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Resumo

O estudo de relacionamentos sociais tem sido utilizado para construir modelos rigorosos
que revelam a evolução de redes sociais e seus dinamismos. Uma propriedade dos rela-
cionamentos sociais é a força, a qual tem sido aplicada em diferentes contextos como
por exemplo: difusão de informação, análises de padrões em logs de comunicação e
avaliação da produtividade científica de pesquisadores. Especialmente, analisar a força
dos relacionamentos permite investigar como diferentes relacionamentos desempenham
papéis distintos e identificar o impacto em nível micro e macro na rede. O objetivo
desta tese é medir a força dos relacionamentos de coautoria em redes sociais acadêmi-
cas não-temporais e temporais. As principais contribuições são: (1) uma revisão do
estado-da-arte e uma taxonomia para redes sociais profissionais, que contextualizam o
problema abordado neste trabalho; (2) uma análise de como propriedades topológicas
relacionam-se com a força dos relacionamentos, pois nossos resultados mostram que
diferentes propriedades topológicas explicam variações na força dos relacionamentos de
coautoria, dependendo da área de pesquisa; (3) uma nova métrica chamada tieness que
é fácil de calcular e melhor diferencia a força dos relacionamentos em diferentes níveis
em redes sociais de coautoria não-temporais; (4) uma análise da dinâmica das forças
dos relacionamentos ao longo do tempo por meio de dois algoritmos, um já existente
e um proposto aqui, chamado STACY (Strength of Ties Automatic-Classifier over the
Years); e (5) um novo modelo computacional chamado temporal_tieness que direta-
mente classifica com baixo custo computacional a força dos relacionamentos em redes
sociais temporais de coautoria.

Palavras-chave: Rede Social, Força dos Relacionamentos, Redes Temporais.
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Abstract

The study of social ties has lead to build rigorous models that reveal the evolution of
social networks and their dynamism. A property related to social ties is the strength of
ties, which has been largely explored in different contexts, such as information diffusion,
analyses of patterns in communication logs and evaluation of scientific researchers pro-
ductivity. Specially, analyzing tie strength allows investigating how distinct relation-
ships play different roles and identifying impact at micro-macro levels in the network.
In this thesis, the goal is to measure the strength of co-authorship ties in non-temporal
and temporal real academic social networks. In summary, the main contributions are:
(1) a survey and a taxonomy of social professional networks that contextualize the
problem addressed in this work; (2) an analysis of how topological properties relate
to the strength of ties in non-temporal social networks, as our results show different
topological properties explain variations in the strength of co-authorship ties, depend-
ing on the research area; (3) a new metric called tieness that is easy to calculate and
better differentiates tie strength in different levels in non-temporal co-authorship so-
cial networks; (4) an analysis of tie strength dynamism over time by measuring such
strength with an existing algorithm in the state of the art and a new one proposed
here, called STACY (Strength of Ties Automatic-Classifier over the Years), which bet-
ter identifies strong ties; and (5) a new computational model called temporal_tieness
that directly classifies the strength of ties in temporal co-authorship social networks
with low computational cost.

Keywords: Social Network, Tie Strength, Co-authorship, Temporal Networks.
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Chapter 1

Introduction

Social networks (SN) are complex structures that describe individuals in any social
context. Theoretically, they can be mapped to graphs where nodes represent the in-
dividuals and edges connect nodes according to the individuals relationships. Then,
properties and features can be extracted from the graph as well as metrics can be
applied to nodes and edges in order to better understand the individuals social be-
havior [Barabási, 2016]. Finally, there are many interesting applications based on
such networks, including (but definitely not limited to) ranking individuals and their
groups, link prediction, information diffusion, recommendation and pattern analysis
(e.g., [Bagci and Karagoz, 2016; Brandão and Moro, 2017a; Brandão et al., 2013; Freire
and Figueiredo, 2011; Hristova et al., 2016; Luna et al., 2013; Seo et al., 2017]).

Furthermore, Social Networks Analysis has evolved from a Social Sciences re-
search area to a Computer Science-based Multidisciplinary research area. Despite the
many analyses possible, there are two main aspects to any research at both perspec-
tives (Social and Computer Science): (i) how to collect and manage social data, and
(ii) how to build and analyze the social networks derived from such data.

Also, a specific perspective of evaluation is given by academic social networks, in
which nodes represent researchers and edges their co-authorships and academic rela-
tions. Building the structure of such networks is relatively simple, as the nodes are given
by any set of researchers who are connected through their common published work,
for example. However, one central aspect of more complex analysis is the strength of
the ties among researchers, as pairs of researchers have stronger or weaker connections
depending on the degree of academic relationship. Such degree of relationship (or tie
strength) may be defined according to Granovetter’s theory: the ties are weak when
they serve as bridges in the network by connecting users from different groups, and
strong when they link individuals in the same group (community) [Granovetter, 1973].

3



4 Chapter 1. Introduction

Figure 1.1: Thesis overview: measuring tie strength in non-temporal and temporal
co-authorship social networks.

Starting from measuring tie strength in non-temporal (static) co-authorship SNs,
this thesis moves forwards to temporal (dynamic) co-authorship social networks. Non-
temporal co-authorship social networks do not consider time as an aspect of the rela-
tionships, whereas temporal social network do. In this context, studying the strength
of ties allows to identify patterns of co-authorship over time, to detect aspects that
influence it, to determine a limit of co-authorship in a period, and so on.

Tie strength may be measured by a combination of the amount of time, the coop-
eration intensity and the reciprocal services that characterize the tie [Granovetter, 1973;
Rana et al., 2014]. Such strength may also be measured by using the neighborhood over-
lap metric (also known as topological overlap or Jaccard Similarity Coefficient) [Easley
and Kleinberg, 2010], a numerical quantity that captures the total number of collabo-
rations between the two ends of each edge. This metric has been used for uncovering
the community structure [Li et al., 2012], analyzing structural properties of a large
network of mobile phone users [Akoglu and Dalvi, 2010] and measuring tie strength
[Brandão and Moro, 2015; Easley and Kleinberg, 2010; Onnela et al., 2007; Pan and
Saramäki, 2012; Vaz de Melo et al., 2015]. In this thesis, neighborhood overlap is the
base to the development of new tie strength metrics and algorithms.

Figure 1.1 summarizes the overview of this thesis. Given a dataset, we build
a non-temporal co-authorship SN and a temporal co-authorship social network by
considering the frequency of interactions between pairs of people as the weight of the
edges. Note that in temporal social networks, each node is a person and there is an edge
between two nodes in a given time if they share any particular relationship in that time.
Then, we measure the strength of edges (ties) by considering six approaches: three
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existing ones (neighborhood overlap, absolute frequency of interaction and RECAST
– Random rElationship ClASsifier sTrategy), and three proposed by us (tieness1, fast-
RECAST and STACY – Strength of Ties Automatic-Classifier over the Years). Note
that RECAST (consequently, fast-RECAST) and STACY use an additional feature
called edge persistence [Nicosia et al., 2013; Vaz de Melo et al., 2015]. Such feature has
been used to measure tie strength in mobile networks [Akoglu and Dalvi, 2010; Raeder
et al., 2011], but not applied in co-authorship social networks. Thus, in this thesis we
define a computational model and algorithm to automatically infer the strength of the
ties in non-temporal and temporal co-authorship social networks.

1.1 Relevance

Extracting and analyzing relevant knowledge from social networks provide many chal-
lenges for developers, users and technology. For developers, after collecting data from
collaborators, it is necessary to model, store and manage them within databases with
proper interface to whatever application uses them. For users, when they need to ob-
tain relevant knowledge from these networks. For technology, which should provide the
necessary support for implementation of methodologies. For instance, exploring collab-
orative relations can improve the accuracy and quality of existing methods that combine
bibliometry and academic social analysis. In such a context, this thesis presents two
main contributions: (i) to define a metric that represents the strength of the relation-
ship between pairs of collaborators in non-temporal co-authorship social network; and
(ii) to develop an algorithm that automatically classifies the strength of ties in tem-
poral co-authorship social networks. Moreover, we derive a computational model with
low computational cost from this algorithm that can be used to measure the strength
of co-authorship ties in temporal networks.

Specifically, initial studies of social networks have emphasized the importance of
properly measuring the strength of social ties to understand social behaviors [Brugge-
man, 2016; Granovetter, 1973; Newman, 2001a]. Also, the study of social ties has
been used to build rigorous models that reveal the evolution of social networks and the
dynamics of information exchange [Aiello et al., 2014]. More recently, analyzing tie
strength has allowed to investigate the different roles of relationships including ranking
for influence detection [Freire and Figueiredo, 2011], identify impact at micro-macro
levels in the network [Burt, 2010], its influence in patterns of communications [Wiese
et al., 2015] and team formation [Castilho et al., 2017].

1Tieness is an inspirational neologism based on the quality of being connected, tied.



6 Chapter 1. Introduction

Despite the importance of analyzing the strength of ties, there are not many
studies on evaluating how to measure it in scientific collaboration networks (also called
co-authorship networks). In such networks, nodes are researchers and there is an edge
between those pairs that have co-authored at least one scientific publication. Specif-
ically, studying the strength of co-authorship ties may reveal how its behaviors re-
late to research, and any application based on co-authorship patterns may benefit.
For instance, new strength-related metrics could help existing works on measuring re-
search productivity [Chan et al., 2016; Ductor, 2015], ranking researchers [Freire and
Figueiredo, 2011] and their graduate programs [Lopes et al., 2011], as well as recom-
mending collaborations [Brandão et al., 2013].

Furthermore, properly measuring the strength of co-authorship ties may help
to identify which collaborations are more influent to each researcher. For example,
if a researcher A collaborates with other researchers B and C, the strength of ties
reveals which one is more important to A, then allowing different studies, such as team
formation analyses. Also, researchers that form mostly weak (or strong) ties in the
social network may indicate different collaboration patterns. For example, a researcher
who has many collaborators through single papers, i.e., that person has collaborated
only once with many people.

Formally, we consider two definitions of tie strength in this thesis. The first one
is for non-temporal social networks, in which given a non-temporal graph G(V , E), a
tie (i, j) is likely to be strong if it has a high number of common neighbors or a large
co-authorship frequency. On the other hand, the tie (i, j) is likely to be weak if it
has few common neighbors or small co-authorship frequency. The second definition is
for temporal social networks, in which given a temporal graph Gk(Vk, Ek), where k is
the time step in which a co-authorship occurs, a tie (i, j) is likely to be strong if it is
present in Gk for most values of k, and likely to be weak if it is present in Gk for just
a few values of k.

One of the first notable studies covering tie strength was published by Granovetter
[1973]. He presents the importance of weak ties in SNs for various aspects, such as the
spread of information. Since then, the strength of ties has been studied in different
contexts with distinct goals [Brandão and Moro, 2015; Gupte and Eliassi-Rad, 2012;
Lopes et al., 2011; Silva et al., 2014]. However, few studies have addressed the strength
of ties in temporal social networks [Dasgupta et al., 2008; Karsai et al., 2014; Kostakos,
2009; Laurent et al., 2015; Nicosia et al., 2013].

Given the addition of temporal aspects, computing social networks properties and
their time-varying behavior constitutes a new challenge. For example, the clustering
coefficient of a network in time t1 is not necessarily the same in time t2, because some
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interactions appear and others perish over time. Also, social networks properties are
employed over different domains for distinct purposes, including (but not limited to)
recommend collaborators [Brandão et al., 2013; de Sousa et al., 2015; Lopes et al., 2010],
viral marketing [Subramani and Rajagopalan, 2003] and graduate programs evaluation
[Lopes et al., 2011]. Hence, those properties should represent reality in the best way
and consider the time dimension - as time is part of most realities. Furthermore, adding
time to any social model may interfere in the process of computing not only properties
and features but also complex calculations such as defining communities.

1.2 Hypothesis and Goals

Tie strength can be computed in different ways (for example, amount of time, co-
operation intensity and reciprocal services). Then, our main hypothesis is that such
strength can be better computed by considering the neighbors of individuals involved
in the relationship and combining it with other social networks properties (such as the
absolute frequency of interaction and edge persistence). Also, we claim that the time is
an important aspect to consider when measuring tie strength. Thus, the main goal of
this research is to propose, apply and validate new strategies to measure the strength
of co-authorship ties in non-temporal and temporal social networks. These are not
easy tasks as there is no ground truth to automatically evaluate the strength of ties
metrics. Hence, this general objective can be divided in five specific goals, defined by
the following research questions:

• Research Question 1 (RQ1): How to identify which aspects impact on the strength
of co-authorship ties? The analysis of aspects that affect the strength of collabo-
ration ties is important to better measure and represent such strength. According
to Granovetter’s theory, aspects related to the strength of ties are the amount
of time, the cooperation intensity and the reciprocal services. Indeed, analyz-
ing such strength based on a single absolute value from a metric may provide
misleading interpretations. We use statistical techniques to answer this question.

• Research Question 2 (RQ2): How to measure the strength of co-authorship ties
in non-temporal social networks? We note the strength of ties has long been
studied in different contexts, for example, to infer close relationships based on
communication logs [Wiese et al., 2015] and to investigate the spread of infor-
mation in social networks [Miritello et al., 2011]. However, previous works do
not analyze the best way to measure the strength of co-authorship ties. In this



8 Chapter 1. Introduction

thesis, we compare three non-temporal approaches: neighborhood overlap, abso-
lute frequency of interaction (also known as co-authorship frequency) and tieness
(our new metric). Note that we compare neighborhood overlap and tieness by
analyzing how both differentiate the strength of ties between pairs of researchers.

• Research Question 3 (RQ3): How to measure the strength of co-authorship ties in
temporal social networks? Considering the temporal aspect to measure social net-
work properties is a challenge due to the dynamism of nodes and their interactions
over time. In this thesis, we measure the strength of co-authorship ties in tempo-
ral networks by using tree different approaches: RECAST and fast-RECAST (a
multiprocessing version of RECAST), and STACY (our new algorithm). Then,
we derive a computational model from STACY to measure the strength of ties.
Also, we compare RECAST and STACY by investigating how they classify ties
that persist over time.

• Research Question 4 (RQ4): How is tie strength defined for temporal networks?
There are several measures of tie strength for non-temporal networks. For in-
stance, Dasgupta et al. [2008] consider an edge with high call frequency or call
volume (weight) as a strong tie, whereas Brandão and Moro [2015] define strong
ties as edges with high neighborhood overlap (also known as topological overlap).
In temporal networks, such definitions do not hold, since these values may vary
over time. In this thesis, we consider that a strong tie characterizes interactions
that are likely to appear in the future, whereas a weak tie occurs sporadically.

• Research Question 5 (RQ5): How much does the strength of ties vary over time?
Nicosia et al. [2013] claim that if two nodes are strongly (or weakly) connected
in a time t1, they will also be strongly (or weakly) linked in a time t2 where
t2 > t1. Here, we challenge such claim in the context of temporal co-authorship
SN. Investigating the strength of co-authorship ties may show how the authors
ties relate to research, and any application based on co-authorship patterns may
benefit. For example, new strength-related metrics could help existing works on
measuring research productivity [Ductor, 2015], ranking researchers [Freire and
Figueiredo, 2011] and their graduate programs [Lopes et al., 2011]. Moreover,
many studies observe edge features that are good indicators of tie strength, such
as edge persistence [Nicosia et al., 2013; Vaz de Melo et al., 2015], neighborhood
overlap [Brandão and Moro, 2015; Easley and Kleinberg, 2010; Vaz de Melo et
al., 2015] and Adamic Adar [Liben-Nowell and Kleinberg, 2007; Zignani et al.,
2016]. In this thesis, we analyze the dynamism of tie strength by observing four
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edge classes composed from two of the aforementioned metrics, namely edge per-
sistence and neighborhood overlap (the two metrics are part of RECAST and
fast-RECAST). These properties represent the regularity of interaction and the
similarity between people in a relationship. Then, we compare the results gener-
ated by these two metrics, which give four tie strength classes, with the results of
eight edge classes from the combination of edge persistence, neighborhood overlap
and co-authorship frequency, which compose STACY.

1.3 Contributions

The main contributions of this thesis are summarized as follows.

1. A new general taxonomy to social networks that helps to identify related work
in the area according to their main goal (necessary to all research questions).

2. An analysis of how nine topological properties affect the strength of co-authorship
ties when measured by neighborhood overlap (RQ1). Here, we present a multiple
regression model to predict the value of neighborhood overlap by using different
topological properties.

3. A nominal scale to neighborhood overlap for classifying a tie as weak or strong
(RQ2). We define such scale by analyzing the distribution of neighborhood over-
lap and comparing the values of neighborhood overlap with the absolute frequency
of interaction. Then, we present four case studies that show problems of measur-
ing the strength of ties with only neighborhood overlap or absolute frequency of
interaction. Easley and Kleinberg [2010] claim neighborhood overlap can be used
to measure the strength of ties. We verify that such metric can also be applied in
co-authorship SN. However, such metric presents limitations when applied alone.

4. A new metric to measure the strength of ties in non-temporal social networks
called tieness, resulting from a combination of a modified neighborhood overlap
with absolute frequency of interaction (or co-authorship frequency) (RQ2). We
also define a nominal scale to tieness based on the values of modified neighborhood
overlap and absolute frequency of interaction.

5. A new algorithm called STACY (Strength of Ties Automatic-Classifier over the
Years) that automatically classifies the strength of ties in temporal co-authorship
social networks (RQ3). We also derive a computational model from STACY
named temporal_tieness.
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6. A set of eight tie strength classes identified by STACY (RQ3). We have charac-
terized each class according to the number of researchers’ publication.

7. An analysis of how tie strength is defined over time (RQ4). To do so, we improve
an existing algorithm (RECAST) that we call as fast-RECAST. We also use
STACY to do such analysis.

8. An analysis of how such strength varies through the years (RQ5). Our results
show that most ties, even the strong ones, tend to perish over time. Also, real
co-authorship social networks from different research areas have more weak and
random ties than strong and bridge ties. Finally, STACY is able of better identify
strong ties than fast-RECAST.

1.4 Thesis Organization

The rest of this thesis is organized as follows. We present a taxonomy for existing work
on social professional networks in Chapter 2. Then, Chapter 3 states the background
for developing this thesis as well as its related work. Chapter 4 characterizes the
strength of ties using neighborhood overlap and absolute frequency of interaction. In
turn, the results from Chapter 4 are the base for a new metric (tieness) described in
Chapter 5. Also, Chapter 6 presents our new algorithm STACY and all the strength of
ties analyses to temporal co-authorship social networks. Finally, Chapter 7 concludes
this thesis and discusses future work.



Chapter 2

General Taxonomy for Social
Networks

The Web has introduced different and new ways in which professionals can easily share
their work, publish content, find job opportunities, interact with other professionals,
and so on. Besides general purpose social networks (SN), such as Facebook and Twitter,
there are online social professional networks (SPN) whose focus is on those activities.
Indeed, there are currently more than 20 websites for social professional purposes.
Furthermore, as pointed out by Yang et al. [2014], online social networks as a type
of communication networks enable straightforward information access. Finally, with a
big volume of data available, researchers have used the data from those sites to study
SPN characteristics and discover behavioral patterns.

However, there are many challenges in working with social networks [Kleinberg,
2007; Knoke and Yang, 2008]: collecting the data, inferring social process from the
data, keeping individual privacy, choosing the best technique to select the data, among
others. The social professional networks have an additional challenge that is modeling
user emotion. For instance, it is hard to differ if a professional behavior is based
on emotional reasons or not. Therefore, in this chapter, we help to identify possible
solutions in the literature for these challenges by categorizing existing work according
to the social professional network type, goal and stage of development. Note that co-
authorship social network is a type of social professional network. Thus, this chapter
helps to situate the tie strength research in the state of the art.

Specifically, we define that different research topics address social professional
networks and are divided in issues and tasks. The issues emerge from the need for
crawling, storing, managing and treating the data from the networks [Carpineto and
Romano, 2012; Chau et al., 2007; Garcia-Molina et al., 2000; Gjoka et al., 2011b;

11
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Han et al., 2011; Harth et al., 2006; Huynh et al., 2012; Mihalcea and Radev, 2011;
Rezvanian and Meybodi, 2015; Russell, 2013; Vural et al., 2014; Zaki and Meira Jr,
2014; Zhuang et al., 2005]. Then, the tasks represent the ways that such networks
can be analyzed, used, improved and applied in different contexts [Aral and Walker,
2012; Arnaboldi et al., 2016; Brandão and Moro, 2015; Easley and Kleinberg, 2010;
Elmacioglu and Lee, 2005; Guille et al., 2013; Kadushin, 2012; Kempe et al., 2003;
Kramer, 2010; Murray, 2013; Pak and Paroubek, 2010; Park et al., 2015; Scott and
Carrington, 2011; Trusov et al., 2009; Wasserman, 1994; Weng et al., 2010].

In this chapter, we propose a general taxonomy considering issues and tasks
as a first-level classification. Overall, the issues are problems within social networks
regarding their maintenance and usage, whereas the tasks are problems whose solutions
benefit from using SN data. We describe works related to both, but we focus on research
topics related to tasks that are specific to social professional networks (note that issues
relate to any type of SN). Hence, we further analyze works whose main tasks are:
(i) grouping people or items on SPN, (ii) recommending people or items, and (iii)
applying ranking strategies to improve the last two topics.

For the first task, the strategy to form groups is called clustering and has been
largely presented in different contexts [Ahmed et al., 2014; Backstrom et al., 2006;
Blondel et al., 2008; Fortunato, 2010; Girvan and Newman, 2002; Gómez et al., 2015;
Keyes, 2015; Palla et al., 2005; Palla et al., 2007; Sales-Pardo et al., 2007; Tang et al.,
2007; Xie et al., 2013]. We note that organizing data into groups is one of the most
fundamental ways of understanding and learning about patterns intra and inter commu-
nities. In turn, considering the variety of information available on social networks that
potentially overwhelms users, generating recommendations becomes crucial [Brandão
et al., 2013; Lopes et al., 2010; Lops et al., 2011; Schall, 2014; Sharma and Yan, 2013;
Yang et al., 2015, 2014; Yu et al., 2016b; Zhang et al., 2014]. At that end, ranking
strategies are important to improve clustering approaches [Ahmed et al., 2014; Baumes
et al., 2005; Sun et al., 2009] and essential to present the recommendations in a proper
order [Brandão et al., 2013; Fouss and Saerens, 2008; Liben-Nowell and Kleinberg,
2007; Lopes et al., 2010; Pu et al., 2012; Schall, 2014; Shani and Gunawardana, 2011;
Sharma and Yan, 2013; Song et al., 2011; Xia et al., 2014; Yang et al., 2015; Zhang
et al., 2014].

Such taxonomy is a result of a systematic review process performed in five steps
[Khan et al., 2003; Kitchenham et al., 2009]: (Step 1) Defining questions for the review:
How is the publication activity after the first publication in computer science area?
What research themes are being investigated and covered? What are the limitations
and open problems of current research?; (Step 2) Finding relevant work: we initially
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search by publications on Google Scholar1 using the keyword “Social Network”. Then,
we consider only publications in relevant venues of Computer Science area (specifically,
publications from ACM, SPRINGER, ELSEVIER, IEEE); (Step 3) Evaluating study
quality: we compare different studies grouping them by their main characteristics and
analyzing the year of publication, venue, number of citations and abstract; (Step 4)
Summarizing the evidences: we summarize the evidences in distinct categories that
allow to identify the main research topics in SN; (Step 5) Interpreting the findings:
systematic review findings allow to generate our new taxonomy.

In this chapter, our main contributions are: an overview about social networks
and a categorization of social professional networks (Section 2.1); a general taxonomy
for social professional networks (Section 2.2); a summary of clustering algorithms (Sec-
tion 2.3) and recommendation approaches (Section 2.4) applied to social professional
networks grouped by their stages of development; a discussion on ranking strategies
applied to clustering and recommendation approaches (Section 2.5); and insights over
future directions (Section 2.6).

2.1 Main Definitions

In this section, we focus on social professional networks, a specific type of social net-
works in which the relationships go beyond simply friendship and acquaintances. Thus,
we first present an overview of social networks (Section 2.1.1) and then describe the
social professional networks with their main types and features (Section 2.1.2).

2.1.1 Social Networks Overview

Any society or social interaction can be mapped to a SN. Then such a network can be
analyzed to reveal hidden information of all types, from how a disease has spread and
major political views to who the new criminals are.

A social network is defined as a graph(V , E), where V is the set of nodes (or
vertices) representing individuals (persons, organizations, countries, etc), and E is the
set of edges (or links) constituting their relationships, given by an n × n matrix in
which ei,j ∈ E is the (weighted or not, directed or not) relation between nodes i and
j [Barabasi, 2002; Newman, 2003; Wasserman and Faust, 1994]. In such definition,
the set of nodes and edges can be of a single type, representing a homogeneous social
network model. For example, all nodes represent persons and all edges their friendship.

1Google Scholar: https://scholar.google.com.br/

https://scholar.google.com.br/
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Figure 2.1: Examples of homogeneous and heterogeneous (bipartite, multipartite,
multigraphs and multilayers) SN models.

Likewise, having more than one type of nodes defines a heterogeneous social net-
work, e.g., nodes can be people and blogs. The edges between people result from a
comment of a person in a post of another person, and the edges from people to blogs
represent a person who posted in that blog. There are also edges between blogs, if they
have related topics. In both types of social networks (homogeneous or heterogeneous),
the edges can be directed or not, and weighted or not. To better illustrate the dif-
ferences, Figure 2.1 shows generic structures of social networks for homogeneous and
heterogeneous models.

Heterogeneous social networks can also be modeled by bipartite or multipartite
graphs [Ghosh and Lerman, 2009]. Bipartite graphs are formally defined as graph(V1∪
V2, E), in which a node i in V1 can be only connected to another node j in V2, i.e. there
is no connection among nodes within V1 (or V2). Figure 2.1 presents an example of an
undirected bipartitie graph, in which, for instance, the nodes represented by pentagons
can be women in social networks and the nodes illustrated by cubes can be events
that they attended. Likewise, multipartite graphs with n different types of nodes are
formally described as graph(V1∪V2∪ ...∪Vn, E) such that for each edge between i and
j, i ∈ Vk and j ∈ Vk+1 for some k ∈ {1, ..., n−1} [Dawande et al., 2001]. Figure 2.1 also
presents a structure of undirected multipartite graphs, in which, for example, nodes
represented by pentagons are developers, nodes identified by circles are development
projects, and the cubes are a set of commits that a developer did in a project. The
thickness of the edges represents the strength of the relationship.

Other models of heterogenous social networks are the multigraphs and multilayer
graphs. The former is also interpreted as a combination of single graphs with multiple
types of edges [Gjoka et al., 2011a]. Formally, a multigraph is defined as graph(V1∪V2∪
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...∪Vn, E1∪E2∪...∪Em), where V is the set of nodes of n types (representing individuals or
items, e.g., events) and belongs to Vk...Vn for some k ∈ {1, ..., n−1}, and edges between
nodes in V can be of m types and belong to Ek...Em for some k ∈ {1, ...,m − 1}. For
instance, the multigraph in Figure 2.1 may represent a knowledge-sharing network (e.g.
Stack Overflow2), in which the nodes are different individuals and they are connected
by distinct relationships, such as making questions, answering questions, commeting
questions or answers. The latter represents networks where nodes are in several layers
of the graph, and nodes from a layer are connected to nodes in another one [Bianconi,
2013; Kivelä et al., 2014; Lotero et al., 2016].

In a formal way, multilayer graphs are determined by graph(Vα, Eα, L|L|), in which
α ∈ {1, ..., |L|} and |L| is the number of layers. Each layer may represent nodes from
distinct social networks, social status, organizations, among others. For example, each
layer of the multilayer graph in Figure 2.1 represents a social network: Layer 1 is
GitHub3, Layer 2 is AngelList4 and Layer 3 is ResearchGate5. Moreover, according
to Salehi et al. [2015], multilayer is a generic term that refers to models involving
multiple graphs, such as interconnected [Hristova et al., 2016], multiplex (different types
of relationships) [Meng et al., 2016], interdependent [Dickison et al., 2016], multisliced
[Mucha and Porter, 2010], multidimensional [Ahmed et al., 2016], multiple [Zhang et al.,
2016b], multilevel [Wang et al., 2016] networks, and networks of networks [D’agostino
and Scala, 2014]. Kivelä et al. [2014] also consider that all these networks are types of
multilayer network, but with a few distinct properties, such as the adjacency of nodes,
the set of nodes and edges, the number of possible layers, and so on.

There are other models that consider the dynamics of temporal and spatial infor-
mation [Kivelä et al., 2014]. Considering the temporal aspect, social networks evolve
as relationships may appear or disappear over time [Kostakos, 2009]. The analysis of
temporal graphs (also called as time-varying networks) may reveal publications pat-
terns [Wang et al., 2016] and users’ interactions classes (random or social relationship)
[Vaz de Melo et al., 2015], for example. Another dynamic aspect is the spatial infor-
mation, in which the nodes have locations and the existence of edges are described by
those locations [Dale and Fortin, 2010]. Spatial networks (also known as location-based
social networks) have been investigated to improve link prediction algorithms [Scellato
et al., 2011] and to discovery malicious accounts [Xuan et al., 2016], among others.

Overall, social networks is a very prolific research area. Indeed, looking for “social

2Stack Overflow: stackoverflow.com
3GitHub: github.com
4AngelList: angel.co
5ResearchGate: www.researchgate.net

stackoverflow.com
github.com
angel.co
www.researchgate.net
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Figure 2.2: DBLP results when searching publications with the term “social network”.

Figure 2.3: Real SN classified by their main purpose.

network” on DBLP6 returned over 16,380 entries in March 2017. Considering them,
Figure 2.2 presents the noncumulative distribution of the increasing amount of publi-
cations over the years. Focusing in 2017, there are 314 publications by March 29th.

Among such publications, there are studies addressing different types of social
networks with specific goals. Considering social interaction aspects, a high-level classi-
fication for such networks is: online and offline. An online SN is a website or web-based
service that allows people to interact with others, i.e., the relationship between users is
caracterized by the presence of online communications and not necessarily face-to-face
contact [Arnaboldi et al., 2016]. On the other hand, an offline SN is characterized by
the absence of online communications to mediate the relationship between users. Also,
it is built to represent social relationships in order to allow the study of structural and
semantic properties.

6DBLP: www.dblp.org/db

www.dblp.org/db
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Table 2.1: Topological properties and concepts on social networks: Given a graph
G(V , E) with a set of nodes V and edges E , in which i and j are nodes in V .

Property Definition Examples of application
Degree (ki) ki =

∑
j∈V∧i6=j

edge(i, j), in which

edge(i, j) is 1 when there is an edge
connecting i to j and 0, otherwise.

Performing decentralized search in
networks [Wu et al., 2011].

Path length (lG(i, j)) lG(i, j) =
∑
i 6=j

distance(i, j), in which

distance(i, j) = 0 if j cannot be reached
by i.

Improving collaboration recom-
mendations quality [Brandão et al.,
2013; Lopes et al., 2010].

Density (DG) DG = Actual Edges
Potential Edges

, where
Potential Edge = |V|(|V|−1)

2
.

Evaluating knowledge-sharing in
social networks [Wiemken et al.,
2012], assessing quality of gradu-
ate programs [Lopes et al., 2011]
and studying communities struc-
tures [Newman, 2003].

Community, group or
cluster

Subsets of nodes in which the connec-
tions among nodes intra communities
are dense, but between different com-
munities are less dense.

Interpreting social mobility within
the United States [Melamed, 2015],
investigating the time dependence
and evolution of overlapping com-
munities [Palla et al., 2007] and
assessing researchers’ productivity
[Silva et al., 2015a].

Modularity (QG) QG = 1
4m

∑
ij

(Aij − kikj
2m

)sisj , where m

is the total number of edges in the net-
work, Aij is the total of edges between
i and j, and ki (kj) is degree of node i
(j). For a dividion of the network into
two groups, let si = 1 if i belongs to
group 1 and si = −1 if it belongs to
group 2.

Determining if there are subgroups
that should be connected or ad-
dressed separately in a research
project [Valente et al., 2015].

Common neighbors score(i, j) = Γ(i) ∩ Γ(j), in which Γ(i)
(Γ(j)) is the set of neighboors of i (j).

Being one of predictors to link pre-
diction model [Liben-Nowell and
Kleinberg, 2007] and a feature to a
community detection algorithm [Xu
et al., 2007].

Betweenness (BC(i)) BC(i) =
∑

i 6=j∈N
δi(j), where δi(j) =∑

w:j∈pred(i,w)

δij
δiw

(1 + δi(w)), pred(i, w)

is the set of predecessors of w in the
shortest paths from i to w, δij is the
number of shortest path between i and
j and δi(w) is the number of shortest
path through w.

Defining a new algorithm to detect
communities [Girvan and Newman,
2002] and identifying central schol-
ars in database communities [Elma-
cioglu and Lee, 2005].

Random networks It is built based on an original network.
Thus, a random network has the same
number of nodes, edges and empirical
degree distribution as the original net-
work. The difference between them is
the way that the nodes are connected
to each other.

Verifying whether networks have
small-world properties [Watts and
Strogatz, 1998] and classifying the
relationship between users in a mo-
bile social network [Vaz de Melo
et al., 2015] by comparing them to
random networks.
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Figure 2.4: Hierarchical diagram of social professional networks types.

Figure 2.3 shows examples of real social networks. Specifically, we have classified
them as professional or general, with an intersection representing mixed purposes. For
example, Meetup7 can be used to set up meetings to discuss research or to schedule a
school class reunion. Our classification considers the original goal with which a social
network was developed. For instance, Flickr has two main goals that are to make
photos and videos available and to provide ways for organizing them. This kind of
network can be used by non-professionals and professionals (as photographers). Thus,
Flickr is not specifically aimed at professionals as LinkedIn. Overall, our focus is social
professional networks, and we present examples of general networks only to account
for their existence.

Finally, Table 2.1 describes concepts related to social networks that are used
throughout this thesis. Note that degree, path length, density, modularity, common
neighbors and betweenness represent topological properties from social networks. Thus,
they can be computed in different kinds of social networks. Communities and random
networks are also concepts related to the network topology. However, there are al-
gorithms to detect communities that also consider semantic properties (theoretical
characteristics related to the nodes and edges, for example, geographic location). Such
aspects depend on the information available in the social networks.

2.1.2 Social Professional Networks Types

Social professional networks serve different purposes including sharing code and papers,
solving doubts, etc. Given their similarities, Figure 2.4 presents the main types of social
professional networks organized hierarchically and their main features: the rectangles

7Meetup: www.meetup.com

www.meetup.com
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describe the main goal of each network type, and each small circle represents networks’
features. For instance, blog is a functionality of all SPN, and find/publicize job is one
feature of networks aiming at professional networking. Next, we summarize the SPN
types and their features.

Repository and/or competition. This kind of network allows to share code, files
and datasets, discuss solutions, discover trends on industry problems, access resources
and tools, and/or participate in competitions. Examples include GitHub, Kaggle8,
SourceForge9, E.Factor10 and GrabCAD11. Regarding research on the topic, Dabbish
et al. [2012] study how individuals interpret and use information about other users’
actions on code in GitHub. Likewise, Thung et al. [2013] use GitHub to explore the
relationship between developers and projects, whereas Bartusiak et al. [2016] predict
developers collaboration in the same network. Finally, Narayanan et al. [2011] describe
a solution to link prediction problem on Flickr that resulted from a competition in
Kaggle social network [Narayanan et al., 2011].

Professional networking. Designed for business or research purposes, its main goal
is to provide a platform for professional networking and interaction. Examples are
Classemates12, LinkedIn13, ResearchGate14, StartupNation15 and AngelList. Regard-
ing research, Skeels and Grudin [2009] investigate if such sites enhance productivity,
are useful for enterprises and cause issues for new user populations (e.g. stresses from
combining personal and professional people). Also, Russell [2013] describes how to
crawl LinkedIn data and suggests types of analyses including a histogram of compa-
nies in which the contacts have already worked, counting job titles for the technology
industry, etc. Moreover, Yu et al. [2016a] evaluate ResearchGate metrics that are used
to quantify the performance of researchers and institutions.

Process management. It is a type of offline SN in which the nodes can be com-
panies, employees, sellers, suppliers, customers and/or other business entities that are
connected by business relationships. These networks main purpose is usually analyz-
ing interfirm relationships role within a marketing perspective [Heide and Wathne,
2006]. Additionally, Burt [2010] uses industry networks to analyze theories at micro
(individuals or small groups) and macro (collective) levels.

8Kaggle: www.kaggle.com
9SourceForge: sourceforge.net

10E.Factor: www.efactor.com
11GrabCAD: grabcad.com
12Classemates: www.classmates.com
13LinkedIn: www.linkedin.com
14ResearchGate: www.researchgate.net
15StartupNation: startupnation.com

www.kaggle.com
sourceforge.net
www.efactor.com
grabcad.com
www.classmates.com
www.linkedin.com
www.researchgate.net
startupnation.com
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Publication. They represent relationships among academic entities such as publi-
cations, authors, specialists, advisor/advisee and so on. As the others, the academic
networks have been largely studied. Examples are co-authorship, citation, advisorship
and teachers’ professional interactions social networks. Focusing on research, Fu et al.
[2014] define different metrics to rank authors, publication venues and institutions.
Silva et al. [2015b] consider different properties to analyze researchers’ behavior and
their publication dynamics in different venues classes. Lee [2015] investigates the
multidisciplinary characteristics of technology management research through journal
citation network analysis. Brandão et al. [2013] and Lopes et al. [2010] recommend
potential collaborators to researchers.

Overall, SN have improved professional activities as job search, contact making,
networking, productivity evaluations, etc. Such improvements are clear by the number
of existing social professional networks and the large volume of users, data and inter-
actions. Hence, studying such networks has the potential to improve even further their
reach and benefits. Moreover, having so many networks requires a proper classification
in order to compare them, leading to our proposed taxonomy next.

2.2 General Taxonomy for Social Networks

We propose a taxonomy based on the tasks and issues of social networks. By analyzing
the publications on the area, we have identified two main tasks (analysis and appli-
cation) and two main issues (data acquisition and preparation, and data storage), as
illustrated in Figure 2.5 and detailed next.

Data acquisition and preparation. The focus is obtaining the data from social
networks or other sources. Current approaches include data from social networks web-
sites [Chau et al., 2007; Gjoka et al., 2011b; Rezvanian and Meybodi, 2015; Russell,
2013], digital libraries [Carpineto and Romano, 2012; Huynh et al., 2012; Zhuang et al.,
2005] and the web [Harth et al., 2006; Vural et al., 2014] (i.e., researchers use data from
digital libraries and the web to build the structure of social networks).

Often, such data need a pre-processing for cleaning, feature extraction and se-
lection, normalization, transformation, and so on [Kotsiantis et al., 2006]. Thus, tech-
niques of natural language processing have been explored to identify concepts, sen-
timents, topics and similarities before or after building a social network structure.
According to Chen and Ji [2010], Rosenberg and Hirschberg [2007] and Turian et al.
[2010], clustering may solve natural language processing problems. Its main goal is to
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Figure 2.5: Main social networks topics: the tasks refer to using social networks to
solve problems, and the issues address problems related to managing social networks.

find a suitable, useful, meaningful and valid organization of nodes and edges. Here,
we focus on graph clustering, because entities represented by a social network tend to
form clusters, and the number of existing clustering algorithms as well as applications
is high. We further describe them considering the SPN context in Section 2.3.

Data storage. Social networks require storing and accessing their data. Specifically
for data storage, there are plenty of approaches on how to efficiently store data for
different purposes. As examples, Garcia-Molina et al. [2000] extensively discuss types
of data storage, Corbellini et al. [2017] and Han et al. [2011] describe the background,
basic characteristics and data model of NoSQL databases, and Cellary et al. [2014]
focus on concurrency control in distributed database systems. Furthermore, there are
studies addressing how to deal with the large volume of data that comes from social
networks [Almeida, 2013; Yu et al., 2017].

Analysis. The goal is to examine nodes and their interactions in SN towards a specific
goal, including to discover influential people [Aral and Walker, 2012; Peng et al., 2017;
Weng et al., 2010] and to analyze users and communities sentiments [Kramer, 2010;
Pak and Paroubek, 2010; Park et al., 2015; Wang et al., 2017]. Indeed, there is a
whole research area on SN analysis that provides algorithms, methods, features to be
considered, information diffusion algorithms, models of graph and game theories, etc
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Figure 2.6: Relationship among clustering, recommendation and ranking algorithms.

[Easley and Kleinberg, 2010; Guille et al., 2013; Kadushin, 2012; Scott and Carrington,
2011; Wasserman, 1994]. Tie strength studies are also categorized as this kind of task
[Alves et al., 2016; Brandão and Moro, 2015; Brandão et al., 2016; Castilho et al., 2017;
Gupte and Eliassi-Rad, 2012; Wiese et al., 2015; Vaz de Melo et al., 2015]. Moreover, we
emphasize that clustering algorithms also serve for social network analysis and further
discuss them in Section 2.3.

Application. The goal is to use SN to develop methods, features and programs to
benefit users. The main types of SN applications include marketing, visualization,
recommendation and ranking. Note that marketing [Kempe et al., 2003; Subbian
et al., 2017; Trusov et al., 2009] and visualization [Giridhar et al., 2017; Guerra-Gomez
et al., 2016; Murray, 2013; de Sousa et al., 2015] may motivate SN analysis or be an
application. Therefore, in this chapter, we focus on recommendation (Section 2.4)
and ranking (Section 2.5) strategies in social professional network context. Both
applications have motivated competitions such as Netflix Prize, CAMRA, the Yahoo!
Music KDD Cup 2011 and Kaggle’s competitions.

Overall, solutions applied to the first two issues (data acquisition/preparation and
data storage) may be adapted to the SN context as they are not exclusive for social
professional networks. The same cannot be said about the two tasks (analysis and
application), which we study specifically in the context of social professional networks.
Hence, our research focuses on the latter (i.e., the tasks), and the next sections cover
research topics related to clustering, recommendation and ranking algorithms.

In summary, Figure 2.6 shows the relationships for clustering, recommendation
and ranking on social professional networks. Specially, clustering algorithms can be
part of a recommendation method [Sharma and Yan, 2013] and improved by a ranking
function. The recommendation algorithms need ranking strategies, as their results are
sorted by considering certain aspects (e.g., relevance). Hence, clustering and recom-
mendation algorithms are applications of ranking strategies. Although we have empir-
ically observed such relationships on social professional networks, we believe they are
also valid to other works that address clustering, recommendation and ranking.
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Figure 2.7: Stages of clustering, recommendation and ranking in social network, based
on Jain et al. [1999].

2.3 Clustering

Most things in nature and society can be separated into groups according to similarities
and properties. A key question is how to group different things in specific contexts.
Specially in Computer Science, this question may be rewritten as how to automatically
cluster data by using a computer. This task is called clustering, whose main goal is
to find a useful and valid organization of the input data. There are many algorithms
for clustering data. Here, we focus on those that aim to cluster nodes and edges in a
graph (i.e., are easily applied to SN).

Clustering techniques have been largely used to detect communities in social net-
works [Ahmed et al., 2016; Fortunato, 2010; Fortunato and Hric, 2016; Girvan and
Newman, 2002; Palla et al., 2005; Tabarzad and Hamzeh, 2017; Xie et al., 2013]. De-
tecting communities is a task in social networks as it allows the analysis of the interac-
tions and relatedness among users. According to Lancichinetti et al. [2009], nodes in a
community are more connected to each other than to the remain of the social network.
Note that in the social network context, clusters are also called as community [Girvan
and Newman, 2002]. Therefore, we use both terms interchangeably to maintain the
nomenclature of the clustering algorithms’ authors.

Figure 2.7 presents the stages of clustering in social networks that may also be
applied to recommendation and ranking. The following sections detail each level for
clustering by discussing existing works.

2.3.1 Nodes and Edges Patterns

This section overviews concepts necessary for understanding clustering techniques. In
a graph, nodes and edges of social networks can be clustered for different purposes and
by considering different characteristics. We detail and exemplify works divided into
three categories as follows.

Spatial patterns. Here, nodes and edges compose clusters according to geographic
location. For example, Selassie et al. [2011] propose an algorithm that considers di-
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rectional lanes (a property of edge direction) to present visualizations of clusters in
a graph. Such clusters represent the amount of GitHub follower data in cities of the
United States. Wal et al. [2009] use SN analysis to study inter-firm networks in clusters,
regional innovations system and agglomeration economies. Sorenson [2005] also con-
siders SN concepts to investigate how industries in concentrated regions might increase
their production. Finally, for the three approaches, the nodes/edges spatial patterns
define clusters based on their common geographic regions.

Collaborative interactions. The relationship between nodes is collaborative when
they interact to reach a common goal or do a task in an intellectual endeavor. In
this context, the main goal of clustering is to group individuals that collaborate. For
instance, [Newman, 2001b] analyzes co-authorship SN from biomedical, theoretical
physics, high-energy physics and computer science research areas. He shows there is
a very strong clustering effect in such scientific communities. Różewski et al. [2015]
present a model that combines concepts of knowledge workers to form clusters within
an organizational SN. The goal is to increase the competence of knowledge workers’
collaborative learning. Kshitij et al. [2015] study how patterns of collaboration in
cancer research impact on research policy in India. Such study considers co-authorship
SN built from publications in cancer research. By applying a clustering algorithm, the
authors reveal the presence of small clusters of researchers connected to one or more
highly central researchers.

Different categories. Clusters can group and categorize different types of entities.
For example, given a set of nodes and edges representing people in a university, a
cluster can represent the class of either professors, students or staff. Considering such
a categorization aspect, Ahmed et al. [2014] propose a clustering algorithm to gather
LinkedIn users. The clustering criteria are factors significant to users for building
groups in such a network, including: area of expertise, job openings, security and time.
Melamed [2015] uses eigenspectrum decomposition for community detection in social
mobility data. The author considers six categories based on social class (e.g., employers
and employees) as nodes, and there is a weighted relation between them when people
change the social category.

2.3.2 Clustering Techniques

According to Jain and Dubes [1988], there are six types of clustering techniques: ex-
clusive or nonexclusive, intrinsic or extrinsic, and partitional or hierarchical. Those
six are the base for a varied set of clustering techniques. Moreover, there is no “one
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size fits all” here, as the choice of clustering type highly depends on the problem and
the properties of the input data. For example, if the data have category labels and
the problem requires a solution considering specific properties of such categories, the
extrinsic approach is more suitable. Traditional clustering algorithms include k-means,
k-spectral clustering, DBSCAN and clique percolation [Zaki and Meira Jr, 2014]. As
each of them clusters the data according to a different set of features, their resulting
clusters for the same input may differ significantly. Next, we discuss all six types of
clustering techniques and summarize how they have been applied to SPNs.

Exclusive or nonexclusive. An object may belong to exactly one cluster (exclu-
sive) or to more than one (nonexclusive). Considering exclusive algorithms, Fortunato
[2010] overviews exclusive clustering detection on SN. The author provides an example
of the division of a co-authorship social network in disjoint clusters by describing the
algorithm proposed by Girvan and Newman [2002] (which uses edge betwenness metric
to form clusters). Regarding nonexclusive approaches, Xie et al. [2013] compare 14
overlapping clustering algorithms. Among such algorithms, [Palla et al., 2005] pro-
pose one that creates overlapping groups by considering the set of nodes’ statistical
features on SN. Then, Palla et al. [2007] use clique percolation to study the time de-
pendence of overlapping communities (groups) on a co-authorship social networks then
characterizing communities evolution.

Intrinsic or extrinsic. Given a set of objects as input to a clustering algorithm,
a proximity matrix is computed by measuring the distance between them. In such
a context, intrinsic is a kind of unsupervised learning based solely on the proximity
matrix to perform classification. On the other hand, besides such matrix, extrinsic uses
category labels on the objects as well. Regarding intrinsic techniques, Keyes [2015]
applies k-means (unsupervised technique) to geographically cluster LinkedIn users and
plots the results on Google Maps16 or Google Earth17. Sales-Pardo et al. [2007] also
propose an intrinsic algorithm that forms overlapping clusters by extracting nested
hierarchical organization. On the extrinsic perspective, in order to form groups with
LinkedIn users, Ahmed et al. [2014] propose a semi-supervised clustering approach that
uses partially labeled data. Tang et al. [2007] also use an extrinsic technique to cluster
publications into exclusive groups by using characteristics of the publications.

Partitional or hierarchical. A partitional clustering assigns each resulting cluster
to a single partition. Then, a hierarchical clustering nests a set of partitions in different
levels. Backstrom et al. [2006] study group formation and evolution in co-authorship

16Google Maps: maps.google.com
17Google Earth: www.google.com/earth

maps.google.com
www.google.com/earth
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Figure 2.8: Clustering techniques and their overlaps: E - exclusive, NonE - nonexclu-
sive, In - intrinsic, Ex - extrinsic, H - hierarchical and P - partitional.

and conference publications in DBLP. They consider a conference represents a cluster
of researchers. There are overlaps among communities and the clusters are partitional.
Likewise, Baumes et al. [2005] propose a partitional algorithm that aims to detect
overlapping communities based on the clusters density. They experiment in synthetic
(random graphs) and real data (DBLP). On the other hand, Ahmed et al. [2014] use
hierarchical clustering technique to extract groups from LinkedIn users based on their
profiles. Also, Gómez et al. [2015] propose a divisive algorithm based on hierarchical
clustering technique for a network of papers and their citations. First, the edges
are ordered from the most to the least divisive, then ordered from the most to the
least similar. Blondel et al. [2008] propose an algorithm that combines hierarchical
technique with modularity optimization to form communities in different networks,
including papers and their citations.

Finally, Figure 2.8 summarizes the works that are related to the intersection of the
three aforementioned dimensions of clustering techniques. Specifically, each dimension
defines a pair of mutually exclusive techniques: exclusive and nonexclusive; intrinsic
and extrinsic; partitional and hierarchical. For example, a clustering technique cannot
be partitional and hierarchical at the same time. Also, we could not find any work
that addresses nonexclusive, extrinsic and hierarchical techniques at the same time on
social professional networks. The reason is possibly the increasing time complexity of
the clustering algorithm.
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2.3.3 Clustering Evaluation

All clustering algorithms should satisfy requirements such as finding clusters with ar-
bitrary shape, dealing with different types of features, treating outliers and noise,
handling high dimensionality and insensitivity to the order of input data, scalability,
among others [Zaki and Meira Jr, 2014]. Moreover, each algorithm probably requires
a different evaluation technique. Specifically, cluster evaluation verifies whether the
resulting clusters make sense in a specific context. Even for a dataset with no natural
cluster structure, almost every clustering algorithm will find clusters in it [Tan et al.,
2006]. Then, a cluster evaluation technique may consider internal or/and external
criteria to estimate clusters quality.

For internal criteria, two types of metrics are commonly used to estimate resulting
clusters quality: distance (how close two objects are to each other) and similarity (how
similar/distinct two objects are). The resulting clusters are considered good when the
similarity among objects inside the cluster is high (and the distance is low), whereas
the similarity among objects from different clusters is low (and the distance is high)
[Tan et al., 2006; Zaki and Meira Jr, 2014].

Given a cluster (or community) C = {C1, ..., Cr} representing a clustering of a
dataset into r clusters. LetM be the adjacency matrix of the graph andMij the weight
of the edge between nodes i and j. The distance d(i, j) is the dissimilarity between i
and j, which can be computed by, for example, edge path (d(i, j) = 1/Mij), shortest
path distance (using Dijkstra’s Shortest Path algorithm) or adjacency relation distance
(d(i, j) =

√ ∑
k 6=j,i

(Aik − Ajk)2) [Rabbany et al., 2014]. Then, the most common metrics

to internal clustering evaluation criteria are as follows.

Modularity. It calculates the difference between the proportion of edges that are
intracluster and the expected such proportion in the case of random distributed edges
[Newman and Girvan, 2004; Rabbany et al., 2014]. Let E be the number of edges in
the social network, i.e., E = 1

2

∑
ijMij, then

Qmodularity = 1
2E

k∑
l=1

∑
i,j∈Cl

[Mij −
∑
kMik

∑
kMkj

2E
],

in which l ∈ {1, 2, ..., r}. The smaller the modularity, the better the resulting clusters,
because the distance intracluster is lower than expected.

BetaCV. It is the ratio between the intracluster’s edges and intercluster’s edges coef-
ficient of variation (CV): BetaCV = intra_CV/inter_CV [Zaki and Meira Jr, 2014].
The lower the BetaCV, the better the clustering, because such result shows that intr-
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acluster distances are smaller than intercluster distances.

C-index. It measures to what extent the clustering puts together the total number of
intracluster edges that are the closest across the identified clusters in a social network
[Rabbany et al., 2014]:

CIndex = θ−minθ
maxθ−minθ ,

in which θ = 1
2

k∑
l=1

∑
i,j∈Cl

d(i, j), minθ andmaxθ are calculated by summing them1(m1 =

k∑
l=1

|Cl|(Cl−1)
2

) smallest and largest distance, respectively, between every edge. Clustering

techniques with smaller C-Index are better, because they return clusters with relatively
smaller distances intracluster rather than interclusters.

Silhouette Width Criterion. It measures cohesion and separation of clusters and
regards the difference between the average distance of edges interclusters and edges
intracluster [Rabbany et al., 2014]:

Silhouette = 1
NE

k∑
l=1

∑
i∈Cl

minm 6=ld(i,Cm)−d(i,Cl)
max{minm 6=ld(i,Cn),d(i,Cl)}

,

in which NE is the total number of intracluster edges and d(i, Cl) = 1
|Cl|

∑
j∈Cl d(i, j).

The higher the silhouette, the better the clustering.

For external criteria, the evaluation measures how close the clustering is to the
pre-determined data. However, there is no consensus on whether such evaluation is
adequate for real data, or only for synthetic data. The clusters are evaluated based
on data that was not used in the clustering process. Such data can be a set of pre-
classified objects, which is often created by experts. Also, if the clustering goal is to
discover new knowledge, the comparison of the resulting clusters with pre-determined
data may not necessarily provide the intended result – this comparison may result in
the reproduction of known knowledge.

Given a dataset with n points in a d-dimensional space D = {xi}ni=1, divided
into k clusters. Let yi ∈ {1, 2, ..., k} represent the ground-truth cluster for each point.
The ground-truth clustering is given as T = {T1, T2, ..., Tk}, in which the cluster Tj
denotes all the points with label j, i.e., Tj = {xi ∈ D|yi = j}. Furthermore, let
C = {C1, ..., Cr} represent a clustering of the same dataset into r clusters, resulted
from a clustering algorithm. Following Zaki and Meira Jr [2014], all external measures
depend on the r× k contingency table N. Such table is composed by clustering C and
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the ground-truth partitioning T , defined as N(i, j) = nij = |Ci ∩ Tj|. Nonetheless,
examples of external metrics most used for evaluating clustering in social professional
networks include the following.

Purity. It measures the extent to which a cluster Ci has points from only one
partition [Zaki and Meira Jr, 2014]:

purity = 1
n

r∑
i=1

maxkj=1{nij}

The larger the purity, the more the result agrees with the ground-truth.

F-Measure. It is the harmonic mean of precision (the proportion of points in Ci from
the partition Tji) and recall (the proportion of points in partition Tji in common with
cluster Ci) values for each cluster [Chen et al., 2009; Zaki and Meira Jr, 2014]. Given
a cluster Ci, let ji be the partition that has the maximum number of points from Ci,
which is, ji = maxkj=1{nij}, Fi =

2niji
ni+mji

, in which mji = Tji . The F-measure for the

clustering C is the mean of F-measure values of each cluster: F = 1
r

r∑
i=1

Fi. A clustering

is considered perfect when the value of F-measure is 1.

Entropy-based measures. They measure the homogeinity (the class distribution
intracluster should be assigned to a single class) and completeness (it is symmetrical
to homogeinety, i.e., all points member of a single class must be assigned to a single
cluster) of the resulting clusters [Dom, 2002; Meilă, 2007; Rosenberg and Hirschberg,
2007; Zaki and Meira Jr, 2014]. Examples of most common entropy-based measures
are: V-Measure [Rosenberg and Hirschberg, 2007] - an entropy-based measure that
considers homogeneity (each cluster has datapoints of a single class) and completeness
(all the datapoints from a given class are elements of the same cluster); Q0 [Dom, 2002]
- a measure for non-hierarchical clustering that uses conditional entropy - H(number
of classes|number of clusters) - to calculate the correctness of a clustering algorithm
result; variation of information (VI) [Meilă, 2007] - a distance metric that uses entropy
for comparing different clusters: VI(number of classes, number of clusters) = H(number
of classes|number of clusters) + H(number of clusters|number of classes).

2.3.4 Clustering Overview on Social Professional Networks

In summary, clustering techniques have been extensively applied to social professional
networks for different purposes. We could identify three main directions: using social
professional networks to validate a proposed algorithm [Baumes et al., 2005; Blondel
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et al., 2008; Gómez et al., 2015; Palla et al., 2005; Selassie et al., 2011]; applying
the existing clustering algorithms to analyze social professional networks [Backstrom
et al., 2006; Keyes, 2015; Kshitij et al., 2015; Melamed, 2015; Newman, 2001b; Palla
et al., 2007; Sorenson, 2005; Wal et al., 2009]; and designing algorithms, models and
approaches exclusive for SPNs [Ahmed et al., 2014; Różewski et al., 2015].

At that end, metrics to evaluate clusters in social professional networks are the
same for evaluating clusters in other SN. Although evaluating if a clustering algorithm
forms clusters in a consistent way is important, such evaluation is not common in works
that address social professional networks.

2.4 Recommendation

Social professional networks provide information from entities and interactions between
them. Due to the large volume of data, it is often hard to find an expert on a particular
subject, an online media (e.g. book, video), etc. In this context, using recommendation
systems is important to find adequate information from social networks [Sun et al.,
2015]. The main goal of such systems is to predict the preference of a user for an
item (term used to define things that a system recommends to a user) or people, i.e.
recommend or suggest items/people that are relevant to a user. The recommender
systems have various practical applications. For example, helping parents of children
with Autism Spectrum Disorders to find a community of related parents based on
assessment (from clinical) of such disease [Song et al., 2011], LinkedIn users to join a
group [Sharma and Yan, 2013], project managers in GitHub to get potential reviews to
a new pull-request (when a user pushes changes to a repository in GitHub) [Yu et al.,
2014], objects (e.g. movies or songs) to receive relevant tags [Belém et al., 2016], users
to reach their favorite songs [Fujino et al., 2017], and researchers to find collaborators
[Brandão et al., 2013; de Sousa et al., 2015]. There are many techniques and algorithms
to recommend a particular item. Here, we focus on those that recommend based on
social networks data.

As already mentioned, Figure 2.7 also shows the stages of developing a recom-
mendation algorithm. We detail each stage next.

2.4.1 Topological and Semantic Features

Social professional networks have different properties that can be represented by topo-
logical or semantic features. The topological features (some described in Table 2.1)
refer to the structure of nodes and/or edges on the social network. For example, there
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are SN in which nodes and edges represent (respectively): developers and their com-
mitment to the same project (GitHub); musicians/bands and their collaboration in
composing or performing a similar music [Cano et al., 2006]; and authors and their
co-authored papers [Liben-Nowell and Kleinberg, 2007]. The topological features used
to analyze such networks and propose recommendations include: common neighbors,
degree distribution and node proximity.

On the other hand, semantic features represent theoretical concepts related to the
existence of nodes and/or edges and interactions among them. For instance, Yu et al.
[2014] consider semantic feature to recommend reviewers of incoming pull-requests
in GitHub. The semantic feature (extracted from developers’ comments on GitHub
projects) represents the common interest of each reviewer. Additionally, Chen et al.
[2015] and Xia et al. [2014] propose algorithms (AVER and MVCWalker, respectively)
to recommend collaborators by considering semantic features, such as co-publication
frequency, weights of relations and researchers’ academic level in AVER, and co-author
order, latest collaboration time and number of collaboration in MVCWalker.

There are also approaches that combine topological and semantic features. For
example, Brandão et al. [2013] and Lopes et al. [2010] propose algorithms (Affin and
CORALS) to recommend collaborators. Affin combines shortest path (topological fea-
ture) with researchers’ institutional affiliation, whereas CORALS merges such topolog-
ical feature with the research area of researchers. In addition, Schall [2014] presents
a new algorithm for recommending relevant users to follow on GitHub by considering
semantic (user behavior and shared interests) and topological (follower degree, triadic
closure and network centrality) features.

2.4.2 Recommendation Techniques

Recommender systems use a large range of techniques. According to Adomavicius and
Tuzhilin [2005], such systems are classified as: content-based, collaborative filtering
and hybrid, as detailed next.

Content-based technique. This relies on prior preferences or behavior of a user to
recommend items/people [Lops et al., 2011]. For example, the algorithm recommends
an article on a social network to a user if the article has features similar to others that
the user has read. Sharma and Yan [2013] combine pairwise for preference learning
with such technique to recommend groups to LinkedIn users. Also, Zhang et al. [2014]
consider user’s behavior on GitHub to recommend open source projects for developers.

Collaborative filtering technique. It suggests items/people to a user considering
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items/people previously rated by or related to others. For example, given two users
with similar taste, a collaborative filtering technique considers the liked articles of
one user and recommends such articles to the other user. Also, Schall [2014] uses
the collaborative filtering approach to recommend users to follow on GitHub. In such
context, if a user A watches the same repository as a user B, then A might follow
B because both have similar interest. Finally, Yang et al. [2014] present a literature
review of recommender systems that use collaborative filtering approaches based on
social interactions between users in online social networks.

Hybrid technique. The most common hybrid techniques combine the content-based
and collaborative approaches, which helps to avoid the limitations of both methods
such as recommending item/people already used or known by a user, using only impre-
cise content analysis, considering just similar users’ ratings, and so on. For example,
Yang et al. [2015] propose a hybrid approach that combines research topic network, re-
searcher collaboration network and institution network with SVM-Rank to recommend
collaborators. Affin [Brandão et al., 2013] and CORALS [Lopes et al., 2010] are also
hybrid algorithms, because they consider researchers’ properties and the researchers’
relations with others.

2.4.3 Recommendation Evaluation

Evaluating the effectiveness of recommender systems and the quality of the resulting
recommendations is a hard task, mainly for three reasons: different algorithms may
have divergent performance on distinct datasets; the goals for which an evaluation
is performed may differ; and the recommendations that are “good” for a set of users
are not necessarily good for another set. Evaluating the quality of the generated
recommendations means to identify how “good” the recommendations are regarding
different criteria, such as diversity, novelty, accuracy, coverage, serendipity, utility, and
so on. Many studies have focused on evaluating only the accuracy (i.e. evaluating
the genereted recommendations regarding a ground-truth and using metrics as mean
absolute error, recall and precision [Ge et al., 2010; Shani and Gunawardana, 2011]) of
recommendations, for example, [Chen et al., 2015] and [Lopes et al., 2010]. Although
having a high accuracy is important, it is also insufficient to ensure the quality of the
recommendations [Belém et al., 2016; Brandão et al., 2013; Fouss and Saerens, 2008;
Shani and Gunawardana, 2011].

Likewise, others describe evaluation metrics and strategies. For instance, Wu
et al. [2012] describe 11 metrics divided into based on recommender algorithms and
depending on recommender algorithms (further divided into system’s angle and users’
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Table 2.2: Recommendation Summary.
Characteristics Publications

Features
Topological Cano et al. [2006], Liben-Nowell and Kleinberg [2007]
Semantic Chen et al. [2015], Yu et al. [2014] and Xia et al. [2014]
Both Brandão et al. [2013], Lopes et al. [2010] and Schall [2014]

Techniques
Content-based Fujino et al. [2017], Sharma and Yan [2013] and Zhang et al.

[2014]
Collaborative Schall [2014] and Yang et al. [2014]
Hybrid Brandão et al. [2013], Lopes et al. [2010] and Yang et al. [2015]

Evaluation Accuracy Chen et al. [2015] and Lopes et al. [2010]
Different Aspects Belém et al. [2016], Brandão et al. [2013], Fouss and Saerens

[2008], Pu et al. [2012], Shani and Gunawardana [2011] and
Wu et al. [2012]

angle). Shani and Gunawardana [2011] differentiate offline experiments (using a pre-
collected data set to simulate the behavior of users) from online ones (real users interact
with the recommender system, which allows to evaluate the quality of the recommenda-
tion according to their real behavior). The authors also describe 14 evaluation metrics.
Besides presenting metrics, Pu et al. [2012] show how to combine them in order to
present better recommendations to a user. Finally, we emphasize that the surveys re-
fer to general recommender systems. Therefore, such metrics can be applied to evaluate
recommendation algorithms based on social professional network data as well.

2.4.4 Recommendation Overview on Social Professional

Networks

There are different algorithms and methodologies to do recommendation on social pro-
fessional networks. Despite their differences, their goal is one: to improve professional
productivity, quickness and agility. For example, the algorithms may recommend a per-
son to improve the quality of publication reviews or an item (for instance, a software
project) to help a professional to find in which to work on.

Moreover, evaluation metrics of recommendation algorithms on general social
networks can also be applied to evaluate algorithms on social professional networks.
Nevertheless, the choice of such metric depends on the goal of the recommendation.
For instance, if the main goal is to recommend different items, a diversity metric should
be used on the evaluation.

Finally, Table 2.2 summarizes the publications that cover recommendations tech-
niques on SPNs. We also summarize the evaluation strategies regarding the use of
accuracy metrics and other different metrics (e.g., novelty and diversity).
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2.5 Ranking applied to Clustering and

Recommendation

The main goal of ranking is to define importance weights to distinct objects in order to
make finding the relevant ones easier. Hence, different research areas have extensively
investigated ranking functions. In general, those functions consider ranking models,
such as vector space, probabilistic information retrieval, statistical language, graph-
based or set-oriented [Chaudhuri et al., 2004; Dom et al., 2003; Harman, 1992]. Figure
2.7 summarizes the stages of a ranking algorithm development. Once again, here, we
focus on ranking functions applied to clustering and recommendation algorithms in
social professional networks.

Ranking on clustering approaches. Combining ranking algorithms (or techniques)
with clustering techniques aims to improve the quality of the resulting clusters [Ahmed
et al., 2014; Baumes et al., 2005; Delis et al., 2016; Sun et al., 2009; Zhong et al.,
2017]. For instance, Sun et al. [2009] propose an algorithm called RankClus to cluster
and rank conferences and authors. The ranking function considers numbers of papers
accepted by a conference or published by an author and is used in the clustering process.
Furthermore, Ahmed et al. [2014] improve the quality of a clustering algorithm by
defining a ranking function that uses quantitative constraints to represent the area of
expertise of LinkedIn users.

Ranking on recommendation algorithms. The main goal of ranking is to sort
the resulting recommendations by relevance [Brandão et al., 2013; Fouss and Saerens,
2008; Liben-Nowell and Kleinberg, 2007; Lopes et al., 2010; Pu et al., 2012; Schall,
2014; Shani and Gunawardana, 2011; Sharma and Yan, 2013; Song et al., 2011; Tang
et al., 2016; Xia et al., 2014; Yang et al., 2015; Zhang et al., 2014]. In general, a score
is attributed to each recommendation as defined by a ranking function. For instance,
Liben-Nowell and Kleinberg [2007] define a ranking function for each topological
feature used as a predictor of pairs of collaborators that should work together. In
order to recommend relevant projects to developers, Zhang et al. [2014] rank the
projects by using cosine distance to measure the similarity between two projects.

2.6 Future Directions

In this section, we provide insights into future directions and trends in techniques based
on social professional networks.
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Considering semantic and multiple features. Here, the main idea is to treat
individuals, research and expertise areas, research and working groups, publications
and codes by considering their particular properties. For example, features that are
important to one research group, such as number of publications in conferences, may
not be relevant to other group in which publishing in journals is the ultimate goal.
In this context, a way to distinguish groups is using multiple features and attributing
different weights to such features according to the groups properties. By doing so,
applications and methods may better represent the reality. In this thesis, we follow
this direction by analyzing how different features can be used to measure tie strength
in Chapter 4 and then proposing a new metric that results from a combination of two
features in Chapter 5.

Grouping people. In most social networks, people tend to form groups, which also
happens in social professional networks. However, most of recommendation and rank-
ing approaches are for a single individual in SPN. Indeed, we have found few publica-
tions that do group recommendation in this context (such as [Sharma and Yan, 2013]).
Additionally, Salehi-Abari and Boutilier [2015] propose an approach to do group rec-
ommendation and inference that can be applied to social professional networks. Hence,
there are still open issues for strategies to recommend groups to people or people/items
to groups and ranking groups.

Identifying data veracity. A problem of using the features of social professional
networks is identifying if they indicate the truth or not. The development of methods
to do such distinction is important, especially for online social professional networks.
The data available on such networks have been used to develop productivity indicators,
rank researchers and reviewers, evaluate graduate programs and conferences, and so
on. Thus, such data have to be reliable.

Capturing nonprofessional social process. In social professional networks, an-
other challenge is to infer if a user behavior is based on nonprofessional information
(feelings and emotions) or not. A possible solution is to combine the SPN data with the
data from other source, for instance a friendship social network. Then, more informa-
tion will be available to better infer a user’s feelings and behavior. For instance, con-
sider applications that recommend people for professional activities (evaluating papers,
hiring committees, reviewing code, etc). A person may not be a good recommendation
solely based on the feelings of the others involved in the task.

Temporal social professional networks. Temporal networks allow to understand
the dynamics of the properties from nodes and relationships over time [Atzmueller
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et al., 2016; Kostakos, 2009; Wang et al., 2016]. According to Nicosia et al. [2013],
the precise temporal ordering of the edges essentially influences the notion of node
adjacency and reachability in such networks. Hence, concepts and metrics designed and
applied to analyzing static social networks have to be adapted and extended to time-
varying networks. For instance, Casalnuovo et al. [2015] address temporal modeling on
GitHub for analyzing the socialization between developers as a predecessor to enrolling
a project. Also, they evaluate how the expertises of past experience and social aspects
of prior interactions to integrants of a project influence productivity at the start and
in the long term. In this context, there are many open aspects that can be investigated
in temporal social networks. In Chapter 6, we help to fill this gap by proposing a new
algorithm to measure tie strength in temporal co-authorship social networks.

2.7 Concluding Remarks

A social professional network is an important environment that can reveal patterns
from professional interactions and behavior. Such patterns may be used to improve
the performance of developers, authors, reviewers, and so on. Also, they may help
professionals find relevant information. Furthermore, the patterns may be applied to
evaluate the quality of research groups, open source projects, relationship between co-
workers and how it influences in their production, project reviews, and so on. Therefore,
the data available in SPNs provide valuable information and have many uses and
practical applications.

In this chapter, we presented a survey regarding social professional networks. We
described a general taxonomy to social networks considering the tasks (the use of social
networks to solve problems) and the issues (problems that emerge when dealing with
social networks) as a first-level classification. Also, we defined the types of social pro-
fessional networks and further exemplified them. Next, we focused on works that cover
clustering and recommendation algorithms, and ranking functions applied to those two
problems. We have also identified relationships among clustering, recommendation
and ranking approaches, which reveal the importance of one to each other. Then, we
concluded by presenting future directions on open problems.

Finally, important challenges to solve SPNs tasks are related to the data: how
different features properly represent entities (e.g., users, communities, research areas,
software projects), how data veracity can be measured and identified, and how data
from different sources can be combined. Therefore, research on data management is
still crucial for the success of social networks and their applications.
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Background

The previous chapter presented existing work on social professional network, including
a general taxonomy to social networks. Specially, we focused on works that address
clustering, recommendation and ranking on social professional networks. Now, we first
explain the statistical approaches applied in this work. Finally, we detail previous work
on tie strength specially in non-temporal and temporal social networks.

3.1 Basic Concepts for the Experimental Analyses

and Evaluations

Here, we focus on describing the methodology to develop our research. Hence, we detail
the co-authorship social networks (Section 3.1.1) and the methods that help to analyze
and measure the strength of ties (Section 3.1.2).

3.1.1 Co-authorship Social Networks

In order to analyze the strength of ties, we consider co-authorship social networks,
which represent relationships extracted from publications. We have initially built three
social networks using publications available on Lattes1 (further described in Chapter
4). Each network represents a different research area: medicine, computer science
and sociology. Then, we built large academic social networks from three different
areas of expertise. The areas and their datasets are: (i) Computer Science given by
DBLP2 (collected in September 2015); (ii) Medicine by PubMed3 (April 2016); and (iii)

1Lattes: http://lattes.cnpq.br
2DBLP: http://dblp.uni-trier.de
3PubMed: http://www.ncbi.nlm.nih.gov
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Table 3.1: Datasets and their basic statistics and information.

Dataset Number of nodes Number of edges Period

DBLP Articles 837,583 2,935,590 2000 to 2015
DBLP Inproceedings 945,297 3,760,247 2000 to 2015
PubMed 443,784 5,550,294 2000 to 2016
APS 180,718 821,870 2000 to 2013

Physics by APS4 (March 2016). For DBLP, we split it in two datasets: DBLP Articles
and DBLP Inproceedings. For PubMed (a US national library of Medicine National
Institute of Health that comprises biomedical publications), we consider publications
from the top-20 journals classified by h-index. For APS (American Physical Society),
we consider a sample dataset with its journal publications. Then, we build a co-
authorship SN for each dataset with features shown in Table 3.1.

These three large co-authorship social networks are used in the experiments
performed in Chapter 5 and 6. We emphasize that in Chapter 6, we consider the
time of the co-authorships in order to catch the temporal aspect of the social net-
works. The datasets supporting the analyses of these chapters are publicly available
at http://www.dcc.ufmg.br/~mirella/projs/apoena/.

3.1.2 Approaches to Tie Strength Analyses and Measures

Here, our goal is analyzing how the strength of ties can be measured by using different
metrics and algorithms. Also, we study how topological properties affect the strength
of ties measured by neighborhood overlap and absolute frequency of interaction (co-
authorship frequency) and how tie strength dynamism over time is. At that end, we
use regression and correlation analysis, quartiles and other statistical methods. In this
section, we only present general concepts to such statistical techniques. Further details
are presented in Chapters 4, 5 and 6.

Regression analysis. The goal of this statistical process is to identify the relation-
ship between one (or more) independent variable (its value is not changed by other
variables also considered in the analysis) and a dependent variable (the opposite mean-
ing of independent variables) [Jain, 1991]. Also, there are simple regression models
and multiple regression models. The former describes the relationship between a single
dependent variable and a single independent variable. The latter predicts the value of
a dependent variable from the value of two (or more) independent variables. Given the
relationship between variables, a model is defined as a hypothesis, and estimations of

4APS: http://www.aps.org

http://www.dcc.ufmg.br/~mirella/projs/apoena/
http://www.aps.org
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the model parameter values are considered to define an estimated regression equation.
Then, various tests can be applied to determine how satisfactory the model is. If the
model is satisfactory and given values for the independent variables, the value of the
dependent variable can be predicted by the estimated regression equation.

Correlation analysis. This statistical technique relates to regression analysis in
the sense that both handle the relationship among variables. In general, correlation
coefficients are a measure of a monotone (linear or not) association between variables
[Chok, 2010]. Values of such coefficient vary from -1 to +1. A correlation coefficient
of +1 represents a perfectly relationship in a positive monotone sense, whereas -1
indicates an ideally relationship in a negative monotone way, and 0 means the absence
of monotone relationship between variables [Cohen, 1988]. Furthermore, the most
commonly used correlation coefficients are Pearson (it measures the linear relationship
between two variables), Spearman’s rank and Kendall’s tau (both are appropriated to
a non-linear relationship between two variables) [Chok, 2010].

Arithmetic mean. It is a central tendency measure (a single value that summarizes
a distribution) that represents the average of a sequence of numbers. All values x
in a sequence are added up and then divided by the total number of observations
n: x̄ =

∑
x/n. According to Manikandan [2011], the advantages are: it is a good

representation of the data (because it uses every value in the data), it keeps out the
variations between different distributions when compared to others central tendency
measures and it is very related to standard deviation (detailed in this section). On
the other hand, it disadvantages include the sensitivity to extreme values or outliers
(specially when a sequence of numbers is small and skewed), absence of a meaningful
value for nominal or nonnominal ordinal data, and similar values to distributions with
many repeated or approximate numbers.

Median. It is also a central tendency measure given by a number that is in the
middle position of an ascending or descending sorted distribution of the input set.
When a sequence of values with n numbers is odd, the median is the number in the
n/2th position. If it is even, it is given by the mean of n/2th and (n/2 + 1)th value.
Following Manikandan [2011], advantages of median are: it is easy to compute; outliers
and skewed data do not distort its value; and ratio, intervals and ordinal scales can
be represented by median. Disadvantages include the representation of observations
is not precise and does not consider all values in the data, applying it in further
mathematical calculation is hard, and joining two distributions looses the ability to
represent the individuals medians of the joined group.
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Quartiles. It is a kind of quantile5, i.e. cutpoints in which a sequence of numbers
is divided into parts with equal size. Specifically, quartiles are the three points that
divide a ranked distribution in four equal regions. The first quartile is the middle
number between the smallest one and the median of a distribution. The second one
is the median of a distribution. Then, the third quartile represents the middle value
between the median and the highest value in a sequence of numbers [Brase and Brase,
2012]. According to Sharma [2012], the advantages of quartiles are: the simplicity
to compute, independence of extreme values or outliers, an appropriate measure of
variation for a distribution, and the adequateness in case of skewed distributions. The
disadvantages are: the value being based on the 50% observed data makes a not good
measure when not considering all data (because it considers only 50% of the data), it
presents high variance of values for different samples, and its value is not affected by
intermediate numbers in range of the middle 50% of the distribution. Even with such
problems, quartiles still allow to analyze the distribution (for example, minimum and
maximum value) of strength of ties.

Variance. It is a measure of how a data is distributed about the mean or expected
value [Sharma, 2012]. Here, we use the sample variance to estimate the population
variance because the data being used is sample data. Thus, given a distribution with
x elements of size n, the variance is s2 = (

∑
x2/n − 1) − ((

∑
x)2/n(n − 1)). The

advantages of variance are: it considers all data of the distribution in its calculation
and it is a prerequisite for the computation of many stable measures (for example,
standard deviation). However, the disadvantages are: its interpretation is hard, the
value is squared, and extreme values can influence the resulting value. Overall, variance
allows to analyze how distance the strength of each tie are from the mean.

Standard deviation. It is a solution to interpret the squared unit of variance
[Sharma, 2012]. The standard deviation is a positive square root of variance: s =

√
s2.

According to Sharma [2012], the advantages are: the value is based on every value
on the distribution, its value is less affected by variations of different samples than
other measures, it allows to calculate the combined standard deviation of two or
more distributions, and it is useful in further statistical calculation (for instance,
comparing skewness or correlations). On the other hand, disadvantages are: the
calculation is harder when compared to other measures of variation, and more weight
is given to extreme values and less to those close to the mean. Despite its disad-
vantages, it still reveals important characteristics about variation of the strength of ties.

5Quantile R project: http://stat.ethz.ch/R-manual/R-devel/library/stats/
html/quantile.html

http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html
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Additionally, we have tried to apply factorial design methods to understand how
topological properties explain variations in neighborhood overlap and absolute fre-
quency of interaction. However, we could not identify an appropriate model because:
(i) each topological property is numeric and defining representative levels to the factors
of the factorial design is hard; (ii) when we have tried to define levels, not all properties
had values for a specific combination of all levels; and (iii) the degree of freedom is
very high for error.

3.2 Related Work over Tie Strength

In this section, we first overview the strength of ties and how to calculate it (Section
3.2.1). Then, we focus on tie strength in temporal social networks (Section 3.2.2).

3.2.1 Tie Strength Overview

Many studies address tie strength in social networks [Brandão and Moro, 2015; Brugge-
man, 2016; Castilho et al., 2017; Goulas et al., 2015; Granovetter, 1973; Wiese et al.,
2015]. Following Granovetter [1973]’s theory, ties are weak when they serve as bridges
in the network by connecting individuals from different groups, and strong when they
link individuals in the same group. Moreover, the strength of a tie has been studied
in different domains with diverse goals. For instance, measuring the strength of co-
authorship ties [Brandão and Moro, 2015], work ties [Castilho et al., 2017], weak ties
[Granovetter, 1973], friendship ties [Seo et al., 2017; Zignani et al., 2016] and contact
(through calls and SMS) ties [Wiese et al., 2015]. Such studies contextualize the impor-
tance of measuring tie strength in an appropriate way. Overall, distinct relationships
play different roles in social networks and should be distinctly qualified as well through
(for example) their strength. Indeed, studies show that the strength of ties have (for
example) large impact at micro-macro levels in the network, depending on their weight,
and influence the patterns of communications [Brandão and Moro, 2015; Granovetter,
1973; Zignani et al., 2016].

Tie strength can be calculated by considering topological and/or semantic prop-
erties in the social network. First, topological properties capture structural character-
istics of the graph that constitutes the social network [Zaki and Meira Jr, 2014]. For
instance, Brandão and Moro [2015] use neighborhood overlap to measure tie strength
in co-authorship networks. Second, semantic properties catch non-structural charac-
teristics of nodes and edges in the social network. For example, Gilbert and Karahalios
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Table 3.2: Given two nodes i and j, there are different metrics that can be used to
measure the strength of ties.

Description Equation Publications

Adamic-Adar coefficient
∑
k∈N(i)∩N(j)

1
logN(k)

, where N(i) refers to the
neighbors of a node i.

[Kahanda and Neville,
2009], [Zignani et al.,
2016]

Clustering coefficient 2ei
(ki(ki−1))

, where ei is the number of edges be-
tween all neighbors of i and ki is the number of
neighbors of i.

[Brandão and Moro,
2015], [Zignani et al.,
2016]

Collaboration weight
∑
p

δ
p
i δ
p
j

np−1
, where δpi is 1 if node i collaborates

in a work p and zero otherwise, np is the num-
ber of collaborators in a work p and all single-
collaborated work are excluded.

[Newman, 2001a], [Pan
and Saramäki, 2012]

Frequency or interaction in-
tensity

wi,j represents the absolute number of interac-
tion between i and j.

[Onnela et al., 2007]

Neighborhood overlap or
Jaccard Index or Topolog-
ical Overlap

|Xci ∩ Xcj |
(|Xci ∪ Xcj | − (i,j themselves))

, where Xci rep-
resents the neighbors of node i, and Xc2 the
neighbors of j.

[Brandão and Moro,
2015], [Easley and
Kleinberg, 2010], [Vaz
de Melo et al., 2015],
[Onnela et al., 2007],
[Pan and Saramäki,
2012]

Normalized direct social
weight

∑
∀λ∈Λi,j

ω(i,j,λ)∑
∀k∈Ni

∑
∀λ∈Λi,k

ω(i,k,λ)
, where λ ∈ Λ represents

all types of interactions (e.g., number of co-
authored papers or shared projects) between i
and j.

[Zuo et al., 2016]

[2009] define a relationship as weak or strong on Facebook by considering features avail-
able on interaction history, such as days since first or last communication time, and
inbox messages exchanged. Third, combining both is also possible. For example, Zig-
nani et al. [2016] use interaction-graph properties (topological) and temporal features
(semantic) to predict link strength. Likewise, Kahanda and Neville [2009] measure tie
strength on Facebook by mapping semantic features (picture postings and groups, the
interaction among users, users’ gender and interests) and topological properties (node
degree and number of shared neighbors). Also, Seo et al. [2017] measure the friendship
strength considering communication information between users, personal similarity and
group similarity; all three calculated by using semantic and topological properties.

Each property type provides advantages and disadvantages over each other. Gen-
erally, topological properties can be calculated in any social network. Also, they usually
have relatively low computational time cost. However, in some situations, considering
only topological properties to measure the strength of ties may not be very accurate,
because relationships may be influenced by aspects not only related to network struc-
ture. Hence, semantic properties may improve the accuracy of approaches that measure
tie strength since they consider aspects related to the context of nodes and edges in the
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social network (e.g., the content of messages exchanged between users). Nevertheless,
semantic properties are not valid for any social network and could be hard to obtain, as
selecting them depends on what the nodes and edges represent in the social network.
Specifically, for academic social networks, the data available comes from collaboration
between authors and/or publications [Cheng et al., 2014; Digiampietri and Maruyama,
2014]. Not having the over-used social interaction, data requires new and better topo-
logical features. Hence, Table 3.2 shows different topological properties that have been
used to measure tie strength on such context. Note that neighborhood overlap is the
most common here because the overlap captured by such metric increases when tie
strength increases.

3.2.2 Tie Strength in Temporal Networks

The temporal variation in the social networks topology usually challenges traditional
methods applied in static networks. For example, Jiang et al. [2016] propose a new
technique to identify rumor sources in time-varying SNs. Also, Jin et al. [2012] develop
a system to predict company performance based on how inter-company networks change
over time. Further, Kang et al. [2014] present a framework that extends traditional
SNs data management with spatial, temporal and uncertain aspects.

Although the many research efforts in investigating social networks, the com-
bination of tie strength and temporal aspects has not been largely explored yet. For
example, Dasgupta et al. [2008] use tie strength associated with time to demonstrate its
influence in operators network. Likewise, Karsai et al. [2014] use tie strength to charac-
terize the impact of time-varying and heterogeneous interactions on rumor spreading.
Both aforementioned studies consider the temporal evolution of the strength of ties,
but they do not propose a new way to measure such property by including time. On
the other hand, Kostakos [2009] and Nicosia et al. [2013] propose a set of network
properties that consider the temporal aspect in their computation. They showed many
of such properties need to be calculated differently from the static networks.

A related problem is how to define what strong and weak ties are in temporal
networks. For instance, Laurent et al. [2015] define strong ties as frequent interactions
that connect nodes intra-communities and model the network structure locally, whereas
weak ties are infrequent interactions situated inter-communities and maintain the net-
work structure globally connected. Karsai et al. [2014] consider both the amount of
interactions and the time of the interactions to define the strength of ties. Then, strong
ties are time repeated and frequent interactions among pairs of individuals, whereas
weak ties occur only occasionally. In a different manner, Nicosia et al. [2013] define
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two nodes i and j as strongly connected if they are in a not symmetric relation (i
is temporally connected to j but not vice-versa), whereas they are weakly connected
if in a symmetric relation (both i is temporally connected to j, and j is temporally
connected to i).

In this thesis, we consider the concept of strong and weak ties for temporal SNs
based on Karsai et al. [2014]’s idea, i.e., a strong tie persists over time, and a weak
tie occurs sporadically. However, Karsai et al. [2014] characterized the strength of ties
based on a single time window of the network. Here we experimentally verify if the time
window is a factor for characterizing the strength of tie by analyzing the persistence
and transformation of ties over time. We show that, in fact, the strength of ties is very
sensitive to the time window used to compute it.

3.3 Concluding Remarks

In this chapter, we overviewed concepts adopted to analyze and measure the strength
of ties in co-authorship social networks. We also presented the datasets that we use to
build academic social networks.

Moreover, we overviewed studies that cover the strength of ties in non-temporal
and temporal networks. Many studies address tie strength in non-temporal social
networks [Brandão and Moro, 2015; Bruggeman, 2016; Castilho et al., 2017; Goulas
et al., 2015; Granovetter, 1973; Wiese et al., 2015]. Following Granovetter [1973]’s
theory, ties are weak when they serve as bridges in the social network by connecting
users from different groups, and strong when they link individuals in the same group.
In this context, we propose a new topological feature that helps to measure tie strength
in co-authorship social networks.

Regarding temporal networks, in this work, we define the concept of strong and
weak ties for temporal social networks based on Karsai et al. [2014]’s idea (although
they have not experimentally verify it, and we have). Specifically, we consider that
a strong tie persists over time and a weak tie occurs sporadically. Also, we analyze
the persistence and transformation of the ties over time. To do so, we propose a new
algorithm and compare with an existing ones.



Chapter 4

A Preliminary Study on the
Strength of Co-authorship Ties

Topological properties capture the characteristics of the graph that represents a social
network [Zaki and Meira Jr, 2014]. In this chapter, we consider topological properties
that have been applied for analyzing the importance of researchers [Barabasi et al.,
2001; Gonçalves et al., 2014; Yan et al., 2012], the distance among researchers [Burt,
2004; Newman, 2001b] and the density of connections in the network [Barabasi et al.,
2001]. One special property is the strength (or weakness) of the ties (edges, relation-
ships or links) in the network. Now, we propose to analyze how some topological
properties relate to the strength of ties in co-authorship social networks.

Specially, considering the aforementioned scenario of evaluating research through
bibliometry and social networks (Section 1.1), we discuss how to improve such evalu-
ation by analyzing how what interferes with tie strength. Therefore, we build (non-
temporal) co-authorship social networks considering real datasets of publications from
three different areas (computer science, medicine and sociology), which are also quanti-
tatively compared (Section 4.1). We then characterize the strength of ties measured by
neighborhood overlap and define a nominal scale to classify the ties as weak or strong.
Also, we verify if the Granovetter’s theory governs the three networks (Section 4.2).
Afterwards, we analyze how nine topological properties impact on the strength of ties.
Initially, we study the correlation between each property and neighborhood overlap.
Then, our analysis takes one step forward and considers a regression model to quantify
how the combination of each property to neighborhood overlap may improve even fur-
ther the evaluation results (Section 4.3). Finally, we analyze the strength of ties intra
and inter communities by using neighborhood overlap and weight in different clustering
algorithms (Section 4.4), then showing a practical use for tie strength metrics.

45
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Figure 4.1: Architecture of a general research evaluation-oriented system.

4.1 Datasets Main Features

We consider systems and database applications that measure research productivity by
evaluating the social aspects of researchers. Examples of such applications include
(but are not limited to) ranking researchers, graduate programs and conferences, and
recommending experts and collaborators, as presented in [Brandão et al., 2013; Chan
et al., 2016; Ductor, 2015; Lima et al., 2013; Lopes et al., 2010; Lopes et al., 2011;
Ribas et al., 2015; Silva et al., 2014; Yu et al., 2016a]. Figure 4.1 illustrates a general
architecture of such systems: from a social network (e.g., co-authorship network), the
collaboration data is extracted; then the system applies bibliometrics and analyzes
semantic properties, whose results are sent to the applications. Here, we show the
importance of analyzing the topological properties as well, as also done in [Barabasi et
al., 2001].

For characterizing the importance of topological properties, we build three co-
authorship social networks using the CiênciaBrasil datasets1. The publications avail-
able in CiênciaBrasil are from Brazilian researchers and have been collected from
Lattes, an online platform for archiving researchers’ curriculum vitae, in November
2013. Each network represents the co-authorships among researchers from three areas:
computer science, medicine and sociology.

Figure 4.2 presents the distributions of the number of co-authors for the three
areas. We consider these areas because there are clearly three different degrees of
collaboration: low for sociology (up to three co-authors), medium for medicine (up
to seven co-authors) and high for computer science (up to 15 co-authors). Note that
for the authors in computer science and medicine, publishing together is a common
practice, which is not for sociology (as presented by Simon [1974]). For instance,
from 7,195 publications in sociology, 83.96% have only one author. Also, although the
three networks are from Brazilian researchers, there are other studies that corroborate
such behavior on different datasets [Acedo et al., 2006; Glänzel and Schubert, 2005;
Huang and Huang, 2006]. Finally, Table 4.1 summarizes the datasets with the number

1Datasets available at http://www.dcc.ufmg.br/∼mirella/Tools/DEXA2015/

http://www.dcc.ufmg.br/
mirella/Tools/DEXA2015/
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Figure 4.2: Distribution of numbers of co-authors for researchers in each area.

Table 4.1: Description of the datasets for building social networks.
Area #Insts #Res #Publs AvgPubA #Pairs (#dist) #SubA
CS 111 543 48,706 89.69 16,312 (1,563) 884
Med 114 368 75,553 205.30 16,089 (778) 664
Soc 43 96 7,195 74.95 322 (39) 68

Note: CS = Computer Science, Med = Medicine, Soc = Sociology

of institutions, number of researchers (authors of papers), number of publications,
average number of publications per author, number of pairs of co-authors (and number
of distinct pairs of co-authors) and number of subareas.

4.2 Characterizing the Strength of Ties

In this section, we measure the strength of co-authorship ties using the metric called
neighborhood overlap. We now describe and characterize such metric in the three non-
temporal co-authorship SNs (Section 4.2.1). Also, as we are studying the strength of
ties, we have to verify if the ties follow Granovetter’s theory (weak ties tend to connect
nodes from different communities), i.e., if such theory governs the co-authorship social
networks when the strength of ties is measured by neighborhood overlap. If the theory is
not valid in the studied co-authorship social networks, we should consider other theories
to characterize the ties as weak or strong. Hence, we also analyze the topological
properties when weak and strong ties are removed (Section 4.2.2).
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4.2.1 Neighborhood Overlap Characterization

We consider the topological properties of three co-authorship social networks to investi-
gate their impact to the ties strength. Here, the strength of a tie (relationship between
a pair of researchers) is estimated by the neighborhood overlap metric of an edge con-
necting researchers vi and vj [Easley and Kleinberg, 2010]. The metric is given by the
equation: |N (vi)∩N (vj)|

|N (vi)∪N (vj)|−{vi,vj} , where N (vi) represents the co-authors of researcher vi,
and N (vj) the co-authors of vj.

Using neighborhood overlap to measure the strength of co-authorship ties is not
well defined in the literature yet. Hence, such investigation is important to discover
whether such metric captures the real importance of the tie to a researcher. We em-
phasize that neighborhood overlap does not consider the semantic of the relationship
between pairs of researchers (for example, the period or the asymmetric importance of
the co-authorship to a researcher) because it is not the focus of this work. However,
neighborhood overlap captures the density of co-authorship ties among researchers.
Such density is important because it measures the strength of the ties considering the
neighborhood effect, which means the larger the number of common co-authors that
a pair of researchers has, the more such pair tends to initiate a collaboration. This
indicates that such tie is stronger if considering the neighborhood overlap. In the aca-
demic context, such effect is a variable that explains the tendency of a researcher to
collaborate with others based on the relational effects of the researcher working in the
neighborhood. For instance, given a pair of researchers vi and vj with a tie in the
network where each researcher has six co-authors with only one in common. Such tie
is weak, because there is only one co-author in common from 10 possibilities. In such
case, the tie being weak means that the neighbors do not have much effect on the
co-authorship, i.e. the intensity of co-authorship is small.

Conceptually, the tie strength grows as the neighborhood overlap increases. A tie
is considered weak when the neighborhood overlap is very small [Easley and Kleinberg,
2010], and the problem becomes what “very small” means (0.01? 0.1? 0.2?). Note
that ties are strong when their neighborhood overlap has opposite values to those
defined for weak ties. According to Granovetter [1973], the tie strength is based on
properties associated to the individuals’ relationship (e.g. the intensity or the age).
Hence, in order to define a nominal scale for tie strength, we compare two properties:
neighborhood overlap and edge weight (i.e., an edge is the link between two researchers,
and the weight is the number of their co-authored publications). Here, the edge weight
represents the absolute frequency of interaction in co-authorship social networks. Thus,
we call edge weight as co-authorship frequency.
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(a) The average cumulative neighborhood over-
lap increases, when larger values for co-
authorship frequency are included.

(b) Proportion of weak ties in co-authorships
of same co-authorship frequency.

Figure 4.3: Analyzing the neighborhood overlap versus co-authorship frequency.

Considering the three areas, Figures 4.3a and 4.3b show the relationship between
their neighborhood overlap and co-authorship frequency. Figure 4.3a shows the average
cumulative neighborhood overlap for a fraction of co-authorship frequency. To compute
such average, we sort all edges in increasing order by co-authorship frequency. Then,
we take the top k (0 ≤ k ≤ 1) fraction of edges from the sorted list and calculate the
average neighborhood overlap for those edges. Observe that when edges with larger
co-authorship frequency are included, the average cumulative neighborhood overlap
increases in the three areas on average. Also, including all co-authorship frequencies,
the average cumulative neighborhood overlap does not reach much more than 0.2 (0.21
to computer science, 0.17 to medicine and 0.11 to sociology). Such average represents
the typical value of neighborhood overlap in each network.

Then, Figure 4.3b presents the proportion of ties with co-authorship frequency
varying from one to five when the neighborhood overlap ranges from zero to 0.2. In
computer science and medicine, 55% of the ties with co-authorship frequency in the
range [1;5] have neighborhood overlap in the range [0;0.2]. In sociology, most ties with
small co-authorship frequency have neighborhood overlap in the range [0;0.2]. Such
analysis suggests that ties with small co-authorship frequency also have high proportion
of ties with neighborhood overlap between [0;0.2]. Therefore, we define that a tie is
weak when the neighborhood overlap is within [0;0.2] as well. We also note that, in
practice, the values of the nominal scale vary slightly depending on the research area,
but to simplify the analysis, we have standardized the values in only one scale, which
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(a) (b)

Figure 4.4: Empirical CDF of neighborhood overlap and co-authorship frequency com-
puted by the co-authorship between pairs of researchers.

does not result in loss of information.

Now, the goal is to analyze the distribution of neighborhood overlap and co-
authorship frequency in the three networks and compare them. Such analysis con-
tributes to understanding the presence of weak and strong ties in the networks. Figure
4.4 presents the ECDF2 (Empirical Cumulative Distribution Function) of neighbor-
hood overlap and co-authorship frequency for the three co-authorship networks. The
third quartile values in the graphic indicate that 75% of the data is less than that
number in each area. It shows that only 25% of the co-authorships have neighbor-
hood overlap equal or higher than 0.308 in computer science, 0.252 in medicine and
0.225 in sociology. The number of co-authorships among researchers (co-authorship
frequency) is also small for the three networks; i.e., 25% of the pairs of researchers
have co-authorship frequency equal or higher than 10 in computer science, 13.75 in
medicine and 11.5 in sociology. Hence a direct conclusion is that weak ties are strongly
present in co-authorship networks independently from the research area.

Also, the analysis of neighborhood overlap and co-authorship frequency distribu-
tions indicates that computer science has more ties with co-authors in common than
medicine and sociology. Hence, the neighborhood overlap does indeed capture the real
co-authorship among researchers in the three networks, because the results concur with
the distribution of co-authors from Figure 4.2.

2ECDF assigns a probability of 1/n to each value of neighborhood overlap and co-authorship
frequency, sorts the data in increasing order, and calculates the sum of the assigned probabilities up
to and including each value.
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4.2.2 Granovetter’s Theory Analysis

Granovetter’s theory [Granovetter, 1973] raises the hypothesis about the importance
of weak ties in same situations. Following such theory in the academic context, the
weak ties connect researchers from different communities, for instance, different re-
search groups or teams. Considering the case where the ties are strong between two
individuals, such theory suggests the existence of a triad claiming that if A and B are
connected, and A and C are connected, then B and C will probably be connected. In
other words, the strong ties link researchers within the same groups and teams. In or-
der to better understand the strength of ties behavior when measured by neighborhood
overlap and verify whether Granovetter’s theory governs the networks, we present how
removing the weak ties and the strong ties affects the topological properties.

Table 4.2 presents the properties of the social networks with all ties, when remov-
ing ties with neighborhood overlap equal to zero, and in the ranges [0;0.1] and [0;0.2].
As expected, all three networks are topologically affected by removing weak ties. In
general, the average degree, diameter, density and total number of triangles decrease,
whereas the total number of communities (the communities are detected by Louvain
Method [Blondel et al., 2008]), total number of connected components and average
clustering coefficient increase. Such increases indicate the weak ties really connect re-
searchers from different communities and validate Granovetter’ theory. Furthermore,
the diameter decreases when ties are removed, because the nodes in the social network
get disconnected and then the size of the main connected component also decreases.
Note that changes in the topological properties when removing ties are common. How-
ever, if such ties are not important and/or influential in the network, such changes are
not significant.

We now discuss the values of topological properties when strong ties are removed.
Table 4.3 shows the social networks properties values with all ties, when removing ties
with neighborhood overlap in the ranges [1;0.8], [1;0.5] and [1;0.2[. The ties are strong
when their neighborhood overlap is higher than 0.2. We remove the strong ties starting
from the range 1.0 to 0.8, then 1.0 to 0.5, and 1.0 to 0.2 (not including 0.2). Most prop-
erties change their value more (i.e. have greater impact) when weak ties are removed
than strong ties. For example, when weak ties are removed, the average degree varies
more than when strong ties are removed. In computer science, for instance, removing
weak ties changes the average degree from 3.44 to 1.47, whereas removing strong ties
changes from 3.44 to 1.97. Second, the properties for modularity, average clustering
coefficient, average neighborhood overlap and average path length change differently
when weak and strong ties are removed. For instance, the average clustering coefficient
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Table 4.2: Co-authorship social networks properties when removing weak ties.

Topological All Ties Equal 0 [0;0.1] [0;0.2]
Property CS Med Soc CS Med Soc CS Med Soc CS Med Soc

# removed ties 0 0 0 199 168 23 481 302 24 896 516 29
Avg. degree 3.44 2.48 0.87 3.00 1.94 0.36 2.38 1.52 0.33 1.47 0.83 0.22
Diameter 14 11 6 12 9 2 14 20 2 13 6 2
Density 0.02 0.02 0.04 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01
# communities 20 23 12 108 118 35 137 128 35 215 205 38
Modularity 0.85 0.69 0.85 0.75 0.72 0.73 0.83 0.8 0.72 0.89 0.87 0.62
C. component 8 11 12 98 110 35 127 119 35 212 201 38
Avg. clust. coef. 0.47 0.42 0.43 0.63 0.69 0.91 0.68 0.66 0.81 0.71 0.78 0.79
# triangles 2125 641 6 2128 641 6 1813 506 5 1190 268 3
Avg. path length 4.75 3.31 2.12 4.56 4.21 1.11 5.20 7.14 1.17 4.49 2.36 1.17
Avg. NO 0.21 0.17 0.11 0.26 0.25 0.31 0.33 0.31 0.27 0.43 0.39 0.25

Note: Avg = average, CS = Computer Science, Med = Medicine, Soc = Sociology, C. component =
connected components, NO = neighborhood overlap

Table 4.3: Co-authorship social networks properties when removing strong ties.

Topological [1;0.8] [1;0.5] [1;0.2[
Property CS Soc Med CS Soc Med CS Soc Med

# removed ties 1 0 0 124 2 31 667 8 262
Avg. degree 3.44 — — 3.167 0.867 2.379 1.97 0.64 1.64
Diameter 14 — — 14 6 11 18 5 11
Density 0.015 — — 0.014 0.037 0.015 0.009 0.029 0.011
# communities 32 — — 31 13 22 56 17 39
Modularity 0.85 — — 0.836 0.85 0.675 0.804 0.84 0.645
C. component 8 — — 8 12 11 39 17 28
Avg. clust. coef. 0.47 — — 0.347 0.143 0.383 0.089 0.103 0.11
# triangles 2117 — — 1233 2 487 130 1 73
Avg. path length 4.75 — — 4.77 2.14 4.4 5.07 2.08 4.65
Avg. NO 0.207 — — 0.133 0.034 0.133 0.028 0.019 0.031

increases 50% for computer science when removing all weak ties and decreases 81.22%
when removing strong ties. These results agree with Granovetter’s theory, because
the clustering coefficient measures the trend of nodes in a network to form clusters.
By definition, the greater the clustering coefficient, the greater the number of closed
triads. Additionally, the giant component breaks more rapidly when a critical number
of weak ties is removed, since the number of connected components varies from 8 to
212 in computer science, 11 to 201 in medicine, and 12 to 38 in sociology. Furthermore,
when strong ties are removed, such value varies from 8 to 39 in computer science, 11
to 17 in medicine, and 12 to 28 in sociology. All these results suggest Granovetter’s
theory is valid for the three networks : weak ties link researchers from different groups
or teams, whereas strong ties connect researchers from the same ones.
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Table 4.4: Social network topological properties (see [Easley and Kleinberg, 2010] for
formal definitions).

Notation Description

eBetweenness edge betweenness of each edge in the network
Co-authorship frequency frequency of researchers published a work together
ClosenessA1/ClosenessA2 closeness of each researcher in a pair of researchers
AvgCloseness average closeness of each pair of researchers
EccentricityA1/EccentricityA2 eccentricity of each researcher in a pair of researchers
AvgEccentricity average eccentricity of each pair of researchers
ClusterCoefA1/ClusterCoefA2 clustering coefficient of each researcher in a pair of researchers
AvgClusterCoef average clustering coefficient of each pair of researchers
nTrianglesA1/nTrianglesA2 number of triangles of each researcher in a pair of researchers
AvgNTriangles average number of triangles of each pair of researchers
wDegreeA1/wDegreeA2 weight degree of each researcher in a pair of researchers
AvgWDegree average weight degree of each pair of researchers
EigenvecA1/EigenvecA2 eigenvector value of each researcher in a pair of researchers
AvgEigenvec average eigenvector of each pair of researchers
PageRankA1/PageRankA2 page rank of each researcher in a pair of researchers
AvgPageRank average page rank of each pair of researchers

4.3 The Impact of the Properties on Tie Strength

So far, we have measured tie strength by the neighborhood overlap of two researchers.
Indeed, considering co-authorship social networks, the actual strength of a tie may
depend on characteristics of the network graph per se. Therefore, we relate the strength
of ties to topological social network properties that capture: (i) the importance of
researchers (weight degree, eigenvector and pageRank) and pairs of researchers (edge
betweenness and co-authorship frequency) within a network; (ii) the distance of a
researcher from the furthest other (closeness and eccentricity); and (iii) the degree
to which researchers tend to cluster together (clustering coefficient and number of
triangles), as defined in Table 4.4.

Analyzing the importance of each property to neighborhood overlap and quantify-
ing their strength may reveal knowledge to improve systems that combine bibliometry
and social network analysis (e.g. algorithms for ranking graduate programs [Lopes et
al., 2011]). Also, relative measures (consider and compare more than one aspect) can
better represent the reality than absolute counts (for only one aspect) [Pendlebury,
2009]. Hence, the combination of neighborhood overlap with other metrics can poten-
tially generate better results. Here, we analyze the correlations between each property
(individually) and neighborhood overlap (Section 4.3.1), and use a regression model to
quantify the importance of properties to neighborhood overlap as well (Section 4.3.2).
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Table 4.5: Pearson correlation coefficients between topological properties and neigh-
borhood overlap. Values lower than 0.1 are insubstantial.

Properties Computer Science Medicine Sociology
AvgClusterCoef 0.61 0.73 0.88
ClusterCoefA1/ 0.47 0.62 0.81
ClusterCoefA2 0.53 0.56 0.79
AvgNTriangles 0.38 0.26 0.93
nTrianglesA1/ 0.37 0.32 0.86
nTrianglesA2 0.28 0.15 0.82

Co-authorship frequency 0.31 0.3 0.34
EigenvecA1/ 0.3 0.2 0.65
EigenvecA2 0.23 0.11 0.62
AvgEigenvec 0.3 0.17 0.68
AvgWDegree 0.27 0.11 0.6
wDegreeA1/ 0.24 0.17 0.54
wDegreeA2 0.17 0.03 0.34

PageRankA1/ 0.2 -0.04 -0.17
PageRankA2 0.09 -0.02 -0.1
AvgPageRank 0.19 -0.03 -0.26
AvgEccentricity 0.13 0.21 -0.034
EccentricityA1/ 0.11 0.2 0.086
EccentricityA2 0.13 0.2 0.23
ClosenessA1/ -0.06 -0.14 0.013
ClosenessA2 -0.1 -0.15 -0.2
AvgCloseness -0.09 -0.15 -0.067
eBetweenness -0.4 -0.5 -0.26

4.3.1 Correlation Analyses

We quantify the correlations between each property and the strength of ties by using
the Pearson linear correlation coefficient and the Spearman’s rank correlation coeffi-
cient [Jain, 1991]. The Pearson coefficient measures the linear relationship between two
variables. When such relationship is not linear, the Spearman’s rank correlation coef-
ficient is more appropriate. The Pearson coefficient is presented in Table 4.5, whereas
Spearman results are very similar and thus omitted.

We follow the conventions to interpret correlation coefficient from [Cohen, 1988]:
greater than 0.7 is very large, within [0.5;0.7) is large, within [0.3;0.5) is moderate;
within [0.1;0.3) is small, and anything smaller than 0.1 is insubstantial (note that
the same ranges are valid for negative correlation). Table 4.5 shows that, for most
properties, the correlations with neighborhood overlap tend to be small or moderate. In
computer science and medicine, the neighborhood overlap varies slightly when the other
topological properties change. However, in the sociology network, these correlations
are balanced (there are 11 large correlations against 12 small and moderate ones). Such
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situation may be explained by the smaller size of the sociology co-authorship network
and/or limited number of co-authorships (the maximum number of co-authors in a
paper is three for sociology network).

As for specific differences among the networks, number of triangles (nTrianglesA1,
nTrianglesA2 and AvgNTriangles), weighted degree (wDegreeA1, wDegreeA2 and Avg-
WDegree) and eigenvector (EigenvecA1,EigenvecA2 and AvgEigenvec) have small or
moderate correlations in computer science and medicine, but large in sociology. Such
large linear correlation in sociology is expected, because, conceptually, the existence
of more triangles indicates more neighbors in common. A direct question is: why the
number of triangles is not linearly correlated with neighborhood overlap in computer
science and medicine? We may only speculate that such correlation is non linear or
there is no correlation due to factors not considered in this work. Furthermore, the
large linear correlation between neighborhood overlap and metrics that capture the im-
portance of a researcher in a network (weighted degree and eigenvector) indicates that
in sociology, important researchers in the network have co-authorship ties stronger than
others. Up to now, we cannot claim such behavior for computer science and medicine.

Moreover, for computer science and medicine, clustering coefficient is the property
most linearly correlated with neighborhood overlap: the correlation between AvgClus-
terCoef and NO reaches 0.61 in computer science and 0.73 in medicine. For sociology,
the most correlated property is number of triangles (0.93), although the correlation
between clustering coefficient and neighborhood overlap is also large (0.88).

These correlations provide evidence of properties that are strongly related to the
strength of ties in co-authorship networks, and thus can help to explain such strength.
They may also provide insights to improve methods that consider the strength of ties
concept. For instance, based on the observed patterns and the research area, the design
of an assessment system for conferences or teams evaluation that considers the strength
of ties may also consider clustering coefficient, number of triangles, edge betweenness,
weighted degree and/or eigenvector to improve its accuracy and overall quality. In
addition, the correlated topological properties can be used to answer the question:
why a certain tie has a particular strength? Finally, topological properties may also be
combined to better explain the strength of ties or have a non linear correlation (greater
than linear correlation) with neighborhood overlap. We investigate these issues next.

4.3.2 Regression Analyses

Another way to further assess the relative importance of each topological property
to the neighborhood overlap is to use a regression model. Such model is obtained
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from a statistical process called regression analysis that estimates the relationships
among variables [Jain, 1991]. The quality of the regression model is estimated by the
coefficient of determination R2, which represents the fraction of the variation in the
response variable y that is explained by other variables. Here, the response variable y
is neighborhood overlap, and the variables are the nine topological properties described
in Table 4.4. Overall, the goals in this section are: to identify which of the topological
properties are necessary to build a model that efficiently characterizes the neighborhood
overlap in each research area and to quantify the relative importance of each property
to neighborhood overlap.

To define an appropriate regression model, we apply linear regression models
without and with logarithm and exponential transformations. First, we use simple lin-
ear regression model (without and with transformations) considering each topological
property as the variable (factor) and the neighborhood overlap as the response vari-
able (or estimated variable). However, for most topological properties, the quality of
regression is poor. For instance, the R2 value for the linear regression between edge
betweenness and neighborhood overlap is 0.161 in computer science (0.068 in sociology
and 0.25 in medicine) and with logarithm transformation is 0.329 (-0.22 in sociology
and -0.96 in medicine). Nonetheless, using simple exponential regression model has
improved the quality of regression. For example, the R2 value for the exponential re-
gression between edge betweennness and neighborhood overlap is 0.966 in computer
science (0.746 in sociology and 0.971 in medicine). Also, the results show that most
properties are statistically significant (non-zero), with 95% confidence level, for all
three areas.

Therefore, we apply a multiple exponential regression model to estimate a re-
sponse variable y as exponential function of k variables (i.e., topological proper-
ties) x1, x2, ..., xn using the following equation: y = β0 ∗ βx11 ∗ βx22 ∗ ... ∗ β

xk
k , or

ln(y) = ln(β0) + ln(β1)x1 + ln(β2)x2 + ... + ln(βk)xk. We build one model for each
social network by determining parameters β0, β1, ..., βk in order to minimize the least
squared error for all researchers in the co-authorship network.

The first line of Table 4.6 shows the R2 values for the models built considering
all topological properties (k = 9). We have only considered the average values of node
properties in the multiple regression models (e.g., for ClosenessA1, ClosenessA2 and
AvgCloseness, we use AvgCloseness, where average represents the property value of two
researchers in the co-authorship). Then, each subsequent line presents the cumulative
results after removing the properties – i.e., the second line is after removing Closeness,
the third is after removing Eccentricity from the previous model without Closeness, and
so on. The properties are removed from the least to the most important. Specifically,
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Table 4.6: Results with all properties and removing one property at a time.
Regression Model Quality(R2)
Model CS Med Soc
All properties 0.953 0.917 -0.103
AvgCloseness (-) 0.954 0.823 -0.105
AvgEccentricity (-) 0.954 0.884 -0.09
AvgClusterCoef (-) 0.969 0.935 -0.04
AvgNTriangles (-) 0.964 0.942 -0.01
AvgWDegree (-) 0.964 0.959 0.009
AvgEigenvec (-) 0.963 0.967 0.453
AvgPageRank (-) 0.967 0.967 0.546
Co-authorship frequency (-) 0.965 0.971 0.747

Note: The negative R2 indicates that the model does not follow the trend of the data, i.e., the
regression model is a worse fit [Cameron and Windmeijer, 1997].

the first two to be removed are closeness and eccentricity because their definitions
consider the smallest path in the graph, which in theory has no relation to neighborhood
overlap. Then, clustering coefficient and number of triangles come next because they
are metrics that consider the neighbors information. The last ones to be removed
are the most important because they consider the number of relationships of a node,
which is directly associated to weak ties. After removing the co-authorship frequency,
the only variable in the regression model is edge betweenness.

Considering the results, the models can well explain the strength of ties between
researchers in computer science and medicine, with R2 reaching 0.96 for computer
science and 0.97 for medicine. For sociology, the R2 is smaller: -0.105, which indicates a
completely inappropriate model. However, after removing some topological properties
from the model, the R2 values start to increase and reach 0.747, which indicates a
reasonably good model. The worst R2 value for each co-authorship network can be
explained by applying an exponential regression model. As shown in Table 4.5, there
is a large linear correlation between some topological properties and the neighborhood
overlap. Also, there is a noticeable increase of the models accuracy when the clustering
coefficient (large correlation with NO in the three networks) is removed.

Analyzing the removal of each property enables to identify which ones are im-
portant to the quality of the regression model. Specifically, for computer science,
removing clustering coefficient and pageRank increases the R2 value, which indicates
that such properties can not be used to explain variations of neighborhood overlap
values. Likewise, removing other properties (such as number of triangles, eigenvector
and co-authorship frequency) decreases the quality of the model, but not significantly
(around -0.5%, -0.1% and -0.2%, respectively). For medicine, removing closeness and
eccentricity reduces the regression model’s quality, which reinforces the importance of
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such properties to the model. Thus, the two metrics that measure the distance of
a researcher from the furthest other (closeness and eccentricity) non linearly explain
variations in the strength of the ties. Likewise, removing other properties increases
the R2 value, showing that they are not very important to the model. Then for soci-
ology, keeping only eBetweenness is enough to have a good model. Also, for the three
networks, the quality of the model is good when keeping only edge betweenness.

Such results show the relevance of a metric that represents the importance of a tie
between researchers to explain the non linear variation in neighborhood overlap. Note
that the computation of neighborhood overlap uses the betweenness concept. Thus,
the correlation between the two metrics is expected. The novelty here is that such
correlation is non linear and is a pattern for the three areas. At the end, such results
indicate that each area network has the strength of ties related to other topological
properties in different ways.

Finally, regarding the statistical significance of each model parameter, we set up
a series of hypothesis tests, one for each parameter βi, specified by a null hypothesis
H0 : βi = 0. We found that most parameters are statistically significant (i.e., non-
zero), with 99% confidence level for the models with the highest R2 value. The only
exceptions (p-value > 0.05) are the coefficients associated with the average eigenvector
and the average page rank for computer science.

4.4 A Comparative Analysis of the Strength of

Co-authorship Ties in Clusters

Clustering algorithms represent a classical problem of data mining and has many ap-
plications over a plethora of domains. Then, identifying which algorithm is proper to
one such domain is a challenge per se. Likewise, evaluating the quality of the created
clusters is hard due to its problem-driven nature, as a good clustering algorithm for a
problem may not be as good for another [Almeida et al., 2011].

In the context of social networks (SN), clustering algorithms are useful for detect-
ing (finding) communities. Examples of studies include to explore regional innovation
systems, clustering effect in scientific communities and concentration of developers in a
country [Brandão and Moro, 2017a]. Specially in academic SN, detecting clusters helps
to discovery patterns that may increase the researchers’ productivity, reveal the impact
in research policy and understand group formation [Kshitij et al., 2015]. However, once
again, the problem is how to verify the quality of the created clusters.

Here, we focus on applying clustering techniques in co-authorship SN, an aca-
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demic network in which the nodes are researchers and there are edges between them
if they have published together. Specifically, we focus on co-authorship SN from three
different research areas: computer science, medicine and sociology. Characterizing
these different areas by applying clustering algorithms helps to understand their pro-
files. For example, for ranking purposes, research areas with few collaboration patterns
need evaluation criterion different from the ones with predominance of collaboration.

Clustering techniques have been applied to different types of networks, for exam-
ple, directed networks [Malliaros and Vazirgiannis, 2013], social professional networks
[Brandão and Moro, 2017a] and mobile SN [Kim and Kim, 2014]. From these tech-
niques, we have chosen three that are commonly applied to undirected graphs. The
first is the Louvain method that is one of the most used clustering algorithm based
on modularity maximization (it measures how nodes in a cluster are better connected
as opposity of a random connection) [Blondel et al., 2008]. The second one is the
Clique Percolation method that is able to detect overlap communities, i.e., nodes can
belong to more than one community [Palla et al., 2005]. The third is Markov Cluster
algorithm, which forms clusters by alternating two Markov processes: expansion and
inflation [Van Dongen, 2000]. According to Mishra et al. [2007], modularity, overlap
and Markov chain are examples of strategies commonly used to detect communities in
social networks.

There are many clustering techniques and identifying which one is the best for
co-authorship social network is not an easy task due to the many aspects that can
be evaluated. Also, the quality of a cluster is problem-driven as a “good” clustering
algorithm for a problem is not necessarily good for another [Almeida et al., 2011]. In
this sense, we evaluate clustering algorithms by using the strength of co-authorship ties
(a type of social ties) metrics. The study of social ties has been used to build rigorous
models that reveal the evolution of SN and the dynamics of information exchange
[Aiello et al., 2014].

A social network cluster is a collection of individuals with dense interactions
patterns internally and sparse interactions externally [Mishra et al., 2007]. In other
words, when the strength of ties is defined by metrics that consider the neighborhood of
nodes, the strength of ties intra cluster should be higher than inter clusters. Thus, we
measure such strength by using neighborhood overlap and co_authorship frequency.

Also, there are different ways to measure clustering quality as described in Chap-
ter 2, such as BetaCV, C-index and modularity [Brandão and Moro, 2017a]. However,
identifying whether such metrics give the expected answer for a graph is very diffi-
cult [Almeida et al., 2011]. Moreover, most of these metrics are biased and unreliable
in larger real graphs. Indeed, in this work, we investigate whether tie strength metrics
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can be used to evaluate clustering quality. This study represents a new direction in the
evaluation of clustering algorithms and may help to fill this gap in the state-of-the-art.

Overall, the contributions here are the analysis of the distribution for strong and
weak ties intra and inter clusters, and the dynamism of the strength of ties through
clustering algorithms. The results reveal whether tie strength metrics do indeed eval-
uate clusters quality based on the clustering techniques definition that the ties intra
a community should be strong and inter clusters should be weak. Also, this study
is important to get insights on the strength of the co-authorships among researchers
intra and inter clusters. Such insights can help the design of methods for assessing
research quality and productivity. For example, methods that consider the weak ties
and communities concepts as Burt [2004] and Silva et al. [2014] may attribute different
weights to the importance of weak ties depending on their community size.

Specifically, we analyze the results of three clustering methods: Louvain method
(Section 4.4.2.1), clique percolation method (Section 4.4.2.2) and Markov cluster al-
gorithm (Section 4.4.2.3). Then, we compare the results of these methods (Section
4.4.3). We have chosen these three algorithms because they are important to detect
core groups on SN [Kim and Kim, 2014]. Note that in the social network context,
clusters are also called as communities [Girvan and Newman, 2002]. Thus, we use both
terms interchangeably and maintain the nomenclature of the clustering algorithms’ au-
thors (Louvain method called as LM, clique percolation method as CPM and Markov
cluster algorithm as MCL).

4.4.1 Analyses Setup

Considering the datasets presented in Table 4.1, we apply three clustering algorithms:
Louvain method (LM), clique percolation method (CPM) and Markov cluster algorithm
(MCL). Hence, we measure the strength of ties for each pair of researchers in each
cluster detected by the algorithms. Such strength is measured by using neighborhood
overlap and co-authorship frequency. As presented in Section 4.2, we consider that a
tie is weak when the neighborhood overlap is in the range [0; 0.2] and strong otherwise.
Likewise, a tie is weak when the co-authorship frequency is in the range [1; 5] and
strong otherwise [Brandão and Moro, 2015].

Indeed, we analyze the tie strength dynamism through different clusters formed
by each algorithm. Such analyses provide insights whether the strength of ties metrics
can be used to evaluate clustering quality. By clusters definition [Blondel et al., 2008;
Palla et al., 2005; Van Dongen, 2000], ties intra-clusters should be strong and ties inter-
clusters should be weak. Therefore, a cluster should have most pairs of researchers (ties)
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(a) Neighborhood overlap (b) Co-authorship frequency

Figure 4.5: The strength of ties intra-communities in a perfect clustering. In each box
plot, the central rectangle spans the first to the third quartiles, the segment inside is the
median, traits above and below the rectangle represent the minimum and maximum
values. The clusters’ identifiers order the box plots.

classified as strong and most ties that connect different clusters as weak.

One of the problems in evaluating clustering quality is the absence of a ground
truth for comparison [Almeida et al., 2011]. Thus, we verify the strength of ties in a
synthetic data that represents a situation with perfect clustering. According to Harman
et al. [2005], a perfect clustering has a perfect modularization, i.e., all modules in a
cluster are connected to all other modules and there are no inter-cluster connections.
Thus, we build a graph with 17 (a random choose number) nodes and 23 edges. We
link the nodes in a way to form four clusters and there are no connections among nodes
from different clusters. Cluster #1 is the largest one (7 nodes and 12 edges), cluster
#2 is the second largest (4 nodes and 5 edges), clusters #3 and #4 have the same size
(3 nodes and 3 edges). Figures 4.5a and 4.5b present the neighborhood overlap and
co-authorship frequency of a perfect clustering, respectively.

Note that the minimum value of neighborhood overlap is 0.2, i.e., most com-
munities in these networks are composed by strong ties. The smallest clusters have
neighborhood overlap equal to 1 (i.e., all ties are strongly connected), because all
nodes are connected to each other, but in a real social network this hardly happens.
We emphasize that a high neighborhood overlap indicates that pairs of researchers are
more connected to each other intra a cluster. Also, the co-authorship frequency of
all clusters has the median high than 20. This is a property strictly related to the
frequency of nodes interactions. Thus, this may not be find in real networks. However,
co-authorship SN with a high degree of collaboration tend to have a high co-authorship
frequency [Brandão and Moro, 2015]. Therefore, most detected clusters should have
more strong ties than weak ones.
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(a) Computer science (b) Medicine

(c) Sociology

Figure 4.6: LM – The strength of ties intra-communities measured by neighborhood
overlap.

4.4.2 Evaluated Clustering Techniques

In this section, we present the analyzes of the three clustering techniques: Louvain
method (Section 4.4.2.1), Clique Percolation method (Section 4.4.2.2) and Markov
Cluster algorithm (Section 4.4.2.3).

4.4.2.1 Community Detection Using Louvain Method

The Louvain method (LM) [Blondel et al., 2008] is a simple, efficient and one of the
most common methods for detecting communities in large networks. In summary, this
method makes greedy seeks to optimize the modularity of a partition of the network,
where modularity is a topological property of a network and designed to measure the
density of links intra communities [Blondel et al., 2008]. It is important to emphasize
that the LM considers the SN as unweighted. Hence, it allows to study the dynamism
of neighborhood overlap and co-authorship frequency of links between researchers in
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(a) Computer science (b) Medicine

(c) Sociology

Figure 4.7: LM – The co-authorship frequency as a measure of the strength of ties
intra-communities (computer science and medicine box plots present many outliers
and some are omitted make the graph clearer).

clusters that are formed by the modularity and the network topology. The study of
the influence of neighborhood overlap and co-authorship frequency in the formation
of clusters is in Section 4.4.2.3 (because the cluster technique explored in such section
depends on the weights attributed to the edges, i.e., neighborhood overlap and co-
authorship frequency are used as weight of the social network, not only as a metric to
measure tie strength).

Figures 4.6 to 4.9 summarize (in box plots) the neighborhood overlap and co-
authorship frequency of ties intra and inter different communities detected by the
Louvain method. Considering intra communities perspective, Figure 4.6 shows that
there are communities with neighborhood overlap equal to zero, few edges compose
all such communities in the three SN (the number varies from one edge to four), and
all edges have one node in common (for example, all edges connect to a researcher
A). These smaller communities are detected by LM because the researchers are not
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(a) Computer Science (b) Medicine

Figure 4.8: LM – The strength of ties inter-communities measured by neighborhood
overlap.

densely connected to other communities. Also, most communities present weak ties
(neighborhood overlap less or equal than 0.2). There are 12 communities with the
mean and median values smaller or equal to 0.2 in computer science, 11 in sociology
and 14 in medicine. This shows that despite the communities being densely connected,
the presence of weak ties is strong. Furthermore, the analysis of the arrows in the box
plot shows that in computer science, community #8 has the least disperse data, i.e.,
community #8 has interactions between researchers with uniformity in the value of
neighborhood overlap. This uniformity may reveal a pattern in researchers interaction
(we leave for future work the investigation of such a pattern). In sociology and medicine
networks, all communities have a high dispersion data, which indicates the lack of
uniformity or homogeneity in the co-authorships.

Figure 4.7 shows the same communities from Figure 4.6, but now, focusing on
the co-authorship frequency of interactions between researchers. In computer science,
most communities have the median value of co-authorship frequency less than 5, which
indicates absence of very strong ties between researchers. Moreover, the mean and
median among communities are too close, which indicates a pattern of high interaction
between researchers. Regarding dispersion, it is high in communities with more than
four edges (non-zero neighborhood overlap). In sociology, most communities have the
means and median of co-authorship frequency smaller than 10. Thus, most ties are
classified as weak. In medicine, the co-authorship frequency in communities #3, #4
and #15 reach a value greater than 100. Also, the mean and median among the
communities are close.

Figures 4.8 and 4.9 compare the neighborhood overlap and co-authorship fre-
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(a) Computer Science (b) Medicine

Figure 4.9: LM – The strength of ties inter-communities measured by co-authorship
frequency.

quency of ties inter communities. For example, considering community #1 of the
boxplots, the neighborhood overlap/co-authorship frequency values are from interac-
tions of its researchers with those from other communities. This study is important
to show how strong/weak the co-authorship between researchers from different com-
munities is. Note that in sociology, there are no interactions between researchers from
different communities, i.e. researchers from sociology publish within their communities
only. Figure 4.8 shows that the ties inter communities are weak in most cases. All
communities in computer science and 13 in medicine have the mean and median less
than 0.2. However, the high dispersion also indicates the presence of strong ties in
most of inter communities interaction. Regarding the co-authorship frequency, Figure
4.9 shows that the mean and median of the communities are close in computer science
and medicine, suggesting a pattern in the co-authorship frequency of ties inter com-
munities. In other words, the average co-authorship frequency of co-authorships inter
communities tend to be similar independent of the community.

The results in this section show the difference between neighborhood overlap and
co-authorship frequency as measures of the strength of ties. We note that medicine has
more communities with smaller mean and median neighborhood overlap values than
computer science, but the co-authorship frequency of such communities are higher
than computer science. Also, in both areas, the communities with highest neighbor-
hood overlap do not indicate communities with highest co-authorship frequency. In
sociology, the neighborhood overlap and co-authorship frequency of researchers in each
community is small, but communities with the highest neighborhood overlap do not
have the highest co-authorship frequency. Such aspects suggest that the strength of the
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(a) Computer science (b) Medicine

(c) Sociology

Figure 4.10: CPM – Neighborhood overlap as a measure of the strength of tie intra-
communities (note the small number of outliers).

intensity of co-authorships among researchers measured by the co-authorship frequency
does not always correspond to the strength of the interactions among researchers’ neigh-
bors measured by neighborhood overlap. Also, considering the outliers, the commu-
nities have less outliers to neighborhood overlap than to the co-authorship frequency.
For future work, the study of such outliers might reveal interesting properties in the
co-authorships among researchers. Lastly, considering that the ties intra-communities
should be strong, whereas the ties inter-communities should be weak, Louvain method
is not an appropriate method to detect communities in co-authorship SNs.

4.4.2.2 Uncovering Communities with Clique Percolation Method

The clique percolation method (CPM) locates the k-clique communities of networks
and considers that a typical member in a community is linked to many other members,
but not necessarily to all other nodes in the community [Palla et al., 2005]. Overall,
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(a) Computer science (b) Medicine

(c) Sociology

Figure 4.11: CPM – The co-authorship frequency as a measure of the strength of ties
intra-communities (we omit some outliers for computer science and medicine for better
presentation; the number of outliers is smaller than in Figure 4.7).

a community is a union of smaller fully connected subgraphs that share nodes. Such
complete subgraphs are called k-cliques, where k refers to the number of nodes in the
subgraph. Then, k-clique-community is defined as the union of all k-cliques that can
be reached from each other through adjacent k-cliques [Palla et al., 2005].

We apply CPM by using the algorithm implemented in CFinder3 and k=3. By
definition, a community is actually a connected graph when k=2 and a set of discon-
nected nodes without any edge when k=1. The parameter k is an important factor
that determines the nature of the communities. Using different values for k reveals the
nature of the communities [Deb et al., 2009]. We have chosen k=3 in order to discover
triangles and because such a value is also used in most general cases [Palla et al., 2005].
Finally, the CPM allows overlap, i.e., a node can be a member of different communities

3CFinder: http://www.cfinder.org/

http://www.cfinder.org/
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Figure 4.12: Empirical CDF of overlaps among communities detected by CPM.

at the same time, and communities overlap with each other by sharing nodes.
Figures 4.10 and 4.11 show the communities uncovered by the CPM (k=3) applied

in the three co-authorship SN. Note that the clustering algorithm considers the network
as unweight (as already explained in Section 4.4.2.1). The analysis of neighborhood
overlap values in Figure 4.10 reveals that although the communities are formed by
cliques, some of them have only weak ties (i.e., pairs of researchers weakly connected
regarding neighborhood overlap): ten in computer science, two in sociology and seven
in medicine. In other words, cliques formed by co-authorship of researchers do not
have only strong interactions. Additionally, each community may have ties linking
different cliques, and such ties are also weak in communities with only weak ties.
Other communities have only strong ties: four in computer science, two in sociology
and eight in medicine. It is also interesting to investigate these communities in order
to identify patterns in the high cooperativeness. In the remaining communities, there
is a mix of strong and weak ties. Furthermore, most communities have the median
and mean different from the others, meaning that researchers have distinct behavior of
co-authorship in each community.

Regarding the co-authorship frequency as a measure of the strength of tie, Figure
4.11 shows that most communities are composed by ties between researchers with
small co-authorship frequency. In computer science and medicine, only one community
has tie with co-authorship frequency greater than 10. In sociology, the co-authorship
frequency does not reach five. Although the cliques compose such communities, the
high connectivity among researchers groups does not indicate a strong intensity of
co-authorship.

According to CPM definition, one researcher may be in more than one community.
The number of overlaps is small in the three networks: in computer science, only one
researcher is in four communities; in sociology, there is no overlap; and in medicine,
one researcher is in three communities. Figure 4.12 presents the ECDF (Empirical
Cumulative Distribution Function [Lewis and McKenzie, 1988]) of overlaps between
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Table 4.7: Computer Science: Variation of neighborhood overlap and co-authorship
frequency between pairs of researchers in different communities.

Researchers Community #Ties MeanNO VarianceNO MeanW VarianceW

Researcher A 5 2 0.0715 1.30E-05 1.5 0.5
21 2 0.106 6.17E-005 1 0

Researcher B 5 2 0.0403 2.07E-05 3.5 12.5
7 1 0.0556 0 4 0

Researcher C

4 2 0.0839 9.78E-05 1.5 0.5
10 1 0.0999 0 5 0
11 3 0.0999 0.005 1 0
18 2 0.0742 1.51E-05 1.5 0.5

Researcher D 5 4 0.539 0.0021 1.75 2.25
22 1 0.0435 0 6 0

Researcher E 12 1 0.111 0 1 0
23 1 0.0714 0 2 0

Researcher F 8 1 0.2727 0 2 0
13 1 0.1 0 3 0

Researcher G 5 1 0 0.0769 2 0
21 2 0.1667 0.0062 2 2

Researcher H 14 3 0.333 0 1 0
15 2 0.143 0 1 0

Researcher I 11 1 0.1111 0 1 0
24 1 0.0714 0 3 0

Researcher J 5 1 0.0435 0 2 0
7 1 0.0526 0 3 0

Table 4.8: Medicine: Variation of neighborhood overlap and co-authorship frequency
between pairs of researchers in different communities.

Researchers Community #Ties MeanNO VarianceNO MeanW VarianceW

Researcher A 5 2 0.0997 0.0059 2 2
8 2 0.2121 0.029 2 2

Researcher B
5 2 0.0943 0.0002 1.5 0.5
9 1 0.04 0 4 0
16 1 0.154 0 2 0

communities. We observe that 75% (third quartile) of the overlaps are lower or equal
to one in the three networks, in which one overlap means the existence of overlap
between two communities.

In order to analyze the strength of ties among researchers that are in more than
one community and to identify differences of co-authorships with distinct groups, we
measure the mean and the variance of neighborhood overlap and co-authorship fre-
quency of the researcher’s co-authorship intra each community. Tables 4.7 and 4.8
summarize the following information of researchers intra each community: community
label, number of ties, mean and variance of neighborhood overlap of the researcher’s
ties, and the mean and variance of co-authorship frequency. Note that the researchers’
names are not revealed. Analyzing the two tables does not allow to identify in which
community a researcher publishes more. For instance, Researcher C has more ties
(co-authorships) in community #11, but the mean neighborhood overlap is equal to
community #10 and the mean co-authorship frequency is lower than community #10.
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(a) Computer science (b) Medicine

(c) Sociology

Figure 4.13: MCL – The strength of ties intra-communities measured by neighborhood
overlap (clusters’ identifiers in x axis are ordered by the size of communities).

Moreover, the neighborhood overlap, the co-authorship frequency and the variance
are low for most of researchers. This result suggests that researchers in overlaps of
communities may have weak ties with other researchers and work as a bridge. It is
interesting to investigate the properties of these researchers more thoroughly, which is
left for future work.

4.4.2.3 Clustering with MCL Algorithm

The Markov Cluster Algorithm (MCL) is an unsupervised clustering algorithm for
graphs based on simulation of stochastic flow in graphs (known as network) [Van Don-
gen, 2000]. MCL deterministically finds cluster structures by computing the probability
of random walks though the network. This process uses two operators called expan-
sion and inflation, which are responsible for transforming one set of probabilities into
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(a) Computer science (b) Medicine

(c) Sociology

Figure 4.14: CPM – The strength of ties intra-communities measured by co-authorship
frequency (x axis ordered by the size of communities; all outliers are present).

another. We use the algorithm available in Micans4 and apply it to the computer
science, sociology and medicine SN. Also, we keep the default values of the expansion
and inflation parameters.

One type of input to MCL is a file describing the edges of a graph: the source
and target nodes, and a co-authorship frequency as weight of the edges. The MCL
interprets the co-authorship frequency of the edges as similarity to cluster the nodes.
In order to understand how the neighborhood overlap and co-authorship frequency
influence on clustering formation, we run the algorithm two times changing the value of
the edge weight (one time the weights are equal to neighborhood overlap and another
to co-authorship frequency). Using neighborhood overlap, the MCL has found 140
clusters in computer science, 35 in sociology and 139 in medicine. On the other hand,
having the co-authorship frequency between researchers as edge weight, the MCL has

4Micans: http://micans.org/mcl/index.html
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(a) Computer science (b) Medicine

(c) Sociology

Figure 4.15: Comparing the results of the clustering methods and using neighborhood
overlap to measure the strength of the ties. Each cluster is represented by a color, and
each edge by a point.

detected 82 clusters in computer science, 16 in sociology and 68 in medicine. Some
clusters are composed of only one node, and they are more present in clusters formed
with neighborhood overlap as edge weight. This result indicates that the similarity
among researchers is lower considering the neighborhood overlap than the co-authorship
frequency.

Figures 4.13 and 4.14 show the results ordered by the size of communities when the
neighborhood overlap and co-authorship frequency between researchers are considered
as edge weight, respectively. Both figures do not include clusters with only one node
for clarity. There are communities formed only by weak ties and also only by strong



4.4. A Comparative Analysis of the Strength of Co-authorship Ties in
Clusters 73

ties, for example, the communities #25 and #34 in computer science, respectively.
However, most communities include both types of tie. Considering the clusters size,
the biggest communities are in the beginning of each graphic. For example, clusters
#0 and #1 are the largest in sociology. The number of nodes in the largest clusters
for neighborhood overlap and co-authorship frequency as edges weight is respectively
30 and 27 for computer science, four nodes (two communities of the same size) and
four nodes (four communities of the same size) for sociology, 22 and 17 for medicine.
Figure 4.13 also presents that the largest clusters are more formed by strong ties than
weak ties, because the first quartile of these clusters is higher or equal to 0.2. Also,
Figure 4.14 shows that the largest communities have too high co-authorship frequency,
because the third quartile pass 30 in the three areas.

Lastly, MCL does not find ties connecting researchers from different communities
for the three co-authorships social networks. This reveals that MCL provides a good
clustering result since clustering algorithms minimizes inter-cluster edges [Malliaros
and Vazirgiannis, 2013].

4.4.3 Comparative Analyses

This section compares the results of the methods used for finding communities (Louvain
Method, Clique Percolation Method and Markov Cluster Algorithm). Figures 4.15 and
4.16 contrast the clusters (known as communities in LM and CPM methods) of each
method regarding the neighborhood overlap and co-authorship frequency, respectively.
We observe that LM tends to find less and larger clusters than the other two methods.
Also, MCL detects a huge number of clusters, and some of them are singleton clus-
ters5. In the co-authorship social network context, although CPM allows community
overlaps, for it is common a researcher publishing with researchers from others com-
munities, MCL provides the best clusters, because most of the detected communities
are composed by strong ties.

Figures 4.15 and 4.16 present the values of neighborhood overlap/co-authorship
frequency of each pair of researchers (represented by each point) in each cluster for
the three clustering algorithms. Moreover, Figure 4.15 shows a high concentration
of edges until neighborhood overlap reaches 0.6 in computer science and medicine.
In sociology, the maximum value of neighborhood overlap is 0.5, and there is more
concentration of edges between 0.2 to 0.3. Also, note that CPM and MCL exclude
edges with neighborhood overlap equal to 0. Some strong ties are also removed in

5There are some improvements of the MCL algorithm as proposed by Satuluri et al. [2010] and
Satuluri and Parthasarathy [2009], but we did not use them in this work and left for future work.
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(a) Computer science (b) Medicine

(c) Sociology

Figure 4.16: Comparing the results of the clustering methods and measuring the
strength of the ties with co-authorship frequency. Each cluster is represented by a
color, and each edge by a triangle.

CPM, probably because these edges are in a 2-clique (we choose k=3 for CPM). Here,
we emphasize that MCL is able of better differentiate the relationships putting them in
distinct clusters. On the other hand, the concentration of points in CPM and LM do not
show the same for these methods. Additionally, Figure 4.16 shows a high concentration
of edges for co-authorship frequency less than 100 in computer science and medicine,
and less than 10 in sociology. We also note that co-authorship frequencies equal to
zero are not removed in any clustering method.

Overall, the three clustering algorithms form clusters with weak and strong ties.
However, MCL is the best to detect clusters with more strong ties than weak ones.
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Table 4.9: Properties correlation to the strength of ties.
Property CS Med Soc
Clustering coefficient SLC SLC SLC
Edge Betweeness EC EC EC
Number of Triangles SLC
Eigenvector SLC
Closeness EC
Eccentricity EC

SLC = Strong linearly correlated, EC = Exponentially correlated

4.5 Concluding Remarks

In this chapter, we built non-temporal co-authorship networks from three areas to
quantify the impact of properties on the strength of ties (neighborhood overlap). The
characterization of neighborhood overlap in the three networks shows that the average
value of this metric is around 0.2, i.e. the networks are formed more by weak ties. Ad-
ditionally, our results showed that the Granovetter’s theory governs the three networks
and how topological properties are affected by removing weak and strong ties. Also,
the correlation among topological properties and neighborhood overlap was different
in each research area, as summarized by Table 4.9.

We have also evaluated each property for increasing the quality of the regression
model. Out of them, the clustering coefficient and edge betweenness were related to
neighborhood overlap in the three networks. Such result is trivial, because of the
definition of neighborhood overlap. However, the most important contribution is the
discovery of other properties related and non-related to the strength of ties, and whether
the relations are linear or not. Such study can help to improve the quality of systems
whose design considers the strength of ties, and to better understand the reasons for a
tie being strong or weak.

Regarding the dynamism of tie strength intra and inter clusters, we applied three
clustering algorithms in the three co-authorship SN from Lattes. We have applied
the unweighted version of LM, and its evaluation results showed that such method
identifies less clusters than the others. By applying CPM, we note that there was a
small number of overlaps between communities, and researchers in the overlaps form
weak ties (they work as bridges). Regarding MCL, we have applied the algorithm
twice in each algorithm: one with NO as weight and another with W . MCL identified
a large number of clusters than the other methods. Furthermore, the tie strength
inter-communities tends to be weak for LM and CPM; whereas MCL algorithm does
not find edges inter-communities. A main conclusion of these initial analyses of using
neighborhood overlap and co-authorship frequency in clustering evaluation is: MCL is
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the best clustering algorithm to be applied in co-authorship SN when compared to LM
and CPM. Nevertheless, we also conclude that considering only the strength of ties
metrics is not enough to define clustering qualities. Therefore, in the next steps, we
plan to apply internal measures (like BetaCV, C-index, and so on) to compare with
the results generated by the tie strength metrics.

Finally, in the three networks, the neighborhood overlap may be used to measure
their strength of ties. In this chapter, we observe that neighborhood overlap captures
not only the neighbors of a tie, but also the real intensity of co-authorship between
pairs of researchers. Additionally, such metric is easy to compute because it requires
only the topological structure of the networks. However, next chapter presents a few
problems of using only neighborhood overlap or co-authorship frequency to measure
the strength of ties.



Chapter 5

Tie Strength over Non-temporal
Co-authorship Social Networks

In this chapter, we first identify problems in neighborhood overlap and co-authorship
frequency metrics that complicate their sole use to measure the strength of co-
authorship ties (e.g., presenting extreme values that do not represent reality). The
existence of such problems suggests the metrics should be considered together or with
other SN properties to better measure the strength of ties in non-temporal social net-
works. Therefore, we also propose a new metric, called tieness [Brandão et al., 2016;
Brandão and Moro, 2017b], that helps to define a tie as weak or strong. Note the goal
of tieness is not to replace neighborhood overlap and absolute frequency of interaction,
but to be an additional feature that may allow deeper and complementary analyses.

In summary, tieness is an easy-computing metric that considers the neighbors
and the intensity of co-authorships between researchers to measure tie strength. It
differs from the existing ones by combining relevant aspects from the social network.
Moreover, tieness can solve problems present in neighborhood overlap and weight (a
simpler way to call absolute frequency of interaction), which have been largely used
to measure tie strength [Easley and Kleinberg, 2010; Onnela et al., 2007]. It may also
be applied to different social networks, not only co-authorship social networks, e.g., a
movie producing network such as the one in [Viana et al., 2016].

After discussing methods (Section 5.1), we present the contributions of this chap-
ter, summarized as follows:

– We discuss four case studies in which neighborhood overlap and absolute fre-
quency of interaction alone have problems to measure the strength of ties. Also,
we show the relationship between both metrics in three real datasets built from

77
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digital libraries of distinct fields – Computer Science with DBLP, Medicine with
PubMed and Physics with APS (Section 5.2).

– We propose a new metric called tieness that is a combination between a mod-
ification in neighborhood overlap and absolute frequency of interaction. It is
easy to calculate and better differentiate tie strength in different levels. We also
introduce a nominal scale to tieness based on the values of a modified neighbor-
hood overlap and absolute frequency of interaction. Such nominal scale allows
to identify when a tie is weak or strong and if it links researchers from different
communities or not (Section 5.3).

– We validate tieness and its nominal scale according to Granovetter’s theory by
removing weak and strong ties (Section 5.4).

5.1 Methods Overview

The main goal of this chapter is to propose a new metric to measure the strength
of co-authorship ties. In order to do so, we empirically evaluate four cases in which
existing metrics commonly used to measure tie strength (neighborhood overlap and
absolute frequency of interaction) present problems. Then, we propose our new metric
called tieness focusing on solving these problems.

Next, we analyze the linear and non-linear correlation between neighborhood
overlap (NO) and absolute frequency of interaction (W ). The result of such correlation
helps to identify whether both metrics are independent, i.e., whether they add or
multiply when taken together. We do so by analyzing the relationship between both
metrics on academic social networks from three different areas of expertise. The areas
and their datasets are: (i) Computer Science given by DBLP; (ii) Medicine by PubMed;
and (iii) Physics by APS. Then, we build a co-authorship SN for each dataset with
features shown in Table 3.1 of Chapter 3.

Considering the four problem cases and correlation results, we propose tieness
by combining a modification in neighborhood overlap and the absolute frequency of
interaction. As neighborhood overlap is a normalized metric and absolute frequency of
interaction is not, we have to normalize the latter before combining with a modification
in neighborhood overlap. Thus, we guarantee that tieness is in the range [0; 1].

In the following, we propose a nominal scale to tieness by analyzing the ECDFs
(Empirical Cumulative Distribution Function [Lewis and McKenzie, 1988]) of neigh-
borhood overlap, absolute frequency of interaction, modified neighborhood overlap and
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Figure 5.1: Case 1, no common co-author.

tieness for each social network. ECDF is a graph used to evaluate the data distribu-
tion, estimate percentiles and compare distinct distributions. The analysis of such
graph reveals the percentile of data that falls below a specific value.

Finally, we validate such nominal scale by following Granovetter’s theory, which
claims that weak ties connect nodes from different communities (groups, clusters),
whereas the strong ones link nodes from the same community. In other words, weak ties
are acquaintances and provide access to novel information, while strong ties represent
relationships with people whose social circles overlap. In order to follow this theory,
we remove weak and strong ties at a time, and analyze the effect of such removals in
the co-authorship social networks.

5.2 Neighborhood Overlap and Absolute Frequency

of Interaction

In this section, we first present four cases in which neighborhood overlap and absolute
frequency of interaction cannot be solely used to measure tie strength. Then, we
empirically show their relationship on three different networks.

5.2.1 Four Motivating Cases

We have empirically studied different co-authorship social networks and identified four
cases in which existing metrics cannot be solely used to measure tie strength.

Case 1: A pair of collaborators without any common neighbor. One of the
problems of using only NO to measure the strength of ties is when an author has a
high frequency of collaboration with another author, but they do not have any common
neighbor. In this case, the NO is zero, which does not represent reality. Figure 5.1
exemplifies this case. Another problem here is that NO and W present contradictory
results: analyzing NO, the pair AC is a bridge as the strength of co-authorship is very
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(a) (b)

Figure 5.2: Case 2, no community information.

Figure 5.3: Case 3, many common co-authors.

weak; at the same time, W may indicate that such tie is not very weak. Therefore,
considering both metrics is better to analyze how strong a tie is.

Case 2: Determining if two collaborators are from the same community or
not. One problem in measuring the strength of ties using only W is that such metric
provides a simple vision of the relationship. It is not possible to know if the relationship
is intra a community or not. This case is exemplified by Figure 5.2, in which AC

connects different communities (i.e. inter-community) in Figure 5.2a and AC are intra
a community in Figure 5.2b, but in both contexts AC has co-authorship frequency
equal to 5. Since ties with low W may be intra a community and ties with high W

may be inter communities, using only W is not enough to asses how weak/strong a tie
is (i.e., it does not allow to properly verify Granovetter [1973]’s theory, in which weak
ties serve as bridges in the social network).

Case 3: Little collaboration between a pair of collaborators and plenty of
common neighbors. In this case, NO and W give values with opposite meaning,
i.e. high NO and low W . Such results make hard to define tie strength. Certainly, it
depends on the analysis of the context. However, following Granovetter’s theory, such
tie should be strong. Figure 5.3 gives an example of this case for the edge AC.

Case 4: Results with extreme values. Here, the problem is when NO or W has
extreme values that may not represent the reality. Figure 5.4a shows a maximum
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(a) (b)

Figure 5.4: Case 4, results too small/high.

Table 5.1: The correlation coefficients between neighborhood overlap and co-authorship
frequency. All p-values are smaller than 2.2e-16.

Dataset Kendall Pearson Spearman

DBLP Articles -0.049 -0.074 -0.062
DBLP Inproceedings -0.023 -0.068 -0.029
PubMed -0.032 -0.062 -0.03
APS 0.013 0.0003 0.016

value to NO, because the edge AB is part of a triad. Nevertheless, the value of W for
the same edge is very small, which means that the tie is not necessarily very strong.
Figure 5.4b presents a similar situation, but when W is very high and NO has the
minimum value (zero) for the edge AB. In this case, defining a tie as weak or strong
based on only one of the metrics may provide a misleading interpretation.

Based on these four cases, we claim that developing a new metric for tie strength
is necessary. Then, after experimentally analyzing both metrics in Section 5.2.2., we
introduce a new one in Section 5.3.

5.2.2 Analysis of NO and W over Different Networks

We now analyze the relationship between neighborhood and absolute frequency of
interaction on DBLP, PubMed and APS. As we consider co-authorship social networks,
we call absolute frequency of interaction as co-authorship frequency, which measures the
amount of publications that a pair of researchers has co-authored. Table 5.1 presents
the correlation between both metrics for each dataset considering three coefficients:
Kendall measures the degree of non-linear dependence between two variables; Pearson
evaluates the linear relationship between two variables; and Spearman measures the
non-linear association between two variables [Abdi, 2007; Jain, 1991].
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Overall, the correlation between neighborhood overlap and co-authorship fre-
quency is small for the three coefficients. Therefore, they are monotonically and lin-
early independent in the three datasets. In other words, both metrics are important
to measure the strength of ties as they capture different characteristics of the social
network, as empirically discussed in Section 5.1.

5.3 Tieness: a New Metric for the Strength of Ties

Motivated by the problems generated by using neighborhood overlap and co-authorship
frequency (coAfrequency – a short name to the absolute frequency of interaction in the
co-authorship social networks context) alone to measure tie strength, we now introduce
a new metric called tieness. Specifically, tieness results from a combination between a
modification in neighborhood overlap (entitled modified neighborhood overlap), which
captures the social circle of nodes involved in a tie, and co-authorship frequency, which
represents the absolute number of publications common to a pair of researchers, as
shown by Equation 5.1.

tienessi,j =
|N (vi) ∩N (vj)|+ 1

1 + |N (vi) ∪N (vj)− {vi, vj}|
coAfrequencyi,j (5.1)

where N (vi) represents the co-authors (neighbors) of researcher vi, and N (vj) the
co-authors of vj. Note that we sum one at the numerator of neighborhood overlap
to indicate that there is a link between vi and vj. This solves the problem when a
pair of authors does not have any co-author in common. Then, we sum one at the
denominator to give the right proportion to the equation. Also, for unweighted social
networks, tieness value is the same as the modified neighborhood overlap.

Regarding computation time cost of tieness, the operations with the highest time
cost are intersection (O(N (vi)+N (vj))) and union (O(min(N (vi),N (vj)))) using hash
tables. Thus, the time complexity of tieness is O(max(N (vi),N (vj))) —Big O notation
property: O(min(N (vi),N (vj)))+O(N (vi)+N (vj)) = O(min(N (vi),N (vj))+N (vi)+

N (vj)) = O(max(min(N (vi),N (vj)),N (vi),N (vj))) [Cormen et al., 2009].
A problem of Equation 5.1 is that coAfrequency is a non-normalized metric,

i.e., the set of weights of the datasets is not in the range 0 to 1. In order to solve
this problem, we try to normalize coAfrequency by using two methods: the norm
(equal to the Eucliadian distance) of the set of weights that can be seen as a vector
[Abdi and Williams, 2010], and the unity-based normalization1. However, the first

1Etzkorn, B. “Data normalization and standardization.” BE BLOG [Online]. Available: http:
//www.benetzkorn.com/2011/11/data-normalization-and-standardization (2011).

http://www. benetzkorn.com/2011/11/data-normalization-and-standardization
http://www. benetzkorn.com/2011/11/data-normalization-and-standardization
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method is not appropriate, because the norm of the coAfrequency vector is very high,
which reduces most of the weights to the magnitude of 104. Regarding the second
method, it means to fit the data within unity (1), so all data will be in the range 0 to
1. However, sometimes it is important to choose a different range to the data. The
unity-based normalization allows to normalize the data within a selected range. Thus,
let the co-authorship frequency of all edges in the social network be defined as a vector
coAfrequency that represents each data point k (i.e., value of the edge). Then the
unity-based normalization is computed by

||coAfrequencyi,j|| = a+
(coAfrequencyk −min(coAfrequency))(b− a)

max(coAfrequency)−min(coAfrequency)
(5.2)

where coAfrequencyk is the k-value in the vector coAfrequency, min (coAfrequency)

is the minimum value among all the set of co-authorship frequency in the social net-
work (i.e. the minimum value in coAfrequency), and max (coAfrequency) is the
maximum value among all the set of co-authorship frequency (i.e. the maximum value
in coAfrequency). Moreover, a and b define the range of values for the co-authorship
frequency, i.e the data will be normalized in that range. Here, we select a = 1 and
b = 2, because considering the range [0, 1] makes the value of neighborhood overlap be
annulled when co-authorship frequency is 1 without the normalization. Thus, the range
[1, 2] guarantees that the co-authorship frequency can indeed contribute to increase the
value of tieness.

Such improvement is presented in Equation 5.3, where tienessi,j is in the range
[0; 4]. Then, we divide the equation by 4 to put tienessi,j in the range [0; 1].

tienessi,j =

|N (vi)∩N (vj)|+1

1+|N (vi)∪N (vj)−{vi,vj}| ||coAfrequencyi,j||
2

(5.3)

where ||coAfrequencyi,j|| is co-authorship frequency of a pair of researchers vi and vj
as unity-based normalized by Equation 5.2.

Tieness is calculated for each edge (pair of nodes) in the social network. Let
tieness be a vector that contains tienessi,j for each edge k in the social network.
Thus, the overall level of tieness in a social network is measured by the average of the
tieness values of all edges:

tieness =
1

|E|

|E|∑
k=1

tienessk (5.4)

where tienessk is the value of tieness for each edge in the social network, and |E| is
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Table 5.2: Tieness for each case study and an extra case study representing the
situation when NO and coAfrequency are in accordance. Note that coAfrequency
is normalized considering only the values in the table to compute tieness. Thus,
min(coAfrequency) = 2 and min(coAfrequency) = 40.

Case Image NO coAfrequency Tieness
Case 1: A pair of researchers with-
out any common neighbor

Figure 5.1 0 2 0.085

Case 2: Determining if two re-
searchers are from the same com-
munity or not

Figure 5.2a 0 5 0.075

Case 2: Determining if two re-
searchers are from the same com-
munity or not

Figure 5.2b 0.33 5 0.23

Case 3: Little collaboration be-
tween a pair of researchers and a
plenty of common neighbors

Figure 5.3 0.5 2 0.285

Case 4: Results with extreme val-
ues

Figure 5.4a 1 3 0.513

Case 4: Results with extreme val-
ues

Figure 5.4b 0 40 0.5

Regular Case: NO and coAfre-
quency in agreement

Figure 5.3 with
w = 12

0.5 12 0.36

the number of edges in the social network. Also, the time complexity of the algorithm
to measure the overall tieness is O(|E| max(N (vi),N (vj))).

In order to understand how tieness represents ties in SN, Table 5.2 shows tieness’
values for each case study. In Case 1, tieness gives a small value that indicates the
presence of interactions (opposite of neighborhood overlap). For Cases 1, 2 and 3,
tieness enables to infer if a pair of researchers is intra a community or not. Then
regarding Case 4, tieness gives a high result when only w or only NO has an inflated
value. In the Regular Case, when they are in accordance indicating that a tie is strong,
tieness also provides a high value that may represent a strong tie.

Indeed, an advantage of using our new metric is the values of the strength of
co-authorship ties are more distinct, then allowing to better differentiate the strength
of a tie and establish different levels of tie strength. Moreover, we can consider the
value of the modified neighborhood overlap and co-authorship frequency separately to
evaluate the final result of tieness. Thus, the definition of a nominal scale is necessary
to identify when a tie is weak or strong.

We define a nominal scale to tieness by comparing the modified neighborhood
overlap and co-authorship frequency. In doing so, we follow concepts discussed by
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(a) (b)

(c) (d)

Figure 5.5: ECDF of each metric. In this scenario, modified neighborhood overlap and
tieness metrics have more distinct values through the quartiles.

Easley and Kleinberg [2010]: a weak tie has a small neighborhood overlap and a strong
tie has a large one.

Therefore, Figure 5.5 shows the ECDFs and quartiles for neighborhood overlap,
co-authorship frequency, modified neighborhood overlap and tieness. The analysis
of ECDFs shows that co-authorship frequency provides many repeated results to the
strength of co-authorship ties, as 50% of data are equal to 1. On the other hand,
the neighborhood overlap, modified neighborhood overlap and tieness provide different
results for each quartile. Furthermore, considering the neighborhood overlap’s ECDFs
of each dataset, they are very different from each other. For example, the values of
APS’s ECDF are different from PubMed’s ECDF. However, modified neighborhood
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Table 5.3: DBLP Articles: Number of connected components when weak and strong
ties are removed from the social network.

State of the SN # edges % edges # c. components # changes
Original 2,935,590 – 35,253 –
Tieness – weak ties removed 2,150,917 73.27 40,659 1.15
Modified NO – weak ties removed 2,259,563 76.97 37,848 1.07
Tieness – strong ties removed 2,276,784 77.56 22,301 0.63
Modified NO – strong ties removed 2,205,849 75.14 22,067 0.626

Note: c. components is connected components.

overlap and tieness ECDFs have similar values through different datasets. This result
may indicate that tieness is less sensible to the dataset and better distinguishes the
relationship between nodes.

Having studied such distributions, we may now consider the values of quartiles
to define a nominal scale. In other words, the quartiles distributions help to identify
when a tie is weak or strong, and if it connects different communities or not. Equation
5.5 shows the nominal scale to tieness based on the quartiles. Note for an unweighted
social network, such scale is also valid because modified neighborhood overlap has the
same value as tieness to the second and third quartile.

weak, tieness 6 0.10

moderate, 0.10 < tieness < 0.43

strong, 0.43 6 tieness

(5.5)

5.4 Results and Discussion

In order to validate the proposed nominal scale, we verify if Granovetter’s theory
governs the social network and the strength of ties with such values. Given that
weak ties are bridges that connect different parts of the network, his theory claims the
network tends to be more disconnected when weak ties are removed (i.e., the number of
connected components tends to increase). Hence, we analyze the number of connected
components in the social network after removing weak and strong ties.

Tables 5.3-5.6 present the number of edges and connected components after re-
moving weak and strong ties in each dataset. Also, we show results when the strength
of ties is measured by tieness (weighted SN) and modified neighborhood overlap (con-
sidering the SN as unweighted). According to these tables, when weak ties are removed,
the number of connected components is higher than when removing strong ties. Also,
there are differences between the result for modified neighborhood overlap and tieness,
which is caused by the co-authorship frequency of interaction. Moreover, the number
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Table 5.4: DBLP Inproceedings: Number of connected components when weak and
strong ties are removed from the social network.

State of the SN # edges % edges # c. components # changes
Original 3,760,247 – 28,168 –
Tieness – weak ties removed 2,227,898 59.24 44,334 1.57
Modified NO – weak ties removed 2,396,706 63.74 41,012 1.46
Tieness – strong ties removed 3,128,445 83.19 17,281 0.61
Modified NO – strong ties removed 3,061,258 81.41 17,125 0.61

Note: c. components is connected components.

Table 5.5: PubMed: Number of connected components when weak and strong ties are
removed from the social network.

State of the SN # edges % edges # c. components # changes
Original 5,550,294 – 8,926 –
Tieness – weak ties removed 4,485,605 80.82 10,600 1.19
Modified NO – weak ties removed 4,583,204 82.58 10,517 1.18
Tieness – strong ties removed 3,577,424 64.45 3,453 0.39
Modified NO – strong ties removed 3,481,747 62.73 3,447 0.39

Note: c. components is connected components.

Table 5.6: APS: Number of connected components when weak and strong ties are
removed from the social network.

State of the SN # edges % edges # c. components # changes
Original 821,870 – 4,957 –
Tieness – weak ties removed 676,768 82.34 5,846 1.18
Modified NO – weak ties removed 705,020 85.78 5,442 1.1
Tieness – strong ties removed 611,732 74.43 2,931 0.59
Modified NO – strong ties removed 580,663 70.65 2,869 0.579

Note: c. components is connected components.

of removed edges is larger when weak ties are removed. Indeed, the larger number of
connected components may be explained by the larger removal of bridging edges.

We now compare the proportion of the number of connected components by the
number of edges for tieness and modified neighborhood overlap when weak and strong
ties are removed from the social network. Table 5.7 presents these proportions. The
analysis of such proportions shows that the number of connected components per edge
is larger when weak ties are removed. Thus, the nominal scale is valid. Moreover, as
the removal of weak ties (defined according to the nominal scale) breaks the connected
components of the social network, tieness is indeed able to identify when a tie connects
different communities or not.

Furthermore, we note that the different research areas considered (computer sci-
ence, medicine and physics) present similar behavior. The presence of weak ties is
bigger than the strong ones when they are measured by tieness. This is a result from
a network with nodes not very well clustered (regarding their neighbors). In order to
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Table 5.7: Proportion between the number of connected components and the number
of edges in the social networks when weak and strong ties are removed.

Tieness Modified neighborhood overlap
Datasets #cc/#NW ties #cc/#NS ties #cc/#NW ties #cc/#NS ties
DBLP
Articles

40,659/2,150,917
=0.02

22,301/2,276,784
=0.01

37,848/2,259,563
=0.02

22,067/2,205,849
=0.01

DBLP
Inproceedings

44,334/2,227,898
=0.02

17,281/3,128,445
=0.005

41,012/2,396,706
=0.02

17,125/3,061,258
=0.005

PubMed 10,600/4,485,605
=0.002

3,453/3,577,424
=0.001

10,517/4,583,204
=0.002

3,447/3,481,747
=0.001

APS 5,846/676,768
=0.01

2,931/611,732
=0.005

5,442/705,020
=0.01

2,869/580,663
=0.005

Note: cc is connected components, NW and NS are all non weak and non strong ties, respectively.

verify it, we analyze the clustering coefficient2 from the four co-authorship social net-
works. The results show that the highest clustering coefficient is from PubMed (equal
to 0.357), and the smallest one is from DBLP Inproceedings (equal to 0.16). Thus,
the clustering coefficient from the four networks are very small, which justifies the low
tieness for the pairs of researchers.

Although tieness is able to better differentiate the strength of ties when compared
to neighborhood overlap and co-authorship frequency, there are limitations. One of
them is that tieness classifies a tie as strong when the modified neighborhood overlap
and weight are very high. Thus, few ties are classified as strong. A solution to this
is changing the nominal scale, but it requires to make more analyses over the social
networks. Another limitation is applying tieness in co-authorship social networks from
research areas in which collaborations among researchers are not a common practice.
For example, in sociology area, the level of collaboration is low [Brandão and Moro,
2015]. Nonetheless, this is a limitation intrinsic to the definition of co-authorship
networks, which should contain a good number of connections for any proper analysis.

Moreover, defining a nominal scale is very hard, because it requires to consider
different parameters from the data. Here, the nominal scale of tieness has a simplifying
assumption: to consider only the values of the ECDFs and percentiles. Another possi-
bility is to define the nominal scale by combining different properties from the ties in
the social networks with tieness in a math model. Then, the nominal scale would be
more complete, but more complex s well.

5.5 Concluding Remarks

In the context of academic social networks, we identified problems with using solely a
modification in neighborhood overlap and absolute frequency of interaction to measure

2Clustering coefficient measures the proportion of nodes neighbors that can be reached by other
neighbors [Easley and Kleinberg, 2010], i.e. it also considers the connectivity among neighbors
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the strength of co-authorship ties. Then, we presented a new metric to measure such
ties strength, called tieness, which has relatively low computational cost and can be
applied to other social networks types (since tieness is a topological feature). Also, the
definition of tieness comes with a nominal scale that allows to identify when a tie is
weak or strong and if it links researchers from different communities or not. The main
limitation to such a new metric is that the social network must have nodes collaborating
with each other.

We have performed empirical studies by considering the networks from three
different areas of expertise (Computer Science, Medicine and Physics). Overall, our
analyses showed that tieness provides more distinct values through the ties than neigh-
borhood overlap and absolute frequency of interaction. Such distinction is important
to better compare how strong (weak) a tie is regarding another one. We also observed
similar behavior through the three different research area.

Furthermore, all the four co-authorship social networks are dominated by the
presence of weak ties. This is so, because most pairs of researchers have low amount of
shared neighbors and small co-authorship frequency of interaction. Therefore, tieness
is able to classify as strong ties only pairs of researchers with very high neighborhood
overlap and co-authorship frequency.





Chapter 6

Tie Strength over Temporal
Co-authorship Social Networks

Social networks represent relationships and interactions among individuals. Studying
their models and patterns allows to solve different problems, such as evaluating enter-
prise security [Abraham, 2016], predicting the potential location of faults in softwares
[Chen et al., 2008], ranking graduate programs [Lopes et al., 2011] and identifying
user reputation [Yasin and Liu, 2016]. In this context, it is essential to understand
the relationship between people [de la Maza, 2007], such as analyzing the progress of
relationships over time and/or their strength.

Indeed, time is a fundamental factor when characterizing the nature and the
strength of relationships. For example, acquaintances might become friends (and vice-
versa), acquaintances might turn into co-workers, and so on. Such time-varying rela-
tionships may be modeled as a temporal social network (SN), or temporal graph, where
each node is a person and there is an edge between two nodes in a given time if they
share any particular relationship in that time.

Unfortunately, most studies have focused on static (non-temporal) aggregated
graphs [Brandão and Moro, 2015; Castilho et al., 2017; Chen et al., 2008; Granovetter,
1973; Koo, 2016; Onnela et al., 2007; Rana et al., 2014], in which the type and the
strength of the edges are invariant and usually constructed from a fixed history of
interactions between the nodes. Such (static-based) approaches give the same degree
of importance for all previous interactions. However, the most recent ones are usually
more representative of the class of the relationship (defined according its strength) than
the older ones [Gilbert and Karahalios, 2009]. If in static graphs such temporal aspects
are aggregated, and therefore hidden, in temporal graphs they come naturally, serving
as an appropriate model for dynamic social networks.

91
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Nonetheless, computing temporal social networks properties and their time-
varying behavior is very challenging. For example, the clustering coefficient of a net-
work in time t1 is not necessarily the same in time t2, as interactions may appear or
perish over time. Also, the precise temporal ordering of the edges essentially influences
the notion of node adjacency and reachability in such networks [Nicosia et al., 2013].
Hence, concepts and metrics designed and applied to analyzing static networks must be
adapted and extended to time-varying networks. Tie strength (a.k.a. strength of the
ties) is one of those concepts, which is originally defined as a merge of the time of rela-
tionship, the emotional force, the intimacy, and the reciprocal services that represent
a link (tie) between people [Granovetter, 1973].

Indeed, we propose a new algorithm entitled STACY - Strength of Ties
Automatic-Classifier over the Years. STACY is an algorithm that uses social net-
work features to classify the strength of ties in eight different classes (strong, bridge+,
bridge, transient, periodic, bursty, weak and random). Moreover, STACY is based
on an existing algorithm entitled RECAST (Random rElationship ClASsifer sTrategy)
[Vaz de Melo et al., 2015] that have been applied to measure the strength of ties in
mobile networks. Thus, RECAST has not been used in co-authorship social networks
yet. Here, we improve the performance of such algorithm (called as fast-RECAST) and
compare it results with the ones generated by STACY.

In this research, we view the strength of a tie as the likelihood of its (re) appear-
ance in the future. We estimate such likelihood by using three social network edge fea-
tures related to tie strength (edge persistence, neighborhood overlap and co-authorship
frequency). Furthermore, we contrast the results by estimating such likelihood with
edge persistence and topological overlap (both are considered in fast-RECAST). These
properties capture the regularity of the interaction and the similarity between individ-
uals involved in such interaction.

Thus, our main goal is to verify if current definitions of tie strength hold for
temporal social networks. To do so, we analyze the dynamism of tie strength in such
networks by observing link persistence and link transformation over time [Gilbert and
Karahalios, 2009; Vaz de Melo et al., 2015]. This goal is specified as tasks driven by
the following research questions: How is tie strength defined for temporal networks?
and How much does the strength of ties vary over time? Such research questions were
introduced in Chapter 1 as RQ3 and RQ4.

In order to solve such questions, Figure 6.1 presents a general view of our work.
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Figure 6.1: Main steps to analyze the link persistence and link transformation through
different tie strength classes.

Considering three real datasets (DBLP1, PubMed2 and APS3), we built four temporal
co-authorship social networks (we divide DBLP in two social networks). Note that ties
may appear and disappear over time and also may become weak or strong. Focusing
on such kind of temporal network, we check if a definition of tie strength is resilient
to temporal networks. Moreover, we add multiprocessing features to an existing algo-
rithm to classify the ties as strong, weak, bridges or random in considerably much less
time. Also, we propose a new algorithm to classify the ties as strong, bridge+, bridge,
transient, periodic, bursty, weak or random. Finally, such classification is also input to
the analysis step that considers our proposed definition of tie strength.

Next, Section 6.1 describes the temporal SN models and the original algorithm
(called RECAST) to classify the strength of the ties. Section 6.2 presents a definition
of tie strength, the new version of the algorithm RECAST (called fast-RECAST), and
our new algorithm (called STACY) to measure the strength of ties in large SN. Section
6.3 characterizes STACY classes according to the number of researchers’ publications
(Section 6.3.2), details our results, and describes how we derive a new computational
model (temporal_tieness) from STACY to directly classify tie strength (Section 6.3.4).
Finally, Section 6.4 presents the main conclusions of this chapter.

6.1 Fundamental Concepts

Here, we describe the temporal social networks models (Section 6.1.1) and the original
RECAST (Section 6.1.2).

1DBLP: dblp.uni-trier.de
2PubMed: www.nlm.nih.gov/news/medlinedata.html
3APS: publish.aps.org/datasets

dblp.uni-trier.de
www.nlm.nih.gov/news/medlinedata.html
publish.aps.org/datasets
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6.1.1 Temporal Social Networks Models

In order to proceed, we first need to formally define a model for temporal social net-
works. Instead of proposing a new one, we borrow the ideas from Vaz de Melo et al.
[2015], who have modeled a temporal network for studying mobile networks. Therefore,
we associate a start time and a duration to each co-authorship. Then, a temporal co-
authorship social network is modeled as a graph Gk(Vk, Ek) in which time is discretized
into steps of duration δ, and k is the time step in which a co-authorship (encounter)
occurs. Here, we consider a duration of δ = 1 year, as this is the common granularity
for publications (not month or day). Also, if δ = 1 month, there would be no connec-
tion between the co-authors in many time steps within one year. The set of nodes Vk
is formed by all network nodes in a co-authorship during the k-th time step, and the
set of edges Ek is composed of co-authorships during the same time step. Thus, there
is an edge in Ek between two nodes i and j with i, j ∈ Vk, if i and j have co-authored
a publication during time step k.

Given an undirected graph G = (V , E), in which V = {v1, ..., vn} is the set of
vertices and E = {e1, ..., em} is the set of edges that represent interactions between
vertices. A time-varying representation of the co-authorship SNs can be defined by
a temporal accumulation graph Gt(Vt, Et) in G that is the aggregation of interactions
in each k discrete time step until t. Thus, all vertices interact until t-th time step
for a given value of Vt. All edges in the set Et represent interactions between vertices
(vi, vj) during each k time step until t. Since Gt accumulates all co-authorships from
the datasets and evolves over time, such aggregate graph contains social and random
encounters (relationships).

Also according to Vaz de Melo et al. [2015], a random version GR
t of the temporal

aggregated graph Gt is necessary to analyze the patterns of such network. The random
graph must have similar social network topological features as the Gt graph (number
of nodes, edges, and empirical degree distribution) and the nodes are connected in a
different way from Gt.

For this model to work, it requires two central pieces: a definition of tie strength
in temporal networks and an algorithm that implements it. Next, we present its original
algorithm (RECAST) in Section 6.1.2. Then, we present a definition for tie strength,
a multiprocessing version of RECAST, and our new algorithm (STACY) to classify tie
strength in Section 6.2.
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6.1.2 The Original RECAST

Following the model description, this section overviews its original implementation
algorithm, called RECAST [Vaz de Melo et al., 2015], which was applied in Dynamic
Complex Wireless Networks (DCWN). One contribution of our work is to modify it to
measure the strength of ties in large temporal SNs. We chose RECAST because it is the
only one that attributes different classes to the tie strength in temporal networks. Such
algorithm was originally applied in relatively small mobile networks to classify users’
wireless interactions differentiating random interactions from the social ones (friends –
called as strong, bridges and acquaintances – called as weak).

According to Vaz de Melo et al. [2015], any system is susceptible to random
events and irrational decisions called semi-rational decisions. Nevertheless, conscious
decisions still govern most of the interactions. Thus, the evolution of social networks
(specially, DCWN) is considerably different from the growth of random networks, as
Erdos and Rényi networks [Erdös and Rényi, 1959]. Indeed, social networks that model
real interactions have edges created from semi-rational decisions (i.e., such edges tend
to be regular and repeat over time), whereas random networks have edges with the
same probability of connecting any two nodes. In other words, a person may take a
social or a random decision. Naturally, if such person has a probability of executing a
social decision higher than a probability of taking a random one, the network tends to
be a well-structured social network. If the opposite happens, the network tends to be
a random network.

Another aspect that differentiates social networks from the random ones is the
presence of communities [Vaz de Melo et al., 2015], which cannot be found in random
networks. Thus, the clustering coefficient has been largely considered to distinguish
random from social networks. Specifically, considering a random network GR built
with the same number of nodes, edges and empirical degree distribution of its social
counterpart G, the clustering coefficient of GR is one order of magnitude smaller than
the clustering coefficient of G [Watts and Strogatz, 1998]. Hence, a network G with
clustering coefficient significantly higher than that of its random equivalent GR has
individuals that made (part of) non-random decisions.

RECAST considers such concept of social and random networks and implements
the model described in Section 6.1.1 by building both Gt and GR

t . Two algorithms
are necessary to generate GR

t from Gt: RND and T-RND [Vaz de Melo et al., 2015].
Given a graph G(V , E), RND(G) returns a random graph Gt(VR, ER) with the same
number of nodes, number of edges and degree distribution as G. Then, the only
difference between G and GR is the connection among nodes, which is the focus of
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our study. Therefore, RND attributes an edge between nodes i and j with probability
pi,j = (di × dj)/

∑|V |
k=1 dk, in which the degree distribution is D = (d1, d2, ..., dn) of

G with n nodes. The second algorithm T-RND is an extension of RND and generates
random graphs for temporal networks Gt. Thus, T-RND(G1 ∪ G2 ∪ ... ∪ Gt) receives
a set of consecutive event graphs Gt and returns a random temporal graph GR

t . Such
algorithm builds GR

t by running RND in each event graph Gt and then accumulating
it as GR

t = RND(G1) ∪ RND(G2) ∪ ... ∪ RND(Gt). In summary, both RND and T-RND

randomly reproduce the total number of co-authors with distinct authors each person
had in a snapshot.

RECAST considers two SN features to identify social relationships:

(i) edge persistence maps the regularity of relationships

pert(i, j) =
1

t

t∑
k=1

[(i, j) ∈ Ek]([(i, j) ∈ Ek] (6.1)

where pert(i, j) is 1 if there is an edge (i, j) in Ek at time k (0 otherwise) and comple-
mentary cumulative distribution function (CCDF) F per(i,j)(x) = P [pert(i, j) > x];

(ii) topological overlap (a.k.a. neighborhood overlap) represents the individuals
similarity

tot(i, j) =
|k|(i, k) ∈ Et ∩ k|(j, k) ∈ Et|
|k|(i, k) ∈ Et ∪ k|(j, k) ∈ Et|

(6.2)

and the CCDF F to(i,j)(x) = P [tot(i, j) > x]. Note that this metric is the same as
presented in Chapter 4. We just rewrite to be in the context of RECAST.

Furthermore, RECAST has a single parameter prnd to distinguish social (friends,
bridges and acquaintances) from random values of the SN features. Thus, Vaz de Melo
et al. [2015] identify the feature value x that represents a threshold, such that feature
values greater than x happen with a probability lower than prnd in GR

t . Also, for small
values of prnd, feature values higher than x are very improbable to occur in a random
network, happening mostly due social relationships. Also, the parameter prnd can be
interpreted as the expected classification error percentage.

6.2 Measuring Tie Strength

We now revisit the concept of tie strength (Section 6.2.1) and propose fast-RECAST, an
extended RECAST with multiprocessing modules to classify ties (Section 6.2.2). Then,
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we propose STACY, an algorithm that uses edge persistence, neighborhood overlap and
co-authorship frequency to classify tie strength (Section 6.2.3).

6.2.1 Revisiting the Concept of Tie Strength

Given a temporal graph Gk(Vk, Ek), where k is the time step in which a co-authorship
occurs, a tie (i, j) is likely to be strong if it is present in Gk for most values of k. On the
other hand, the tie (i, j) is likely to be weak if it is present in Gk for just a few values
of k. In other words, strong ties are likely to persist over time, and weak ties probably
occur sporadically. Another characteristic of a strong tie (i, j) is that probably i and
j have many neighbors in common. As previously discussed, nodes that have many
neighbors in common are more likely to persist over time.

Given these two features, we group ties into the four classes of relationship given
by fast-RECAST, namely strong (friends), weak (acquaintances), bridges and random.
Each class gives a level of tie strength: strong are ties that persist over time and share
many neighbors in common, weak do not persist over time, but share many neighbors
in common, bridges persist over time but share at most a few neighbors in common,
and random do not persist over time and share at most a few neighbors in common.
Hence, using these four classes of relationships, we investigate if the strength of ties
are likely to transform over time. With such analysis, we are able to go deeper into
temporal social networks and answer questions such as: are strong ties more likely to
remain strong in the future? Are weak ties more likely to become strong ties or to
become random?

Moreover, considering a third feature, co-authorship frequency, a strong tie (i, j)

is that probably i and j have a high frequency of co-authorship. STACY uses these
three features to classify ties into the eight classes of relationship. Each class represents
a level of the strength of ties that is better defined in Section 6.2.3.

6.2.2 Multiprocessing RECAST

The construction of GR
t using T-RND increases the complexity of RECAST to O(t ×

(|Vt|+ |ERt |)). Then, we propose to apply a multiprocessing Pool module from Python
(a module based on communicating processes for writing concurrent programs4) in such
step of RECAST in order to reduce its complexity. We call this novel, multiprocessing
algorithm as fast-RECAST.

4Multiprocessing with python: docs.python.org/2/library/multiprocessing.html

docs.python.org/2/library/multiprocessing.html
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Algorithm 1Multiprocessing RECAST (fast-RECAST): a parallelized code to classify
edges of Gt as random or social – strong, weak or bridge.
Require: prnd ≥ 0
1: return class(i, j) ∀(i, j) ∈ UtEt
2: Construct GR

t and set RND(G1), ...,RND(Gt) using T-RND with pool.map_async
3: Get F to(x) and F per(x) from GR

t using pandas dataframe
4: Get xto|F to(xto) and xper|F per(xper) = prnd with pool.apply_async
5: for all edges(i, j) ∈ Et do
6: if per(i, j) > xper and to(i, j) > xto then
7: class(i, j)←− Strong
8: else if per(i, j) > xper and to(i, j) ≤ xto then
9: class(i, j)←− Bridges
10: else if per(i, j) ≤ xper and to(i, j) > xto then
11: class(i, j)←− Weak
12: else
13: class(i, j)←− Random

The idea is that more than one random event graph GR
t is built at a time in a

multi-core computer. Thus, the new computational cost is O( t
p
× (|Vt|+ |ERt |)), where

p is the number of processes. After building GR
t , the complexity of the classification

is O(|ER
t | × |Vt|), in which O(|Vt|) is the cost of computing the two SN features of an

edge. We also add a multiprocessing Pool module from Python to call the functions
to compute the edge persistence and topological overlap from the aggregated graphs.
Both features are computed in parallel and asynchronously.

Algorithm 1 summarizes the code for fast-RECAST5 with multiprocessing Pool
module (lines 2 and 4) and an optimization in the memory use by applying pandas
dataframe from python to store the graphs before processing them (line 3). Also, as
we consider co-authorship social networks, we rename the social edges from friends to
strong ties and acquaintances to weak ties.

In order to show that fast-RECAST performs better than RECAST, we measure
the execution time of both algorithms in a laptop with 8 GB 1600 MHz DDR3 of
memory and 2.5 GHz Intel two Core i5 of processor. The operation system is Mac
OS X El Capitan version 10.11.6. Figure 6.2 presents the execution time in seconds
of fast-RECAST and RECAST. Note that we present the results only for PubMed
dataset, because it is the largest one. The behavior of fast-RECAST and RECAST
regarding the execution time is similar for the other datasets (APS, DBLP Articles and
DBLP Inproceedings). The percentage represents the amount of data that we consider

5Source code available in http://homepages.dcc.ufmg.br/~mirella/projs/apoena/
datasets.html

http://homepages.dcc.ufmg.br/~mirella/projs/apoena/datasets.html
http://homepages.dcc.ufmg.br/~mirella/projs/apoena/datasets.html
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Figure 6.2: The performance of RECAST and fast-RECAST for PubMed dataset (the
largest one).

at a time. For example, 10% indicates that we consider only 10% of PubMed dataset
to measure the execution time of both algorithms. Then, we take 20% of the dataset
and so on. Figure 6.2 reveals that, as the input file grows, fast-RECAST becomes
significantly faster than RECAST.

6.2.3 STACY

Now, we propose a new algorithm to automatically classify tie strength called as
STACY - Strength of Ties Automatic-Classifier over the Years. STACY is the ren-
ovation of fast-RECAST by considering the edges weight (co-authorship frequency)
different from 1. To distribute the co-authorship frequency in the random graph GR

t ,
we use the same algorithm to distribute the edges degree proposed by Miller and Hag-
berg [2011]. However, instead of attribute edge weight as 1, we randomly attribute
the co-authorship frequency from the weighted temporal graph provided as input of
STACY. Thus, a weight is attributed to an edge between i and j with probability
pij = (wi × wj)/

∑|V |
k=1wk for a weight distribution Dw = (w1, w2, ..., wn) of G with n

nodes [Chung and Lu, 2002; Miller and Hagberg, 2011].
Following the description of Gt in Section 6.1.1, we now define a weighted tem-

poral accumulation graph GW
t (Vt, Et), where GW

t = GW
1 ∪GW

2 ∪ ... ∪GW
t . Then, Vt

and Et are the set of all nodes and weighted edges in the networks, respectively, in
the time step 0 to t. Since GW

t accumulates all co-authorships from the datasets and
evolves over time, such aggregate graph contains social and random encounters. Also,
we consider a weighted random version GR,W

t of the weighted temporal aggregated
graph GW

t , which is necessary to analyze the patterns of such network. The random
graph must have similar topological features as the GW

t graph (number of nodes, edges,
and empirical degree distribution), the nodes are connected in a different way from GW

t
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Table 6.1: STACY relationship classes.
Class Edge persistence Neighborhood overlap Co-authorship frequency

Class1 - strong social social social
Class2 - bridge+ social random social
Class3 - transient random social social
Class4 - periodic social social random
Class5 - bursty random random social
Class6 - bridge social random random
Class7 - weak random social random
Class8 - random random random random

and the weight (co-authorship frequency) are randomly distributed through the edges.
It is important to emphasize that the co-authorship frequency of each edge in GW

t is
the sum of all co-authorship frequency from each time step.

Our new algorithm classifies the edges in eight different classes: seven social
and one random. The eight classes of relationship are described in Table 6.1. A
social network property with value equal to “social” indicates an almost zero probabil-
ity of this value be produced randomly. On the contrary, a social network property
value is denominated “random” if there is a high probability of this value be produced
randomly. Note that class1 defines the strongest ties since all properties are social,
whereas class8 represents a completely random relationship. Moreover, class2 and
class6 denote bridges, i.e., edges that persist over time, but have a small number of
common neighbors. class2 represents bridges with a high co-authorship frequency and
class6 with small one. Also, class3 denotes a relationship that happens in a strong
way (high neighborhood overlap and co-authorship frequency) but only in a specific
moment. Thus, we call relationships in class3 as transient. On the other hand, class4
represents a periodic relationship since persists over time and has a high number of
common neighbors, but small co-authorship frequency (for example, a co-authorship
between colleagues from the same department that happens once a year). Moreover,
class5 defines a relationship with high co-authorship frequency, but does not persist
and does not share many neighbors. This relationship tends to be isolated in the net-
work. Finally, class7 represents a weak tie, because it does not persist over time and
the co-authorship frequency is small.

As RECAST, the unique parameter of STACY is prnd (better explained in Section
6.1.2), which determines when a social network property value is social or random.
Indeed, Algorithm 2 presents how ties are classified in STACY. Note that STACY is
also parallelized as fast-RECAST.
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Algorithm 2 STACY: a parallelized code to classify weighted edges of GW
t as eight

different tie strength classes.
Input: Weighted temporal aggregated graph - GW

t

Require: prnd ≥ 0
1: return class(i, j) ∀(i, j) ∈ UtEt
2: Construct GR,W

t and set RND(GW
1 ), ...,RND(GW

t ) using T-RND with
pool.map_async

3: Get F to(x) and F per(x) and F coAfrequency(x) from GR,W
t using pandas dataframe

4: Get xto|F to(xto) and xper|F per(xper) and xcoAfrequency|F coAfrequency(xcoAfrequency) =
prnd with pool.apply_async

5: for all edges(i, j) ∈ Et do
6: if per(i, j) > xper and to(i, j) > xto and coAfrequency(i, j) > xcoAfrequency

then
7: class(i, j)←− Class1
8: else if per(i, j) > xper and to(i, j) ≤ xto and coAfrequency(i, j) > xcoAfrequency

then
9: class(i, j)←− Class2
10: else if per(i, j) ≤ xper and to(i, j) > xto and coAfrequency(i, j) > xcoAfrequency

then
11: class(i, j)←− Class3
12: else if per(i, j) > xper and to(i, j) > xto and coAfrequency(i, j) ≤ xcoAfrequency

then
13: class(i, j)←− Class4
14: else if per(i, j) ≤ xper and to(i, j) ≤ xto and coAfrequency(i, j) > xcoAfrequency

then
15: class(i, j)←− Class5
16: else if per(i, j) > xper and to(i, j) ≤ xto and coAfrequency(i, j) ≤ xcoAfrequency

then
17: class(i, j)←− Class6
18: else if per(i, j) ≤ xper and to(i, j) > xto and coAfrequency(i, j) ≤ xcoAfrequency

then
19: class(i, j)←− Class7
20: else
21: class(i, j)←− Class8

6.3 Experiments and Results

We now describe the experiments to analyze the dynamism of tie strength. We first
present the datasets used to build the co-authorship SNs based on digital libraries
from distinct areas of knowledge – Computer Science, Medicine and Physics (Section
6.3.1). Then, we apply fast-RECAST and STACY in the full temporal co-authorship
SNs to characterize tie strength in these networks and compare their results (Section
6.3.3). Finally, we divide the SNs in two time windows to analyze the ties’ dynamism



102
Chapter 6. Tie Strength over Temporal Co-authorship Social

Networks

(a) DBLP Articles (b) DBLP Inproceedings

(c) PubMed (d) APS

Figure 6.3: Distribution of quantity of publications by pairs of researchers as counted
yearly.

over the years using two different strategies: link persistence (Section 6.3.3.1) and link
transformation (Section 6.3.3.2).

6.3.1 Data Description

We consider three publication datasets: DBLP, PubMed and APS, as collected in
September 2015, April 2016 and March 2016, respectively. DBLP is a digital library
that stores Computer Science publications. We get publications from conference inpro-
ceedings and journal articles, and divide them in two datasets: DBLP Inproceedings
and DBLP Articles. Pubmed is a US national library of the Medicine National Insti-
tute of Health that comprises biomedical publications. We consider publications from
the top-20 journals classified by h-index. APS (American Physical Society) is an or-
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Table 6.2: Top 10 researchers with most publications and their respectively co-authors
with most publications in strong class.

DBLP Articles DBLP Inproceedings PubMed APS
# Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2

265 47 665 178 229 150 111 98
246 279 625 461 229 65 115 98
206 47 625 100 229 62 96 84
203 93 625 92 229 55 92 29
203 74 625 90 229 29 86 69
197 64 601 385 162 89 85 11
197 20 600 299 162 45 83 38
189 19 598 93 155 45 83 34
186 26 591 553 155 19 79 22
182 12 582 326 150 94 66 29

ganization for diffusing and advancing the knowledge of Physics. It provides a sample
dataset with its journal publications.

Considering these datasets, we build four co-authorship SNs whose main statistics
are in Table 3.1 of Chapter 3. Moreover, Figure 6.3 presents the distribution of pairs
of researchers as counted yearly for each dataset. Note that the y-axis represents
the frequency in log10. For example, in Figure 6.3a, the number 5 in x-axis and the
corresponding number 104 in y-axis indicate that the amount of 104 (in log10 scale) pairs
of researchers have 5 publications in common considering all years in DBLP Articles
dataset. Observe that the majority of co-authors have a small quantity of publications
in a year, and PubMed has the largest number of co-authors in a single publication (a
total of 140).

6.3.2 Characterizing STACY Classes

In this section, we characterize the eight classes of STACY according to the number
of researchers’ publications. Thus, Figure 6.4 presents (in box plots) the number of
publications of pairs of researchers for each STACY class. In each box plot, the cen-
tral rectangle spans the first to the third quartiles and also shows the outliers of the
distribution. Note that strong, bridge+, transient and bursty classes have pairs of re-
searchers with more number of publications. This is trivial, because these classes have
in common the value “social” to co-authorship frequency. However, an interesting result
is that the strong class (value “social” for the three features) has more ties with high
number of publications than the others in the four datasets. The second class that has
ties with more publications is transient (value “social” also to neighborhood overlap).

Furthermore, Figures 6.5 and 6.6 show the structure of DBLP Articles, DBLP
Inproceedings, PubMed and APS co-authorship social networks in each STACY class.
These visualizations allow to understand the networks’ structure regarding their nodes
and edges. For the networks with small number of nodes and edges, we have applied
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Figure 6.4: Distribution of quantity of publications by pairs of researchers in each class
detected by STACY.

Table 6.3: Top 10 researchers with most publications and their respectively co-authors
with most publications in bridge+ class.

DBLP Articles DBLP Inproceedings PubMed APS
# Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2

726 136 1,137 116 229 94 288 35
726 101 1,137 100 229 70 288 8
726 85 1,137 80 229 43 115 34
726 78 1,137 48 229 36 95 17
726 26 1,137 40 229 34 85 28
440 124 1,005 334 229 23 77 11
440 70 1,005 265 229 20 74 21
415 70 1,005 8 229 18 68 28
415 47 928 266 229 16 65 21
415 22 928 196 229 13 65 8

force directed layout to generate the visualizations [Guerra-Gomez et al., 2016; Holten
and Van Wijk, 2009; Rahman and Karim, 2016]. However, for the largest ones, we
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(a) DBLP Articles -
Strong

(b) DBLP Articles -
Bridge+

(c) DBLP Articles -
Transient

(d) DBLP Articles -
Periodic

(e) DBLP Articles -
Bursty

(f) DBLP Articles -
Bridge

(g) DBLP Articles -
Weak

(h) DBLP Articles -
Random

(i) DBLP Inproceed-
ings - Strong

(j) DBLP Inproceed-
ings - Bridge+

(k) DBLP Inproceed-
ings - Transient

(l) DBLP Inproceed-
ings - Periodic

(m) DBLP Inproceed-
ings - Bursty

(n) DBLP Inproceed-
ings - Bridge

(o) DBLP Inproceed-
ings - Weak

(p) DBLP Inproceed-
ings - Random

Figure 6.5: Social network for each relationship class from DBLP Articles and DBLP
Inproceedings dataset. The size of the nodes varies according to the number of publi-
cations of the researchers.

have used circular layout, because the force directed layout has not generated a result
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(a) PubMed - Strong (b) PubMed - Bridge+ (c) PubMed - Transient (d) PubMed - Periodic

(e) PubMed - Bursty (f) PubMed - Bridge (g) PubMed - Weak (h) PubMed - Random

(i) APS - Strong (j) APS - Bridge+ (k) APS - Transient (l) APS - Periodic

(m) APS - Bursty (n) APS - Bridge (o) APS - Weak (p) APS - Random

Figure 6.6: Social network for each relationship class from PubMed and APS dataset.
The size of the nodes varies according to the number of publications of the researchers.

in a “real” time for such size of social networks.

Thus, Figures 6.5 and 6.6 reveal that the network composed by edges classified
as random has researchers with a larger number of publications in DBLP Articles,
DBLP Inproceedings and PubMed. This result shows that researchers with many
publications may tend to form random ties. In general, such researchers are senior and
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Table 6.4: Top 10 researchers with most publications and their respectively co-authors
with most publications in transient class.

DBLP Articles DBLP Inproceedings PubMed APS
# Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2

119 37 285 97 133 20 62 22
119 9 285 31 99 22 62 20
119 9 285 14 99 19 62 17
119 8 202 19 99 14 62 15
119 4 197 14 99 11 48 10
119 4 169 18 99 11 48 10
106 24 167 36 99 10 48 8
95 9 130 25 99 9 47 10
95 5 123 5 99 9 47 10
92 8 122 102 99 9 47 8

Table 6.5: Top 10 researchers with most publications and their respectively co-authors
with most publications in periodic class.

DBLP Articles DBLP Inproceedings PubMed APS
# Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2

400 69 928 243 229 162 369 47
398 18 928 239 229 145 288 67
398 11 928 184 229 105 209 39
398 10 802 276 229 89 175 40
398 8 802 234 229 76 175 35
398 6 802 154 229 68 175 31
318 183 802 77 229 57 175 23
292 137 700 136 229 27 148 40
292 50 700 115 162 84 148 20
276 9 700 77 162 70 144 32

Table 6.6: Top 10 researchers with most publications and their respectively co-authors
with most publications in bursty class.

DBLP Articles DBLP Inproceedings PubMed APS
# Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2

726 38 1,005 33 229 45 64 5
726 25 742 5 229 29 57 7
726 11 720 742 229 29 48 39
414 92 720 132 229 17 47 39
345 41 720 50 229 15 47 4
317 66 720 6 229 15 44 39
317 11 720 5 229 14 41 5
292 81 703 94 229 10 39 23
292 53 703 22 229 10 39 15
292 5 703 13 229 9 39 15

Table 6.7: Top 10 researchers with most publications and their respectively co-authors
with most publications in bridge class.

DBLP Articles DBLP Inproceedings PubMed APS
# Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2

726 268 1,137 450 229 90 369 61
726 241 1,137 436 229 86 369 59
726 227 1,137 432 229 84 369 54
726 212 1,137 314 229 83 369 43
726 206 1,137 296 229 82 369 39
726 184 1,137 260 229 81 369 37
726 155 1,137 253 229 70 369 35
726 145 1,137 251 229 70 369 33
726 143 1,137 244 229 65 369 30
726 139 1,137 240 229 65 369 26
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Table 6.8: Top 10 researchers with most publications and their respectively co-authors
with most publications in weak class.

DBLP Articles DBLP Inproceedings PubMed APS
# Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2

182 6 492 31 162 18 67 1
182 4 492 17 139 119 67 1
182 3 492 11 108 16 67 1
182 3 492 7 108 14 67 1
182 1 492 6 108 12 67 1
182 1 492 6 108 11 66 6
182 1 492 5 108 11 66 6
172 10 492 4 108 10 65 5
169 2 492 4 108 9 65 4
169 2 492 4 108 6 65 2

Table 6.9: Top 10 researchers with most publications and their respectively co-authors
with most publications in random class.

DBLP Articles DBLP Inproceedings PubMed APS
# Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2 # Pub. R1 # Pub. R2

726 400 1,137 504 229 82 369 209
726 308 1,137 485 229 75 369 66
726 249 1,137 333 229 61 369 52
726 197 1,137 310 229 61 369 51
726 187 1,137 295 229 52 369 40
726 160 1,137 285 229 50 369 38
726 159 1,137 260 229 50 369 33
726 154 1,137 247 229 47 369 33
726 142 1,137 215 229 44 369 28
726 141 1,137 210 229 41 369 28

have random relationships with junior researchers. Also, the network with edges in
the weak class also has researchers with many publications in the four social networks.
However, such researchers have a number of publications smaller than the researchers
in the network with random ties. Moreover, the network with edges in transient class
is the one with researchers with less number of publications. The top 10 researchers
with most publications (R1) in each class with their respectively co-authors with most
publications (R2) in Tables 6.2 to 6.9 confirm these results.

6.3.3 Comparing fast-RECAST and STACY

As mentioned in Section 6.1.2, RECAST was originally used to classify users’ wireless
interaction in mobile networks [Vaz de Melo et al., 2015]. The patterns and features of
such networks are different from co-authorship social networks. Hence, our goal is to
verify whether such algorithm identifies the kind of the relationships (social or random)
between co-authors. We also do the same verification for STACY.

Before executing fast-RECAST and STACY, we have to set a value to the pa-
rameter prnd (discussed in Section 6.1.2 and Section 6.2.3, respectively). Vaz de Melo
et al. [2015] vary prnd through four orders of magnitude and observe that the number of
edges per class keeps in the same magnitude. Therefore, such algorithm does not need
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(a) DBLP Articles (b) DBLP Inproceedings

(c) PubMed (d) APS

Figure 6.7: Amount of pairs of authors in each class generated by fast-RECAST: weak,
strong, bridge and random. Common behavior: the four co-authorship social networks
have a large number of weak and random ties.

an accurate definition of the parameter to consistently classify the edges. Here, we run
fast-RECAST and STACY for prnd = 0.01 and prnd = 0; as we obtain similar results,
we show only those for prnd = 0. In summary, when prnd = 0, a given value v of edge
persistence (or topological overlap or co-authorship frequency) is considered social (or
not random) when there are no edges in the random graphs with edge persistence (or
topological overlap or co-authorship frequency) greater than or equal to v.

Figure 6.7 presents the classification of the co-authorships in each class generated
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by fast-RECAST for the four co-authorship SNs. In DBLP Articles, PubMed and
APS, most co-authorships are classified as weak ties, i.e., edges with small (or random)
topological overlap and edge persistence. Also, in such networks, more co-authorships
are classified as strong ties than as bridge ties. The exception is DBLP Inproceedings,
in which most edges are attributed to the random class and more co-authorships are
classified as bridges than as strong ties. These results can be explained by the fact
that DBLP Articles, PubMed and APS have publications from journals, whereas DBLP
Inproceedings has publications from conferences. As discussed in recent studies (such as
[Montolio et al., 2013; Silva et al., 2014]), Computer Science has a very peculiar behavior
when publishing in journals and conferences. Usually, conferences are for innovative
ideas and journals for archival purposes. Hence, journal coauthor networks generally
include authors who have already published together, then presenting stronger ties.

Such analysis is confirmed by Figure 6.8, which shows the structure of the co-
authorship social networks considering only the edges classified as strong ties. There is
a less dense connected component of strong ties for DBLP Inproceedings in comparison
to the other networks. Also, PubMed has the largest connected components of strong
ties in such way that it is hard o generate a suitable visualization.

Moreover, Figure 6.9 shows how STACY classifies the co-authorship ties in eight
different classes for each social network. As fast-RECAST, in DBLP Articles, DBLP
Inproceedings, PubMed and APS most ties are classified as class7 (weak) and class8
(random). Also, many ties are classified as class4 (periodic) and class6 (bridge).
The high quantity of ties in class4 reveals that researchers tend to publish together
with small frequency in a year with colleagues from the same community (e.g., team,
department, laboratory, etc). Also, the large amount of ties in class6 indicates that
most bridges tend to have a small co-authorship frequency in each time. Note that
less ties are classified as class1, class2, class3 and class5. These four classes have
in common the value “social” to the social network property co-authorship frequency
(the other four classes have a “random” value to this property). This shows that co-
authorship frequency is an important feature to measure tie strength since helps to
better differentiate the classes. These results are perceived in the four co-authorship
social networks.

6.3.3.1 Link Persistence Analysis

Now, our goal is to investigate whether ties characterized with a given level of tie
strength are likely to persist in the future. In a social context, persistence is interpreted
as the continuation of a relationship even with the progress of time, geographic distance,
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(a) DBLP Articles (b) DBLP Inproceedings

(c) PubMed (d) APS

Figure 6.8: SNs with N nodes and edges classified as strong ties (more visualizations
available on angra.lbd.dcc.ufmg.br/cnare/): the largest connected compo-
nents 6.8a - N = 3, 068, 6.8b - N = 473, 6.8d - N = 2, 314, and the ten greatest
connected components (from the 2 to 11 component, inclusive) 6.8c - N = 976. We
do not plot the largest connected component of PubMed because it is too large with
N = 22, 000.

or occupational mobility [Adams, 1967]. Here, we analyze co-authorship ties persistence
over time. Furthermore, a relationship can be: symbiotic, which is based upon common
need and is a relation of interdependence; or consensual, which is based upon common
value and agreement [Adams, 1967; Gross, 1956]. Gross [1956] asserts that symbiotic
ties persist more than consensual ties, but Adams [1967] claims that symbiotic ties
with positive concerns (relationship based on obligation and need, when coupled with
enduring relationship and continuing interest, evolves into a positive or affectional
force) remain connected more than consensual ties. In this context, we consider that
co-authorships are symbiotic relationships as they originated from a work involvement.

In order to analyze the persistence over time, we divide the networks into two

angra.lbd.dcc.ufmg.br/cnare/
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(a) DBLP Articles (b) DBLP Inproceedings

(c) PubMed (d) APS

Figure 6.9: Amount of pairs of authors in each class generated by STACY: class1 to
class8. Common behavior: most ties are in classes that co-authorship frequency has
“random” value.

time windows, which from now on we call past and future6. We apply fast-RECAST
and STACY in the past and then, verify if the edges of each class (strong, bridge, weak
and random) continue to be in that same class in the future.

In order to do that, we split the social networks into two time windows and in
6One may see the present as the timestamp between these two time windows
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Table 6.10: fast-RECAST: 80% represents the past (2000-2012 to DBLP articles and
inproceedings, 2000-2013 to PubMed and 2000-2010 to APS) and 20% is the present
(2013-2015 to DBLP articles and inproceedings, 2014-2016 to PubMed and 2011-2013
to APS).

Edge DBLP Articles DBLP Inproceedings PubMed APS
type 80% 20% 80% 20% 80% 20% 80% 20%
Strong 75,128 16,083

(0.21)
136,159 19,608

(0.14)
91,143 19,555

(0.21)
45,020 30,046

(0.67)
Bridge 133,071 28,090

(0.21)
368,177 55,327

(0.15)
50,903 11,239

(0.22)
50,464 31,767

(0.63)
Weak 767,143 28,683

(0.04)
750,837 16,244

(0.02)
1,790,986 67,752

(0.04)
201,978 102,108

(0.51)
Random 931,796 76,298

(0.08)
1,340,167 69,661

(0.05)
1,021,710 63,986

(0.06)
249,711 128,479

(0.51)

Table 6.11: fast-RECAST: 70% represents the past (2000-2010 to DBLP articles and
inproceedings, 2000-2011 to PubMed and 2000-2009 to APS) and 30% is the present
(2011-2015 to DBLP articles and inproceedings, 2012-2016 to PubMed and 2010-2013
to APS).

Edge DBLP Articles DBLP Inproceedings PubMed APS
type 70% 30% 70% 30% 70% 30% 70% 30%
Strong 47,647 13,161

(0.28)
89,842 16,615

(0.18)
38,811 10,778

(0.28)
47,440 10,857

(0.23)
Bridge 92,991 25,592

(0.275)
276,785 54,119

(0.2)
21,031 6,400

(0.30)
31,267 6,672

(0.21)
Weak 539,062 27,983

(0.05)
522,980 16,291

(0.03)
1,171,785 71,140

(0.06)
221,660 15,212

(0.07)
Random 681,519 76,260

(0.11)
1,021,110 70,700

(0.07)
584,353 60,105

(0.1)
168,872 16,147

(0.1)

two ways. First, we split the networks into a time window comprising 80% of the initial
timestamp (past) and a time window comprising 20% of the final timestamp (future).
Second, we divide the networks into time windows of 70% (past) and 30% (future).
Tables 6.10 and 6.12 present the results for 80% and 20% partition for fast-RECAST
and STACY, respectively. The values in the 80% column are the absolute number of
edges from the 80% of the publications’ years attributed to each class. The values in
the 20% column are the number of edges from the past that are also in the future
(proportions between parentheses). We observe that strong ties and bridges tend to
persist over the years more than weak and random ties. Considering the 70%-30%
split, as shown in Tables 6.11 and 6.13 for fast-RECAST and STACY, respectively, the
same conclusions can be made.

Considering fast-RECAST results, we emphasize the differences in the results of
the APS network in the 80%-20% and 70%-30% partitions. In the first partitioning,
the proportion of strong and bridge ties from the past to the present is very high,
whereas in the second partitioning such proportion is lower. This result may indicate
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Table 6.12: STACY: 80% represents the past (2000-2012 to DBLP articles and in-
proceedings, 2000-2013 to PubMed and 2000-2010 to APS) and 20% is the present
(2013-2015 to DBLP articles and inproceedings, 2014-2016 to PubMed and 2011-2013
to APS).

Edge DBLP Articles DBLP Inproceedings PubMed APS
type 80% 20% 80% 20% 80% 20% 80% 20%
Class1 1,238 485

(0.39)
2,562 674

(0.26)
6,003 2,230

(0.37)
93 17

(0.18)
Class2 886 368

(0.41)
2,498 573

(0.23)
1,113 305

(0.27)
8 2

(0.25)
Class3 0 0 0 0 37,157 2,771

(0.07)
120 95

(0.79)
Class4 1,070,400 64,249

(0.06)
1,149,339 53,445

(0.05)
175,179 34,215

(0.2)
58,663 12,122

(0.21)
Class5 0 0 0 0 12,862 1,372

(0.1)
4 3

(0.75)
Class6 834,614 84,052

(0.1)
1,440,941 106,148

(0.07)
45,419 8,718

(0.19)
36,720 6,840

(0.19)
Class7 0 0 0 0 2,042,114 76,552

(0.04)
256,564 13,908

(0.05)
Class8 0 0 0 0 634,895 36,369

(0.05)
195,001 15,573

(0.08)

Table 6.13: STACY: 70% represents the past (2000-2010 to DBLP articles and in-
proceedings, 2000-2011 to PubMed and 2000-2009 to APS) and 30% is the present
(2011-2015 to DBLP articles and inproceedings, 2012-2016 to PubMed and 2010-2013
to APS).

Edge DBLP Articles DBLP Inproceedings PubMed APS
type 70% 30% 70% 30% 70% 30% 70% 30%
Class1 823 415

(0.5)
1,893 639

(0.34)
2,450 1,226

(0.5)
87 13

(0.15)
Class2 676 312

(0.46)
2,082 591

(0.28)
267 101

(0.38)
9 2

(0.22)
Class3 0 0 0 0 26,947 3,293

(0.12)
4 3

(0.75)
Class4 745,375 58,976

(0.08)
823,799 51,232

(0.06)
85,011 23,799

(0.28)
47,353 10,844

(0.23)
Class5 0 0 0 0 6,624 1,107

(0.17)
13 12

(0.92)
Class6 614,345 83,293

(0.14)
1,082,943 105,263

(0.1)
21,095 5,849

(0.28)
31,258 6,670

(0.21)
Class7 0 0 0 0 1,314,738 77,707

(0.06)
221,656 15,209

(0.07)
Class8 0 0 0 0 358,848 35,341

(0.1)
168,859 16,135

(0.1)

that the co-authorship social network from APS changes more through the years than
the other networks. Another possibility is that physics researchers do not change very
much the level of co-authorship with their collaborators over time, and this is a pattern
of more recent researchers (note that 80% of data consider more recent co-authorships
than 70%). We leave for future work further analyses of such claims.
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Table 6.14: fast-RECAST: Link transformation results for DBLP Articles.
Strong Bridge Weak Random Disappear

Strong 43,711 (0.11) 27,134 (0.07) 0 0 312,765 (0.82)
Bridge 14,650 (0.04) 13,874 (0.035) 0 0 361,041 (0.925)
Weak 0 0 0 0 0
Random 0 0 0 0 0

Table 6.15: fast-RECAST: Link transformation results for DBLP Inproceedings.
Strong Bridge Weak Random Disappear

Strong 34,761 (0.08) 26,411 (0.06) 0 0 351,935 (0.86)
Bridge 13,601 (0.02) 16,298 (0.024) 0 0 659,608 (0.96)
Weak 0 0 0 0 0
Random 0 0 0 0 0

Now, focusing on STACY results, we observe that strong ties tend to persist
more than the others in DBLP Articles, DBLP Inproceedings and PubMed in the
80%-20% and 70%-30% partitions. Also, note that STACY is able of better classifying
strong ties that persist over time than fast-RECAST. An increase of 0.18 for DBLP
Articles, 0.12 for DBLP Inproceedings and for 0.16 PubMed in the 80%-20% partition.
For 70%-30% partition, growth is even better 0.22 for DBLP Articles, 0.16 for DBLP
Inproceedings and for 0.22 PubMed. The exception is APS, in which most ties in
class3 (transient) and class5 (bursty) tend to persist over time. This is a unexpected
result since both classes have “random” value for edge persistence. Analyzing the main
cause for this result, we note that co-authorships in such classes occur from 2009 to
2013, i.e., in the last years of the partitions (in 80%-20%, the 80% includes 2009 and
2010 and in 70%-30%, the 70% includes 2009). Thus, the edge persistence value is
small, because the co-authorships occur in the years of the 30% (future). Additionally,
no ties are classified as class3, class5, class7 and class8 in DBLP Articles and DBLP
Inproceedings in both partitions. This reveals that in such networks transient, bursty,
weak and random co-authorships are recent relationships, because they are found in
the full version of these SNs (as shown by Figure 6.9). Also, weak and random ties are
the ones that less persist over time in PubMed and APS.

This study reveals that most relations of co-authorship are symbiotic without
positive concerns, because most of them perish over time. Just a few of them are
symbiotic with positive concerns. This pattern is observed in the four co-authorship
social networks for fast-RECAST and STACY, and specially considering the temporal
data division as 70% and 30% in fast-RECAST.

6.3.3.2 Link Transformation Analysis

We now evaluate the amount of ties from a class in the past that continues in the same
class (or changes) in the future. To avoid any kind of bias in the process of classifying
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Table 6.16: fast-RECAST: Link transformation results for PubMed.
Strong Bridge Weak Random Disappear

Strong 349 (0.02) 387 (0.02) 3,267 (0.16) 2,664 (0.13) 17,044 (0.67)
Bridge 66 (0.01) 97 (0.01) 659 (0.07) 667 (0.07) 8,643 (0.84)
Weak 10,532 (0.02) 10,425 (0.02) 94,800 (0.18) 73,039 (0.13) 346,559 (0.65)
Random 1,476 (0.01) 1,792 (0.01) 13,105 (0.06) 11,941 (0.05) 195,803 (0.87)

Table 6.17: fast-RECAST: Link transformation results for APS.
Strong Bridge Weak Random Disappear

Strong 836 (0.03) 571 (0.02) 2,219 (0.09) 1,691 (0.06) 19,625 (0.8)
Bridge 450 (0.02) 421 (0.02) 918 (0.04) 910 (0.04) 19,173 (0.88)
Weak 4,013 (0.03) 2,071 (0.02) 14,185 (0.11) 7,154 (0.06) 99,844 (0.78)
Random 1,561 (0.013) 1,158 (0.01) 4,072 (0.03) 3,625 (0.03) 107,452 (0.92)

Table 6.18: STACY: Link transformation results for DBLP Articles.
Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Disappear

Class1 0 1 (0.002) 0 54 (0.09) 0 19 (0.03) 0 0 549 (0.88)
Class2 0 0 0 8 (0.03) 0 9 (0.03) 0 0 238 (0.93)
Class3 0 0 0 0 0 0 0 0 0
Class4 58 (1e-04) 7 (1.39e-05) 0 59,823 (0.12) 0 19,568 (0.04) 0 0 423,247 (0.84)
Class5 0 0 0 0 0 0 0 0 0
Class6 24 (8.9e-05) 4 (1.5e-05) 0 13,465 (0.05) 0 6,329 (0.02) 0 0 249,772 (0.92)
Class7 0 0 0 0 0 0 0 0 0
Class8 0 0 0 0 0 0 0 0 0

Table 6.19: STACY: Link transformation results for DBLP Inproceedings.
Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Disappear

Class1 0 0 0 28 (0.06) 0 21 (0.05) 0 0 387 (0.88)
Class2 0 0 0 21 (0.03) 0 7 (0.01) 0 0 596 (0.96)
Class3 0 0 0 0 0 0 0 0 0
Class4 28 (6.79e-05) 5 (1.2e-05) 0 44,665 (0.1) 0 16,425 (0.04) 0 0 351,548 (0.85)
Class5 0 0 0 0 0 0 0 0 0
Class6 26 (3.8e-05) 6 (8.7e-06) 0 19,148 (0.03) 0 10,691 (0.02) 0 0 659,012 (0.95)
Class7 0 0 0 0 0 0 0 0 0
Class8 0 0 0 0 0 0 0 0 0

the edges, here we divide the temporal co-authorship social networks into two time
windows of 50% of the timestamp. We apply fast-RECAST and STACY in both parts
and then we analyze the link transformation through the classes. Tables 6.14 to 6.17
show the results for fast-RECAST and Tables 6.18 to 6.21 for STACY. The values in
each column represent the amount and the proportion (between parentheses) of ties
from the past that persists or changes class in the future. For instance, the first values
43,711 and 0.11 in Table 6.14 are the number and the proportion, respectively, of strong
links in the past that are still strong in the present.

Analyzing fast-RECAST results, surprisingly, we cannot see ties classified as weak
and random in DBLP Articles and DBLP Inproceedings in Tables 6.14 and 6.15. This
indicates that the features (edge persistence and topological overlap) of these social
networks have high (or social) values. Furthermore, most ties from the past tend to
disappear in the present, especially the bridges. This result may be explained by the
nature of co-authorships, as researchers collaborate during a period towards a common
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Table 6.20: STACY: Link transformation results for PubMed.
Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Disappear

Class1 0 0 0 91 (0.14) 0 74 (0.12) 0 0 478 (0.74)
Class2 0 0 0 4 (0.05) 0 3 (0.03) 0 0 75 (0.91)
Class3 0 0 0 344 (0.19) 0 106 (0.06) 0 0 1348 (0.74)
Class4 0 1 (4.1e-05) 0 4,780 (0.2) 0 2,440 (0.1) 0 0 17,192 (0.7)
Class5 0 0 0 27 (0.05) 0 18 (0.03) 0 0 494 (0.9)
Class6 0 0 0 473 (0.09) 0 290 (0.05) 0 0 4,675 (0.86)
Class7 35 (5.7e-05) 7 (1.1e-05) 0 137,563 (0.22) 0 62,939 (0.1) 0 0 416,963 (0.67)
Class8 1 (7.2e-06) 0 0 10,216 (0.07) 0 5,854 (0.04) 0 0 123,557 (0.88)

Table 6.21: STACY: Link transformation results for APS.
Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Disappear

Class1 0 0 0 0 0 2 (0.3) 0 0 5 (0.7)
Class2 0 0 0 0 0 0 0 0 3 (1.0)
Class3 0 0 0 0 0 0 0 0 0
Class4 0 0 0 836 (0.03) 0 569 (0.02) 2,219 (0.09) 1,691 (0.07) 19,620 (0.8)
Class5 0 0 0 0 0 0 1 (1.0) 0 0
Class6 0 0 0 450 (0.02) 0 421 (0.02) 918 (0.04) 910 (0.04) 19,170 (0.9)
Class7 11 (1e-04) 2 (1e-05) 0 4,002 (0.03) 0 2,069 (0.02) 14,185 (0.11) 7,154 (0.06) 99,844 (0.8)
Class8 4 (3e-05) 2 (1e-05) 0 1,557 (0.01) 1 (8e-06) 1,156 (0.01) 4,071 (0.03) 3,624 (0.03) 107,452 (0.9)

goal and then, start to collaborate with others. This also reinforces the theory of Gra-
novetter that weak ties are the ones that connect different communities [Granovetter,
1973], which is the case of the bridge edges.

For Tables 6.16 and 6.17, we observe similar behavior between PubMed and APS,
and most ties tend to disappear, especially the bridges and random ties. Disregarding
disappeared links, most strong and weak ties become weak or random. Surprisingly,
the weak ties are the ones that keep more in the same class, comparing to the others
in both networks.

Focusing on STACY results, we also cannot see ties classified as weak (class7 )
and random (class8 ) in DBLP Articles and DBLP Inproceedings in Tables 6.18 and
6.19. Thus, co-authorship frequency of these co-authorship SNs also has large (or
social) value. Furthermore, ties are not classified as transient (class3 ) in DBLP Ar-
ticles, DBLP Inproceedings and APS (Table 6.21), which reveals the absence of these
co-authorships in earlier periods in these networks. Also, DBLP Articles and DBLP
Inproceedings do not have ties classified as bursty (class5 ), which indicates that ties
with high co-authorship frequency also share a large number of neighbors in this net-
works in the period covered by the 50% of data (this is also confirmed by the presence
of ties in class3 ).

Like fast-RECAST, most ties also tend to disappear when classified by STACY.
The difference is that using STACY, we note that ties from different classes tend to
change to class4 (periodic) and class6 (bridge) over time, specially, in DBLP Articles,
DBLP Inproceedings and PubMed (Table 6.20).
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Table 6.22: Range of values per class in
DBLP Articles.

Class Range of values
Class1 [0.27; 0.8]
Class2 [0.04; 0.12]
Class3 [0.15; 0.52]
Class4 [0.06; 0.2]
Class5 [0.005; 0.05]
Class6 [0.008; 0.03]
Class7 [0.04; 0.13]
Class8 [0.003; 0.05]

Table 6.23: Range of values per class in
DBLP Inproceedings.

Class Range of values
Class1 [0.32; 0.9]
Class2 [0.06; 0.2]
Class3 [0.19; 0.6]
Class4 [0.06; 0.19]
Class5 [0.02; 0.08]
Class6 [0.008; 0.03]
Class7 [0.03; 0.13]
Class8 [0.003; 0.01]

Table 6.24: Range of values per class in
PubMed.

Class Range of values
Class1 [0.26; 0.67]

Class2 [0.08; 0.15]

Class3 [0.16; 0.5]

Class4 [0.08; 0.19]

Class5 [0.04; 0.07]

Class6 [0.02; 0.04]

Class7 [0.04; 0.15]

Class8 [0.009; 0.02]

Table 6.25: Range of values per class in
APS.

Class Range of values
Class1 [0.66; 1.5]

Class2 [0.11; 0.26]

Class3 [0.29; 0.63]

Class4 [0.08; 0.25]

Class5 [0.015; 0.09]

Class6 [0.015; 0.04]

Class7 [0.04; 0.14]

Class8 [0.006; 0.018]

6.3.4 Deriving temporal_tieness from STACY

As described in Section 6.2.3, STACY classifies ties in eight different classes by combin-
ing neighborhood overlap (or topological overlap, to(i,j) – note that we do not consider
a modification in neighborhood overlap as in Chapter 5, because the values of neigh-
borhood overlap and a modification of it slightly differentiate from each other over
time for pairs of researchers in the four co-authorship SNs), edge persistence (per(i,j))
and co-authorship frequency (coAfrequency(i,j)). From this combination, we derive a
computational model formally defined by Equation 6.3.

temporal_tieness(i,j) = perα1

(i,j) × to
α2

(i,j) × coAfrequency
α3

(i,j) (6.3)

, in which αk (k is 1, 2 or 3) determines the weight that is given to each feature.

Considering α1 = 1, α2 = 1 and α3 = 1 by default, Tables 6.22 to 6.25 present
the range of values for temporal_tieness in each class. The temporal_tieness metric
is calculated for each pair of researchers by using the values of the metrics (edge
persistence, neighborhood overlap and co-authorship frequency) computed by STACY
when classifying the ties. To avoid extreme values [Brandão et al., 2014], we get the



6.4. Concluding Remarks 119

first and third quartiles of temporal_tieness in each class to define the beginning and
end of the range of values. Note that class1 (strong ties) has the largest values and
class8 has the smallest ones in the four co-authorship social networks. Also, class3 has
the second largest range of values in all networks. Unfortunately, there are still some
overlaps between range of values between some classes, but it can be solved by better
analyzing the values of the α parameter that we leave for future work.

These results indicate that temporal_tieness has a pattern of values for each class
in co-authorship social networks that have collaboration as an inherent characteristic.
Although it is necessary to better define the range of values for some classes, tempo-
ral_tieness is able of directly identifying strong, weak and random ties by using such
ranges of values. Therefore, this new computational model can be used to measure tie
strength in co-authorship social network without the use of STACY, which has more
computational cost.

6.4 Concluding Remarks

The concept of tie strength is well understood and analyzed for static networks, but
little is known about this concept when applied to temporal networks. In this chapter
we characterized the strength of ties in temporal networks by measuring the persistence
and the transformation of ties over time. In order to do so, we built four temporal
co-authorship social networks considering three real publications datasets. We also
proposed fast-RECAST, a parallel and faster version of an existing algorithm (RE-
CAST) that classifies edges into four classes of relationship according to their level of
tie strength. Moreover, we propose STACY, a parallel and fast algorithm that classifies
the ties into eight different classes. Moreover, we characterize each class according to
the number of publications of the researchers. Also, by grouping the edges into these
classes, we were able to quantify the dynamism of tie strength over time.

Regarding the results, the link persistence analysis reveals that strong ties and
bridges tend to persist over the years more than weak and random ties. Overall, this
supports our initial hypothesis that strong ties persist more than the others. Fur-
thermore, STACY was able of finding strong ties that persist more than those found
by fast-RECAST. The results of fast-RECAST also show a different pattern for co-
authorship social network from APS when the data is divided in 80% and 20%. In
this experimental setting, the proportion of strong and bridge ties from the past to the
present is very high compared to other social networks. Moreover, the link transfor-
mation analysis by using fast-RECAST and STACY revealed that most ties tend to
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disappear over time. This may occur due to the co-authorships nature, e.g., researchers
tend to publish with students during a period and when the students graduate, they
finalize the process of publishing together.

Finally, by using STACY, we defined a new computational model called tempo-
ral_tieness and a range of values for each class. Thus, tie strength can be computed
with low computational cost when compared to fast-RECAST and STACY.



Chapter 7

Conclusions and Future Work

In this chapter, we summarize the main results achieved so far (Section 7.1) and present
the open problems and future work derived from this thesis (Section 7.3).

7.1 Conclusions

In this thesis, we have studied distinct aspects related to the strength of co-authorship
ties. Specially, we did analyses, formulated metrics and developed a new computational
model. Such studies are categorized in research questions, which are summarized in
Sections 7.1.1 to 7.1.5.

7.1.1 RQ1: How to identify which aspects impact on the

strength of collaboration ties?

We have studied how nine topological properties (edge betweenness, co-authorship
frequency, closeness, eccentricity, clustering coefficient, number of triangles, weight
degree, eigenvector and page rank) impact on neighborhood overlap in non-temporal
co-authorship social networks from three different research areas (computer science,
medicine and sociology). The results showed that each research area has important
aspects that impact on the strength of co-authorship ties, since most properties are
related to neighborhood overlap in different ways depending on the research area. The
results also reveal that edge betweenness, closeness, eccentricity, clustering coefficient,
number of triangles and eigenvector are linearly or exponentially dependent of neigh-
borhood overlap in at least one research area. Therefore, such metrics should not be
combined with neighborhood overlap to measure the strength of ties. Furthermore,
we note that the co-authorship frequency is linearly and exponentially independent of

121
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neighborhood overlap in all social networks. Thus, both metrics can be combined in a
computational model to measure tie strength.

7.1.2 RQ2: How to measure the strength of co-authorship ties

in non-temporal social networks?

We have measured tie strength in non-temporal and temporal co-authorship social net-
works. In non-temporal social networks, neighborhood overlap and absolute frequency
of interaction (a.k.a. co-authorship frequency or edge weight) have been largely used
to measure the strength of ties. Indeed, we have initially measured the strength of ties
by using neighborhood overlap (NO) and contrasting it with co-authorship frequency.
Such comparison allowed to define a nominal scale to NO. The results showed that dif-
ferent properties influence such metric in a linear way or not. In addition, since we are
measuring the strength of ties, we verified if Granovetter’s theory governs co-authorship
social network when such strength is measured by neighborhood overlap. Our results
were positive to such theory. Therefore, our evaluations indicate that neighborhood
overlap can be used to measure the strength of ties.

However, by empirically analyzing the results, we identified four main problems
with using solely neighborhood overlap and co-authorship frequency to measure tie
strength: (Case 1) when a pair of collaborators does not have any common neighbor,
neighborhood overlap will be zero; (Case 2) how determining if two collaborators are
from the same community or not is challenging, since co-authorship frequency considers
only the absolute frequency of interaction; (Case 3) when there is little collaboration
between a pair of collaborators and a plenty of common neighbors, neighborhood over-
lap and co-authorship frequency will present opposite results; and (Case 4) when the
results are extreme values, neighborhood overlap may not represent the reality. Hence,
we proposed a new metric entitled tieness that combines a modified neighborhood
overlap with co-authorship frequency. We also defined a nominal scale and verified
Granovetter’s theory when the strength of ties is measured by tieness. Our analysis
validates our metric according Granovetter’s theory and shows promising results.

7.1.3 RQ3: How to measure the strength of co-authorship ties

in temporal social networks?

In temporal social networks, we have used two algorithms to measure tie strength. They
were fast-RECAST and STACY. Both algorithms classify the ties by comparing the
values of social networks features with values from random networks. fast-RECAST re-
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sulted from an improvement in an existing algorithm called RECAST, whereas STACY
was proposed by us. Furthermore, fast-RECAST identifies four relationships classes
(strong, weak, bridge and random), while STACY classifies the ties in eight different
classes (strong, bridge+, bridge, transient, periodic, bursty, weak and random). Also,
the two algorithms differ by the number of considered features: fast-RECAST uses
two social network features (edge persistence and neighborhood overlap) and STACY
considers three features (edge persistence, neighborhood overlap and co-authorship fre-
quency). As STACY recognizes more tie strength classes, it allows to identify more
types of relationships. For example, co-authorships that are bridge+, periodic, tran-
sient or bursty. Also, our new algorithm possibilities to observe that most bridges in
co-authorship SNs tend to have small co-authorship frequency and that researchers
tend to publish together with small frequency in a year with colleagues from the same
community. These results follow our intuition of research collaboration. Thus, our new
algorithm is able of automatically find diverse kinds of co-authorships. Finally, from
STACY, we are able to derive a computational model called temporal_tieness that can
classify tie strength with low computational cost.

7.1.4 RQ4: How is tie strength defined for temporal networks?

There are different concepts related to tie strength in non-temporal social networks.
However, few studies have addressed the strength of ties in temporal networks. In
this thesis, we considered that a strong tie characterizes interactions that are likely to
appear in the future, whereas a weak tie occurs sporadically. Our results confirm such
claim, since strong ties persist more than weak ones.

7.1.5 RQ5: How much does the strength of ties vary over

time?

We have investigated tie strength dynamism over time by analyzing tie persistence and
transformation in different classes. To do so, we have applied an existing algorithm
called RECAST, whose performance we have improved and called as fast-RECAST.
Such algorithm classifies the ties in four different classes (strong, weak, bridge and
random). We have also used a new algorithm called STACY that classifies the ties
in eight different classes. Surprisingly, most ties tend to perish over time. Moreover,
the link persistence analysis reveals that strong ties and bridges tend to persist over
the years more than weak and random ties. Also, STACY reveals that more persistent
bridges have “social” value to co-authorship frequency. Furthermore, our new algorithm
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was able of finding strong ties that persist more than those found by fast-RECAST.
All these results show that STACY is able of automatically finding different kinds of
relationships in temporal co-authorship social networks.

7.2 Publications

We have the following publications (all of them were published during the PhD) directly
and indirectly related to this thesis:

1. BRANDÃO, M. A.; Diniz, M. A. ; de Sousa, G. A. ; Moro, M. M. . Visualizing Co-
Authorship Social Networks and Collaboration Recommendations With CNARe.
In: Natarajan Meghanathan. (Org.). Advances in Wireless Technologies and
Telecommunication. 1ed.: IGI Global, 2017, p. 173-188.

2. BRANDÃO, M. A.; Moro, M. M. The Strength of Co-authorship Ties through
Different Topological Properties. Journal of the Brazilian Computer Society
(JBCS), 23(1):5, 2017;

3. BRANDÃO, M. A. ; Moro, M. M. Social Professional Network: a Survey and
Taxonomy. Journal of Computer Communications (COMCOM), v. 100, p. 20,
2017;

4. BRANDÃO,M. A.; Diniz, M. A.; Moro, M. M. Using Topological Properties to
Measure the Strength of Co-authorship Ties. In Proceedings of the V Brazilian
Workshop on Social Network Analysis and Mining (BRASNAM–CSBC), 2016;

5. Alves, G.B., BRANDÃO, M.A., Santana, D.M., da Silva, A.P.C. and Moro, M.M.,
The Strength of Social Coding Collaboration on GitHub. In Proceedings of the
31th Symposium on Databases (SBBD), 2016;

6. BRANDÃO, M. A. ; Moro, M. M. Analyzing the Strength of Co-authorship Ties
with Neighborhood Overlap. In Proceedings of the 26th International Conference
on Database and Expert Systems Applications (DEXA), 2015;

7. BRANDÃO, M. A. ; Moro, M. M. Neighborhood Overlap: Can This Metric Be
Used to Characterize the Strength of Co-authorship Ties?. In ACM Student
Research competition & Grace Hopper Celebration, 2015;

8. Sousa, G. A. ; Diniz, M. A. ; BRANDÃO, M. A. ; Moro, M. M. CNARe: Co-
authorship Networks Analysis and Recommendations. In Proceedings of the 9th
ACM Conference on Recommender Systems (RecSys), 2015;
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9. Diniz, M. A. ; Sousa, G. A. ; BRANDÃO, M. A. ; Moro, M. M. CNARe: Uma
Ferramenta Online para Análise de Redes Sociais de Co-autoria e Recomendações.
In Proceedings of the 30th Simpósio Brasileiro de Bancos de Dados (SBBD), 2015;

10. BRANDÃO, M. A. ; Moro, M. M. ; Almeida, J. M. Experimental Evaluation
of Academic Collaboration Recommendation Using Factorial Design. Journal of
Information and Data Management (JIDM), v. 5, p. 52, 2014;

11. BRANDÃO, M. A. ; Moro, M. M. ; Almeida, J. M. Análise de Fatores Impac-
tantes na Recomendação de Colaborações Acadêmicas Utilizando Projeto Fato-
rial. In Proceedings of the 28th Simpósio Brasileiro de Banco de Dados (SBBD),
2013.

Finally, we have also submitted a short paper entitled “Tie Strength Persistence
and Transformation” and a full paper called “Strength of Co-authorship Ties in Clus-
ters: a Comparative Analysis” to AMW 2017. Also, we are working to submit the
results discussed in Chapter 6.

7.3 Open Problems and Future Work

During this research, we perceived many future directions to this thesis. Beginning
with those that can be more easily implemented, we detail them as following.

Expanding the study to other collaboration social networks. The approaches
proposed in this thesis to measure tie strength can be applied to other collaboration
networks (for example, GitHub and Stack Overflow). We have already started to
work on this direction. Specially, we have considered different metrics to measure the
strength of social coding collaboration on GitHub [Alves et al., 2016]. One of these
metrics is tieness, which shows promising results. While most metrics consider only
the network topology, our new metric is able of better differentiating the relationships
by considering distinct weights associated to the edges. Note that in such a context
edge weight is not co-authorship frequency, but values associated to developers inter-
actions. However, we have not applied STACY neither temporal_tieness on GitHub,
i.e., we have not considered the temporal aspect of the relationships on such network.
Furthermore, we plan to run the metrics and algorithms in Enron email dataset1 and
other datasets proposed by Barabási [2016].

1Enron email dataset: https://www.cs.cmu.edu/~./enron/

https://www.cs.cmu.edu/~./enron/
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Using qualitative research to evaluate tie strength. In this thesis, we have
evaluated the strength of ties by analyzing Granovetter’s theory in non-temporal social
networks and link persistence/transformation in temporal social networks. Another
direction is asking for users to analyze if they agree or not with their relationships
strength generated by our new approaches. Doing so, we are able to build a ground-
truth to evaluate our new tie strength metrics and algorithms.

Evaluating tie strength methods by comparing with synthetic data. One
of the main problems of working on social network research area is the absence of a
ground-truth to evaluate the results. Indeed, a possible solution is to build a synthetic
data that represent a completely random and/or perfect social network. Thus, allowing
to compare the results from real networks with the synthetic ones. Creating a realistic
synthetic data has many challenges related to topologies, data distributions, correla-
tions, attribute values, and so on. To classify tie strength in temporal co-authorship
SNs, we have compared the real results with random networks. Nevertheless, we have
not done the same for non-temporal social networks. Therefore, we can do similar
study to evaluate tieness.

Clustering analyses and evaluation. Due to the common nature of clusters in SN,
which is a collection of individuals with dense interactions patterns internally and sparse
interactions externally [Mishra et al., 2007]. We believe that tie strength metrics can
be used to evaluate clusters quality. In Appendix 4.4, our initial analysis of clustering
algorithms (LM, CPM and MCL) by using neighborhood overlap and co-authorship
frequency in clustering evaluation showed that MCL is the best clustering algorithm
to be applied in co-authorship SN when compared to LM and CPM. Nevertheless, we
also conclude that considering only the strength of ties metrics is not enough to define
clustering qualities. Therefore, in the next steps, we plan to apply internal measures
(like BetaCV, C-index, and so on) to compare with the results generated by the tie
strength metrics. Furthermore, we have later identified another clustering algorithm
called SCAN (Structural Clustering Algorithm for Networks) [Xu et al., 2007]. In such
algorithm, two nodes are assigned to a cluster based on how their share neighbors.
SCAN is also able to identify hubs (nodes with high influence in the network) and
bursty (have little or no influence) in the social network. Thus, the general concept of
this clustering algorithm is related to the concept of neighborhood overlap and tieness.
We also intend to analyze the result of SCAN in the collaboration social networks.

Differentiating the α parameter of each property in temporal_tieness. In
this thesis, we have evaluated the range of values of temporal_tieness for each class by
considering α = 1. Although temporal_tieness is able of directly identifying strong,
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weak and random ties, we can study how to better configure such parameter for each
topological property. Thus, allowing to classify ties in all the eight classes.

Adding other social network features to STACY. Our new algorithm considers
three topological properties to classify tie strength (edge persistence, neighborhood
overlap and co-authorship frequency). The main advantage of considering these metrics
is that they are free of context. Thus, STACY can be applied to different social
networks. Also, as co-authorship frequency represents the edge weight of co-authorship
social networks, other properties from different social networks can be considered as
edge weight. For example, number of shared repositories for GitHub or frequency
of interaction in question & answer forum for Stack Overflow. Nonetheless, other
topological and semantic social network properties can be included in STACY. This is
not an easy task since the generation of the random graph must also be updated with
the new inserted property.

Group recommendation. Another future direction is group recommendation. Over-
all, our hypothesis is the strength of ties among researchers helps to understand the
importance of a relationship to a person, which may improve collaboration recommen-
dation. Thus, a possible application of this thesis is to use the strength of tie metrics
associated with clustering algorithms to recommend groups of people to another per-
son. One of the goals of recommendation is to facilitate users find relevant information
(about items or people). Hence, the main task is to consider an evaluation metric that
measures how “good” recommended groups are to users. Initially, the accuracy of the
recommendations may be evaluated using the metrics precision and recall. Then, other
evaluation metrics may be considered to better analyzing the characteristics of a tar-
get user (who will receive the recommendations), such as diversity or novelty [Brandão
et al., 2013; Shani and Gunawardana, 2011].
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Appendix A

CNARe

Social networks represent individuals and the interactions among them, and studying
such networks allows to discover different social patterns [Ahmed et al., 2016; Brandão
and Moro, 2017a]. For instance, Chang and Chin [2011] study factors that affect user
intention to use a social network game, and Pettenati and Cigognini [2007] use social
networks theories to elaborate new e-learning practices. Furthermore, the social net-
works features can also be used to improve the quality of recommendation algorithms,
such as those for friends, music, books and collaborators [He and Chu, 2010; Tang
et al., 2013].

Specifically, recommending collaborators is a specific type of people recommen-
dation in which the main goal is to recommend a pair of individuals to collaborate
in a determined context. For instance, Surian et al. [2011] extract information from
Source forge1 and build a developer collaboration network. Then, they propose a new
algorithm to recommend developers candidate to projects in Source forge. Likewise,
Protasiewicz et al. [2016] propose an architecture to recommend reviewers to evaluate
researchers’ proposals and publications. In this context, this chapter focuses on rec-
ommendation of co-authors by considering algorithms that use information available
in co-authorship social networks. A co-authorship social network is a type of social
network in which nodes are authors and edges represent that they have publications in
common.

Advances in collaboration recommendation algorithms have shown the potential
to improve researchers’ productivity and their groups through establishing new research
connections [Brandão et al., 2013; Lopes et al., 2010; Xia et al., 2014]. The recommen-
dation strategies include analyses of the topological features from the co-authorship
social networks, semantic properties of the relationship between researchers and math

1Source forge: http://sourceforge.net
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formalizations. Such algorithms provide as result a recommendation list with the top
ranked researchers that may collaborate with another researcher.

Besides characteristics of the recommendation algorithms, another relevant as-
pect of a full system is the visualization of the recommendations results. Generally,
the recommendations are presented in sorted lists (according to the recommendation
function’s result). For instance, Confer (used in IJCAI-162) is a tool that uses recom-
mendation approaches in order to help conference attendees to find talks and papers, to
discover people with common interest and manage their time in the conference [Zhang
et al., 2016a]. It presents the recommendations as a list, and the users can attribute
a star to each recommended item. However, these lists are often not enough to under-
stand how the result was defined or to verify the potential of the recommendations to
improve the network as a whole.

Here, the authors present an online tool called CNARe (Co-authorship Networks
Analysis and Recommendations) - the pronounce is scenery [de Sousa et al., 2015].
CNARe helps researchers to choose collaborators through automatic recommendations,
visualize recommendations, compare the results from different recommendation algo-
rithms and analyze the impact of the recommended researchers in their current network.
The tool implements three recommendation algorithms [Brandão et al., 2013; Lopes
et al., 2010; Xia et al., 2014]. CNARe also provides other visualizations, for example,
comparing the relationship between two or more co-authorship networks from differ-
ent institutions and analyzing the strength of the co-authorships classified as social
link (weak, strong or bridges - a co-authorship that connects researchers from different
communities) or random relationship.

After discussing related work on recommender systems and social networks visu-
alizations (Section A.1), the contributions of this chapter are summarized as follows.
The CNARe architecture and the processes of collecting and building a dataset from
the ACM digital library3 (Section A.2). The description of the main functionalities and
interfaces of CNARe, including the use case diagram and the main features of CNARe’s
pages (Section A.3). The visualizations of large co-authorship social networks empha-
sizing the strength of co-authorship links (Section A.4).

A.1 Related Work

In this section, we discuss the related work on recommender systems focusing on people
recommendation and social network visualizations.

2Confer in IJCAI-16: http://confer.csail.mit.edu/ijcai2016/schedule
3ACM digital library: http://dl.acm.org

http://confer.csail.mit.edu/ijcai2016/schedule
http://dl.acm.org
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A.1.1 Recommender Systems

There are many recommender systems for different contexts, from social networks to
e-commerce. These systems can provide recommendations of items (books, papers,
songs) or people (friends, co-workers, partners). For instance, Paraschiv et al. [2016]
propose a model that considers semantic overlap to recommend papers (items), and
Bagci and Karagoz [2016] use the data available on location-based social networks to
recommend friends.

Regarding people recommendation, co-authorship social networks have been used
to make research teams more productive. The current version of CNARe imple-
ments three recommendations algorithms that combine topological properties from
co-authorship social networks with academic metrics: Affin [Brandão et al., 2013] con-
siders the shortest path between researchers and the researchers’ institutional affili-
ation; CORALS [Lopes et al., 2010] combines the shortest path between researchers
and their research area; and MVCWalker [Xia et al., 2014] uses a random walk model
with three academic metrics (the co-author order in the publication, the time of last
collaboration and the collaboration frequency).

Regarding similar tools, there are two more related to CNARe: VRRC, which
shows the results of only one recommendation algorithm [Barbosa et al., 2012]; and
CollabSeer, which recommends researchers considering the co-authorship social net-
works topology and the interests’ areas of a user [Chen et al., 2011]. In CNARe, the
generated recommendations consider not only the research area of the researchers, but
also the affiliation, co-author order in the publication, the last collaboration time and
the collaboration frequency. Moreover, CNARe provides various visualizations (ego-
network and global social networks) aiming to show how a recommended collaborator
may change an existing co-authorship social network of the researchers who received
the recommendation.

A.1.2 Social Network Visualizations

Visualizing social networks may easily provide new insights about users and their inter-
actions in such environment [Viégas and Donath, 2004]. In other words, a visualization
is more than simply plotting pictures, it may also facilitate learning and generate new
knowledge. According to Freeman [2000], there are two ways to create social network
images: drawing graphs in which nodes represent individuals and edges are the con-
nections between them, and plotting a matrix in which rows and columns represent
people and the number or color intensity in the cells stands for the amount of social
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Figure A.1: CNARe architecture.

interaction (e.g., frequency of message exchange, number of co-authorships, the time
of interaction) between people. CNARe presents visualizations in both ways.

Furthermore, there are studies investigating the methods that better provide
visualizations of large networks. For instance, Rahman and Karim [2016] compare three
layouts (force directed drawing, spherical and clustered graph) and provide insights
about the three methods that help to identify the best one according to datasets’
properties. In addition, Brandes et al. [2012] present different methods to visually
explore dynamic social networks. The layout of the visualizations in CNARe is Force-
Layout [Holten and Van Wijk, 2009] from D3.js4 and it was selected through empirical
analysis, as it allows analyzing nodes and their interactions in the best way.

Existing social networks visualization tools allow the analysis of different net-
works. For example, Pajek is a program package that enables analysis and visualiza-
tions of large networks [Mrvar and Batagelj, 2016]. Likewise, Network Explorer is a
large-network visualization tool that enables users to find clusters of nodes and to iden-
tify important nodes in the network [Guerra-Gomez et al., 2016]. CNARe differs from
such tools by providing recommendations associated with social network visualizations.

A.2 CNARe Architecture

This section presents how CNARe is built regarding its architecture, data storage and
collection, and main functionalities.

4http://D3.js: d3js.org

d3js.org
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Figure A.2: Relational schema of CNARe database: 16 main tables and two associative
tables (Publication_has_Researcher and Researcher_has_Area).

Figure A.1 illustrates a general view of the main components of CNARe divided
in backend and frontend. In the backend, CNARe stores researchers’ publications in
a SQL database, whose relational schema includes tables for researchers, publications
and recommendations, as presented in Figure A.2. Each table has B-tree indexes for
primary and foreign keys. Other indexes were not created because the performance of
the necessary SQL queries is fast enough and could (potentially) harm the performance
of inserts, deletes and updates. For each researcher, the recommendations are stored
in a table that also identifies what method has generated them. Using data previously
stored in the database, the users generate the recommendations for each researcher.
However, collaborators can also be recommended in real time when one of the three
recommendation algorithm is selected.

Furthermore, each researcher may belong to more than one co-authorship social
network (since a user can add various networks with different clusters, for example, by
research group, graduate program, institution, and so on). Finally, it is important to
note that publications are in the range [2000-2015] in order to ensure recommendations
of researchers that have recent work in the area.

The initial database includes publications from Computer Science. The data col-
lecting procedure uses the snowball sampling strategy [Goodman, 1961] and considers
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available information in the researchers’ page at the ACM digital library. This library
was chosen because it presents the area of each publication according to ACM Classifi-
cation System. Each researcher’s page has a publications list, in which each publication
has DOI (Digital Object Identifier System), the co-authors list, the date and location
of the publication. From the DOI, the specified URL is accessed to get the research
area of each publication and information about each co-author: institution, total num-
ber of publications and co-author names (since the co-authors list provides the name
in citation format). After inserting the co-authors in the database, a new query is
executed to obtain the co-author with the largest number of publications whose page
has not been visited yet. Then, the collecting process starts again from the page of
such an author.

Initially, the data collecting procedure considers researchers from Brazilian insti-
tutions (COPPE/UFRJ, PUC/RIO, UFMG, UFPE, UFRGS, UNICAMP, USP/SC,
UFF, USP, UFCG, UFES, UFPR, UFRJ, UFRN, UFSC, UFSCAR, UNB, UNISI-
NOS, PUC/PR, PUC/RS, UFAM, UFBA, UFC, PUC/MG, UCPEL, UFG, UFPA)
and international institutions (University of Carnegie-Mellon, of Illinois at Urbana-
Champaign, of California - Berkeley, of Singapore, Stanford, Chinese Academy of Sci-
ences, of Southampton, of Los Angeles, Tsinghua, among others)5.

Reducing the noise in the input of the recommendation algorithms requires to
filter the number of researchers. In this case, the noise is given by researchers with
few publications, for example, as they may be students or not active researchers in
their area. Thus, considering these researchers in the recommendation algorithms may
generate not useful recommendations (i.e., they are noise data).

For the Brazilian institutions, only researchers with at least 10 publications were
considered (such value excludes most students). Regarding international institutions,
the previously mentioned ones accounts for 100 researchers with the largest number of
publications in the ACM digital library. Such researchers were reached and collected
from a seed researcher (Hector Garcia-Molina from Stanford University, one of the re-
searchers with more publications in the ACM). Hence, from Hector Garcia-Molina, the
other researchers directly or indirectly linked to him were collected, and the database
has researchers from other international institutions not mentioned as well.

Table A.1 summarizes the statistics of the CNARe default database6 and presents
the number of researchers, institutions, publications, average number of co-author per
publication, quantity of publications’ area and period of the gathered publications as

5In the future, the authors plan to consider other institutions as well.
6A dump of the relational database is available on http://www.dcc.ufmg.br/~mirella/

projs/apoena

http://www.dcc.ufmg.br/~mirella/projs/apoena
http://www.dcc.ufmg.br/~mirella/projs/apoena
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Table A.1: Description of the dataset stored in CNARe database.
Collected Data

#Reseachers 6,112
#Institutions 681
#Publications 4,259
Co-authors average 3.98
#Research areas 61
Period 2000-2015

Figure A.3: Use case diagram: a researcher can execute all actions. The include
indicates that those actions depending on the search of a researcher.

collected in July 2015. Observe that there are more researchers than publications,
because most publications have more than one author. It is important to emphasize
that this is a default database in CNARe, as users can also upload data themselves.

In the frontend (Figure A.1), the three main functionalities of the tool are: visu-
alization of the recommendations according to the three algorithms, visualizations with
filters, and results of metrics of social network analysis. Note that the last two features
aim to improve the presentation and understating of the recommendations. Moreover,
CNARe also allows users to import new researchers and their publications through files
in CSV format (Comma Separated Values). In order to import a researcher, the CSV
file must have the following columns: researcher name, research area, institution, link
to the researcher homepage and the year of the last academic degree. Regarding the
import of publications, the user has to inform the following columns in the CSV file:
title, publication date, research area, authors and venue. This feature allows anyone
with publications to use the tool and build new networks. Next section details the
functionalities through examples.
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Figure A.4: Main interface of CNARe with recommendations to Mirella M. Moro.

A.3 Design and Interfaces

In order to understand the main functionalities provided by CNARe, Figure A.3 shows
a use case diagram. Note that we consider our user as a researcher for simplicity, as the
tool could be used by a hiring committee of a department as to make its collaboration
network stronger. Next, we detail each functionality (collaboration recommendation,
visualizations and filters, and social networks metrics).

A.3.1 Collaboration Recommendation

Figure A.4 shows the initial page for collaboration recommendation. It presents the
field to search a researcher from which the user can visualize and compare the top-5
generated recommendations. The comparison is fulfilled in pairs, i.e., three combina-
tions: Affin and CORALS, Affin and MVCWalker, CORALS and MVCWalker. In this
example, the ego-network of the researcher is on the left and the recommendations on
the right according to Affin and CORALS algorithms.

The page also allows to edit or add information about a researcher stored in the
database. To do so, the user clicks on the editing icon that is in the right side of
each researcher name. There, the user can change the institution, add new academic
formation (it is necessary to insert the start date, conclusion date, the institution of the
academic degree) and the research area in each researcher’s profile. Such functionality
is important to keep CNARe database updated (e.g., correct old information).
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Figure A.5: Green lines represent recommended collaborations: the more intense more
has been recommended by the algorithm. The recommendations are generated by
clicking in one of the options with the algorithms’ name.

For each recommended researcher, the tool presents the institution and research
areas, which allow to know more about them. It is also possible to visualize the in-
tensity (score) of each recommendation when moving the mouse over the edge that
represents the recommendation and the co-authors of a recommended researcher, and
analyze the strength of the recommended collaborations using social networks metrics.
Such visualizations contribute to the user understanding how a recommended collab-
oration may change a co-authorship social network. For example, Figure A.5 shows
the recommendations considering the co-authors of a selected researcher, also presents
the collaborators with whom a user may have contact by using the recommended re-
searchers as “bridge”.

A.3.2 Visualizations and Filters

In order to visualize the co-authorship social networks, the tool provides two options:
ego-network of a researcher (examples in Figures A.4 and A.5) and global co-authorship
network (example in Figure A.6). The ego-network presents a researcher with her/his
co-authorships, aiming to visualize the current collaborations and the recommended
ones. On the other hand, the global networks show an eagle-eye vision of all co-
authorships from an institution, a researcher (the relationships among co-authors of a
researcher), or a network inserted by user. For instance, a user can visualize a global
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Figure A.6: Global network example: in the Visualization Options menu, when the
Co-authorship option is selected, a co-authorship matrix is presented instead of the
social network. Here, the matrix is in a blue rectangle.

co-authorship social network of an institution from a recommended researcher.
Moreover, CNARe also allows to compare three co-authorship social networks (ac-

cessing the option Compare More). This enables, for instance, to analyze which insti-
tution of the five recommended researchers has the densest co-authorship network. The
visualizations can be personalized through four filters applied to the co-authorships:
(1) by institution, it shows only the links of co-authors from a selected institution; (2)
the last time that the co-authorship happened, it focuses on co-authorships in a period
of years (e.g., the last two years); (3) the co-authorship frequency, it presents the links
between researchers that published together a selected number of times (e.g., from 2 to
5 publications in common); and (4) the date of the last academic formation, it allows
to consider researchers from similar academic “generations” (e.g., removing researchers
who have retired or are too young).

A.3.3 Social Networks Metrics

CNARe also presents the results for social networks metrics. Considering the ego-
networks, it may be hard to find relevant metrics, because the networks are relatively
small, with not enough information. For ego-networks, CNARe applies three metrics
(Easley & Kleinberg, 2012; Wasserman & Faust, 1994): (1) neighborhood overlap is
the number of nodes that are neighbors of both researchers involved in a co-authorship
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Table A.2: Description of the large social networks stored in CNARe database.
Dataset Number of nodes Number of edges

PubMed 443,784 5,550,294
DBLP Articles 837,583 2,935,590
DBLP Inproceedings 945,297 3,760,247
APS 180,718 821,870

divided by the number of nodes that are neighbors of at least one of the researchers
in a co-authorship; (2) clustering coefficient is the probability that two randomly se-
lected co-authors of a researcher are also connected to each other; and (3) affiliation
homophily is the measure of the similarity between a pair of researchers considering
their institution.

Specifically, the neighborhood overlap metric presents the strength of the recom-
mended links, which allows to analyze if each recommended link will be a bridge (i.e.,
an edge responsible for connecting different communities and not connected yet) or
not. The clustering coefficient and homophily metrics show how the recommendations
affect the researchers’ networks from different perspectives.

CNARe also presents statistics of the global co-authorship social networks, in-
cluding the number of nodes in each network (of a researcher, institution or uploaded
by a user) and in the global network, the amount of connections and the frequency of
co-authorships (Figure A.6). These statistics allow to understand the topology of the
social networks.

A.4 Advanced Social Networks Visualizations

The goal is now to provide the visualizations of large social networks and distinguish
the links according to their strength. Thus, CNARe also allows the visualization
of co-authorships from different datasets, such as PubMed (US National Library of
Medicine National Institutes of Health), DBLP (Computer Science Bibliography) and
APS (American Physical Society), which offer insights on the organization of these
different social networks. Table A.2 presents the number of nodes and edges in each
social network, as collected in April 2016 for PubMed, September 2015 for DBLP, and
March 2016 for APS.

The data from PubMed was gathered through the e-utilities offered by the Na-
tional Center for Biotechnology Information. The e-fetch utility allows to make queries
to the NCBI’s database. The queries aim to collect data from publications from the
most prestigious venues in the health and medical sciences according to h5-index (h-
index of those papers published in the last five years [Bornmann and Daniel, 2007]).
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Likewise, DBLP’s dataset was taken from Universität Trier website, which is then split
into two different datasets (due to its large size): one for the social network consid-
ering authors’ common articles as the edges, and another considering inproceedings.
Regarding the APS, the authors get access to a sample dataset in JSON format. Then,
such file was parsed in order to insert the data in a relational database and to build a
social network.

In CNARe, the visualizations of those social networks show the edges classified
according to their strength. In order to do such classification, fast−RECAST Random
rElationship ClASsifier sTrategy with Multiprocessing modules is applied to the social
networks. Such algorithm classifies the edges as social links (friends, acquaintances
or bridges) or random links [Vaz de Melo et al., 2015]. Here, the edges classified as
friends are called strong links and acquaintances as weak ones. Bridges and random
links maintain the same name.

Overall, fast−RECAST classifies an edge as social when two characteristics are
present in the relationship: regularity and similarity. The regularity indicates that a
relationship repeats over time, whereas the similarity means that two individuals in a
relationship have common neighbors. Such characteristics can be mapped into social
network metrics as edge persistence and topological overlap (also known as neighbor-
hood overlap), respectively.

Considering such properties, Vaz de Melo et al. [2015] evaluate which combination
of values of edge persistence and topological overlap define a relationship as friends
(strong), bridges, acquaintances (weak) or random, and compare the results with a
random graph (a random version of with the same number of nodes, edges and degree
distribution; the only difference is the way that nodes are connected to each other).

In the CNARe page that shows the visualization of the edges classified, the se-
lection of nodes from each dataset can be done by researcher ego-network, publica-
tion venue or publication area, enabling comparison of different social networks topol-
ogy. Also, the representation of co-authorships has been modified through distinct
shapes and colors to show different properties, allowing visualization of bridges (a co-
authorship that connects researchers from different communities) or classification of
co-authorships as weak or strong. Figure A.7 presents the visualization of a social
network from a venue in the PubMed dataset.
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Figure A.7: Visualization of PubMed social network from the venue Lancet Medical
Journal (London, England). The green edges are strong links, red edges are bridges,
purple edges are weak links and dark purple edges are random links. The gray edges
are links that do not received any classification.

A.5 Concluding Remarks

This chapter presented CNARe, an online tool that shows the collaboration recom-
mendations of three different algorithms (Affin, CORALS and MVCWalker). Visu-
alizations and metrics of social networks are also used in order to show how the
recommendations may modify researchers’ ego networks. The visualizations reveal
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that new recommended links may work as bridges to co-authorship social networks.
All these visualizations represent a step-forward in the collaboration recommendation
tools, because CNARe considers three recommendation algorithms instead of only vi-
sualizing the results. Furthermore, besides CNARe having initial datasets, others can
be easily uploaded. The only requirement is that the data have the fields needed
by the recommendation algorithms. Finally, CNARe also provides visualizations of
large networks differentiating the edges classified (strong, weak, bridges or random) by
fast−RECAST algorithm.

In the future, the authors plan to include other recommendation algorithms
and social networks metrics. The next steps also comprise a better differentia-
tion of the edges regarding their strength (i.e., consider algorithms different from
fast−RECAST ).
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