approach based on SWA proposed by [Sharon et al., 2000, 2006; Corso et al.,

2008] is other alternative approach to optimize the normalized cut criterion. The

SWA computes iteratively the hierarchy considering for high hierarchical levels

the previous ones. Moreover, it uses an algebraic multigrid solver to e�ciently

compute the hierarchy. The algorithm is nearly linear in the number of input

voxels, and produces a hierarchy of segmentations, which motivates its extension

to a supervoxel method.

The mean shift segmentation (so-called MeanShift) proposed in [Comaniciu
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and Meer, 2002] for image segmentation was applied to temporal sequences in

[Paris and Durand, 2007]. Moreover, this work also introduced the Morse theory

to interpret mean shift as a topological decomposition of the feature space into

density modes. A hierarchical video segmentation is created by using topological

persistence.

Although these methods have presented good results for segmenting videos,

as shown in Xu and Corso [2012], there are still some factors that prevent their

use in real applications, i.e., memory consumption and processing time make un-

feasible to apply those methods to medium and large videos. In [Xu et al., 2012],

the authors proposed the �rst streaming hierarchical video segmentation method

(so-called StreamGBH). The experimental results indicate that StreamGBH out-

performs other streaming video segmentation methods and performs nearly as well

as the full-video hierarchical graph-based method GBH. But, since it adopts GBH

[Grundmann et al., 2010a] as a component, it also has the same limitations, i.e.,

it is necessary to compute all lower (�ner) segmentations. Furthermore, in [Tri-

pathi et al., 2014], the authors proposed an improvement to StreamGBH method

by incorporating motion information using early and mid-level visual processing.

Similarly, a Sub-Optimal Low-Rank Decomposition method was introduced in [Li

et al., 2015, 2016] for the graph-based streaming video segmentation.

We can �nd in the literature other methods that exploit the streaming video

segmentation by using temporal superpixels. The temporal superpixel method

computes the superpixel segmentation on the �rst frame and then extends the

existing superpixels to subsequent frames (one by one) in a video. Therefore, this

set of methods [Chang et al., 2013; Tsai et al., 2010; Bergh et al., 2013; Reso

et al., 2013], by their nature, computes supervoxels in a streaming fashion, which

is similar to streamGBH with a streaming window of one frame. The temporal

superpixel method [Chang et al., 2013] uses a Gaussian Process for the streaming

segmentation.

In this work, we propose two methods of video segmentation using an obser-

vation scale, one applied to the full video and another applied to streaming video.

In order to provide a comparative analysis, we used the benchmark and library

LIBSVX proposed in [Xu and Corso, 2012], which contains the implementation of

the following video segmentation methods: GB [Felzenszwalb and Huttenlocher,
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2004], GBH [Grundmann et al., 2010a], StreamGBH [Xu et al., 2012], Nyström

[Fowlkes et al., 2001] and SWA [Corso et al., 2008].

2.2 Graphs, Hierarchies and Properties

First, we de�ne a supervoxel according to Xu and Corso [2012]. Given a 3D lattice

Λ3 (the voxels in the video), a supervoxel sv is a subset of the lattice sv ⊂ Λ3

such that the union of all supervoxels comprises the lattice and they are pairwise

disjoint:
⋃
i sv = Λ3 and svi

⋂
svj = ∅,∀i, j pairs.

Let V be a set. We denote by P(V ) the set of all subsets of V . Let x be

an element of V . Let Px(V ) be the set of all subsets of V which contains the

element x. A subset P ⊆ P(V ) is called a partition (of V ) if the intersection of

any two distinct elements of P is empty and if the union of all elements in P is

equal to V . If P is a partition, each element of P is called a region (or class) of

P. The set of all partitions of V is denoted by ΠV and the set of all regions of all

partitions of V is denoted by ΓV . Let P and P′ be two partitions of V . We say

that P′ is a re�nement of P if any region of P′ is included in a region of P. A set

H = {Pλ ∈ ΠV | λ ∈ N} of (indexed) partitions is called a (indexed) hierarchy if

for any two positive integers λ1 and λ2 such that λ1 ≥ λ2, the partition Pλ2
is a

re�nement of Pλ1
.

We de�ne a (undirected) graph as a pair G = (V,E) where V is a �-

nite set and E is composed of unordered pairs of V , i.e., E is a subset

of {{x, y} ⊆ V | x 6= y}. Each element of V is called a vertex of G, and each

element of E is called an edge of G. A graph is said to be connected if every pair

of vertices in the graph is connected. An edge-weighted graph is a pair W = (G,w)

where G is a graph and w is a map from E(G) into N. A tree is a graph T = (V,E)

which is connected and has only |V | − 1 edges and an edge-weighted tree is a pair

U = (T,w) in which T is a tree and w is a map from E(T ) into N. A spanning

tree of a connected, undirected graph G = (V,E) � represented by T (G) � is a

tree T = (V ′, E ′) in which V ′ = V and E ′ ⊆ E. For an edge-weighted graph

W = (G,w) one associates an edge-weighted spanning tree U(G) = (T (G), w) in

which T (G) is a spanning tree of G and w is a map from E(T ) into N. This map

could be used to assign a weight to a spanning tree by computing the sum of the
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weights of all edges in that spanning tree, i.e., w(U) =
∑
{x,y}∈E(T (G))w({x, y}). A

minimum spanning tree (MST) of G � represented by MST(G) � is then a spanning

tree of G with weight less than or equal to the weight of every other spanning tree

of G.

Let W = (G,w) be an edge-weighted graph. Then, to any threshold λ ∈ N,
one may associate the partition PW

λ ∈ P(V ) induced by the graph made by V (G)

and the edges in E(G) whose weight is less than λ. This partition is called the

partition induced by W at level λ. It is well known [Cousty and Najman, 2011;

Morris et al., 1986] that for any two values λ1 and λ2 such that λ1 ≥ λ2, the

partition PW
λ2

is a re�nement of PW
λ1
. Hence, the set HW = {PW

λ | λ ∈ N} is a
hierarchy. This hierarchy is called the hierarchy induced by W .

Let us remember some de�nitions of region-merging criterion. The criterion

for region-merging in Felzenszwalb and Huttenlocher [2004] measures the evidence

for a boundary between two regions by comparing two quantities: one based on

intensity di�erences across the boundary, and the other based on intensity dif-

ferences between neighboring pixels within each region. More precisely, in order

to know whether two regions must be merged, two measures are considered: the

internal di�erence Int(X) and the di�erence Diff (X, Y ) between two neighboring

regions X and Y . The internal di�erence Int(X) of a region X is the highest

edge weight among all the edges linking two vertices of X in the MST, while the

di�erence Diff (X, Y ) between two neighboring regions X and Y is the smallest

edge weight among all the edges that link X to Y . Thus, for merging two adjacent

regions X and Y , it is necessary to verify the following region merging predicate:

MergePred(X,Y ) =

{
true if Diff (X,Y ) ≤ MInt(X,Y )

false otherwise
(2.1)

where the minimal internal di�erence MInt(X, Y ) is de�ned as:

MInt(X,Y ) = min{Int(X) + τ(X), Int(Y ) + τ(Y )} (2.2)

and the threshold function τ controls the degree to which the di�erence between

two components must be greater than their internal di�erences in order for there



2.2. Graphs, Hierarchies and Properties 19

to be evidence of a boundary between them. For small components, Int(X) is not

a good estimate of the local characteristics of the data. In the extreme case, when

|X| = 1, we have Int(X) = 0. Therefore, in Felzenszwalb and Huttenlocher [2004],

a threshold function based on the size of the component is used, i.e.:

τ(X) =
k

|X|
(2.3)

with a constant parameter k.

Then, two regions X and Y are merged when:

Diff (X,Y ) ≤ min

{
Int(X) +

k

|X|
, Int(Y ) +

k

|Y |

}
(2.4)

where k is a parameter used to prevent the merging of large regions (i.e., larger k

forces smaller regions to be merged).

The merging criterion de�ned by Eq. (2.4) depends on the scale k at which

the regions X and Y are observed. More precisely, let us consider the (observation)

scale SY (X) of X relative to Y as a measure based on the di�erence between X

and Y , on the internal di�erence of X and on the size |X| of X:

SY (X) = (Diff (X, Y )− Int(X))× |X|. (2.5)

Then, the scale S(X, Y ) is simply de�ned as:

S(X, Y ) = max(SY (X), SX(Y )). (2.6)

Thanks to this notion of a scale, Eq. (2.4) can be written as:

k ≥ S(X, Y ). (2.7)

Thus, two adjacent regions X and Y must be merged at scale k if their

dissimilarity measure is smaller than or equal to k.

Let P be a partition and let X be a region of P. Let Y be a region of P. We

say that X and Y are two adjacent regions if there exists an edge {x, y} of T such

that x belongs toX and y belongs to Y ; in this case, we also say that the edge {x, y}
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links X and Y . Furthermore, if X and Y are adjacent, the (observation) scale,

denoted by S(X, Y ), is given by S(X, Y ) = max(SY (X), SX(Y )). In the following,

we de�ne some properties.

Intuitively, a partition is too �ne when there exists two adjacent regions that

should be merged according to scale instead of being separated.

Let P and Q be two partitions. If Q is a re�nement of P and Q 6= P, we

say that Q is a proper re�nement of P.

Intuitively, a partition is too coarse if the splitting of one of its regions leads

to a partition which is not too �ne.

Given an edge weighted graph W and an integer λ, the algorithm proposed

in Felzenszwalb and Huttenlocher [2004] produces a partition that is neither too

�ne nor too coarse at scale λ. However, as discussed in Section 2.1, when the

scale λ varies, the set of obtained partitions, indexed by scales, is not a hierarchy.

Moreover, there is no hierarchy of partitions such that, for each index λ ∈ N, the
partition indexed by λ is neither too �ne nor too coarse at scale λ. Therefore, in

order to obtain a hierarchy based on scales, one of the two properties on partitions

must be relaxed. Thus, we de�ne a hierarchy too coarse as follows.

It can be easily seen that there exist hierarchies that are not coarse, in which

for any index λ ∈ N, the partition indexed by λ is not too �ne at scale λ. The

trivial partition is composed by singletons, in which there does not exist a proper

re�nement that is not too �ne.

2.3 Observation Scale

In this work, we extend the observation scale method, proposed by Guimarães

et al. [2012], to apply it to video segmentation. We use the video graph to produce

another edge-weighted graph, the scale mapM, in which the edge weights corre-

spond to the observation scales. Actually, once that initial video graphW = (G,w)

is generated, it is further simpli�ed into a MST Uv(G) = (T (G), w) using the edge

weights. Then, an ordering of the edges of E(T ) is used to control the creation of

a scale mapM, which is in fact an edge-weighted graph, i.e.,M = (GM, wM), in

which V (GM) = V (T ) and E(GM) ⊆ E(T ).
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Our methodology for hierarchical segmentation does not explicitly produce a

hierarchy of partitions, but instead it produces a scale map from which the desired

hierarchy can be inferred. It starts from a minimum edge-weighted spanning tree

U(G) = (T (G), w) of the video graphW = (G,w) (which was built from the video).

In order to compute the scale associated with each edge of T , our methodology

iteratively considers the edges of E(T ) in a non-decreasing order of their original

weights w (illustrated in Algorithm 1), i.e., the method is based on the analysis

of a fusion tree oriented by merging of regions according to non-decreasing edge

weight. Starting with an empty mapM0 = (G0
M, wM), in which V (G0

M) = V (T )

and E(G0
M) = ∅, for every edge e of E(T ), the new scale mapMi+1 = (Gi+1

M , wM)

is generated by adding the edge e to E(Gi
M), i.e., E(Gi+1

M ) = E(Gi
M)∪{e}, and by

setting its weight to the hierarchical scale computed from the Algorithm 2. Note

that, the computation of the new weights depends on the predicate that is used for

comparing two adjacent regions. In this work, we use the predicate proposed by

Felzenszwalb and Huttenlocher [2004]. Moreover, the kernel of our methodology,

presented in Algorithm 2, is based on identi�cation of the lower scale value that

can be used to merge a region to another one while guaranteeing that there are no

other two regions with another scale smaller than that one.

Algorithm 1 Compute scale map M = (GM, wM). Let U(G) = (T (G), w) be

the MST of an image graph W = (G,w).

(0) Generate an empty mapM0 = (G0
M, wM), in which E(G0

M) = ∅.

(1) Sort E(T ) into π = (e1, · · · , em) by non-decreasing edge weights.

(2) Let PV (G) = {{vi} | vi ∈ V (G)} be an initial partition of V (G).

(3) Let x and y be two vertices of V (G) that are connected by i-th non evaluated

edge e in the ordering.

(4) Find the region X of PV (G) that contains x.

(5) Find the region Y of PV (G) that contains y.

(6) Considering that Mi = (Gi
M, wM), compute the hierarchical observation

scale usingMi

hscale = max{SY (x), SX(y)}
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(7) Generate a new scale map Mi+1 = (Gi+1
M , wM) by adding the edge e to

E(Gi
M), i.e., E(Gi+1

M ) = E(Gi
M) ∪ {e}, and by setting its weight to the

hierarchical scale computed, i.e., wM(e) = hscale.

(8) Let PV (G) = PV (G) \ {X, Y } ∪ {{zi | zi ∈ X ∪ Y }}.
(9) Repeat steps (3)-(8) until there is no edge left.

(10) Set �nal scale map to that last map calculated, i.e., M = M|V |−1 =

(G
|V |−1
M , wM).

(11) ReturnM.

Algorithm 2 Compute hierarchical scale of a region that contains x relative to

Y � SY (x). Here, we consider the MST U(G) = (T (G), w) such that Mi =

(Gi
M, wM), as de�ned in Algorithm 1, IntMi(X) is the internal di�erence of X in

Mi, i.e., IntMi(X) = max{wM({x, y}) | {x, y} ∈ E(Gi
M), x ∈ X, y ∈ X}, and

SUY (X) is calculated according to Eq. (2.5) using MST U(G).

(0) Let HMi be the hierarchy induced by Mi and let ΓV (Gi
M) be the set of all

regions of all partitions of HMi .

(1) Let Px(V (G)) ⊆ ΓV (Gi
M) be the set of regions which contains the element x.

(2) Find the largest set, X∗ ∈ Px(V (G)), in terms of size, in which SUY (X∗) ≥
IntMi(X∗), i.e., SUY (X∗) ≥ IntMi(X∗) and | X∗ | ≥ | X ′ |,∀X∗, X ′ ∈
Px(V (G)).

(3) Compute CX∗ = {Ci ∈ Px(V (G)) | X∗ ⊂ Ci}.
(4) If CX∗ = ∅ then SY (x) = SUY (X∗) else SY (x) = min{min{IntMi(Ci) | Ci ∈

CX∗}, SUY (X∗)}.
(5) Return SY (x).

Lemma 1. Hierarchical scale At step (6) of Algorithm 1, the hierarchical obser-

vation scale hscale(e) is the lower scale of edge e in which some region of X will

be merged to some region of Y such that for any value greater than or equal to

hscale(e), the dissimilarity measure between them is smaller than it.

Proof. Assume without loss of generality that hscale(e) = SY (x), which is related

to the largest set that contains the vertex x with respect to the regions of Y (step

2 of Algorithm 2). Suppose now that there exists hscale(e)′ < hscale(e) in which
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the region of X will be merged to the region of Y . In this case, the dissimilar-

ity measure between X and Y should not be greater than hscale(e)′. This is a

contradiction since hscale(e)′ < hscale(e) = SY (Mi, x). �

Theorem 1. The hierarchy of partitions is not too coarse The hierarchy of parti-

tions computed by Algorithm 1 is not too coarse.

Proof. Let H = {Pλ | λ ∈ N} be the hierarchy of partitions computed by Algo-

rithm 1. Suppose that H is too coarse, thus there exists λ ∈ N such that Pλ is

too coarse at scale λ. Therefore, Pλ should have a proper re�nement PR that is

not too �ne at scale λ, i.e., for every pair of adjacent regions X and Y in PR,

S(X, Y ) > λ. But Lemma 1 guarantees that for every pair of adjacent regions X

and Y the dissimilarity value between them is smaller than the hierarchical scale

calculated at step (6) of Algorithm 1, i.e., S(X, Y ) < λ. This is a contradiction

and, therefore, the hierarchy of partitions computed by Algorithm 1 is not too

coarse.

Thanks to Theorem 1, the segmentations inferred from the hierarchy of par-

titions are not too coarse.

We will explain the steps of our algorithms using an example. Let us illus-

trate the computation of a hierarchical observation scale on the graph of Fig. 2.3(a).

To this end, we consider the iteration of the algorithm at which the edge e link-

ing B to G is analyzed. At this step, the edges of the MST of weight below

w(e) = 10 have been already processed. Therefore, the hierarchical observation

scale of these edges (depicted by continuous lines in the �gure) is already known,

as shown in Fig. 2.3(b). The regions X and Y obtained at steps (4) and (5) are

set to {A,B,C,D,E} and {F,G,H, I}, respectively. Then, in order to �nd the

value wM(e) at steps (6) and (7) of Algorithm 1, all partitions (for each region)

must be considered.

Firstly, let us analyse the region X of Fig. 2.3(b). The set of all subsets

of X which contains the vertex x and the induced graph has only one connected

component which is Px(V (G)) = {{B}, {B,C}, {A,B,C,D,E}}. In step 2 (Algo-

rithm 2), we look for the largest set in which the hierarchical observation scale is

greater than or equal to the internal di�erence of the new re-weighted tree. Thus,
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Figure 2.3. Example for computing the hierarchical scale for an edge-weighted
graph. For this example, we suppose that all scales for regions X and Y are
already computed, and we will calculate the hierarchical scale for the edge {B,G}.

suppose that X∗ = {A,B,C,D,E}, as SUY (X∗) = (10− 9)× 5 = 5 is smaller than

IntMi(X∗) = 21 (which is the highest edge weight of X∗), then it is necessary to

verify for another set. Now, for X∗ = {B,C}, the SUY (X∗) = (10 − 1) × 2 = 18

is greater than or equal to IntMi(X∗) = 1, then SY (x) = 18, which is the

minimum between 18 and 21 (steps 2, 3 and 4 of Algorithm 2). The same

process is made for SX(y). The set of all subsets of Y which contains the

vertex y and the induced graph has only one connected component, which is

Py(V (G)) = {{G}, {G,H, I}, {F,G,H, I}}, here SX(y) = 12, which is the mini-

mum between 12 and 18. Finally, the hierarchical observation scale of X and Y is

18 (= max{SY (x), SX(y)} = max{18, 12}).
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Finally, suppose that we will segment the graph illustrated in Fig. 2.3(b) in

two regions and, for sake of simplicity, that all scales have distinct values. There

are two possibilities for this operation: either we try to �nd directly a threshold for

the scales that correctly identi�es the desired number of regions or, after sorting

the edges in descending order with respect to scale values, we remove those with

larger values until the desired number of regions is obtained.





Chapter 3

Hierarchical Video Segmentation

Our strategy for hierarchical video segmentation using an observation scale, called

HOScale, is illustrated in Fig. 3.1. Our approach is based on computation of (hi-

erarchical) scales that indicate when any two adjacent regions must be correctly

merged according to a speci�ed predicate. Furthermore, instead of computing

these scales directly from the video, the scales are calculated on a graph generated

from the video to be segmented. Thereby, we propose a new approach to hier-

archical video segmentation, which extends the method proposed by Guimarães

et al. [2012] to video segmentation using spatiotemporal information.

1 2 3 4

Figure 3.1. Outline of HOScale method: the video is transformed into a video
graph (step 1); the hierarchy is computed from the video graph (step 2); the
identi�cation of video segments is made from hierarchy (step 3); and �nally, (step
4) the graph is transformed in the segmented video.

27
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As illustrated in Fig. 3.1, the video is transformed into a video graph (an

edge-weighted graph, step 1 in Fig. 3.1), that will be used to produce another

edge-weighted graph, called scale map M (step 2 in Fig. 3.1) in which the edge

weights correspond to the scales for which two adjacent regions connected by this

edge are correctly merged, i.e., there are no two subregions of these regions that

might be merged before these regions for that scale value. Moreover, instead of

computing the hierarchy of partitions, any desired hierarchy can be inferred from

the scale map produced before (step 3 in Fig. 3.1), e.g., by removing from the map

those edges from the map whose weight is greater than a speci�c value of scale. In

other words, for partitioning the graph it is su�cient to apply a thresholding on

the edge weights to remove them for creating connected components on the graph.

Remember that connected components of the graph are related to the supervoxels

on the video, thus, each supervoxel is transformed into a unique segment of video,

characterized by a speci�c color in segmented video (step 4 in Fig. 3.1).

We propose two video segmentation methods; using the full video and an-

other using the streaming method. In Section 3.1, we present our �rst method for

hierarchical video segmentation using an observation scale applied to full video. In

Section 3.2, we present an evolution of the method HOScale to video streaming.

In addition, we proposed an oversegmentation method, which is used as a prepro-

cessing step on the video, in order to perform a segmentation of the color space

and makes our methods faster, as we present in Section 3.3. Finally, in Section 3.4,

we present the main contributions of our methods.

3.1 Full Video Segmentation

Our full video segmentation approach, called FVHOScale (Full Video Hierarchical

segmentation using an Observation Scale), is the application of HOScale approach

to the whole video processing. This means that all stages of HOScale will run in

the full video. For this it is necessary to de�ne and understand how each of the

present steps will be implemented in the HOSCale, as detailed in the following

sections.
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3.1.1 Video graph creation

The graph creation (step 1 in Fig. 3.1) is a very important step in this kind of

application since it models the type of information to be used into vertices, and

the relationships between the elements of the video, into edges. In fact, a major

di�culty is to design an adequate edge-weighted graph to well represent the video

content. The most common way to perform the graph creation is to split the video

into frames and set the frame pixels as vertices. The edges are 26-adjacency pixel

relationship (spatiotemporal) weighted by a simple color gradient computed by

the Euclidean distance in the RGB color space [Felzenszwalb and Huttenlocher,

2004; Grundmann et al., 2010a]. In this work, we propose to use other ways for

transforming a video into a graph. Our goal is to improve the representativeness

of the video information, for this we relate the color space with the spatiotemporal

information of the video pixels. Here, we consider three ways:

1. xyt graph: the underlying graph is the one induced by the 26-adjacency

pixel relationship, where the edges are weighted by a simple color gradient

computed by the Euclidean distance in the RGB color space, using the Equa-

tion 3.1. Here, only the spatiotemporal information of the pixel in the space

is evaluated.

√
(R1 −R2)2 + (G1 −G2)2 + (B1 −B2)2 (3.1)

2. rgbxy graph: the underlying graph is the xyt graph together with the K

nearest neighbors in rgbxy space, where the edges are weighted by a gradient

computed by the Euclidean distance in the rgbxy space, where each pixel is

represented by its color, in RGB color space, and its spatial coordinates

(x,y), in the current frame, using the Equation 3.2.

√
(R1 −R2)2 + (G1 −G2)2 + (B1 −B2)2 + (X1 −X2)2 + (Y1 − Y2)2 (3.2)

3. rgbxyt graph: the underlying graph is the xyt graph together with the K

nearest neighbors in rgbxyt space, where the edges are weighted by a gradient
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computed by the Euclidean distance in the rgbxyt space, where each pixel

is represented by its color, in RGB color space, its spatial coordinates (x,y),

and its temporal coordinates (t), in the current frame, using the Equation

3.3.

√
(R1 −R2)2 + (G1 −G2)2 + (B1 −B2)2 + (X1 −X2)2 + (Y1 − Y2)2 + (T1 − T2)2

(3.3)

In Figure 3.2, we illustrate di�erent results achieved with the three ways to

generate the video graph. We can see that the way to create the graph and relate

the pixels can change the result of the segmentation signi�cantly. Moreover, there

are other ways of relating the video pixels as well as di�erent ways to represent

them, for example, using other color spaces, like HSV, YCbCr, Lab, etc. It is also

possible to apply a 2D image �lter (e.g. Gaussian �lter) to each frame to remove

noise. Thereby, in our approach we did not set the way to transform the video to

a graph. Thus, we can explore various ways, which will be discussed in Chapter 4.

Figure 3.2. Video segmentation with di�erent video graph creations. The origi-
nal frames are illustrated in the �rst row. The following rows, from top to bottom,
illustrate the results obtained using xyt graph, rgbxy graph and rgbxyt graph, re-
spectively.

Furthermore, it is important to note that it is at this stage, where we will
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generate a huge amount of information, because we use all video frames. For

example, if a video has resolution of 240x160 pixels and 100 frames, this means

that the graph created has 3,840,000 vertices and 49,217,396 edges (disregarding

the edge pixels that have less edges). Thus, it is impractical to apply this method

to large videos.

3.1.2 Observation scale computation

Using the graph created in the previous step we will produce a new graph, per-

forming the observation scale computation, as shown in Section 2.3. The new

graph is the scale mapM and will correspond to the minimum spanning tree in

which the edge weights correspond to the hierarchical scales.

After the generation of the scale mapM, a low visual representation in �ner

levels can occur, for example, a video segment with few pixels that are not visually

observed. Therefore it is necessary to perform a post-processing step that limits

the minimum size of a segment generated. For this, we use the same approach

used in [Grundmann et al., 2010a], that performs the union of all segments smaller

than a threshold (min_size) until there are no segments with size smaller than

the threshold informed. This threshold may be a constant value (e.g., amount of

component pixel) or variable according to the video (e.g., minimum percentage of

pixels according to all information that is being processed).

Figure 3.3. Video segmentation with di�erent thresholds. The original frames
are illustrated in the �rst row. The following rows, from top to bottom, illustrate
the results obtained using rgbxyt graph and min_size 0.3%, and 0.5%.
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Figure 3.4. Video segmentation with di�erent number of segments. The original
frames are illustrated in the �rst row. The following rows, from top to bottom,
illustrate the results obtained using rgbxy graph, thresholds 0.5% and 3, 5 and
11 segments.

In Figure 3.3, we illustrate the use of a threshold that can in�uence the visual

result, where the threshold represents the percentage of all pixels present in the

video. As we can see in Figure 3.3, the value of threshold is related to the size

of the objects present in the video. When we use a small threshold, it generates

small objects and when we use a large threshold it eliminates small objects and

enhances large objects.

3.1.3 Hierarchical level selection

The scale map M is represented by a minimum spanning tree. Thus, to set the

observation scale that you want to display of the segmented video, just hold the

graph partitioning according to the level of details to be reached. If you want

a level with more details, it is required to perform more partitions on the graph

when you want a coarser segmentation, just do less cuts on the graph. To generate

S supervoxels, it is necessary to cut S − 1 edges of the minimum spanning tree.

In Figure 3.4, we show how the choice of the number of supervoxels can

change the result of segmentation. We can have more or less details, depending

on the chosen hierarchical level.



3.2. Streaming Video Segmentation 33

3.1.4 Segmented video creation

Finally, the partitioned graph is converted into a video in which each partition

represents a supervoxel. To facilitate the identi�cation and visualization, each

supervoxel is colored with a random and distinct color.

3.2 Streaming Video Segmentation

Although some video segmentation methods have presented good results, as shown

in [Xu and Corso, 2012, 2016], the memory consumption and processing time are

prohibitive issues for their use in real applications, mainly due to huge quantity

of video information to be processed. Thus, instead of considering all video infor-

mation, we divide the video into k-sized frame blocks in order to cope with those

problems without losing the qualitative performance for the segmentations. So, we

propose a graph-based streaming video segmentation, so called StreamHOScale, in

which we apply the HOScale method to segment each k-sized frame block, followed

by a new and simple strategy for merging the segmentations of two consecutive

blocks. Our streaming method can be outlined in �ve steps, as illustrated in Figure

3.5.

1 2 3 4 5

+

k frames starting at pos i

k frames starting at pos i+ k

Figure 3.5. Outline of the StreamHOScale method: the video is transformed
into a video graph (step 1); the hierarchy is computed from the video graph
(step 2); the identi�cation of video segments is made from hierarchy (step 3); the
supervoxels output is calculated based on previously processed frames (step 4);
and �nally, the video graph is transformed in the video segmented (step 5).
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The steps performed in the StreamHOSCale method are very similar to the

steps performed in the FVHOScale method. The di�erence is that the segmen-

tation is performed in blocks, instead of being the whole video and a new step

has been added to make the propagation of the spatiotemporal information of a

block to another. As can be seen in Fig. 3.5, our method can be outlined in some

steps: creation of a video graph for each k-sized frame block (step 1 in Fig. 3.5);

computation of hierarchical scales for each video graph (step 2 in Fig. 3.5); iden-

ti�cation of video segments for each block (step 3 in Fig. 3.5); computation of

temporal coherence between video segments belonging to consecutive blocks (step

4 in Fig. 3.5); and creation of a segmented video (step 5 in Fig. 3.5). The great dif-

ferential of StreamHOScale method is the step 4, which is responsible for making

the spatiotemporal propagation between segmented blocks, trying to preserve,as

much as possible, the accuracy of video segmentation

The main challenge of our StreamHOScale method is to compute video seg-

mentation as well as the FVHOScale method preserving the spatiotemporal coher-

ence. Thus, after computing segments for two consecutive k-sized frame blocks,

a temporal coherence must be computed for producing consistent video segments.

Regarding the temporal coherence, we use a new and simple strategy for merging

two consecutive segmented blocks for identifying continuous supervoxels in the

time. In order to do that, starting on the second block, the last frame of the

previous block is incorporated at the beginning of following block. Therefore, a

block consists of one �old� (processed) frame and k �new� (unprocessed), i.e., two

consecutive frame blocks are overlapped by one frame for providing the temporal

coherence.

In Figure 3.6, we present a comparison of results obtained using FVHOScale

and StreamHOSale. We can see that when we use the FVHOScale method it takes

into account the global visual information of the video. However, the StreamHOS-

ale method use the local information of each block which is preserved and propa-

gated. We observed in the Figure 3.6, that in Frames 2 and 3, using FVHOScale

there was a di�erence in the result (highlighted in red), where the object obtained

a temporal propagation greater than that presented in the StreamHOScale. To

better explain the temporal propagation used in StreamHOSale, we will illustrate,

step by step, how the segmentation presented in Figure 3.6 was performed.
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Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Figure 3.6. Full and Streaming video segmentation. The original frames are
illustrated in the �rst row. The full video segmentation, using FVHOScale, is il-
lustrated in second row. The streaming video segmentation, using StreamHOScale
with number of 2-sized frame block, is illustrated in third row.

The segmentation shown in Figure 3.6 was performed using 2-sized frame

blocks. Thus, the �rst processing step is to segment the Frames 1 and 2, using the

FVHOScale, as shown in Figure 3.7.

Frame 1 Frame 2

Figure 3.7. Streaming video segmentation. Segmentation of the �rst block.

After the segmentation of the �rst block, the segmentation process of the sec-

ond block will be started, where the Frames 2, 3 and 4 are segmented. The Frame

2 is segmented again, because the last frame of the previous block is incorporated

at the beginning of following block. Producing the result shown in Figure 3.8.
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Frame 2 Frame 3 Frame 4

Figure 3.8. Streaming video segmentation. Segmentation of the second block.

Thus, the two consecutive blocks that have been segmented independently

and have a common frame (the Frame 2), shown in Figure 3.9. Now, the method

will use the common frame to propagate the temporal information from the �rst

block to the second block.

Frame 1 Frame 2 Frame 3 Frame 4

Figure 3.9. Streaming segmentation. Segmentation of the �rst and second
blocks.

In temporal propagation, the segments of Frame 2 of the second block will

be labeled according to the segments of Frame 2 of the �rst block. According to

the following decisions:

• The segments will be labeled according to their size, from largest to smallest.
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• The segment of the second block that has an intersection with one, and only

one, segment of the �rst block, will receive the label of this segment.

• The segment of the second block that intersects with more than one segment

of the �rst block will receive the label of the largest segment.

• Each segment can only receive a unique label, so that segments that are not

labeled at the end of the process will receive a new label.

Frame 1 Frame 2 Frame 3 Frame 4

Figure 3.10. Streaming video segmentation. Segmentation of the �rst and
second blocks with the temporal propagation.

Frame 1 Frame 2 Frame 3 Frame 4

Figure 3.11. Streaming video segmentation. Segmentation of the �rst and
second blocks with the temporal propagation.
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Thus, the Frame 2 of the second block is labeled according to Frame 2 of

the �rst block, shown in Figure 3.10. Once the �rst frame of the second block has

already been labeled, simply propagate the label to the other frames, since they

are strongly connected components, shown in Figure 3.11. Thereby, this approach

is repeated for all other video frames blocks, as shown in the �gures 3.12 and 3.13.

Segments that are not labeled according to the previous block will receive a new

label because it is a new segment in the scene, shown in Figure 3.13, segment in

red.

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Figure 3.12. Streaming video segmentation. Segmentation of the third and �nal
block.

Figure 3.13. Streaming video segmentation. Segmentation of the all blocks with
the temporal propagation.
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In Figure 3.14, it is possible to see an example of this process, where we can

see that from one block to another there is a small blurring in supervoxels. Note

the blue supervoxel representing the man's body, and note that int the blocks i

and i+1 there was a little di�erence in the continuation of visual information, but

despite this, there was a good propagation of the temporal information between

the blocks.

block (i) block (i) blocks (i and i+1) block (i+1) (block) i+1

Figure 3.14. An example of the temporal propagation using StreamHOScale
method.

The main idea for performing temporal coherence is to identify, in the over-

lapped frame, the supervoxels that contain voxels of both consecutive k-sized

blocks. After this identi�cation, we propagate the labels of previous blocks to new

ones. Thus, we identify the supervoxels which are continuous in the time. The

great advantage of StreamHOScale method is the ability to run a video stream

without the need of having all the video in memory, achieving to the segment of

consecutive frame blocks considering the temporal information present throughout

the video.

3.3 Video Segmentation with Oversegmentation

Oversegmentation is the process by which the objects being segmented are them-

selves segmented or fractured into subcomponents. In this work, we propose to

use the oversegmentation technique as a step of pre-processing of our segmentation

method, in order to simplify and pre-group the pixels to facilitate and accelerate

the segmentation process. Our approach to oversegmentation can be outlined in
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four steps, as illustrated in Figure 3.15, where the goal is to perform a segmentation

in the color space.

1 2 3 4

B

A

C D

E

F

G

H

I

J

K

L

Figure 3.15. Outline of oversegmentation method: the video is transformed into
a color graph (step 1); the hierarchy is computed from the color graph (step 2);
the identi�cation of colors segments is made from hierarchy (step 3); and �nally,
(step 4) the graph is transformed in the video, using the average of the colors of
each connected component.

When performing video segmentation using FVHOScale or StreamHOSCale

method we observe that the �rst step, the conversion of pixels to a video graph, is

a very expensive task and has an huge amount volume of information. Therefore

our goal to perform an oversegmentation is to perform a pre-grouping of pixels in

order to facilitate the segmentation process.

To perform oversegmentation, we use the same method of observation scale

used in the segmentation process, i.e., the HOScale approach. The goal is to

generate small supervoxels to be used in the segmentation process, instead of

pixels. In the oversegmentation, instead of using the video pixels we propose to

use the distinct colors present in video. Thus, we performed a simpli�cation of

colors before running the video segmentation, where the goal is to join the colors

that have greater similarity in an attempt to increase the discriminative power

of these colors in the images in the segmentation process. After running the

oversegmentation, each supervoxel produced is represented by the average of the

colors of the pixels. Thus, we can use the supervoxels generated at this stage as the

components to be used in the segmentation process, in both methods FVHOscale
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and StreamHoscale.

The oversegmentation does not de�ne the amount of supervoxels to be gen-

erated, thus, the amount of supervoxel generated will be de�ned by the value of

the threshold applied to the minimum size of the supervoxels. The higher the

threshold is lower the amount of generated supervoxels in oversegmentation. In

Figure 3.16, we illustrate some results using the over segmentation with di�erent

threshold of the minimum size of the supervoxels, where you can see an improve-

ment in the quality of segmentation. Moreover, we can observe that as we increase

the threshold we decrease the amount of color to be used in targeting, so the

segmentation process is faster, as shown in Table 3.1. When we are performing

segmentation without over segmentation we use 3,240,000 pixels with 24,666 dis-

tinct colors, but when we use the oversegmentation using threshold 10, will be

used only 864 distinct colors in the segmentation process. Thus, the advantage of

using oversegmentation is that as the segmentation process will use supervoxels

instead of pixels, it implies in less amount of data, so the segmentation process is

much faster, as will be present in Chapter 4.

Table 3.1. Variation of the number of colors according to the threshold.

threshold min_size number of colors

- 24666
2 6164
10 864
25 290
50 142

3.4 Final Remarks

In this chapter, we presented our approach to hierarchical video segmentation.

Our proposal is to extend the hierarchical image segmentation method proposed

by Guimarães et al. [2012] to hierarchical video segmentation considering the spa-

tiotemporal information using an observation scale. The hierarchical video seg-

mentation is transformed into a graph partitioning problem in which each part

corresponds to one supervoxel of the video. Thus, a new approach to hierarchical
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Figure 3.16. Video segmentation with oversegmentation. The original frames
are illustrated in the �rst row. The results obtained using FVHOScale without
oversegmentation are in the second row. The following rows, from top to bot-
tom, illustrate the results obtained using oversegmentation with threshold of the
minimum size of the supervoxels, 2, 10, 25 e 50, respectively.

video segmentation is proposed, which computes a hierarchy of partitions by a

reweighting of the original graph in which a segmentation can be easily infered,

and the temporal coherence is related to the graph transformation used.

We presented two di�erent methods of transforming a video into a graph and

thus performing the segmentation: FVHOSCale (which segments the whole video

at once) and StreamHOScale (which performs the streaming video segmentation).

Furthermore, we proposed the use of oversegmentation before the segmentation

process in order to reduce the processing time. In Chapter 4, we present the

results of our experimental methods parameters making an analysis together with

comparisons of other methods proposed in the literature.



Chapter 4

Experimental results

In the following sections, we present experimental results of our hierarchical video

segmentation methods. We detail our experimental setup along Section 4.1. A

study of the parameters of our methods is then given in Section 4.2. Section 4.3

compares our results with to the state of the art. Finally, Section 4.4 presents the

�nal remarks of our experiments.

4.1 Experimental setup

In order to provide a comparative analysis, we used the benchmark and library

LIBSVX proposed in [Xu and Corso, 2012], since the implemented methods are the

state of the art for hierarchical video segmentation. The benchmark is composed,

among others, by: three datasets, implementations of the methods for hierarchical

video segmentation and a suite of metrics to implement 3D quantitative evaluation

criteria for good supervoxels.

4.1.1 Datasets

The LIBSVX proposes the use of three datasets to evaluate supervoxel and video

segmentation:

43
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• SegTrack1 [Tsai et al., 2010]: this dataset provides a set of human-labeled

single-foreground objects with the videos strati�ed according to di�culty on

color, motion and shape. SegTrack has six videos, an average of 41 frames-

per-video (fpv), a minimum of 21 fpv and a maximum of 71 fpv, leading to a

total of 244 annotated frames. As can be seen in Figure 4.1, the annotated

frames (groundtruth) correspond to only one speci�c object of the video,

thereby the evaluations using these annotated frames do not evaluate all the

objects in the video, but only the labeled object.

Figure 4.1. Example images from SegTrack dataset. The original frames are
illustrated in the �rst row and groundtruth frames in the second row.

• Chen2 [Chen and Corso, 2010]: This dataset is a subset of the well-known

xiph.org videos that have been supplemented with a 24-class semantic pixel

labeling set (the same classes from the MSRC object-segmentation dataset

[Shotton et al., 2009]). The eight videos in this set are densely labeled with

semantic pixels and have an average 85 fpv, minimum 69 fpv and maximum

86 fpv, leading to a total of 639 annotated frames. This dataset allows us

to evaluate the supervoxel methods against human perception. As can be

seen in Figure 4.2, the annotated frames correspond to semantic pixels, thus

objects spatially disconnected have the same label, thereby the evaluations

using these annotated frames do not o�er an accurate label placement of

supervoxels in the videos.

1http://cpl.cc.gatech.edu/projects/SegTrack/
2http://www.cse.bu�alo.edu/∼jcorso/r/labelprop.html
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Figure 4.2. Example images from Chen dataset. The original frames are illus-
trated in the �rst row and groundtruth frames in the second row.

• GaTech3 [Grundmann et al., 2010a]: It comprises 15 videos of varying char-

acteristics, but predominantly with a small number of actors in the shot. In

order to run all the methods included in the benchmark library, we restrict

the videos to a maximum of 100 frames (they have an average of 86 fpv and a

minimum of 31 fpv, leading to a total of 1,293 frames). Unlike the other two

previous datasets, this dataset does not have a groundtruth segmentation,

see examples of this dataset in Figure 4.3.

Figure 4.3. Example images from GaTech dataset.

In order to run all the experiments such as in [Xu and Corso, 2012], the input

video resolution was scaled to 240x160 pixels.

3http://www.cc.gatech.edu/cpl/projects/videosegmentation
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4.1.2 Methods

The LIBSVX includes �ve methods for video segmentation (four o�ine and one

streaming):

• Graph-Based (GB): Implements the Felzenszwalb and Huttenlocher [2004]

directly on the 3D video voxel graph;

• Graph-Based Hierarchical (GBH): Implements the Grundmann et al.

[2010b] that performs the graph-based method iteratively in a hierarchy;

• Nyström Normalized Cuts (Nyström): Implements the Fowlkes et al.

[2001] approach of using the Nyström approximation to solve the normalized

cuts. Their implementation is in Matlab;

• Segmentation by Weighted Aggregation (SWA): Implements the

Sharon et al. [2000] hierarchical algebraic multigrid solution to the normal-

ized cut criterion in a 3D manner as was done in [Corso et al., 2008];

• Graph-based Streaming Hierarchical Video Segmentation

(StreamGBH): Implements the graph-based hierarchical segmentation

method [Xu et al., 2012].

4.1.3 Metrics

The LIBSVX provides a suite of the volumetric video-based 3D metrics. Xu and

Corso [2012] extended to 3D space-time metrics some quantitative superpixel eval-

uation 2D metrics that were proposed by [Moore et al., 2008; Levinshtein et al.,

2009; Veksler et al., 2010; Liu et al., 2011; Zeng et al., 2011].

• 3D Boundary Recall (3D BR): this metric measures the spatiotemporal

boundary detection, see in Figure 4.4 an example of the metric calculation;

• Explained Variation (EV): proposed in [Moore et al., 2008] as human-

independent metric, thus, does not use the groundtruth;



4.1. Experimental setup 47

Figure 4.4. A visual explanation of the distinct nature of 3D boundaries in video
(please view in color). We overlap each frame to compose a volumetric video, the
green colored area which is a part of girl in frame i should not be counted as a
part of girl in frame i + 1, similarly the red area which is a part of girl in frame
i + 1 should not be counted as a part of girl in frame i. The lower right graph
shows the 3D boundary along the time axis (imagine you are looking through the
paper). From [Xu and Corso, 2012].

.

• Mean Duration (MD): proposed in [Xu et al., 2012] it measures the average

temporal extent of all supervoxels in a video. According to Xu et al. [2012],

the mean duration of segments is a more important metric, as it measures

the temporal coherence of a segmentation method more directly.

4.1.4 Implementation issues

To e�ciently implement our methods, we used some data structures similar to the

ones proposed in Guimarães et al. [2012]; in particular, the management of the

collection of partitions is made using Tarjan's union-�nd. Furthermore, we made

some algorithmic optimizations to speed up the computations of the hierarchical

observation scales. So, in order to create the video graphs, and when it is necessary,

we employed a KD-tree for identifying the K-nearest neighbors, we used the ANN

library [Arya et al., 1998] to build aKD-tree. Our method is implemented in C++.
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We ran all experiments in a Intel(R) Xeon(R) CPU E5-2650 2.00GHz 64 GB RAM

with Ubuntu 14.04.2 LTS. Moreover, we have computed the segmentation results

for each video but with a distribution of supervoxel numbers varying from less than

200 to more than 500. To facilitate comparison of the methods for each dataset,

we used linear interpolation to estimate each methods' metric outputs densely like

Xu and Corso [2012].

4.2 Parameter Learning

In order to determine an appropriate set of parameters for our hierarchical video

segmentation methods introduced in Chapter 3, we optimized parametric settings

on the training data of three datasets proposed in LIBSVX [Xu and Corso, 2012]:

SegTrack, Chen and GaTech. Since not all datasets have groundtruth, we used only

the Explained Variation and Mean Duration metrics to �nd the best parameters.

4.2.1 Parameters for video graph creation

The �rst step of our HOScale approach is the creation of video graph. In this step,

we evaluated the following parameters with their values:

• Image Filtering: No �lter, Gaussian �lter and Bilateral �lter [Tomasi and

Manduchi, 1998].

• Color Space: RGB, Lab, HSV and YCbCr.

• Type of Graph: xyt, rgbxy and rgbxyt.

We performed experiments varying all parameters with all possibilities using

the FVHOScale method (the threshold for minimum size supervoxel was set at

0.5% related to percentage of video pixels). In Figures 4.5 and 4.6, we present the

results of this experiment with the average values of three datasets, varying the

Image Filtering, Color Space and Type of Graph. The individual results, of each

dataset, are available in Appendix A. In Figure 4.5, we present the average results

of Variation Explained metric and, in Figure 4.6 we present the average results of

Mean Duration metric.
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Figure 4.5. A comparison with the parameters used in the creation of the video
graph, separated by type of graph. The comparison is based on the Explained
Variation metric. It shows the average value for the three datasets (SegTrack,
Chen and GaTech).
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Figure 4.6. A comparison with the parameters used in the creation of the video
graph, separated by type of graph. The comparison is based on the Mean Duration
metric. It shows the average value for the three datasets (SegTrack, Chen and
GaTech).
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In Figure 4.5, we can observe the following features in the results:

• In general, the use of Gaussian �lter has the poorest results.

• The Bilateral �lter showed slightly better results than not using �lters.

• The RGB color space obtained the best results, followed by YCbCr, HSV

and Lab.

• The best result was obtained using the rgbxy graph.

In Figure 4.6, we can observe the following features in the results:

• The results were very di�erent, depending on the type of graph used.

• The graph rgbxy showed the best results compared to other graphs.

• Using the xyt and rgbxy graphs, we observe that there are small di�erences in

the results and that the Bilateral �lter and the Lab space color obtained the

best results. Moreover, the rgbxyt graph obtained results well di�erentiated.

According to the experimental results shown in Figures 4.5 and 4.6, we de-

cided to set for the next experiments the following parameters:

• Image Filtering: No �lter.

• Color Space: RGB.

• Type of Graph: rgbxy.

Although the Bilateral �lter presented slightly better results than without the

�lter, the implementation of the Bilateral �lter means one more step processing,

thus increasing the processing time. So, we preferred to continue the experiments

without using image �ltering, because this approach also obtain good result. In

addition, we set the RGB color space, because it obtained the best results in

Explained Variation metric and rgbxy graph because it obtained the best results

in the Mean Duration metric.
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4.2.2 Parameter for minimum size supervoxel

We performed experiments to investigate the behavior of the results when we

changed the threshold for minimum size supervoxels used in step of Observation

Scale computation of our HOScale approach. For this, we changed the threshold

parameter with the following values: 0.05%, 0.06%, 0.07%, 0.08%, 0.09% and

0.10% (related to the percentage of pixels present in the video). We used the

FVHOSCale method, without image �lter, RGB Space color and the rgbxy graph.

In Figures 4.7 and 4.8, we present the experimental results separated per dataset.

In Figure 4.7 we present the results of Explained Variation metric and, in Figure

4.8, we present the results of Mean Duration metric.

In Figure 4.7, we can observe the following features in the results:

• The results of SegTrack dataset show that as we increase the number of

supervoxels, we get the best results with the lowest threshold for minimum

size supervoxel. However, this ratio is lower in the other datasets.

• The threshold for minimum size supervoxel is related to the amount of in-

formation being processed. Note that the SegTrack dataset is the smallest

and simplest dataset and GaTech is the largest and most complex dataset.
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Figure 4.7. A comparison with the variation of the threshold for minimum size
supervoxel parameter, separated per dataset. The comparison is based on the
Explained Variation metric.
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In Figure 4.8, we present the results of Mean Duration metric in the three

databases, varying the threshold for minimum size supervoxel. We can observe that

the smaller the value of threshold for minimum size supervoxel, the greater the

value of Mean Duration, and thus the greater the temporal coherence. Therefore,

we set the threshold in the next experiments to the value 0.05%, because it showed

the best results in both Explained Variation and Mean Duration metrics.
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Figure 4.8. A comparison with the variation of the threshold for minimum size
supervoxel parameter, separated by dataset. The comparison is based on the
Mean Duration metric.

4.2.3 Parameter for StreamHOScale

Besides the parameters already studied, StreamHOScale method has the block size

parameter to be segmented. Thereby, we performed experiments to investigate the

variation of the size of frame blocks in StreamHOScale method. In Figures 4.9 and

4.10, we present the results of varying the block size with the values 10, 20 and

30 frames. We present the experimental results separated per dataset. In Figures

4.9 and 4.10, we present the experimental results separated per dataset. In Figure

4.9, we present the results of Explained Variation metric and, in Figure 4.10, we

present the results of Mean Duration metric.
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Figure 4.9. A comparison with the variation of the size of frame block parame-
ter, separated per dataset. The comparison is based on the Explained Variation
metric.

200 300 400 500
23

24

25

26

27

28

29

30

31

32

33

34

35

36

Number of Supervoxels

SegTrack

200 300 400 500
40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

Number of Supervoxels

Chen

200 300 400 500
40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

Number of Supervoxels

GaTech

10
20
30
∞

Figure 4.10. A comparison with the variation of the size of frame block pa-
rameter, separated per dataset. The comparison is based on the Mean Duration
metric.
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In the results shown in Figure 4.9, we can see that the values for the Explained

Variation metric does not have a big di�erence to the variation of block size, but

in the result shown in Figure 4.10, we can see that the higher the size block the

greater will be the Mean Duration metric. Note that, the larger the block size, the

higher the cost of time and space. For the next experiments, we �xed the block

size with value 10, because it was the value used for comparison with the state of

the art in the streaming method.

4.2.4 Parameters for oversegmentation

Besides the FVHOScale and StreamHOScale methods, we also proposed to use

the HOScale approach to perform an oversegmentation before performing the seg-

mentation process. The parameters of oversegmentation are similar to HOScale

approach. Therefore we used the same parameters found so far to run the overseg-

mentation. Furthermore, the use of a new type of graph was proposed in overseg-

mentation, the RGB graph which performs an oversegmentation on the distinct

colors present in the video.

In Figures 4.11 and 4.12, we present the results of varying the threshold for

minimum size supervoxel in oversegmentation. We present the experimental results

separated per dataset, using the FVHOscale method with RGB graph whitout

image �ltering, RGB space color and size of frame blocks equal to 10. As it is

a process of oversegmentation the threshold is de�ned in number of pixels, and

should be used a small value, since the objective is not to segmentation, but

eliminate noise joining lower-level information, i.e. the pixel colors in information

more descriptive, such as in small supervoxels.

In Figure 4.12, we can observe that the greater the value of threshold for

minimum size supervoxel in oversegmentation the greater the value of Mean Dura-

tion metric. However, the higher the threshold size, the lower is the consumption

of time and space at the time of segmentation. Therefore the larger the threshold

size, the lower the amount of generated supervoxels in oversegmentation and thus

the lower the quantity of information to be segmented. However, from Figures

4.12, we can observe that the smaller the value of threshold for minimum size

supervoxel in oversegmentation the greater the value of Mean Duration metric.
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Figure 4.11. A comparison with the variation of the threshold for minimum size
supervoxel in oversegmentation, separated per dataset. The comparison is based
on the Explained Variation metric.
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Figure 4.12. A comparison with the variation of the threshold for minimum size
supervoxel in oversegmentation, separated per dataset. The comparison is based
on the Mean Duration metric.
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4.3 Comparison to state of the art

Using the library LIBSVX, we performed a comparative analysis of the results

obtained by our methods using the HOScale approach to the methods of the state of

art. We performed a comparative analysis in three aspects: quantitative analysis,

qualitative analysis and computational cost.

4.3.1 Quantitative analysis

In the quantitative analysis, we compared the experimental results of our methods

with the methods available in LIBSVX using the following metrics: 3D Boundary

Recall (groundtruth is needed); Explained Variation; and Mean Duration. Un-

like other methods, we used the same parameters for all datasets, as shown in

Section 4.2. For GBH, StreamGBH, SWA, Meanshift and Nyström methods, the

parameters were tuned per dataset. For GB method, the parameters were tuned

per video. In Figures 4.13, 4.14 and 4.15, we present the individual results per

dataset. In Figure 4.16, we present the average results of all datasets.

In Figure 4.16, we can observe the following features in the results:

• The results are similar to the 3D Boundary Recall and Explained Variation

metric, with minor di�erences.

• The proposed approaches showed the best results.

• Our methods obtained better results when using the oversegmentation for

the 3D Boundary Recall and Explained Variation metric. However, using

the Mean Duration metric the best results were obtained when not using the

oversegmentation.

• Even our stream approach showed better results when compared to state of

the art.

Regarding only mean duration, we can see that our methods showed far

superior results to the state of the art. According to Xu et al. [2012], the mean

duration of video regions is the most important metric, as it measures the temporal

coherence of a segmentation method more directly.
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Figure 4.13. A comparison among our methods, FVHOScale, StreamHOSCale,
Over-FVHOScale and Over-StreamHOSCale, and the methods GB, GBH,
StreamGBH, SWA, Meanshift and Nyström when applied to SegTrack dataset.
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Figure 4.14. A comparison among our methods, FVHOScale, StreamHOSCale,
Over-FVHOScale and Over-StreamHOSCale, and the methods GB, GBH,
StreamGBH, SWA, Meanshift and Nyström when applied to Chen dataset.
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Figure 4.15. A comparison among our methods, FVHOScale, StreamHOSCale,
Over-FVHOScale and Over-StreamHOSCale, and the methods GB, GBH,
StreamGBH, SWA, Meanshift and Nyström when applied to GaTech dataset.
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Figure 4.16. A comparison among our methods, FVHOScale, StreamHOSCale,
Over-FVHOScale and Over-StreamHOSCale, and the methods GB, GBH,
StreamGBH, SWA, Meanshift and Nyström. It shows the average value for the
three datasets (SegTrack, Chen and GaTech).
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4.3.2 Qualitative analysis

Despite the quantitative results, we also compared visually some of the tested

methods in order to illustrate the behavior when we varied the number of video

segments (50 and 100) to be computed.

In Figures 4.17, 4.18, 4.19 and 4.20, we illustrate results obtained when we

applied the methods GB, GBH, StreamGBH, SWA, FVHOScale, StreamHOScale,

Over-FVHOScale and Over-StreamHOScale to the videos extracted from Chen and

GaTech datasets. Note that, unlike of our methods, there is no guarantee that the

four other methods will obtain the speci�ed number of video segments, thus we

compute a segmentation containing a number of regions, as close as possible, for

the speci�ed threshold.

Regarding the segmentation for each frame, we may observe that our methods

presented good results when visually compared to the other methods. Moreover, we

can observe that the use of oversegmentation improved the results of our method,

especially in our streaming method. The same behavior may be observed for

temporal coherence, where our methods also showed the best results.

4.3.3 Computational cost

Regarding computational cost, we compared our methods with the methods that

presented the best quantitative results: SWA and GBH. Also with the streaming

method: StreamGBH.

Inf Figure 4.21, we presented a comparison among our methods, FVHOScale,

StreamHOScale, Over-FVHOScale and Over-StreamHOScale, and the methods

GBH, StreamGBH and SWA when applied to SegTrack, Chen and GaTech

datasets. In Figure 4.21, we show the comparison of the processing time.

In Figure 4.21(a), we can observe the following features in the results, related

to time cost comparison:

• In the SegTrack dataset, the results were very similar, except for our

StreamHoscale method and using oversegmentation which showed much

lower processing time than the others.
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• In the Chen and GaTech datasets, our FVHOscale method had higher the

processing time than other literature methods, but when using oversegmen-

tation processing time was much lower.

• The StreamHOScale method got the lowest processing time. By using over-

segmentation the processing time increased a little.

In Figure 4.21(a), we can observe the following features in the results, related

to space cost comparison:

• The SWA method was the one that had the highest consumption of memory,

followed by GBH method.

• Our methods showed low consumption of memory.

• The streaming methods showed to have a low consumption of memory.

4.4 Final Remarks

In this chapter, we presented the experimental results of our hierarchical video seg-

mentation approach using an observation scale. In order to provide a comparative

analysis, we took into account the benchmark and library LIBSVX proposed in

[Xu and Corso, 2012], since the implemented methods are the state of the art for

video segmentation, including streaming video segmentation. The benchmark is

composed, among others, by: (i) two datasets with groundtruth - Chen Xiph.org

[Chen and Corso, 2010], SegTrack [Tsai et al., 2010]; (ii) one dataset without

groundtruth - GaTech dataset [Grundmann et al., 2010a]; and (iii) implementa-

tions of the methods GB [Felzenszwalb and Huttenlocher, 2004], GBH [Grundmann

et al., 2010a], StreamGBH [Xu et al., 2012], Nyström [Fowlkes et al., 2001] and

SWA [Corso et al., 2008] applied to video segmentation. Using the library LIB-

SVX, developed by Xu and Corso [2012], it is possible to compute, among others,

the following metrics: (i) 3D boundary recall; (ii) explained variation; and (iii)

mean duration. For computing the �rst metric, a groundtruth is needed.
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Experiments were performed using four versions of our approach: FVHOscale

applied to the full video, StreamHOScale applied to video stream and the Over-

FVHOScale and Over-StreamHOSCale versions corresponding to execution of an

oversegmentation process before performing the above methods.

In Section 4.2, we presented experimental results to �nd the best parameters

of our methods. After, in Section 4.3, we performed a comparative analysis of

the results obtained by our methods using the HOScale approach to the methods

of the state of the art. Our methods presented good quantitative and qualitative

results when compared to the state of the art methods. Our methods shown to

be better about spatiotemporal coherence. Concerning memory consumption and

processing time cost, our methods showed less consume of memory than the other

methods. Furthermore, the use of oversegmentation improved the quantitative

and qualitative results, and also decreased the processing time.
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Figure 4.17. Examples of video segmentations for a video extracted from the
Chen dataset. The original frames are illustrated in the �rst row. The fol-
lowing rows, from top to bottom, illustrate the results obtained by GB, GBH,
StreamGBH, SWA, FVHOScale, StreamHOScale, Over-FVHOScale and Over-
StreamHOScale respectively. The parameters were tuned to obtain about 50
supervoxels.
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Figure 4.18. Examples of video segmentations for a video extracted from the
Chen dataset. The original frames are illustrated in the �rst row. The fol-
lowing rows, from top to bottom, illustrate the results obtained by GB, GBH,
StreamGBH, SWA, FVHOScale, StreamHOScale, Over-FVHOScale and Over-
StreamHOScale respectively. The parameters were tuned to obtain about 100
supervoxels.
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Figure 4.19. Examples of video segmentations for a video extracted from the
GaTech dataset. The original frames are illustrated in the �rst row. The fol-
lowing rows, from top to bottom, illustrate the results obtained by GB, GBH,
StreamGBH, SWA, FVHOScale, StreamHOScale, Over-FVHOScale and Over-
StreamHOScale respectively. The parameters were tuned to obtain about 50
supervoxels.
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Figure 4.20. Examples of video segmentations for a video extracted ofrom
the GaTech dataset. The original frames are illustrated in the �rst row. The
following rows, from top to bottom, illustrate the results obtained by GB, GBH,
StreamGBH, SWA, FVHOScale, StreamHOScale, Over-FVHOScale and Over-
StreamHOScale respectively. The parameters were tuned to obtain about 100
supervoxels.
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Figure 4.21. A comparison among our methods, FVHOScale, StreamHOScale,
Over-FVHOScale and Over-StreamHOScale, and the methods GBH, StreamGBH
and SWA when applied to SegTrack, Chen and GaTech datasets. The comparison
is based on the following metrics: (a) time cost; (b) space cost.



Chapter 5

Conclusions and future works

In this work, we presented a new approach to hierarchical video segmentation

based on computation of hierarchical observation scales. To compute our hierar-

chical scales, we proposed an approach to reweighting the minimum spanning tree

computed from the video graph based on a criterion that measures the evidence

for a boundary between two regions by comparing the intensity di�erences across

the boundary and the intensity di�erence between neighboring voxels within each

region. Finally, the partitioning of the graph, after the reweighting, is based on

removing the edges whose weights (which represent the scales) are greater than or

equal to a speci�ed scale. Each graph region represents a video segment.

Our approach to hierarchical video segmentation can be divided into four

main steps: (i) graph creation; (ii) computation of hierarchical scales; (iii) inference

of video segmentation using thresholding; and �nally, (iv) the graph is transformed

in the segmented video. The graph creation is a very important step in this kind

of application since it models the type of information to be used into vertices,

and the relationships between the elements of the video, into edges. Therefore,

we studied three possibilities for producing the video graph in order to verify the

in�uence of color and pixel location: xyt graph, rgbxy graph and rgbxyt graph.

In our experimental results we identi�ed that the best results were obtained using

rgbxy graph. In addition, we note that, in this step the best results were using

the RGB color space, without using any image �lter. Despite the Bilateral �lter

show slightly better results, it has a very high computational cost, thus we prefer
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not to use any image �lter.

We used the approach proposed to develop two video segmentation meth-

ods: FVHOscale, applied to full video segmentation and StreamHOSCale, applied

to streaming video segmentation. Unlike the other methods proposed in the lit-

erature, our methods provide all scales of observations instead of only one seg-

mentation level. The great advantage of streaming method is the ability to run

a video stream without the need of having all the video in memory, achieving to

segment of consecutive frames blocks considering the temporal information present

throughout the video. To perform our streaming method, we proposed a new and

simple strategy for merging the results of two consecutive k-sized frame blocks, we

produce good results preserving as much as possible the same quality measure of

original one.

According to our experiments, the hierarchies inferred by our two methods,

FVHOScale and StreamHOScale, produce good quantitative and qualitative re-

sults when applied to video segmentation. Furthermore, our oversegmentation

method improve the accuracy and the computational cost of our methods. More-

over, unlike other tested methods, our methods are not in�uenced by the number

of supervoxels to be computed, as shown in the experimental analysis, and present

a low space and time cost.

For future works, we intend to investigate:

• New predicates to calculate the observation scale: we use the same predicate

proposed by Felzenszwalb and Huttenlocher [2004], but we need to explore

new ways of calculating of hierarchical observation scales using our approach.

• Automating the parameters: we need to search ways to �nd the best param-

eters for each video automatically.

• Apply our method in a real environment: using our segmentation method

in other applications, to assist in the Content-Based Visual Information Re-

trieval process.
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Appendix A

Parameters for video graph

creation per dataset

Experimental results, of each dataset (SegTrack, Chen and GaTech), obtained in

the search for the best parameters in the video graph creation step of FVHOScale

method, as shown in Section 4.2.1.
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Figure A.1. A comparison with the parameters used in the creation of the video
graph, separated by dataset using the xyt graph. The comparison is based on the
Explained Variation metric.
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Figure A.2. A comparison with the parameters used in the creation of the video
graph, separated by dataset using the xyt graph. The comparison is based on the
Mean Duration metric.
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Figure A.3. A comparison with the parameters used in the creation of the video
graph, separated by dataset using the rgbxy graph. The comparison is based on
the Explained Variation metric.
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Figure A.4. A comparison with the parameters used in the creation of the video
graph, separated by dataset using the rgbxy graph. The comparison is based on
the Mean Duration metric.
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Figure A.5. A comparison with the parameters used in the creation of the video
graph, separated by dataset using the rgbxyt graph. The comparison is based on
the Explained Variation metric.

200 300 400 500
10

15

20

25

30

35

40

45

50

55

60

65

70

Number of Supervoxels

SegTrack

200 300 400 500
10

15

20

25

30

35

40

45

50

55

60

65

70

Number of Supervoxels

Chen

200 300 400 500
10

15

20

25

30

35

40

45

50

55

60

65

70

Number of Supervoxels

GaTech

No Filter - RGB
No Filter - L*a*b
No Filter - HSV
No Filter - YCbCr
Gaussian - RGB
Gaussian - L*a*b
Gaussian - HSV
Gaussian - YCbCr
Bilateral - RGB
Bilateral - L*a*b
Bilateral - HSV
Bilateral - YCbCr

Figure A.6. A comparison with the parameters used in the creation of the video
graph, separated by dataset using the rgbxyt graph. The comparison is based on
the Mean Duration metric.
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