
RE-VETORIZAÇÃO DE CHAMADAS DE

FUNÇÃO





RUBENS EMILIO ALVES MOREIRA

RE-VETORIZAÇÃO DE CHAMADAS DE

FUNÇÃO

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como re-
quisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Fernando Magno Quintão Pereira

Belo Horizonte

21 de março de 2017





RUBENS EMILIO ALVES MOREIRA

FUNCTION CALL RE-VECTORIZATION

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
ful�llment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Fernando Magno Quintão Pereira

Belo Horizonte

March 21, 2017



© 2017, Rubens Emilio Alves Moreira.  
       Todos os direitos reservados 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ficha catalográfica elaborada pela Biblioteca do ICEx - UFMG 
 

   Moreira,.Rubens Emilio Alves  
 

D838f          Function call re-vectorization. / Rubens Emilio 

              Alves Moreira. – Belo Horizonte, 2017.  
                  xxviii, 71 f.: il.; 29 cm. 
 

                 Dissertação (mestrado) - Universidade Federal de  
            Minas Gerais – Departamento de Ciência da  
            Computação.                     

 

                   Orientador: Fernando Magno Quintão Pereira 
                                                                               

                 1. Computação – Teses. 2. Arquitetura de 
              computador. 3. Compiladores (Computadores). 
              I. Orientador. II. Título.  

  

                                                                                              

CDU 519.6*21(043) 





linda
Nota



I dedicate this work to my mom, family, friends, to every single person that

symbiotically keeps UFMG's Department of Computer Science the great institution it

is, and specially to my dear professor Fernando Magno Quintão Pereira.

I am more than conversant with how hard I have tried to get to this point.

I am more than convinced that your guidance set the stage for this success.

I am more than aware of my otherwise unfortunate failure.

ix





Acknowledgments

Agradeço à minha mãe por cada segundo do meu sempre que dedica cuidando de mim.

E por cada segundo que já teve que estar no trabalho, seja na escolinha, no hospital

João XXIII ou na casa de paciente � em plantões que, do que guardo comigo, já

chegaram a mais 72 horas seguidas! Tudo para garantir a excelente qualidade de vida

que sempre tivemos, além de me permitir tempo para minhas coisas de escola. A meu

pai, por ter sido bom com tantas pessoas; pelos saudosos momentos de presença; pela

insistente permanência desgastante; por ter sido tudo que teve de ser � sem acasos.

A meus pais pelo carinho imensurável. E eterno.

À minha família, por tudo que me deram; por tudo que me fizeram aprender.

To the magnificent persistence of my dearest professor Fernando Magno Quintão

Pereira, to whom I owe each opportunity I have been blessed with in the past two

years � and, take note, perhaps even less! For the multiple times you did not let me

completely lose myself, Thank you, sir!

To my professors from UFMG's Department of Computer Science and the whole

team that works together to keep this institution the great environment for learning

it is. Special thanks to my dear professor Wagner Meira Jr.; to Sônia Borges (mother

of all students), Sheilla, Stella, Maristela, and everyone from the PPGCC team. To

my dear professors and friends from UFMG's Music school, that always had the doors

opened to receive me whenever I needed the good ol' bits of fun.

To my beloved friends � not at all excluding the aforementioned ones �, your

presence summed up to who I am, indeed some more than others, but every single one

of you is entitled a share of my achievements. Special thanks to those I have spent the

last few years with and that at times took better care of me than I myself, Péricles

Oliveira, Larissa Leijôto, Mívian Marques, Marcos Felipe, Max Lima, Júlio Albinati,

Camila Araújo, Gabriel Poesia, Rodrigo Caetano, Fernando Mussel, Elverton Fazzion,

Osvaldo Morais, Vinícius Dias, Denise Britto, Samuel Evangelista, Paulo Bicalho, Lu-

ciana Lourdes, Luam Catão, Gabriel Caires, Marcus Rodrigues, Pedro Ramos, Marcos

Almeida, Gleison Souza, Vitor Paisante, Michael Frank, Florian Brendner, Paschalis

xi



Mpeis, Douglas Teixeira, Victor Campos, Henrique Nazaré, Demontiê Júnior, Car-

olina Medeiros, Gina Nogueira, Filipe Arcanjo, Bruno Coutinho, Diogo Rennó, Izabela

Karennina, Guilherme Sad, Lucas Moreira, Hudson de Almeida, Edson Júnior, Viní-

cius Garcia, Pedro Dias, Solange Oliveira, Humberto Fialho, Caio Ianelis, Henrique

Lourenço, Murilo Barbosa, Maurício Veloso, Fernando Endo, Imane AlSaghira, Aswin

Sridharan, Jake Enstrom, Antoine Froger, Spurrya Jaggi, Leo Souza, Adrian Martinu,

Alex Meyer, David Sena, Guilherme Ferrari, Talita Ribeiro, Bruna Ziviani, Amanda

Abreu, Mara Campelo, Lucas Matos, Rodrigo Chaves, Thales Linke, Débora Campos,

Sandro Pessutti, Gabriel Ferraz, to all my friends from my undergrad course in com-

puter science, from UFMG's Compilers Lab, LBS, Speed, from Colégio Nossa Senhora

das Dores, and from the Orchestre Universitaire de Rennes.

Para mí caro amigo Miguel Angel Alfredo Pérez Rueda, con quien aprendí tantas

cosas de esa lengua genial que es el español. Estoy seguro de que aún nos encontraremos

para platicarmos bastante y para que yo no más te grite sin razón.

My sincere apologies to those I have conceded unfortunate moments of arrogance

� regardless of how worded, irresponsibly deceiving, or mischievously silent the means

of utterance.

A thankful nod to my bleeding hearts, that get me up in the morning, put

me to bed, and save my life every now and then, Billie Holiday, Cartola, Prokofiev,

Nina Simone, David Bowie, Liszt, Elza Soares, Miles Davis, Bill Evans, Villa Lobos,

Tchaikovsky, AmyWinehouse, Charles Mingus, Shostakovich, Coleman Hawkings, Leo

Ornstein, Poulenc, Stravinksy, Cezar Franck, Mozart.

Last, but not least, this little poem I wrote for you all, this mystique amalgam of

wondrous people that continuously flies in and out of my life, filling out the gaps with

sheer joy and genuine living. It is entitled Borboleta. To my non-portuguese speaker

friends, I hope one day I will know your language well enough to be able to pick the

proper words to translate what I meant with this poem.

xii



Borboleta
Inspirado em Borboleta (Sommerfugl), opus 43 número 1, de Edvard Grieg.

Borboleta criou em mim asas pela mão.

E pousou.

Alazão na travessia do rio fez meandro com o peso do passo.

Pôs-se a galope, penseroso. E esqueceu.

Levantou em mim alma pelas asas.

Rodopiou com alegria. Alegrou todo canto. Fez esquecer todo o rio.

E levitou.

Cria leito na esperança pelo repouso da borboleta.

Conveceu-se da eternidade! Demagogo... E amoleceu.

Abriu em mim as mãos pela alma.

Tomou tempo do futuro.

Demorou a pousar.

E planou.

Cada fibra do corpo soluçava latejo.

Prumou-se à ideia, penoso.

� Alazão, é medo!

O vôo seguinte foi alto.

Borboleta deu de bruços com a sorte:

� O vento é quem me sopra pro norte, mas a razão da alegria é você.

Põe-se então o rio a encher de pressa.

Alazão perde sorte à outra peça:

� Voltarás pra me ver?

Borboleta criou em mim alma alada.

De encanto, levou todo o rio.

Deu de asas com o vento.
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� stars, hide your fires; life trickles in everywhere

risca o chão com vara de marmelo; seria destino

upon flights across the ocean; over pools of Those memories

no more free steps to heaven

locuta es de triuio

this should be part none! what difference does it make

keep gawking; tip; take a nap; fall and snap

culpa rubet uultus meus

time and space do not exist

we should have proceeded no further in those business

amici, amici... lesser, greater; not so happy, yet much happier

neither this, nor that; neither that, �

aut tace aut loquare meliora silentio

the bleeding hearts �, and the artists �, make their stand

and there it goes again, spinning, weaving new patterns

my poor heart is sentimental, not made of wood

wake duncan with thy knocking; would not we thou couldst

triuium... triuium...

e o azul: mar alto de por-dizeres... virado de por-fazeres... à deriva

never treats me... sweet and gentle...

semper oracula mentiantur... ontem, dor eterna; hoje, esquecimento total

lies, lies... a tissue of lies; all of it

lux aeterna luceat eis domine... donna eis requiem...

i've got it bad... and that ain't good...

not an answer; not even a laugh, Don't talk like that �

it is hard to make meaning out of oneself � amid some many changes

ah, corra e olha o céu...

it is hard not to talk about that which lies constantly in mind

revolução... tem é que ajudar; se envolver; mudança vem é de dentro

it's so hard for us to really be

e, de repente, sertão: saudade de tudo �

()
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Resumo

Linguagens SPMD para arquiteturas SIMD, como C para CUDA, OpenCL e ISPC

contribuíram para melhorar a programabilidade de aceleradores SIMD e placas de

processamento gráfico. No entanto, linguagens SPMD ainda não disponibilizam ao

programador toda a flexibilidade que se pode obter a partir de programação SIMD

explícita. A fim de contornar esta falha de expressividade, preservando a abstração

SPMD, introduzimos a noção de Call Re-Vectorization (CREV). CREV permite que o

programador altere a dimensão da vetorização durante a execução de um kernel SPMD,

e o faz por meio de uma chamada aninhada de kernel. CREV provê uma abstração

similar àquela oferecida pelo conceito de paralelismo dinâmico: é possível invocar um

kernel dentro de outro kernel. Nossa abordagem reduz os custos associados a esse

processo. Neste trabalho, apresentamos as definições formais de CREV, além de sua

implementação no compilador ISPC. Para validar nossa abordagem, implementamos

uma série de algoritmos clássicos explorando o conceito de Call Re-Vectorization. Tais

algoritmos incluem casamento de padrão, busca em profundidade e Bellman-Ford, e

foram implementados com CREV sem muito esforço. Uma vez compilados usando

ISPC para gerar instruções vetoriais de máquinas Intel, nossas implementações são

tão eficientes quanto soluções de estado-da-arte, sendo, em geral, mais simples de se

programar. Por exemplo, nossa implementação simples de casamento de padrão atinge

speedup de 12% sobre o algoritmo Knuth-Morris-Pratt.

Palavras-chave: Vetorização, Compiladores, SIMD.
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Abstract

SPMD programming languages for SIMD hardware such as C for CUDA, OpenCL,

or ISPC have contributed to increase the programmability of SIMD accelerators and

graphics processing units. However, SPMD languages still lack the �exibility o�ered

by low-level SIMD programming on explicit vectors. To close this expressiveness gap

while preserving the SPMD abstraction, this dissertation introduces the notion of Call

Re-Vectorization (CREV). CREV allows changing the dimension of vectorization dur-

ing the execution of an SPMD kernel, and exposes it as a nested parallel kernel call.

CREV a�ords a programmability close to dynamic parallelism, a feature that allows

the invocation of kernels from inside kernels, but at much lower cost. In this work, we

present a formal semantics of CREV, and an implementation of it on the ISPC com-

piler. To validate our idea, we have used CREV to implement some classic algorithms,

including string matching, depth first search and Bellman-Ford, with minimum e�ort.

These algorithms, once compiled by ISPC to Intel-based vector instructions, are as fast

as state-of-the-art implementations, yet much simpler. As an example, our straightfor-

ward implementation of string matching beats the Knuth-Morris-Pratt algorithm by

12%.

Keywords: Vectorization, compilers, SIMD.
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Chapter 1

Introduction

New hardware asks for new programming idioms. As an example, the ap-

pearance of general purpose Graphics Processing Units (GPUs) has led to

a revolution in programming: C for CUDA [Sanders and Kandrot, 2010],

OpenCL [Munshi et al., 2011], ISPC [Pharr and Mark, 2012], and Py-

Cuda [Garland and Kirk, 2010, Nickolls and Dally, 2010] are among languages

designed to unscramble high-end programming for state-of-the-art accelerators. These

Multi-Threaded (MT) languages let programmers express computations as single

kernels executed by many threads. They target architectures that combine SIMD and

multi-threaded execution, like GPUs and multi-core CPUs with vector instructions.

Developers are thus spurred into exploiting massive computational power from a clear

coding perspective � milder at hardware specifics awareness. While abstracting away

low-level primitives springs simpler code, it also gives rise to �exibility and compos-

ability constraints. For instance, given a matrix of threads, one may either pack such

processing units (threads) into context-dependent rows or columns. This packaging, or

parallel dimension, is not unoften fixed throughout the execution of a kernel1, in such

wise sifting functions that may be invoked by the fixed group of threads. Moreover,

threads may also be suspended and resumed due to thread-dependent control flow,

which makes up for yet another �lter on functions that do not comply with divergence.

GPUs and so-called vector machines � including CPUs with vector processing

capabilities � fall into a special classification of computer architectures and parallel

programming: Flynn's taxonomy. Proposed in 1966 by Michael J. Flynn [Flynn, 1972],

it groups architectures by their level of parallelism: single-thread, multi-thread, and

multi-program; and by their memory organization, i.e., having processors with a single

1Kernels are functions executed at the device-side (GPUs), as opposed to regular functions, carried
on at the host-side.
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2 Chapter 1. Introduction

or multiple data streams. For discussing our solution, it is ideal to bear in mind the

following two settings: SIMD and SIMT. An SIMD architecture consists of a Single

Instruction stream read, in lock-step, by a vector of n units, each using a different data

source from theMultiple Data streams. The SIMT organization is a Single Instruction

source executed by Multiple Threads, say n, and each thread holding an SIMD lane

of length m, i.e., every instruction runs n ×m times. By times we shall refer to this

latter model as either SIMT or multi-threaded (MT) programming.

Most languages that target hardware accelerators fix the parallel dimension along

which threads are packed into SIMD vectors, or GPU warps2, for the whole duration

of a kernel call. This a�ects device-side library functions, which cannot assume any

particular organization of parallelism nor thread activity. To further grasp how suit-

able it is to make such an assumption, pay heed to the fact that many hand-tuned

libraries [Catanzaro, 2012, NVIDIA, 2016] provide functions that rely on having all

threads enabled within a warp: (i) to use such functions, one must assure warp-wise

control flow uniformity; (ii) using high-end code is pro�table in terms of correctness,

e�ciency and to avoid replicate work. Developers circumvent the constraints of pure

SIMT programming in two ways: via warp-synchronous programming, or via dynamic

parallelism. In the first case, the programmer pro�ts from the fact that threads in an

accelerator are grouped into warps to achieve direct thread communication without

synchronization or memory sharing. Yet, warp-synchronous coding is not easily com-

posable with classic multi-thread (MT) programming: developers must ensure that

every thread within a warp participates in each collective operation; e.g., the CUDA

__shfl function has unde�ned behavior when reading data from an inactive thread.

Such task is otherwise unsubstantial in plain MT programming, for thread divergence

control is put out of the hands of the programmer. Consequently, MT code with con-

trol flow divergences may not call warp-synchronous functions from within its divergent

regions.

Regarding the second approach, CUDA's dynamic parallelism along with

OpenCL's device-side enqueue consists of the ability to create a new group

of threads from within threads already in flight [Yang and Zhou, 2014], thus

conferring developers the opportunity to implement strikingly elegant algo-

rithms [Merrill and Grimshaw, 2011]. However, this construct is too hefty for our

simpler purpose of re-activating threads within a warp. For instance, invoking new

threads from within a thread in CUDA involves the global scheduling of a new grid

of threads [Jones, 2014], a very expensive event. In short, currently, either we have

2Following the NVIDIA jargon, we shall call groups of threads that execute in lock-step a warp.



3

the programmability and elegance of the multi-threaded model, or the e�ciency of

warp-synchronous programming, but not both.

Our goal is to allow the composability of SIMD and SIMT through a programming

construct syntactically similar to dynamic parallelism. To this end, we introduce the

notion of Call Re-Vectorization (CREV), and show how to implement it efficiently

in a state-of-the-art vector compiler. CREV is a programming idiom that modifies

function calls. Functions marked with the crev tag, henceforth called r-functions, are

executed by all the threads available in an SIMD unit. This implies a context switch:

to run an r-function, the runtime must change the state of all the threads, including

those inactive due to previously divergent control flows. Upon completion, the runtime

returns those workers back to their previous state, in the same way a function call is

handled. Thus, we achieve a new level of recursion, in which threads can spawn new

threads in a stack-based fashion. However, contrary to traditional dynamic parallelism,

CREV uses only the accelerator's local memory (registers and call stack) to save thread

states; hence, it is cheaper.

To validate our ideas, we have implemented them in ISPC3 [Brodman et al., 2014,

Pharr and Mark, 2012]. ISPC is a programming language, plus its companion compiler.

This compiler produces industrial quality code for SIMD units such as Intel Streaming

SIMD Extensions (SSE), Intel Advanced Vector Extensions (AVX) including AVX-512

for Xeon Phi accelerators [Sodani et al., 2016], or ARM NEON. We chose to imple-

ment CREV in ISPC because this framework provides the only modern SIMT-to-SIMD

translator that, to the best of our knowledge, supports the notion of unmasked or ev-

erywhere blocks [Pharr and Mark, 2012]: the ability to activate � in a new context

� threads that are idle due to divergences. This feature is a requirement of CREV.

We have re-written some benchmarks available in ISPC to use CREV, as well as in-

corporated some of our own to compose a suite of CREV tests. We show that these

implementations are as e�cient as warp-synchronous versions of them, and as clear

and elegant as if the had been implemented using dynamic parallelism. And this extra

e�ciency does not imply a loss of programmability. On the contrary, CREV often leads

to more concise programs. In addition to the ISPC implementation of CREV, we have

also built a small interpreter for an SIMD-like programming language, which better

demonstrates the semantics of our new construct.

Summary of our Contributions. The key contribution of this thesis is the notion

of function call re-vectorization, which comes out of the observation that it is possible

to capitalize on divergent threads to help speed up the work of active threads. We
3The Intel SPMD Program Compiler (ISPC) is available at https://github.com/ispc/

https://github.com/ispc/
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explain the concept of CREV through examples, a formal semantics, and an industrial

quality implementation:

• Examples: Section 2 shows examples of algorithms that benefit from our notion

of Call Re-Vectorization. Further examples are discussed in Section 5.

• Semantics: Section 3.2 formalizes the semantics of µ-SIMD, a low-level instruc-

tion set su�cient to implement CREV. We have written a Prolog interpreter to

validate the semantics. This interpreter made it easy to prototype di�erent imple-

mentations of CREV, until we had a design we could graft into a state-of-the-art

compiler.

• Translation: Section 3.3 describes the translation of the high-level �crev� key-

word into the low-level representation. Core properties of the �nal, low-level

code, as produced by the translator, are listed in Section 3.4.

• Evaluation: Section 5 provides an empirical evaluation of our implementation.

To perform this evaluation, we have implemented some algorithms, which are

faster and cleaner than their original versions without CREV.

Published Papers We now present the works published throughout this Master's

course. The initial work, related to Return Oriented Programming attack prevention,

was crucial to gaining experience with one of nowadays' main crowd-source compilation

framework, the LLVM infrastructure; it was as well a means of better understanding

compilation techniques and optimizations. We have thus heavily applied such learnings

in this project.

Return Oriented Programming This project targeted a well�

known vulnerability exploit named ROP-attack. Return-ori-

ented programming is a technique attackers employ to take

control of the execution of a program, and eventually of the

entire host machine. The exploit begins in the identi�cation of flaws in the program,

such as buffer over�ows, and thus input extraneous data into the read-only section of

memory. By chaining a series of indirect jumps interleaved with instructions that have

little to no side-e�ects, the attacker forces the foreign data placed in the read-only

memory to be processed as if executable memory. To bestow such exploit in a program

is rather an artsy process: the attacker must analyze many corner-cases to find the

ones useful for conveying the exploit.

Being challenging does not mean being impossible to do, and it is known that

even government agents have used such technique to acquire top secret informa-

tion [Kushner, 2013]. Whenever an attack takes place, the frequency of indirect

branches seen at the processor increases signi�cantly [Tymburibá et al., 2016]. Our
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solution lies in deriving tight frequency thresholds for applications: we statically tra-

verse the control flow graph (CFG) of programs, and search for the path of up to a

fixed number of instructions with the highest density of indirect branches. Despite the

NP-hardness of determining a maximum path, our static analysis operates in a feasible

runtime, as we limit the path's maximum length.

As outcome of this project, we had a paper accepted at the Brazil-

ian Symposium on Information and Computational Systems Security (SB-

SEG'15) [Moreira et al., 2015]; a dynamic detector for ROP attacks, namely

Rip-Rop Deducer [Tymburibá et al., 2015]; and we have put up a web-

site [Moreira and Tymburibá, 2016] with a static analysis to infer frequency thresh-

olds for indirect branches in applications. Finally, we had another work pub-

lished at the International Symposium of Code Generation and Optimization

(CGO'16) [Tymburibá et al., 2016], and were awarded the Golden Medal (1st prize)

at CGO's Student Research Competition (CGO-SRC'16) [Spink, 2016]. I thank my

friends Mateus Tymburibá and Fernando Magno for being so patient and supportive

throughout this work.

Function Call Re-Vectorization In this work we aimed at the

capabilities of warp-synchronous programming in conjunction

with the simplicity of dynamic parallelism. Warp-synchronous

programming is known to give programmers a high-level in-

terface with SIMD native instructions from vector processing

machines. Besides the possibility of �ne-tuning applications,

warp-synchronous code can easily become a nightmare, even

for seasoned developers [Moreira et al., 2017]. We implement,

on top of an industrial SIMT compiler, the idiom crev, allowing programmers to call

warp-synchronous procedures even within divergent regions. We further detail this

project in the remaining sections of this thesis.

We published an initial work at Brazilian Symposium on Programming Languages

(SBLP'16) [Moreira et al., 2016], in which we de�ne the semantics of everywhere blocks

in the SIMD world. The concept of everywhere blocks is key to developing CREV, as

it allows one to temporarily re-enable threads within a warp. We later publish our con-

tribution, including the crev implementation on top of Intel's SPMD compiler, ISPC.

Our paper, entitled Function Call Re-Vectorization, was published at the Symposium

on Principles and Practice of Parallel Programming (PPoPP'17) [Moreira et al., 2017].

Je remerci bien mes orientateurs Fernando et Sylvain pour l'opportunité de travailler

avec eux sur ce project, et aussi de faire trois mois de stage à la France. Là-bas j'ai fait

la connaissance de beaucoup de personnes qu'ont fait mon séjours vraiment speciale.
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Un grand remercie à mon ami Fernando Akira Endo, et à tous mes amis au centre de

recherche INRIA Rennes-Bretagne Atlantique.

Twidd: Twig over RDDs Originally ``Twig: An Adaptable and

Scalable Distributed FPGrowth� was a work developed during

the last two years of my undergraduation and first semester of my

Master's course. We proposed a distributed FPGrowth algorithm

with dynamic policy for load distribution among computing nodes, with low replication

overhead. Our approach partitioned the input database using the FPTree structure

from the FPGrowth algorithm. FPTree is a prefix-tree having each node to represent

an element from a list, given a transactional database. The interesting point of the

FPTree is that it keeps the most frequent elements closer to the root node, thus

reducing data replication within its structure. The work, available online4, was not

accepted at the International Parallel and Distributed Programming Symposium of

2015.

During the first semester of my Master's course, the algorithm, initially imple-

mented in C++, was reimplemented in Spark/Scala, by my friend and Computer Sci-

ence Master's student Vinícius Victor Santos Dias. The implementation, namely Twidd,

exploited the bene�ts of Resilient Distributed Datasets (RDDs) to scalably allow for

fault tolerance. Vinícius also implemented a distributed version of the Eclat frequent

itemset algorithm, which was used, along with Twidd, to study performance issues in

massively parallel applications. He later published the work ``Diagnosing Performance

Bottlenecks in Massive Data Parallel Programs� at the International Symposium on

Cluster, Cloud and Grid Computing (CCGRID'16) [Dias et al., 2016], and granted me

the co-authorship on his work. Besides having my entire C++ formation upon this

work, I have also gained a lot of technical experience throughout this project, both

due to my e�orts in implementing Twig, and from the many people either voluntarily

involved or dragged into this project. I here take this opportunity to publicly thank

all of them for their contributions, and Vinícius for his kind gesture.

4Twig: An Adaptable and Scalable Distributed FPGrowth. Work unfortunately not accepted
by the committee of IPDPS'15. https://github.com/rubenseam/dfptree/blob/master/ipdps15.
pdf.

https://github.com/rubenseam/dfptree/blob/master/ipdps15.pdf
https://github.com/rubenseam/dfptree/blob/master/ipdps15.pdf
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Overview

The goal of this section is to explain Warp-Synchronous Programming, Dynamic Par-

allelism (DP), and our notion of Call Re-Vectorization (CREV). To this end, we shall

use Algorithm 1 as an example. This program receives a book bi, plus a pattern p.

It then copies out all the lines l ∈ bi that match p. Pattern matching is performed

by memcmp, and memory copying is done by memcpy. The book is represented as a

matrix of characters; thus, each of its lines, and also the pattern p, is a vector of up

to N characters. Algorithm 1 runs in parallel: tid is a thread identi�er. Hence, each

thread is in charge of matching a line l in bi against p. In case the match is positive,

this thread must copy l to an output matrix bo. For clarity, we assume a single warp

in this example, although the techniques here described can be applied independently

to multiple warps. The number of threads that run simultaneously in Algorithm 1 is

W , the warp width.

Algorithm 1: SIMD Book Filter and memcpy function

1 W ← warp size; tid ← thread index;
2 Function bFilter(mtx bi, mtx bo, vec p, int N)
3 for k ← tid to num_lines(bi) - 1 step W do
4 l ← bi[k];
5 if memcmp(l, p,N) == 0 then
6 memcpy(l, bo[k], N);

7 Function memcpy(str lsrc, str ldest, int N)
8 for i← 0 to N - 1 do ldest[i]← lsrc[i] ;

The naive multi-thread implementation of memcpy iterates sequentially over the

arrays within each thread (Algorithm 1, line 8). This implementation is highly ine�-

cient due to branch divertion, for only threads that step into the memcpy function will

7
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be active and working on their own memory copy. Divergence may take place upon

branch evaluation, or due to unrelated memory accesses. Branch divergence occurs if

the number of iterations N di�ers across threads. Threads with few iterations would

�nish the loop earlier and wait for threads with more iterations in order to restore

convergence at the end of the loop. Memory divergence also happens as threads within

a warp access data in unrelated locations. Such accesses, referred to as uncoalesced in

the CUDA literature or as gather/scatter on SIMD platforms, are bandwidth-ine�cient

compared to accesses to consecutive elements.

2.1 Warp Synchronous Programming

It is possible to write function memcpy in a way that distributes operations on contigu-

ous elements across consecutive threads. Algorithm 2 does it. Function memcpy_shfl

is aware of the SIMD nature of a warp. Variables are stored as vectors, having each

position belonging to a speci�c thread. Instruction shfl(v, i) allows thread tid to read

the value stored in variable v, but in the register space of thread i. This implemen-

tation give us an e�cient way to copy data between arrays, as copies are distributed

evenly between threads, removing most of the branch divergence. Memory divergence

is also eliminated as threads of a warp access consecutive elements at each iteration of

the loop on line 7.

Nevertheless, this function has an important limitation: it requires all threads

in the warp to be active. It cannot safely be called from a point that has potential

branch divergence. Indeed, the loop on line 7 would skip elements if some threads

were inactive. To support calls to memcpy_shfl within divergent regions, we need a

way to re-activate threads and put them to work on the copy loop. In addition, the

warp-synchronous programming construct is more complex and error-prone than the

naive implementation.

Algorithm 2: Warp synchronous memcpy
1 W ← warp size; tid ← thread index;
2 Function memcpy_shfl(vec s, vec d, int N)
3 for j ← 0 to W − 1 do

4 dmy ← shfl(d, j);
5 smy ← shfl(s, j);
6 Nmy ← shfl(N, j);
7 for i← tid to Nmy − 1 step W do

8 dmy[i]← smy[i];
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2.2 Dynamic Parallelism in CUDA

In NVIDIA's CUDA and OpenCL 2.0, dynamic parallelism (DP) is the ability to invoke

a new kernel K2 from within a kernel K1 [Wang and Yalamanchili, 2014]. In this

case, programmers may request a large number of threads, i.e., multiple new warps in

multiple thread blocks. As the inner K2 is a new kernel, all its threads are active upon

entry, regardless of branch divergence in K1. Algorithm 3 shows an implementation

of memcpy that we could invoke from Algorithm 1 using dynamic parallelism. This

algorithm splits, among all the threads in a warp, the work of copying vector s to

vector d. Its main advantage is simplicity; its disadvantage is efficiency.

Algorithm 3: Implementation of memcpy that could be invoked dynamically
from Algorithm 1.
1 W ← warp size; tid ← thread index;
2 Function memcpy_dp(vec s, vec d, int N)
3 for k ← tid to N − 1 step W do

4 d[k]← s[k];

Wang et al. demonstrate that the overhead of a new kernel launch can be as high

as one millisecond [Wang and Yalamanchili, 2014]. The new kernel must be scheduled

and wait until there are resources available for its execution. Then, the requested

number of warps and memory blocks must be allocated before execution starts. For

large workloads, the overhead of launching a nested kernel is paid off by the massive

data parallelism available in the GPU [DiMarco and Taufer, 2013]. However, for small

tasks, this extra cost might degrade performance.

2.3 Call Re-Vectorization

Introducing an inner dimension of parallelism is desirable to implement irregular algo-

rithms such as graph traversal and recursive sorting. Unfortunately, current abstrac-

tions based on warp-synchronous programming or Dynamic Parallelism either com-

promise e�ciency or programmability. To solve this conundrum, we introduce Call

Re-Vectorization (CREV), a new programming idiom. Syntactically, CREV is akin

to CUDA's dynamic parallelism. Semantically, it avoids the cost of scheduling new

kernels.

CREV revisits the concept of everywhere (also known as all or unmasked)

blocks to temporarily re-enable inactive threads within divergent regions. Such

construction was available in programming languages for SIMD machines, such as
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Algorithm 4: SIMD Book Filter using CREV

1 W ← warp size; tid ← thread index;
2 Function bFilter(mtx bi, mtx bo, vec p, int N)
3 for k ← tid to num_lines(bi)-1 step W do
4 l← bi[k];
5 if memcmp(l, p,N) = 0 then
6 crev memcpy_crev(l, bo[k], N);

7 Function memcpy_crev(vec s, vec d, int N)
8 for k ← tid to N − 1 step W do
9 d[k]← s[k];

C* [Rose and Steele, 1987], MPL (MasPar Programming Language) [MasPar, 1992] or

POMPC [Hoogvorst et al., 1991] in the late 1980s and early 1990s, and has made a re-

cent comeback in ISPC [Pharr and Mark, 2012]. In these languages, an everywhere

block is executed by every processing element, regardless of its divergent state. At the

end of that block, threads are sent back to their original state.

The everywhere block is a low-level construct we employ in the implementation

of CREV; however, programmers do not deal with it directly � this is the task of the

code generator. Algorithm 4 shows how Algorithm 1 looks like once implemented

using CREV. Programmers use the crev keyword at line 6 to re-vectorize functions.

CREV maintains a stack of thread states to track execution contexts, thus supporting

nested calls of r-functions. In terms of performance, a call to a function using the

crev directive is equivalent to a regular function call � unlike the implementation of

dynamic parallelism in CUDA, for instance. Thus, we favour the use of CREV for fine

grain nested parallelism. Example 2.3.1 arms the reader with some intuition on how

CREV works, yet we explain the nitty-gritties behind the CREV directive in Section 3.

Example 2.3.1 A function is called with the crev prefix to indicate that every thread,

whether enabled or disabled, should execute the function. We address as r-functions the

procedures targeted by our crev directive. Every thread should execute the r-function

multiple times if multiple enabled threads in the warp call it. For instance, if the warp

size is 32 and 7 threads are enabled when the program flow hits line 6 in Algorithm 4,

all 32 threads execute memcmp_crev 7 times. In each case, the 32 threads temporarily

take on the local state of the active thread that they are helping. Once done, these

workers all get their local state restored.
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void simd_reset ( uniform in t data [ ] , uniform in t l ength ) {
f o r ( vary ing i n t i = programIndex ; i < length ; i += programCount ) {

data [ i ] = 0 ;
}

}
export void toy ( uniform in t ∗ uniform data [ ] , uniform in t l ength ) {

i f ( programIndex % 2 == 0) return ;
f o r ( uniform in t i = 0 ; i < length ; i += 2) simd_reset ( data [ i ] , l ength ) ;

}

Figure 2.1. Toy example of CREV application. We use this snippet to highlight
the main programming issues we try to tackle with CREV. The first issue is to
bridge SIMT-SIMD, in the sense we must be able to call SIMD-based functions
within divergent regions.

2.4 Why CREV?

As shall be presented in the forecoming sections and remaining of this work, CREV is

designed as an idiom for SIMT languanges, in order to provide more �exibility for pro-

grammers in search for speedups. We endeavor code simplicity in the resulting language

extension, so developers can better capitalize on target-hardware computational supply

without abdicating their time to understanding yet another concept or struggling to

fix new bugs. Our approach relies on the straightforwardness of dynamic parallelism

whilst its underlying implementation is founded on the rather user-unfriendly warp

synchronous programming. Let us now go quickly over the building blocks for com-

posing CREV, and then discuss why CREV is useful and on which context it stands

as a better solution than works previously proposed in the literature. To assist us in

grasping each of the challenges counterposed by our solution, we built a toy example

of application for crev, depicted in Figure 2.1.

Everywhere Blocks. One of the concerns that arises from vector-based programming

is the usage of SIMD within pontentially divergent regions, which is often the case in

multithreaded programs. SIMD kernels require all threads within a warp to be enabled,

in other words, the control flow must be uniform. Since divergence is one of the main

characteristics of a system orchestrating a set of control flow independent threads,

there must be a way of cutting through a divergent region and guaranteeing, at least

temporarily, the whole warp to be active. Analyzing function toy from Figure 2.1,

the conditional establish a control divergence by halving the threads into odd- and

even-indexed sets � the latter being deactivated upon calling return. The subsequent

lines of code must all be in compliance with such missing-threads, i.e., they may not
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call SIMD functions. If we then try to execute the call to simd_reset, unless originally

the programmer's intention, the result would be wrong, as such function depends on

having all threads active to reset a vector to 0 valued entries.

In our toy example, we simply create a mock condition to enforce divergence,

but in the latter sections we show a series of examples in which such dillema may

appear. Furthermore, there are also publicly available cases in which one may get

entangled amid divergent threads but also need control flow uniformity to call SIMD

procedures [NVIDIA, 2016]. The problem of expressing nested SIMD loops in multi-

thread style is not new. Some data-parallel programming languages for SIMD com-

puters in the 80's and 90's allow to re-enable temporarily dormant threads. The C*

language [Rose and Steele, 1987], the Maspar Programming Language [MasPar, 1992],

and the POMPC language [Hoogvorst et al., 1991] incorporate a control flow construct

named either everywhere or all to this end. We have re-used these instructions to

implement CREV. However, these are low-level primitives: they are not program-

mer-friendly, nor have any interface with function calls. Using everywhere directly

is di�cult, as this abstraction has no knowledge nor control over the state of dormant

threads. CREV, on the contrary, is as easy to use as dynamic parallelism. It manages

register saves and restores automatically, relieving the programmer from this task.

Warp-level convergence guarantees. Previous work enforce guarantees on where

threads converge after control divergences to make warp-synchronous programming

safer. For instance, Pharr et al. have proposed the maximal convergence guaran-

tee [Pharr and Mark, 2012], and Gaster has proposed a divergence-aware execution

model for OpenCL [Gaster, 2014]. CREV goes further by actually enforcing conver-

gence at arbitrary program points, allowing warp-synchronous functions to be called

from divergent sections. To the best of our knowledge, this is the first attempt to

provide developers with such possibility. Considering our toy example from �gure 2.1,

we simply need to replace the loop with the invocation of simd_reset by a call to this

function using the crev directive. Whenever a variable is tagged varying, it holds in

fact a vector of values, one per thread; whereas a uniform variable holds a single value,

equal for all threads. Therefore, notice that the index variable to the matrix data,

which was the induction variable i, has now been replaced by the programIndex. The

result is a varying pointer, i.e., there is one pointer value from data per thread within

warp � potentially distinct addresses. To simplify, let us assume the outer dimension of

the matrix to equal the number of threads from the warp; but, to ensure the procedure

genericity, all that is needed is to make a loop with increment step equal to the warp

size.
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export void toy ( uniform in t ∗ uniform data [ ] , uniform in t l ength ) {
i f ( programIndex % 2 == 0) return ;
crev simd_reset ( data [ programIndex ] , l ength ) ;

}

Figure 2.2. Application of the crev directive within a divergent region.

Grid-level Dynamic Parallelism. Much e�ort has been spent to reduce the

overhead of dynamic parallelism. Alternatives to CUDA Dynamic Parallelism

such as DTBL [Wang et al., 2015], Free Launch [Chen and Shen, 2015] and La-

Perm [Wang et al., 2016] reduce sub-kernel launch overhead or improve cache local-

ity. By relying on global schedulers, they allow load-balancing between GPU stream

multiprocessors. We are not competing with these e�orts, because CREV is not an

alternative to dynamic parallelism. CREV is a static code transformation with no

dynamic scheduling; hence, it does not create extra parallelism. In other words, we

move work to threads that are already in flight, instead of spawning new threads.

The main bene�t of CREV, when compared to these previous work comes in terms

of programmability and e�ciency: by supporting composability of multi-thread and

SIMD code, we give developers the chance to bene�t from e�cient warp-synchronous

idioms without neither having to deal with primitives like shu�e, vote and population

count, nor having to worry about saving the context of threads. Again, considering

our example, the main goal of our approach is to provide an easy-to-write solution for

mixing SIMD and SIMT, while also conveying good performance. Given our sample

application of crev, depicted by Figure 2.2, we seem to achieve simplicity; in Section 5,

we show we get not too far behind w.r.t. performance.

Thread-level divergence aware optimizations. Compilers may re-

order computations across loop iterations within each thread to mitigate

branch divergence [Coutinho et al., 2011, Han and Abdelrahman, 2013, Novak, 2015,

Khorasani et al., 2015]. However, each thread performs the same set of tasks as in the

original version, so divergences induced by load unbalance between threads of a warp

remains an issue. CREV is a way to deal with irregular programs whose performance

divergences hurt. However, CREV is not an optimization implemented by the com-

piler: programmers must adapt algorithms to use this construct. CREV deals well

with divergences because it lets developers balance workload between threads in flight.

In other words, it changes the loop structure by distributing iterations across di�erent

threads.
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Conclusion. This chapter has introduced the basic notions around function re-vector-

ization via an example. This example gave us the opportunity to provide some insights

on the syntax and the semantics of the new abstraction that we propose. In particular,

it made clear the di�culty of combining programmability and e�ciency in the SIMD

world. In the next chapter we start to explain the details around the implementation

of CREV. In particular, we de�ne its semantics and syntax more formally.
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Semantics of CREV

This chapter presents the semantics of Call Re-Vectorization. First, in Section 3.1,

we informally state key features of CREV. In Section 3.2, we introduce µ-SIMD,

a low-level programming language with a set of primitives that lets us implement

CREV. In Section 3.3, we show how to implement the crev high-level construct using

the building blocks available in µ-SIMD. Finally, in Section 3.4, we use our semantics

to state some properties of CREV. Before we dive into these details, we suggest the

reader to revisit Example 2.3.1 and thus recapitulate the overall control flow behaviour

of a CREV call.

3.1 The Cornerstones of CREV

CREV is de�ned as follows: for each active thread that reaches a call tagged with crev,

we execute the target function once, forwarding global parameters (scalars) and extract-

ing private ones per active thread (vectors). This principle of Call Re-Vectorization

lays on three pillars: thread re-activation, SIMD function call and data distribution.

Thread Re-Activation. CREV does not lead to the creation of new threads. A

function invoked via a CREV call is executed by every thread of the running warp,

regardless of the state of such threads (active or not). As mentioned in Section 2, a

thread might be inactive due to divergences. There is, however, a means of temporarily

re-enabling threads, which is the functionaly conveyed by an everywhere block. We

capitalize on this construct in order to implement our crev extension, thus re-activating

dormant threads to perform work.

Given a warp, its former state, i.e., the former state of its threads, is saved into

the context stack, used for divergence management. The context stack basically has

15
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to store bit masks for keeping track of the state of each thread within its associated

warp. On software-based context stack implementations, such as used on AMD GPUs

and Intel AVX-512 platforms, this operation is performed entirely in software. For

platforms with hardware-based context stack implementations, like NVIDIA GPUs,

it requires a new machine instruction to allow software manipulation of the context

stack.

SIMD Function Call. Multi-thread (MT) and SIMD languages have di�erent de�-

nitions of function calls. In an MT setting, a function call is only performed by active

threads, and upon processing instructions, only register lanes that correspond to active

threads are saved. The other threads are guaranteed to stay inactive during execution

of the function, thus requiring no context save. Although each thread conceptually has

its own private call stack, the call stacks of a warp are typically synchronized, both

for performance reasons and to allow the sharing of a single scalar stack pointer for

a warp. Implementations of SIMD languages, on the other hand, save whole vector

registers on function calls, keeping one stack pointer per warp.

Unlike regular MT functions, procedures invoked with the crev directive (r-func-

tions) follow an SIMD application binary interface. This ensures that all registers in-use

are saved before being overwritten inside the function, including lanes of threads that

were inactive. Because crev does not create new threads, the cost associated to our

construct is equivalent to that of a context switch resultant of invoking a new function.

Data Distribution. Upon entrance at crev call, the execution flow issues a series

of light-weight data serializations, one per formerly active thread within the running

warp. The serialization consists in loading data, once local to each thread, into global

variables, accessible to all threads within the warp. The goal here is to allow the target

r-function to receive its input arguments, and also ensure all threads to have access to

such data.

Once each formerly active warp thread is serialized to have a full warp operate

on its data, the r-function can be correctly invoked. Revisiting our warp-synchronous

memcpy example (Algorithm 2), the local data serialization requires extracting and

broadcasting each thread's register lane. More specifically, all variables that were

local to each thread, but that are used as input argument to the r-function, must be

serialized and broadcast. Data distribution will be later covered with more detail in

Algorithm 5.
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branch if zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . bz v, l
unconditional branch . . . . . . . . . . . . . . . . . . . . . jmp l
branch if thread previously active. . . . . . . . . jmp_mask tid, l
write to shared memory . . . . . . . . . . . . . . . . . . ↑ vx = v
read from shared memory. . . . . . . . . . . . . . . . . v =↓ vx
binary operations . . . . . . . . . . . . . . . . . . . . . . . . . v1 = o1 ⊕ o2
copy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v = o
shuffle data between lanes . . . . . . . . . . . . . . . . shfl(v, vlane)
synchronization barrier . . . . . . . . . . . . . . . . . . . sync
halt the machine . . . . . . . . . . . . . . . . . . . . . . . . . stop
begin everywhere block . . . . . . . . . . . . . . . . . . . everywhere
end everywhere block. . . . . . . . . . . . . . . . . . . . . end_everywhere

Figure 3.1. µ-SIMD instruction set. Operands (o) can be either variables or
integer constants.

Labels (L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ::= l ∈ N
Constants (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . ::= c ∈ N
Variables (V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ::= Tid ∪ {v1, v2, . . . }
Instructions (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . ::= Figure 3.1
Active Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . Θ ⊂ N
Local Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . σ ⊂ V 7→ Z
Local Memory Bank . . . . . . . . . . . . . . . . . . . . . . β ⊂ Tid 7→ σ
Shared Memory . . . . . . . . . . . . . . . . . . . . . . . . . . Σ ⊂ N 7→ Z
Synch Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Π ⊂ (L×Θ× L×Θ× Π)
Context Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . Λ ⊂ (Θ× Π× Λ)
Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P ⊂ L 7→ I
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . pc ∈ N

Figure 3.2. The state of µ-SIMD machine is a septuple M(Θ, β,Σ,Π,Λ, P, pc).
Θ is the set of active threads. A thread t ∈ Θ has a local memory σ, accessible
through a memory bank β. Threads communicate through shared memory Σ.
The stack Π tracks control flow divergences. A key component of Call Re-Vec-
torization is the thread stack Λ. The program counter, pc, keeps track of the
next instruction ι ∈ P to be executed. The program P is a linear sequence of
instructions. Although it never changes, we include it as state for convenience.

3.2 Low-Level Semantics

We formalize the notion of Call Re-Vectorization on top of a core language, µ-

SIMD. This language provides the low-level constructs necessary to implement

crev and thus invoke r-functions. Most of the syntax of µ-SIMD comes from Sam-

paioet al. [Sampaio et al., 2013], who, in turn, have reused ideas from Bougé et

al. [Bougé and Levaire, 1992] and Farrell et al. [Farrell and Kieronska, 1996]. A µ-

SIMD program is a sequence of instructions indexed by a pc. Figure 3.1 shows µ-
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split(Θ, β, v) = (Θ0,Θn) where

Θ0 = {t | t ∈ Θ and β[t] = σt and σt[v] = 0}
Θn = {t | t ∈ Θ and β[t] = σt and σt[v] ̸= 0}

push([],Θn, pc, l) = [(pc, [], l,Θn)]

push((pc′, [], l′,Θ′
n) : Π,Θn, pc, l) = Π′ if pc ̸= pc′

where Π′ = (pc, [], l,Θn) : (pc
′, [], l′,Θ′

n) : Π

push((pc, [], l,Θ′
n) : Π,Θn, pc, l) = (pc, [], l,Θn ∪Θ′

n) : Π

Figure 3.3. Auxiliar functions used to define µ-SIMD. split is a filter, dividing
threads into two divergent sets (Θ0 and Θn). Auxiliary function push updates
the synchronization stack Π due to control flow divergences.

SIMD's syntax.

Operational Semantics. The state M of a program is a tuple (Θ, β,Σ,Π,Λ, P, pc),

as described in Figure 3.2. Threads are uniquely identified by a natural tid, having

a local memory β[tid], and sharing a global memory Σ. Memory is vectorized, thus,

a local address v denotes a vector of variables v ∈ β[tid]; hence, each thread sees its

private version of v.

To formalize the semantics of µ-SIMD, we use the auxiliary functions shown in

Figure 3.3. The semantics of µ-SIMD is given by Figures 3.4 and 3.5. The former

shows the behavior of instructions that change the program's control flow; the latter

shows the behavior of logic and arithmetic instructions. The result of executing a

control flow instruction is a triple (Θ, β,Σ). The interface between Figure 3.4 and

Figure 3.5 is performed by Rules It and Tl. The result of executing an arithmetic or

logic instruction is a pair (β,Σ), i.e., they only update the program memory.

The semantics of control flow divergences. To simulate the effect of divergences,

µ-SIMD has a stack Π. Each element in Π is a tuple (lid,Θdone, lnext,Θtodo), which

indicates the point where divergent threads must re-converge. A new tuple is pushed

onto Π due to a conditional branch, located at lid, that has caused a divergence, as

described by Rules Bt, Bf and Bd, in Figure 3.4. Θdone is the set of threads that

have reached the synchronization point. Θtodo is the set of threads waiting to execute.

These threads, once active, will resume execution at label lnext. The stack is popped

by instructions sync, whose behavior is given by Rules Ss and Sp.

The Thread Stack. To implement CREV, we have added a thread stack Λ to µ-

SIMD. This stack is fundamental to the implementation of everywhere blocks. Λ
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(Sp)
P [pc] = stop

(Θ, β,Σ, ∅,Λ, P, pc)→ (Θ, β,Σ)

(Jp)
P [pc] = jmp l (Θ, β,Σ,Π,Λ, P, l)→ (Θ′, β′,Σ′)

(Θ, β,Σ,Π,Λ, P, pc)→ (Θ′, β′,Σ′)

(Bt)

P [pc] = bz v, l split(Θ, β, v) = (Θ, ∅) push(Π, ∅, pc, l) = Π′

(Θ, β,Σ,Π′,Λ, P, l)→ (Θ′, β′,Σ′)

(Θ, β,Σ,Π,Λ, P, pc)→ (Θ′, β′,Σ′)

(Bf)

P [pc] = bz v, l
split(Θ, β, v) = (∅,Θ) push(Π, ∅, pc, l) = Π′ (Θ, β,Σ,Π′,Λ, P, pc + 1)→ (Θ′, β′,Σ′)

(Θ, β,Σ,Π,Λ, P, pc)→ (Θ′, β′,Σ′)

(Bd)

P [pc] = bz v, l split(Θ, β, v) = (Θ0,Θn)
pc′ = pc + 1 push(Π,Θn, pc, l) = Π′ (Θ0, β,Σ,Π

′,Λ, P, pc′)→ (Θ′, β′,Σ′)

(Θ, β,Σ,Π,Λ, P, pc)→ (Θ′, β′,Σ′)

(Ba)

P [pc] = jmp_mask Tid, l Tid ∈ Θ′

(Θ, β,Σ,Π, (Θ′,Π′) : Λ, P, l)→ (Θ′′, β′,Σ′)

(Θ, β,Σ,Π, (Θ′,Π′) : Λ, P, pc)→ (Θ′′, β′,Σ′)

(Bi)

P [pc] = jmp_mask Tid, l Tid ̸∈ Θ′

(Θ, β,Σ,Π, (Θ′,Π′) : Λ, P, pc + 1)→ (Θ′′, β′,Σ′)

(Θ, β,Σ,Π, (Θ′,Π′) : Λ, P, pc)→ (Θ′′, β′,Σ′)

(Ss)
P [pc] = sync Θn ̸= ∅ (Θn, β,Σ, (pc

′,Θ0, l, ∅) : Π,Λ, P, l)→ (Θ′, β′,Σ′)

(Θ, β,Σ, (pc′, ∅, l,Θn) : Π,Λ, P, pc)→ (Θ′, β′,Σ′)

(Si)
P [pc] = sync pc′ = pc + 1 (Θn, β,Σ, (_, ∅,_,Θ0) : Π,Λ, P, pc′)→ (Θ′, β′,Σ′)

(Θ0 ∪Θn, β,Σ,Π,Λ, P, pc)→ (Θ′, β′,Σ′)

(Eb)
P [pc] = everywhere (Θall, β,Σ, ∅, (Θ,Π) : Λ, P, pc + 1)→ (Θ′, β′,Σ′)

(Θ, β,Σ,Π,Λ, P, pc)→ (Θ′, β′,Σ′)

(Ee)
P [pc] = end_everywhere (Θ, β,Σ,Π,Λ, P, pc + 1)→ (Θ′, β′,Σ′)

(_, β,Σ, ∅, (Θ,Π) : Λ, P, pc)→ (Θ′, β′,Σ′)

(It)

P [pc] = ι ι ̸= Control Flow Instruction
(Θ, β,Σ,Θmask, ι)→ (β′,Σ′) pc′ = pc + 1 (Θ, β′,Σ′,Π, (Θmask,Π

′) : Λ, pc′)→ (Θ′, β′′,Σ′′)

(Θ, β,Σ,Π, (Θmask,Π
′) : Λ, P, pc)→ (Θ′, β′′,Σ′′)

Figure 3.4. Semantics of µ-SIMD's control flow instructions.

holds pairs (Θ,Π). Figure 3.4 shows that instructions everywhere (Rule Eb) push

elements onto Λ, and instructions end_everywhere (Rule Ee) pop it. The first ele-

ment in this tuple is the set of threads active immediately before the execution of an
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(Mm)
Σ(v) = c

Σ ⊢ v = c
(Mt) t, β ⊢ tid = t (Mv)

β[t] = σt σt(v) = c

t, β ⊢ v = c

(Tl)
(t, β,Σ,Θmask, ι)→ (σt,Σ

′) (Θ, β \ [β[t] 7→ σt],Σ
′,Θmask, ι)→ (β”,Σ”)

({t} ∪Θ, β,Σ,Θmask, ι)→ (β”,Σ”)

(Bp)
t, β ⊢ v2 = c2 t, β ⊢ v3 = c3 β[t] = σt c1 = c2 ⊕ c3

(t, β,Σ,_, v1 = v2 ⊕ v3)→ (σt \ [v1 7→ c1],Σ)

(Si)
t, β ⊢ v1 = c1 t, β ⊢ vlane = clane β[t] = σt clane ̸∈ Θmask

(t, β,Σ,Θmask, shfl(v1, vlane))→ (σt \ [v1 7→ _],Σ)

(Sv)

t, β ⊢ v1 = c1
t, β ⊢ vlane = clane β[t] = σt clane ∈ Θmask β[clane] = σlane σlane(v1) = c2

(t, β,Σ,Θmask, shfl(v1, vlane))→ (σt \ [v1 7→ c2],Σ)

(Ct)
β[t] = σt

(t, β,Σ,_, v = c)→ (σt \ [v 7→ c],Σ)

(Ld)
t, β ⊢ vx = cx β[t] = σt Σ ⊢ cx = c

(t, β,Σ,_, v =↓ vx)→ (σt \ [v 7→ c],Σ)

(As)
t, β ⊢ v′ = c β[t] = σt

(t, β,Σ,_, v = v′)→ (σt \ [v 7→ c],Σ)

(St)
t, β ⊢ vx = cx t, β ⊢ v = cβ[t] = σt

(t, β,Σ,_, ↑ vx = v)→ (σt,Σ \ [cx 7→ c])

Figure 3.5. Semantics of arithmetic, logic and data-related instructions. Rule
Tl loops over every thread t ∈ Θ, and for each one of them, executes instruction
ι. No assumption can be made on the order in which instructions run.

everywhere block. The second element is the divergence stack, also in the state before

the execution of the last everywhere block traversed by the program flow. In Rule

Eb (Fig. 3.4), Θall represents all the threads available in a warp. The thread stack lets

us represent an unbounded number of di�erent thread contexts; hence, programs might

contain an arbitrary number of nested everywhere blocks. After executing the in-

struction end_everywhere, threads previously inactive will go back into sleeping mode.

In other words, after end_everywhere, the pair (Θ,Π) at the top of Λ is popped, and

the diverging con�guration Π becomes part of the current state of threads. If necessary

to check if a thread is active due to an everywhere block, then µ-SIMD provides a

conditinal jmp_mask. The statement jmp_mask(tid, l) will divert execution to l if

tid is active in the mask at Λ's top. Example 3.2.1 illustrates the behavior of these

instructions.
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Instructions
v0 = ↓tid Address 0 1 2 3
v1 = (v0 == 0) Contents 0 1 1 0
bz v1, Done Address 4 5 6 7
v2 = 4 * (tid + 1) Contents 2 1 3 4
everywhere Address 8 9 10 11
v8 = 0 Contents 1 5 6 1

Loop jmp_mask v8, Call Address 12 13 14 15
jmp Next Contents 2 3 1 7

Call v3 = shfl(v2, v8) Address 16 17 18 19
v4 = v3 + tid Contents 1 3 4 0
v5 = ↓v4
v6 = v5 + 1
↑v4 = v6

Next v8 = v8 + 1 Address v0 v1 v2 v3
v7 = (v8 == 4) Contents * * * *
bz v7, Loop Address v4 v5 v6 v7
end_everywhere Contents * * * *
↑tid = 1 Address v8

Done sync Contents *

Shared Memory

Private Memory

Figure 3.6. Program written in µ-SIMD, plus its initial state.

Example 3.2.1 Figure 3.6 shows a program written in µ-SIMD. We assume |Θall| =
4. This program increments a 4 × 4 matrix; however, line i is incremented only if

Σ[tid] = 0. The figure shows the initial state of the shared (Σ) and local memory of

each thread (σ). The initial state of the variables in the local memory is immaterial

for this example. Figure 3.7 shows a trace of the execution of the program, given its

initial state. Only threads tid = 0 and tid = 3 will enter the everywhere section,

because Σ[0] = Σ[3] = 0. Nevertheless, all the four threads will execute the commands

within that block. Instruction v3 = shfl(v2, v8) lets each thread read into v3 the value

of v2 seen by thread v8.

3.3 High-Level Semantics

The µ-SIMD assembly gives us the primitive building blocks to implement CREV in

higher-level languages. As a proof of concept, we have implemented CREV onto ISPC,

using instructions of ISPC that are equivalent to those seen in µ-SIMD. By focusing

on an abstract notation, µ-SIMD, instead of on a concrete language, such as ISPC,

we claim generality: CREV can be implemented in any environment that supports our

notions of everywhere and shuffle. In this section we show how to implement the crev

modifier, which marks a function call as an r-function. For simplicity, our high-level

language provides only syntax to declare and invoke functions. A function declaration

consists of a name f , plus a list of formal parameters, e.g.: f(T p1, . . . , T pn). We
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Instructions Var 0 1 2 3 0 1 2 3
v0 = ↓tid v0 0 1 1 0 ✓ ✓ ✓ ✓
v1 = (v0 == 0) v1 1 0 0 1 ✓ ✓ ✓ ✓
bz v1, Done F T T F ✓ ✓ ✓ ✓
v2 = 4 * (tid + 1) v2 4 * * 16 ✓ • • ✓
everywhere ✓ • • ✓
v8 = 0 v8 0 0 0 0 ✓ ✓ ✓ ✓

Loop jmp_mask v8, Call T T T T ✓ ✓ ✓ ✓
jmp Next F F F F ✓ ✓ ✓ ✓

Call v3 = shfl(v2, v8) v3 4 4 4 4 ✓ ✓ ✓ ✓
v4 = v3 + tid v4 4 5 6 7 ✓ ✓ ✓ ✓
v5 = ↓v4 v5 2 1 3 4 ✓ ✓ ✓ ✓
v6 = v5 + 1 v6 3 2 4 5 ✓ ✓ ✓ ✓
↑v4 = v6 ✓ ✓ ✓ ✓

Next v8 = v8 + 1 v8 1 1 1 1 ✓ ✓ ✓ ✓
v7 = (v8 == 4) v7 0 0 0 0 ✓ ✓ ✓ ✓
bz v7, Loop T T T T ✓ ✓ ✓ ✓

Loop jmp_mask v8, Call F F F F ✓ ✓ ✓ ✓
jmp Next T T T T ✓ ✓ ✓ ✓

Next v8 = v8 + 1 v8 2 2 2 2 ✓ ✓ ✓ ✓
v7 = (v8 == 4) v7 0 0 0 0 ✓ ✓ ✓ ✓
bz v7, Loop T T T T ✓ ✓ ✓ ✓

Loop jmp_mask v8, Call F F F F ✓ ✓ ✓ ✓
jmp Next T T T T ✓ ✓ ✓ ✓

Next v8 = v8 + 1 v8 3 3 3 3 ✓ ✓ ✓ ✓
v7 = (v8 == 4) v7 0 0 0 0 ✓ ✓ ✓ ✓
bz v7, Loop T T T T ✓ ✓ ✓ ✓

Loop jmp_mask v8, Call T T T T ✓ ✓ ✓ ✓
jmp Next F F F F ✓ ✓ ✓ ✓

Call v3 = shfl(v2, v8) v3 16 16 16 16 ✓ ✓ ✓ ✓
v4 = v3 + tid v4 16 17 18 19 ✓ ✓ ✓ ✓
v5 = ↓v4 v5 1 3 4 0 ✓ ✓ ✓ ✓
v6 = v5 + 1 v6 2 4 5 1 ✓ ✓ ✓ ✓
↑v4 = v6 ✓ ✓ ✓ ✓

Next v8 = v8 + 1 v8 4 4 4 4 ✓ ✓ ✓ ✓
v7 = (v8 == 4) v7 1 1 1 1 ✓ ✓ ✓ ✓
bz v7, Loop F F F F ✓ ✓ ✓ ✓
end_everywhere ✓ • • ✓
↑tid = 1 ✓ • • ✓

Done sync ✓ ✓ ✓ ✓

Tid Tid

Figure 3.7. Execution trace of the program in Figure 3.6. Column Var shows
contents of last variable assigned. T indicates branch taken; F indicates otherwise.
The symbol • marks inactive threads. For the syntax of instructions, we refer the
reader to Fig. 3.1; for their semantics, Figs. 3.4 and 3.5.

let T denote a type modifier, which can be either uniform or varying. Recall from

Chapter 2.4, that a uniform variable holds a single value, shared across all threads

from the warp, whereas a varying variable holds a vector of values, one per thread. We

have borrowed such notation from ISPC. Other programming languages have different

ways to express these modifiers. For instance, in CUDA we have shared and global

allocation filling the role of ISPC's uniform variables.

Figure 3.8 shows the code that we produce for a r-function call f(a1, . . . , an),
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1 everywhere ; ; begin CREV
2 i = 0 ; ;Loop counter
3 loop : jmp_mask i, call
4 jmp next ; ; Skip idle threads
5 call : extract(tn, pn, an, i) ; ;Algorithm 5
6 ``call� f ; ; function call
7 next : i = i+ 1
8 bnz(i ̸= W ) loop
9 end_everywhere ; ; end CREV

Figure 3.8. Low-level code produced to call r-function f .

Algorithm 5: Data distribution

1 Function declaration: f(p1, . . . , pn);
2 Function call: f(t1 a1, . . . , tn an);
3 Function extract(tn, pn, an, i)
4 for k ∈ 1 . . . n do
5 if tk == uniform then
6 pk = ak;

7 if tk == varying then
8 shfl(ak, i);

where each ai, 1 ≤ i ≤ n is an actual argument of f . Such an r-function call will

trigger up to |Θ| executions of f , one for each active thread t ∈ Θ. The test in lines

3 or 8 in Figure 3.8 are used to single out the function invocation performed by each

thread. A different call will happen due to each handlet label. In another dimension of

parallelism, each function call will be executed by Θall threads, due to the everywhere

block at lines 10 and 13. Thus, we might have up to Θ2
all computations.

Algorithm 5 generates code that implements data distribution. Data distribution

determines how actual parameters are bound to formal parameters, given that actual

parameters can have one of two types: uniform or varying. By construction, r-func-

tions have only uniform parameters. The loop in line 4 will go over all the function

arguments, comparing formal (p) and actual (a) parameters. We let the type of ai be

ti. If an actual argument is uniform, then parameter passing is trivially implemented

as a copy between variables. Line 5 of Algorithm 5 generates code under such circum-

stance. If an actual parameter has type varying, then we generate code to perform a

broadcast, as seen in line 7 of Algorithm 5.
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main

T0 T1 T2 T3

foo(a = 0) a = 1 a = 2 a = 3

T0 T1 T2 T3

T0 T1 T2 T3

T0 T1 T2 T3

main() {
    var int a = Tid;
    crev foo(a);
}

foo(uni int a) {
    var int b = a+Tid;
    crev bar(b)
}

bar(uni int b) {
    uni int c = b+1;
    crev baz(c)
}

baz(uni int c) {
    var int d = c+1;
}

• • •

• • •

• • •

bar(b = 0)  b = 1 b = 2 b = 3

baz(c = 1)  c = 1  c = 1 c = 1

d = 2  d = 2 d = 2  d = 2

Figure 3.9. A program written in ISPC, and the tree showing function calls
for T0.

Example 3.3.1 The program in Figure 3.9 shows three functions called via crev.

We are assuming an architecture with four SIMD lanes, i.e., Θall = {T0, T1, T2, T3}.
When foo is invoked, the value of a, main's local variable, is broadcasted to foo's formal

parameter. Thus, T0 sees foo(0), T1 sees foo(1), etc. When T0 calls bar from foo, the

same behavior is observed. However, when T0 calls baz from bar, all the four threads

activated into this context see baz(2), because baz receives a uniform argument. The

fact that baz's local variable d is marked as varying is immaterial in this example, as

this variable is initialized with uniform values.

3.4 Properties of CREV

The semantics of CREV, given by µ-SIMD's primitive building blocks, and the trans-

lator seen in Section 3.3, lets us establish a few properties that are true about this

programming abstraction. In this section we go over a few of these properties. They

are valid under the assumption that programs are well-formed. We de�ne well-formed

programs below:

Definition 3.4.1 (Well-Formed Program) A µ-SIMD program is well-formed if

any occurrence of an everywhere instruction at label l1 is matched by an occurrence of

an end_everywhere instruction at label l2, and these two labels are control equivalent.
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Definition 3.4.1 borrows the concept of control equivalence from Ferrante et

al. [Ferrante et al., 1987]. Two points, l1 and l2, in a program's control flow graph

are said to be control equivalent if l1 dominates l2, and l2 post-dominates l1. We say

that l1 dominates l2 if, and only if, any path from the root of the CFG to l2 must cross

l1. Dually, l2 post-dominates l1 if, and only if, any path from l1 to the end of the CFG

must cross l2. Our translator produces well-formed programs, as long as the program

flow cannot leave a function through points other than its return address.

Theorem 3.4.2 (Well-Formed Translation) The translator of Figure 3.8 pro-

duces well-formed programs.

Proof: This result follows trivially from the fact that an everywhere block

surrounds only Algorithm 5 and the r-function. Well-formedness holds as long as

none of these routines let the program flow escape the enclosing end_everywhere

instruction. This implies that the r-function cannot throw exceptions, for in-

stance.

Composability. CREV allows the nesting of everywhere blocks. Composition

happens due to nested function calls. The thread stack Λ ensures that the last invoked

r-function will be the first to remove pending computation. In what follows, we visit

three consequences of this property.

Composition is multiplicative. An crev call will put all the warp threads in active

mode. By coupling this observation with composibility, we have that, in the absence

of divergences, a sequence of n nested crev calls will create |Θall|N tasks. Notice that

CREV produces new tasks, but not new threads: we still have only |Θall| threads to
solve these tasks.

Commutativity. The translator of Figure 3.8 calls an r-function in a lexicographic

order defined by thread identifiers. However, µ-SIMD's primitives do not impose any

order on the threads pushed onto Λ. Therefore, the multiple SIMD calls of an r-function

can be handled in any order.

Synchronization parity. There is no distinction between the top level of parallelism

and the inner level of parallelism with regards to the synchronization primitive. In other

words, divergences are handled transparently by the synchronization stack Π, and,

from a synchronization standpoint, it is not possible to tell if execution exists within

the context of an r-function or not. To ensure this property, µ-SIMD's everywhere

instruction pushes onto Λ, together with the set of active threads, the divergent state

Π.
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Thread Stack

T0: foo
T1: foo
T2: foo
T3: foo
T0: foo; T0: bar
T0: foo; T1: bar
T0: foo; T2: bar
T0: foo; T3: bar
T0: foo; T0: bar; T0: baz
T0: foo; T0: bar; T1: baz
T0: foo; T0: bar; T2: baz
T0: foo; T0: bar; T3: baz

Activation Stack

main() {
    var int a = Tid;
    crev foo(a);
}
foo(uni int a) {
    var int b = a+Tid;
    crev bar(b)
}
bar(uni int b) {
    uni int c = b+1;
    crev baz(c)
}
baz(uni int c) {
    var int d = c+1;
}

T0 T1 T2 T3

0 1 2 3
main:

a

foo:
b

bar:
c

baz:
d

Program

0 1 2 3

2 2 2 2

1

Figure 3.10. Example of three nested calls to r-functions. Calls currently in
the activation stack are highlighted.

The interplay between CREV and nested function calls. The implementation

of CREV does not interfere with the implementation of function calls. Programming

languages that support recursion use a structure known as activation stack to manage

function calls. Entries in the activation stack are called activation records, and they

store functions' local variables, return address, arguments, etc. Upon invocation, the

activation record of a function is pushed onto the activation stack. For each thread

pushed onto the thread stack there will exist one activation record on the activation

stack. The multiplicative nature of CREV also implies on a multiplication of activation

records. Therefore, n nested r-calls will generate |Θall|n activation records; however,

the maximum depth of the activation stack is still n+ 1: activation records owned by

different threads will not exist simultaneously.

Example 3.4.3 Figure 3.10 reuse the program from Example 3.3.1 to illustrate these

points. Again, we assume |Θall| = 4. Thus, three non-divergent nested r-calls will

create 4 × 4 × 4 × 4 = 256 tasks. At any time, the thread stack will contain at most

4+4+4+4 = 16 tasks waiting for execution. The activation stack will contain, at any

given point, at most 4 activation records, corresponding to the activation of functions

main, foo, bar and baz.
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3.5 Discussion

This chapter has presented the semantics of CREV. The main benefit of having a

formal semantics is the possibility to test different approaches when design the set of

primitive instructions that constitute CREV. From these primitives, we can then design

high-level constructs that give developers the opportunity to user our new abstraction.

This observation is so true that we have implemented the semantics of CREV in

Prolog. We have used this implementation extensively, before producing the actual

x86 implementation of CREV. Thus, our semantics is executable, and extensible, as

new constructs typical of the SIMD execution model can be added to it. In the next

chapter we show how this semantics can be materialized into a concrete and robust

implementation of function re-vectorization in an Intel architecture.





Chapter 4

Implementation

We now present our CREV implementation on top of Intel's SPMD compiler, ISPC.

To truly grasp how the idiom works, and thus understand the expected results, it is

desireable to not only be conversant with the ISPC compiler and language, but to have

in mind the SIMD and SIMT processing models. Before diving into the technicality

of our code, let us first get acquainted with ISPC in a higher level. Most of the

information here exposed on the ISPC language and compiler we extracted from ISPC's

documentation [Intel, 2016].

4.1 Making friends with ISPC

Intel's SPMD Program Compiler, ISPC for short, is an SPMD compiler for CPU ap-

plications. In SPMD programs, the abstraction is that of processing a single piece of

data at a time, while the underlying hardware and runtime system hand over the same

instruction to multiple processing nodes, each using as input its own data. The hard-

ware handles such operations with as many parallel instances as there are resources

available. The ISPC compiler is open source, with a BSD license. It uses the LLVM

Compiler Infrastructure for back-end code generation and optimization. The compiler

supports Windows, Mac, and Linux, with both x86 and x86-64 targets.

ISPC is a variant of the C programming languange and its companion compiler.

The languange is meant to deliver good performance for programmers who want to

run SPMD programs on CPUs. It provides a thin abstraction layer between the pro-

grammer and the hardware, in such a way that it is still possible to trace back, in the

generated assembly code, the behaviour described in the source code of ISPC programs.

ISPC harnesses the computational power of SIMD vector units without harming the

29
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programmibilty, i.e., it spares programmers the burden of low-productive code writing,

as it abstracts away low-level SIMD intrinsics.

4.1.1 Parallel Execution Model

In CUDA terminology, a warp is a group of threads set to execute a kernel. In ISPC,

a warp is referred to as gang, and threads as program instances. For consistency

only, we stick to CUDA's nomenclature. As ISPC is designed to support CPU SPMD

programmers, a warp, or gang, is actually an SIMD vector unit, each lane being a

thread, or program instance.

Code organization. An ISPC code is usually structured in two files: the C/C++

source accomodating the main function, and the ISPC source itself, containing the

SPMD functions. As an abuse of terminology, let us refer to these functions as kernels,

as they hold the core of ISPC parallelism and are executed on the target device � i.e.,

on the CPU vector units. To further clarify the composition of such kernels, bear in

mind they are the one functions lowered to the vector-processing instruction set of the

CPU.

The first source compiled is the ISPC one. The compiler generates a C header

file, creating an interface between C and ISPC. Within the C source, programmers

should include the header file generated, and make use of the kernels written on the

ISPC source � notice this header also comprises types and structures created along with

kernels. In addition to the header, the kernels are compiled to the target architectures

selected on the command line. Then, the C source is compiled and linked with the

programmer's brand-new SPMD library.

Code writing. ISPC programs are indeed very similar to C programs in terms of

syntax. For example, the code from Figure 4.1.1 is valid both in C language and when

compiled using the ISPC compiler. However, the semantics of the program changes

considerably: unlike the result obtained in C � the floating number (a+ b/2) �, ISPC

holds multiple values for a and b, one per each thread in a warp, thus generating

multiple return values. From the parallel programming realm, ISPC ports the concepts

of global and private values: variables in ISPC are either uniform, i.e., global/scalar

values, uniform across all threads; or varying, i.e., each thread holds a private value,

which may vary in comparison to other threads.

If we were to use a C compiler, the code generated for func would have a regu-

lar non-parallel semantic. Using the ISPC compiler, on the other hand, the assembly
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f l o a t func ( f l o a t a , f l o a t b) {
re turn a + b / 2 . ;

}
f l o a t func_divergent ( f l o a t a , f l o a t b) {

i f ( programIndex % 2 == 0) return a + b / 2 . ;
r e turn 0 ;

}

Figure 4.1. func is a regular division function, as present in ISPC's documen-
tation. The similarities between C and ISPC code are notable: this function has
valid syntax in both language, but indees carries a di�erent meaning. In C, such
function is a regular division of float variables a and b, whereas such variables are
actually vectors of values in ISPC, each value associated with a thread. In the
latter, the result is a vector of floats � generally with unique values per thread.
func_divergent wraps the main operation from func with a divergent branch.

produced comprises low-level instructions that exploits the vector processing capabil-

ities of the target CPU. The semantics of the program changes considerably: instead

of having two scalar values and a single control flow, we now encounter one unique

control flow per thread, and each thread has its own version of variables a and b, i.e.,

such variables are now varying within the warp. Therefore, the ISPC kernel result in

a vector of floats � generally with unique values per program instance.

The multiplicity of variables is statically defined by the length of the SIMD

vector of processing units � a warp. The number of threads within a warp usually

ranges from 2 to 8 threads, being thus quite small w.r.t. warps of often 32 threads,

found in GPUs. Akin to SPMD GPU programs, ISPC's runtime system also grants

each thread within a warp its own control flow: instructions are fetched and received

in lock-step, and eventual divergence are handled by deactivating divergent threads.

Extending our initial example with a conditional branch allows us to perceive this

SPMD characteristic in ISPC. Still in Figure 4.1.1, we have function func_divergent,

which wraps the division with a divergent branch. Whenever a thread of even index

enter reach the branch, it will compute the division and return the result. Since the

execution is in lock-step, threads with odd indices is put on hold at each instruction

executed by active threads. Upon leaving the branch, the remaining threads return 0.

Notice that, due to the keyword programIndex, function func_divergent may only

be compiled by the ISPC compiler. programIndex is equivalent to CUDA's threadIdx

in the sense it allows programmers to distinct threads by their indices.

Explicit parallelism. ISPC defines default qualifiers for variables: in plain C, function

func (Figure 4.1.1) would have scalar variables a and b, and a single result would be
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returned. In ISPC code, the declarations of a and b default to varying float a

and varying float b, thus rendering such vars, by default, vectorized values. To

explicitly inform the compiler the desired behavior, or even if to further document the

code for future usage, programmers should add the qualifiers uniform or varying. It is

upon having parallel data regular functions will issue their overloaded parallel versions

and vice-versa.

An interesting point concerning uniform variables is the assignment policy. As

stated in the quote below, extracted from the ISPC documentation, uniform variables

cannot receive data from varying variables. For instance, if a warp holds an integer

global acrosss all threads within the warp, a single thread is not able to assign this

integer a varying value, private to this thread's context. It may seem counter-intuitive

to attempt doing such an operation, but our implementation depends heavily on an

equivalent syntax, as discussed ahead in Section 4.2.

uniform variables can be modified as the program executes, but only in

ways that preserve the property that they have a single value for the entire

gang. Thus, it's legal to add two uniform variables together and assign

the result to a uniform variable, but assigning a non-uniform (i.e., varying)

value to a uniform variable is a compile-time error.

� ISPC Documentation, "uniform" and "varying" Qualifiers.

ISPC also features the keywords launch and sync, for explicit asynchronous par-

allel processing. launch issues asynchronous parallel tasks and absracts away the many

possible implementations of underlying engines for simulating asynchronous processing,

which includes:

• Microsoft's Concurrency Runtime

• Apple's Grand Central Dispatch

• bare pthreads

• Cilk Plus

• TBB

• OpenMP

The task system implementation can be selected at compile time, by de�ning

the appropriate preprocessor symbol on the command line. Not all combinations of

platform and task system are meaningful. If no task system is requested, a reasonable

default is selected for the host platform. The keyword sync, similar to a PTHREADS
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join, puts the execution on hold until all threads have converged to its launch call

site. As the task systems are available along with the ISPC open source code, the pro-

grammer may extend the set of runtime engines, developing her/his own task system.

Delineating the bene�ts from using ISPC's task system, we now show a wrap-

ping-up example that uses both ISPC's SIMD capabilities and task system. The ex-

ample consists of a generic matrix-based procedure: simply put, we create a vector

of varying values, private to each thread; such values are zero-initialized, then, asyn-

chronously, each entry of the vector (varying values in data[i]) receives its corre-

sponding thread index multiplied by -1, being the last operation subject to whether

the index is an even number.

Each line of the matrix is processed asynchronously, in parallel, by as many

threads as the system supports; and then, each thread uses its associated SIMD resouces

to operate, in lock-step, on the input line of varying values (function f). In this

example, the matrix has a single parameterizable dimension: we can set the length

of the vector within function proc_matrix, but the number of values each position

data[i] holds is always defined by the length of the warp. In the next section we

show, amongst other examples, how to exploit the SIMD capabilities without retaining

oneself to a matrix structure.

4.1.2 ISPC Language

The ISPC language is an extended version of the C programming language, and pro-

vides a number of new features that make it easy to write high-performance SPMD

programs for the CPU. Albeit there is but a handful of syntactic di�erences between

ISPC and C code, the former conveys a fundamentally parallel execution model, and

thereby C code cannot simply be compiled by the ISCP compiler to correctly run in

parallel. However, starting with working C code and porting it to ISPC is an e�cient

way to quickly write ISPC programs [Intel, 2016].

We now introduce small examples of programs written in ISPC, as to further

acquaint the reader with the language. Details on the syntax and semantics of the

ISPC language can and should be looked up online, at ISPC's documentation web-

page [Intel, 2016]. We here focus on elements we believe should grant the reader base

knowledge for catching up with small ISPC applications and, indeed, appreciating the

motivation for our CREV idiom in practice.

Hello World. We believe the examples from Figures 4.1.1 and 4.1.1 are very good

starters, but to review the very basics of ISPC and make sure no reader may lag
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// SIMD kerne l : f unc t i on executed in lock−s tep
task void f ( vary ing i n t& data ) {

i f ( programIndex % 2 == 0) data = data + programIndex ;
e l s e data = data − programIndex ;

}
// SPMD func t i on with invok ing ISPC ' s task system
void f_matrix ( vary ing i n t data [ ] , uniform in t l ength ) {

f o r ( uniform in t i = 0 ; i < length ; ++i ) launch f ( data [ i ] ) ;
sync ;

}
// Matrix procedure
export void proc_matrix ( ) {

varying i n t data [ 1 0 ] ;
uniform in t l ength = 10 ;

f o r ( uniform in t i = 0 ; i < length ; ++i ) data [ i ] = 0 ;
f_matrix ( data , l ength ) ;

f o r ( uniform in t i = 0 ; i < length ; ++i ) {
p r i n t (" data [% ] : %\n" , i , data [ i ] ) ;

}

}
// Output
$ . / matrix−launch
data [ 0 ] : [0 ,−1 ,2 ,−3 ,4 ,−5 ,6 ,−7]
data [ 1 ] : [0 ,−1 ,2 ,−3 ,4 ,−5 ,6 ,−7]
. . .
data [ 9 ] : [0 ,−1 ,2 ,−3 ,4 ,−5 ,6 ,−7]

Figure 4.2. Sample matrix-based procedure in ISPC. proc_matrix creates a
vector of varying values, which are zero-initialized and then, asynchronously,
receive values depending on the thread it is subject to. In the upcoming section,
we show how to process a matrix with two configurable dimensions � unlike this
example, in which one dimension is parameterized and the other is given by the
length of the processing warp (SIMD vector). The last lines show the output of
running the program.

behind � which is important! �, we include this hello world example. Notice, though,

the lessons here left are more technical, in the sense they broaden the familiarity with

the ISPC syntax � whereas forecoming sample applications focus on exercising parallel

concepts of the language.

As discussed before, ISPC code is organized in two main files: the main C/C++

file, which includes the header file with ISPC function declarations; and the ISPC

implementation file, in which the developer shall de�ne and export whatever func-

tions should compose the ISPC interface with the C/C++ main. To access exported

functions in the host language, use either C++ namespace iscp::*, or a separating
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// C++ f i l e : main . cpp
# inc lude " he l l owor ld_i spc . h"
i n t main ( void ) {

i s p c : : he l lo_world ( ) ;
r e turn 0 ;

}
// ISPC f i l e : h e l l owor ld . i s p c
export void hel lo_world ( ) {

p r i n t ("Warp length : %\n" , programCount ) ;
p r i n t (" Active threads ( a l l ) : %\n" , programIndex ) ;
i f ( programIndex % 2 == 0) {

p r i n t (" Active threads ( even i d s ) : %\n" , programIndex ) ;
} e l s e {

p r i n t (" Active threads ( odd id s ) : %\n" , programIndex ) ;
}

}
// Output
$ . / hel lo_world
Warp length : 8
Active threads ( a l l ) : [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ]
Act ive threads ( even i d s ) : [ 0 , ( ( 1 ) ) , 2 , ( ( 3 ) ) , 4 , ( ( 5 ) ) , 6 , ( ( 7 ) ) ]
Act ive threads ( odd id s ) : [ ( ( 0 ) ) , 1 , ( ( 2 ) ) , 3 , ( ( 4 ) ) , 5 , ( ( 6 ) ) , 7 ]

Figure 4.3. This example shows a very simple ISPC hello world program. We
try to cover the notion of a running warp, possible divergences, and some of the
basic keywords from ISPC.

underscore, as in ispc_*.

The ISPC compiler generates both an assembly and a header file. The header

consists of composite types created in the ISPC source (special structs and typedefs),

along with methods tagged with the export keyword. Therefore, apart from type dec-

larations, any method expected to be available at the C/C++ source should be marked

as export. The language also provides a print function with special implementation

for dumping varying values. The expression string has a formatting similar to that

from C's printf, except one needs only to add % as placeholders for variables � no

type distinction is required.

ISPC has two reserved keywords that gives the programmer information about

the warp size (programCount) and the index of each thread (programIndex). The first

variable is a regular integer, and is output as such; whereas the second is a varying

integer, with one value per thread in the warp (the index of each thread). When within

a divergent region, inactive threads are marked by its index surrounded by a double

pair of parantheses, like the output presented in our HelloWorld example.
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Varying-Uniform data access. We also take the time to show, in the example from

Figure 4.4, a syntatically invalid line, implementing the impossible assignment of a

varying value to a uniform variable. This dummy procedure shows a very simple

ISPC series of assignments that depend on whether the variable belong to the global

address space or is local/private to each thread. The single invalid combination of

variable attribution is that of assigning a varying value to a uniform var: the compiler

may not know from which thread to extract the value and therefore cannot validate

the syntax. This notion is revised and receives a new meaning when dealing with our

CREV idiom extension, as will be discussed in Section 4.2.

export void var_uni ( ) {
uniform in t a = programCount ; // r e gu l a r g loba l−to−g l oba l ass ignment
uniform in t b = programIndex ; // which p r i va t e va lue should we keep ?
varying i n t c = programCount ; // broadcast programCount
varying i n t d = programIndex ; // r e gu l a r pr ivate−to−pr i va t e ass ignment

}

Figure 4.4. This dummy procedure shows a very simple ISPC series of assign-
ments that depend on whether the variable belong to the global address space or
is local/private to each thread. The single invalid combination of variable attri-
bution is that of assigning a varying value to a uniform var: the compiler may
not know from which thread to extract the value and therefore cannot validate
the syntax.

Renabling threads and Task parallelism. We know from our discussion in Section 6

that meeting up with the conditions that produce a situation that demands re-enabling

threads within a divergent SIMT context is not a mere programming �ourish. Re-en-

abling threads may become confusing depending on the organization of the code and

on the level of nesting at which the divergence may be located. Such di�culty, along

with the complexity of keeping track of the control flow still at a code level, character-

izes warp-synchronous programming. Along with the source for our CREV-extended

version of ISPC, the user shall find quite a few examples of warp-synchronous code.

As hint of the level of detail required by such programming paradigm, we add to the

appendix of this document the implementation of the intrinsically warp-synchronous

algorithm BitonicSort A.1.

In Section 5 we present some examples of task parallelism, which is ISPC's take at

dynamic parallelism. With special attention to the Mergesort and Quicksort algorithms

(Section 5.5) we show how CREV may be an efficient surrogate to dynamic parallelism.

In a nutshell, task parallelism in ISPC is materialized via the keyword launch, and its
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usage � unexpected to be otherwise � is akin in syntax to that of crev and CUDA's

dynamic parallelism. Overall, we hope the reader was able to follow the examples

presented in this section. Any questions on specific syntatic constructs should be

clarified by ISPC's documentation [Intel, 2016] available online.

4.1.3 ISPC Compiler Architecture

The ISPC compiler also falls into the common compiler organization, presenting a

front-end to deal with its high-level C-based ISPC language; a middle-end for applying

code optimizations, which uses mostly LLVM's intermediate representation; and the

back-end, also based on the LLVM infrastructure, that further optimizes and lowers

intermidiate representation to the selected target architecture. For the initial phase,

ISPC uses Bison, a YACC-compatible parser generator; and Flex, a fast lexical analyzer

generator. We believe that fine-grain info on these tools, including on the LLVM

infrastructure, are out of the scope of this work, and thus will not be covered. There

is, though, plenty of reference on these tools online, which may be found at:

• Flex, fast lexical analyzer generator (>= 2.5)

• Bison, YACC-compatible parser generator (>= 2.4)

• LLVM Compiler Infrastructure (3.7.1)

Although we do not get into the minute details of the tools that compose ISPC,

we find it relevant to highlight where in lies each of the sections of the code we used to

implement our idiom. This consists mostly of the organization of the compiler itself:

we have added an extension to the compiler, which is accessible, implementation-wise,

via a keyword, crev. To implement such idiom on top of ISPC, we had to modify: the

lexer, as to identify our keyword crev within the code; the parser, in order to validate

the keyword and verify the syntax of a composite function call (crev <function-call>);

ISPC's type system, as to overlook formerly-invalid varying to uniform parameter

passing, which become valid in the context of a crev function invocation; and, of

course, the execution flow of crev itself, implemented thoroughly on top of LLVM �

ISPC's intermediate representation.

The files we have imbued with crev interpreting and processing lines are listed

below. In the next chapter, we show how we have implemented CREV in a lower level,

closer to the actual source code. As a gentle reminder, our code is available online1 for

whoever may be interested in � and can afford � spending some time to check out what

1ISPC-CREV source code http://cuda.dcc.ufmg.br/swan/src/crev-ispc.tar.gz.

https://github.com/westes/flex
https://www.gnu.org/software/bison/
http://llvm.org/
http://cuda.dcc.ufmg.br/swan/src/crev-ispc.tar.gz


38 Chapter 4. Implementation

• lex.ll: defines the lexemes and lexical grammar for the ISPC language. We
have included our crev token into ISPC accordingly.

• parse.yy: defines the syntatic grammar for the ISPC language. We have also
incorporated the necessary rules to ISPC grammar in order to validate crev
function calls.

• type.cpp: defines ISPC's type system, i.e., the set of types the language supports,
as well as the possible coercions in between those types. We have gone through
the entire type system, analyzing the cases in which crev would validate coercions
from varying to uniform variable � utterly prohibited in plain ISPC.

• ctx.h: declares structures for function context emission. We have had but to
add a flag to noitfy other structures in the code they were dealing with a crev
function call.

• expr.h: declares types and structures required for processing ISPC expressions.
We have had to update a few function headers, just enough to pass around a flag
stating whether the expression under analysis was a crev call.

• expr.cpp: defines functions to process the varios expressions allowed in ISPC.
We have extended the set of expressions to bestow upon ISPC a fully-working
crev implementation.

Figure 4.5. List of files modified in ISPC to implement our CREV idiom.

exactly has been done. Still, we hope the description is sufficiently self-contained, so

anyone is able to understand our approach.

4.2 Implementation of CREV on ISPC

We now give a brief, yet lower-level view of our CREV implementation on Intel's SPMD

Program Compiler. Recall from the list of files present in Figure 4.1.3 file expr.cpp,

which we have extended as to define the behavior of a crev expression. We shall

focus our discussion on this particular file. Afterwards, we present a few constructive

examples of our idiom in practice.

4.2.1 IPSC-CREV

We chose Intel's SPMD Program Compiler for it is open source, but were quite lucky

to find it makes extensive use of the LLVM infrastructure, a compilation framework

with a large active community and well documented code. Although we have applied
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Algorithm 6: CREV(Function F, Function target, VarList args)

1 currentMask ← stores state of threads before CREV;

2 for each index i := 0 to warpSize do

3 insert test in F to check whether thread i is active;

/* Re-building arguments for thread i */

4 argsi ← [];
5 for each arg in args do
6 if arg is varying but parameter is uniform then
7 append value from extract(arg, i) to argsi;
8 else
9 append arg to argsi;

/* Enabling all threads and executing target function */

10 everywhere;
11 runs target function with argi arguments;

/* Resetting original thread activity */

12 set warp state back to currentMask;
13 insert branch in F to jump to next thread or to final basic block;

a handful of changes using domain specific languages (e.g.: Bison and Flex), most of

the code for implementing crev has been written in plain C++, using library functions

from LLVM. We now take a closer look at the main procedure in our solution, which

defines the behavior of a crev expression.

As a side-note, during the implementation of our solution on top of ISPC we found

Function Call Re-Vectorization to be more suitable a name to what we were trying

to achieve, in detriment to its predecessor, Lightweight Dynamic Parallelism. As the

code was mostly implemented, we kept the old naming in the actual ISPC-CREV code.

Here, for consistency with the remaining of the work, we update whatever occurrence

of the old acronym ldp to crev.

Algorithm 6 is a code generation procedure. That means there is no actual execu-

tion of the program going on, the algorithm simply describes how the code is generated.

At the moment a crev expression is encountered by ISPC/LLVM code generation, it

has been asserted the presence of a syntatically correct and type-sound expression: the

expression and associated operands are checked for syntax (crev <function-call>) and

for type equivalence. Type equivalence here means that each operand must be either

the same as, or coercible to their associated formal parameters.

We begin by assigning to variable currentMask the state the running warp (which
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threads are active and inactive). Right after, for every thread of the warp, we create a

basic block that holds a test: if the corresponding thread i is active, the target function

will be invoked using arguments argsi specific for that thread; otherwise, the execution

shall flow right into the subsequent basic block, which holds the test for thread i+ 1.

For simplicity, we do not dwell into the basic block chaining process.

In case the target function has to be invoked for thread i, we first extract the

values from varying variables whose formal parameters are uniform. Recall from Ex-

ample 4.1.2 (Varying-Uniform data access) that assginment from varying to uniform

is strictly prohibited in plain ISPC. Our idiom allows invoking, from within divergent

regions, SIMD functions that require all threads to be active. If the programmer wants

to exploit the vector processing capabilities of their CPU, intuitively, there must be

plenty of data associated to the threads that are active within the region of divergence.

Therefore, it is imperative to provide developers with such coercion.

The extraction is quite straightforward: whenever the coercion must take place,

we issue an extra instruction, namely extract, responsible for loading the i-th value

from a vectorized variable into a uniform one. Following the extraction and re-building

of the original list of arguments, we finally invoke the target function using argsi as

argument list. Before invoking the function, though, we must make sure all threads will

be enabled. To this end, we also emit the instruction everywhere, that temporarily

enables all threads within the warp. The remaining of our code emission procedure

consists in resetting the warp to its original state and chaining the current basic block

with subsequent ones (last two lines from Algorithm 6).

4.2.2 Active Load Balancing

Another bene�t from our construct is its clear-cut syntax-friendly load balancing func-

tionality. Suppose you are about to implement a depth-�rst search (DFS) in an SIMD

language. We know each thread to have it own data at the beginning of the traversal,

and we also know the execution to be in a lock-step fashion: whenever a thread runs

out of data to process, it will be held inactive, anxiously lingering for the remaining

threads to �nish their workload. Now imagine the outcome of a heavily unbalanced

initial data distribution � say a straight-line graph, rooted at a single thread.

If the graph was not that unbalanced, the developer should be able to always

re-distribute the workload, in a way to actively maintain threads busy. This is exactly

the approach depicted in Figure 4.2.2: the last conditional of function dfs creates a

divergent region, which does not interfere in having all threads active under recursive

calls to dfs, due to our idiom crev. In the case of a straight-line graph, not even our
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// Traverses the matrix in a depth− f i r s t f a sh i on
void d f s ( uniform s t r u c t Graph& graph , uniform in t root , f l o a t ∗ uniform f ) {

// Se t t i ng cur rent node as v i s i t e d
i f ( graph . node [ root ] . v i s i t e d ) re turn ;
graph . node [ root ] . v i s i t e d = true ;

// Performing some computation ( j u s t a d i v i s i on , as example )
f [ root ] = graph . node [ root ] . l ength / ( f l o a t ) graph . num_nodes ;

// P a r a l l e l t r a v e r s i n g
fo r each ( i = 0 . . . graph . node [ root ] . l ength ) {

i n t ch i l d = graph . node [ root ] . edge [ i ] . node ;
i f ( ! graph . node [ c h i l d ] . v i s i t e d ) crev d f s ( graph , ch i ld , f ) ;

}

}
// I n t e r f a c e func t i on with C/C++ main func t i on
export void graph_dfs ( uniform s t r u c t Graph& graph , uniform in t root ,

f l o a t ∗ uniform f ) {
fo r each ( i = 0 . . . graph . num_nodes ) graph . node [ i ] . v i s i t e d = f a l s e ;
d f s ( graph , root , f ) ;

}

Figure 4.6. ISPC-CREV implementation of a Depth-First Search. We highlight
the contribution of crev to achieving an active load-balancing policy during the
traversal: whenever function dfs is called, the data within the varying variable
child is distributed in independent calls to crev's target function dfs. This
allows having all threads active within inner calls of dfs, even within the divergent
region created by the last conditional of that function.

approach would be able to make amends but, intuitively, we should be able to tackle

quite a few cases of moderately unbalanced graphs.

4.3 Discussion

This chapter has presented the implementation of CREV in ISPC, the Intel SPMD

Program Compiler. ISPC is an industrial-strength product, that gave us all the in-

fra-structure necessary to concretize the abstract semantics seen in the last chapter

into an actual implementation. One important question that arises, at this point, is:

``Why not to implement CREV into an actual GPU?" As we have seen in the last

chapter, the implementation of CREV requires the ability to wake up threads that,

due to divergences, are in a dormant state. ISPC gives us this ability, inasmuch as the

mask of active threads are visible to the developers of this compiler. Unfortunately,

this is not the case in current Nvidia machines. Thus, we opted to demonstrate the
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e�ectiveness of our ideas in vector instructions. Nevertheless, as we shall see in the

next chapter, this implementation is solid enough to gives us the opportunity to design

and test high-performant code. This is a story that we shall tell in the next chapter.



Chapter 5

Experimental Evaluation

In order to evaluate the ideas presented in this work, we have implemented crev onto

ISPC. Because crev is a novel concept within ISPC, this compilation framework does

not provide benchmarks to evaluate our contribution. Thus, we have re-implemented

seven classic algorithms using the new keyword. We compare these algorithms against

parallel versions written in ISPC. Our seven benchmarks are: (i) String Matching;

(ii) Depth-First Search; (iii) Leader Election; (iv) Book Filter; (v) Bellman-Ford; (vi)

Merge-Sort; and (vii) Quick-Sort.

How to read our results. Results are measured in millions of execution cycles,

as reported by ISPC testing environment. All the numbers reported are the average

of five, out of six samples. We have removed the first to avoid cold-start discrepan-

cies. The reader must bear three observations in mind when analyzing our results: (i)

speedups are due to the better load distribution that CREV accomplishes by transport-

ing work to inactive threads; (ii) slowdowns are due to the boilerplate code necessary

to serialize threads, before invoking r-functions; (iii) we are comparing against an in-

dustrial-strength compiler; hence, speedups tend to be modest.

Experimental Setup. We have implemented CREV onto ISPC v 1.9.1, and have

used it to target a 6-core 2.00 GHz Intel Xeon E5-2620 CPU with 8-wide AVX vector

units. Henceforth, we shall be using warps that contain eight threads, e.g., |Θall| = 8.

5.1 String Matching

String matching is the problem of �nding a pattern P within a text T . Algorithm 7

shows the CREV-based implementation of string matching. This is a warp-synchronous

implementation of parallel matching: each thread tid tries to match P at positions

T [tid + n ×W ], where n ≤ |T |, and W is the warp size. Thus, in the best scenario,

43
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runtime is divided by W . This implementation is irregular: divergences might hap-

pen at lines 6 and 10. Each call to memcmp 1 will commence a CREV sequence of

computations.

Algorithm 7: Pattern matching: CREV vs. Nave
1 P ← pattern; T ← target text;
2 W ← warp size; tid ← thread index;
3 Function memcmp(Offset k)
4 m← True;
5 for i← tid to |P | do
6 if P [i] ̸= T [i+ k] then m← False ;

7 if all (m = True) then Found(k) ;

8 Function StringMatch
9 for i← tid to (|T | − |P |) step W do

10 if P [0] = T [i] then crev memcmp(i) ;

11 Function NaiveStringMatch
12 for i← tid to (|T | − |P |) step W do

13 j ← 0; k ← i;
14 while j < |P | and P [j] = T [k] do
15 j ← j + 1; k ← k + 1;

16 if j = |P | then Found(k) ;

Figure 5.1 compares our implementation, seen in Algorithm 7 (StringMatch)

against the equivalent parallel version that uses ISPC primitives (Par). This com-

petitor is function NaiveStringMatch in Algorithm 7. To give the reader a bet-

ter perspective of the results, we also compare against the Knuth¿Morris¿Pratt

(KMP) [Knuth et al., 1977] algorithm. KMP is sequential, but has lower complexity

than Algorithm 7. It runs inO(|T |+|P |), whereas Algorithm 7 runs inO(|T |×|P |/|W |).
For this experiment we searched for pre�xes of the pattern �She had been watching him

the la�, of sizes 4, 8, . . . , 28, 32 in Jane Austen's book Pride and Prejudice, taken from

Project Gutenberg2. CREV is always faster than NaiveStringMatch, and runs faster

than KMP in more than half the cases. CREV beats plain parallelism because it

distributes function memcmp among the eight available threads. On the other hand,

NaiveStringMatch has a potentially long divergent block in line 14. In our best re-

sult, observed for patterns of size eight, CREV runs in 44% of the time taken by

NaiveStringMatch, and in 40% of the time taken by KMP.

1Function memcmp is also used at line 5 of Algorithm 1
2https://www.gutenberg.org/ebooks/42671

https://www.gutenberg.org/ebooks/42671
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Figure 5.1. Comparison between CREV-based string matching (Algorithm 7),
ISPC's parallel implementation, and the Knuth-Morris-Pratt version of pattern
matching. The Y-axis shows runtime, in millions of cycles. The X-axis shows
pattern sizes, in number of characters. The target text contains 256MB divided
among 5,058,121 lines. White boxes show percentage of speedup (CREV over
PAR); grey boxes show percentage of speedup (CREV over KMP).

5.2 Book Filter

We have compared Algorithm 1 against a parallel version, implemented in the original

ISPC language. To avoid borrowing from the gains already observed in Section 5.1,

we have only invoked function memcpy (Algorithm 1, line 6) using crev. We have

used as input a binary assembly file, and have tried to copy chunks of 80 bits that

contain the pattern of a register-register move instruction. To vary the input file, we

have cropped the file at prefixes having 1K, 5K, 10K, 15K and 20K bits. The number

of occurrences of the target pattern, which marks lines that must be copied, is similar

in all the files: 4,097, 4,485, 4,795, 5,144 and 5,604 times. Figure 5.2 shows the result

of this comparison. The CREV-based version runs faster in every sample, and the gap

increases as the input increases. CREV gives a speedup of 11.2% in the 1K file, and

of 13.2% in the 20K file. Gains in speed, in this experiment, are due to the r-function

memcpy only, as memcmp was not invoked using crev.

5.3 Bellman-Ford

Our third experiment is an implementation of the classic Bellman-Ford algo-

rithm [Bellman, 1958]. This algorithm computes shortest paths from a single source to

all the other nodes in the graph. As input we use Erdös-Rényi [Erdos and Renyi, 1959]

graphs with 216, 512, 1024 and 2048 vertices, and probability of 80% of existing an
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Figure 5.2. Comparison between CREV's and ISPC's book filter (Algorithm 1).
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Figure 5.3. Comparison between CREV's and ISPC's version of Bellman-Ford.
Y-axis gives execution time, in millions of cycles, and X-axis gives graph size, in
number of nodes. White boxes show percentage of speedup over PAR.

edge between two nodes. Weights are randomly set from 1 to 100. Figure 5.3 shows

the results that we have observed. CREV has yielded faster runtimes for all the input

sizes, but the di�erence is small, and within error margin for graphs with 256 and 512

nodes. In the other cases, CREV is faster by 5.8% (1024 nodes) and by 3.1% (2048

nodes).
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5.4 Depth-First Search and Leader Election

Our last two experiments use the same algorithm: Depth-First Search (DFS). We

have compared CREV and ISPC on a straightforward implementation of DFS, seen in

Algorithm 8. Algorithm 8 illustrates the composability of CREV, as it recursively calls

the traversal routine for each vertex in the graph. To compare the CREV and plain

parallel versions of DFS, we use the same graph model seen in Section 5.3. Figure 5.4

shows the results of this comparison. We have not observed any substantial difference

between both implementations. In its best performance, the CREV version of DFS

is 4.4% faster than ISPC's implementation (2,048 nodes). In the worst case (4,096)

nodes, CREV got a slowdown of 1.1%, within the error margin of this experiment.

We speculate that this slowdown is due to the overhead of serializing function calls

and saving thread masks. Figure 3.8 shows this serialization. In all the other samples

CREV has been slightly faster: 3.9% for 256 nodes and 2.7% for 1,204. Results were

the same for graphs with 512 vertices. These numbers are highly input dependent. For

instance, repeating the same experiment for full n-ary trees with 4K nodes reveals that

CREV outperforms PAR by a greater margin. Full n-ary trees of height 3, 4 and 5,

give us the following results: 0.036× 0.043, 0.680× 0.827 and 208.479× 217.597. The

first number is CREV's runtime; the second is PAR's, in millions of cycles.

Algorithm 8: SIMD Depth first traversal
1 W ← warp size; tid ← thread index;
2 Function DFS(Node root, Function f)
3 f(root);
4 C ← child list of node root;
5 for i← tid to |C| step W do

6 c← C[i];
7 if c is not null then

8 crev DFS (c, f);

We have used Algorithm 8 to build a leader election routine (LE). Leader Election

uses a DFS, starting at each graph node, to propagate the identifier (ID) of that node

to all the other vertices. Once a vertex receives an ID, it compares it against its current

ID, keeping the greatest value. In the end, every vertex will have the largest ID among

all the IDs within its connected component. Therefore, this algorithm finds connected

components in graphs, by naming every vertex in the same component with a common

identifier. Figure 5.5 shows the results of this experiment. CREV surpasses its original

ISPC competitor in every sample. Its best result is a speedup of 15.5% for 2,048 nodes.
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The worst result is a speedup of 3.0% for graphs with 4,096 vertices.

5.5 Merge-Sort and Quick-Sort

Sorting is part of the realm of classical algorithms studied in pretty much any computer

science course as it serves as basis for many other solutions to be developed. Of course,

we could not compose a benchmark test suite without evaluating our performance in

this area as well. Towards this end, we have implemented both the Quick-Sort and

the Merge-Sort algorithm using our crev extension to ISPC. First, let us present the

Merge-Sort algorithm and how we have applied our solution to it. Afterwards, we show
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Algorithm 9: Merge sort implementation
1 W ← warp size; tid ← thread index;
2 Function mergesort-seq(Array A)
3 if |A| ≤ 2 then simple sorting of array A;
4 else

5 q ← |A| ÷ 2; A′ ← {array, array + q};
6 mergesort-seq(A′[0]); mergesort-seq(A′[1]);

7 i← 0; j ← q;
8 S ← empty vector with |A| positions;
9 for k ← 0 to |A| do
10 if i < q and j < len then

11 if A[i] < A[j] then S[k]← A[i],++ i;
12 else S[k]← A[j],++ j;

13 else if i < q then S[k]← A[i],++ i;
14 else S[k]← A[j],++ j;

15 Function mergesort-crev(Array A)
16 Equivalent to function mergesort-seq, except line 6 is replaced by:
17 if tid < 2 then crev mergesort-crev(A′[tid]);

our approach in face of the Quick-Sort algorithm, which is a similar solution, given the

divide-and-conquer nature of both algorithms.

Algorithm 9 shows an implementation of Merge-Sort using crev. We aim at

maximizing the parallelism at small workloads, i.e., we want all threads to be active

during the execution of SIMD instructions. Our implementation relies on the fact that,

upon reaching the branch at line 3, some threads may diverge, implying loss of control

flow uniformity, and thus invalidating eventual SIMD kernel calls. Before we conclude

on our solution, there are two important things to understand.

First, although the program is SIMT, and this is to say we have a group (warp) of

threads executing the program, the parallelism is not perceived at times, as we may be

dealing with purely global values. In other words, operations such as the ones described

in lines 5 and the entire loop beginning at line 9 are sequential. The second important

consideration, which may be regarded as even more peculiar, is the fact that we call

the mergesort-seq procedure twice in line 6. In ISPC, the parallelism is structured in

a bit more subtle way, as it is designed to exploit different capabilities of the CPU �

those being the SIMD vector-processing, and the multi-tasking. Whenever a kernel is

called within an ISPC kernel, its invocation is interpreted as: start the kernel with the

threads that were active, as if the kernel were issued from a fresh C/C++ call, and upon

its start, threads previously inactive were put back into sleep mode. This is important
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Algorithm 10: Quick sort implementation
1 W ← warp size; tid ← thread index;
2 Function quicksort-seq(Array A)
3 if |A| ≤ 2 then simple sorting of array A;
4 else

5 m← |A| − 2; p← A[|A| − 1];

6 i← 0;
7 while i < m do

8 if A[i] ≤ p then ++ i;
9 else swap elements A[i] and A[m]; −−m;

10 if A[m] ≤ p then m← m+ 1;
11 swap elements A[m] and A[|A| − 1];
12 quicksort-seq(A); quicksort-seq(A+m+ 1);

13 Function quicksort-crev(Array A)
14 Equivalent to function quicksort-seq, except line 12 is replaced by:
15 if tid < 2 then crev quicksort-crev(A′[tid]);

as a clarification for the syntax used. Line 6 does not describe the execution of multiple

instances of the mergesort-seq procedure. Only two new executions take place, one

with A′[0] half of the array A, and the other with the remaining A′[1] elements.

Although the function name is tagged sequential (mergesort-seq), the function

is valid in terms of ISPC. It just so happens that, be it implemented in plain C/C++,

or as an ISPC kernel, the behavior is that of a purely sequential procedure � despite

having the SIMD vector-processing capabilities at absolute disposal in the latter case.

Now, back to the one line of thought that comprises our CREV solution, function

mergesort-crev shows the simplicity of instilling effective parallelism in the once

sequential algorithm. We simply replace line 6 by line 17. Upon reaching line 17,

threads are filtered, in as much as to conform with the semantics of our solution:

only up to two threads will be active when issuing the crev directive, and therefore,

only two executions of mergesort-crev will take place � one with A′[tid = 0] and

the other having A′[tid = 1] as input. During execution of each recursive invocation

of mergesort-crev, all threads are active within the warp, thus holding sound the

program: the execution is allowed to progress properly, as threads 0 and 1 will always

be active upon entry in mergesort-crev, and the evaluation of the kernel is always

syntatically correct.

The algorithm Quick-Sort, with all its distinctions w.r.t. Merge-Sort, does also

port the same divide-and-conquer nature. Our CREV solution to Quick-Sort is analo-

gous to the previous one described to Merge-Sort. We therefore leave the understanding
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Algorithm 11: Bitonic Sort
1 if |A| < 2 then return;
2 if |A| = 2 and A[0] > A[1] then swap elements A[0] and A[1];
3 assert |A| to go up to the warp size;
4 load values from array A in private variables: val← A[tid];
5 generates a bitonic sequence;
6 sort bitonic sequence;
7 move sorted sequence into original container: A[tid]← val;

length seq laubch-def launch-bi crev-def crev-bi

1 0.270 13.032 1.081 0.332 0.186
2 0.528 17.899 2.855 0.636 0.474
4 1.253 27.086 5.110 1.242 0.861
8 2.635 41.806 50.664 2.579 1.829
16 5.201 106.098 64.468 4.383 3.058
32 7.302 169.924 104.985 5.191 4.114

1 0.127 12.046 3.967 0.130 0.125
2 0.267 77.302 56.131 0.331 0.309
4 0.646 89.428 6.955 0.643 0.643
8 1.349 241.971 140.169 1.202 1.241
16 2.125 343.630 186.423 1.915 1.963
32 2.876 420.213 204.278 2.736 2.878

Table 5.1. Runtimes for sort algorithms on di�erent input vector lengths. We
wrote the mergesort and quicksort algorithms, both using crev and ISPC's launch,
as well as relying on bitonic sort for �ne-grain optimization. The results explicit
how performant is our technique, in the sense we have got speedups at the cost of
very smalls code changes. The first block of results is for the mergesort algorithm,
wehereas the bottom half are results for the quicksort algorithm.

to the reader. Algorithm 10 describes the sequential and crev-based version of this

sorting procedure. And we have also tried to improve the performance of both sorting

algorithms. To do so, we replace the base step � which consisted of a small sequence

of instructions to check for and swap unordered pairs � by an e�cient implementation

of bitonic sort. Bitonic sort is an essentially SIMD parallel algorithm, and thus fits

more than adequetely into our CREV approach. Algorithm 11 presents a high-level

description of the BitonicSort procedure, but implementation details are available in

appendix A.1.

Our results show that CREV-based implementations of Merge- and Quick-Sort

can be quite e�cient, and even achieve better results with local algorithmic optimiza-

tions (bitonic sorting). Moreover, it is importatnt to realize how simple it was to put

to work a CREV algorithm from an existing sequential procedure. Although we look
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forward to achieving ever-improved runtimes, CREV main goal is to render e�cient

warp-synchronous programming a simple task.

5.6 Discussion

This chapter has presented an empirical evaluation of the implementation of CREV

available in the ISPC compiler. To carry out this evaluation, we have used CREV to im-

plement seven classic textbook algorithms. We believe that this chapter meets its goal:

our algorithms have almost the same syntax of dynamic parallelism; however, they are

as e�cienty as warp-synchronous programs. And, contrary to warp-synchronous im-

plementations, our algorithms do not su�er restrictions such as the inability to invoke

functions within divergent regions. Indeed, the very fact that we can use vector in-

structions to boost the performance of quick-sort is a testimony of the usefulness of

CREV. It would be very di�cult to implement this algorithm in ISPC without any

form of dynamic parallelism. Even though CREV is not dynamic parallelism per se, it

a�ords the same syntax, but much better e�ciency.



Chapter 6

A Scandalously Brief History of

Vectorization

GPUs' increasing programmability and decreasing costs have made them very

popular for the development of general purpose high performance applica-

tions [Nickolls and Dally, 2010]. This popularity has attracted the interest of

programming language researchers, particularly for studies on control flow diver-

gences. Therefore, the compiler-related literature contains a vast body of work

describing analyses [Coutinho et al., 2011, Sampaio et al., 2012, Sampaio et al., 2013,

Schaub et al., 2015] and optimizations [Coutinho et al., 2012, Coutinho et al., 2011,

Zhang et al., 2011, Wu et al., 2016] that reduce the e�ects of divergences in GPGPU

code. CREV is not a competitor of these analyses and optimizations. On the contrary,

Call Re-Vectorization complements such techniques, giving programmers a tool that

lets them deal with divergences at the software level.

Flynn's Taxonomy. From Chapter 1, recall our a quick discussion on some of the

cases within Flynn's taxonomy. To refresh our memory on those concepts, let us go

through them once more; this time, covering all of the terms proposed [Flynn, 1972]:

SISD, MISD, SIMD, MIMD, and the SIMT variant. The SISD setting correspondes

to a Single Instruction operating on a Single Data stream, and is exampli�ed by reg-

ular serial computers. An MISD environment is hypothetically possible, but is often

deemed impractical, as it would result in executing Multiple Instructions in a Single

Datum � not much pro�table in a general-purpose context [Duncan, 1990]. An SIMD

architecture consists of a Single Instruction stream read, in lock-step, by a vector of n

units, each using a di�erent data source from the Multiple Data streams. The SIMT

organization is a Single Instruction source executed by Multiple Threads, say n, and

53
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each thread holding an SIMD lane of length m, i.e., every instruction runs n×m times.

By times we shall refer to this latter model as either SIMT or multi-threaded (MT)

programming. This is not originally part of Flynn's taxonomy, but is a useful case to

bear in mind � an extension of the SIMD setting. Finally, we have the MIMD, which

consists of multiple autonomous processors, and consequently Multiple Instructions,

operate on Multiple Data streams.

A Scandalously Brief History of Vectorization The appearance of vector processor

architectures dates back to the late 1960s and early 1970s, mostly in the form of pro-

cessing machines designed to support massive mathematical computations (vector and

matrix processing) [Watson, 1972, Lincoln, 1978]. A vector processor consists basically

of multiple functional units working in parallel, each having a memory section from

which to read input from. Such units could also be disposed as to pipeline tasks: the

input data flows to the initial row of computing units, and outputs directly as input to

the next row of units. Vector processors' computing units implemented mostly arith-

metic and boolean operations � both for vectors and scalars [Duncan, 1990]. Due to

the pipeline extension, such machines are hard to fit seemlessly within one of Flynn's

classes: they neither present the SIMD lockstep execution, nor the asynchronous au-

tonomy of the MIMD category. Some other machines, such as the famous Illiac IV,

are categorized as SIMD, for they have vectors of processors executing in lockstep.

Such computers are generally formed by a central CPU which feed instructions to the

processing units; such units are connected via some network setting, by times enabling

communication between processors and from processors to memory [Duncan, 1990].

This set up would later be present in massive parallel boards.

In the good old days, graphics hardware boiled down to the so-called VGA, or

Video Graphics Array/Adapter: a display hardware first introduced with the IBM

PS/2 line of computers in 1987 [Polsson, 2016]. A VGA card is basically an interface

between the computer and its corresponding monitor. A program running on the CPU

yields data that the target monitor uses to build and display images; it is the duty of a

VGA card to keep the data the monitor will put up as pictures in an exhibition � the

VGA functions as a frame buffer. There must, of course, be a means of communication

between the VGA card and the CPU itself. The graphics card is, thus, plugged to the

motherboard and, upon having the required drivers, data transferring between those

two devices become possible. It is also noticeable the runtime involved in this process:

subject to the memory hierarchy, data flows from the CPU to its main Random Access

Memory (RAM); subsequently, the operational system puts the driver software to

use, allowing the VGA card to copy data from the computer's RAM to VGA's frame
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buffer. The runtime is, no doubt, dependent on the hardware's throughput/bandwidth

capabilities, but as a rule of thumb, the less communication involved, the better.

Still, all the actual processing took place at the CPU, and was, therefore, imple-

mented in software, which is costly both in terms of code development and eventual

data transfer latencies. The programming downside, one may suggest to tackle with

library code, which is reasonable, but brings forth compatibility issues in face of VGA

devices from di�erent manufactures � or even of versions of the same product. For

memory access and communication related aspects, there are quite a few well-known

optimizations, such double bu�ering and page �ipping [Brackeen, 1996]. Double bu�er-

ing consists in generating all the data that must be copied to the graphic device on the

CPU memory first, and only then issuing the copy � to avoid multiple (unnecessary)

requests. Page �ipping, in its turn, focus on having visually smooth frame transitions:

the data is written to the frame buffer at a memory location not being used to refresh

images on the screen; and only after a whole new image has been built the frame buffer

it is that frame pointers are updated, and the display device prints out fresh content.

Despite its importance as an interface between CPU and display device, graphics

cards were still to be put to greater use. Optimizations help, but fall short in view of

what could be done if the data had not to travel from CPU to graphics device. Of

course the device must read some input information, yet the processing should ideally

happen on the VGA, and the generated output be already dispatched to the VGA's

frame buffer. But what would someone want to run at the hardware level? The an-

swer: a series of well-de�ned functions that are applied to an image before it can be

properly displayed, e.g., vertex operations, primitive assembly, rasterization, fragment

operations, and composition into a �nal image [Owens et al., 2007]. Support for spe-

ci�c computations was added, and whence surged the closest ancestors of nowadays'

video cards. Such boards, also referred to as accelarators, were indeed accelarating

computations once performed entirely on the CPU: initial boards with processors al-

lowed developers to run well-de�ned image processing tasks, instead of having to resort

to CPU computation followed by data copies.

An interesting fact about the nature of those operations is their embarrass-

ing parallelism: given an input image, usually represented as n-dimensional arrays,

a.k.a. textures, it contains data and control independency w.r.t. its processing ele-

ments (e.g., vertices, triangles, fragments) [Moya et al., 2005]. Such nature was also

found in the old SIMD machines, such as Illiac IV, and is a clear call for vector-

ization. As there was a de�nite demand for parallel computational power, gener-

al-purpose computing evolved on top of graphics boards: more transistors and new

functionalities were added to those boards. However, it was only around 2001 such
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Year Transistors Model Tech Max GFlops
1999 25M GeForce 256 DX7, OpenGL 8
2001 60M GeForce 3 Programmable Shader 10
2002 125M GeForce FX CG programs 29
2006 681M GeForce 8800 C for CUDA 576
2008 1.4G GeForce GTX 285 IEEE FP 1063
2010 3.0G GeForce GTX 480 Cache, C++ 1345

Table 6.1. A scandalously brief timeline on GPUs. It is clear both the num-
ber of transistors and exponentially increasing maximum GFlops delivered by
top-performance graphics processing boards throughout the past ten years.

boards became practical and popular. Its wide-spread was due to the advent of both

programmable shaders and �oating point support on the graphics cards. Matrix-

and general vector-based problems were easily implemented on top of this hardware,

which signi�cantly accelerates the computation; one of the first common scienti�c

programs to run faster on GPUs than CPUs was an implementation of LU factoriza-

tion(2005) [Du et al., 2012]. In addition, even a single GPU-CPU framework provided

advantages that multiple CPUs on their own would not o�er, due to the specialization

in each chip [Mittal and Vetter, 2015]. Graphics cards' manufacturers oblige such par-

allelism by jamming massive amounts of processing cores on their boards. The growth

on the computational power of this hardware is re�ected by the number of transistors,

as shown in Table 6.1 [Pereira, 2014, Hardware-INFOS, 2017].

Forms of Parallelism. General-purpose graphics processor units have four forms of

parallelism. The hardware pipeline is divided into hundreds of single cycle stages to

increase the throughput and the GPU clock frequency; this technique is named pipeline

parallelism, and relies on overlapping computations at the many different processing

units at different stages. For example, if an instruction at procesing unit A requires

some data to be loaded from memory, it may cause the execution of the instruction to

be stalled; but as long as there is any further operation not depending on the result of

the memory load, such computation may take place at a different stage of the pipeline.

Moreover, the pipeline stages are replicated to process in parallel multiple vertices,

triangles and fragments. This is the basic proposal from SIMD architectures, and such

approach, namely data parallelism, consists in supplying developers more processing

units at a time, each unit drawing data from its own source stream [Moya et al., 2005].

Another form of parallelism bestowed in GPUs is multi-threading : multiple pro-

cessing elements are stored and processed concurrently to hide memory latencies in a

speci�c stage or processing unit. At the programming point of view, multi-threading
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comprises a series of independent processes, each reading input data from a distinct

data stream, and such behavior is achieved by launching di�erent kernels in parallel.

Finally, instructions can be re-ordered and combined into groups which may executed

in parallel without changing the result of the program. This way, GPUs also allow

its processing units to execute independent instructions in parallel, thus conveying the

so-called instruction level parallelism [Moya et al., 2005].

Vector Processor Languages. There are many di�erent approaches towards ex-

ploiting the computational powers of vector processors, be it CPU- or GPU-based.

Languages may be machine assembly code, in which case the programmer directly de-

scribe the sequence of operations desired; or high-level programming abstractions of

such machine code. We now give a quick overview on some well-known vector-based

programming languages.

C is not uncommonly chosen as base language for many vector-processing ex-

tensions. C is originally a scalar language, with no intrinsics for data distribution nor

parallel execution. As C is but a step up from assembly code, it gives programmers a

proximity with the assembly code and memory acesses not possible in higher-level lan-

guages. Since vector-processing extensions involve many vector copies and accessess,

it is convenient to use languages such as C. Nevertheless, it is possible to implement

e�cient vectorized code in C, by inlining assembly instructions for vector-processors.

SSE, or Streaming SIMD Extensions, is an SIMD instruction set extension to

the x86 architecture, designed by Intel in 1999. SIMD instructions can greatly in-

crease performance when exactly the same operations are to be performed on mul-

tiple data objects. Typical applications are digital signal processing and graphics

processing. SSE was subsequently expanded by Intel to SSE2, SSE3, SSSE3, and

SSE4 [Wikipedia, 2017b]. AVX, or Advanced Vector Extensions, is another extension

to the x86 instruction set architecture for microprocessors from Intel and AMD, and

was originally proposed by Intel, in March 2008. AVX provides new features, new

instructions and a new coding scheme, and has later been extended by AVX2 and

AVX-512 [Wikipedia, 2017a].

Intel's SPMD Program Compiler, ISPC for short, is both a language and a com-

piler developed by Intel. Its code is open source and focus on allowing programmers

to write e�cient parallel multi-threaded programs for CPUs. There is also an absolute

interest in minimizing the complexity of code writing, as it provides abstractions for

SIMD and SIMT programming. The code is lowered to Intel's SSE/AVX assembly lan-

guages as the programmer see fit. ISPC is an extension of the C programming language,
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and also supplies coders with C++ library interfaces and compilation infrastructure,

i.e., ISPC kernels may be used in conjunction with either C or C++ [Intel, 2016].

CUDA is a parallel computing platform and programming model invented by

NVIDIA. It enables dramatic increases in computing performance by harnessing the

power of the graphics processing unit (GPU). Its software layer grants developers di-

rect access to the GPU's virtual instruction set for the execution of compute kernels.

GPGPU programming was far from easy at the early years of graphics boards, as de-

velopers had to map scienti�c calculations onto problems that could be represented by

triangles and polygons. It was in 2013, a team of researchers led by Ian Buck unveiled

Brook, the first widely adopted programming model to extend C with data-parallel

constructs. The language ported concepts such as streams, kernels and reduction op-

erators, and its compiler and runtime system exposed the GPU as a general-purpose

processor in a high-level language. Most importantly, Brook programs were not only

easier to write than hand-tuned GPU code, they were seven times faster than similar

existing code. NVIDIA then invited Ian Buck to join the company and start evolving

a solution to seamlessly run C on the GPU, which culminated in CUDA in the year

2006 [NVIDIA, 2017].

Finally, OpenCL views a computing system as consisting of a number of com-

pute devices, which might be central processing units (CPUs) or accelerators such as

graphics processing units (GPUs), attached to a host processor (a CPU). OpenCL de-

�nes a C-like language for writing programs, and akin to CUDA, functions executed

on an OpenCL device are called kernels [Howes and Munshi, 2015]. Processing nodes

are de�ned according to the hardware setting, but should correspond to the number

of SIMD processing lanes available at runtime. It is hard to de�ne what a processing

node is, even within a CPU, as it may have a static number of cores, but enhance

its power virtually via hyperthreading [Gaster et al., 2012]. A single kernel execution

can run on all or many of the processing nodes, in parallel. In addition to its C-like

programming language, OpenCL de�nes an application programming interface (API)

that allows programs running on the host to launch kernels on the compute devices and

manage device memory, which is (at least conceptually) separate from host memory.

Programs in the OpenCL language are intended to be compiled at run-time, so that

OpenCL-using applications are portable between implementations for various host de-

vices [Stone et al., 2010]. The OpenCL standard de�nes host APIs for C and C++,

but third-party APIs exist for other programming languages and platforms such as

Python [Klöckner et al., 2012], Java and .NET [Gaster et al., 2012].



Chapter 7

Final Thoughts

Primitives such as warp vote and shu�e have given experts the possibility of writing

e�cient SIMD code, by programming from the point of view of one warp. This coding

style has been used in CUB and many other CUDA libraries1. However, warp-syn-

chronous code does not play well with branch divergence. Most warp-synchronous al-

gorithms require all threads in a warp to be active. This is a problem for the common

usage scenario of a simple MT-style CUDA kernel that calls warp-synchronous library

functions. It is our vision that the application developer writing the kernel should not

be concerned with the internal implementation of library functions, and should be able

to call any function inside divergent program regions. To meet the demands of this

vision, this paper has introduced the notion of Call Re-Vectorization(CREV). We have

described the building blocks necessary to implement CREV. Looking towards compat-

ibility with future hardware, we have proposed low-level primitives with well-de�ned

semantics and a high-level interface, the crev idiom, that makes programmer intent

explicit. Thus, our notion of CREV does not rely implicitly on current hardware be-

havior, which might eventually change. We have implemented CREV into ISPC, using

Intel instructions, and have shown how to code irregular algorithms in this environ-

ment. Our implementations are not only clearer than non-CREV based approaches,

but also more e�cient, as they balance work among inactive warp threads.

We believe that this work opens up several di�erent research directions. For

instance, we have been using CREV manually. That is to say: thus far, the devel-

oper must manually annotate functions with the CREV high-level keyword. However,

nothing hinders a compiler from providing static analyses that add this primitive di-

rectly onto source code already in place. Whoever decides to follow this direction will

have a number of concerns to worry about, such as: which functions to vectorize,

1See https://nvlabs.github.io/cub/
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which thresholds to consider when invoking r-functions, how to measure the bene�t of

function re-vectorization, etc.



List of Terms

I

ISPC

Intel's Single Program Multiple Data compiler. An open-source compiler avail-

able online at https://ispc.github.io/. xvii, xix, xxii, xxiii, xxv, xxvii,

xxviii, 1, 3, 5, 10, 21, 22, 24, 29�41, 43�52, 57�59, 61, 63, 66, 69, 70

S

SIMD

An SIMD architecture consists of a Single Instruction stream read, in lock-step,

by a vector of n units, each using a different data source from the Multiple Data

streams. xvii, xix, xxi, xxii, 1�5, 7�21, 24, 25, 27, 29�31, 33, 34, 40, 47, 49�51,

53�59, 61, 63, 64, 69

SIMT

An SIMT machine has a Single Instruction source executed by Multiple Threads,

say n, and each thread holding an SIMD lane of length m, i.e., every instruction

runs n×m times. xxi, 2, 3, 5, 11, 13, 29, 36, 49, 53, 54, 57, 61, 66

SPMD

SPMD, or Single Program, Multiple Data, identifies architectures with a Single

Program executed independently by many processing units, each with its own

data stream. xvii, xix, 3, 5, 29�31, 33, 38, 41, 57, 61, 66
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Appendix A

ISPC-CREV Code

We here leave some code we find relevant to the reader. The implementations in this

section are ISPC-CREV code, and should thus be compiled with our extend compiler,

available online at http://cuda.dcc.ufmg.br/swan.

A.1 Bitonic Sort

Bitonic Sort is a well-known parallel sorting algorithm. We implement Bitonic Sort

in our ISPC-CREV extend language to improve the performance of the Merge- and

Quick-Sort algorithms, both implemented using the crev keyword. The following

BitonicSort kernel is SIMD, i.e., all threads within a warp must be active upon

call to this function. We use crev to guarantee such property holds, validating the

execution of the program.

s t a t i c i n t bitonic_mask [ 6 ] [ 2 ] [ 8 ] = {

{ {0 , −1, −2, 3 , 4 , −5, −6, 7} , {1 , 0 , 3 , 2 , 5 , 4 , 7 , 6} } ,

{ {0 , 1 , −2, −3, −4, −5, 6 , 7} , {2 , 3 , 0 , 1 , 6 , 7 , 4 , 5} } ,

{ {0 , −1, 2 , −3, −4, 5 , −6, 7} , {1 , 0 , 3 , 2 , 5 , 4 , 7 , 6} } ,

{ {0 , 1 , 2 , 3 , −4, −5, −6, −7}, {4 , 5 , 6 , 7 , 0 , 1 , 2 , 3} } ,

{ {0 , 1 , −2, −3, 4 , 5 , −6, −7}, {2 , 3 , 0 , 1 , 6 , 7 , 4 , 5} } ,

{ {0 , −1, 2 , −3, 4 , −5, 6 , −7}, {1 , 0 , 3 , 2 , 5 , 4 , 7 , 6} }

} ;

void set_order ( i n t ∗ uniform array , uniform in t l en ) {

i f ( l en == 2 && array [ 0 ] > array [ 1 ] ) {

uniform in t aux = array [ 1 ] ;

array [ 1 ] = array [ 0 ] ;

array [ 0 ] = aux ;

} e l s e i f ( l en > 2) p r in t ("ERROR!\ n " ) ;
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}

void b i t on i c_so r t ( i n t ∗ uniform array , uniform in t l en ) {

i f ( l en < 2) re turn ;

i f ( l en == 2 && array [ 0 ] > array [ 1 ] ) {

uniform in t aux = array [ 1 ] ;

array [ 1 ] = array [ 0 ] ;

array [ 0 ] = aux ;

}

i f ( l en > programCount ) { p r i n t ("ERROR!\ n " ) ; r e turn ; }

// Fetching va lue s

varying i n t va l = (1 << 30) , tmp = (1 << 30 ) ;

i f ( programIndex < len ) va l = array [ programIndex ] ;

// B i ton i c s o r t i n g masks

varying i n t cmp1 = bitonic_mask [ 0 ] [ 0 ] [ programIndex ] ;

vary ing i n t cmp2 = bitonic_mask [ 1 ] [ 0 ] [ programIndex ] ;

vary ing i n t cmp3 = bitonic_mask [ 2 ] [ 0 ] [ programIndex ] ;

vary ing i n t va l1 = bitonic_mask [ 0 ] [ 1 ] [ programIndex ] ;

vary ing i n t va l2 = bitonic_mask [ 1 ] [ 1 ] [ programIndex ] ;

vary ing i n t va l3 = bitonic_mask [ 2 ] [ 1 ] [ programIndex ] ;

vary ing i n t cmp4 = bitonic_mask [ 3 ] [ 0 ] [ programIndex ] ;

vary ing i n t cmp5 = bitonic_mask [ 4 ] [ 0 ] [ programIndex ] ;

vary ing i n t cmp6 = bitonic_mask [ 5 ] [ 0 ] [ programIndex ] ;

vary ing i n t va l4 = bitonic_mask [ 3 ] [ 1 ] [ programIndex ] ;

vary ing i n t va l5 = bitonic_mask [ 4 ] [ 1 ] [ programIndex ] ;

vary ing i n t va l6 = bitonic_mask [ 5 ] [ 1 ] [ programIndex ] ;

// Generating a b i t on i c sequence

// Step 1 : d i s t ance 1

tmp = s h u f f l e ( val , va l1 ) ;

i f ( programIndex == cmp1) va l = ( va l > tmp) ? tmp : va l ;

e l s e va l = ( va l < tmp) ? tmp : va l ;

// Step 2 . 1 : d i s t ance 2

tmp = s h u f f l e ( val , va l2 ) ;

i f ( programIndex == cmp2) va l = ( va l > tmp) ? tmp : va l ;
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e l s e va l = ( va l < tmp) ? tmp : va l ;

// Step 2 . 2 : d i s t ance 4

tmp = s h u f f l e ( val , va l3 ) ;

i f ( programIndex == cmp3) va l = ( va l > tmp) ? tmp : va l ;

e l s e va l = ( va l < tmp) ? tmp : va l ;

// Sor t ing a b i t on i c sequence

// Step 3 . 1 : d i s t ance 1

tmp = s h u f f l e ( val , va l4 ) ;

i f ( programIndex == cmp4) va l = ( va l > tmp) ? tmp : va l ;

e l s e va l = ( va l < tmp) ? tmp : va l ;

// Step 3 . 2 : d i s t ance 2

tmp = s h u f f l e ( val , va l5 ) ;

i f ( programIndex == cmp5) va l = ( va l > tmp) ? tmp : va l ;

e l s e va l = ( va l < tmp) ? tmp : va l ;

// Step 3 . 3 : d i s t ance 4

tmp = s h u f f l e ( val , va l6 ) ;

i f ( programIndex == cmp6) va l = ( va l > tmp) ? tmp : va l ;

e l s e va l = ( va l < tmp) ? tmp : va l ;

// Stor ing so r t ed array

i f ( programIndex < len ) array [ programIndex ] = va l ;

}


