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Resumo

As primitivas geométricas definidas pelos padrões OGC e ISO, implementadas na maio-
ria dos sistemas gerenciadores de banco de dados (SGBD) com suporte para dados es-
paciais, são incapazes de capturar a semântica de tipos ricos de representação, como os
encontrados nos atuais modelos de dados geográficos. Além disso, os SGBDs relacionais
não estendem os mecanismos de integridade referencial para cobrir relações espaciais e
para suportar restrições de integridade espacial. Em vez disso, eles geralmente assumem
que toda a verificação de integridade espacial será realizada pela aplicação, durante o
processo de entrada de dados. Além de não ser prático, se o DBMS suportar muitas
aplicações, isto pode levar a implementações redundantes e inconsistentes. Por isso,
este trabalho apresenta o AST-PostGIS, uma extensão para PostgreSQL/PostGIS que
incorpora à Linguagem SQL tipos de dados espaciais avançados e implementa restrições
de integridade espaciais. A extensão reduz a distância entre os projetos conceituais e
físicos de banco de dados espaciais, fornecendo representações ricas para geometrias do
tipo geo-objeto e geo-campo. Ele também oferece funções para garantir a consistência
das relações espaciais durante as atualizações de dados. Outras funções podem ainda
ser utilizadas antes de impor restrições de integridade espacial pela primeira vez para
verificar a consistência inicial do banco de dados. O uso do AST-PostGIS é ilustrado
em um pequeno projeto de banco de dados geográfico urbano, mapeando seu esquema
conceitual para a implementação física em SQL estendido.

Palavras-chave: OMT-G, Sistema de Informação Geográfica, Restrições de Integri-
dade Espaciais, Banco de Dados Espaciais, Modelagem de Banco de Dados.
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Abstract

Geometric primitives defined by OGC and ISO standards, implemented in most modern
spatially-enabled database management systems (DBMS), are unable to capture the
semantics of richer representation types, as found in current geographic data models.
Moreover, relational DBMSs do not extend referential integrity mechanisms to cover
spatial relationships and to support spatial integrity constraints. Rather, they usually
assume that all spatial integrity checking will be carried out by the application, during
the data entry process. This is not practical if the DBMS supports many applications,
and can lead to redundant and inconsistent work. Therefore, this work presents AST-
PostGIS, an extension for PostgreSQL/PostGIS that incorporates advanced spatial
data types and implements spatial integrity constraints. The extension reduces the
distance between the conceptual and the physical designs of spatial databases, by
providing richer representations for geo-object and geo-field geometries. It also offers
procedures to assert the consistency of spatial relationships during data updates. Such
procedures can also be used before enforcing spatial integrity constraints for the first
time. We illustrate the use of AST-PostGIS on an urban geographic database design
problem, by mapping its conceptual schema to the physical implementation in extended
SQL.

Keywords: OMT-G, Geographic Information Systems, Spatial Integrity Constraints,
Spatial databases, Spatial databases modeling.
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Chapter 1

Introduction

OpenGIS (OGC) and SQL/MM (ISO) standards have been instrumental in the
effort to standardize spatial data management using relational and object-relational
databases. OpenGIS, the set of spatial data standards proposed by the Open Geospa-
tial Consortium (OGC), covers many aspects of spatial data representation, spatial
databases and Web services. The Simple Features Specification for SQL standard
(SFS4SQL) [OGC 06-104r4, 2010; OGC 06-103r4, 2011], a component of OpenGIS,
defines a standard SQL schema for storing, retrieving, querying and updating geospa-
tial features in relational database management systems (DBMSs). Using SFS4SQL,
geospatial objects are represented by a geometric shape, which in turn uses a spatial
reference system for geographic coordinates. SFS4SQL supports a limited number of
basic geometric representations, such as points, linestrings and polygons, introduces
multipoints, multilinestrings and multipolygons, and also allows heterogeneous geom-
etry collections. The standard specifies some forms of geometric constraints, such as
the detection of simple and non-simple linestrings, and establishes the Dimensionally-
Extended Nine-Intersection Model (DE-9IM) [Clementini et al., 1993] as the basis for
detecting and enforcing topological relationships.

The SQL/MM standard (Part Three - Spatial) [ISO/IEC 13249-3, 2016; Melton
and Eisenberg, 2001] is derived from OpenGIS and provides more functions and enables
more dimensions for objects. Its definitions include considerations on how spatial data
are to be represented as values and which functions must be used to compare, transform
and process spatial data in various ways [Stolze, 2003].

Since 1999, these standards have been progressively adopted by popular DBMSs.
For instance, Oracle Spatial1 complies with OpenGIS SFS and supports SQL/MM types

1https://www.oracle.com/database/spatial/
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2 Chapter 1. Introduction

and operators [Oracle, 2017]. MySQL Spatial2 extension implements only part of the
OpenGIS standard and only the 2D representations without reference sets [Piórkowski,
2011; Widenius and Axmark, 2002]. Microsoft’s SQL Server Spatial Storage3 conforms
its geometry data types to the OpenGIS SFS, but not its geography data types [Aitchi-
son, 2009; Fang et al., 2008]. IBM DB2 Spatial Extender4 implements types and func-
tions defined by both specifications [Adler, 2001]. PostGIS5, the open source spatial
extension for PostgreSQL6, conforms to both standards almost completely [Obe and
Hsu, 2015; Piórkowski, 2011].

Adopting standards has been hugely beneficial for the spread of geospatial data
in information systems, as they promote interoperability among spatial DBMSs. On
the other hand, the representations defined by those standards are restricted to ge-
ometric primitives, devoid of more complex geographic behavior. Take, for instance,
the representation of geographic networks, such as a water distribution system or a
transportation network. While it is possible for system designers to use OGC points to
represent nodes and linestrings to represent arcs, the role of such points and linestrings
in the database should also include network connectivity. However, there is no way
to make such role explicit in SFS-extended SQL, with the statements that are used to
define the database’s structure and expected behavior, except by coding custom spa-
tial integrity constraints. If network nodes and arcs were defined as primitive types,
it would be possible to directly create geographic network structures in the physical
phase of database design. As long as they are represented with the corresponding
spatial integrity constraints, thus defining geospatial behavior on top of the geometric
representation. This strongly contrasts with, for instance, the mechanisms that allow
specifying referential integrity constraints in conventional SQL.

Another example is the mapping of planar subdivisions, sets of polygons in which
(1) no polygons overlap, (2) no gaps between polygons exist, and (3) the union of the
polygons covers the entire geographic area of interest for the application. Planar sub-
divisions are common in the conceptual design of geographic applications. They can
be used to represent territorial hierarchies of various types and many kinds of envi-
ronmental classifications, such as vegetation or soil type. Clearly, the simple mapping
of a planar subdivision class, as specified in conceptual design, into a table containing
polygon geometries is insufficient to fulfill the designer’s intentions and needs. Spa-
tial integrity constraints would have to be enforced by the DMBS, so the semantics of

2https://dev.mysql.com
3https://www.microsoft.com/sql-server
4http://www-03.ibm.com/software/products/en/db2spaext
5http://www.postgis.net/
6https://www.postgresql.org/



1.1. Contributions and objective 3

planar subdivisions is adequately implemented. If a planar subdivision representation
was available in SFS4SQL, constraints (1-3) could be previously implemented, and
operationally enforced as any other integrity constraint in the database.

In contrast, conceptual geographic data models, such as OMT-G [Borges et al.,
2001], GeoOOA [Kosters et al., 1997], MODUL-R [Bédard et al., 1996] etc, offer se-
mantically rich spatial object classes and relationships. For instance, OMT-G provides
primitives for modeling planar subdivisions, triangular irregular networks, samples,
isolines, and tessellations, supporting spatial and conceptual generalizations, topolog-
ical relationships, “whole-part” structures, networks and multiple representations of
objects. There are no directly corresponding physical representation alternatives for
such primitives in current spatial database management systems.

We argue, therefore, that the gap that separates conceptual design models and
physical implementation data types imposes a more thorough mapping process, in
which spatial integrity constraints can be extracted and detailed, so the semantics
of conceptual design classes can be adequately implemented in the DBMS. From ob-
servation and personal practice, we notice that most spatial integrity constraints can
be generalized and implemented using SQL tools such as checks, triggers and asser-
tions, with the help of SFS standard functions. Implementing and re-implementing
such generic constraint verification code, on the other hand, is tedious and error-prone.
Furthermore, it is difficult to perceive a connection to the conceptual schema by reading
the SQL data definition language (DDL) code that specifies the database’s structure.

1.1 Contributions and objective

In this work we propose AST-PostGIS, a SQL extension that implements advanced
spatial data types and spatial integrity constraints in a RDBMS capable of storing
and processing spatial data. Our objective is to reduce the distance between the con-
ceptual and physical schemas of spatial database design. Our extension also provides
mechanisms to identify integrity constraint violations on spatial databases upon initial
enforcement of constraints, and trigger procedures that constrain the insertion or dele-
tion of inconsistent spatial data in the RDMBS, following conceptual design semantics.

The AST-PostGIS extension is open-source7 and it is currently available for Post-
greSQL, an object-relational database system [Momjian, 2001], to expand its spatial
extension PostGIS. The extension is cross-platform and easy to install and enable in
each database schema. The implemented spatial data types and integrity constraints

7https://github.com/lab-csx-ufmg/ast_postgis



4 Chapter 1. Introduction

are based on those defined on OMT-G, an object oriented data model for the design
of geographic applications and geographic database systems [Borges et al., 2001].

1.2 Work outline

The remainder of this work is organized as follows.

Chapter 2 – Related Work: Covers literature that is relevant to our proposal and
explores some basic concepts.

Chapter 3 – The OMT-G Model: Presents the OMT-G data model and gives a
brief overview of its primitives for conceptual modeling of geographic data.

Chapter 4 – AST-PostGIS: Introduces the AST-PosGIS, our SQL extension that
implements advanced spatial data types and integrity constraints for Post-
greSQL/PostGIS.

Chapter 5 – Case Study: Urban geographic database: Illustrates the use of
the AST-PostGIS with a implementation of a small urban geographic database
schema.

Chapter 6 – Conclusions and Future Work: Discusses the conclusions and fu-
ture work.



Chapter 2

Related Work

In this chapter, we review relevant concepts and discuss topics related to this work. We
start with Section 2.1 by explaining the characteristics of spatial data. Then, we dis-
cuss spatial relationships and explain the methods proposed to enumerate all existent
relationships in Section 2.2. Next, we show the classification of spatial integrity con-
straints in Section 2.3, which are the main topic of our work. In Section 2.4, we discuss
the peculiarities of spatial database management systems and give a brief overview of
PostgreSQL and PostGIS, the RDBMS for which we developed AST-PostGIS. Finally,
in Section 2.5, we review the conceptual data models existent for spatial databases.

2.1 Spatial data

Spatial data describe phenomena to which some spatial dimension is associated. Ge-
ographic or georeferenced data are spatial data in which the spatial dimension is as-
sociated with their location on the earth’s surface, at a given time or period of time
[Câmara et al., 1996; Borges, 1997]. Spatial data consist of spatial objects made up of
points, lines, regions, rectangles, surfaces, volumes, and even data of higher dimension-
ality, which can include time (spatiotemporal data). Examples of spatial data include
representations of cities, rivers, roads, countries, states, sole coverage, mountain ranges
etc. Examples of spatial properties include the length of a given river, or the sur-
face area of a given country. Often it is also desirable to attach non-spatial attribute
information, such as elevation heights, city names etc., to the spatial data. The spa-
tial representation of a geographical entity is the description of its geometric shape,
associated with the geographical position.

Geographic data have geometric and topological properties. Metric relationships
can be established from the primitives of geometric features. These relationships ex-

5



6 Chapter 2. Related Work

press metric features, such as distances, with reference to a coordinate system. Based
on the geometry, some geometric properties, such as length, sinuosity and line orienta-
tion can be established. For instance, perimeter and surface area for polygons, volume
for three-dimensional entities, and shape and slope for both lines and polygons. Topo-
logical properties (non-metric) are based in relative positions of objects in the space,
and include connectivity, orientation (from, to), adjacency and contention. Some geo-
graphic entities have topological properties that are invariant by elastic deformations.
For example, the connectivity between road intersections and road segments is kept
independently of the coordinate system or projection space used. Some spatial con-
cepts can even be measured in both domains: topological and geometric. proximity,
for example, can be obtained both through adjacency and Euclidean distance [Laurini
and Thompson, 1992].

Vector and raster data are the two primary geometric types. Vector data are
comprised of vertices and paths. The three basic types used for vector data are points,
lines and polygons, all of which are representations of the space occupied by real-world
entities. Points are simply pairs of XY coordinates (such as latitude and longitude).
When each point is connected with a line in a particular order, they become a vector
line feature. Lines usually represent features that are linear in nature, such as rivers and
roads. When a set of points are joined in a particular order and closed, they become
a vector polygon feature. In order to create a polygon, the first and last coordinate
pairs coincide and all other pairs must be unique. Polygons represent features that
cover a two-dimensional area. Examples of polygons are buildings, agricultural fields
and discrete administrative areas.

Raster data is made up of pixels (also referred to as grid cells). They are usually
regularly-spaced and square. Each pixel is associated with a value or class. Raster
models are useful for storing data that are obtained using regularly spaced samples, as
in an aerial photography, an elevation surface or a satellite image. Raster data models
can be discrete and continuous. Discrete rasters are also referred to as thematic or
categorical raster data. They have distinct themes or categories. For example, one
grid cell represents a land cover class or a soil type. Each class can be discretely
defined as to where it begins and ends. Discrete data usually consist of integers to
represent classes. Continuous rasters, on the other hand, are grid cells with gradual
changing data such as elevation, temperature or an aerial photograph. Continuous
data is also known as non-discrete or surface data. A continuous raster surface can
be derived from a fixed registration point. For example, a digital elevation model is
measured from sea level. Each cell represents a value above or below sea level. An
aspect cell value is derived from a fixed direction such as north, east, south or west.
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2.2 Spatial relationships

Pullar and Egenhofer [1988] classified spatial relationships in several classes: direction
relationships describe order in space (e.g. north_of, northeast_of ), topological rela-
tionships describe neighborhood and incidence (e.g. adjacent, inside, and disjoint),
comparative or ordinal relationships describe inclusion or preference (e.g. in, at), dis-
tance relationships, such as far and near, and fuzzy relationships, such as next to and
close to, describe relative metric position.

Among these, topological relationships are the most fundamental and have been
studied in more depth [Güting, 1994]. A basic question is whether it is possible to enu-
merate all existent relationships. Egenhofer [1989] and Egenhofer and Herring [1990]
proposed simple method for this, considering the intersections between two polygons
as to their interiors and boundaries, configuring a 4-intersection matrix. Egenhofer
and Franzosa [1991] showed that for two objects there are four intersection sets; each
of them may be empty or non-empty, which leads to 24 = 16 combinations. Eight of
them are not valid, and two of these are symmetric, so that six different relationships
result, named disjoint, in, touch, equal, cover and overlap.

This approach has been extended to support other types of geometries. For
example, point and line features have been added [Egenhofer and Herring, 1994; Hoop
and Van Oosterom, 1992]. Clementini et al. [1993] also considered the spatial dimension
of the intersection (called the dimension-extended method). This model has been
used as the standard to compare two geospatial objects. It translates the relationship
between two geometries into a set of outcomes based on a decision tree. An example
of the result matrix, called the Dimensionally Extended Nine-Intersection Model (DE-
9IM) [Strobl, 2008], can be seen in Figure 2.1.

The intersection of the interiors is a two-dimensional area, so that matrix cell’s
value equals 2, showing that the object resulting from that operation is a polygon,
i.e., a two-dimensional object. When intersections are over single lines, that matrix
cell’s value equals 1, indicating that a one dimensional object is the result. When the
polygons touch over single points, that portion of the matrix equals 0, which indicates
the zero-dimensional point object as result. When there is no intersection between
components, the respective matrix value is set to a boolean false. Likewise, when any
kind of intersection is sufficient to configure a relationship, a boolean true is used.

The DE-9IM model has been adopted by the OGC [OGC 06-103r4, 2011] and im-
plemented in OGC-compliant spatial database management systems, such as PostGIS
[Obe and Hsu, 2015].
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Figure 2.1: DE-9IM over spatial object interactions.

Source: Boundless Suite User Manual [2016]

2.3 Spatial integrity constraints

Integrity constraints are fundamentally important for database management. They
specify those configurations of the data that are considered semantically correct, a
property that databases are required to satisfy at any time in order to be consistent.
The simplest example of this is specifying that a data item must be of a certain type,
restricted to a limited value or identified by a unique key. More complex integrity
constraints can also be specified to manage, for example, the relationships between
database records. Such examples of integrity constraints – namely domain, value,
key and relationship – are well supported by modern RDBMSs and are extensively
documented [Melton and Simon, 1993; Elmasri and Navathe, 2015].

In the scope of spatial databases, integrity constraints are also related to the
topological and geometrical aspects of the data [Borges et al., 2002, 2005]. Cockcroft
[1997] proposed a classification to cover the peculiarities of spatial data and defined
the spatial integrity constraints as topological, semantic or user rules, as follows:
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Topological integrity constraints are related to the geometrical properties and
spatial relations [Egenhofer and Franzosa, 1991]. These principles are applied
to application-specific entities and relationships to provide the basis for integrity
control. Modeling city neighborhoods is an example of this constraint: one neigh-
borhood must be contained within the city limits, and there must be no point in
the municipal area that does not belong to a neighborhood. Likewise, a neigh-
borhood cannot belong to multiple cities.

Semantic integrity constraints are concerned with the meaning of geographic fea-
tures. These constraints verify if a database state is valid due to the properties
of the objects that need to be stored. As an example is a rule in which a building
cannot be intercepted by a street segment.

User-defined integrity constraints allow database consistency to be maintained as
defined by the equivalent of “business rules” in non-spatial DBMS. The location
of a gas station, which must stay 300 meters farther from any existing school for
safety reason, is an example of this type of constraint. The municipal permitting
process must consider this limitation in its analysis. User-defined rules may be
stored and enforced by an active repository.

2.4 Spatial database management systems

A spatial DBMS is adapted to store and query geographic information. Most spatial
DBMSs allow representing simple geometric objects such as points, lines and polygons.
Some of them are able to handle more complex structures, such as 3D objects, topolog-
ical coverages, linear networks, and triangular irregular networks. While conventional
relational databases have developed to manage various numeric and character types
of data, such databases require additional functionality to process spatial data types
efficiently [Surve and Kathane, 2014].

The logic in a spatial DBMS normally consists of enabling infrastructure in the
form of spatial indices maintained by the DBMS together with a collection of spatial
operators [Güting, 1994]. A spatial index is a specialized form of relational DBMS in-
dex maintained for the geometry type, so that it is possible to quickly retrieve objects
based upon their spatial characteristics, such as the location and extent of a particular
object [Güting, 1994]. Spatial operators are normally functions that ascertain spa-
tial relationships, such as finding all objects that are contained within a given object
[Clementini and Di Felice, 2000]. Figure 2.2 schematically illustrates the additional
functions and modules in a spatial RDBMS.
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Figure 2.2: Conceptual diagram for a spatial RDBMS.

Source: [CUBRID Blog, 2016]

Many benefits follow if an existing relational DBMS is extended to process spatial
data. First, even when conducting geospatial tasks, there will be many occasions when
conventional data types, such as numbers or characters, are used with no modification
in relation to non-spatial DMBSs. Another benefit is that there will not be a burden of
additional training, since SQL is a traditional and very well-known solution to manage
and query the data.

Relational DBMS is not the only type of database management system available
[Han et al., 2011]. Likewise, spatial RDBMS is not the only type of spatial database
management system available [Queiroz et al., 2013]. Many DBMSs, such as MongoDB1,
a document-oriented database, and search engines such as Lucene2 or Solr3, provide
spatial data processing features. However, these solutions offer less features and do
not provide high precision calculations [Lizardo et al., 2014; Santos et al., 2015]. Cur-
rently, spatially-extended relational DBMSs, such as PostGreSQL/PostGIS and Oracle
Spatial, are more broadly used than any other available.

1MongoDB: https://www.mongodb.com/
2Apache Lucene: http://lucene.apache.org/
3Apache Solr: http://lucene.apache.org/solr/
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2.4.1 PostgreSQL Overview

PostgreSQL is a powerful and one of the most successful open source object-relational
databases available. It is arguably also the most advanced, with a wide range of
features that challenge even many closed-source databases [Souza et al., 2011; Douglas
and Douglas, 2005; Momjian, 2001]. Here we cite few of the features found in a standard
PostgreSQL distribution:

Object-relational. In PostgreSQL, every table defines a class. It implements inheri-
tance between tables. Functions and operators are polymorphic.

Standards compliant. PostgreSQL syntax implements most of the SQL92 standard
and many features of SQL99. Where differences in syntax occur, they are most
often related to features unique to PostgreSQL.

Open source. An international team of developers maintains PostgreSQL. Its core
team has been working on enhancing PostgreSQL’s performance and feature set
since at least 1996.

Transaction processing. PostgreSQL protects data and coordinates from multiple
concurrent users through full transaction processing. The transaction model used
by PostgreSQL is based on multi-version concurrency control (MVCC).

Referential integrity. PostgreSQL is fully ACID compliant and implements com-
plete referential integrity by supporting foreign and primary key relationships,
joins, views, triggers and stored procedures. Business rules can be expressed
within the database rather than relying on external tools.

Multiple procedural languages. Triggers and other procedures can be written in
PL/pgSQL, a procedural language similar to Oracle’s PL/SQL4. But it is also
possible to develop server-side code in Tcl, Perl and even Bash.

Multiple-client APIs. PostgreSQL supports the development of client applications
in C/C++, Java, .Net, Perl, Python, Ruby, Tcl, ODBC, among others, with
excellent documentation.

Unique data types. PostgreSQL provides a variety of data types, besides the usual
numeric, string, and date types, it provides geometric types, boolean data types,
and data types designed specifically to deal with network addresses. It also
supports storage of binary large objects, including pictures, sounds and video.

4Oracle PL/SQL: http://www.oracle.com/technetwork/database/features/plsql/index.html
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Extensibility. One of the most important features of PostgreSQL is that it can be
extended. It is possible to write custom data types, new functions and operators,
and even new procedural and client languages. Many contributed packages are
available on the Internet5. In this work, we use the extensibility features of
PostgreSQL to develop AST-PostGIS.

2.4.1.1 PostGIS: the spatial database extension for PostgreSQL

PostGIS is a spatial database extension for PostgreSQL [Ramsey et al., 2005]. PostGIS
“spatially enables” the PostgreSQL server, allowing it to be used as a back-end spatial
database for geographic information systems (GIS) and web-mapping applications in
the same manner as Microsoft’s SQL Server Spatial and Oracle’s Spatial database
extension. PostGIS follows the OGC/SQL-MM standards [Obe and Hsu, 2015]. Among
its many features, we can cite:

High performance. PostGIS uses the smallest possible representations of geometry
and index structures to maximize performance. PostGIS users have compared
performance with proprietary databases on massive spatial data sets and PostGIS
comes out on top [Zhou et al., 2009; Shukla et al., 2016]. Smaller data represen-
tations reduce throughput to slow hard-disks and keep more data in fast memory
cache, then improving speed directly.

Spatial query. PostGIS includes a full set of geometry query operations: distance,
containment, intersection, and full topological relationship matrices. In addition,
queries are speed up by a self-tuning R-Tree index, fully integrated into the
PostgreSQL’s query planner.

Data integrity. Storing spatial data in a database allows simple random access via
any tool with SQL: scripts, desktop applications, other databases, Web services.
PostGIS uses the PostgreSQL’s row-level locking to allow multiple processes to
write in the spatial tables without resource contention and with guaranteed data
integrity.

Spatial Analysis. Advanced GIS analysis can be carried out, using spatial joins,
buffers, intersections, polygon building, line building, linear referencing and more.

5PGXN: PostgreSQL Extension Network: http://pgxn.org/
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2.5 Conceptual modeling for spatial databases

The first data models for spatial applications were guided by existing GIS internal
structures. The user interpretations of spatial phenomena were then forcibly adjusted
to any structures available. The modeling process did not offer mechanisms that would
allow for the representation of the reality according to the user’s mental model [Borges
et al., 2005]. Conventional semantic and object-oriented data models, like ER [Chen,
1976], OMT [Rumbaugh et al., 1991], IFO [Abiteboul and Hull, 1987] and UML [Booch
et al., 2005] have also been used for modeling spatial databases. Although these models
are highly expressive, they have limitations for modeling spatial applications, since they
do not present geographic primitives for a satisfactory representation of spatial data
and its peculiar properties.

Using such traditional models brought difficulties, because many spatial appli-
cations need to deal with specific aspects of spatial data, such as location, geometric
constraints, time of observation and accuracy [Oliveira et al., 1997]. In conventional
models it is not possible to differentiate between object classes that have a geographic
reference and normal alphanumeric classes. Furthermore, it is difficult to represent
the spatial relationships that exist as a consequence of the geometric nature of objects.
Spatial relations are abstractions that help understand how objects relate to each other
in the real world [Frank and Mark, 1991] and they need to be explicitly represented in
the application’s schema in order to make the schema easier to understand.

Therefore, modeling spatial databases is perceived to be more complex than mod-
eling conventional databases, due to particular characteristics of geographic data. Mod-
eling spatial data requires specific models that are capable of catching the semantics
of geographic data, offering mechanisms of higher abstraction and implementation in-
dependence. Concepts like geometry and topology are fundamental in determining
spatial relationships between objects. Moreover, spatial data have diverse origins and
environmental data are a good example of such diversity. Elevation and soil properties,
for example, vary continuously in space, while geological faults and river networks can
be discretized. Depending on the level of detail considered, some real-world entities
can even belong to both categories [Kemp, 1992].

Various spatial data models have been proposed in the literature. For example,
Worboys et al. [1990] proposed EXT.IFO, a IFO Model [Abiteboul and Hull, 1987]
extension with basic spatial types: point, line and polygon. However, fields, spatial
aggregations, multiple views and other fundamental geographic modeling constructs
are not represented in the model. Abrantes and Carapuça [1994] extended the OMT
Data Model [Booch et al., 2005] and created OMT EXT, with primitives for modeling
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topological relationships, namely partition, covering and disconnected class. The later
being a concept associated with the subclasses derived from partitions and coverings.

GISER [Shekhar et al., 1997] and GMOD [Oliveira et al., 1997] do not define
specific modeling primitives and cannot be considered proper data models [Borges et al.,
2001]. They only provide standards to be followed by geographic application designers.
GISER extends the ER Model [Chen, 1976] and integrates field-based and object-based
models of geographic data by using the discretized-by relationship between feature fields
and coverage entities. In addition, it has predefined entities and relationships that
represent fields, objects view, network relationships and multiple visualization forms
of an entity. GMOD allows, through predefined classes, the definition of georeferenced
phenomena according to fields and objects. It also has predefined classes to model the
geometry of spatial entities, as well as temporal dimension. GMOD introduces new
relationships between entities, e.g. (causal and version). Both, GISER and GMOD
are difficult to represent simultaneous conditions for a given entity due to the lack of
specific primitives.

Bédard et al. [1996] introduced MODUL-R with a fixed set of geometric types that
use spatial pictograms to represent the geometric shapes of entities. The combination
of these pictograms can represent multiple views of the same entity. This model, on the
other hand, does not distinguish between fields and objects and does not have primitives
to represent topological connectivity, neither spatial aggregation. Another geographic
data model, GeoOOA [Kosters et al., 1997], supports spatial and temporal class types,
topological “whole-part” structures, network structures and a set of geometric types
with the use of pictograms. Object classes with or without spatial representation are
distinguished by this model. However, GeoOOA lacks the support for spatial integrity
constraints and does not represent properly fields neither multiple ways to visualize an
object.

Lisboa Filho and Iochpe [1999] proposed GeoFrame, a conceptual geographical
model with a hierarchical class structure. The hierarchy is subdivided in the levels:
Planning, Metamodel and Spatial Representation. In the planning level, the basic class
is the GeographicRegion, which defines the regions of interest. For each region, it is
defined associated themes (Theme class), such as limits of the urban area, hydrograph,
public transport, road network, relief etc. A theme can also be subdivided in a hi-
erarchy of sub-themes. The metamodel level is composed of meta-classes that reflect
how the reality is interpreted and it can be represented by conventional data (Conven-
tional Object) or geographic phenomena (Geographic Phenomenon). The latter being
specialized in meta-classes for field (GeographicField) and objects (GeographicObject)
views. The level of spatial representation reflects how the reality is represented by
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designers and users in relation to the representation within the database. The Spa-
tialObject class generalizes spatial representation classes observed in objects view (e.g.
Point, Line, Polygon and ComplexSpatialObj ), and the field view classes (e.g. GridOf-
Cells, AdjPolygons, Isolines, GridOfPoints, TIN and IrregularPoints) are generalized
by the FieldRepresentation class. Following works introduced tools to support the
model [Lisboa Filho et al., 1999, 2004a,b].

To the best of our knowledge, the most complete spatial data model is OMT-G
[Borges et al., 2001], because it is the only one that includes class, transformation and
presentation diagrams for the modeling of geographic applications. It also supports
topological, semantic and user-defined integrity constraints, along with primitives for
the representation of multiple views. OMT-G differentiates between spatial relation-
ships and simple associations and OMT-G diagrams tend to be smaller than others,
because of the higher semantic content of its primitives. OMT-G model is described
in more detail in Chapter 3 of this work.





Chapter 3

The OMT-G Model

OMT-G (Object Modeling Technique for Geographic Applications) [Borges et al., 2001]
is an object-oriented data model for the design of geographic applications and ge-
ographic database systems. Derived from the UML [Booch et al., 2005] class dia-
gram, OMT-G introduces primitives for modeling the geometric shape and location
of geographic objects, supporting spatial and topological relationships, “whole-part”
structures, networks, and multiple representations of objects and spatial relationships.
Besides, the model allows the specification of alphanumeric attributes and associated
methods for each class. The OMT-G data model reduces the distance between the
conceptual project and the physical implementation of geographic applications, by al-
lowing a more precise definition of the required objects, operations and visualization
parameters.

Three main concepts sustain the OMT-G model: classes, relationships, and spatial
integrity constraints. Classes and relationships define the basic primitives that are
used to create application static schemas. The spatial integrity constraints ensure the
necessary conditions to keep the database always consistent. OMT-G proposes three
different diagrams for the modeling of a geographic application. The class diagram,
which is the most used and specifies all classes along with their representations and
relationships. From this diagram, a set of spatial integrity constraints that must be
observed in the implementation can be derived. The transformation diagram is built
when the application involves the derivation of some class from others or when the
class diagram indicates the need for multiple representations of any class. With it,
all transformation process can be specified, allowing the identification of any required
methods for the implementation. Finally, a presentation diagram is built to provide
guidelines for the visual aspect of objects in the implementation. Several visual aspects
can be there for any given class, which allows for the definition of a view or set of views

17
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for each application or group of users.
In the following sections we discuss the class diagram primitives and the spatial

integrity constraints that can be derived from these primitives. Transformation and
presentation diagrams, however, are not further discussed in this work as they are
not related to the AST-PostGIS. More details about them is found in Borges et al.
[2001]. In Section 3.3, we explain how OMT-G is mapped to object-relational spatial
databases and discuss the loss of semantics imposed by the mapping process. Finally,
in Section 3.4 we cite other works from our research group intended to foster the further
use of the OMT-G data model.

3.1 Class diagram

Class diagrams are used in OMT-G to describe the structure and contents of a geo-
graphic database. A class diagram contains fixed rules and descriptions that define, for
the conceptual representation, how the data are to be structured, including information
on the representation that is to be adopted for each class.

3.1.1 Class structure

OMT-G specifies two types of classes in the class diagram: georeferenced and conven-
tional. The georeferenced class notation have a top left-hand rectangle that points the
geometry of the representation, whereas the notation used for conventional classes is
similar to the notation used in the UML [Booch et al., 2005], as it is shown in Figure 3.1.

Figure 3.1: Simplified graphical notation of a class in OMT-G.

The distinction between conventional and georeferenced classes allows different
applications to share spatial and non-spatial data, thus making it easier to develop
integrated applications. Conventional classes have no geographical properties. Geo-
referenced classes, otherwise, include a geographical representation alternative, which
specializes in two types of representations: discrete, associated with real world elements
(geo-objects), or continuously distributed over the space (geo-fields). The geo-objects
are represented by points, lines, polygons or network elements (nodes, unidirectional



3.1. Class diagram 19

and bidirectional arcs). Geo-fields correspond to variables such as soil type, relief and
temperature, often seen as a surface, and can be represented by isolines, tesselation,
planar subdivision, sampling or triangular irregular network (TIN). Figures 3.2 and 3.3
show, respectively, examples of geo-object and geo-field classes.

Figure 3.2: Geo-object classes

Figure 3.3: Geo-field classes

3.1.2 Relationships

OMT-G represents three basic types of relationships that can occur between its classes:
simple associations, network relationships and spatial relationships, along with object-
oriented relationships (generalization/specialization, aggregation and conceptual gener-
alization).

Simple associations represent structural conventional relationships between ob-
jects of different classes, as in UML. Network relations are relationships among con-
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nected objects. This type of relationship only shows the need for a logical connection,
not a requirement for the implementation of a particular structure. A sewage arc-node
network is an example of this type of relation. The arcs represent the piping segments
while the nodes are used to represent network elements such as manhole, sewage treat-
ment station and discharge. Spatial relations represent the topological, metric, ordinal
and fuzzy relationships. Some relationships, like topological, can be derived automat-
ically from the geometry of each object during the execution of data entry or spatial
analysis operations. Others, called explicit relationships, need to be specified by the
user in order to allow the system to store and maintain that information. OMT-G con-
siders a set of nine different spatial relationships between georeferenced classes: touch,
in, cross, overlap, disjoint, adjacent to, coincide, contain and near.

OMT-G makes it simple to distinguish between simple associations, spatial and
network relationships. Simple associations are represented by continuous lines, whereas
spatial relationships are indicated by dashed lines. Both relationships are characterized
by their cardinality. The notation for cardinality adopted by OMT-G is the same used
by UML. The network relationships are indicated by two parallel dashed lines, linking
a node class to an arc class. Network structures without nodes can be indicated by a
recursive relationship on the class which represents graph segments. The name given to
the network is annotated between the two dashed lines. Figure 3.4 shows the OMT-G
notations for relationships.

Generalization and specialization relationships present similar behavior to con-
ventional object-oriented hierarchies. They apply to both georeferenced and conven-
tional classes, following the definitions and notation proposed for UML (Figure 3.5a),
where a triangle connects a superclass to its subclasses. Generalizations can be speci-
fied as total or partial. A generalization is total when the union of all instances of the
subclasses is equivalent to the complete set of instances of the superclass. They can
also be disjoint or overlapping. In a disjoint generalization/specialization, an instance
must belong to at most one subclass.

Conceptual generalization allows modeling objects with multiple geographic rep-
resentations, which may vary according to the scale or to the geometric shape. In this
type of relationship, the superclass does not have a geographic representation, but each
subclass can have a different representation. Alphanumeric attributes defined in the
superclass are inherited by the subclasses. The representation and attributes of the
subclasses are also included, according to their intended representation scale (or range
of scales), or they can be taken as an alternative way to represent the same object in
different contexts. Instances in subclasses of conceptual generalizations can be either
disjoint or overlapping (Figure 3.5b).
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(a) Simple association

(b) Topological association

(c) Arc-node network

(d) Arc-arc network

Figure 3.4: OMT-G notations for relationships.

Aggregation is a special form of association between objects, where one of them is
considered to be congregated from others. The graphic notation used in OMT-G follows
the one used in UML (Figure 3.5c). An aggregation can occur between conventional
classes, georeferenced classes and georeferenced and conventional classes. In the latter
case, a spatial aggregation (i.e. “whole-part” aggregations) must be used (Figure 3.5d).

3.2 Integrity Constraints

The OMT-G model allows several spatial integrity rules to be derived from its primi-
tives. These rules constitute a set of constraints that must be observed during insert,
update or delete operations of a spatial database [Borges et al., 2002; Davis Jr. et al.,
2001, 2005]. Some spatial integrity constraints are defined implicitly as part of the se-
mantics of the primitives. Other constraints can be deduced from the schemas. Spatial
integrity constraints are defined for topological relationships, network relationships,
spatial aggregation and geo-field classes. User-defined integrity constraints can also be
created by specifying business rules and semantic constraints in the schema. There
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(a) Generalization (b) Conceptual generalization

(c) Aggregation (d) Spatial aggregation

Figure 3.5: OMT-G notations for generalizations and aggregations.

are also constraints which apply to the geometric representation of geo-objects (i.e.,
constraints related to the consistency of points, lines, polygons etc.).

3.2.1 Geo-field constraints

The spatial integrity rules (R1 – R5) can be deduced from the semantics involved in the
concept of geo-fields and, also, from the specific definition of its four descendant classes.
Particularly, all representations must correspond to the entire field being modeled, that
is, it must be possible to infer a value at any point of the field of interest from the
information contained in one of these representations.

(R1) Planar Enforcement Rule: Let F be a geo-field and let P be a point such
that P ⊂ F . Then a value V (P ) = f(P, F ), i.e., the value of F at P , can be
univocally determined.

(R2) Isoline: Let F be a geo-field. Let v0, v1, . . . , vn be n + 1 points in the plane.
Let a0 = v0v1, a1 = v1v2, . . . , an−1 = vn−1vn be n segments, connecting the
points. These segments form an isoline L if, and only if, (1) the intersection of
adjacent segments in L is only the extreme point shared by the segments (i.e.,
ai ∩ ai+1 = vi+1), (2) non-adjacent segments do not intercept (that is, ai ∩ aj = ∅
for all i, j such that j 6= i+1), and (3) the value of F at every point P such that
P ∈ ai, 0 ≤ i ≤ n, is constant.
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(R3) Tesselation: Let F be a geo-field. Let C = {c0, c1, c2, . . . , cn} be a set of
regularly-shaped cells covering F . C is a tesselation of F if and only if for any
point P ⊂ F , there is exactly one corresponding cell ci ∈ C and, for each cell ci,
the value of F is given.

(R4) Planar Subdivision: Let A = {A0, A1, A2, . . . , An} be a set of polygons and F

be a geo-field. Such that Ai ⊂ F for all i such that 0 ≤ i ≤ n. A forms a planar
subdivision representing F if and only if for any point P ⊂ F , there is exactly
one corresponding polygon Ai ∈ A, for which a value of F is given (that is, the
polygons are non-overlapping and cover F entirely).

(R5) Triangular Irregular Network (TIN): Let F be a geo-field. Let T =

{T0, T1, T2, . . . , Tn} be a set of triangles such that Ti ⊂ F for all i such that
0 ≤ i ≤ n. T forms an triangular irregular network representing F if and only if
for any point P ⊂ F , there is exactly one corresponding triangle Ti ∈ T , and the
value of F is known at all of vertices of Ti.

3.2.2 Geo-object constraints

The geometric concepts used in the definition of points, lines (including lines with
a topological role), and polygons lead to some integrity constraints. In OMT-G it is
admissible the existence of geo-objects that are formed by multiple polygons, establish-
ing one of them as a base polygon and considering the others as holes. The following
constraints (R6 – R8) are regarding lines and polygons.

(R6) Line: Let v0, v1, . . . , vn be n + 1 points in the plane. Let a0 = v0v1, a1 = v1v2,
. . . , an−1 = vn−1vn be n segments, connecting the points. These segments form
a polygonal line L if, and only if, (1) the intersection of adjacent segments in
L is only the extreme point shared by the segments (i.e., ai ∩ ai+1 = vi+1), (2)
non-adjacent segments do not intercept (that is, ai ∩ aj = ∅ for all i, j such that
j 6= i+ 1), and (3) v0 6= vn, that is, the polygonal line is not closed.

(R7) Simple Polygon: Let v0, v1, . . . , vn be n + 1 points in the plane, with n > 3.
Let s0 = v0v1, s1 = v1v2, . . . , sn−1 = vn−1vn be a sequence of n − 1 segments,
connecting the points. These segments form a simple polygon P if, and only if,
(1) the intersection of adjacent segments in P is only the extreme point shared by
the segments (i.e., si ∩ si+1 = vi+1), (2) non-adjacent segments do not intercept
(i.e., si ∩ sj = ∅ for all i, j such that j 6= i + 1), and (3) v0 = vn, that is, the
polygon is closed.



24 Chapter 3. The OMT-G Model

(R8) Polygonal Region: Let R = {P0, P1, ..., Pn−1} be a set formed by n simple
polygons in the plane, with n > 1. Considering P0 to be a basic polygon, R
forms a polygonal region if, and only if, (1) polygon P0 has its vertices coded in a
counterclockwise fashion, (2) Pi disjoint Pj for all Pi 6= P0 in which the vertices
are coded counterclockwise, and (3) P0 contains Pi for all Pi 6= P0 in which the
vertices are coded clockwise.

3.2.3 Network relationship constraints

Network relationships involve objects that are connected with each other. These rela-
tionships only show the need for a logical connection, not requiring the implementation
of any particular data structure. The connectivity rules, which apply to network rela-
tionship primitives, are R9 and R10.

(R9) Arc-node network: Let G = {N,A} be a network structure composed of a set
of nodes N = {n0, n1, . . . , np} and a set of arcs A = {a0, a1, . . . , aq}. Members of
N and members of A are related according to the following constraints:

1. For every node ni ∈ N there must be at least one arc ak ∈ A.

2. For every arc ak ∈ A there must be exactly two nodes ni, nj ∈ N .

(R10) Arc-arc network: Let G = {A} be a network structure composed of a set of
arcs A = {a0, a1, . . . , aq}. Then the following constraint applies:

1. Every arc ak ∈ A must be related to at least one other arc ai ∈ A, where
k 6= i.

3.2.4 Spatial aggregation constraint

Aggregation is a special form of association between objects, where one of them is
considered to be mounted from others and can occur between all types of classes.
When the aggregation is between georeferenced classes, a spatial integrity constraint is
imposed considering the existence of the aggregated object and its corresponding sub-
objects. This constraint must verify that the geometry of the whole is fully covered by
the geometry of the parts and that no overlapping among the parts occurs, as described
in rule R11.

(R11) Spatial aggregation: Let P = {P0, P1, . . . , Pn} be a set of geo-objects. Then
P forms another object W by spatial aggregation if, and only if, (1) Pi ∩W = Pi
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for all i such that 0 ≤ i ≤ n, and (2) (W ∩
⋃n

i=0 Pi) = W , and (3) ((Pi touch Pj)
∨ (Pi disjoint Pj)) = TRUE for all i, j such that i 6= j.

3.2.5 Spatial relationship constraints

Spatial relations represent direction, topological, metric, ordinal, and fuzzy relation-
ships. Some relationships can be derived from the geometry of each object, during the
execution of data insertion or spatial analysis operations. Others need to be speci-
fied by the user, in order to allow the system to store and maintain that information.
OMT-G considers a set of five basic spatial relationships between georeferenced classes,
from which all others can be derived [Clementini et al., 1993; Davis Jr. et al., 2005]:
crosses, disjoint, overlaps, touches and within.

The integrity constraints RT1 to RT5 consider these spatial relationships types.
These constraints are formulated using a notation in which objects are indicated by
upper-case italic letters (e.g., A, B), their boundaries are denoted as ∂A, and their
interiors as A◦. The boundary of a point object is considered to be always empty
(therefore, the point is equivalent to its interior), and the boundary of a line is consisted
of its two endpoints. A function, named dim, is used to return the dimension of an
object and returns 0 if the object is a point, 1 if it is a line, or 2 if it is a polygon. Notice
that some relationships are only allowed between specific classes because they depend
on the geometric representation. For instance, the existence of a touches relationship
assumes that none of the classes involved are a point.

(RT1) Crosses: Let A be a geo-object of the Line class, and let B be a geo-object
of either the Line or the Polygon class. Then (A crosses B) = TRUE ⇔
dim(A◦ ∩B◦) = (max(dim(A◦), dim(B◦))-1) ∧ (A ∩B 6= A) ∧ (A ∩B 6= B).

(RT2) Disjoint: Let A and B be two geo-objects. Then (A disjoint B) = TRUE
⇔ A ∩B = ∅.

(RT3) Overlaps: Let A and B be two geo-objects. Both members of the Line or
of the Polygon class. Then (A overlaps B) = TRUE ⇔ dim(A◦) = dim(B◦) =
dim(A◦ ∩B◦) ∧ (A ∩B 6= A) ∧ (A ∩B 6= B).

(RT4) Touches: Let A and B be two geo-objects, where neither A nor B are mem-
bers of the Point class. Then (A touches B) = TRUE ⇔ (A◦ ∩B◦ = 0) ∧
(A ∩B 6= ∅).

(RT5) Within: Let A and B be two geo-objects, where B is an instance of the class
Polygon. Then (A within B) = TRUE ⇔ (A ∩B = A) ∧ (A◦ ∩B◦ 6= ∅).
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OMT-G considers, for convenience, a larger set of spatial relationships con-
straints, due to cultural or semantic concepts that are familiar to the users. These
constraints (RT6 to RT13) are special cases of one of the five basic relationships, but
they deserve a special treatment because of their common use in practice. Constraints
RT12 and RT13 represent metric relationships and require a parameter, since the no-
tion of proximity varies according to the situation, a precise distance must be supplied
in order to allow the correct evaluation of the relationship.

(RT6) Equals: Let A and B be two geo-objects. Then (A equals B) = TRUE ⇔
A ∩B = A = B.

(RT7) Contains: Let A and B be two geo-objects, where A is a member of the
Polygon class. Then (A contains B) = TRUE ⇔ ((B within A) = TRUE) ∧
((A equals B) = FALSE).

(RT8) ContainsProperly: Let A and B be two geo-objects, where A is a member
of the Polygon class. Then (A containsproperly B) = TRUE ⇔ ((B within A)
= TRUE) ∧ ((A touches B) = FALSE).

(RT9) Covers: Let A and B be two geo-objects. Then (A covers B) = TRUE ⇔
A ∩B = A.

(RT10) CoveredBy: Let A and B be two geo-objects. Then (A covers B) = TRUE
⇔ A ∩B = B.

(RT11) Intersects: Let A and B be two geo-objects. Then (A intersects B) = TRUE
⇔ ((A disjoint B) = FALSE).

(RT12) Distant(dist): Let A and B be two geo-objects. Let C be a buffer, created
at a distance dist around A. Then (A distant(dist) B) = TRUE ⇔ (B disjoint
C) = TRUE.

(RT13) Near(dist): Let A and B be two geo-objects. Let C be a buffer, created at
a distance dist around A. Then (A near(dist) B) = TRUE ⇔ (B disjoint C) =
FALSE.
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Table 3.1: Geometric types: OMT-G and OGC SFS

OMT-G representation OGC SFS representation

Point Point
Line LineString
Polygon MultiPolygon
Node Point
Unidirectional Arc LineString
Bidirectional Arc LineString
Isolines LineString
Sample Point
Planar Subdivision Polygon or Multipolygon
Triangular Irregular Network Point (vertices) and Polygon (triangles)
Tesselation –

3.3 Mapping OMT-G to object-relational spatial

databases

Geometric types in conceptual schemas are accompanied by an expected behavior,
captured with a set of spatial integrity constraints [Borges et al., 2002]. Geo-objects,
for example, like lines, arcs and polygons must be formed by simple lines or simple
polygonal lines, that is, lines without self intersection or self tangency. Geo-fields, like
sampling, tesselation, planar-subdivision, isoline and triangular irregular network must
be continuously distributed over the space, without overlapping between adjacent lines
or polygons.

In contrast, the data types implemented by most modern spatial RDBMS are
simple geometry types and geometry collections hierarchized by OGC. When mapping
a spatial data model from the conceptual to the physical schema, we are forced to
use these simple geometric representations available in the spatial RDBMS. This pro-
cess implies in loss of semantics, since the only topological constraints implemented
in the spatial RDBMS are simple value checks (e.g. a polygon is a closed line). Such
constraints can ensure the geometric consistency of objects represented by lines or poly-
gons. However, ensuring the consistency of aggregations or arc-node relationships, for
example, is more complicated, usually requiring the development of triggers. This im-
plementation, however, is not trivial and demands advanced knowledge of the resources
offered by the RDBMS.

Table 3.1 exemplifies how the OMT-G primitives are mapped to the OGC repre-
sentations. Take for instance the geometries line, unidirectional arc, bidirectional arc
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and isolines. They have completely different behavior in the conceptual model, but
they are all mapped to linestring in the physical schema.

3.4 Further work on OMT-G

OMT-G motivated many initiatives, including Wispy [Fatto et al., 2015], a uDig1 exten-
sion that permits verifying and visually specifying complex spatial integrity constraints.
WiSPY includes a visual environment for defining spatial data models with integrity
constraints and for automatically generating the constraint checker. The latter is used
to verify the integrity of the data produced during the map editing process.

In an earlier work, Borges et al. [2005] inaugurate the study of spatial integrity
constraints from OMT-G schemas, and propose an algorithm that allows for the map-
ping between an OMT-G class diagram and an object-relational schema, which includes
basic geometric representations as part of relations, along with conventional attributes.
A list of conventional and spatial integrity constraints is also obtained. From the
object-relational schema, a physical schema for spatially extended relational databases
is easily derived, but spatial integrity constraints must be implemented using triggers,
checks and assertions.

Hora et al. [2010] later implemented an OMT-G mapping tool to generate Oracle
PL/SQL schemas2, that includes triggers and procedures, and XML schemas3. In [Hora
et al., 2011], they proposed a methodology and an algorithm to map arcs and nodes,
organized in a network using spatial relationships, from a OMT-G schema to a GML
document.

Lizardo and Davis Jr. [2014] presented the OMT-G Designer4, a web-based mod-
eling tool for OMT-G that includes Hora et al.’s mapping algorithms. In this work,
we extend OMT-G Designer with an alternative mapping algorithm for PostgreSQL/-
PostGIS, that includes the spatial integrity constraints and advanced spatial data types
introduced by AST-PostGIS.

Finally, Seufitelli et al. [2015] identified the challenges in mapping OMT-G prim-
itives for non-relational paradigms in order to integrate relational and non-relational
databases, creating a hybrid approach.

1uDig: http://udig.refractions.net/
2OMTG2SQL: https://github.com/lab-csx-ufmg/omtg2sql
3OMTG2GML: https://github.com/lab-csx-ufmg/omtg2gml
4OMT-G Designer: http://aqui.io/omtg/
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AST-PostGIS

In this work, we propose AST-PostGIS (Advanced Spatial Types for PostGIS), an
open-source SQL extension that implements conceptual design semantics for spatial
relational database management systems. Written in PL/pgSQL1, AST-PostGIS is
currently available for PostgreSQL version 9.5 or superior and requires the spatial
module PostGIS, version 2.0 or above. Like any other PostgreSQL extension, AST-
PostGIS is easy to install and can be individually enabled in each database schema.
During installation, the extension creates several new data types, functions, procedures
and a table. In order to discern these extension objects from those already implemented
in PostgreSQL and PostGIS, AST-PostGIS adopts as a standard the advanced spatial
type (AST) prefix for all names.

AST-PostGIS is intended to bridge the gap between the conceptual design and
the physical implementation of spatial databases. By introducing advanced spatial
data types, AST-PostGIS allows creating geographic columns on tables with behav-
ior control, respecting the semantics for geo-objects and geo-field geometries defined
by OMT-G. By installing trigger procedures to assert the consistency of spatial rela-
tionships during data updates, AST-PostGIS permits making explicit roles for spatial
relations, as, for example, network connectivity. Furthermore, by providing functions
to verify the consistency of the database before enforcing relationships constraints, the
extension allows to sanitize the data input in bulk. Those functions manage all the
necessary information to identify inconsistent data, and indicate constraint violations
in a log table.

The following three sections explain, in detail, each of these three features intro-
duced by AST-PostGIS.

1PL/pgSQL is a loadable procedural language for the PostgreSQL database system.
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Table 4.1: Advanced spatial data types supported by AST-PostGIS

Advanced Spatial Types OMT-G Class PostGIS Primitive Integrity Constraints
ast_point point geometry(point) -
ast_line line geometry(linestring) R6
ast_polygon polygon geometry(multipolygon) R7, R8
ast_node node geometry(point) -
ast_isoline isoline geometry(linestring) R1, R2
ast_planarsubdivision planar subdivision geometry(polygon) R1, R4
ast_tin triangular irregular network geometry(polygon) R1, R5
ast_tesselation tesselation raster R1, R3
ast_sample sample geometry(point) -
ast_uniline unidirectional line geometry(linestring) R6
ast_biline bidirectional line geometry(linestring) R6

4.1 Advanced Spatial Data Types

Advanced Spatial Data Types are essentially the primitive geometric types of PostGIS
coupled with a set of spatial integrity constraints to control their behavior, as expected
by the designer in the conceptual level. These new spatial data types can be handled
in the same way primitive types are, as they can be employed as column definition of
tables, as variables in PL/pgSQL scripts or as arguments of functions or stored proce-
dures. They can also be stored, retrieved and updated with the geometry processing
functions of PostGIS.

The AST-PostGIS extension implements 11 Advanced Spatial Data Types. They
are derived from the concepts of geo-objects and geo-fields classes of the OMT-G model
and their semantics are controlled by the integrity constraints R1 – R8, defined formally
in Section 3.2. These integrity constraints were implemented in PL/pgSQL scripts
and encapsulated in the extension. Table 4.1 lists the Advanced Spatial Data Types
implemented in AST-PostGIS, along with their georeferenced classes of the OMT-G
model from where they were derived, the PostGIS primitive types that correspond to
their geometry, and the integrity constraints that control their behavior.

4.2 Integrity constraints for spatial relationships

AST-PostGIS provides integrity constraints to spatial relationships through using
triggers. When fired, these triggers must execute custom procedures introduced
by the extension. AST-PostGIS provides three procedures: ast_spatialrelationship,
ast_arcnodenetwork and ast_aggregation that cover, respectively, spatial relationships,
arc-node networks and spatial aggregations. All three derive from OMT-G primitives.
In addition, ast_arcnodenetwork can also implement integrity constraints for arc-arc
networks.
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In PostgreSQL, a trigger is associated with only one table and it executes a
procedure when a certain event occurs in this table. Events can be either an insert,
an update or a delete operation. Triggers can be specified to fire before events are
attempted or after the events have been completed. In the latter situation, the state of
the database is evaluated after the event completion and, in case the trigger constraints
are violated, an exception is raised and a rollback operation is performed. If a trigger
is marked for each row, it is called once for every row that the operation modifies,
but a trigger that is marked for each statement, only executes once for any given
operation, regardless of how many rows it modifies.

To implement integrity constraints on spatial relationships, AST-PostGIS re-
quires that a trigger execute one of the custom procedures and be configured to fire
after an event occur and be marked with for each statement. The table associated
with the trigger must also be one of the tables involved in the relationship. In case of a
spatial aggregation relationship, the table associated must be the one that represents
the part of the relationship. For arc-node relationships, the associated table can be
either the arc or the node of the relationship. If it is the arc, the trigger blocks arc
insertions or updates if there are no two nodes connected to them. If the associated
table is a node, the trigger blocks nodes not connected to any arc. Spatial relationship
triggers can also be associated to both tables of the relationship, but the choice of the
table changes how the constraints are applied to the relationship.

The type of the operation must also be chosen according to the relationship on
which the trigger is being applied. Arc-node networks and spatial relationships re-
quire the trigger to fire after insert and update operations, while spatial aggregations
demand all three operations (insert, update and delete).

Besides having the name of the table associated directly with the trigger, the
names of both tables must also be passed to the procedure as a parameter. Although
this requirement is a bit redundant, it is necessary for the trigger to identify which is
the other table involved in the relationship. Furthermore, as feature tables can have
multiple geometric columns, the name of these columns, associated in the relationships,
must be passed to the procedure to avoid ambiguity. The order of the parameters is
also important. For example, spatial aggregation trigger requires the part table name
to be passed as the first parameter along with its geometric column name as the
second parameter. Followed by the whole table name, as third parameter, and its the
geometric column name, as fourth parameter. Listing 4.1 shows how a trigger for a
spatial aggregation can be created.

The procedure ast_arcnodenetwork is polymorphic and admits two configurations
for the parameters. When used with an arc-node network, the procedure requires four
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CREATE TRIGGER trigger_name
AFTER INSERT OR UPDATE OR DELETE
ON part_tbl
FOR EACH STATEMENT EXECUTE PROCEDURE

ast_aggregation(
'part_tbl ', 'part_geom ',
'whole_tbl ', 'whole_geom '

);

Listing 4.1: Aggregation Trigger

CREATE TRIGGER trigger_name
AFTER INSERT OR UPDATE
ON [ arc_tbl | node_tbl ]
FOR EACH STATEMENT EXECUTE PROCEDURE

ast_arcnodenetwork(
'arc_tbl ', 'arc_geom ',
'node_tbl ', 'node_geom '

);

Listing 4.2: Arc-Node Trigger

parameters, which are (1) the name of arc table, (2) the name of geometric column
(must be of type ast_uniline or ast_biline), (3) the name of table representing a node,
and (4) the name of the column of the node geometry, whose type is ast_node. The
configuration of a trigger and its procedure to a arc-node network is illustrated in
Listing 4.2. When the procedure is used with an arc-arc network relationship, only
two parameters are accepted, which are (1) the arc table’s name and (2) its geometric
column.

AST-PostGIS considers a set of 12 different spatial relationships between two
georeferenced classes. What differentiates one type of relationship from another is the
relationship operator passed to the trigger procedure.

AST-PostGIS supports the minimum set of spatial relationship operators, iden-
tified by Clementini et al. [1993] and adopted by OMT-G [Davis Jr. et al., 2005],
from which all others can be specified: Crosses, Disjoint, Overlaps, Touches and
Within. Besides them, the extension considers the larger set of spatial relationships
(rules RT, described in Section 3.2.5) for convenience. This includes relationships such
as Contains, ContainsProperly, Covers, CoveredBy and Intersects, which are
in fact special cases of the five basic relationships, but due to the common use in prac-
tice, they should be available along with the minimum set. In addition, the two metric
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CREATE TRIGGER trigger_name
AFTER INSERT OR UPDATE
ON a_table
FOR EACH STATEMENT EXECUTE PROCEDURE

ast_spatialrelationship(
'a_table ', 'a_geom ',
'b_table ', 'b_geom ',
'spatial_relationship ', <'distance '>

);

Listing 4.3: Spatial Relationship Trigger

spatial relationships are admitted: Distant and Near. These require as a parameter
the value of the distance in which the relationship occurs.

The parameters passed to ast_spatialrelationship are: (1) table A name, (2)
geometry A name, (3) table B name, (4) geometry B name, and (5) spatial relationship
operator. When the spatial relationship is Distant or Near, a sixth parameter is
admitted with the value of the distance. Listing 4.3 illustrates the trigger configuration
for a topological relationship. This trigger requires to be associated to table A, whose
name is passed as a parameter after the statement ON.

In PostgreSQL, triggers are only fired if an event ensues on the table to which they
are associated. A problem arises when users alter the other table of the relationship, if
there is no trigger on that table to catch the event. This operation can lead the spatial
relationship to an inconsistent state. For instance, consider an arc-node relationship
on which the trigger was created associated to the arc table. This trigger ensures that
every arc instance, stored in the table, is connected to two nodes from the node table.
However, if a user deletes a node on the node table connected to an arc, no trigger
would catch and block this operation, leaving an arc connected to only one node. This
situation violates rule R9, defined in Section 3.2.

The aforementioned problem is addressed by AST-PostGIS by creating a sec-
ond trigger associated to the other table of the relationship. This auxiliary trigger
is implemented automatically, when the trigger written by the user is created. This
trigger is configured to fire only after delete events for arc-node networks and spatial
relationships, and update and delete events for spatial aggregations.
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Table 4.2: Consistency check functions supported by AST-PostGIS

Spatial relationship Consistency check function

Spatial
Relationship

ast_isSpatialRelationshipValid (a_tbl text, a_geom text,
b_tbl text, b_geom text, relationship text)

ast_isSpatialRelationshipValid (a_tbl text, a_geom text,
b_tbl text, b_geom text, relationship text, dist real)

Arc-Node Network ast_isNetworkValid (arc_tbl text, arc_geom text,
node_tbl text, node_geom text)

Arc-Arc Network ast_isNetworkValid (arc_tbl text, arc_geom text)

Spatial Aggregation ast_isSpatialAggregationValid (part_tbl text, part_geom text,
whole_tbl text, whole_geom text)

SELECT ast_isNetworkValid( arguments );

Listing 4.4: Usage of the consistency check function for network relationship

4.3 Consistency Check Functions

The spatial integrity constraints introduced in the previous subsection have to be ap-
plied when a database is created and before any data is stored. They work by checking
data operation events (like insertions, updates and deletions) when they occur. To ver-
ify a non empty spatial database for violations on spatial relationships, AST-PostGIS
provides consistency check functions, as shown in Table 4.2. These functions can be
called before the initial enforcement of constraints, and they not only inform if the
spatial relationship is invalid, but also identify the geometries that cause the violation.

The consistency check functions are not executed by triggers. Instead, they are
called by a straightforward SELECT statement, omitting the FROM clause as shown
in Listing 4.4. Just like the trigger procedures described in last subsection, consistent
check functions also require parameters, which are the same as in the procedures.

The ast_violation_log table is used by the consistency check functions to record
information about the inconsistency encountered on the the spatial relationships. The
schema of the table is shown in Figure 4.1. This table was designed to support the
necessary information for the recovery of inconsistencies. It stores the type of relation-
ship that was violated, a description with information about the rows related to the
error, and also the geometry that causes the error.
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Figure 4.1: AST-PostGIS log table schema

4.4 Summary of limitations

AST-PostGIS has three known limitations, mostly due to the way spatial representa-
tions and relationships are implemented in a RDBMS extension.

First, the triggers that create integrity constraints for relationships require a rigid
statement structure in their creation. The triggers must be specified with different
statements for each relationship type, as explained in Section 4.2. This is necessary to
overcome the limitations imposed by PostgreSQL/PostGIS in the support for spatial
concepts. It would be simpler, instead, if integrity constraints for spatial relationships,
networks and aggregations could be specified using the DDL, analogously to the FOR-
EIGN KEY statement for referential integrity in SQL, with the necessary verifications
included in the DBMS’s code. In order to overcome this problem, AST-PostGIS runs
scripts to check if the trigger statements are correct during their creation processes,
and raises clarifying exceptions if not.

The trigger procedures, introduced by our extension to add integrity constrains
on spatial relationships, receive as parameters not only the names of the feature ta-
bles involved in the relationship, but also the names of their corresponding geometric
columns. These parameters are required to avoid ambiguity problems when feature
tables have multiple georeferenced columns, although in most cases there is only one
geometric column per table. Using the geometry_columns view in PostGIS does not
resolve this problem.

The third limitation regards the lack of spatial boundaries for geo-fields in OMT-
G. Without an indication of the limits of the space of interest for the application,
AST-PostGIS cannot adequately check the planar enforcement rule (R1). OMT-G
conceptual schemas that involve geo-fields should (as a good practice) include a class
to represent a frame of reference for the application’s spatial limits, but the model does
not include any primitive for that purpose.
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Case Study: Urban geographic
database

In order to illustrate the use of AST-PostGIS, we present in this section an implemen-
tation of a small spatial database schema in PostgreSQL/PostGIS, using the advanced
spatial types and integrity constraints described in the previous chapter. The schema
was composed in the online interactive design tool, OMT-G Designer [Lizardo and
Davis Jr., 2014] that is capable of automatically mapping the OMT-G diagram to
PostGIS using AST-PostGIS, generating a complete set of DDL commands and trig-
gers in a script.

In Section 5.1, we introduce the conceptual model for an urban cadastral database
system and explain the semantics and spatial integrity constraints that can be observed
in the example. Next, in Section 5.2, we show how this example is mapped to the
physical schema using the elements of our SQL extension. Finally, in Section 5.3, we
present the responses of AST-PostGIS to data updates that violate spatial integrity
constraints.

5.1 Conceptual schema

Figure 5.1 shows a conceptual schema fragment of an urban cadastral database system.
Its class diagram includes most of the primitives defined in OMT-G and we can observe
several spatial integrity constraints in it.

The schema fragment corresponds to the geographic area of a municipality. The
city can be represented as a point or as a polygon, by its boundaries. These boundaries
contain a number of blocks, which are in turn subdivided into parcels. Each parcel is
represented by its polygonal boundary and can be occupied by residence, commerce
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Figure 5.1: OMT-G schema fragment for an urban geographic application
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and industry buildings. Due to environmental regulations, industries cannot be built
within 800 meters of nature reserves. Building addresses are formed by concatenating
the thoroughfare name to the street number. Each address is defined as a symbol, and
is to be located inside the parcel area. A thoroughfare is modeled as an aggregation
of street segments, thereby composing the arcs in a street network. Thoroughfare
intersections are represented by nodes at the crossings. The municipality space is also
entire subdivided into neighborhoods. In addition, relief is represented by a set of
isolines, a geo-field that covers the whole municipal territory.

Several spatial integrity constraints can be derived from the semantics of this
schema. Spatial aggregation primitives have been used in the relationship between city
boundaries and neighborhoods, and between blocks and parcels. This rule ensures that
each parcel, for example, must be contained in only one block instance. Parcels must
be adjacent to the other, ensuring no overlapping and no empty spaces. In addition,
parcel’s boundaries must be entirely contained inside the block’s boundary. This means,
instances from blocks and parcels must be of the same size and must exist in the same
location. Same rules are applied between city boundaries and neighborhoods.

Spatial relationship integrity constraints are also seen in this example. Block areas
must be inside the city boundaries. Parcels’ polygonal areas contain addresses and
buildings, which can either be residential, commerce or industry. Between industries
and nature reserves we notice a special type of topological relationship constraint. In
this case, industries locations must be farther than 800 meters from nature reserves
instances. A primitive of a network relationship is used to represent the street network.
This primitive encapsulates the cardinality of the relationship and defines that each
street must be connected to two nodes, represented by the Crossing class.

The integrity constraints that must be observed in the physical implementation
are summarized in Table 5.1.

5.2 Physical implementation

The SQL snippet in Listing 5.1 shows how part of the conceptual schema illustrated
in Figure 5.1 can be mapped to a PostgreSQL/PostGIS database. In this example,
all tables, but Thoroughfare, are georeferenced and have a geometric column declared
with the advanced spatial types supported by AST-PostGIS. As City can be represented
either as a point or as a polygon, its table was created with two geometric columns:
geom_point and geom_boundary. Due to a conventional association and a conventional
aggregation, tables Address and Street_Segment have foreign keys referencing the table
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Table 5.1: Spatial integrity constraints derived from the schema in Figure 5.1

Rule Classes

R1 Relief, Neighborhood
R2 Relief
R4 Neighborhood
R6 Street segment
R7/R8 City boundary, Block, Parcel, Building, Nature reserve
R9 Street Network (Crossing/Street segment)
R11 Block/Parcel
RT Block within City boundary,

Building within Parcel,
Parcel contains Address,
Nature reserve distant(800) Industry

Thoroughfare. The geometric columns of these two tables are of types ast_point and
ast_biline, respectively. To keep the example concise, we refrain from showing the code
necessary to construct the indexes on the geometric columns of each relation, but the
complete SQL schema is available in Appendix A.

The code snippet in Listing 5.2 illustrates how integrity constraints are imple-
mented for the two spatial aggregation primitives presented in the conceptual schema.
A trigger for each aggregation is created firing the ast_aggregation procedure after
every insertion, update or deletion of data on Parcel and Neighborhood tables. Both
tables represent the Part of the “Whole-Part” aggregation. This procedure receives as
parameters the names of the two tables involved in the spatial aggregation together
with their geometric columns. In the case of the aggregation between tables City and
Neighborhood, the geom_boundary column of City is passed to the procedure as a pa-
rameter. Those triggers ensure no overlaps between parcels and neighborhoods and
guarantee that the geometry of blocks and the geometry of city boundaries will be
fully covered by the geometry of the parcels and neighborhoods, respectively.

In a similar way, spatial integrity constraints for spatial relationships are also
implemented with triggers. In this case, the procedure called is ast_spatialrelationship,
which receives as parameters the name of the two tables involved in the relationship
along with their geometric column. Moreover, the name of the spatial relationship
operator is also passed to the procedure as the fifth parameter. In this example,
the spatial relationship ‘within’ is passed to the relationship between industries and
parcels and between blocks and cities; ‘contains’ is passed to the spatial relationship
between parcels and addresses; and ‘distant’ is passed to the relationship between
nature reserves and industries. The spatial relationship ‘distant’ requires the value of
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-- Table City
CREATE TABLE City (

id integer PRIMARY KEY ,
name varchar (30),
geom_point ast_point ,
geom_boundary ast_polygon

);
-- Conventional table Thoroughfare
CREATE TABLE Thoroughfare (

name varchar (50) PRIMARY KEY ,
speed_limit integer

);
-- Table Address
CREATE TABLE Address (

number integer ,
thoroughfare varchar (50)

REFERENCES Thoroughfare(name),
geom ast_point

);
-- Table Street_Segment
CREATE TABLE Street_Segment (

paviment varchar (10),
thoroughfare varchar (50)

REFERENCES Thoroughfare(name),
geom ast_biline

);

Listing 5.1: SQL schema for the tables definition

-- Spatial aggregation between Block and Parcel
CREATE TRIGGER aggregation_block_parcel
AFTER INSERT OR UPDATE OR DELETE ON Parcel
FOR EACH STATEMENT EXECUTE PROCEDURE
ast_aggregation('Parcel ', 'geom', 'Block', 'geom');

-- Spatial aggregation between City and Neighborhood
CREATE TRIGGER aggregation_boundary_neighborhood
AFTER INSERT OR UPDATE OR DELETE ON Neighborhood
FOR EACH STATEMENT EXECUTE PROCEDURE
ast_aggregation('Neighborhood ', 'geom', 'City',

'geom_boundary ');

Listing 5.2: Integrity constraints implementation for aggregations
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-- Spatial relationship between Industry and Parcel
CREATE TRIGGER spatial_industry_parcel
AFTER INSERT OR UPDATE ON Industry
FOR EACH STATEMENT EXECUTE PROCEDURE

ast_spatialrelationship('Industry ', 'geom',
'Parcel ', 'geom', 'within ');

-- Spatial relationship between Block and City
CREATE TRIGGER spatial_block_city
AFTER INSERT OR UPDATE ON Block
FOR EACH STATEMENT EXECUTE PROCEDURE

ast_spatialrelationship('Block', 'geom',
'City', 'geom_boundary ', 'within ');

-- Spatial relationship between Parcel and Address
CREATE TRIGGER spatial_parcel_address
AFTER INSERT OR UPDATE ON Parcel
FOR EACH STATEMENT EXECUTE PROCEDURE

ast_spatialrelationship('Parcel ', 'geom',
'Address ', 'geom', 'contains ');

-- Spatial relationship between Nature and Industry
CREATE TRIGGER spatial_nature_distant
AFTER INSERT OR UPDATE ON Nature_Reserve
FOR EACH STATEMENT EXECUTE PROCEDURE

ast_spatialrelationship('Nature_Reserve ',
'geom', 'Industry ', 'geom', 'distant ', '800');

Listing 5.3: Integrity constraints implementation for spatial relationships

the distance, which is also passed as a parameter.

Listing 5.3 shows the creation of these triggers for part of the spatial relationships
presented in the schema. They ensure, for example, that no industry can be created
outside a parcel, or that a parcel cannot be created without an address. Exceptions
would be raised by these triggers if a block is not created inside the city boundaries
or if an industry is stored in the database without respecting the clearance distant of
nature reserves, blocking the invalid data updates. The complete triggers creation for
all spatial relationships are available in Appendix A.

Lastly, the trigger in Listing 5.4 implements the spatial integrity constraints for
the street network formed by crossing nodes and street segments. The trigger is fired af-
ter any insertion or update of data on table Street_Segment and execute the procedure
ast_arcnodenetwork. This procedure ensures that each segment is always connected
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-- Arc -Node network between Street_Segment and Crossing
CREATE TRIGGER network_street_crossing
AFTER INSERT OR UPDATE ON Street_Segment
FOR EACH STATEMENT EXECUTE PROCEDURE

ast_arcnodenetwork('Street_Segment ', 'geom',
'Crossing ', 'geom');

Listing 5.4: Integrity constraint implementation for arc-node network

to two crossings. In case of an inconsistent update or insertion of data, the procedure
raises an exception and rolls back the whole operation. As shown in the listing, the
procedure receives as parameter the arc and node tables of the network, along with
their geometric columns.

5.3 AST-PostGIS responses

Chrisman [1991] argues that error is an integral part of spatial information processing
and should be recognized as a fundamental dimension of data. This is because no
representation captures a perfect replica of something as complex as the Earth. These
forcible deviations between a representation and actual circumstances constitute error.
Of course, one goal of any GIS specialist is to avoid needless error. By directly recog-
nizing errors may be possible to confine them to acceptable limits. In this section, we
show how AST-PostGIS identifies and avoids errors during data insertions on database
that violate the spatial integrity constraints.

Here we present tests that approach three different errors that can occur in a
real scenario for the urban cadastral database system modeled in Section 5.1, and
implemented in Section 5.2. The first test shows a spatial aggregation mistake, the
second is a spatial relationship breach and the third is a arc-node network violation.
We explain each situation with 3D illustrations, and present screenshots of the console
showing the responses of AST-PostGIS for each case.

Figure 5.2 shows a 3D model of a small urban scenario in which all geographical
objects satisfy the integrity constraints defined in the conceptual schema presented in
Figure 5.1. For instance, we can notice a street network formed by three crossings.
This street network interconnects four urban blocks, which in turn are formed by an
aggregation of parcels of different sizes. The parcels are adjacent to each other, without
overlapping or gap among them. Inside some of the parcels, there are constructions
of houses, industrial sheds and commercial buildings. On the top part of the figure,
there is a green linear park, which represents a natural reserve and it is distant from
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Figure 5.2: Overview of urban scenario without integrity constraints violations.

the industries located in the bottom left block. Satisfying the clearance restriction
between industries and natural reserves.

From this urban scenario, we extract three examples from where a human typo
error during a data insertion or even a wrong accuracy measurement could lead to a
inconsistent state of the database.

5.3.1 Spatial aggregation violation

The first situation, illustrated in Figure 5.3, is an attempt to register a parcel in the
spatial database, whose area extrapolates the limits of the block and overlaps the
street line. According to the restriction (R11) for spatial aggregation, formalized in
Section 3.2.4, the geometry of the block must fully cover the geometries of the parcels.
In this manner, no area of parcels can stay outside the block limits.

Figure 5.3: Spatial aggregation violation: a parcel extrapolates the block limits.

In an attempt to insert this parcel in a database extended with AST-PostGIS, our
extension blocks the transaction and prints an error message explaining the integrity
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constraint violation. The error message is shown in detail on the console screenshot
illustrated in Figure 5.4.

Figure 5.4: AST-PostGIS response for a spatial aggregation violation.

5.3.2 Spatial relationship violation

Another situation prone to errors, is when registering the construction area for a build-
ing. According to the conceptual schema, every building (regardless of being residential,
commercial or industrial) must be constructed within a unique parcel. Figure 5.5 shows
a house being registered in the database with area occupying two adjacent parcels.

Figure 5.5: Spatial relationship violation: building is not within the parcel area.

AST-PostGIS prevents this error by firing a trigger during data insertion and
asserts the spatial integrity constraint (within) defined in the conceptual schema. Fig-
ure 5.6 shows the console screenshot with AST-PostGIS report for this violation.

5.3.3 Arc-node network violation

In this last example, we show the AST-PostGIS response for an arc-node network
integrity constraint error. According to the restriction (R9) of Section 3.2.3, street
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Figure 5.6: AST-PostGIS response for a spatial relationship integrity constraint vio-
lation.

segments (arcs) must intercept exactly two crossings (nodes). Figure 5.7 illustrates
this example by showing the street network with a missing crossing.

Figure 5.7: Arc-Node network violation: streets segments (arcs) do not intersect
crossings (nodes)

AST-PostGIS identifies this error and reports the error message shown in the
console screenshot illustrated in Figure 5.8.

Figure 5.8: AST-PostGIS response for a street network integrity constraint violation.
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Conclusions and Future Work

This work introduced AST-PostGIS, an open source PostGIS extension that incorpo-
rates advanced spatial data types and implements spatial integrity constraints on a
RDBMS. Our extension reduces the distance between the conceptual design and the
physical implementation of spatial databases. AST-PostGIS offers advanced repre-
sentations for geo-object and geo-field geometries, along with procedures to assert the
consistency of spatial relationships during data insertions, updates and deletes. Special
procedures supported by the extension can be used to check the consistency of database
before enforcing spatial integrity constraints for the first time, recording inconsistencies
in a special log table.

AST-PostGIS was written in PL/pgSQL and is currently available for Post-
greSQL/PostGIS. However, it can be adapted with relative simplicity to any other
extensible spatial RDBMS, since AST-PostGIS mechanisms use the primitive types
standardized by the OGC. The advanced spatial data types can be handled as any
RDBMS type, i.e., they can be used as column definitions of tables, as variables in
scripts or as arguments of functions or stored procedures. Applying the spatial in-
tegrity constraints requires complex triggers, but this complexity was necessary to
overcome the limitations of the RDMBS for supporting spatial relationships. A design
tool is capable of generating complete DDL scripts, including the necessary triggers,
from OMT-G class diagrams.

The successful implementation of AST-PostGIS shows that SQL-based RDBMSs
can evolve in order to natively support spatial data, along with the necessary functions,
integrity constraints and tools, without resorting to extensions.

Our PostGIS extension is functional and simple to use. To demonstrate its op-
eration in this work, we presented a compact but comprehensive example of an urban
cadastral system. In this test, we first presented the conceptual schema fragment that
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models a geographic area of a municipality. Then we showed the physical implementa-
tion of this schema by using the AST-PostGIS features. Finally, we took three cases of
spatial integrity violations that might occur, and showed how AST-PostGIS responds
to them.

Future work includes creating benchmarks to evaluate how AST-PostGIS and
its advanced spatial data types and functions perform with larger database schemas.
Spatial data demands more complex data structures and have a potentially slower
performance when compared to traditional data. Therefore, it is important to evaluate
the performance of each procedure of AST-PostGIS individually. We also intend to use
AST-PostGIS consistency check functions to search for inconsistencies in production-
grade spatial datasets. Furthermore, we also plan to adapt AST-PostGIS for other
spatial RDBMSs, including proprietary systems, like Oracle Spatial.
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Appendix A

SQL schema for the urban
cadastral database

-- Table City

CREATE TABLE City (

id integer PRIMARY KEY ,

name varchar (30),

geom_point ast_point ,

geom_boundary ast_polygon

);

-- Table Relief

CREATE TABLE Relief (

altitude integer ,

geom ast_isoline

);

-- Table Block

CREATE TABLE Block (

zoning_type varchar (10),

geom ast_polygon

);

-- Table Parcel

CREATE TABLE Parcel (

id integer PRIMARY KEY ,

geom ast_polygon

);
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-- Table Residential

CREATE TABLE Residential (

buiding_id integer PRIMARY KEY ,

buiding_number integer ,

geom ast_polygon

);

-- Table Commerce

CREATE TABLE Commerce (

buiding_id integer PRIMARY KEY ,

buiding_number integer ,

name varchar (50),

activity varchar (50),

geom ast_polygon

);

-- Table Industry

CREATE TABLE Industry (

buiding_id integer PRIMARY KEY ,

buiding_number integer ,

name varchar (50),

production_type varchar (50),

geom ast_polygon

);

-- Table Nature_Reserve

CREATE TABLE Nature_Reserve (

name varchar (50) PRIMARY KEY ,

geom ast_polygon

);

-- Table Neighborhood

CREATE TABLE Neighborhood (

id integer PRIMARY KEY ,

name varchar (50),

geom ast_planarsubdivision

);
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-- Conventional table Thoroughfare

CREATE TABLE Thoroughfare (

name varchar (50) PRIMARY KEY ,

speed_limit integer

);

-- Table Address

CREATE TABLE Address (

number integer ,

thoroughfare varchar (50)

REFERENCES Thoroughfare(name),

geom ast_point

);

-- Table Street_Segment

CREATE TABLE Street_Segment (

paviment varchar (10),

thoroughfare varchar (50)

REFERENCES Thoroughfare(name),

geom ast_biline

);

-- Table Crossing

CREATE TABLE Crossing (

geom ast_node

);

Listing A.1: Tables definition
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-- City Point

CREATE INDEX SIDX_City_Point

ON City

USING GIST (geom_point );

-- City Boundary

CREATE INDEX SIDX_City_Boundary

ON City

USING GIST (geom_boundary );

-- Relief

CREATE INDEX SIDX_Relief

ON Relief

USING GIST (geom);

-- Block

CREATE INDEX SIDX_Block

ON Block

USING GIST (geom);

-- Parcel

CREATE INDEX SIDX_Parcel

ON Parcel

USING GIST (geom);

-- Residential

CREATE INDEX SIDX_Residential

ON Residential

USING GIST (geom);

-- Commerce

CREATE INDEX SIDX_Commerce

ON Commerce

USING GIST (geom);

-- Industry

CREATE INDEX SIDX_Industry

ON Industry

USING GIST (geom);

-- Nature_Reserve

CREATE INDEX SIDX_Nature_Reserve

ON Nature_Reserve

USING GIST (geom);
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-- Neighborhood

CREATE INDEX SIDX_Neighborhood

ON Neighborhood

USING GIST (geom);

-- Address

CREATE INDEX SIDX_Address

ON Address

USING GIST (geom);

-- Street_Segment

CREATE INDEX SIDX_Street_Segment

ON Street_Segment

USING GIST (geom);

-- Crossing

CREATE INDEX SIDX_Crossing

ON Crossing

USING GIST (geom);

Listing A.2: Indexes definition
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-- Spatial aggregation between Block and Parcel

CREATE TRIGGER aggregation_block_parcel

AFTER INSERT OR UPDATE OR DELETE ON Parcel

FOR EACH STATEMENT EXECUTE PROCEDURE

ast_aggregation('Parcel ', 'geom', 'Block', 'geom');

-- Spatial aggregation between City and Neighborhood

CREATE TRIGGER aggregation_boundary_neighborhood

AFTER INSERT OR UPDATE OR DELETE ON Neighborhood

FOR EACH STATEMENT EXECUTE PROCEDURE

ast_aggregation('Neighborhood ', 'geom', 'City',

'geom_boundary ');

-- Spatial relationship between Residential and Parcel

CREATE TRIGGER spatial_residential_parcel

AFTER INSERT OR UPDATE ON Residential

FOR EACH STATEMENT EXECUTE PROCEDURE

ast_spatialrelationship('Residential ', 'geom',

'Parcel ', 'geom', 'within ');

-- Spatial relationship between Commerce and Parcel

CREATE TRIGGER spatial_commerce_parcel

AFTER INSERT OR UPDATE ON Commerce

FOR EACH STATEMENT EXECUTE PROCEDURE

ast_spatialrelationship('Commerce ', 'geom',

'Parcel ', 'geom', 'within ');

-- Spatial relationship between Industry and Parcel

CREATE TRIGGER spatial_industry_parcel

AFTER INSERT OR UPDATE ON Industry

FOR EACH STATEMENT EXECUTE PROCEDURE

ast_spatialrelationship('Industry ', 'geom',

'Parcel ', 'geom', 'within ');
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-- Spatial relationship between Block and City

CREATE TRIGGER spatial_block_city

AFTER INSERT OR UPDATE ON Block

FOR EACH STATEMENT EXECUTE PROCEDURE

ast_spatialrelationship('Block', 'geom',

'City', 'geom_boundary ', 'within ');

-- Spatial relationship between Parcel and Address

CREATE TRIGGER spatial_parcel_address

AFTER INSERT OR UPDATE ON Parcel

FOR EACH STATEMENT EXECUTE PROCEDURE

ast_spatialrelationship('Parcel ', 'geom',

'Address ', 'geom', 'contains ');

-- Spatial relationship between Nature and Industry

CREATE TRIGGER spatial_nature_distant

AFTER INSERT OR UPDATE ON Nature_Reserve

FOR EACH STATEMENT EXECUTE PROCEDURE

ast_spatialrelationship('Nature_Reserve ',

'geom', 'Industry ', 'geom', 'distant ', '800');

-- Arc -Node network between Street_Segment and Crossing

CREATE TRIGGER network_street_crossing

AFTER INSERT OR UPDATE ON Street_Segment

FOR EACH STATEMENT EXECUTE PROCEDURE

ast_arcnodenetwork('Street_Segment ', 'geom',

'Crossing ', 'geom');

Listing A.3: Triggers definition
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