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Resumo

O projeto e a avaliação de métodos de recomendação de tags tem focado, his-

toricamente, em maximizar a relevância das tags sugeridas para um dado objeto (e.g.,

filme, música). A relevância de uma tag pode ser definida sob duas perspectivas. Em

uma perspectiva centrada no objeto, uma tag é relevante se ela descreve corretamente

o conteúdo do objeto alvo, enquanto em uma perspectiva personalizada uma tag rel-

evante deve não apenas descrever bem o conteúdo do objeto, mas também satisfazer

os interesses do usuário alvo. Entretanto, mesmo utilizando personalização, relevân-

cia pode não ser suficiente para garantir a eficácia e utilidade das recomendações,

quando considerada isoladamente. Promover novidade e diversidade em recomendação

de tags não apenas aumenta as chances de que o usuário selecionará pelo menos al-

gumas das tags recomendadas, mas também ajuda a promover informação (i.e., tags)

complementar, cobrindo os múltiplos aspectos ou tópicos relacionados ao objeto alvo.

Mesmo assim, nenhum trabalho anterior considerou aspectos de novidade e diversi-

dade no contexto específico de recomendação de tags. Nesta tese, temos como objetivo

propor novas soluções que considerem múltiplos aspectos relacionados ao problema

de recomendação de tags, em particular, relevância, novidade, diversidade e personal-

ização. Para isso, primeiramente investigamos a eficácia do uso combinado de vários

atributos de qualidade de tags, bem como de técnicas de learning-to-rank (L2R) em

recomendação de tags com o objetivo de melhorar a relevância das tags recomendadas.

Também propomos novos atributos sintáticos e técnicas baseadas na vizinhança do

objeto alvo para tratar um cenário específico de cold start. Em seguida, ampliamos

nosso foco, estendendo nossos melhores métodos para tratar aspectos relacionados a

personalização, novidade (especificidade da tag) e diversidade (cobertura de tópicos).

Nossos métodos foram avaliados utilizando dados reais de cinco aplicações da Web 2.0,

a saber, Bibsonomy, LastFM, MovieLens, YahooVideo e YouTube. Nossos resultados

experimentais demonstram a eficácia de nossos novos métodos quando comparados

ao estado-da-arte e confirmam a viabilidade de melhorar novidade e diversidade com

impactos desprezíveis em relevância. Também verificamos que os atributos sintáticos
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propostos são responsáveis por ganhos significativos (de até 17% em precisão) sobre

nosso melhor método no cenário de cold start. Além disso, atestamos os benefícios

da personalização para prover melhores descrições para o objeto alvo, que apresentou

ganhos de 15% em precisão (em média) sobre o melhor método centrado no objeto.
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Abstract

The design and evaluation of tag recommendation methods have historically fo-

cused on maximizing the relevance of the suggested tags for a given object, such as a

movie or a song. Tag relevance can be defined in two perspectives. In an object-centered

perspective, a tag is relevant if it correctly describes the content of the target object,

while in a personalized perspective, a relevant tag not only describes well the content of

the target object, but also matches the interests of the target user. However, even en-

riched by a personalized perspective, relevance by itself may not be enough to guarantee

recommendation usefulness. Promoting novelty and diversity in tag recommendation

not only increases the chances that the user will select some of the recommended tags,

but also promotes complementary information (i.e., tags), which helps cover multiple

aspects or topics related to the target object. Yet, no prior work has tackled novelty

and diversity in the specific context of tag recommendation. In this thesis, we aim

at proposing novel solutions that effectively address multiple aspects related to the

tag recommendation problem, notably, relevance, novelty, diversity and personaliza-

tion of the suggested tags. Towards that goal, we first investigate the effectiveness of

combining various tag quality attributes by means of heuristics and learning-to-rank

(L2R) techniques focusing on improving the relevance of recommended tags. We also

propose new syntactic attributes and nearest neighbor techniques that are suitable for

a cold start scenario in tag recommendation. Then, we expand our focus extending

our best methods to address personalization, novelty (tag’s specificity) and diversity

(topic coverage). We evaluate our strategies using real data from five Web 2.0 ap-

plications, namely, Bibsonomy, LastFM, MovieLens, YahooVideo and YouTube. Our

experimental results demonstrate the effectiveness of our new methods over state-of-

the-art approaches, and attest the viability to effectively increase novelty and diversity

with only a slight impact (if any) on relevance. We also found that our proposed syn-

tactic attributes are responsible for significant improvements (up to 17% in precision)

over the best relevance-driven method in a cold start scenario. In addition, we assessed

the benefits of personalization to provide better descriptions of the target object, with
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average gains of 15% in relevance over the best object-centered approach.
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Chapter 1

Introduction

Web 2.0 applications have become a rich source of user-generated content. Each

page on the Web 2.0 often comprises a main object (e.g., a video, image, audio or text)

and several sources of data associated with it, referred to as its features. The textual

features of an object are well-defined blocks of text such as title, tags, description and

user comments, used to describe the object’s content, facilitating the content organiza-

tion and findability [Belém et al., 2011]. Among all textual features, tags have gained

special importance as they offer an effective data source for information retrieval (IR)

services such as search [Li et al., 2008], classification [Figueiredo et al., 2012] and item

recommendation [Ifada and Nayak, 2016], and may capture user interests reasonably

well [Li et al., 2008].

In this context, there is a large interest in developing strategies to recommend

tags to users, providing relevant and useful tag suggestions for a target object, and

indirectly improving the quality of the IR services that rely on tags as a data source.

This thesis is focused on this problem and aims at proposing novel solutions that

effectively address multiple aspects related to it, notably, relevance, novelty, diversity

and personalization of the recommended tags.

The tag recommendation scenario we address in this thesis can be described as

follows. At the time a given target object o is being created or visualized by a target

user u, generate and rank a list of candidate tags C, sorting it according to relevance,

novelty and diversity aspects (as we will define below), and recommend the top k

candidates of this ranking to the pair < u, o >. The target object o may present an

initial set Io of previously assigned tags, and we are interested in recommending new

tags for this object, that is, Io∩C = ∅. The set Io may be empty, a scenario we denote

here as cold start, as defined by Martins et al. [2016].
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2 Chapter 1. Introduction

1.1 Motivation

Tag recommendation methods have historically focused on maximizing the

relevance of the recommended tags [Belém et al., 2011; Lipczak and Milios, 2011;

Wu et al., 2009]. Tag relevance can be defined in two perspectives. In an object-centered

perspective, a tag is relevant if it correctly describes the content of the target object. In

a personalized perspective, a relevant tag not only describes well the content of the tar-

get object, but also matches the interests of the target user [Rendle and Schmidt-Thie,

2010].

Personalization is motivated by the fact that users typically have different in-

terests, levels of expertise or vocabulary biases, and may also have different purposes

when choosing tags for a target object (e.g., content organization or content descrip-

tion). Moreover, even users with similar purposes may perceive the object’s content

differently, particularly in case of multimedia objects (an effect known as the semantic

gap). All these factors ultimately impact the user’s tag choices. Thus, personalized tag

recommendation aims at suggesting tags that not only are related to the object’s con-

tent but also capture the user interests, profile and background, and thus might help

services such as content organization. Furthermore, personalized tag recommendations

may also provide, either in isolation or collectively (i.e., all personalized recommenda-

tions provided to all users who tagged an object) better and more complete descriptions

of the object’s content, compared to object-centered recommendations.

However, even enriched by personalization, relevance may not be enough, in iso-

lation, to guarantee recommendation usefulness [Vargas and Castells, 2011]. For ex-

ample, a list of synonyms that well describe the object’s content is arguably relevant,

but also redundant and less useful than a more diversified list covering more aspects

related to the object. Indeed, the utility of a recommended item (or tag, specifi-

cally) depends on the other items in the list of recommendations [Clarke et al., 2011;

Vargas and Castells, 2011], due to the possible redundancy among them. Recommend-

ing tags that bring novel and diverse information with regards to previously ranked

tags may promote more complementary information, improving the coverage of the

multiple aspects or topics related to the target object and, indirectly, improving re-

sults of tag-based information retrieval (IR) services.

Diversity is particularly important because multimedia objects on the Web 2.0

may be multifaceted, that is, they may be related to various aspects and topics. Take for

instance the movie “Sister Act”, starring Whoopi Goldberg. Its main genre is Comedy,

but it also presents elements from the Action and Musical genres. Arguably, it would

be appropriate to recommend tags related to all these genres for this movie. In fact,
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Table 1.1. Example of tag recommendations for a MovieLens object.

T itle Relevance Only Relevance + Diversity Relevance + Diversity +
Recommender Recommender Novelty Recommender

X-Men: The Last Stand dvd, comics, ummarti2006, dvd, genetics, biology, genetics, dvd, biology,
super-hero, based comics, mckellen mckellen, marvel

we observed that a large fraction of Web 2.0 objects present multiple categories. For

example, 84% of the artists in our LastFM dataset and 63% of the movies in our

MovieLens dataset (see Chapter 6) are associated with two or more categories (style

or genre). Novelty, on the other hand, can increase serendipity, coverage and recall of

services that use more “specific” (yet relevant) recommended tags.

Thus, in this thesis, we define novelty as the capacity of recommending long tail

[Celma and Herrera, 2008] tags, that is, more rare tags. The idea is that a term used as

tag many times tends to be a more “obvious” recommendation (if relevant at all), thus

being of little use (if any) to improve the description of the target object provided by its

tag set. We note that this concept is closely related to tag specificity, since rare words

tend to be more specific (less general) [Baeza-Yates and Ribeiro-Neto, 1999; Choi,

2015]. Diversity, in turn, refers to the exhaustivity [Baeza-Yates and Ribeiro-Neto,

1999; Choi, 2015] of the set of recommended tags, which is defined as the coverage

they provide for the topics of the target object. We note that novelty and diversity

concepts vary according to the research comunity context (e.g., information retrieval

and general recommendation, as we will see in more details in Chapter 3).

To further illustrate the benefits of novelty and diversity in tag recommendation,

Table 1.1 shows an example of recommendations produced for a MovieLens object

(i.e., movie) by three recommenders: one focused on relevance only, a second one that

directly incorporates diversity and a third one that, besides diversity, also considers

novelty aspects1.

The relevance-driven recommender suggested the relevant tags “comics”, “super-

hero” and (though more vague) “based”, possibly referring to the fact that the movie

is based on the Marvel’s comics X-Men. But it also suggested the general tag “dvd”.

Notice also that, despite being driven by relevance, the recommender suggested an

apparently irrelevant tag (as far as we can tell), “ummarti2006”. The second recom-

mender, in turn, which incorporates diversity aspects, also suggested the tags “dvd”

and “comics”, but together with “genetics” and “biology”, which may be seen as other

important subjects of the movie plot (a fiction related to genetic evolution). Those

two tags cover other topics related to the movie, increasing the diversity of the recom-

1These are real recommendations produced by some of our proposed methods and baselines, which
will be presented in Chapter 5.
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mendations. The tag “mckellen”, also suggested by the second recommender, can also

be considered relevant, as it refers to one of the main actors of the film, Ian McKellen.

We also note that all recommended tags are, to some extent, relevant to the movie,

which illustrates a “good side effect” of promoting diversity: ensuring that at least

one relevant tag for each topic related to an object will be suggested may demote too

general or noisy tags, improving the relevance of the recommendations. In fact, our

experimental results corroborate this hypothesis, as we shall see in Chapter 7. Finally,

the third recommender, which fully exploits all three aspects, brought one more novel

and specific tag, “marvel”, which represents well the creators of the movie’s universe,

not to mention that it is related to the “comics” topic in a more specific way. While

this example illustrates that diversity and novelty are important aspects for tag rec-

ommendation, to our knowledge, no previous work has addressed aspects other than

relevance and personalization in the specific context of tag recommendation.

Another issue that has been mostly neglected in tag recommendation is the

cold start problem, which refers to an insufficient amount of previous information

about items or users (e.g., when new items or users are introduced in the system),

making it difficult to provide effective recommendations [Saveski and Mantrach, 2014;

Schein et al., 2002]. As aforementioned, in the specific tag recommendation domain,

cold start has been defined as the absence of an initial set of tags associated with the

target object [Martins et al., 2016]. Such scenario correspond to the case of a user who

has uploaded a new object to the application and filled some of its textual features,

particularly title and description, and needs suggestions of relevant terms to provide

as tags2.

Many state-of-the art tag recommendation methods exploit co-occurrence pat-

terns with the initial tag set, recommending to a target object o, associated with an

initial set of tags Io, tags that frequently co-occur with tags in Io in a training col-

lection [Garg and Weber, 2008; Heymann et al., 2008; Krestel and Fankhauser, 2012;

Menezes et al., 2010; Sigurbjörnsson and Zwol, 2008; Wu et al., 2009]. Yet, as shown

by Martins et al. [2016], the effectiveness of these methods greatly suffers in a cold start

scenario in which those initial tags are absent, due to the absence of such co-occurrence

information.

In order to address this issue, previous work has exploited other textual features

(e.g., title, description), extracting candidate tags directly from the text associated with

the target object [Lipczak et al., 2009; Lipczak and Milios, 2011; Ribeiro et al., 2015],

or from neighbors (similar/related objects) [Graham and Caverlee, 2008; Lin et al.,

2Other scenarios of cold start are also possible, for example, when the user is new in the application
(user cold start) Schein et al. [2002].
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2012; Martins et al., 2016]. However, these previous efforts focus only on statistical

properties of the occurrence of words, such as term frequency (TF) and inverse docu-

ment frequency (IDF) [Baeza-Yates and Ribeiro-Neto, 1999]. These properties in iso-

lation may fail to identify the most relevant candidate tags, specially from the typically

small and possibly low quality texts associated with Web 2.0 objects [Figueiredo et al.,

2012]. Thus, it is necessary to propose alternative tag quality attributes to distinguish

relevant from non-relevant candidate tags, as well as alternative sources to generate

candidate tags, which is one of the topics we tackle in this thesis, as we will discuss in

the following section.

In sum, our thesis hypothesis is that we can improve various aspects of the quality

of recommended tags, not only relevance, but also diversity, novelty and personaliza-

tion, by proposing and combining different tag quality attributes to address scenarios

with and without cold start. More specifically, by automatically combining various tag

quality attributes (some of them are proposed in this thesis), using learning-to-rank

techniques, we can improve the relevance of the recommended tags. Novelty and di-

versity aspects can also be captured by tag quality attributes, and further improved

by re-ranking strategies. Finally, by designing suitable attributes to deal with the cold

start and personalization issues, it is also possible to improve the effectiveness of the

recommendations.

1.2 Objectives

Our main goal in this thesis is to propose new tag recommendation strategies

that tackle all four aspects of the problem, namely: relevance, diversity, novelty and

personalization. In order to improve tag recommendation effectiveness, we explore

improvements in each of these aspects individually and conjointly. This is not an easy

task as some of these aspects may be contradictory. For example, focusing too much

on relevance may generate redundant tag recommendations that cover only some of

the topics of an object. Random recommendations tend to be highly novel for a user,

but they are probably very irrelevant and impersonal.

This general objective can be narrowed down into four specific goals, driven by

the following research questions:

• Research Question 1 (RQ1): How can we improve the relevance of the recom-

mended tags by means of a combination of tag quality attributes?

We note that most existing tag recommendation strategies treat the problem as a

multiple candidate tag ranking problem, sorting candidate tags according to some
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attributes of relevance and recommending tags that are in the top positions of

the generated ranking [Belém et al., 2011; Lipczak and Milios, 2011; Wu et al.,

2009]. This modeling of the problem motivates the use of Learning-to-Rank

(L2R) based strategies to automatically learn good tag ranking functions.

Thus, in order to improve relevance, we have worked in two fronts: (1) tag at-

tribute engineering, that is, the design of new tag quality attributes to distinguish

relevant from non-relevant candidate tags and (2) the automatic combination of

these tag quality attributes by means of learning-to-rank (L2R) techniques. Some

of these attributes and L2R techniques have already been proposed and evaluated

in our previous work [Belém et al., 2011]. Other attributes, such as the topic cov-

erage of a tag, which captures not only relevance, but also diversity (addressed in

RQ4 ), are novel contributions of this thesis. Regarding the L2R techniques, only

RankSVM [Cao et al., 2009], GP [Belém et al., 2011] and RankBoost [Wu et al.,

2009] were previously applied for tag recommendation tasks. In this thesis, we

evaluate other five techniques, namely, Random Forests (RF), Multiple Additive

Regression Trees (MART), λ-MART, ListNet and AdaRank, which have demon-

strated to be effective in other contexts [Faria et al., 2010; Gomes et al., 2013;

Mohan et al., 2011].

• Research Question 2 (RQ2): How can we generate and rank candidate tags in a

cold start scenario in which there are no previously available tags?

Our hypothesis is that new tag quality attributes, particularly attributes that ex-

ploit the syntactic structure of the associated text, can better distinguish relevant

from non relevant candidate tags, improving tag recommendation effectiveness in

this scenario. Moreover, new sources of candidate tags deserve special attention

in this scenario. Keeping the focus on the relevance aspect of the problem to

tackle cold start in tag recommendation, we analyze new tag quality attributes,

as well as alternative sources to generate candidate tags from the neighborhood

of the target object (i.e., similar objects).

• Research Question 3 (RQ3): How can we extend the proposed methods to provide

personalized recommendations?

As we mentioned above, personalization may better satisfy the user interests,

profile and background. Moreover, it may also provide better and more complete

descriptions of the object’s content, compared to object-centered recommenda-

tions. Towards answering RQ3, we propose new methods, particularly extending

the best strategies developed to tackle RQ1 to address personalization. We also
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provide a quantitative assessment of the benefits of personalization when applied

to describe the content of Web 2.0 objects.

• Research Question 4 (RQ4): How can we improve novelty and diversity of tag

recommendation, while keeping the same levels of relevance?

In order to answer this question, we propose new, complementary tag recom-

mendation strategies to address novelty and diversity, exploiting the inherent

tradeoffs that exist among relevance, novelty and diversity. Particularly, we ex-

tend the best strategies found in RQ1 to include new attributes as well as new

objective functions that capture novelty and diversity.

1.3 Contributions

Towards achieving the proposed goals, we have accomplished the following con-

tributions:

1. Proposal of new tag relevance attributes, grouped into two categories: (1) syn-

tactic attributes, which exploit patterns of the structure of the text associated

with the target object, and (2) topic-based attributes, which capture the coverage

of the topics (e.g., categories) associated with the target object, thus also being

related to diversity.

2. A comparative study of various L2R techniques applied to tag recommendation

with a focus on maximizing the relevance of the recommended tags. We com-

pare eight L2R techniques, including the state-of-the-art GP , RankSVM and

Rankboost based methods as well as five techniques that have not been previ-

ously exploited for tag recommendation. These techniques are Random Forest

(RF ), MART , λ-MART , ListNet and AdaRank . Our results indicate that L2R

techniques provide significant gains over a state-of-the-art unsupervised heuristic.

Among the L2R methods, we found a winning group of methods (RF , MART

and λ-MART ), with a slight advantage of two methods (RF and λ-MART ) over

the others. Furthermore, we find that the L2R approach presents a very low

additional recommendation time when compared with unsupervised heuristics.

Besides the promising results, the flexibility of the L2R framework in terms of

the incorporation of new attributes and ability to maximize different target mea-

sures makes it an attractive solution for the tag recommendation problem.



8 Chapter 1. Introduction

3. Analysis of various syntactic patterns (e.g., part-of-speech labels, syntactic de-

pendencies between words in a sentence) of the text associated with Web 2.0

objects that can be exploited to identify and recommend tags. We verified that

the texts in each studied Web 2.0 application present patterns that provide good

evidence of which words are good candidate tags. For example, in LastFM, var-

ious tags correspond to the music genre of artists and appear in sentences with

the structure “X is a Y band” where “Y” is a tag.

4. Proposal of three new tag recommendation methods to tackle cold start. The

first method, called RFsynt , extends the aforementioned approach based on RF

to include the new tag quality attributes related to the identified syntactic pat-

terns. The second method, KNNsynt , rely on the initial set of recommendations

provided by RFsynt to recommend tags from the neighborhood of the target ob-

ject. Finally, the third method, RFsynt+KNNsynt , is an aggregation of the ranking

provided by the other two methods. Our experiments showed that our proposed

syntactic attributes are responsible for significant improvements (RFsynt outper-

forms RF with gains of up to 17% in precision considering the cold start scenario).

KNNsynt + RFsynt , in turn, provides precision gains of up to 21% over RF .

5. Proposal of four new tag recommendation methods that exploit novelty and di-

versity in addition to relevance. Our first method, called GPrnd , is a Genetic Pro-

gramming based tag recommender that extends the relevance-driven method GP

to include novelty and diversity metrics at both attribute and objective function

levels. GP was chosen due to its flexibility and ease to incorporate new aspects

to its objective function. The second method, called RFt , extends the aforemen-

tioned relevance-driven approach based on RF , which already incorporates some

novelty aspects at the “attribute level”, to include new tag attributes that capture

the extent to which a candidate tag is related to the topics (e.g., categories) of

the target object. This solution indirectly captures topic diversity while trying to

maximize relevance in its objective function. Unlike RFt , our third method, Ex-

plicit Tag Recommendation Diversifier (xTReD), directly exploits topic diversity

by re-ranking the recommendations provided by any tag recommender. Finally,

our fourth proposal, called Explicit Tag Recommendation Diversifier with Nov-

elty Promotion (xTReND), generalizes xTReD , to fully exploit relevance, novelty

and topic diversity. Although independent, our solutions build upon each other

to provide further improvements as we shall see in our experimental evaluation.

Although relevance, novelty and diversity of recommendations may seem to be
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conflicting objectives, our results show that it is possible to effectively increase

novelty and diversity with only a slight impact on relevance.

6. Advances in personalized tag recommendation. We applied our best L2R

method (RF ) to the personalized tag recommendation task, producing results

that are significantly superior to the results of a state-of-the-art personalized

tag recommender based on Pairwise Interaction Tensor Factorization (PITF )

[Rendle and Schmidt-Thie, 2010]. We also provide a quantitative assessment of

the benefits of personalized tag recommendation to provide better descriptions

of the target object. Comparing our best personalized and object-centered tag

recommenders, both based on the RF technique, we find that the former outper-

forms the latter, with average gains of 15% in relevance.

7. A comprehensive experimental evaluation which explores the tradeoffs between

relevance, diversity and novelty for tag recommendation, and demonstrates the

effectiveness of our new methods over state-of-the-art approaches. We evaluate

our strategies using real data from five Web 2.0 applications, namely, Bibsonomy,

LastFM, MovieLens, YahooVideo and YouTube.

1.4 Outline

The rest of this thesis is organized as follows. Chapter 2 discusses related work,

while Chapter 3 states our target problem. Chapter 4 presents the metrics exploited

as attributes by the tag recommenders, which in turn are introduced in Chapter 5.

Chapters 6 and 7 describe our experimental methodology and results, respectively.

Finally, Chapter 8 presents the conclusions and directions for future work.





Chapter 2

Related Work

In this chapter, we review related efforts, starting by presenting existing relevance-

driven tag recommendation methods in Section 2.1. Next, we present related work on

novelty and diversity in the general context of recommendation and search (Section

2.2). Finally, in Section 2.3, we review general studies on tag analysis.

2.1 Relevance-Driven Tag Recommendation

We start by presenting previous tag recommendation methods, which focus only

on a single aspect of the problem (relevance). To summarize and organize these meth-

ods, we here propose a taxonomy that group them according to multiple criteria. Our

taxonomy, depicted in Figure 2.1, is presented considering two levels: The first level

contains the four classification criteria we used, namely: (1) the target of the recom-

mendations, (2) their objectives, (3) the data sources the methods exploit, and (4) the

underlying techniques they employ. All tag recommendation methods can be grouped

according to each of the four proposed criteria. The second level, or the “leaves” of

the trees, corresponds to the existing classes that arise from each criterion. We note

that, as we will mention below, many tag recommendation methods can be associ-

ated with more than one of these classes. For another overview of taging systems and

recommendation techniques, we refer to [Marinho et al., 2012].

Regarding the first criterion (target of recommendations), previous tag recom-

mendation methods can be divided into two categories: the object-centered methods

take the object as main target, aiming at providing tags that properly describe its

content. They provide the same recommendations regardless of the target user. Per-

sonalized methods, in turn, take the pair user-object as target, aiming at providing

recommendations that not only describe well the target object, but also satisfy the

11
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Figure 2.1. A taxonomy for previous tag recommendation methods.

target user’s interests.

Considering the second criterion (objectives), previous tag recommendation meth-

ods have explicitly addressed only relevance as objective. Unlike these previous efforts,

in this thesis, we aim at maximizing a combination of relevance, novelty and diversity.
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Regarding the third classification criterion (data sources), previous methods have

exploited: (1) tags previously assigned to the target object, (2) tags previously assigned

to a training collection of objects, (3) textual features (other than tags), such as title,

description and user comments, (4) rich media content, that is, image, audio or video,

and (5) social features, such as friendship links in social networks and other interactions

among users.

Finally, regarding the fourth classification criterion (underlying techniques), tag

recommendation methods can be divided into six groups. Tag co-occurrence based

methods are based on association rules, exploring tags previously assigned to a training

collection of objects. They estimate the relevance of a candidate tag by the frequency

at which they co-occur with tags previously assigned to the target object. In other

words, given the initial set of tags Io of the target object o, tags that are often used

jointly with tags in Io are considered good candidates to be recommended to o.

Content based methods, in turn, extract candidate tags from the target object (for

example, tags related to visual features extracted from an image) or from its features

(for example, textual features). Their assumption is that the most relevant information

(i.e., tags) are contained in the content of the target object itself or in its associated

features.

Matrix factorization methods model tag assignments as a matrix and apply di-

mensionality reduction methods on that matrix. Their goal is to recommend tags by

predicting relationships between users, tags and objects from a smaller and possibly

less noisy representation of the tagging data.

Graph-based methods model the tagging system as a graph (for example, objects

are nodes and there is an edge between two nodes if they are similar). Their goal is to

extract new candidate tags by exploiting the neighborhood of the target object and/or

target user.

Clustering based methods, in turn, apply clustering techniques to group objects

and tags and recommend the most representative tags of the target object’s cluster.

They assume that it is possible to extract relevant tags from the tags that describe the

main topics of the target object and/or user.

Finally, learning-to-rank (L2R) based methods are supervised methods that au-

tomatically learn a recommendation function based on training examples of ranked

candidate tags. Each candidate tag is associated with a vector of tag quality at-

tributes. These attributes may be generated from results of any of the aforementioned

techniques, even other L2R-based methods. The objective of L2R techniques is to

automatically combine different pieces of evidence (i.e., attributes or features) of tag

quality, generating a model (function) that maps these attributes into a score or rank
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position, given the recommendation objective (relevance, novelty, diversity).

We note that, as we will see in the following sections, these groups are not com-

pletely disjoint, since most tag recommendation methods employ multiple techniques,

as well as exploit several data sources. We here refer to these methods as hybrid tag rec-

ommendation strategies. For example, some methods employ both tag co-occurrence

and content-based techniques, combining them by means of a L2R-based technique.

Next, we present an overview of previous tag recommendation methods, grouping

them according to their underlying technique (Sections 2.1.1-2.1.6). In Table 2.1, we

classify these methods according to the taxonomy proposed here.

2.1.1 Tag Co-occurrence Based Methods

Tag co-occurrence based methods exploit tags previously assigned to a col-

lection of objects to extract tag co-occurrence patterns. In particular, many of

them exploit these patterns to expand an initial set of tags Io associated with

an object o [Garg and Weber, 2008; Heymann et al., 2008; Krestel et al., 2009;

Menezes et al., 2010; Sigurbjörnsson and Zwol, 2008; Wu et al., 2009]. For this pur-

pose, Heymann et al. [2008] used association rules, i.e., implications of the form X → y,

where the antecedent X is a set of tags, and the consequent y is a candidate tag for

recommendation, restricting the rules by a confidence threshold. However, the authors

did not provide a ranking of the recommended tags. Sigurbjörnsson and Zwol [2008],

on the contrary, exploited simple global metrics of tag co-occurrence (e.g., confidence),

applying them over all tags in the initial set to produce a final ranking of candidate tags.

They also exploited some metrics related to tag frequency to capture the “relevance”

of each candidate.

Due to efficiency issues, most of these strategies usually compute co-occurrences

between only two tags (i.e., X contains only one tag), possibly missing important

co-occurrence relationships. To address this problem, Menezes et al. [2010] proposed

LATRE - Lazy Associative Tag Recommendation, which computes association rules

in an on-demand manner [Veloso et al., 2006], allowing an efficient generation of more

complex and potentially better rules. LATRE produced superior results in comparison

with the best method proposed by Sigurbjörnsson and Zwol [2008].

Some studies employed tag co-occurrence techniques to address the per-

sonalized tag recommendation problem [Garg and Weber, 2008; Rae et al., 2010].

Garg and Weber [2008] proposed an interactive method. While a user enters/selects

new tags for an object, the system suggests related tags to her, based on tags she or

other people have already used in the past along with (some of) the tags already en-
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Table 2.1. Classification of tag recommendation methods.
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Heymann et al. [2008] X X X

Sigurbjörnsson and Zwol [2008] X X X

LATRE Menezes et al. [2010] X X X

Wu et al. [2009] X X X X X X

Pedro et al. [2011] X X X

Lin et al. [2012] X X X X X

Zhu et al. [2014a] X X X X

Lipczak and Milios [2011] X X X X

Wang et al. [2009] X X X X

Lu et al. [2009] X X X

Zhang et al. [2009] X X X X

Cao et al. [2009] X X

Ribeiro et al. [2015] X X X

Martins et al. [2013, 2016] X X X X X

Song et al. [2011, 2008] X X X X X

Krestel et al. [2009] X X X

Belém et al. [2011] X X X X X X

This thesis X X X X X X X
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Chen and Shin [2013] X X X X X

Yin et al. [2013] X X X

Rae et al. [2010] X X X X

Liu et al. [2010] X X X

Garg and Weber [2008] X X X

Hu et al. [2010] X X X

FolkRank (Jäschke et al. [2007]) X X

Guan et al. [2009] X X

Feng and Wang [2012] X X X

Lops et al. [2013] X X X X

PITF (Rendle et al. [2010]) X X

He and Chua [2017] X X X

Yuan et al. [2017] X X X

Nguyen et al. [2017] X X X X

Krestel and Fankhauser [2012] X X X

This thesis X X X X X X X

tered. The suggested tags are dynamically updated with every additional entered tag.

Rae et al. [2010] extended the strategy proposed in [Sigurbjörnsson and Zwol, 2008]

to address personalized tag recommendation, exploiting tag co-occurrences in different

contexts: (1) the whole data collection, (2) the objects of a specific user, (3) the social
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contacts of the user, and (4) the groups in which the target user is included.

The advantage of tag co-occurrence methods are three-fold: (1) tag co-occurrences

are simple to compute, (2) these methods exploit one of the strongest evidence of tag

relevance, and (3) their main data source, the history of tag assignments, is commonly

available. However, this group of methods may be seriously affected by the cold start

problem, that is, the absence of previous information about the target object (previ-

ously assigned tags, in the case studied by Martins et al. [2016]). The vast majority of

these methods rely on an initial set of tags associated with the target object which may

not be available, for instance, for a newly inserted object. Another problem related to

cold start is when the tagging service is new and the history of tag assignments is still

very sparse. One common solution to tackle cold start in tag recommendation as well

as in the general (item) recommendation context, is to exploit features of the content

of the recommendation target (object or user). We describe content-based methods

next.

2.1.2 Content Based Methods

This group of methods extracts tags from the content of the target object and its

associated features, or from features of the target user’s profile. A commonly exploited

group of object features is the set of the object’s textual features such as title, descrip-

tion and user comments. For example, Wang et al. [2009] used extracted candidate

terms from the object’s textual features, and the traditional TFIDF metric to rank

these terms by their relevance to the target object.

Lipczak et al. [2009] and Lipczak and Milios [2011] proposed a hybrid method

that extracts terms from the title and description of the target object (a content-based

technique) and then expands the set of candidate tags by exploiting tag co-occurrences.

They also measured the relevance of the extracted terms by their usage as tags in a

training set.

In addition to tag candidates extracted from the textual features, we

[Belém et al., 2011] exploited tags that co-occur with tags previously available in the

target object and combined various metrics that estimate tag relevance using heuristics

and learning-to-rank techniques. Among the metrics we exploited, we found that the

term spread (TS), which is defined as the number of different textual features that

contain the candidate tag, performs better than the traditional term frequency (TF),

which counts all repetitions of the same term (candidate tag) in the same textual fea-

ture. We also found that further gains can be obtained when considering different

weights for different textual features, since some of them, such as the title, usually
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present higher descriptive capabilities.

Another content-based tag recommendation method was exploited to produce tag

clouds that describe academic experts [Ribeiro et al., 2015]. The authors generated tag

candidates from various textual features associated with the publications of the target

expert, such as title, abstract and keywords. The candidate tags are ranked accord-

ing to relevance metrics such as term frequency and coverage, which are combined by

L2R techniques. The authors found that traditional content-based tag recommenders

perform well at identifying expertise-oriented tags, with article keywords being a partic-

ularly effective source of evidence across profiles in different knowledge areas and with

various levels of sparsity. Moreover, the L2R approach provided further improvements

for expertise profiling.

A feature of the target user commonly exploited by content-based tag recommen-

dation methods is the user’s history of tag assignments, which is a good evidence of

her interests [Belém et al., 2014]. Lipczak et al. [2009], as well as our personalized tag

recommendation methods, extract tag candidates from the target user’s history.

Other methods exploit the rich media content associated with the target object

[Lin et al., 2012; Pedro et al., 2011; Siersdorfer et al., 2009; Wu et al., 2009; Zhu et al.,

2014a]. For example, Wu et al. [2009] computed co-occurrences between tags and vi-

sual features extracted from images and exploited a L2R technique called Rankboost

[Freund et al., 2003b] to generate the final ranking function. Lin et al. [2012] per-

formed a random walk process over the graph of images with similar visual content. In

this graph, the nodes are objects (images in this case) and there is an edge connect-

ing two objects if they present similar visual features. Similarly, Pedro et al. [2011];

Siersdorfer et al. [2009] created a graph of videos based on content similarity and pro-

duced recommendations by propagating tags through its edges1. However, the seman-

tic gap is still a challenge to generate accurate tags exploiting rich media, because the

visual similarity between images or videos may not reflect the strength of their rela-

tionship [Zhu et al., 2014a]. To mitigate this limitation, Zhu et al. [2014a] proposed a

random walk model with adaptive teleportation probabilities.

In addition to textual features associated with the content of the target object,

Chen and Shin [2013] exploited social features to recommend tags. They considered

tags that frequently appear in objects that are marked as favorite by the target user

as candidates for recommendation.

Content-based techniques are commonly exploited to mitigate the cold start prob-

1Note that when exploiting rich media content, since the tag candidates are not extracted directly
from the content, other techniques such as graph-based are jointly exploited. These techniques are
described in the following sections.
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lem (absence of initial tags). For example, Martins et al. [2013, 2016] evaluated the

impact of the cold start on a family of state-of-the-art tag recommendation methods.

They showed that the effectiveness of these methods suffers when they cannot rely on

previously assigned tags in the target object. Moreover, exploiting other sources of

tag candidates by means of automatic filtering strategies yields limited gains. Thus,

the authors proposed a new strategy that exploits both positive and negative relevance

feedback from the users to iteratively select input tags to these tag recommendation

methods. The proposed strategy generated significant gains (up to 45% in precision)

over the best considered baseline. It was also found robust to the lack of user cooper-

ation. However, the drawback of exploiting user feedback (both positive and negative)

is that they represent an additional user effort in the recommendation process, and

may be impacted by the lack of user cooperation.

The main issue with content-based techniques is the possible lack of novelty:

recommending terms that are already assigned to the content (even if they still do not

appear as tags) may be less useful than generating more complementary and diversified

tags from other sources. Similarly, tags in which the user has previously showed interest

are probably accurate and represent well the user’s (past) interests, but they may not

capture new interests. Besides that, these methods have to deal with a large amount

of noise in textual and content features [Figueiredo et al., 2012].

2.1.3 Matrix Factorization Based Methods

The most representative method of this group is PITF (Pairwise Interactions Ten-

sor Factorization), a winning method in the 2009 PKDD Discovery Challenge competi-

tion [Rendle and Schmidt-Thie, 2010]. In this method, the tensor (i.e., a tridimensional

matrix) that models the pairwise interactions among users, items and tags (i.e., the

ranking preferences of the tags for each pair user-object) is factorized in lower dimen-

sional matrices to reduce noise. The PITF model is learned from an adaption of the

Bayesian personalized ranking (BPR) criterion.

The advantage of this method is the dimensionality reduction, which may reduce

noise and the complexity of posterior computations. However, the cost of matrix factor-

ization operations exacerbates scalability problems. Moreover, data sparsity is a major

issue for these techniques. Although matrix factorization has been originally applied

to denser data (i.e., data in which unpopular tags, users and objects were filtered out)

[Rendle and Schmidt-Thie, 2010], it was greatly outperformed by the hybrid methods

proposed in this thesis, which do not assume such kind of filtering.

More recently, He and Chua [2017] propose Neural Factorization Machine (NFM),
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a method that combines the linearity of factorization machines (FM) in mod-

elling second-order attribute interactions and the non-linearity of neural networks in

modelling higher-order attribute interactions. Similarly, Yuan et al. [2017] propose

BoostFM, which integrates boosting into factorization models for general item recom-

mendation. Nguyen et al. [2017] exploit not only the tagging history, but also visual

features of images, such as the objects appearing in the image, colors, shapes or other

visual aspects, into FM models. We do not compare our methods with these ap-

proaches because their drawbacks are similar to the PITF-based technique, which we

indeed evaluate and compare to our methods.

2.1.4 Graph Based Methods

Graph based tag recommendation methods extract candidates from the neighbor-

hood of the target object and/or user. The nodes of the graph correspond to objects or

users, and there is an edge between two objects (or two users) if they are similar. The

main sources to compute similarity are the textual features of the objects, including

the tags and the folksonomy, that is, the tagging history of the users. Alternatively,

visual features extracted from image and video objects can be used to estimate content

similarity.

Collaborative filtering-based techniques fall in this category, since they exploit the

history of users that are similar to the target user (for example, they share tags in com-

mon). For instance, Jäschke et al. [2007] built a similarity graph in which the vertices

are users and each edge connects two users that share tags in common, being weighted

by some similarity measure such as Jaccard coefficient [Baeza-Yates and Ribeiro-Neto,

1999]. This method recommends to a user u the tags assigned by the k most similar

users to u. Another method proposed by the same authors, named FolkRank, is based

on the well known PageRank algorithm [Brin and Page, 1998]. The rationale of this

method is that an object that receives relevant tags from important users also becomes

important, that is, a good source for recommendation. Symmetrically, a tag is relevant

if it was associated with important objects by important users. Thus, a mutual rein-

forcement graph is built, allowing the scoring and recommendation of tags. Hu et al.

[2010] proposed a probabilistic method that exploits the vocabulary of the target user

and object, as well as the vocabulary of similar users. The authors proposed to use the

Kullback-Leibler divergence to estimate the similarity between two users.

Lu et al. [2009] as well as Zhang et al. [2009] proposed to propagate tags be-

tween objects with similar textual content, while Feng and Wang [2012] modeled the

folksonomy as a heterogeneous graph containing tags, users and objects as nodes.
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They employed an optimization strategy, OptRank, to learn the weights of the edges

that connect these nodes. Lops et al. [2013] exploited both collaborative filtering and

content-based tag recommendation techniques. The former exploits the user and com-

munity tagging behavior to produce recommendations, while the latter exploits some

heuristics to extract tags directly from the object’s textual content. Liu et al. [2010]

enhanced their graph-based tag recommender by exploiting explicit social links be-

tween users. Guan et al. [2009] modeled personalized tag recommendation as a “query

and ranking” problem and proposed a graph-based ranking algorithm for interrelated

multi-type entities, namely, tags, users and documents. When a user issues a tagging

request, both the document and the user are treated as a part of the query. Tags are

then ranked by the graph-based ranking algorithm which takes into consideration both

document relevance and user preference.

More recently, Yin et al. [2013] addressed not only the problem of recommending

tags, but also of predicting different kinds of relationships (such as relations among

users, comments and items, and social links between users). By exploiting a gener-

alized latent factor model and Bayesian inference, the authors found that connecting

comments and tags within the same model allows mutual reinforcement and improves

prediction accuracy.

This group of methods is relatively less affected by the cold start problem than

the tag co-occurrence based methods. However, they usually deal with more noise

(originating from other textual or content features) when compared to content-based

techniques.

2.1.5 Clustering Based Methods

Another group of methods recommend tags based on clusters or topics of objects.

For example, Song et al. [2011, 2008] proposed two clustering based methods. The first

method represents the tagged data in two bipartite graphs: a document-tag graph and

a document-word graph. In a document-tag graph, tags and objects (documents) are

nodes and there is an edge between a document d and a tag t if t was assigned to d by at

least one user (Figure 2 in Section 2 illustrates some of these edges). This method finds

document topics by leveraging graph partitioning algorithms. The second method aims

at finding the most representative documents within the data collections and advocates

a sparse multiclass Gaussian process classifier for efficient document classification. For

both methods, recommendations are performed by first classifying a new document

into one or more clusters, and then selecting the most relevant tags from those clusters

as recommended tags.
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Krestel et al. [2009] used Latent Dirichlet Allocation (LDA) [Blei, 2012] to assign

multiple topics to objects and tags, and recommend tags to an object based on its

topics. LDA is a probabilistic model based on the assumption that a document can be

represented as a mixture of different topics [Blei, 2012], whereas a topic is defined as a

distribution of words from a fixed vocabulary. Krestel and Fankhauser [2012] presented

a personalized version of this method.

Clustering may be an interesting strategy to reduce the dimensionality of the

problem (exploiting relationships among clusters instead of among entities of the tag-

ging application), and to generate complementary candidate tags that would not be

extracted directly from the content of the target object or from similar objects. How-

ever, these candidates may be too general (low novelty/specificity), thus being of little

use to describe the specific content of the target object or discriminate it from others.

2.1.6 Learning-to-Rank Based Methods

Since recommendation is usually modeled as a ranking problem (i.e., we want to

recommend the best items first), learning-to-rank techniques constitute a natural ap-

proach to tackle it. L2R-based methods are supervised approaches that automatically

learn a ranking function based on training examples. Such training examples consist

of candidate tags represented as vectors of tag quality attributes to which relevance

labels (indicating the tag’s relevance level) are assigned (either manually or by exploit-

ing previous tag assignments as ground truth). The objective of this kind of approach

is to generate a model (function) that maps the tag quality attributes into a relevance

score or rank.

Regarding the application of L2R techniques to the tag recommendation problem,

we are aware of a few prior efforts (last column of Table 2.1). Cao et al. [2009] and

Wu et al. [2009] exploited RankSVM [Joachims, 2006] and RankBoost [Freund et al.,

2003b] as L2R techniques, respectively. In [Belém et al., 2011], we applied both

RankSVM and Genetic Programming [Poli et al., 2008] to the tag recommendation

problem. Here, we expand our focus comparing eight L2R approaches, extending the

main approaches to tackle the personalized tag recommendation problem, and ad-

dressing other aspects of the problem, namely, novelty and diversity. Ribeiro et al.

[2015] compared the effectiveness of various L2R algorithms, such as Random For-

est (RF), Multiple Additive Regression Trees (MART), λ-MART, AdaRank, ListNet,

Ranknet, Coordinate Ascent, Rankboost, RankSVM and Genetic Programming (GP).

They found RF, MART and λ-MART to be the best performing strategies for the tag

recommendation problem.
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Liu [2009] reviewed existing L2R algorithms in the context of document rank-

ing, categorizing them into three approaches: pointwise, pairwise and listwise. The

pointwise approach assumes that each query-document pair in the training data has

a numerical score, and thus the L2R problem can be approximated by a regression

problem. Pairwise approaches are approximated by binary classification — given a

pair of documents, it is necessary to predict which one is the best, while the listwise

approach considers the effectiveness of the whole ranking list, typically optimizing a

given evaluation measure. The authors analyzed the advantages and disadvantages of

each approach, and discussed the relationships between the objective functions used

in these approaches and IR evaluation measures. Moreover, experiments using the

datasets of the LETOR benchmark indicated that the listwise approach is the most

effective among the three approaches.

The advantages of exploiting L2R methods are threefold: (1) they can effectively

exploit many attributes in the generation of ranking functions, (2) they can be easily

extended to include more attributes and objective functions, and (3) there is a strong

theoretical background on learning methods, which has been recently extended for

ranking problems [Qin et al., 2010]. A small disadvantage of these methods is the

training time necessary to learn the tag recommendation models. However, this step

can be performed offline. Moreover, the attribute extraction and the application of

the learned models in the online recommendation step usually represents a very small

additional cost compared to the recommendation time of unsupervised techniques, as

we verified in our experiments.

2.2 Novelty and Diversity

Besides relevance, other aspects such as novelty and diversity may also be im-

portant to evaluate the quality and utility of a tag. In fact, result diversification

is a problem that has been addressed in other contexts, particularly Web search

[Clarke et al., 2012]. In this context, two main families of diversification approaches

have emerged to tackle query ambiguity [Santos et al., 2015]. Implicit approaches seek

to promote diversity by scoring a given search result proportionally to its difference

to the results ranked ahead of it, e.g., in terms of these results’ textual dissimilarity

[Carbonell and Goldstein, 1998] or the divergence of their language models [Zhai et al.,

2003]. In contrast, explicit approaches seek to diversify the search results on the basis

of their coverage of some property of the user’s query, such as multiple query categories

[Agrawal et al., 2009] or multiple query reformulations [Santos et al., 2010]. Consider-



2.2. Novelty and Diversity 23

ing that categories may be absent or noisy (e.g., vague or with non-uniform granularity)

in some applications, Yu et al. [2014] proposed the use of latent topics generated by

Latent Dirichlet Allocation (LDA) as an alternative to categories and query intents in

the problem of query result diversification in e-commerce sites.

In a different direction, Liang et al. [2014] exploit traditional methods of data

fusion (i.e., rank aggregation) to improve the diversity of search results. They propose

DDF (Diversity Data Fusion), a method which combines data fusion with latent topic

diversification. Zhu et al. [2014b], on the other hand, address search result diversi-

fication as a learning-to-rank problem, where the scoring function is a combination

of relevance and diversity. Finally, Rabinovich et al. [2014] combine rank aggregation

with relevance feedback from users. The feedback is exploited with two purposes: (1)

ranking documents in intermediate lists, and (2) estimating the effectiveness of each

intermediate list in order to improve list recombination.

In association rule mining, similar novelty and diversity concepts have

been proposed as measures to evaluate the rule interestingness. According to

Geng and Hamilton [2006], a pattern (e.g., association rule) is diverse if its elements

differ significantly from each other, while a set of patterns is diverse if the patterns in

the set differ significantly from each other. For the same authors, a pattern is novel

to a person if he or she did not know it before and is not able to infer it from other

known patterns. Thus, novelty in association rules is a subjective measure, depending

on the evaluating user.

In the general context of (item) recommendation, previous work mostly focused

on implicit approaches to promote novelty and diversity. Celma and Herrera [2008] as

well as Vargas and Castells [2011] evaluate novelty and diversity in terms of popularity

and dissimilarity of items, based on the idea that novel and diverse items must be

different from all items that have been already seen or consumed. Novelty, particularly,

was estimated under two perspectives: by the inverse of the popularity of the items

(popularity-based perspective) and by the average distance (dissimilarity) of an item

to other items in a given context (the application as a whole or a specific user, for

example), referred to as distance-based novelty. Diversity, in turn, was estimated as

the average pairwise distance between recommended items. Note that distance-based

novelty and diversity, as previously defined, are closely related but different concepts:

the former is taken from the perspective of all other items in a given context, whereas

the latter is evaluated within the list of recommended items.

Zhang et al. [2012b] introduce Auralist, a music recommendation framework that

promotes diversity, novelty and serendipity (a concept similar to the distance-based

novelty from Vargas and Castells [2011]). They show that, although the inclusion of
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novelty, diversity and serendipity may slightly impact relevance, it does improve user

satisfaction. Lathia et al. [2010], in turn, define novelty and diversity under a temporal

perspective, that is, novel/diverse items should be different from what was seen or

recommended in the past. Instead of aggregating relevance, novelty and diversity as

a single objective, Ribeiro et al. [2012] exploit a multi-objective Pareto optimization

algorithm to jointly address these three recommendation quality criteria. The solution

in this case is a set of “non dominated” recommendation functions instead of a single

function. However, chosing the best solution among the returned set of functions is

another non-trivial issue and thus we leave the Pareto approach as future work.

Küçüktunç et al. [2013] and Shi [2013] address the problem of diversified and

novel recommendations on graphs. Küçüktunç et al. [2013] model the problem as re-

turning a set of items that extend the history of interests of a user in some items. The

only data they assume as available is the graph itself (a social network or a product

co-purchasing graph, for example), not relying on pre-defined topics. Their proposed

diversity metric, referred as expanded relevance, penalizes recommended items that

are close to each other in the graph, and thus present expanded sets (sets of neighbors

in the graph) with high intersection and low coverage of the relevant results. Finally,

they present a greedy diversification algorithm called BestCoverage, which optimizes

the expanded relevance of the result set. In a different direction, Shi [2013] proposes a

method based on a first order Markovian graph with transition probabilities between

user-item pairs. The author defines a “cost flow” concept, such that items with lower

costs are recommended to a user.

Szpektor et al. [2013] address the problem of diversifying question recommenda-

tions in Question&Answer applications. According to the authors, showing the users

only the main topics in which they had previously expressed interest is not the best

strategy to encourage user participation in answering questions. Based on a large-scale

online experiment in production in Yahoo! Answers, they find that diversity and nov-

elty promotion allows significant improvements in the number of answers, the daily

session length, as well as other activities such as voting.

Despite these previous studies tackling diversity and novelty in item recommenda-

tion in general, to our knowledge, there is no previous attempt to explore such aspects

in the specific context of tag recommendation.
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2.3 Tagging Analysis

A related body of previous work focuses on characterizing tagging systems,

thus producing useful knowledge for the design of tag recommendation systems

[Almeida et al., 2010; Figueiredo et al., 2012; Li et al., 2008; Lipczak and Milios, 2010;

Rader and Wash, 2008]. For example, Lipczak and Milios [2010] found that the title

and the personal tagging history of a user are the main factors that impact tagging

decisions, whereas Rader and Wash [2008] showed that personal organization has a

stronger impact on tagging decisions than social influences. In another direction,

Almeida et al. [2010] and Figueiredo et al. [2012] proposed several metrics to assess

the quality of different textual features commonly associated with objects in Web 2.0

applications. They find that the title is the textual feature with the best capacity of

describing the object’s content, followed by tags. These previous studies motivated us

to exploit multiple textual features and the user’s tagging history as data sources to

extract candidate tags and to compute relevance metrics as we describe in Chapter 4.

Other studies address the quality and semantics of tags. For example, Li et al.

[2008] found that user-generated tags are consistent with the web textual content with

which they are associated, and that they capture the user’s interests. In a more recent

study, Choi [2015] assessed the quality of tags as subject indexers. The author found

that the sets of tags provided by different users are more consistent (similar) among

each other than the different indexes generated by professionals. He also found that

subject categories showing higher indexing consistency present a more complete set of

tags. Finally, they verified a high correlation between the discriminative power of a

term and its semantic relatedness to documents. In another recent work regarding tag

semantics, Zhang et al. [2012a] studied geo-spatial and temporal relationships between

tags, but only apply them to cluster and visualize tags, and not to recommend tags.

2.4 Summary

In this chapter, we presented the main references related to this thesis. We

started discussing previous tag recommendation efforts, classifying them according to

their data sources, target of recommendations and employed techniques. In common,

they focus only on relevance and personalization issues, while we also address novelty

and diversity aspects in this thesis. We also presented related work on novelty and

diversity in other domains, namely, search and general (item) recommendation. We

concluded this chapter with previous studies on tagging analysis, which we applied in

the proposal of our metrics and methods. In the next chapter, we contextualize and



26 Chapter 2. Related Work

state the problem we address in this thesis.



Chapter 3

Contextualization and Problem

Statement

In this chapter, we contextualize the tag recommendation problem. We start

by defining the target object of the recommendation and its features (Section 3.1). In

Section 3.2, we describe the basic elements of a tag recommendation system. We explain

the concepts of relevance (from both object-centered and personalized perspectives),

novelty and diversity for tag recommendation in Section 3.3. Finally, we formally define

the problem we address in this thesis in Section 3.4.

3.1 Tags and Objects on the Web 2.0

Each page in a Web 2.0 application is composed by a main object1 (e.g., a textual

document, an audio, a video, an image) and various sources of information related to

the object, here referred to as its features. These features can be classified as content

features, textual features, user profile features and social features [Figueiredo et al.,

2012].

Content features can be extracted from the main object, such as the color his-

togram of an image. Textual features, in turn, comprise the self-contained textual

blocks that are associated with an object, usually with a well defined functionality

[Figueiredo et al., 2012]2. Examples of textual features commonly found in different

applications are title, description, categories, tags and user comments. In particular,

1Some references (e.g., [Lipczak and Milios, 2011; Rendle and Schmidt-Thie, 2010]) use the term
resource instead of object.

2Note that these two sets of features may not be disjoint (e.g., when the main object is a textual
document).

27
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tags are keywords freely assigned by users to succinctly describe the content of the

object. As tags are freely created by users, they are not necessarily unigrams (unless

the application automatically split them by whitespaces). Thus, compound words can

be used as tags, either separated by spaces, hifenized or joined.

Figure 3.1 shows a MovieLens page containing textual features assigned to an

object (here represented as a picture of the movie).

Figure 3.1. Web 2.0 page and some of its textual features.

User profile features may refer to characteristics of the user who created and

uploaded the content or who assigned tags to it, or her interactions with the application.

Finally, social features refer to interactions among users (e.g., explicit friendship links,

subscriptions, upvotes, etc). In particular, while friendship links are explicit indicators

of the social connections among users, subscriptions (connections established among

users that show interests in one another’s content), and endorsements (e.g., “upvotes”)

are more implicit indicators of the social relationship among these users. Examples of

these features may be visualized in Figure 3.2.

The Web 2.0 tags, objects and users form the basic structure of the folksonomies.

A fusion of the words folks (“people”) and taxonomy (taxis means “classification”, while

nomos or nomia means “management”), folksonomy refers to the categorization of

objects using freely chosen keywords by users. Unlike a taxonomy, which provides a

hierarchical categorization with well-defined classes, a folksonomy establishes categories

(each tag may be considered a category) without stipulating or necessarily deriving a

hierarchical structure of tags [Quintarelli, 2005; Spiteri, 2007].
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Figure 3.2. Examples of features commonly found in Web 2.0 applications.
Friendship and subscription links established through the application are exam-
ples of social features. The set of tags a user assigned to objects in the applications
may be considered one of the user profile features. Features extracted from the
content of the main object (e.g., color histogram) are content features.

Formally, a folksonomy is defined as a relational structure F = (U, T,O,P),

where U , T e O are finite sets composed by users, tags and objects, respectively, and

P, the set of postings, is a ternary relation between these elements, that is, P ⊆

U × T × O, as defined by Jäschke et al. [2007]. Thus, each element (u, t, o) ∈ P

represents the assignment of a tag t to an object o by a user u (illustraded as the edges

connecting users, tags and objects in Figure 3.2). Wal [2005] identified two types of

folksonomies: broad and narrow. A broad folksonomy arises when multiple users can

apply the same tag to an object, providing information about which tags are the most

popular ones. Examples of broad folksonomies include the online radio station LastFM3

and the publication sharing application Bibsonomy4. A narrow folksonomy occurs

when only one user (typically the target object’s creator) can tag a given object. The

photo sharing site Flickr5 is an example of narrow folksonomy. While both broad and

narrow folksonomies allow the content organization and findability, a broad folksonomy

enables to rank the assigned tags by their popularity, as well as tracking of emerging

trends in tag usage and developing vocabularies. Commonly, tag popularity in broad

folksonomies is visualized in tag clouds [Venetis et al., 2011], which also provide an

easy way to navigate the tags, objects, and users of a folksonomy.

3http://www.last.fm
4http://www.bibsonomy.org
5http://www.flickr.com/
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3.2 Tag Recommendation Systems

There are various kinds of recommendation systems, each focused on a different

kind of item, such as products in a e-commerce site, books in a digital library, and

users in a social network. In this thesis, we are interested in recommending tags. A tag

recommendation system usually assists users, providing a list of keywords that ideally

describe the content of the object. Thus, the target of tag recommendations is a pair

user-object, although it may be personalized or not, that is, it may consider only the

target object or it may jointly consider both the object and the user.

As data sources for our tag recommendation strategies, among the various features

described in Section 3.1, we focus on three dimensions: (1) tags previously assigned

to the target object (when available), (2) other textual features, namely, title, descrip-

tion and categories and (3) the target user’s tag assignment history, for personalized

methods. The first dimension is based on the hypothesis that tags which frequently

co-occur with the tags of an object o are good candidates to be recommended to o. The

second data source, multiple textual features associated with an object, in turn, may

contain various relevant terms to describe it. Finally, the third dimension is motivated

by the hypothesis that tags previously assigned by a user are a strong evidence of their

interests. Social and rich media content features are left to be exploited in future work,

because they did not provide promising results in preliminary experiments.

3.3 Relevance, Novelty and Diversity Concepts

Tag relevance can be defined in two perspectives. In an object-centered perspec-

tive, a tag is relevant if it correctly describes the content of the target object. In a

personalized perspective, a relevant tag not only describes well the content of the tar-

get object, but also matches the interests of the target user [Rendle and Schmidt-Thie,

2010]. Note that, by this definition, the relevance of a tag in a recommendation list

does not depend on the other tags provided in the list. Given that a recommendation

satisfies the user’s need, the usefulness of similar recommendations is arguable accord-

ing to Vargas and Castells [2011]. Thus, the novelty and diversity concepts should be

considered in addition to relevance.

Novelty and diversity definitions may vary according to the contexts they are

employed, namely, Web search and item recommendation. Following, we will present

the existing definitions of these concepts in each context, adapting them to our specific

tag recommendation context.

In information retrieval, similarly to recommendation, promoting relevance alone
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may not result in an optimal effectiveness, particularly in search scenarios that are

permeated with ambiguous queries and redundant information items [Santos et al.,

2015]. A relevance-oriented ranking assumes that the relevance of a document can be

estimated with certainty and independently of the estimated relevance of the other

retrieved documents. While the first assumption is challenged by ambiguity (multiple

interpretations or intents) in the user’s query, the second assumption is challenged by

redundancy (unnecessary documents covering the same information need) in the search

results. Thus, for IR, novelty and diversity have been defined as a means to tackle

redundancy and ambiguity, respectively. That is, novelty in search results ensures that

each document brings “new information” with relation to previously ranked documents,

while diversity ensures a high coverage of the multiple interpretations of the query. This

increases the chance that at least one document will satisfy the information need of

the user.

As discussed in Chapter 2, in the general recommendation context, the nov-

elty of a recommended item refers to how different this item is with respect to what

has been previously seen or consumed by a specific user, or by a community as a

whole [Vargas and Castells, 2011]. In this context, novelty is commonly associated with

item rarity or serendipity [Castells et al., 2011; Celma and Herrera, 2008; Zhang et al.,

2012b]. While this concept is suitable for recommendation, because its purpose in gen-

eral is to expose the user to “novel” experiences, this kind of novelty does not apply for

Web search.

In this thesis, we also define the novelty of a tag from the perspective of its

popularity in the application. That is, we estimate the novelty of a tag by the inverse

of the frequency at which the tag is used in the collection. A term used as tag a large

number of times tends to be a more “obvious” recommendation (if relevant at all), thus

being of little use (if any) to improve the description of the target object provided by

its tag set. We note that, according to this definition, noisy terms such as typos may

be considered highly novel. However, our methods jointly exploit novelty, relevance

and diversity, thus minimizing the chance of recommending noise.

We also note that this definition of novelty is closely related to tag speci-

ficity, since rare words tend to be more specific (less general). According to

Baeza-Yates and Ribeiro-Neto [1999] as well as Choi [2015], specificity is a property of

the term semantics, i.e., a term or tag is more or less specific depending on its meaning.

For example, “feline” is less specific than “cat” or “persian”. One would expect that the

most general term “feline” would be used to describe a larger number of objects than

the more specific terms. This interpretation of specificity is based on the accuracy of

the term as a descriptor of an object’s topic. As an alternative, specificity can be inter-
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preted as a statistical property of the term use, being estimated as an inverse function of

the number of objects in which a term occurs, which is exactly our tag novelty concept.

However, we chose the term “novelty” instead of “specificity” to keep consistency with

the general recommendation literature [Celma and Herrera, 2008; Vargas and Castells,

2011; Zhang et al., 2012b], which estimates novelty similarly. A related property of ob-

ject descriptions is the exhaustivity, which is defined as the coverage they provide for

the main topics of the object [Baeza-Yates and Ribeiro-Neto, 1999; Choi, 2015]. This

fits exactly in our tag diversity concept, as we will discuss below.

The diversity of a list of recommended items refers to the capacity of the list of

recommended items to cover the multiple topics the target user is interested in. Two

types of diversification approaches have been exploited in the general context of infor-

mation retrieval: an implicit and an explicit approach. The former exploits properties

of the recommended item [Vargas and Castells, 2011] (or the retrieved document in

search), while the latter exploits properties of the target of the recommendation or

from the query (e.g., the multiple topics a user is interested in, the multiple interpre-

tations of an ambiguous query).

Based on these ideas, we also propose two diversification approaches for tag rec-

ommendation. In our first tag diversification effort, we tackle diversity implicitly as

the average pairwise semantic distance between the top recommended tags, such that

a list of synonyms or semantically related words present low diversity. This definition

is exploited by one of our new methods, GPrnd, presented in Section 5.5.1.

We also consider an explicit diversification approach, which is employed in the

design of three of our proposals: the re-ranking strategies xTReD and xTReND and the

Random Forest based method with topic-related attributes, RF t, which are presented

in Section 5.5.2. The idea is that a diversified list of tags must cover as many topics

related to the target object as possible, and as early in the ranking as possible.

Table 3.1. Novelty and Diversity Definitions

Context Novelty Diversity

IR A means to tackle redundancy A means to tackle ambiguity

Recommendation Unexpectedness / Capacity of
bringing items that are differ-
ent from other items in a given
context

Capacity of covering the dif-
ferent topics the target user is
interested in

Tag Specificity Exhaustivity
Recommendation

Table 3.1 summarizes the above discussion by presenting the alternative defini-

tions of novelty and diversity in different contexts, including our own. Next, we formally
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define our target recommendation problem. In this definition and throughout the rest

of this thesis, we use the term novelty to refer to the aforementioned popularity-based

perspective of novelty. For diversity, we use the terms explicit diversity and implicit

diversity to refer to the topic-related and dissimilarity-based concepts, respectively, or

simply diversity when both concepts are suitable.

3.4 Problem Statement

Let U , O and T be the sets of users, objects and tags of a Web 2.0 application,

respectively. The proposed tag recommendation strategies are based on the following

sources of information:

(1) the set of tag assignments or folksonomy P ⊆ U × O × T , represented by a set of

triples defined as:

P = {〈u, o, t〉| user u assigned tag t to object o},

and

(2) for each object o ∈ O, a set of textual features (other than tags)

Fo = {F 1
o , F

2
o , ..., F

n
o }, where each element F i

o is the set of terms in textual fea-

ture i associated with object o.

(3) for each object o ∈ O, the set of associated categories (or latent topics) Zo.

Let Io be the set of tags previously assigned to the target object o, and Io,u the

set of tags assigned to the target object o by the target user u, that is,

Io = {t|∃u ∈ U such that 〈u, o, t〉 ∈ P}

Io,u = {t|〈u, o, t〉 ∈ P}

Thus, we define two tag recommendation tasks:

Object-Centered Tag Recommendation Given a set of input tags Io, a set of

textual features Fo, associated with the target object o, and the folksonomy P,

generate a list of candidates Co (Co ∩ Io = ∅), sorted according to their joint
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relevance (to object o), novelty and diversity objectives, and recommend the k

candidates in the top positions of Co.
6

Personalized Tag Recommendation Given a set of input tags Io, a set of textual

features Fo, associated with the target object o, and the folksonomy P, generate

a list of candidates Co,u (Co,u ∩ Io = ∅) sorted according to their joint relevance

(to both user u and object o), novelty and diversity aspects, recommending the

k candidates in the top positions of Co,u.

More specifically, the relevance aspect is defined as a function of the number

of top-recommended tags that are indeed related to the target object o (and target

user u for personalized recommendation). Novelty, in turn, is defined as the average

specificity (which is an inverse function of popularity) of the top-recommended tags.

Finally, in order to measure diversity, we have, for each tag c ∈ Co (or Co,u)), and each

category or latent topic z of the application, the estimated topic proportion Pr(z|c).

The diversity is defined as a function of the number of categories/topics of the target

object o that are covered by the top-recommended tags, that is, has non-negligible

values for Pr(zo|c), for each topic/category zo ∈ Zo. The details about the definitions

of these metrics will be provided in the following chapters.

We note that, for the object-centered recommendation task, the same tags are

provided regardless of the target user. The primary goal of this kind of recommendation

is improving the quality of the tags in these objects, thus, improving the effectiveness of

services, such as searching, indexing and classification, that use them as data source.

On the other hand, the personalized tag recommendation takes the target user into

account: the goal is to suggest relevant tags for the object that match the interests,

profile and background of the target user. Personalized tag recommenders might pro-

vide different answers to different users (or users with different profiles). One important

service that can benefit from personalized tag recommendations is personal content or-

ganization. However, we argue that other services that rely on good descriptions of the

object’s content, such as content recommendation and search, might also benefit from

personalized tag recommendations.

One observation that supports our argument is that different users may use very

different tags to describe the same object, depending on their backgrounds and inter-

ests, and how they perceive the object’s content. Moreover, objects shared on Web

6 Note that we refer to the task of recommending tags for an object aiming at improving the quality
of its tags (but not necessarily matching the interests of any particular user) as object-centered tag
recommendation, even though some of the attributes exploited by the methods (see the description
of all metrics in Chapter 4), such as the tag co-occurrence metrics, are related to other tags of the
object, and, in a sense, could be considered tag related attributes.
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2.0 applications are often multifaceted, being related to various topics, and different

users may relate to such topics differently. Thus, in applications where multiple users

can assign tags to the same object, such as the popular Last.FM, a personalized tag

recommender is not only useful for the individual user (e.g., for content organization)

but also in a collective sense, as jointly the tags recommended to different users may

provide a more complete description of the object, which indirectly helps search and

recommendation services. In other words, a set of personalized tags for the same ob-

ject produced for different users, with different backgrounds and interests, contribute

to covering multiple facets or interpretations of the same object, thus helping with the

semantic gap.

Table 3.2 summarizes the notation we use to describe the two tag recommendation

tasks defined above. Having motivated the tag recommendation tasks addressed here,

we now formally define our target scenarios. For both recommendation tasks, our main

focus relies on cases in which there are some available tags in the target object (i.e.,

Io 6= ∅) and we want to recommend new (different) tags to it. We note, however, that

all of our methods are also able to recommend relevant tags to an object with no initial

set of tags by exploiting other textual features and metrics of relevance. Nonetheless,

we will exploit specific solutions for this scenario in Section 5.3.2.

Many tag recommendation strategies, and in particular the ones proposed here,

exploit co-occurrence patterns by mining relations among tags assigned to the same

object (or additionally by the same user) in an object collection. The process of learning

such patterns is defined as follows.

For object-centered tag recommendation, following the methodology proposed by

Menezes et al. [2010], we define a training set D = {〈Id, Fd〉}, where Id (Id 6= ∅) con-

tains all tags assigned to object d, and Fd contains the term sets of the other textual

features associated with d. There is also a test set O, which is a collection of tuples

{〈Io, Fo, Yo〉}, where both Io and Yo are sets of tags associated with object o. Tags in Io

are known and given as input to the recommender. On the other hand, tags in Yo may

be assumed unknown and to be taken as the relevant recommendations to the target

object o (i.e., the expected answer). Splitting the tags of each test object into these two

subsets facilitates an automatic assessment of the recommendations, as performed by

Garg and Weber [2008]; Guan et al. [2009]; Heymann et al. [2008]; Lipczak and Milios

[2011]; Menezes et al. [2010]; Rendle and Schmidt-Thie [2010] and further discussed in

Chapter 6. In case of a manual evaluation by volunteers, Io consists of all tags associ-

ated with o and Yo are the tags assigned to o by the volunteers. Similarly, there might

also be a validation set V used for tuning parameters and “learning” recommendation

functions (see Chapter 6). Thus, each object v in V also presents input tags (Iv) and
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expected answer (Yv).

For personalized tag recommendation, we exploit two different kinds of tag co-

occurrences: (1) between tags assigned to the same object by various users (as we do in

the object-centered recommendation task) and (2) between tags assigned by the same

user to the same object. Thus, there are two variants of the training set for personalized

recommendation: (1) D = {〈Id, Fd〉}, where Id contains all tags assigned to object d

(by any user), and (2) D′ = {〈Id,ud
, Fd〉}, where Id,ud

contains all tags assigned to an

object d by each user ud ∈ Ud, where Ud is the set of users who assigned at least one

tag to object d. In both cases, Fd contains the term sets of the other textual features

associated with d, as defined above. The elements of the test object collection O are

tuples 〈Io, Fo, Yo,uo
〉, where Io is a set of input tags, assigned by any user, including

the target user, and Yo,uo
(expected answer) is a set of tags assigned by each user uo

who assigned tags to object o. Similarly to the object-centered tag recommendation,

in case of a manual evaluation, Io consists of all tags assigned to the object o, while

Yo,uo
are tags assigned to o by each volunteer uo. Similarly, each element of validation

set V also contains input tags (Iv) and expected answer (Yv,uv
).

Table 3.2. Tag Recommendation: Problem Definition

Tag Recommendation

Object-Centered Personalized

Input Io: set of tags previoulsy assigned to object o

Fo: Set of textual features (other than tags) associated with object o

P: folksonomy (history of tag assignments)

Co, Co ∩ Io = ∅ Co,u, Co,u ∩ Io = ∅
Output sorted by relevance (to o), sorted by relevance (to u and o),

novelty and diversity novelty and diversity

3.5 Summary

In this chapter, we contextualized the tag recommendation problem, defining

its possible targets, data sources and objectives. We defined the different relevance,

novelty and diversity concepts. Finally, we formally stated the problem, which can

be divided into two sub-tasks: the object-centered and personalized tag recommen-

dation problems, in two scenarios, with and without cold start. In the next chapter,

we describe the various relevance, novelty and diversity attributes that our proposed

methods exploit.
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Tag Quality Attributes

In this chapter, we introduce the tag quality attributes we use to estimate

relevance, novelty, diversity and personalization aspects of a candidate tag. Some

of the relevance and novelty attributes presented in Sections 4.1 and 4.2, respec-

tively, have been previously proposed [Belém et al., 2011; Lipczak and Milios, 2011;

Vargas and Castells, 2011]. The group of syntactic relevance attributes, as well as all

three diversity metrics introduced in Section 4.3 are novel contributions of this work

in the tag recommendation domain.

4.1 Relevance Attributes

The tag relevance attributes that have been proposed in previous work are intro-

duced in Sections 4.1.1-4.1.5. They can be grouped into the following five categories,

based on the aspect they try to capture regarding the tag recommendation task:

• Tag Co-occurrence Attributes (Section 4.1.1): a key aspect in tag recommendation

systems that estimates how relevant a candidate tag c is given a set of input tags

that often co-occur with c in the dataset.

• Descriptive Power Attributes (Section 4.1.2): estimate how accurately a candi-

date describes the object’s content, which is important for information services

that exploit object’s semantics.

• Discriminative Power Attributes (Section 4.1.3): estimate the capability of a

candidate to distinguish the target object from others, which is important for

tasks such as separating the objects into semantic classes or into levels of relevance

regarding a query.

37
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• Term Predictability (Section 4.1.4): indicates the likelihood that a candidate will

be predicted as a tag.

• User Interest (Section 4.1.5): used for personalization, these attributes estimate

the interest of a target user in certain tags.

• Syntactic Attributes: (Section 4.1.6): estimate the relevance of candidate tags

based on the syntactic structure of the associated text.

4.1.1 Tag Co-occurrence

Co-occurrence based tag recommendation approaches usually exploit association

rules, that is, implications of type X → y, where the antecedent X is a set of tags

and the consequent y is a candidate tag for recommendation. The importance of

an association rule is estimated based on support (σ), which is the number of co-

occurrences of X and y in the training set, and confidence (θ), which is the conditional

probability that y is assigned as a tag to an element d ∈ D given that all tags in X are

also associated with d. As the number of rules mined from the training set D can be

very large and some of them may not be useful for recommendation, minimum support

and confidence thresholds (σmin and θmin, respectively) are used as lower bounds to

select only the most frequent and/or reliable rules. This selection can improve both

effectiveness and efficiency of the recommender.

At recommendation time, we select the rules whose antecedents are included in

the previously assigned set of tags Io. For each term c appearing as consequent of any

of the selected rules, we estimate its relevance as a tag for the object (and for the user

in the personalized case), given the initial tag set Io, as the sum of the confidences of

all rules containing c, i.e.:

Sum(c, Io, ℓ) =
∑

X⊆Io

θ(X → c), (X → c) ∈ R, |X| ≤ ℓ (4.1)

where R is a set of association rules computed offline over the training set D, given

thresholds σmin and θmin, and ℓ is the size limit for the association rules’ antecedents.

Sum was proposed by Sigurbjörnsson and Zwol [2008], which also proposed several

other attributes related to tag co-occurrences, including V ote and V ote+, which are

also considered here. V ote estimates the relevance of a candidate tag c by the number

of association rules whose antecedents are tags in Io and whose consequent is the



4.1. Relevance Attributes 39

candidate c. That is:

V ote(c, Io) =
∑

x∈Io
j, where j =

{

1, if(x→ c) ∈ R

0, otherwise
(4.2)

V ote+ is built from V ote as follows:

V ote+(c, Io, kx, kc, kr) =
∑

x∈Io
j × Stab(x, kx)× Stab(c, kc)× Rank(c, x, kr),

where j =

{

1, if x→ c ∈ R

0, otherwise

(4.3)

and kx, kc and kr are tuning parameters. Rank(c, x, kr) is equal to kr/(kr + p(c, x)),

where p(c, x) is the position of c in the ranking of candidates according to the confidence

of the corresponding association rule (whose antecedent is x). This factor is employed to

make confidence values decay smoother. Stab is used to reduce the relative importance

of terms that occur either too often or very rarely in the training set, and thus may

represent poor recommendations. This attribute, defined in Section 4.1.3, is used, as

part of V ote+, to weight the confidence values of the tags in the antecedent and in

the consequent of the association rules. A similar extension of Sum, called Sum+, is

also presented by Sigurbjörnsson and Zwol [2008], being reported as the attribute that

produces the best tag recommendations out of all attributes proposed in that study.

It is defined as:

Sum+(c, Io, kx, kc, kr) =
∑

x∈Io
θ(x→ c)× Stab(x, kx)× Stab(c, kc)× Rank(c, x, kr),

(4.4)

Regarding the co-occurrence attributes for the specific task of personalized tag

recommendation, we distinguish two types of co-occurrence patterns: (1) between all

tags assigned to an object by different users, which has been previously exploited in the

literature [Garg and Weber, 2008; Lipczak et al., 2009; Sigurbjörnsson and Zwol, 2008]

and is here adopted for object-centered recommendation as well, and (2) between all

tags assigned by the same user to an object, which we propose in this thesis. While the

first strategy benefits from a larger amount of data, the second strategy may generate

less noise. As we will show in Chapter 7, these two strategies provide quite different

results, and the best strategy depends on the complexity of the exploited association

rules, given by parameter ℓ, and can also be influenced by some characteristics of the

dataset. For all tag co-occurrence attributes, we use a subscript u to indicate that the
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second type of co-occurrence is used. When there is no such subscript, we refer to the

first strategy to generate co-occurrence patterns. For example, Sumu(c, Io, ℓ) indicates

that the set of rules R exploited to compute Sum was generated from sets of tags

assigned by the same user to an object (that is, training set D′, defined in Section 3.4).

Sum(c, Io, ℓ) refers to the original attribute, which exploits co-occurrences between all

tags assigned to an object by different users.

4.1.2 Descriptive Power

We exploit four attributes that try to capture, to some extent, the descriptive

power of a candidate c. In [Belém et al., 2011], we exploited them for object-centered

tag recommendation, while here we also apply them to the personalized tag recom-

mendation task. This is a novel aspect of this work.

We start by defining the Term Spread of a candidate c in an object o, TS(c, o), as

the number of textual features (except tags, in the present context)1 of o that contain

c [Figueiredo et al., 2012]:

TS(c, o) =
∑

F i
o∈Fo

j, where j =

{

1 if c ∈ F i
o

0 otherwise
(4.5)

The assumption behind TS(c, o) is that the larger the number of features of o

containing c, the more related c is to o’s content. For example, if the term “Sting”

appears in all features of a video, there is a high chance that the video is related to

the famous singer. The maximum TS is given by the number of textual features, other

than tags, considered. As we exploit title and description, TS ≤ 2.

The Term Frequency of c in object o, TF (c, o), is:

TF (c, o) =
∑

F i
o∈Fo

tf(c, F i
o), (4.6)

where tf(c, F i
o) is the number of occurrences of c in feature F i

o of object o. Thus, TF

considers all textual features of o as a single bag of words, counting all occurrences

of c in it. In contrast, TS considers the structure of an object, composed by textual

features, which are well-defined blocks of text, counting the number of blocks containing

c.

Although both TS and TF try to capture how accurately a term describes an

1We do not include tags to compute any of the descriptive power attributes, as it does not
make sense to use tags previously assigned to the target object as candidates for recommen-
dation.
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object’s content, neither of them considers that different features may present, in gen-

eral, different descriptive capacities. For example, the title may describe an object’s

content more accurately than other textual features [Figueiredo et al., 2012]. Thus,

we proposed in [Belém et al., 2011] two other attributes, built on TF and TS, that

weight a term based on the average descriptive powers of the textual features in which

it appears.

The average descriptive power of a textual feature F i is assessed by the Average

Feature Spread (AFS) heuristic [Figueiredo et al., 2012]. Let the Feature Instance

Spread of a feature F i
o associated with object o, FIS(F i

o), be the average TS over

all terms in F i
o. We define AFS(F i) as the average FIS(F i

o) over all instances of F i

associated with objects in the training set D. We then define weighted TS and TF as:

wTS(c, o) =
∑

F i
o∈Fo

j, where j =

{

AFS(F i) if c ∈ F i
o

0 otherwise
(4.7)

wTF (c, o) =
∑

F i
o∈Fo

tf(c, F i
o)× AFS(F i) (4.8)

4.1.3 Discriminative Power

One may argue that recommending more infrequent terms (provided that they

are not too rare) may be desirable, since they may better discriminate objects into

different categories, topics, or levels of relevance, particularly considering that several

services (e.g., classification, searching) often perform IR on multimedia content by using

the associated tags as data sources. This aspect can be heuristically captured by the

Inverse Feature Frequency (IFF ) attribute [Figueiredo et al., 2012], an adaptation of

the traditional Inverse Document Frequency (IDF ) that considers the term frequency

in a specific textual feature (in our case, tags). Given the number of elements in the

training set |D|, the IFF of a candidate c is defined as:

IFF (c) = log
|D|+ 1

f tag
c + 1

(4.9)

where f tag
c is the number of elements (objects for object-centered recommendation,

or object-user pairs for personalized recommendation) in D that are tagged with c.

Note that c may be extracted from other textual features. The value 1 is added to

both numerator and denominator to deal with new terms that do not appear as tags

in the training data. We note that this attribute may privilege terms from other

textual features that do not appear as tags in the training data. Nevertheless, this
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attribute will be combined with the other attributes into a function, using learning-to-

rank algorithms. Thus, its relative weight can be adjusted.

Along the same lines, one may consider that terms that are very common, such

as “video” in a YouTube object collection, are too general and broad, whereas very

rare terms may be too specific or may represent noise (e.g., misspellings, neologisms

and unknown words). In either case, such terms represent poor recommendations as

they have very poor discriminative power. Sigurbjörnsson and Zwol [2008] propose the

Stability (Stab) attribute, which gives more importance to terms with intermediate

frequency values:

Stab(c, ks) =
ks

ks + |ks − log(f tag
c )|

(4.10)

where ks represents the “ideal frequency” of a term and must be adjusted to the data

collection. We also use Stab to assess the relevance of a candidate tag, but, unlike

[Sigurbjörnsson and Zwol, 2008], we apply it not only to tags but also to terms ex-

tracted from all textual features Fo associated with target object o.

4.1.4 Term Predictability

Another important aspect for tag recommendation is term predictability.

Heymann et al. [2008] measure this characteristic through the term’s entropy. The

entropy of a candidate c in the tags feature, H tags(c), is defined as:

H tags(c) = −
∑

(c→i)∈R

θ(c→ i) log θ(c→ i) (4.11)

If a term occurs consistently with certain tags, it is more predictable, thus hav-

ing lower entropy. Terms that occur indiscriminately with many other tags are less

predictable, thus having higher entropy. In other words, H tags(c) measures the concen-

tration of confidence values of all association rules whose antecedent is c. If a term is

absent in the training set, it receives the maximum entropy value (highest uncertainty

about its relevance). Term entropy can be useful particularly for breaking ties, as it

is better to recommend more “consistent” or less “confusing” terms. Whereas term en-

tropy was used by Heymann et al. [2008] only to evaluate recommendations, we apply

it as an input to the recommendation functions.

Inspired by the method proposed by Lipczak et al. [2009], described in Section

5.1, we propose an attribute called Predictability (Pred), which measures the prob-

ability that a term is used as a tag in an object given that it was used in another

textual feature of the same object. Unlike the attribute proposed in [Lipczak et al.,
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2009], which computes such co-occurrences separately for each textual feature, Pred

is computed by aggregating all textual features of the object. In other words, the

Predictability of a candidate tag c, Pred(c), is defined as:

Pred(c) =
f tag,F
c

fF
c

, (4.12)

where f tag,F
c is the number of objects in the training set in which c appears both as

a tag and as a term in any other textual feature, and fF
c is the number of objects in

which c is a term associated with any of its textual features (except tags).

4.1.5 User Frequency

In order to estimate the relevance of a candidate for a target user and thus provide

personalized recommendations, we propose here an attribute called User Frequency2,

or UF , which is the frequency at which the target user assigns a candidate tag to an

object. In other words, given a candidate c and a target user u, UF (c, u) is defined as:

UF (c, u) =
Nc,u

Nu

, (4.13)

where Nc,u is the number of times that user u tagged an object with c in the training

set D, and Nu is the total number of times user u submitted a tag. Thus, the rationale

behind UF is: the more frequently a user u assigns a candidate tag c to other objects

in the application, the more relevant c is for u. This attribute is computed for all tags

used by the target user u in the training set.

4.1.6 Syntactic Attributes

In the following, we describe 11 new syntactic attributes. They are based on the

conditional probability (estimated with training data) that a word is used as tag given

that it was labeled with a given (syntactic) property π (e.g., PoS). In order to extract

these attributes, we rely on the description’s text associated to the target object.

Each sentence of the description can be represented by a syntactic dependency

tree. Each (whitespace separated) token is a node in the tree, and there is an edge

between two tokens if one of them is grammatically dependent on the other. Edges can

be labeled with the type of syntactic dependency (e.g., object of a preposition, nominal

2This attribute is similar to one proposed in [Lipczak et al., 2009]. However, the authors
in [Lipczak et al., 2009] make use of the timestamp of the tagging event. As this information
is not available in our datasets, we adapted this attribute to consider all tag assignments of
user u in the training set.
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subject). Additionally, each node can be associated with a part-of-speech (PoS) label.

The parent of a node in the tree is called head of this token in the sentence. The node

with no parents is called root of the sentence. In this thesis, we use the natural language

processing tool spaCy3 to automatically identify PoS and syntactic dependencies. We

focus on the English language, but our work can be adapted for other languages, if

a syntactic analysis tool is available for the target language. Figure 4.1 illustrates

the syntactic dependency tree of a sentence. Following the root of the sentence (verb

“makes”), note the main parts of the sentence, namely, the nominal subject (centered

at the proper name “Alliance”) and the direct object (centered at the noun “move”).

Figure 4.1. Syntactic dependency tree of a sentence. PoS labels in capital letters
and syntactic functions in italic.

Table 4.1. Investigated properties (π) of candidate tags and words syntactically
connected to them.

Group Name

Candidate Token
tag PoS

Syntactic function
Token’s head
PoS of the token’s head
Syntactic function of the token’s head

Connected Root of the sentence
words Sequence of tokens between candidate tag and the root of the sentence

Sequence of PoS labels between candidate tag and the root of the sentence
Sequence of syntactic functions between candidate tag and the root of the sentence
Sequence of PoS and syntactic functions between candidate tag and the root of
the sentence

Let π(x, T ) be a given property associated with a word x in a description T . The

general formula of our probability-based metrics for a candidate tag c in an object o

3https://spacy.io/

https://spacy.io/
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associated with a description text To is:

Pπ(c, To) =

∑

d∈D |{x ∈ Td|(x ∈ Id and π(x, Td) = π(c, To))}|
∑

d∈D |{x ∈ Td|π(x, Td) = π(c, To)}|
(4.14)

where D is the set of training objects, Id is the set of tags associated with a training

object d, and π is one the properties listed in Table 4.1. If a word appears multiple

times in To (note that To may be composed by various sentences) with different values

for π(c, To), we choose the maximum value of Pπ(c, To) as the attribute value for the

property π. Take as an example the property π=PoS. Suppose that a candidate tag

c received the PoS label “adverb” in a description To. Then, its PPoS(c, To) value is

the ratio between the number of times adverbs extracted from descriptions Td in the

training dataset were used as tags, and the total number of times that any adverb

appeared in training object’s descriptions.

In order to avoid overinflated estimations of Pπ values, we disregard properties

that occur less than a number minfreq of times in D, assigning the average probability

value for the corresponding property instead. Take the aforementioned example with

the property π=PoS. Suppose that a word with PoS value “adverb” occurred only once

in D, and that it was also used as a tag. This would result in PPoS=1 for adverbs.

Setting minfreq > 1, we take the average probability (over all other PoS values that

occur more than minfreq times), for candidate tags that are adverbs in this example.

The studied properties are divided into two groups in Table 4.1. The first group

contains properties related to a single word (candidate tag), while the second group

consists of properties related to one or more words connected to the candidate tag in

the corresponding syntactic tree.

Among the properties in the first group, Token is the word itself, that is,

Token(x) = x. The idea of this attribute is that some words have a much higher

chance to be used as a tag than others (e.g., words that indicate the object’s category,

such as “drama” and “comedy” in MovieLens dataset). The idea of the other properties

directly related to the candidate tag (PoS and syntactic function) is similar, however

they capture the probability of more generic types of tags (nouns, adjectives, direct

objects, etc).

As we will see in Chapter 7, looking solely at the syntactic properties of a single

word (the candidate tag) may not be enough to discriminate “good” from “bad” can-

didates. Thus, we also include properties of words connected to the candidate tag in

the syntactic dependency tree (second block of Table 4.1). Among them, recall that

the “head” of a word w is the parent of w in the syntactic dependency tree, as we

described in Section 3. We also include an attribute related to the root of the sentence
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that contains the candidate tag.

Finally, the other four properties in the second block of Table 4.1 (whose names

start with “Sequence”) are related to the whole sequence of words in the path that

connects a candidate tag to the root of the corresponding sentence. We include not

only the tokens that form the path as properties, but also their PoS and syntactic

functions. Note that some of our properties may present overlapping parts of the

syntactic tree. However, as we will see in Section 7.1.3, we select the most important

attributes by performing a feature importance analysis.

Note that an alternative set of attributes could be defined by considering the

various syntactic properties as categorical attributes, and creating a binary attribute

for each possible value of each syntactic property (for example, an attribute “adjective”

would be valued 1 if the given candidate tag is an adjective, and 0, otherwise). This

is equivalent to what Hulth [2003] performed for PoS related attributes. However, due

to the large number of possible values (not only for PoS but for all properties we are

considering), we opted for a smaller set of attributes that summarizes each desired

property π by using its Pπ value.

4.2 Novelty Attribute

Vargas and Castells [2011] proposed to estimate the novelty of an item in a list

of recommendations as the probability that it has not been previously observed. Thus,

the lower the popularity of an item, the more novel it is. Bringing this definition to

the context of tag recommendation, we note that the IFF attribute (Equation (4.9) in

Section 4.1.3) does capture exactly the aspect proposed by Vargas and Castells [2011],

as it favors candidates that occur less frequently in the training set. Thus, although

we [Belém et al., 2011] previously employed IFF to recommend tags that can better

discriminate an object from the others, an aspect that is related to the relevance of

the tag to the target object, we use the same attribute to increase the novelty of

the recommendations, that is, to recommend possibly relevant tags that, because they

occur very rarely in the training set, they would hardly be recommended by traditional

methods.

4.3 Diversity Attributes

Recall from Section 3.3, that diversity can be addressed in two perspectives,

implicit and explicit. Thus, our diversity attributes are also divided into these two
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perspectives. Regarding the implicit notion of diversity [Vargas and Castells, 2011],

we estimate the diversity of a candidate tag c with respect to a list Co of candidates

for recommendation for target object o as the average semantic distance between c

and each other candidate tag in Co. Thus, we define the Average Distance to other

Candidates (ADC) as:

ADC(c, Co) =
1

|Co|

∑

t∈Co,t6=c

dist(c, t) (4.15)

where dist(c, t) measures the dissimilarity between candidate tags c and t. There are

various ways of estimating the dissimilarity between two terms. In this thesis, we

estimate the dissimilarity between terms t1 and t2 by the relative difference between

the sets of objects O1 and O2 in which they appear as tag, i.e., dist(t1, t2) =
|O1−O2|
|O1∪O2|

.

If both sets are empty, we set dist(t1, t2) equal to the maximum value, i.e., 1. Note

that by measuring the dissimilarity between two terms in this way, we are basically

using the set of objects in which each term appears as tag to represent its possible

meanings. Thus, terms that appear in very different sets of objects most probably

have very different meanings.

Considering that users often associate tags to web content with organization

and categorization purposes [Gupta et al., 2010], tags that are more related to the

topics (e.g., categories) of the target object are good candidates for recommendation.

The explicit diversity attributes we propose in this thesis, topic coverage and topic

similarity, exploit this idea. Before introducing them, we first estimate the probability

that a tag t is associated with a topic z, Pr(z|t), as Pr(z|t) = f(t, z)/f(t), where f(t, z)

is the number of objects in which z appears as a topic and t appears as a tag, and

f(t) is the number of objects containing tag t, both in the training set D. We also

estimate the probability that a topic z is associated with an object o, Pr(z|o), as either

1/no, where no is the number of categories associated with object o, when categories

are available, or alternatively as the result produced by the LDA algorithm (described

in Section 6.2.1), when such information is not available.

Let Zo be the set of topics associated with the object o. We define the topic

coverage of a candidate tag c for an object o, TC(c, o), as the fraction of topics of o

covered by c, that is:

TC(c, o) =
1

|Zo|

∑

z∈Zo

J(c, z) where J(c, z) =

{

1, if Pr(z|c) > Pr(z)

0, otherwise
(4.16)
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where |Zo| is the number of topics associated with object o, and Pr(z) is the prior

probability of topic z, that is, the fraction of all objects in the training set D that

have topic z associated with them. We consider that candidate c “covers” a topic z (c

is highly related to z) if the probability of topic z given c is higher than the (prior)

probability of z.

Multiple topics may be associated with a given object or tag, while the strength

of the semantic association between them may vary across different topics. Yet, the

topic coverage attribute does not capture such variability. Thus, we propose the topic

similarity attribute, which measures the cosine similarity between the distribution of

topics of the candidate tag and the distribution of topics of the target object, and thus,

takes the strength of the semantic association between topic and object (or tag) into

account. We estimate the strength of the association between topic z and object o

by the probability of the topic given the object Pr(z|o). Similarly, the strength of the

association between z and candidate tag c is estimated by Pr(z|c). The topic similarity

of a candidate tag c with relation to a target object o, TSim(c, o), is then defined as:

TSim(c, o) =

∑

z∈Zo
Pr(z|o)× Pr(z|c)

√

∑

z∈Zo
(Pr(z|o))2 ×

√

∑

z∈Zo
(Pr(z|c))2

(4.17)

4.4 Summary

In this chapter, we presented the attributes that capture relevance, novelty and

diversity aspects of tag recommendation. A subset of our relevance attributes capture

the personalization aspect. The other relevance attributes capture the descriptive

and discriminative power of candidate tags, as well as their predictability and degree

of relationship with other tags (tag co-occurrences). The novelty attribute is based

on the popularity of a tag, while our diversity attributes can be implicit (exploiting

dissimilarity among tags) or explicit (exploiting the topics of the target object). The

diversity and syntactic attributes are novel contributions of this work.

The attributes presented in this chapter are exploited by our tag recommendation

methods, which in turn are presented in the next chapter.



Chapter 5

Tag Recommendation Methods

In this chapter, we describe the tag recommendation methods analyzed in this

work. In Sections 5.1 and 5.2, we describe with more detail the state-of-the-art baselines

for the object-centered and personalized tag recommendation problems, respectively.

Section 5.3 presents our new approaches for the object-centered tag recommendation

problem, while Section 5.4 discuss the extension of these methods to address person-

alization. Finally, Section 5.5 presents our new methods that also consider the other

aspects of the problem (novelty and diversity).

5.1 State-of-the-art Object-Centered Baselines

The following sections briefly describe the baseline methods used for evaluating

our new object-centered tag recommendation methods. We first present general meth-

ods (heuristics and L2R-based approaches) that have been mostly evaluated in non

cold start scenarios (Sections 5.1.1 and 5.1.2). Later, in Section 5.1.3, we describe

baselines for the specific cold start scenario.

5.1.1 Unsupervised Heuristics

Our first baseline is Sum+, the best function proposed in

[Sigurbjörnsson and Zwol, 2008], which exploits both tag co-occurrences and at-

tributes of tag relevance. We defined Sum+ in Section 4.1.1, Eq. (4.4). Sum+

extends the Sum attribute (Eq. 4.1) similarly to how V ote+ extends V ote, that is,

by weighting the confidence values by the Stability of the terms in the antecedent

and consequent of the corresponding association rules. For this method, we use the

Apriori algorithm [Agrawal and Srikant, 1994] to generate the association rules.

49
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Sum+, as most co-occurrence based strategies [Garg and Weber, 2008;

Sigurbjörnsson and Zwol, 2008], restricts the size of the association rules to only one

tag in the antecedent (i.e., ℓ=1) due to efficiency issues. In contrast, LATRE - Lazy

Associative Tag Recommender [Menezes et al., 2010], our second baseline, is able to

efficiently generate larger association rules by doing it on demand. This is in con-

trast to other strategies (e.g., Apriori), which compute all rules from the training set

beforehand (i.e., offline), possibly including rules that might not be useful when rec-

ommending for objects in the test set. LATRE ranks each candidate c by the sum

of the confidences of all rules containing c. That is, it uses the Sum metric (Eq. 4.1)

with ℓ≥1, thus exploiting solely co-occurrence patterns.

Figure 5.1. CTTR algorithm [Lipczak et al., 2009].

Our third baseline is called Co-occurrence and Text based Tag Recommender

(CTTR). It exploits terms extracted from other textual features, but does not consider

tags previously assigned to the target object. CTTR is an adaptation of the winner of

the ECML Discovery Challenge 2009 [Lipczak et al., 2009], which, in addition to the

two aforementioned aspects, also takes the user’s tag assignment history into account.

We here do not include such user statistics in CTTR, because they include the time

instants when the tag assignments were done by each user, and this information is not

available in our datasets. Thus, we use CTTR as a baseline for object-centered rec-

ommendation only1. Like our methods, CTTR also exploits multiple textual features.

Thus, the comparison of our methods against this baseline allows us to assess the ben-

efits of applying our relevance attributes to such terms and to exploit co-occurrence of

previously assigned tags.

1The lack of the user historical information required by the method prevented us from using it as
baseline for personalized tag recommendation.
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The basic structure of CTTR is depicted in Figure 5.1. As described below, CTTR

distinguishes two types of co-occurrences: (1) between tags, in which the antecedents

are tags in the objects of the training set, and (2) between terms in the title of an

object and its tags, in which the antecedents are terms in the titles of such objects.

At recommendation time, the sets of rules related to the extracted terms are combined

using corresponding scores. As a final step, the scores obtained from the association

rules and from the title and description of the target objects are rescored once again,

and merged, resulting in the final ranking.

The first step is the extraction of potential candidates from other textual features

associated with the target object, namely its title and description. Each term extracted

from the title (or description) is scored according to its usage in previous tagging posts

(training set). The score pix is the ratio of the number of times the term x was used

simultaneously in F i
d and as a tag to the total number of objects in which x is associated

with the textual feature F i
d, where i ∈ {title, description}2.

Next, the candidate sets generated by title and description are merged. As ob-

served by Lipczak et al. [2009], titles tend to provide more precise recommendations

than other textual features, which should be reflected in the merging step. Towards

that goal, the authors propose to use a leading precision rescorer for weighting the dif-

ferent candidate sources (textual features). This rescorer sets the average precision at

the first position of the ranking, avgP@1 (calculated over training data) as a new score

for the top candidate, and modifies the scores si of the following terms proportionally.

Let s1 be the old score of the top candidate. The new score s′i of the ith candidate tag

is given by:

s′i =
avgP@1× si

s1
(5.1)

After re-scoring, the new scores should be merged in a probabilistic sum. Let

St = {s1t , s
2
t , ..., s

n
t } be a set of different scores for candidate tag t. The merging

function is given by:

merge(St) = 1−
∏

sit∈St

(1− sit) (5.2)

The terms extracted in the first step are then expanded through association rules.

However, unlike [Sigurbjörnsson and Zwol, 2008], CTTR does not consider any tag that

had been previously assigned to the target object. Towards the purpose of generating

term candidates by co-occurrences with terms in the target object, Lipczak et al. [2009];

2The score pi
x

inspired us to build the Pred metric, defined in Chapter 4.
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Lipczak and Milios [2011] distinguish two types of co-occurrence relationships: (1)

between tags (RTagToTag), and (2) between terms in the title of an object and its tags

(RT itleToTag). In other words, while the antecedents of RTagToTag rules are tags of the

training set, the antecedents of RT itleToTag are terms in the titles of objects in it.

In the online recommendation step, the rule sets related to the extracted terms

are combined. Title terms are used as antecedent in the following equation to find

title-related tags:

ST itleToTag(t, o) = 1−
∏

x∈F title
o

(1− θ(x→ t)× ptitlex ), (5.3)

where (x → t) ∈ RT itleToTag, and ptitlex is the usage of the title term x as a tag, as

defined above. In the same way, the resulting terms of the title-description merge are

taken as antecedent in:

STagToTag(t, o) = 1−
∏

x∈
⋃

i F
i
o∪Io

(1− θ(x→ t)× sx), (5.4)

where (x → t) ∈ RTagToTag, and sx = merge({ptitlex , pdescriptionx }) is the score of x

achieved after the aforementioned title-description merging step. We note that sx may

be interpreted as a relevance metric since it is similar to TS, that is, it captures the

importance of a term in the textual features of an object.

At the final step, scores obtained from association rules (ST itleToTag and STagToTag)

and from the title and description of the target object are re-scored and merged (with

Equations (5.1) and (5.2)), resulting in the final ranking.

In [Belém et al., 2011], we proposed heuristics for object-centered tag recommen-

dation which extend the Sum+ and LATRE baselines to also include one of the four

attributes of descriptive power, i.e., TF , TS, wTF or wTS (Section 4.1.2). We thus

proposed eight new ranking functions composed by a weighted linear combination of

the output of Sum+ (or LATRE) and one of the four attributes. Let DP be the

selected descriptive power metric (i.e., TS, TF , wTS or wTF ), and c be a candidate

tag for a target object o associated with a set of previously assigned tags Io. Our

previously proposed heuristics have the following general structures:

Sum+DP (c, o, kx, kc, kr, α) = αSum+(c, Io, kx, kc, kr) + (1− α)DP (c, o) (5.5)

LATRE +DP (c, o, ℓ, α) = αSum(c, Io, ℓ) + (1− α)DP (c, o) (5.6)
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Parameter α (0 ≤ α ≤ 1) is used as a weighting factor. Note that Sum+ and

Sum are computed only over candidates generated from the association rules, whereas

DP is computed for terms extracted from other textual features of target object o.

5.1.2 L2R-Based Object-Centered Tag Recommendation

Methods

The basic idea of the L2R approaches for tag recommendation is to use such

algorithms to learn a good ranking function based on a list Lattr of attributes of

tag relevance. Three of these approaches, namely RankSVM (Section 5.1.2.1), Ge-

netic Programming (GP) framework (Section 5.1.2.2), and RankBoost (Section 5.1.2.3)

were previously exploited in tag recommendation [Belém et al., 2011; Cao et al., 2009;

Wu et al., 2009]. The evaluation of the other five techniques, described in Section 5.3.1,

is a novel contribution of this work. We chose these L2R methods since they represent

different learning paradigms that have been successfully applied to other IR tasks such

as classification, search/ranking and image retrieval [Faria et al., 2010; Gomes et al.,

2013; Yeh et al., 2007].

Table 5.1. List of tag quality attributes exploited by L2R-based methods (non
cold start scenario).

Attribute Object-Centered Recommendation Personalized Recommendation
Category Attribute Reference Attribute Reference

Tag Co-occurrence

Sum(ℓ = 1) Eq. (4.1) Sumu(ℓ = 1) Eq. (4.1)
Sum(ℓ = 3) Eq. (4.1) Sum(ℓ = 3)* Eq. (4.1)

Sum+ Eq. (4.4) Sum+
u Eq. (4.4)

V ote Eq. (4.2) V oteu Eq. (4.2)
V ote+ Eq. (4.3) V ote+u Eq. (4.3)

Descriptive Power

TS Eq. (4.5) TS Eq. (4.5)
wTS Eq. (4.7) wTS Eq. (4.7)
TF Eq. (4.6) TF Eq. (4.6)
wTF Eq. (4.8) wTF Eq. (4.8)

Discriminative Power
IFF Eq. (4.9) IFF Eq. (4.9)
Stab Eq. (4.10) Stab Eq. (4.10)

Predictability
Entropy Eq. (4.11) Entropy Eq. (4.11)
Pred Eq. (4.12) Pred Eq. (4.12)

User Interests - - UF Eq. (4.13)

*For the MovieLens dataset, we replaced Sum(ℓ = 3) by Sumu(ℓ = 3), since it produced significantly better
results for this dataset.

We start by focusing on how we apply these techniques to the object-centered

tag recommendation task, discussing extensions to address personalization in Section

5.4. Moreover, we discuss further extensions of our methods to address the cold start

problem in Section 5.3.2. Although these cold start solutions can be applied to the

personalized tag recommendation task, we focused on the object-centered task, since

we mostly exploit object-related attributes. For object-centered tag recommendation
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(without the cold start scenario), the list of attributes Lattr exploited by all three L2R

methods, includes: Sum, V ote, V ote+, IFF , Stab, TS, TF , wTS, wTF , H tags, Pred

and Sum+, defined in Eqs. 4.1-4.4 (Section 4.1). In particular, we include Sum with

both ℓ=1 and ℓ=3, thus generating two attribute values for it.

Moreover, the set of candidate tags Co for each object o includes all terms gener-

ated by LATRE and all terms extracted from other textual features. For each candi-

date c ∈ Co, for each object o, we compute all attributes in Lattr using the training set

D (e.g., for Stab, IFF ) and the textual features associated with o. Each candidate c

is then represented by a vector of attribute values Mc ∈ R
m, where m is the number

of considered attributes (m = 13 for object-centered tag recommendation). We also

assign a binary label rc to each candidate c for each object v in validation set V (part

of the training set), indicating whether c is a relevant recommendation for v (rc=1) or

not (rc=0), based on the contents of Yv.

For the cold start scenario, as we will see in Section 5.3.2, we have a different set

of candidate tags. Similarly to the non cold start scenario, terms in the other textual

features of the target object (e.g., title, description) are extracted as candidate tags.

However, unlike the non cold start scenario, there are no candidate tags generated

by LATRE, since we can’t exploit co-occurrences with the initial (empty) tag set.

Moreover, to compensate the lack of co-occurrences, as performed by Martins et al.

[2016], candidate tags generated by the CTTR method, as well as candidates originated

from the neighborhood of the target object (i.e., similar objects) are included, as will

be discussed in Section 5.3.2.

5.1.2.1 RankSVM Based Strategy

RankSVM is based on the state-of-the-art Support Vector Machine (SVM) clas-

sification method [Joachims, 2006]. We use the SVM-rank tool3 to learn a function

f(Mc)=f(W,Mc), where W = < w1, w2, ...wm > is a vector of weights associated with

the considered attributes (i.e., W ∈ R
m). W is learned by a maximum-margin opti-

mization method that tries to find a hyperplane, defined by W , that best separates

the “closest” candidate tags (represented by their attribute vectors in R
m) belong-

ing to two different levels of relevance (i.e., relevant and irrelevant) assigned to each

object-candidate pair in the training. They are employed to produce pairwise ranking

statements (i.e., relevant tags must precede irrelevant ones), which in turn are used

as input to the RankSVM learning process. At recommendation time, f(Mc) is used

to rank all candidates for target object o according to their relative distances to the

3http://www.cs.cornell.edu/People/tj/svm_light/svm_rank.html

http://www.cs.cornell.edu/People/tj/svm_light/svm_rank.html
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separating hyperplane. RankSVM has 2 key parameters: the type of kernel function,

which indicates the structure of the solution function, and cost j, which controls the

penalty to classification errors in the training process.

5.1.2.2 GP Based Strategy

Genetic Programming (GP) is a framework inspired by the biological mechanisms

of genetic inheritance and evolution of individuals in a population [Banzhaf et al.,

1998]. GP implements a global search mechanism by evolving a population of individ-

uals over multiple generations. Each individual, representing a possible solution for the

target problem (a tag ranking function), is modeled as a tree composed of terminals

(leaves) and operators (inner nodes), related to the target problem. In our case, termi-

nals are constants (uniformly distributed between 0 and 1) and attributes (attributes

presented in Section 4.1), while the inner nodes are operators sum, subtraction, mul-

tiplication as well as protected division and logarithm (so that they return the default

value 0 if their inputs are out of their domains). In each generation, each individual is

evaluated by a fitness function, defined based on quality attributes related to the prob-

lem at hand. Only individuals with the highest fitness values are selected, according

to some selection method (we adopt the tournament selection, i.e., selecting the best

individual among k randomly chosen individuals), to evolve the population.

An initial randomly generated population is evolved in a number of generations,

through crossover and mutation operations. The crossover operation, performed on two

selected individuals with probability pc, is implemented by randomly choosing one node

of each tree representing a selected individual and exchanging the subtrees below them.

It aims at combining good solutions towards a more promising one. The mutation

operation, on the other hand, adds new individuals (solutions) to the population, thus

increasing the diversity in it. This is useful, for instance, to avoid being trapped in

local optima. With probability pm, the mutation of a selected individual is done by first

randomly choosing one node of its tree, and then replacing the subtree rooted at it by

a new randomly generated subtree, without exceeding a maximum tree depth d. Note

that population size np is kept fixed through all generations. This process continues

until a target fitness value f t or a maximum number of generations ng is reached. The

individual with the best fitness value, usually part of the last generation, is chosen as

the final solution for the problem.

GP is a non-linear method that has been applied to various IR tasks. We were

the only to use it for recommending tags [Belém et al., 2011], having obtained com-

petitive (or superior) results over RankSVM. GP directly optimizes a target (fitness)
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function (e.g., precision) and allows for easy extensions to include more problem-related

attributes (terminals) and to address other aspects of the target problem, as we do in

this thesis by adding novelty and diversity to the objective function.

The fitness of an individual in this context represents the quality of the rec-

ommendations produced by the corresponding ranking function, which we assessed in

terms of the Normalized Discounted Cumulative Gain (NDCG) in the top-k terms in

the ranking of recommended terms, averaged over all recommendations of the training

examples4.

Let Y be the set of relevant tags for object o (Y = Yo), and C be the sorted set

of recommendations produced by the ranking function being evaluated. We define the

discounted cumulative gain in the first k recommendations, DCG@k, as:

DCG@k(C, Y ) =

k
∑

i=1

rel(i)

log2(i+ 1)
, (5.7)

where rel(i) is equal to 1 if the ith candidate returned in C is relevant (i.e, it is in

Y ), and 0 otherwise. From this definition, we can define the normalized discounted

cumulative gain in the first k recommendations, NDCG@k, as:

NDCG@k(C, Y ) =
DCG@k(C, Y )

IdealDCG@k
, (5.8)

where IdealDCG is the value obtained for DCG@k when there are only relevant can-

didates at the top-k (or fewer) positions.

5.1.2.3 RankBoost Based Strategy

RankBoost [Freund et al., 2003a] adopts a boosting ensemble technique. Boosting

is an iterative process that produces and combines different weak learners. In each of i

iterations, it increases emphasis on training instances which were not well modeled in

the previous iteration (i.e., candidate tags in the training set which were not correctly

ranked by the model built in the previous iteration, in our case). Increasing the weight

given to these “harder” training examples, it potentially improves the final model, which

is a linear combination of the weak learners, with weights defined by the learning rate

lr, a tuning parameter.

RankBoost learns a linear combination of weak rankers as the final ranking func-

tion. Each weak ranker consists of a single attribute (one of the attributes in Section

4.1) and a threshold that best distinguishes between relevant and non-relevant can-

4We also experimented with other fitness functions (e.g., average precision) obtaining
similar results.
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didate tags. However, similarly to RankSVM, RankBoost operates on pairs of tags.

After each iteration, the tag pairs are re-weighted: it decreases the weight of correctly

ranked pairs and increases the weight of wrongly ranked pairs. As a result, the learning

at the next iteration will be focused on dealing with pairs which are more difficult to

rank. The total number of iterations i is a tuning parameter.

5.1.3 State-of-the-art Tag Recommendation Methods for the

Cold Start Scenario

In this section, we briefly describe the tag recommendation methods we adopt

as baselines in the cold start scenario. The first baseline is CTTR (already described

in Section 5.1.1), and thus is evaluated here in both cold start and non cold start sce-

narios. The second baseline, K-Nearest Neighbors based Tag Recommender, or simply

KNN [Graham and Caverlee, 2008], extracts candidate tags from the K most textually

similar objects to the target object, and rank them according to TermScore measure,

which we define in the following.

To compute TermScore, each object d ∈ D is first modeled as a bag of

terms extracted from all its textual features (including d’s tags). The similar-

ity between each object d ∈ D and o is then computed using the cosine metric

[Baeza-Yates and Ribeiro-Neto, 1999]:

Sim(d, o) =
~d · ~o

|d| × |o|
=

∑|V |
i=1wi,d × wi,o

√

∑|V |
i=1w

2
i,d ×

√

∑|V |
i=1w

2
i,o

(5.9)

where |V | is the size of the term vocabulary in D, and weight wi,d is a variant of the

standard TFIDF metric. Specifically, wid is defined as
√

freq(ti, d)×(1+ log( |D|
df(ti)+1

)),

where freq(ti, d) is the frequency of ith term in object d and df(ti) is the number of

objects in D containing this term.

For each tag t contained in one of the top-K objects with the highest similarities

with o, we assign the following score:

TermScore(t, o) =
K
∑

i=1

Sim(di, o)
4 × freqtag(t, di) (5.10)

where freqtag(t, di) is the number of times t was applied as tag to object di ∈ D
5.

We chose KNN as baseline because this technique is one of the basis of two of our

5Note that, in some applications, the same tag may be assigned multiple times to the same object
by different users.
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proposed tag recommenders for the cold start scenario, as we will see in Section 5.3.2.

The third baseline is referred to as PoS+TFIDF [Hulth, 2003]. It extracts can-

didate tags from the target object’s description. In order to rank these candidates,

PoS+TFIDF jointly exploits: (1) TFIDF values, (2) the relative position of the first

occurrence of a word in the object’s description, and (3) the PoS of the candidate tags.

Originally, these tag quality attributes are combined using a rule-based classification

algorithm, although the author claims the method does not depend on any specific

learning technique. Thus, we here use the best performing L2R technique (RF), for a

fair comparison with the other methods. We chose PoS+TFIDF as baseline because it

is the only previous tag recommendation approach that exploits a syntactic attribute

(PoS) to rank candidate tags.

5.2 State-of-the-art Personalized Baselines

One of the state-of-the-art personalized tag recommendation methods ana-

lyzed in this thesis is called Pairwise Interactions Tensor Factorization (PITF)

[Rendle and Schmidt-Thie, 2010]. It was the winner of the graph-based personalized

tag recommendation task in the PKDD Discovery Challenge 2009. PITF exploits the

vocabulary of the target user expressed by the tags assigned by her to other objects as

a representation of her interests and as the main evidence to support personalization.

Briefly, this approach explicitly models the two-way interactions between users,

tags and objects by factorizing each of the three as a tensor product. From the set of

tag assignments P, their approach first infers pairwise ranking constraints. The idea is

that, for a given 〈user u, object o〉 pair, one can assume that a tag ta is preferred over

another tag tb if and only if 〈u, o, ta〉 ∈ P and 〈u, o, tb〉 /∈ P. These ranking constraints

are then used as training data for a learning algorithm, based on a Bayesian Per-

sonalized Ranking (BPR) optimization criterion [Rendle et al., 2009b]. This learning

method is based on stochastic gradient descent [Ruder, 2016] with bootstrap sampling

[Efron and Tibshirani, 1993]. In other words, the pairwise constraints are sampled

from the training data.

PITF has the following parameters: the dimension of factorization δ, the number

of interactions τ , the learning rate for BPR λ, and the number of pair samples drawn

for each training tuple s.

In previous work [Rendle and Schmidt-Thie, 2010], PITF was only evaluated in

denser datasets, that is, datasets in which unpopular users, objects and tags were

filtered out. In this thesis, all strategies are evaluated in more realistic scenarios,
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Figure 5.2. Tag co-occurrence patterns considered by the personalized tag rec-
ommendation methods.

without this kind of filtering. As we will see in Section 7.1.4, our strategies outperform

PITF because we exploit several sources of evidence not exploited by it6.

We also adopt as baselines the heuristics we proposed in [Belém, 2011]. They

extend the Sum+DP and LATRE+DP (Equations (5.5) and (5.6)) to also include the

user related attribute UF (Chapter 4, Section 4.1). We thus proposed eight new ranking

functions composed by a weighted linear combination of the output of Sum+DP (or

LATRE+DP ) and the value of UF . Let c be a candidate tag for target pair 〈u, o〉.

The proposed heuristics have the following general structures:

Sum+DP + UF (c, o, u, kx, kc, kr, α, β) = βSum+DP (c, o, Io, kx, kc, kr, α) + (1 − β)UF (c, u)

(5.11)

LATRE+DP+UF (c, o, u, ℓ, α, β) = βLATRE +DP (c, o, Io, ℓ, α) + (1− β)UF (c, u)

(5.12)

Parameter β (0 ≤ β ≤ 1) is used as a weighting factor. Note that Sum+DP

and LATRE+DP are computed only over candidates generated from the association
6We have also experimented comparing all strategies in denser versions of our datasets (with p-

core=5, that is, filtering out users, tags and objects that appear less than 5 times in the folksonomy),
and our methods still outperform PITF in this scenario, with gains ranging from 61% to 174% in
precision
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rules and terms extracted from other textual features of target object o, while UF is

computed for terms which were assigned as tags by user u in the training set. We note

that a candidate tag c generated by co-occurrences or extracted from textual features

may not be included in the tag assignment history of the target user (personomy). In

this case, we set UF (c, u) = 0. Similarly, a candidate tag extracted from the user’s

personomy may not be in any textual feature of the target object o, presenting value

0 for its descriptive power metrics (DP ).

In this thesis we propose variants of these two sets of heuristics, defined by the

same Equations 5.11-5.12, but differing in the training set used. While Sum+DP+UF

and LATRE+DP+UF exploit co-occurrences between tags assigned to objects by

different users (training set D defined in Section 3.4), the two variants, referred to as

Sum+
uDP+UF and LATREu+DP+UF , exploit co-occurrences between tags assigned

to the same object by only one user (training set D′, defined in Section 3.4). Figure

5.2 illustrates the differences between the tag co-occurrence patterns of these methods.

While Sum+DP and LATRE+DP consider all combinations of two or more tags that

are assigned to the same object by any user, Sum+
uDP+UF and LATREu+DP+UF

focus on the co-occurring tags that were assigned by the same user.

5.3 New Object-Centered Tag Recommendation

Strategies

Our new tag recommendation methods are based on learning-to-rank (L2R) tech-

niques. Some of these techniques have already been exploited for tag recommendation

and were described in Section 5.1.2. In this section, we present alternative L2R-based

methods that were not exploited in previous tag recommendation studies.

5.3.1 New Evaluated L2R Techniques

5.3.1.1 Random Forest Based Strategy

The Random Forest (RF) algorithm [Breiman, 2001] is an ensemble method that

combines a collection of decision trees. The learning of each decision tree in the ensem-

ble happens in a recursive way: first, the most discriminative attribute (according to

some measure, such as Information Gain) is selected as a decision node. The selected

candidate tags are split according to a split value (e.g., average attribute value), and

the process repeats in a top-down fashion to form a tree with l terminal nodes, where l
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is a tuning parameter. Once the decision tree is built, it can assign a real-valued score

as output for an unseen (test) candidate tag.

The RF method exploits the bagging ensemble technique, i.e., each tree within

the forest is built with a different bootstrap sample of size nb drawn from the original set

of pairs (Mc, rc) that represents each candidate tag c for the considered objects in our

dataset, where, as discussed before, Mc ∈ R
m and rc ∈ {0, 1}. The attribute selection

for each split in a tree is conducted on a randomly selected subset of attributes, instead

of on the full attribute set, as usually done in traditional decision tree algorithms. Each

leaf in each tree corresponds to an output score to be assigned to a candidate tag. Once

the forest is built, for each tag candidate c in a target object o, the scores given by

each tree to c are averaged and used to produce the final ranking of candidates.

Besides l, the number T of trees to grow per bootstrap sample and the number

of attributes m to consider when splitting each node are tuning parameters in RF. We

note that, although each decision tree may suffer from overfitting, the aggregation of

a larger number of low-correlated trees can mitigate this problem. The generalization

error of a RF depends on both the correlation between trees in the forest and the

strength of each individual tree. The more correlated each tree is, the higher the error

rate becomes. The stronger each individual tree is (high accuracy), the lower the error

rate becomes. By increasing m or lowering l, both the correlation and the strength of

each tree increases. By lowering m or increasing l, each tree becomes more independent

(less correlated), but also becomes weaker at the same time. Thus, there exists some

optimal values of m and l that provide the optimal balance between the correlation

and the strength to get the minimum generalization error. We set those parameters

using the validation set, as described in Chapter 6. The implementation of RF and the

next four approaches were provided by the RankLib learning to rank tool7.

RF has been shown consistently effective and competitive in several real world

benchmarks [Mohan et al., 2011]. Some of its strengths are its insensitivity to parame-

ter choices, resilience to overfitting, and high degree of parallelization due the fact that

single decision trees are built independently from others, thus making RFs inherently

parallel.

5.3.1.2 MART Based Strategy

Multiple Additive Regression Trees [Friedman, 2000] combines multiple decision

trees by means of a boosting ensemble technique. The learning of each decision tree

in the ensemble happens in a recursive way: first, the most discriminative attribute

7http://people.cs.umass.edu/~vdang/ranklib.html

http://people.cs.umass.edu/~vdang/ranklib.html
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(according to some measure, such as Information Gain) is selected as a decision node.

The selected candidate tags are split according to a split value (e.g., average attribute

value), and the process repeats in a top-down fashion to form a tree with l terminal

nodes, where l is a tuning parameter. In each of its i iterations, MART increases

emphasis on training instances which were not well modeled in the previous iteration

(i.e., candidate tags in the training set which were not correctly ranked by the model

built in the previous iteration, in our case). Increasing the weight given to these

“harder” training examples, it potentially improves the final model, which is a linear

combination of the outputs of each decision tree, with weights defined by the learning

rate lr, a tuning parameter.

5.3.1.3 λ-MART Based Strategy

λ-MART [Wu et al., 2010], the winning approach at the Yahoo! Learning to

Rank Challenge [Chapelle and Chang, 2011], is a combination of MART and the λ-

Rank ranking model, which tries to directly optimize the value of an evaluation metric

(listwise approach). The main difference between λ-MART and MART is that λ-MART

learns which candidate in a pair of candidate tags must appear first in the ranking. In

order to learn these pairwise preferences, λ-MART uses the gain in NDCG obtained

from swapping the rank positions of candidates in any given pair of candidate tags for

the same object o. Thus, unlike MART, the training is made by considering that each

candidate tag is in the set of candidate tags Co for an object o. Similarly to MART,

the learning rate lr, the number of terminal nodes l and the number of iterations i

must be specified.

5.3.1.4 ListNet Based Strategy

The goal of ListNet [Cao et al., 2007] is minimizing ranking errors, rather than

minimizing errors in classification of pairs of tags or building regression models. ListNet

is based on comparing the probability distribution of permutations of lists of candi-

date tags. Specifically, for a set of candidate tags associated with an object o, ListNet

first defines a permutation probability distribution based on the scores produced by a

ranking function for each candidate tag. It then defines another distribution based on

the ground truth relevance labels, and measures the inconsistency between these two

distributions. The ranking function is defined as a neural network model. Thus, it is

possible to iteratively adjust this ranking function according to the measured inconsis-

tency. This adjustment is done at a predefined learning rate lr during i iterations.
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5.3.1.5 AdaRank Based Strategy

The basic idea of AdaRank [Xu and Li, 2007] is to plug a selected evaluation

metric into the boosting framework and directly optimize this metric. Specifically, it

repeatedly builds weak rankers on the basis of re-weighted training of sets of candidate

tags, i.e., each set of candidate tags Co for an object o receives a weight. The weak

rankers are linearly combined to make ranking predictions. Each attribute in Section

4.1, in isolation, is used as a weak ranker. The selected weak ranker in each iteration

of the algorithm corresponds to the attribute that leads to the best performance over

the weighted objects, measured by a given evaluation metric (NDCG, in our case).

AdaRank runs for i iterations. At each iteration, AdaRank maintains a distribution

of weights over the objects in the training data. Initially, AdaRank sets equal weights

to the objects. At each iteration, it increases the weights of those objects whose tags

are not ranked well by the model created so far. As a result, the learning at the next

iteration will be focused on the creation of a weak ranker that can work on the tag

ranking of those “hard” objects.

Table 5.3 shows a summary of the characteristics of all analyzed L2R techniques.

Table 5.2. List of relevance-driven tag recommendation methods.

Object-Centered Recommendation Personalized Recommendation
Method Reference Method Reference

Baselines
Sum

+ Section 5.1.1
LATRE Section 5.1.1 PITF Section 5.2
CTTR Section 5.1.1
KNN Section 5.1.3

PoS + TFIDF Section 5.1.3

Our Previous Heuristics
Sum

+
DP Section 5.1 Sum

+
DP+UF Section 5.2

LATRE+DP Section 5.1 LATRE+DP+UF Section 5.2

Our New Heuristics
Sum+

uDP+UF Section 5.2
LATREu+DP+UF Section 5.2

L2R-based methods

RankSVM Section 5.1.2.1 RankSVM Section 5.4
GP Section 5.1.2.2 GP Section 5.4

RankBoost Section 5.1.2.3 RankBoost Section 5.4
MART Section 5.3.1.2 MART Section 5.4
λ-MART Section 5.3.1.3 λ-MART Section 5.4

RF Section 5.3.1.1 RF Section 5.4
ListNet Section 5.3.1.4 ListNet Section 5.4
AdaRank Section 5.3.1.5 AdaRank Section 5.4

Cold start treatment
RFsynt Section 5.3.2.1
KNNsynt Section 5.3.2.2

RFsynt +KNNsynt Section 5.3.2.2

5.3.2 Addressing Cold Start in Tag Recommendation

In this Section, we describe our proposed solutions to the specific cold start

scenario. These solutions exploit the same L2R techniques as described in Sections

5.1.2 and 5.3.1, but include other tag quality attributes and an additional tag candidate
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Table 5.3. Characteristics of our L2R-based strategies.

Technique Type of Approach Ensemble Generated model

RankSVM Pairwise - Hyperplane
RF Pointwise Bagging Set of “randomized” decision trees

MART Pointwise Boosting Set of boosted decision trees
λ-MART Listwise Boosting Set of boosted decision trees
ListNet Listwise - Neural network
AdaRank Listwise Boosting Sets of weighted weak rankers
RankBoost Pairwise Boosting Sets of weighted weak rankers

GP Listwise - Any function formed by a given
set of operators and attributes

source (the neighborhood of the target object) to compensate the lack of previously

assigned tags in the target object. Because of the aforementioned lack of information,

some co-occurrence tag quality attributes (e.g., Sum, Sum+, V ote, V ote+) cannot be

exploited effectively. Besides that, the text in Web 2.0 applications is usually small

and may present low quality [Figueiredo et al., 2012], thus statistical properties of the

occurrence of candidate tags in the text such as our descriptive power attributes (e.g.,

TF , wTS, defined in Section 4.1.2) may not be enough to distinguish relevant from

non relevant candidates.

Thus, we propose methods that exploit additional evidence of the relevance of

candidate tags, in particular syntactic properties of words that occur in the target

object description (Section 5.3.2.1). Later, we expand the set of recommendations by

exploiting the neighborhood of the target object (Section 5.3.2.2).

5.3.2.1 Including Syntactic Attributes

Table 5.4. List of tag quality attributes exploited by L2R-based methods (cold
start scenario).

Category Attribute Reference

Tag Co-occurrence
STitleToTag Eq. (5.3)
STagToTag Eq. (5.4)

Descriptive Power

TS Eq. (4.5)
wTS Eq. (4.7)
TF Eq. (4.6)
wTF Eq. (4.8)

Discriminative Power
IFF Eq. (4.9)
Stab Eq. (4.10)

Predictability
Entropy Eq. (4.11)
Pred Eq. (4.12)

Syntactic Properties Pπ* Eq. (4.14)
Neighborhood-based TermScore Eq. (5.10)

*They consist of 11 attributes, one for each property π listed in Table 4.1.

In order to address cold start in tag recommendation and evaluate our new pro-

posed attributes for this scenario, we first extend both RF and RankSVM, including

the 11 syntactic attributes described in Section 4.1.6 in their list of attributes, totaliz-
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ing 22 attributes for each candidate tag (see the list of attributes used for the cold start

scenario in Table 5.4). We will refer to these extensions as RFsynt and RankSVMsynt ,

respectively, while the corresponding methods without the syntactic attributes will be

referred to as simply RF and RankSVM
8.

Following, we propose a strategy to provide further and potentially complemen-

tary tag recommendations based on the neighborhood of the target object, calculated

based on the initial recommendations, instead of based on TFIDF weights only.

5.3.2.2 Neighborhood Expansion

We also analyze the extent to which we can improve tag recommendation

by further exploiting the neighborhood of the target object. The neighborhood

of the target object has been exploited (though preliminarly) by previous methods

[Graham and Caverlee, 2008; Martins et al., 2016], that we refer to as k-Nearest Neigh-

bors based Tag Recommender, or simply KNN.

However, we can filter out noisy terms when computing the neighborhood, using

our new proposed TermScore ′ which extends TermScore (Section 5.1.3) using a set of

initial tag recommendations as representation for the target object. That is, instead

of using all terms weighted by TFIDF, we exploit the scores given to the top-r rec-

ommended tags by a recommender rec. The objective is to make a new, potentially

better, vector representation of the target object o. Our assumption is that this new

representation contains less noise, because top recommended candidate tags present

higher chances to be relevant than the whole set of terms in the object’s description

and title. This is particularly useful for the target object, which has no available initial

tags in a cold start scenario.

More specifically, given an initial tag recommender rec, and the top-r recom-

mendations it provides, the new TermScore’ is calculated as shown in Eq. (5.10), but

replacing Sim(di, o) by a similarity metric Sim′(di, o, rec, r) that considers the weights

given by the initial tag recommender rec. That is, instead of wi,o in Eq. (5.9), we have

wrec
i,o , which is the score given by rec to the candidate tag i in object o, if i is among

the top-r candidates, and 0 otherwise.

In our experiments, we used RFsynt as the initial recommender rec, since it was

the best performing method among the others in the considered scenario. Thus, we

call the new version of the method as k-Nearest Neighbors with Syntactic Attributes,

or simply KNNsynt .

8Note the reuse in the names of the methods both in non cold start and cold start scenarios,
although they exploit different sets of attributes (see Tables 5.1 and 5.4)
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Finally, to combine the strengths of both new methods, we perform a linear

combination of their scores, naming it as RFsynt +KNNsynt . Specifically, the new

method produces as score a×RFsynt + (1 − a)× KNNsynt , where the weighting factor

a is a tuning parameter. Figure 5.3 summarizes the interactions of these new methods.

As depicted in Figure 5.3, RFsynt combines various tag quality attributes, including

syntactic attributes. The recommendations provided by RFsynt are further expanded by

KNNsynt . Finally, the scores of these two methods are combined with RFsynt +KNNsynt .

Figure 5.3. Basic operation of the proposed methods to address cold start and
their combinations.

5.4 Extensions of L2R-based Strategies for

Personalization

The L2R-based strategies described in Sections 5.1.2.1-5.1.2.2 can be easily ex-

tended to include new relevance attributes. In particular, in order to extend them to

provide personalized recommendations, we included the attribute UF in the list Lattr

of attributes. The complete list of attributes is shown in Table 5.1 (3rd column). Re-

call that, for personalized tag recommendations, each co-occurrence attribute presents

two variations, depending on whether the training data used is separated per user or

not. Thus, we adopted the best performing version when they are used as heuristics9.

Besides that, all tags assigned by the target user to objects in the training set D were

included as candidates. That is, the candidate set Co,u for a given object-user pair

9For example, LATRE+wTS+UF performs better than LATREu+wTS+UF (except for Movie-
Lens dataset), while Sum+

uwTS+UF is better than Sum+wTS+UF . Thus, we include Sum(l = 3)
(component of LATRE+wTS+UF ) and Sumu(l = 1) (component of Sum+wTS+UF ) as at-
tributes in Lattr (except for MovieLens dataset which performed better with Sumu(l = 3) instead of
Sum(l = 3)). An alternative would be to include both variations as attributes, but we opted for a
smaller set of less redundant attributes.
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〈o, u〉 includes all terms generated by LATRE, all terms extracted from other textual

features in o, and all terms assigned as tags by user u in the training set D. For each

candidate c ∈ Co,u, we compute the values of all attributes in Lattr using D and the

textual features associated with o.

Thus, the algorithms for personalized tag recommendation are the same as

those described in the previous sections, except for the additional candidates and

slightly different set of attributes. We argue that these methods perform well for both

personalized and object-centered recommendation because they are flexible and robust

strategies to generate relevant recommendation to the target object and to the target

object-user pair, as we will discuss in Section 7.1.4. In particular, our methods can

provide relevant recommendations to a user even when she does not have a history of

tag assignments. In that case, the extraction of candidates from tag co-occurrences

and multiple textual features provide more general recommendations to the considered

object, which may be relevant to any user. As the user becomes more active, however,

our methods can provide a higher level of personalization, thanks to the use of the UF

attribute.

Table 5.2 lists all analyzed tag recommendation methods, while Table 5.3 summa-

rizes key characteristics of the different techniques employed in our L2R-based methods.

5.5 Adding Novelty and Diversity

In this section, we describe our new tag recommendation methods that address

other objectives than relevance, namely, novelty and diversity. They can be classi-

fied into implicit and explicit methods, according to the diversification approach they

exploit (recall from Section 3.3).

5.5.1 Implicit Method

Our implicit strategy, called GPrnd , extends the GP -based solution described in

Section 5.1.2.2. The Genetic Programming approach was chosen due to its flexibility

and easiness to incorporate new aspects to its objective function. GPrnd exploits the

same set of candidate terms of our relevance driven strategies, including GP . How-

ever, it introduces new attributes in the list Lattr and as part of the objective function.

Specifically, we include Average Distance to other Candidates (ADC), defined in Sec-

tion 4.3, in Lattr and (indirectly) in the objective function. Moreover, unlike in GP ,

which exploits IFF only as a relevance attribute in Lattr , in GPrnd we also have it as part
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of the objective to be optimized, which changes the search space for recommendation

functions.

In order to add the novelty of a list of recommended terms C to the objective

function of GPrnd , we employed the metric Average Inverse Popularity over the top

k positions of the ranking, AIP@k, adapting it from [Vargas and Castells, 2011] to

our context. We define AIP@k as a normalized average of the IFF values of the first

k recommended terms. Let disc(i) = 1/ log(1 + i) be a rank discount function that

provides a weight for the ith position of the ranking. AIP@k of list C is defined as:

AIP@k(C) =
1

K

k
∑

i=1

disc(i)× IFF (ci), (5.13)

where ci is the ith term in C and K =
∑k

i=1 disc(i) × IFFmax is the normalization

constant.

We introduce diversity to the objective function by using the Average IntraL-

ist Distance in the top k positions of the list of recommended terms C (AILD@k)

[Vargas and Castells, 2011], defined as

AILD@k(C) =
1

K ′

k
∑

i=1

k
∑

j=i+1

dist(ci, cj), (5.14)

where K ′ = (k2 − k)/2 is a normalization constant, and dist(ci, cj) is as defined in

Section 4.3.

Finally, we define the new objective function (fitness) as a convex linear combi-

nation of the three aspects (relevance, novelty and diversity) as

Fit(C) = αAIP@k(C) + βAILD@k(C) + (1− α− β)NDCG@k(C), (5.15)

where 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 are tuning parameters to weight the evaluation

metrics.

5.5.2 Explicit Methods

We propose here three new, complementary methods to address relevance, novelty

and explicit diversity.

Our first method, called Explicit Tag Recommendation Diversifier, or xTReD ,

seeks to directly maximize the set of categories covered by the recommended tags. In its

general form, maximizing topic coverage is an NP-hard problem [Agrawal et al., 2009].
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Fortunately, there is a well-known greedy algorithm for this problem, which achieves

an approximation factor of (1−1/e) ≈ 0.632 of the optimal solution [Hochbaum, 1997].

This is also the best possible polynomial-time approximation for the problem, unless

NP ⊆ DTIME(nO(log logn)), where n is the number of items to be diversified [Feige,

1998; Khuller et al., 1999]. This greedy approach is described in Algorithm 1.

xTReD takes as input an object o and a diversification cutoff τ . In its first

step, xTReD calls a tag recommendation method rec to produce an initial ranking

Co of recommended tags, generated with a relevance-focused objective (line 1). Any

relevance-driven tag recommender could be used in this step. We exploit RF , which

produced the best results among our relevance-driven methods.

xTReD(o, τ)

1: Cτ
o ← rec(o, τ) // relevance-driven recommendations

2: CS
o ← ∅

3: while |CS
o | < min(τ, |Co|) do

4: t∗ ← argmaxt∈Cτ
o
f(o, t, CS

o )
5: Cτ

o ← Cτ
o \ {t

∗}
6: CS

o ← CS
o ∪ {t

∗}
7: end while

8: return CS
o

Algorithm 1: The xTReD algorithm.

Let Cτ
o be the top τ recommendations in Co. The goal is to produce a permutation

of Cτ
o so as to raise the diversity in the top positions of the ranking of recommended tags,

given that those tags are often the ones that the user looks at. A complete permutation

of Co (τ=|Co|) could be produced. However, we can reduce τ for efficiency reasons and

as a means to restrict the search for more diverse tags among the most relevant ones,

avoiding severe relevance penalties.

The permutation CS
o is initialized as an empty set (line 2), and is iteratively

constructed (lines 3-7). The objective function f(o, t, CS
o ) scores each yet unselected

tag t ∈ Cτ
o \ C

S
o in light of the object o and the tags already in CS

o , selected in the

previous iterations of the algorithm (line 4). The highest scored tag, t∗, is then removed

from Cτ
o (line 5) and added to CS

o (line 6). Finally, the produced diverse ranking CS
o

is returned (line 8).

To instantiate the objective function f(o, t, CS
o ) in Algorithm 1, xTReD

builds upon a state-of-the-art framework for diversifying search results, called

xQuAD [Santos et al., 2010]. The xQuAD framework instantiates the aforementioned

function in order to score the documents retrieved for a given query proportionally

to these documents’ coverage and novelty in light of the multiple possible information
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needs underlying this query [Santos et al., 2010; Santos and Ounis, 2011]. In the con-

text of xTReD , instead of a ranking of documents for a query, we seek to diversify a

ranking of tags for a given object. More precisely, xTReD includes a new instantiation

of the objective function f(o, t, CS
o ), such that:

f(o, t, CS
o ) = (1− λ)× Pr(t|o) + λ×

∑

z∈Zo

Pr(z|o) Pr(t|o, z)
∏

t′∈CS
o

(1− Pr(t′|o, z)),

(5.16)

where Zo is a set of topics associated with the object o and 0 ≤ λ ≤ 1 is a tuning

parameter used to balance the trade-off between promoting relevance or diversity. The

greater the value of λ, the more importance is given to diversity. The idea is to promote

tags that are simultaneously highly related to at least one of the topics of the target

object and little related to the topics of the tags already selected as recommendation

(captured by the product over t′ ∈ CS
o ), hence increasing the coverage of topics in the

top positions of the list of recommendations.

When λ = 0, Equation (5.16) reduces to Pr(t|o), which results in a pure relevance-

driven tag recommendation, as produced by a non-diversification baseline. In our

experiments in Chapter 7, we define Pr(t|o) = 1/rt, where rt is the position of the tag

t in the ranking produced by the initial ranker rec. In order to estimate the second

half of Equation (5.16), we infer the distribution Pr(z|o) of topics z ∈ Zo for an object

o from the available training data or using the LDA algorithm, as discussed in Section

4.3. Finally, to estimate how much a given tag t covers the topic z of the object o, we

approximate the probability Pr(t|o, z) as Pr(t|o, z) ≈ Pr(t|o)×Pr(z|t), where Pr(z|t) is

an estimate of the probability that tag t is related to topic z, already defined in Section

4.3.

Our second method extends RF to include two new metrics, defined in Equa-

tions (4.16) and (4.17), that capture explicit diversity as tag attributes. Moreover, this

method also includes IFF as an attribute, capturing aspects related to both relevance

(i.e., discriminative capacity) and novelty (i.e., rarity). Like RF , our new method,

referred to as RFt, still has the objective of maximizing relevance of the recommenda-

tions, capturing novelty and diversity indirectly at the attribute level.

Our third approach, called explicit Tag Recommendation Diversifier with Novelty

Promotion or simply xTReND , builds upon xTReD and RFt. Although it uses the

same general algorithm described above (Algorithm 1), it differs from xTReD in two

core components. First, it employs RFt as the basic recommender10 (line 1), and thus

10We also tested a different method as initial ranker, the GP-based tag recommender. The gains
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Figure 5.4. Illustration of xTReD and xTReND: general structure and ex-
pected results. The rectangles represent the ranked list of recommended tags, and
each color represents a different topic related to the target object.

already captures relevance, novelty and diversity at the attribute level. Second, it uses

a new instantiation of the objective function that also captures the same three aspects.

The new objective function is defined as:

f(o, t, CS
o ) = (1− α− β)× Pr(t|o) + α× IFF (t)+

+β ×
∑

z∈Zo
Pr(z|o) Pr(t|o, z)

∏

t′∈CS
o
(1− Pr(t′|o, z)),

(5.17)

where IFF is the novelty metric defined in Eq. (4.9). The tuning parameters α and

β (0 ≤ α, β ≤ 1) are used to balance the trade-off between promoting relevance or

novelty or diversity. The higher the values of α and β, the more weight is given to

novelty and diversity, respectively.

Thus xTReND captures relevance, (popularity-based) novelty and explicit diver-

sity at both attribute and objective levels. Its design is motivated by the absence

of a previous approach that directly includes popularity-based novelty, in addition to

explicit topic diversity and relevance, as part of the goal to be maximized.

To better distinguish xTReND from xTReD , Figure 5.4 illustrates the general

structure of these methods and their expected results. In the figure, the rectangles

of the explicit diversification and novelty promotion of GP were similar to the gains of the explicit
diversification of RF . Thus, we focus our evaluation using the Random Forests based methods in
Chapter 7, since it produced the best results.
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represent the ranked list of recommended tags. We use different colors to represent

different topics related to the target object11. Focusing first on xTReD (top diagram

in Figure 5.4), the initial tag recommender, RF , which is driven only by relevance,

prioritizes one topic (represented by the black color) over the others, while xTReD

rearranges the results so as to allow tags related to different topics to appear earlier in

the ranking. In contrast, xTReND (bottom diagram) uses RFt as initial recommender,

which already introduces some diversification and novelty to the results, compared to

RF . Like xTReD , the xTReND re-ranker also promotes tags related to different topics

to earlier positions of the ranking, Additionally, xTReND is also able to bring a tag

related to a novel topic (represented by the yellow rectangle with diagonal lines) to the

object’s top recommendations.

We further illustrate the re-ranking step performed by xTReND by focusing on

the real example mentioned in Section 1, namely the recommendations for the movie “X-

Men: The Last Stand”. For simplicity, consider that only the top τ=10 candidate tags

will be re-ranked. Table 5.5 shows, for each of the top 10 most relevant tag candidates,

their estimated values of relevance, novelty, and how much they are related to the three

topics (i.e., genres) of the movie. Note that the first column of the table presents the

candidate tags sorted by relevance. Table 5.6 shows the f(o, t, CS
o ) scores calculated in

each iteration of the methods, while Table 5.7 shows the estimated utility of each topic

in each iteration. We calculate this topic utility as uz(C
S
o ) = 1 − 1

K

∑

t∈CS
o
Pr(z|t),

where K =
∑

z∈Zo
uz(C

S
o ), and we set uz(C

S
o ) = 1 for all topics when CS

o = ∅, that

is, before the first iteration. Entries containing “-” indicate tags that were already

selected in previous iterations. Note that the first column of Table 5.6 presents the

list of candidate tags in the order they were selected by xTReND , that is, the list of

candidates after re-ranking.

In the first iteration of the re-ranking, no tags have been selected yet (CS
o = ∅).

All topics present the same utility (Iteration “0” in Table 5.7). Tag “genetics” has

the highest score, probably due the fact that it presents the highest probability to be

related to one of the topics of the movie (Sci-Fi), and also presents good relevance

and novelty estimates. Since no movie genre of the considered object has been covered

yet, all genres are equally good choices to be covered first12. Thus, the algorithm

appends tag “genetics” to the new, re-ranked list of tag recommendations. Next, in the

second iteration, tag “dvd” is selected, despite being little related to any of the three

11For the sake of simplicity, we assume in this example that a single topic (color) is associated to
each tag (rectangle). In reality, multiple topics may be associated to the same tag t, and the strength
of the semantic association between them is given by Pr(z|t).

12Recall that we are assuming a uniform distribution of the topics (i.e., genres) related to the
movie.
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Table 5.5. Example of the re-ranking step of xTReND for the movie “X-Men:
The Last Stand”: statistics of top candidate tags (candidates are sorted by rele-
vance).

Candidate tag Relevance Novelty Topic probability: Pr(z|t)
(t) Pr(t|o) IFF (t) Fantasy Thriller Sci-Fi
dvd 1.00 1.72 0.04 0.10 0.04

genetics 0.50 6.07 0.00 0.17 0.30
biology 0.33 6.07 0.00 0.23 0.27
comics 0.25 4.21 0.09 0.10 0.11

mckellen 0.20 5.87 0.09 0.09 0.09
marvel 0.17 5.56 0.09 0.16 0.16
mutant 0.14 6.19 0.00 0.09 0.23

super-hero 0.13 5.01 0.07 0.17 0.17
based 0.11 2.26 0.05 0.08 0.07

ummarti2006 0.10 4.69 0.05 0.13 0.05

Table 5.6. Example of the re-ranking step of xTReND for the movie “X-Men:
The Last Stand”: f(o, t, CS

o ) scores for each candidate tag in each iteration (can-
didates are shown in the order they are selected by the method).

Candidate Iteration
tag 1 2 3 4 5 6 7 8 9 10

genetics 0.177 - - - - - - - - -
dvd 0.163 0.158 - - - - - - - -

biology 0.141 0.135 0.131 - - - - - - -
mckellen 0.093 0.092 0.091 0.090 - - - - - -
marvel 0.091 0.089 0.088 0.087 0.087 - - - - -
mutant 0.088 0.087 0.086 0.085 0.085 0.084 - - - -
comics 0.087 0.085 0.084 0.083 0.083 0.082 0.082 - - -

super-hero 0.077 0.075 0.074 0.073 0.073 0.073 0.073 0.072 - -
ummarti2006 0.063 0.063 0.062 0.062 0.062 0.061 0.061 0.061 0.061 -

based 0.039 0.039 0.038 0.038 0.038 0.038 0.038 0.038 0.037 0.037

Table 5.7. Updated marginal utility of each topic in each iteration.

Iteration Fantasy Thriller Sci-Fi

0 1.00 1.00 1.00
1 1.00 0.64 0.36
2 0.94 0.58 0.48
3 0.97 0.57 0.47
4 0.91 0.58 0.51
5 0.88 0.59 0.53
6 0.90 0.61 0.49
7 0.87 0.62 0.51
8 0.87 0.61 0.52
9 0.86 0.60 0.54
10 0.85 0.60 0.55

genres. This choice is due the high relevance estimate given by the initial recommender,

RFt (see Table 5.5). Following, tag “biology” is selected in the third iteration. This

tag is relatively well connected to topic Thriller, which was not yet well covered by

the previously selected candidates, according to the statistics of tag occurrences in

genres of our MovieLens dataset. At this point, tags related to topics “Thriller” and

“Sci-Fi” have been recommended, and thus, the utility of these topics decreased in

Iteration “1”. Tag “mckellen”, referring to one of the main actors, is the next one
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selected. This tag is somewhat related to all three genres of this movie, since the actor

starred in other movies of these genres (such as other X-Men movies and “The Lord

of the Rings”), not to mention that it is also highly novel and specific. This tag is

related to the topic “Fantasy” (probably because the referred actor starred in other

movies of this genre, such as “The Lord of the Rings” trilogy), which at this point

had the maximum utility, since the other selected tags were not related to it. Next,

tag “marvel” is appended. In comparison with “comics”, which appeared first in the

relevance-driven ranking (see Table 5.5), “marvel” is more novel and specific as well

as more strongly related to the topics of the considered movie (according to the topic

probability estimates). Thus, “marvel” is ranked higher than “comics” after the re-

ranking. The other tags are appended similarly, considering the best trade-off between

relevance, novelty and topic diversity.

The motivation of promoting novelty and diversity by re-ranking an initial rec-

ommendation list, as performed by both xTReD and xTReND , is that it is an intuitive

solution to provide recommendations related to the different topics assigned to the tar-

get object, since the contribution of an item to the diversity of the list depends on the

other items previously ranked in the list. Thus, an iterative solution that chooses the

next recommendation considering the previsouly selected items is more natural than

a solution that sorts the whole list in a single step, by the values of a given objective

function, as performed by GPrnd.

5.6 Summary

In this chapter, we presented the tag recommendation methods analyzed in this

thesis. First, we described with more detail the relevance-driven baselines mentioned in

Chapter 2, for both object-centered and personalized tag recommendation tasks. Next,

we presented our new proposals, starting with five object-centered, relevance-driven

strategies based on L2R techniques and their extensions to address personalization

and cold start. Our contributions lie in the combination of tag quality attributes

(some of them are proposed in this thesis, particularly the syntactic and topic related

attributes), by means of L2R techniques that were not previously applied to the tag

recommendation problem. Then, we presented our four new methods that address

novelty and diversity aspects in addition to relevance, namely, GPrnd , RFt , xTReD

and xTReND . The novel aspect of GPrnd refers to the new attributes and objective

function that capture the different aspects of the problem. RFt , in turn, brings a novel

tag quality attribute related to the relationship between a tag and its topics. Finally,
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xTReD and xTReND are re-rankers that explicitly address combinations of relevance,

diversity and novelty. In the next chapters, we present the methodology we adopted

to evaluate these methods, and the experimental results we obtained so far.





Chapter 6

Experimental Methodology

This chapter describes the methodology used in our experimental evaluation of

the tag recommendation methods, including datasets (Section 6.1), evaluation protocol

(Section 6.2) and parameterization of each method (Section 6.3).

6.1 Datasets

We evaluate the tag recommendation methods on five datasets, each containing

the title, tags and description associated with real objects from Bibsonomy, LastFM,

MovieLens, YouTube and YahooVideo. The Bibsonomy, LastFM and YouTube

datasets also include the set of tag assignments (P)1, thus allowing the evaluation

of object-centered and personalized tag recommendation methods. The YahooVideo

dataset, in contrast, does not identify the user who assigned each tag, and thus is here

used only in the evaluation of object-centered methods.

The Bibsonomy dataset is a snapshot of the system, obtained on January 1st 2012,

comprising 543,872 objects (bibtex records of publications). It is publicly available2

and has been used in several previous efforts [Guan et al., 2009; Lipczak et al., 2009;

Lipczak and Milios, 2011; Rendle and Schmidt-Thie, 2010]. The MovieLens dataset,

also publicly available3 contains 100,000 tags applied to 10,000 movies. The LastFM

and YouTube datasets4 were collected in August 2009, following a snowball sampling

[Goodman, 1961]. That is, starting from a set of users (the most popular users) se-

lected as seeds, the crawler recursively collects the objects posted by them and follows

their social links to other users, collecting the objects posted by them. Our datasets

1On YouTube, only the video owner can assign tags to it.
2http://www.kde.cs.uni-kassel.de/bibsonomy/dumps.
3http://www.grouplens.org/taxonomy/term/14
4Visit http://vod.dcc.ufmg.br/recc/ for information on data availability.
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include the textual features and tag assignments associated with 2,758,992 LastFM

artists and with more than nine million YouTube videos. The YahooVideo dataset was

also gathered by snowball sampling, but using the most popular objects as seeds and

following links of related videos5. It was gathered in October 2008, and contains the

features of 160,228 objects.

Table 6.1. Datasets statistics.

Dataset Number of objects Sample size Categorized sample size Avg. #tags per object
± Standard dev.

Bibsonomy 543,872 150,000 - 4.9 ± 4.4
LastFM 2,758,992 150,000 35,975 13.5 ± 24.2

MovieLens 10,000 6,500 6,500 13.4 ± 15.5
YahooVideo 160,228 140,000 - 8.9 ± 7.3

YouTube 9,000,000 150,000 150,000 10.7 ± 5.7

We considered only objects with textual features in English, removed stopwords,

and used the Porter Stemming algorithm6 to remove the affixes of each word in each

collected feature. Stemming was performed to avoid trivial recommendations such as

plurals and other simple variations of the same word.

In order to evaluate diversity, we used different sources of category information

for our datasets. Specifically, we used the pre-assigned categories for YouTube videos

as well as the genres associated with each movie in MovieLens. We also collected the

musical styles associated with the artists in the LastFM dataset from the AllMusic

site7, and used them as artist categories. The Bibsonomy and YahooVideo datasets do

not contain categories and thus were evaluated using latent topics only. To evaluate

the cold start scenario and the syntactic attributes, we focus on Bibsonomy, LastFM

and MovieLens datasets only, because the complete sentences of the descriptions were

not available in the other datasets.

Table 6.1 shows the total number of objects in our datasets and the number of

objects in the evaluated samples.

6.2 Evaluation Methodology

We adopted a fully automatic evaluation methodology that has been used by

most prior studies on tag recommendation [Gemmell et al., 2010; He and Chua, 2017;

5We adopted a slightly different sampling strategy for LastFM and YouTube, exploiting users and
social links as opposed to videos and related video links, as we use the collected datasets to evaluate
personalized recommendation strategies. As YahooVideo does not publish per-user information on
tag assignment, we chose not to crawl that application again, thus relying on our previously gathered
dataset and evaluating it only for object-centered recommendation.

6http://tartarus.org/~martin/PorterStemmer/
7http://www.allmusic.com

http://tartarus.org/~martin/PorterStemmer/
http://www.allmusic.com
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Heymann et al., 2008; Lipczak et al., 2009; Lipczak and Milios, 2011; Menezes et al.,

2010; Rendle et al., 2009a; Yuan et al., 2017], including personalized tag recommen-

dation [Garg and Weber, 2008; Guan et al., 2009; Rendle and Schmidt-Thie, 2010], as

well as content recommendation in general [Guy et al., 2010; Zhang et al., 2012b]. It

consists of using a subset of the object’s pre-assigned tags as an expected answer, that

is, as the relevant tags for that object. For personalized tag recommendation, specif-

ically, a subset of the tags assigned by the target user to the target object is used as

expected answer. We evaluate our cold start scenario in the object-centered task, using

all tags previously assigned to the target object as its expected answer, since no tags

are provided as input in this scenario.

Following the proposed methodology, for object-centered recommendation, in the

non cold start scenario, for each object o in the test and validation sets, we randomly

select half of its tags to be included in Io. The other half are included in Yo, the

expected answer for o. For the cold start scenario, Io is empty and all tags are included

in Yo. Similarly, for personalized tag recommendation, for each object o in the test

and validation sets, half of the tags assigned by the target user u to the object o are

included in Io and the other half in Yo,u. Tags assigned by other users to object o

(i.e., Io,u′ for u′ 6= u) are also used as input, being included in Io. In all scenarios, we

use title and description as textual features in Fo. Each object is thus represented by

tuple 〈Io, Fo, Yo〉 for object-centered recommendation, or 〈Io, Fo, Yo,u〉 for personalized

recommendation.

We note that the tags in the expected answer for an object o are not exploited,

in any way, to produce the recommendations for o (i.e., they are not used neither

for metric computation nor for learning the recommendation function). Thus, from

the perspective of the evaluation being performed, these tags are effectively new. This

methodology allows us to simulate a scenario where these tags have not been assigned to

the object yet and, thus, are potential candidates for new recommendations. Moreover,

these tags can be considered relevant as we know that one or multiple users actually

used them to annotate the object.

We note that this methodology has some limitations, since some of the recom-

mended tags, although not in the expected answer, might still be considered relevant to

the given object (or object-user pair). Thus, results obtained according to the adopted

methodology represent lower bounds in terms of precision and upper bounds in terms

of recall.

Alternative evaluation methodologies would rely on manual assessment of the tag

recommendations by either: (1) real users of the system under study, who created the

objects for which tags are recommended and/or have already added some tags to them,
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or (2) external volunteers. Whereas the former would be desirable, it is extremely hard

to perform, particularly when covering different systems and a large number of different

methods, as we do here8.

In fact, the only effort we are aware of that evaluated tag recommendation in an

online setting with real users of the application (real targets of the recommendations)

was pursued by Jäschke et al. [2009]. They proposed an evaluation framework that

relies on stored user clicks on recommended tags. This framework was used in the online

tag recommendation task of the 2009 PKDD Discovery Challenge, with an evaluation

focused on the Bibsonomy application.

In contrast, while the vast majority of prior studies adopted the automatic ap-

proach we used here, some prior efforts [Bi and Cho, 2013; Prokofyev et al., 2012;

Siersdorfer et al., 2009; Sigurbjörnsson and Zwol, 2008; Wu et al., 2009] used external

volunteers to evaluate the recommendations. However, we argue that this approach is

not necessarily better than the automatic one. Indeed, in the case of personalized tag

recommendations, this approach may not be adequate at all, as the external evalua-

tions might introduce significant biases and inaccuracies to the evaluation which would

be very hard to isolate9, possibly invalidating the analyses.

Thus, we have adopted the automatic strategy, which is a well-established and

widely adopted evaluation protocol in the area, in favor of a more extensive quan-

titative evaluation. This choice allowed us to cover a large number of methods and

datasets, enabling us to draw solid conclusions from statistically significant results. We

have performed manual evaluation with volunteers in a small sample of two datasets.

Although our new strategy xTReND, in this manual evaluation methodology, achieved

the higher average results for all considered evaluation metrics, we note that the num-

ber of evaluations was not enough to produce statistically solid results in this scenario.

This probably occurred because the external volunteers were less familiar with the

shown content than application users. We noted, for example, that application users

provided tags which are, on average, more specific than those provided by external

evaluators. Thus, all results reported in this thesis refer to the automatic evaluation

methodology.

To apply the selected methodology, we performed a five-fold cross validation.

That is, the objects were randomly distributed into five equal-sized portions. Three

portions were treated as training set (D), which was used for extracting association rules

8We here compare 18 object-centered and personalized tag recommendation methods proposed by
us as well as 4 baselines.

9A tag that could be extremely meaningful to a particular user could be considered completely
irrelevant by an evaluation with a different perception of the object’s content.
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Figure 6.1. Illustration of the 5-fold cross-validation procedure.

and computing all metrics. A fourth portion was used as validation set V, which, in

turn, is part of the training set, being used to “learn” the solutions (e.g., to compute the

Fitness function in the GP evolutionary process as well as learn vector W in RankSVM

and the forest of regression trees in RF), and to tune parameters of all recommendation

methods, using inner cross-validation in V. The last portion was used for testing. We

repeat this procedure 5 times, alternating the roles of each portion of the dataset, as

illustrated in Figure 6.1.

As discussed in Section 4.3, we estimate how related a tag t is to a topic, which

is necessary to evaluate topic diversity, by the probability of a topic given a tag. We

experimented with two sources of topics for objects: (1) an explicit taxonomy repre-

sented by categories, obtained from our datasets (see Section 6.1), and (2) implicit

topics generated by an unsupervised clustering technique. Specifically, we used Latent

Dirichlet Allocation (LDA) [Blei, 2012], a probabilistic approach to generate and assign

topics for each object based on terms (tags) contained in it. The use of LDA allows us

to evaluate our approach in collections that do not contain explicit categories and to

compare results across scenarios with different levels of generalization of categories, as

we will see in Chapter 7. Next, we further describe the LDA method (Section 6.2.1)

and introduce our main evaluation metrics (Section 6.2.2).

6.2.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation, or LDA, is a probabilistic model that is based on the

assumption that a document can be represented as a mixture of different topics [Blei,

2012], whereas a topic is defined as a distribution of words from a fixed vocabulary.
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Given a number of topics and the distribution of words for each topic, LDA can be

described by a generative process that explains how the content of a given docu-

ment arises. Specifically, the method “generates” words for a given document as follows:

1. Randomly choose a topic distribution;

2. For each word to be generated in the document:

(a) Randomly draw a topic from the distribution in (1);

(b) Randomly draw a word from the word distribution corresponding to the

selected topic.

This process assumes that each document exhibits topics in different proportions

(step 1); each topic associated with a document is drawn from a per-document distri-

bution (step 2a); and each word in the document is drawn from one of its topics (step

2b). In our case, documents refer to objects in our collections, and words refer to tags

in Io (i.e., previously assigned tags that were not included in the gold standard)10.

In general, the goal of LDA is to exploit the observed terms (tags) in objects to infer

their hidden topic structure (distribution). This can be thought of as “reversing" the

aforementioned generative process.

Formally, given Pr(z|o), the probability distribution of topics for object o, and

Pr(t|zi), the distribution of tags for a latent topic zi, the probability Pr(ti|o) of a tag

ti appearing in an object o is defined as:

Pr(ti|o) =
nZ
∑

j=1

Pr(ti|zi = j) Pr(zi = j|o), (6.1)

where Pr(ti|zi = j) is the probability of tag ti appearing in topic j, and Pr(zi = j|o)

is the probability of topic j being associated with object o. The number of latent

topics nZ is a parameter that allows us to adjust the level of generalization/specificity

of topics. The larger the number of topics, the more specific the generated topics.

LDA estimates the distribution of tags in topics Pr(t|z) and the distribution of

topics in an object Pr(z|o) from a set of unlabeled objects (training set) assuming a

prior Dirichlet distribution and a fixed number nZ of topics. A possible approach

to infer these probabilities is to use Gibbs sampling [Blei, 2012], a sampling method

performed in m iterations of the two-step method described above. This is the method

adopted in pLDA11, which is the implementation of LDA [Liu et al., 2011] we used to

10Initial experiments showed that using terms extracted from other textual features of the object
did not improve results, but we intend to further exploit this direction in the future.

11http://code.google.com/p/plda
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generate topics for each object in our datasets. We discuss how we set the values of

nZ and m in Section 6.3.

6.2.2 Evaluation Metrics

We now present the metrics used to evaluate the quality of the recommendations

produced by all considered tag recommendation methods. They are also used by the GP

framework, whose search process tries to directly maximize the considered evaluation

metric, as described in Section 5.1.2.2.

In order to evaluate the relevance of recommended tags, we measured

precision, recall and the Normalized Discounted Cumulative Gain (NDCG)

[Baeza-Yates and Ribeiro-Neto, 1999], all in the first k = 5 recommendations12. Preci-

sion is the fraction of the set of recommended tags that is relevant, while recall is the

fraction of the set of relevant tags for an object that were indeed recommended. NDCG,

already defined in Eq. (5.8), considers the order in which tags are recommended, em-

phasizing ranking relevant tags higher [Baeza-Yates and Ribeiro-Neto, 1999].

Specifically, let Y be the set of relevant tags for object o (Y = Yo), or, in the case

of personalized recommendations, for the object-user pair 〈o, u〉 (Y = Yo,u). Let C be

the sorted set of recommendations generated by the method being evaluated, Ck the

top k elements in C, and Ci the ith element in C.

The precision in the first k positions of the ranking, P@k, is defined as:

P@k(C, Y ) =
|Ck ∩ Y |

|Ck|
(6.2)

The recall, in turn, is defined as:

Recall@k(C, Y ) =
|Ck ∩ Y |

|Y |
(6.3)

To assess the diversity of a list of recommended tags, we use three metrics tradi-

tionally used for evaluating search result diversification methods [Clarke et al., 2011;

Dang and Croft, 2012; Santos et al., 2010; Vargas et al., 2012]. Two of them – α-

NDCG and ERR-IA – are the primary evaluation metrics used in the diversity task

of the TREC Web track [Clarke et al., 2012]. They are cascade metrics that penalize

redundancy (and thus also capture the topic-related novelty discussed in Chapter 3)

by modeling the behavior of a user who stops inspecting the ranking once a relevant

tag is observed [Vargas and Castells, 2011]. While α-NDCG incorporates a notion of

12We note that qualitatively similar results of precision, recall and NDCG were also obtained for
larger values of k.
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the expected gain attained by each ranked tag, ERR-IA measures the expected retrieval

performance with respect to multiple topics.

Specifically, in order to define α-NDCG@k, we first define α-DCG@k as:

α-DCG@k(C, o) =
k

∑

i=1

disc(i)×
∑

z∈Zo

J(Ci, z)(1− α)r(i,z,C), (6.4)

where disc is the same discount function used by DCG in Eq. (5.8), and J(Ci, z) is

equal to 1 if the ith candidate returned in C is related to topic z, and 0 otherwise. The

tolerance to redundancy is determined by parameter α, a value in the [0,1] range. In

this thesis, α is set to 0.5, as in many other studies [Clarke et al., 2012; Dang and Croft,

2012; Vargas et al., 2012]. Function r(i, z, C) outputs the number of candidates in C

recommended before the ith position that are related to topic z, that is:

r(i, z, C) =

i−1
∑

j=1

J(Cj, z) (6.5)

The normalized α-DCG@k, α-NDCG@k, is defined as:

α-NDCG@k(C, o) =
α-DCG@k(C, o)

IADCG@k
, (6.6)

where IADCG@k is the value obtained for α-DCG@k when there is no redundancy,

that is, all topics associated with the object appear only once in the ranking.

ERR-IA@k, as implemented for the task of the TREC Web track [Clarke et al.,

2012], is defined similarly to α-NDCG@k. The only difference is that the discount

function disc(i) is replaced by discERR(i) = 1/i.

In addition to α-NDCG and ERR-IA, we also assess the diversity of the recom-

mended tags using (sub)topic recall—S-Recall [Zhai et al., 2003], which quantifies the

fraction of unique topics associated with the object that are covered by the top ranked

tags.

To assess novelty, we use the Average Inverse Popularity in the top k recommen-

dations, defined in Eq. (5.13) in Section 5.5.1.

All diversity metrics use the probability of a topic z given a tag t, Pr(z|t), to

estimate whether a recommended tag is related to a given topic of the object. We

consider that a tag t is related to topic z if Pr(z|t) > Pr(z) (recall Section 4.3). All

metrics are computed over the top k tags in the recommendation list, with k=5 as

in [Belém et al., 2011].

We evaluate novelty and diversity orthogonally to relevance. Thus, a tag con-
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sidered irrelevant might contribute with higher novelty or diversity. Alternatively,

we could embed relevance in the diversity/novelty metric such that only relevant

tags could contribute to raise these aspects. We opted for an orthogonal assessment

of novelty/diversity because, unlike in previous diversification efforts in other con-

texts [Clarke et al., 2012], we lack per-topic relevance judgements for tags. Instead, we

estimate how related the tags are to a topic using training data, and use this estimation

in the diversity metrics.

We make a final note regarding our experimental setup. One might argue that

the diversity and novelty improvements obtained by our methods over the baselines

are expected because: (1) the diversifier exploits the same source of topics used to

evaluate diversity, and (2) both novelty evaluation and attributes exploit the tag pop-

ularity in the dataset (estimated using training data). However, we argue that this

is a valid approach because topic information is commonly available in objects in the

form of categories or can be automatically generated by clustering strategies, such as

LDA. In both ways it is possible to identify which topics are relevant for each object.

Popularity information can be also computed, and it is, indeed, correlated with novelty

and discriminative power. The surprising aspect is the possibility of obtaining large

gains in diversity and novelty with little loss (if any) in relevance, as we will discuss in

Chapter 7.

Besides that, one might argue that tags considered irrelevant13 should not con-

tribute to raise diversity, despite being related to a topic of the object. We note however

that we tuned all methods to maximize the average diversity across all objects, without

harming relevance (on average). After this tuning, we observed that a tag considered

irrelevant contributed to amplify novelty or diversity for only a small fraction of the

objects (less than 4%). Thus, we did indeed filter out the vast majority of such cases.

6.3 Parameterization

Our evaluation starts with a series of experiments with the validation set V to

determine the best parameter values for each method in each dataset. For the relevance-

driven methods, the best choice was defined as the one that maximizes NDCG@5 in

the validation set. Similar results are obtained if any of the other considered relevance

evaluation metrics are maximized. For the other methods, we considered the trade-off

among relevance, novelty and diversity, choosing the parameter values that allowed the

higher gains in novelty and diversity while keeping a small impact (if any) in relevance.

13Note that a tag may be relevant even if it is not in the expected answer.
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Following, we summarize the parameterization of all tag recommendation strategies.

6.3.1 Relevance-Driven Strategies

Object-Centered Tag Recommendation Methods

We found that, for both Sum+ and Sum+DP (for DP equal to TS, TF , wTS

and wTF ), the best parameter values are kr=kx=kc=5. We also set ks, parameter of

the Stab metric, equal to 5. We tested these parameters sequentially for values equal

to 1, 5, 10, 20 and 50. Best results for α varied between 0.8 and 0.99, depending

on the dataset. For both LATRE and LATRE+DP (as well as for the L2R-based

strategies), we set ℓ=3, as in [Menezes et al., 2010]. Parameters σmin and θmin directly

impact the number of association rules generated, thus affecting the processing time

of the recommender. We searched for a good tradeoff between processing time and

recommendation precision. The lower σmin (or θmin), the larger the number of rules,

thus, the longer the processing time. In general, precision decreases as σmin and θmin

increase. Thus, we chose σmin and θmin so that the precision loss, with respect to

results for σmin=θmin=0, is under 3%.

We now turn to the parameterization of the L2R object-centered tag recommen-

dation methods. We found our RF -based tag recommender to be very insensitive to

parameterization. For both cold start and non cold start scenarios, the results obtained

in our cross-validation experiments using different numbers of trees per bag (T=1, 10,

100) are statistically tied (with 95% confidence) for all datasets. We thus set T=1,

due to the lower cost. Different sizes for the bootstrap sample nb also led to the same

results, and we set nb=300. We also fixed the number φ of all attributes selected in each

split of the tree according to the default value originally suggested in [Breiman, 2001],

i.e φ = ⌊log2(M+1)+0, 5⌋, where M is the total number of attributes. Despite the fact

that this default value has been reported to work well in practice [Liaw and Wiener,

2002], we verified that other values ranging from 0.25M to 0.75M do not significantly

impact our results. The only parameter that (slightly) impacts results is the number

of terminal nodes l. We used cross validation to determine the best l among values

from 10 to 1000, finding that the best choice is l=1000 for all datasets.

The number of leaves l also impacts MART and λ-MART , the other tree-based

approaches. We experimented with l between 2 and 20, finding l=5 as the best choice

for all datasets. Since the results obtained with different number of iterations (i =

1500, 3000, 6000) are statistically tied in all MART and λ-MART experiments, we set

i=1500 in all experiments due the lower cost. We also varied learning rate lr between

0.0001 and 0.2, finding that the best choice was 0.1 for all datasets. Greater values for
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both l and lr do not improve effectiveness, and make these methods very inefficient.

For ListNet, our results were not very sensitive to the lr parameter. We tested

values ranging from 10−7 to 10−1, finding that lr = 10−5 always led to the best results.

We also varied the number of iterations i between 10 and 103, finding, as best choices,

i = 160 for MovieLens, i = 10 for YahooVideo, and i = 40 for the other datasets.

Similarly, we tested ten values of i between 102 and 103 for RankBoost and AdaRank.

For AdaRank, i = 300 was the best choice in most datasets, except for YouTube, where

i = 100 was the best value. For RankBoost, the best values varied according to the

dataset: it was set to 500 in Bibsonomy, 700 in LastFM and 300 in the other datasets.

Regarding LATRE+wTS, RankSVM and GP , we adopted the same best pa-

rameter values reported in [Belém et al., 2011] for LastFM, YouTube and YahooVideo,

since the datasets are the same. For MovieLens and Bibsonomy, which were not in-

cluded in that work, we follow the same methodology. Using cross-validation in V, we

found j=100 as the best cost for RankSVM , and we used the linear kernel. For GP , we

set n=200 and g=200 (as in [Belém et al., 2011]), k = 2, d = 7, pc = 0.6 and pm = 0.1,

as usually done in the literature [Banzhaf et al., 1998]. Finally, for LATRE+wTS, the

best parameter values are α=0.9 for Bibsonomy and α = 0.95 for MovieLens. We set

ℓ=3 for the metric Sum (for all methods), as in [Belém et al., 2011].

In the cold start scenario, we tested both KNN and KNNsynt using the following

values for the number K of nearest neighbors: 1, 5, 10, 20, 100, 1000. For both

methods, precision reached its maximum value at k=100, and did not improve for

higher values. Thus, we used k=100 for all neighborhood based methods. For KNNsynt ,

we also varied the number of initial candidate tags r in {1, 5, 10, 20, 100, 1000}, finding

that the best value is r=5 for all datasets. In Section 7, we will provide a more

detailed analysis of this parameter. For the threshold minfreq used to filter out possibly

noisy syntactic patterns, we set minfreq=10, after noticing that a more aggressive

filter (i.e., minfreq=100) reduces tag recommendation effectiveness. For the ranking

aggregation strategy, KNNsynt + RFsynt , we varied the weighting parameter a in the set

{0, 0.1, 0.2, ..., 1}. The best choice was a = 0.8 for MovieLens and Bibsonomy datasets,

and a = 0.6 for the LastFM dataset.

We summarize our parameterization of all relevance-driven object-centered meth-

ods in Table 6.2.

Personalized Tag Recommendation Methods

For the personalized tag recommendation strategies, the parameters in common

with the object-centered methods (both heuristic and L2R-based methods) were set
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with the same best values discussed in the previous section (shown in Table 6.2).

Moreover, we set the descriptive power metric DP=wTS in the experiments with

heuristics Sum+DP+UF and LATRE+DP+UF , and their variants Sum+
uDP+UF

and LATREu+DP+UF , since wTS was the most promising descriptive power metric

according to our findings.

Table 6.2. Best parameter values for the object-centered relevance-driven tag
recommendation methods.

Method Parameter Bibsonomy LastFM MovieLens YahooVideo YouTube

Sum+ kr, kx, kc, ks 5 5 5 5 5
and ℓ 1 1 1 1 1

extensions σmin 1 2 1 2 1
θmin 0.1 0.2 0.1 0.2 0.1

LATRE ℓ 3 3 3 3 3
and σmin 1 2 1 2 1

extensions θmin 0.1 0.2 0.1 0.2 0.1
Sum+DP α 0.9 0.95 0.9 0.8 0.8

LATRE+DP α 0.9 0.99 0.95 0.9 0.9

GP

n 200 200 200 200 200
g 200 200 200 200 200
k 2 2 2 2 2
d 7 7 7 7 7
pc 0.6 0.6 0.6 0.6 0.6
pm 0.1 0.1 0.1 0.1 0.1
s 500 500 500 500 500

RankSVM
kernel linear linear linear linear linear

j 100 100 100 100 100

RF and RFt

T 1 1 1 1 1
φ 4 4 4 4 4
l 1000 1000 1000 1000 1000
nb 300 300 300 300 300

RankBoost i 500 700 300 300 300
l 5 5 5 5 5

MART lr 0.1 0.1 0.1 0.1 0.1
i 1500 1500 1500 1500 1500
l 5 5 5 5 5

λ-MART lr 0.1 0.1 0.1 0.1 0.1
i 1500 1500 1500 1500 1500

AdaRank i 300 300 300 300 100
ListNet i 40 40 160 10 40

lr 10−5 10−5 10−5 10−5 10−5

KNN, KNNsynt K 100 100 100 - -
KNN r 100 100 100 - -

KNNsynt r 5 5 5 - -
RFsynt+KNNsynt a 0.8 0.6 0.8 - -

The best values of parameter β, used by heuristics Sum+DP+UF and

LATRE+DP+UF , and their variants, are shown in Table 6.3. These values allow

us to compare the contribution of the UF metric for personalized recommendation

purposes. For example, considering Sum+
uwTS+UF strategy, we found that setting β

according to Table 6.3 leads to improvements in P@5 of up to 10% in LastFM and up

to 7% in Bibsonomy and YouTube, with respect to results obtained with β=1 (that

is, the weight assigned to UF equal to 0). The improvements are larger in LastFM
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Table 6.3. Best parameter values for personalized relevance-driven tag recom-
mendation methods. Other parameters are fixed as in Table 6.2.

Method Parameter Bibsonomy LastFM MovieLens YouTube

Sum+DP+UF β 0.3 0.1 0.2 0.4
Sum+

uDP+UF β 0.3 0.1 0.3 0.4
LATRE+DP+UF β 0.5 0.9 0.5 0.7
LATREu+DP+UF β 0.5 0.7 0.5 0.7

PITF

δ 64 64 64 64
s 100 100 100 100
λ 0.01 0.01 0.01 0.01
τ 50 50 50 50

probably due to the higher collaborative nature of tags in this application. That is,

in LastFM any user has permission to assign tags to an object, whereas in YouTube,

only the content publisher has this permission. In Bibsonomy, tags are also collabora-

tively created, but there is a lower level of activity in this application when compared

to LastFM. Thus, LastFM presents a richer tag assignment history, which benefits all

personalized recommendation methods. This fact reflects also on the best choices for

β, whose values for LastFM and Bibsonomy are smaller than for YouTube in several

cases. Indeed, the importance given to the UF metric in LastFM is slightly higher

than in the other two applications, particularly when Sum+ is used.

The parameters of the PITF baseline were set as following. Similarly to

[Rendle and Schmidt-Thie, 2010], we set the factorization dimension δ=64, and the

sample size s=100. We tested two different values for the learning rate λ, namely,

0.05 and 0.01, obtaining the best results for the smaller value. Moreover, as the algo-

rithm converges before 50 iterations in our experiments, we set this value for τ . These

parameter values are also shown in Table 6.3.

6.3.2 Novelty/Diversity Promotion Strategies

For GPrnd, we set α=β, varying both at the same time14, in the [0,0.6] interval.

These parameters capture the tradeoff between relevance and the combination of nov-

elty and diversity. Larger values of α (or β) lead to great losses in relevance. The

value that lead to the best trade-off among relevance, diversity and novelty15 is 0.1 for

LastFM and MovieLens and 0.25 for Bibsonomy, YahooVideo and YouTube datasets.

For our re-ranking strategies, xTReD and xTReND , we set the number of po-

sitions of the ranking to be diversified τ=25, for efficiency reasons and because the

tags in the top positions are much more likely to be selected (and visualized by the

14The results obtained following this approach are not worse than the best results when we set α=0 (thus

removing the novelty component AIP ) and varied only β.
15The best results were chosen in terms of α-NDCG for diversity, but the best parameter values are the

same for the other metrics.
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user) than lower ranked tags. Our objective with xTReD is also to maximize diver-

sity without harming relevance, while xTReND aims to maximize both novelty and

diversity without diminishing relevance. Thus, we performed a grid search to find the

best values for λ, α and β (the tuning parameters) as well as for the number of topics

nZ generated by LDA, such that diversity and novelty (in the case of xTReND) are

maximized without hurting relevance by more than a factor of ǫ%. We varied λ and β

in 0, 0.05, 0.1, 0.2, ..., 0.9, 0.95, α in 0, 0.001, 0.005, 0.01 and 0.116. For each dataset,

we also experimented with the following values of nZ : 5, 10, 100, and the number of

predefined categories present in the dataset. We selected the best parameter values by

setting ǫ=4%. Finally, for LDA, we set the number of iterations of the Gibbs sampling

at m=150, as suggested by the pLDA tool. The parameter configuration of LDA and

all methods that promote novelty/diversity is shown in Table 6.4.

Table 6.4. Best parameter values for each novelty/diversity promotion tag rec-
ommendation method.

Method Param. Dataset
Bibsonomy LastFM MovieLens YahooVideo YouTube

GPrnd α, β 0.25 0.1 0.1 0.25 0.25
xTReD (w/ categories) λ - 1 1 - 0.9

xTReD (w/ latent topics) λ 0.7 0.9 0.8 0.8 0.7
xTReND (w/ categories) α - 0.001 0.01 - 0.01

β - 0.95 0.9 - 0.8
xTReND α 0.005 0.001 0.005 0.005 0.001

(w/ latent topics) β 0.7 0.9 0.8 0.8 0.7

LDA
nZ 10 10 19 100 5
m 150 150 150 150 150

xTReD and xTReND

(w/ categories and τ 25 25 25 25 25
latent topics)

6.4 Summary

In this chapter, we presented the methodology we adopted to evaluate our tag

recommendation methods. We described the datasets obtained from five Web 2.0

applications, the evaluation measures and the parameter setup of our methods. We

also described the LDA technique exploited here to generate topics to be employed the

same way as categories, particularly by the strategies that consider topic diversity. In

the next chapter, we present our experimental results.

16Values larger than 0.1 were very detrimental to relevance.
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Experimental Results

In this chapter, we present the experimental results obtained from the evalua-

tion of our tag recommendation strategies. Recall from Chapter 1 the main research

questions that drive this study:

RQ1: Can we improve the relevance of the recommended tags by means of a combination

of tag quality attributes?

RQ2: How can we generate and rank candidate tags in a cold start scenario in which

there are no previously available tags?

RQ3: How can we extend the proposed methods to provide personalized recommenda-

tions?

RQ4: Can we improve novelty and diversity of tag recommendation, while keeping the

same levels of relevance?

We start focusing on the evaluation of the relevance of tag recommendations

provided by relevance-driven methods (Section 7.1), showing the effectiveness of L2R-

based strategies in non-cold start (RQ1 ) and cold start scenarios (RQ2 ). Next, keeping

the focus on relevance, we evaluate personalized tag recommendation strategies (RQ3 ).

Finally, to answer RQ4, we evaluate all three aspects of the methods that consider

novelty and diversity (Section 7.2), comparing them with the best relevance-driven

strategy (RQ1 ). All results presented here were obtained in the test sets, using the

best parameter values found in the validation set, as explained in Section 6.3.

7.1 Relevance Driven Methods

In this section, we address the topics of our research represented by RQ1 - RQ3.

Regarding RQ1, we compare different L2R approaches and heuristics for the object-

centered (Section 7.1.1) and personalized (Section 7.1.4) tag recommendation tasks,

91
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while we address the specific scenario of RQ2 in Section 7.1.3. Regarding RQ3, we

compare our new personalized tag recommendation methods with a state-of-the-art

baseline (Section 7.1.4), and we show the benefits of personalization in tag recommen-

dation (Section 7.1.5).

7.1.1 Object-Centered Tag Recommendation Results

We discuss the most relevant results of our 16 object-centered tag recommenda-

tion methods (8 heuristics and 8 L2R-based strategies), comparing them against the 3

baselines. Table 7.1 shows average P@5 results for all methods and datasets. Average

Recall@5 and NDCG@5 are shown in Tables 7.2 and 7.3, respectively.

Table 7.1. Object-centered tag recommendation: average P@5 results and 95%
confidence intervals (best results within each block - baselines, heuristics, and
L2R-based strategies - in shaded entries; best overall results in bold).

Strategy Bibsonomy LastFM MovieLens YahooVideo YouTube

Sum
+ 0.346 ± 0.003 0.411 ± 0.001 0.308 ± 0.011 0.484 ± 0.003 0.245 ± 0.002

LATRE 0.375 ± 0.003 0.405 ± 0.001 0.299 ± 0.009 0.608 ± 0.003 0.285 ± 0.004
CTTR 0.307 ± 0.003 0.288 ± 0.002 0.167 ± 0.006 0.467 ± 0.004 0.435 ± 0.002

Sum
+
TF 0.427 ± 0.002 0.404 ± 0.002 0.328 ± 0.004 0.643 ± 0.003 0.462 ± 0.001

Sum
+
TS 0.426 ± 0.002 0.418 ± 0.002 0.326 ± 0.003 0.673 ± 0.004 0.471 ± 0.002

Sum
+
wTF 0.431 ± 0.002 0.404 ± 0.002 0.328 ± 0.005 0.666 ± 0.002 0.490 ± 0.002

Sum+wTS 0.430 ± 0.003 0.417 ± 0.002 0.326 ± 0.004 0.707 ± 0.002 0.502 ± 0.003
LATRE+TF 0.433 ± 0.003 0.412 ± 0.001 0.309 ± 0.010 0.688 ± 0.002 0.465 ± 0.003
LATRE+TS 0.435 ± 0.002 0.398 ± 0.002 0.315 ± 0.010 0.716 ± 0.003 0.467 ± 0.003
LATRE+wTF 0.440 ± 0.003 0.408 ± 0.001 0.308 ± 0.010 0.718 ± 0.002 0.494 ± 0.003
LATRE+wTS 0.438 ± 0.002 0.401 ± 0.002 0.314 ± 0.008 0.733 ± 0.003 0.489 ± 0.003
RankSVM 0.456 ± 0.003 0.419 ± 0.002 0.346 ± 0.006 0.754 ± 0.002 0.517 ± 0.003

GP 0.441 ± 0.009 0.450 ± 0.006 0.363 ± 0.004 0.755 ± 0.005 0.520 ± 0.002
RankBoost 0.451 ± 0.003 0.424 ± 0.002 0.366 ± 0.002 0.763 ± 0.003 0.517 ± 0.002

RF 0.500 ± 0.003 0.494 ± 0.001 0.386 ± 0.006 0.797 ± 0.002 0.543 ± 0.002
MART 0.495 ± 0.003 0.489 ± 0.001 0.385 ± 0.002 0.792 ± 0.002 0.541 ± 0.001
λ-MART 0.500 ± 0.003 0.493 ± 0.002 0.385 ± 0.003 0.797 ± 0.002 0.546 ± 0.001
AdaRank 0.454 ± 0.003 0.134 ± 0.063 0.180 ± 0.149 0.712 ± 0.010 0.440 ± 0.038
ListNet 0.437 ± 0.006 0.398 ± 0.008 0.316 ± 0.010 0.661 ± 0.003 0.499 ± 0.003

All reported results are averages over 5 folds (test sets). For the GP-based and

RF-based strategies, which are stochastic, each experiment was repeated 5 times. Thus,

results are averages over 25 runs (5 folds, 5 seeds). Tables 7.1-7.3 also show 95%

confidence intervals, indicating that, with that confidence, results do not deviate from

the reported means by more than 3%. For each dataset, the tables are broken into 3

blocks: baselines, heuristics and L2R-based methods. Best results and statistical ties

(according to a 2-sided t-test1 with p-value < 0.05) within each block are shown as

shaded entries. Best overall results (and statistical ties) are shown in bold.

1We also applied the t-test with Bonferroni correction [Abdi, 2007] to control for the family-wise
error rate.
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Table 7.2. Object-centered tag recommendation: average Recall@5 results and
95% confidence intervals (best results within each block - baselines, heuristics,
and L2R-based strategies - in shaded entries; best overall results in bold).

Strategy Bibsonomy LastFM MovieLens YahooVideo YouTube

Sum
+ 0.337 ± 0.003 0.383 ± 0.001 0.253 ± 0.012 0.404 ± 0.003 0.213 ± 0.002

LATRE 0.366 ± 0.003 0.377 ± 0.002 0.238 ± 0.013 0.512 ± 0.002 0.251 ± 0.003
CTTR 0.300 ± 0.002 0.268 ± 0.002 0.121 ± 0.004 0.396 ± 0.003 0.405 ± 0.002

Sum
+
TF 0.418 ± 0.002 0.375 ± 0.002 0.255 ± 0.009 0.557 ± 0.003 0.424 ± 0.001

Sum
+
TS 0.417 ± 0.002 0.389 ± 0.002 0.253 ± 0.009 0.582 ± 0.004 0.432 ± 0.001

Sum
+
wTF 0.422 ± 0.002 0.376 ± 0.002 0.255 ± 0.010 0.579 ± 0.003 0.450 ± 0.002

Sum
+
wTS 0.422 ± 0.002 0.389 ± 0.002 0.253 ± 0.010 0.613 ± 0.002 0.461 ± 0.002

LATRE+TF 0.424 ± 0.003 0.385 ± 0.002 0.248 ± 0.013 0.593 ± 0.002 0.427 ± 0.002
LATRE+TS 0.426 ± 0.002 0.375 ± 0.002 0.252 ± 0.016 0.621 ± 0.002 0.431 ± 0.002
LATRE+wTF 0.432 ± 0.003 0.381 ± 0.002 0.247 ± 0.014 0.623 ± 0.002 0.455 ± 0.002
LATRE+wTS 0.430 ± 0.002 0.377 ± 0.002 0.250 ± 0.012 0.637 ± 0.002 0.451 ± 0.002
RankSVM 0.446 ± 0.003 0.390 ± 0.003 0.275 ± 0.008 0.651 ± 0.001 0.474 ± 0.003

GP 0.431 ± 0.009 0.415 ± 0.010 0.280 ± 0.005 0.654 ± 0.004 0.478 ± 0.002
RankBoost 0.441 ± 0.002 0.394 ± 0.002 0.287 ± 0.007 0.657 ± 0.003 0.474 ± 0.002

RF 0.489 ± 0.003 0.460 ± 0.002 0.301 ± 0.011 0.689 ± 0.001 0.498 ± 0.002
MART 0.484 ± 0.002 0.455 ± 0.002 0.300 ± 0.007 0.685 ± 0.002 0.496 ± 0.001
λ-MART 0.489 ± 0.002 0.459 ± 0.002 0.298 ± 0.011 0.690 ± 0.002 0.502 ± 0.001
AdaRank 0.443 ± 0.004 0.152 ± 0.120 0.194 ± 0.105 0.618 ± 0.009 0.408 ± 0.030
ListNet 0.428 ± 0.006 0.374 ± 0.006 0.259 ± 0.012 0.575 ± 0.003 0.459 ± 0.003

Table 7.3. Object-centered tag recommendation: average NDCG@5 results and
95% confidence intervals (best results within each block - baselines, heuristics,
and L2R-based strategies - in shaded entries; best overall results in bold).

Strategy Bibsonomy LastFM MovieLens YahooVideo YouTube

Sum
+ 0.326 ± 0.002 0.405 ± 0.001 0.299 ± 0.013 0.521 ± 0.003 0.257 ± 0.002

LATRE 0.349 ± 0.002 0.398 ± 0.001 0.314 ± 0.010 0.637 ± 0.002 0.298 ± 0.004
CTTR 0.263 ± 0.003 0.265 ± 0.001 0.166 ± 0.006 0.496 ± 0.004 0.450 ± 0.002

Sum
+
TF 0.379 ± 0.002 0.394 ± 0.001 0.337 ± 0.005 0.670 ± 0.003 0.455 ± 0.002

Sum
+
TS 0.378 ± 0.002 0.411 ± 0.001 0.336 ± 0.004 0.695 ± 0.004 0.469 ± 0.002

Sum
+
wTF 0.381 ± 0.002 0.395 ± 0.001 0.336 ± 0.005 0.691 ± 0.003 0.488 ± 0.002

Sum
+
wTS 0.380 ± 0.002 0.411 ± 0.001 0.336 ± 0.005 0.730 ± 0.003 0.506 ± 0.003

LATRE+TF 0.386 ± 0.002 0.403 ± 0.001 0.316 ± 0.010 0.708 ± 0.002 0.460 ± 0.003
LATRE+TS 0.397 ± 0.002 0.387 ± 0.003 0.322 ± 0.012 0.732 ± 0.002 0.467 ± 0.002
LATRE+wTF 0.395 ± 0.002 0.399 ± 0.001 0.315 ± 0.010 0.731 ± 0.003 0.488 ± 0.003
LATRE+wTS 0.397 ± 0.001 0.388 ± 0.003 0.321 ± 0.009 0.744 ± 0.002 0.489 ± 0.002
RankSVM 0.412 ± 0.002 0.407 ± 0.002 0.354 ± 0.007 0.765 ± 0.001 0.515 ± 0.003

GP 0.406 ± 0.006 0.440 ± 0.008 0.388 ± 0.002 0.770 ± 0.004 0.530 ± 0.002
RankBoost 0.444 ± 0.002 0.402 ± 0.002 0.307 ± 0.005 0.696 ± 0.003 0.488 ± 0.002

RF 0.455 ± 0.003 0.469 ± 0.002 0.415 ± 0.005 0.809 ± 0.001 0.553 ± 0.002
MART 0.449 ± 0.003 0.463 ± 0.001 0.411 ± 0.006 0.794 ± 0.002 0.547 ± 0.001
λ-MART 0.455 ± 0.002 0.468 ± 0.002 0.409 ± 0.010 0.802 ± 0.003 0.551 ± 0.002
AdaRank 0.446 ± 0.004 0.160 ± 0.128 0.206 ± 0.110 0.653 ± 0.010 0.419 ± 0.032
ListNet 0.431 ± 0.006 0.380 ± 0.007 0.273 ± 0.012 0.607 ± 0.003 0.472 ± 0.003

We start with two general findings: (1) the improvements obtained with our

methods over the baselines are much more modest in the LastFM dataset, and (2) in

general, the absolute values of the results are lower in the MovieLens dataset. The

former observation can be explained by two factors: (1) there tends to be less overlap

between the contents of title, description and tags associated with the same object on

LastFM [Figueiredo et al., 2012], which leads to a greater concentration of TS (and
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wTS) around small values, making it difficult to distinguish “good” from “bad” terms

using these metrics; and (2) the number of tags per object tends to be smaller in our

LastFM and Bibsonomy datasets (e.g., 48% and 73% of our YahooVideo and YouTube

objects have fewer than 10 tags, against 94% of Bibsonomy objects, 88% of LastFM

objects and 76% of MovieLens objects). These factors limit the benefits from using TS

and wTS and from exploiting co-occurrence patterns among pre-assigned tags in that

dataset. Regarding the second observation, we note that the MovieLens dataset is much

smaller than the others (6,500 objects against at least 140,000 objects in the other 4

datasets), and thus provides a smaller training set to compute tag co-occurrences and

other tag quality attributes. Besides that, the text of the MovieLens descriptions

comprises movie synopsis, which are short and tend to hide part of the movie plot.

This also makes it difficult to distinguish relevant from non relevant candidates based

on statistics such as TF, similarly to what occurs in LastFM dataset.

Next, we turn our attention to the relative performance of specific methods,

starting with the baselines. Consistently with [Menezes et al., 2010], we find that

LATRE outperforms Sum+ in most datasets. The improvements in P@5 reach 26%,

whereas the gains in Recall@5 and NDCG@5 reach 27% and 22%, respectively. LastFM

and MovieLens datasets are exceptions, but the difference between the two methods in

these datasets is under 6% for all evaluation metrics. Moreover, CTTR appears as a

good alternative to LATRE in the YouTube dataset, with improvements of 53%, 61%

and 51% and 48% in average P@5, Recall@5 and NDCG@5, respectively. This occurs

because CTTR exploits the terms of other textual features, while Sum+ and LATRE

are purely based on tag co-occurrences. Next, we discuss the results of our heuristics

and L2R-based strategies.

Unsupervised Heuristics

We find that our best heuristic in each dataset produces gains over the best

baseline of 15% in P@5, considering average results across all datasets. Similarly, the

average gains in Recall@5 and NDCG@5 are 15% and 13%, respectively. However,

taking the best results in any dataset, the improvements reach 20% in P@5, 25% in

Recall@5 and 17% in NDCG@5. Thus, introducing an attribute of descriptive power

can greatly improve tag recommendation effectiveness.

In comparison with CTTR, the improvements in P@5, Recall@5 and NDCG@5

produced by our heuristics reach 88%, 106% and 93%, respectively, and remain quite

impressive even if averaged across all datasets. For example, the corresponding gains

produced by LATRE+wTS , which is one of our best performing heuristics (see below),
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over CTTR, averaged across all five datasets, are 60%, 66% and 62%, respectively.

These results illustrate the benefits of using our descriptive power metrics as well as

exploiting pre-assigned tags. Moreover, the strategy adopted by CTTR to combine the

different dimensions exploited for tag recommendation (i.e., co-occurrences and terms

extracted from textual attributes), which is based on the precision that each dimension

provides separately, may not be the best choice [Lipczak and Milios, 2011]. Indeed, the

same authors later analyzed the potential benefits of introducing a tuning parameter

to combine the different dimensions [Lipczak and Milios, 2011]. However, they did

not propose an explicit recommendation method that uses this parameter. Our new

heuristics use the α parameter that can be adjusted to the dataset (i.e., learned in

a training set), producing better results. Moreover, as we show in Section 7.1.1, our

L2R-based strategies produce further improvements by learning the weights applied to

the different dimensions exploited by our methods and by using a larger set of relevance

metrics.

Among the new heuristics, the most promising ones are LATRE+wTS and

LATRE+wTF , as they yield the best results in most cases. To reach this conclu-

sion, we make two observations. First, for any given descriptive power metric DP (i.e.,

TS , TF , wTS or wTF ), LATRE+DP slightly outperforms Sum+DP in most cases

(up to 4% in P@5, 4% in Recall@5 and 2% in NDCG@5). Thus there is still (modest)

benefits when we exploit more complex association rules, but the inclusion of the tex-

tual features mitigates the difference in effectiveness among our heuristics. In the few

cases where Sum+DP outperforms LATRE+DP , the gains in P@5 are under 4%.

Our second observation is that, comparing all four descriptive power metrics,

wTS tends to yield the best results, followed by wTF , TS and TF . In particular, the

use of wTS in LATRE+wTS , as opposed to the traditional TF metric, leads to gains

of up to 7% in P@5, 6% in Recall@5 and 7% in NDCG@5. This is mainly because

wTS considers that objects are composed of different features which, in turn, may have

different descriptive capacities. TF , in contrast, tends to favor very frequent terms,

even if they appear in a single feature. Such terms are often less relevant than those

appearing across multiple features.

Learning-to-Rank based Strategies

We start by noting that the best L2R-based strategies (i.e., RF and λ-MART )

outperform the best unsupervised heuristic (LATRE+wTS) by up to 29%, 23% and

22% in NDCG, precision and recall, respectively. Thus, although the best heuris-

tic already captures the strongest tag quality evidence, we found that it is possible
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to achieve significant gains over the heuristic by including other attributes. More-

over, these gains are even higher than the gains achieved by previously evaluated L2R

methods [Belém et al., 2011]. They confirm the benefits of exploiting supervised L2R

methods for tag recommendation, allowing an automatic search for a solution that

combines a larger number of attributes when compared to unsupervised heuristics such

as LATRE+wTS .

We now turn our attention to the comparison of the eight L2R-based strategies.

Unlike existing comparisons of different L2R techniques in other domains such as doc-

ument ranking [Gomes et al., 2013], there is a clear winning group of methods (RF ,

MART and λ-MART ) in all 5 datasets, with a slight advantage of two of them (RF

and λ-MART ). The gains in NDCG of the winner methods over the best of the re-

maining L2R techniques considered (i.e., either GP , RankSVM or RankBoost) range

from 4% to 12%. The corresponding gains in precision and recall reach 10% and 11%,

respectively. These results confirm the effectiveness of methods based on an ensem-

ble of decision trees, which are non-linear L2R strategies that have been shown to be

effective and competitive in other studies [Friedman, 2000; Mohan et al., 2011].

The second group of methods is formed by the L2R strategies previously ex-

ploited in tag recommendation: GP , RankSVM and RankBoost . We conjecture that

the results are explained by the following characteristrics of these techniques. GP is

the most flexible strategy, allowing a wider range of types of recommendation func-

tions (any function formed by the considered operators and attributes). However, this

can be also a disadvantage because the search space is larger when compared to the

search space of other methods, making it more difficult to find the best function. On

the other hand, the shape of functions produced by RankSVM is pre-defined by the

kernel function, which was set linear here (as this led to the best results), and thus

all RankSVM -produced functions consist of linear combinations of the attributes. Al-

though RankBoost is composed by simpler weak rankers (defined by single attributes),

it achieved results similar to RankSVM , since its ensemble strategy also produces a

linear combination of the attributes. We conjecture that the superiority of the decision

tree based methods is due to their better capability to distinguish candidate tags which

are non linearly separable. Besides that, RF is a robust method due to the ensemble

technique it exploits (bagging) and due to the higher variability of the generated de-

cision trees (produced with random sampling of training data and attributes), which

makes it more robust against overfitting.

Comparing the general results across different datasets, we note that the best

results are for YahooVideo, while MovieLens (which is considerably smaller than the

other datasets) and Bibsonomy present the worst results. The observed differences are
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possibly due to the number of tags per object, which tends to be smaller in MovieLens

and Bibsonomy than in YahooVideo objects, mas we mentioned above. Moreover,

these results may also be due to differences in tagging behavior: on YahooVideo and

YouTube, tags tend to appear in other textual features of the same object more often

than on LastFM [Belém et al., 2011; Figueiredo et al., 2012] and the other datasets,

which facilitates the recommendation of relevant tags exploiting some of the considered

tag relevance metrics (e.g., wTS).

Regarding efficiency, we found that recommendation time, despite some varia-

tion across methods, is under 1.3 seconds2, on average, for all L2R techniques, in a

worst case scenario in which no precomputed data is available in cache. Thus, this

recommendation time is reasonably short for an interactive task. Moreover, in terms

of total recommendation time (which includes the attribute extraction cost), the use of

several of the analyzed L2R strategies only incur a small additional cost (under 3%) in

comparison to the best heuristic, LATRE+wTS . We note that, in practical terms, the

difference in the results between the L2R methods and the best heuristic-based meth-

ods is of about one tag, considering the top k=5 recommendations. However, we argue

that the use of L2R is worth it considering the low additional cost in recommendation

time.

In sum, recalling the first topic of our investigation (RQ1 ), we found that (1)

L2R based strategies are feasible and can significantly outperform state-of-the-art un-

supervised heuristics, and (2) RF , λ-MART and MART are the best L2R strategies

out of the eight analyzed techniques, providing further gains over previously evaluated

L2R-based strategies.

7.1.2 Analysis of Our New Syntactic Attributes

Our goal in this section is to explore several structural properties of texts asso-

ciated with Web 2.0 objects, such as the relative position of words that are used as

tags and various syntactic properties. We aim at identifying those properties that can

better distinguish between words that have been assigned as tags to the objects from

other words (here referred to as non-tags), thus identifying new evidence of potentially

good candidate tags.

Specifically, we focus on the object’s description, using the term “tag” to refer

to a word, extracted from the object’s description, which has also been assigned as a

tag to it. We measure the relative position of tags in the description, and we analyze

syntactic patterns of each sentence separately. For each sentence, we first build a corre-

2All experiments were performed on a 16-core 2.40GHz Intel(R) Xeon processor, with 50GB RAM.
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sponding syntactic dependency tree, labeling each token with their PoS and syntactic

functions. We note that statistics for trivially irrelevant tokens, such as punctuation

and stopwords, were disregarded from this analysis.

Only some of the aforementioned characteristics have been exploited in keyword

extraction/tag recommendation (i.e., PoS and relative position [Hulth, 2003]). The

other properties, such as the syntactic function and the path (in the syntactic tree)

between a word and the root of the corresponding sentence, have not been analyzed or

exploited in tag recommendation yet.
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Figure 7.1. Distribution of the relative position of tags and non-tags in the
description’s text.

Table 7.4. PoS label of tags and non-tags (%).

Bibsonomy LastFM MovieLens

PoS tags non-tags tags non-tags tags non-tags

noun 78.5 41.7 70.3 28.2 73.5 32.0
adjective 15.3 12.7 20.3 9.0 16.2 12.3
verb 5.5 13.9 6.4 14.7 8.5 18.0
other 0.7 31.7 3.0 48.1 1.8 37.7

Table 7.5. Syntactic function of tags and non-tags (%).

Bibsonomy LastFM MovieLens
Syntactic function tags non-tags tags non-tags tags non-tags
object of a preposition 27.2 14.6 15.6 17.3 27.0 14.5
compound nouns 24.8 15.2 32.3 16.9 19.5 16.8
adjectival modifier 16.2 12.6 20.6 8.0 16.3 12.2
direct object 8.5 5.8 6.1 5.6 10.6 7.2
nominal subject 6.2 5.3 2.9 7.0 7.6 7.0
conjunction 5.5 5.6 6.8 7.8 3.4 5.3
nominal passive subj. 2.8 1.6 0.8 1.0 0.6 0.7
other 8.8 39.3 14.9 36.4 14.9 36.3

Figure 7.1 shows the cumulative probability distribution of the relative position

of the first occurrence of a token (tag or non-tag) in LastFM descriptions. The relative

position of a token w in a description T is defined as B(w, T )/|T |, where B(w, T ) is the
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number of tokens that appear before w in T and |T | is the total number of tokens in T .

If a token appears multiple times in T , we consider only the relative position of its first

occurrence. In all three datasets, tags have a notably higher tendency to appear in the

beginning of the object’s description when compared to non-tags. For example, 48% of

the LastFM tags that appear in the object’s descriptions are located in the 10% initial

part of the text, while only 19% of the non-tags are located within the same interval.

This occurs because the most important words in a text (potentially good tags) tend

to be introduced earlier (e.g., in the introductory sentences or paragraphs).

Now we turn our attention to the classes of words (PoS labels) that are more

often used as tags. Table 7.4 shows the percentages of tags and non-tags that are

classified as each PoS label. We note that the vast majority of tags (ranging from 70%

up to 79%) are composed by nouns, followed by adjectives (15-20%) and verbs (5-9%).

The distribution among non-tags is quite different, with other PoS labels covering a

large fraction of the words (almost half in LastFM). Despite such differences, we found

that the probability of a word being used as tag given its PoS label is relatively small,

falling between 5% and 9% in our datasets. Thus, despite the differences in the PoS

label distributions, the use of this probability solely may not be a very strong evidence

to identify tags among all words. Thus, it is necessary to consider other features as

well.

With that in mind, we also analyze the syntactic function (e.g., direct object,

nominal subject) of tags and non-tags. Table 7.5 shows the percentages of tags and

non-tags with each syntactic function. We note that the syntactic function of tags is

concentrated in a few functions (although this concentration is smoother when com-

pared to the PoS distribution). The most common functions are object of a preposi-

tion, compound noun, adjectival modifier and direct object. These syntactic functions

are consistent with the aforementioned PoS labels (e.g., nouns for objects and nominal

subjects, adjective for adjectival modifiers). We note that, for all datasets, tags are

more often part of the sentence’s object than they are part of the nominal subject. This

is particularly noticeable in LastFM, where many nominal subjects are artist names,

which do not carry any new information about the artist, and thus are not very useful

tags.

Finally, in Table 7.6, we also analyze frequent patterns of syntactic dependencies

between tags and the root of the sentences where they appear. We aim at looking not

only at the syntactic properties of isolated words, but also at the “connections among

words” in the syntactic tree. Specifically, we compute the probability of a word being

used as tag, given the path from the given word to the root of the dependence tree

where it appears. Table 3 shows examples of frequent patterns and their probabilities
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Table 7.6. Examples of frequent paths between a tag and the root of the sentence.

Bibsonomy LastFM MovieLens

path Pr(tag|path) path Pr(tag|path) path Pr(tag|path)
programming - used 1.00 jazz - pianist - is 1.00 adaptation - directs 0.29

programming - applied 1.00 blues - singer - was 1.00 based 0.23
neuroscience - literature 1.00 death - metal - band - is 0.96 comedy - in - stars 0.20

games - are 1.00 heavy - band - was 0.93 adapted 0.18
diploma - thesis - from 1.00 rock - singer - is 0.92 drama - follows 0.14
analysis - on - papers 1.00 rock - musician - is 0.92 way - find 0.10

book - constitutes 0.96 heavy - metal - band - is 0.91 thriller - stars 0.10

in all datasets.

We note that the most frequent patterns in LastFM correspond to sentences in

the form “X is/was/are/were a Y band/artist/etc”, where Y is a tag that characterizes

the given artist, usually defining its music genre or style. Such phrases generate paths

in the form “Y - band/artist/etc - is/was/are/were” in the dependency trees. In Movie-

Lens, the most frequent patterns are usually related to the movie genre, or specifies

that the movie was based on a book/novel/etc. In Bibsonomy, they specify the type of

publication (book, diploma thesis, paper, etc) and its main subject (neuroscience, pro-

gramming, etc). The high values of probabilities Pr(tag|path), when compared to the

other analyzed characteristics (e.g., PoS labels and syntactic functions) reveals a good

potential for these probabilities to be used as new attributes for tag recommendation,

specially for small texts, in which statistical properties of words such as TF may not

be discriminative enough.

7.1.3 Cold Start Scenario Evaluation

In this section, we evaluate our solutions in the specific cold start scenario. Our

goal is to evaluate the benefits of the inclusion of our syntactic attributes and of

exploiting the neighborhood of the target object in this scenario.

We have already shown, in Section 7.1.2, that indeed, the distributions of the

investigated syntactic properties are essentially different for tags and non-tags. Next,

we compare the effectiveness of tag recommendation methods in the cold start sce-

nario, starting from the baselines in Section 7.1.3. After that, we compare results of

state-of-the-art tag recommenders with and without the inclusion of our new syntactic

attributes 7.1.3. We estimate the relative importance of all tag quality attributes in

Section 7.1.3. Finally, in Section 7.1.3, we show results of our neighborhood expansion

approach.

Before showing the results for the cold start scenario, it is worth mentioning that

we also tested the effectiveness of the syntactic attributes in a non cold start scenario

(that is, when some initial tags are available). Towards this goal, we compared results
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Table 7.7. Average P@5, R@5 and NDCG@5 results and 95% confidence inter-
vals. Best results and statistical ties in bold.

MovieLens LastFM Bibsonomy

P@5
CTTR 0.170 ± 0.005 0.282 ± 0.003 0.299 ± 0.002
KNN 0.189 ± 0.009 0.407 ± 0.006 0.358 ± 0.002

PoS + TFIDF 0.226 ± 0.006 0.292 ± 0.005 0.246 ± 0.002
RankSVM 0.176 ± 0.012 0.299 ± 0.048 0.367 ± 0.003

RF 0.260 ± 0.006 0.400 ± 0.003 0.379 ± 0.002

RankSVMsynt 0.241 ± 0.010 0.331 ± 0.002 0.369 ± 0.003
RFsynt 0.303 ± 0.006 0.413 ± 0.004 0.380 ± 0.002
KNNsynt 0.283 ± 0.007 0.420 ± 0.005 0.367 ± 0.003

RFsynt +KNNsynt 0.314 ± 0.006 0.430 ± 0.005 0.389 ± 0.003

Recall@5
CTTR 0.123 ± 0.004 0.225 ± 0.003 0.292 ± 0.002
KNN 0.095 ± 0.006 0.232 ± 0.002 0.308 ± 0.002

PoS + TFIDF 0.112 ± 0.003 0.163 ± 0.003 0.214 ± 0.001
RankSVM 0.085 ± 0.008 0.168 ± 0.030 0.318 ± 0.002

RF 0.129 ± 0.003 0.232 ± 0.002 0.328 ± 0.002

RankSVMsynt 0.118 ± 0.007 0.182 ± 0.001 0.319 ± 0.002
RFsynt 0.155 ± 0.004 0.239 ± 0.002 0.329 ± 0.002
KNNsynt 0.147 ± 0.008 0.245 ± 0.003 0.317 ± 0.002

RFsynt +KNNsynt 0.162 ± 0.007 0.250 ± 0.003 0.336 ± 0.002

NDCG@5
CTTR 0.167 ± 0.004 0.278 ± 0.004 0.259 ± 0.002
KNN 0.197 ± 0.011 0.443 ± 0.006 0.363 ± 0.003

PoS + TFIDF 0.236 ± 0.007 0.335 ± 0.006 0.261 ± 0.002
RankSVM 0.182 ± 0.017 0.322 ± 0.049 0.367 ± 0.003

RF 0.273 ± 0.008 0.440 ± 0.003 0.379 ± 0.002

RankSVMsynt 0.249 ± 0.011 0.358 ± 0.003 0.369 ± 0.003
RFsynt 0.320 ± 0.006 0.454 ± 0.004 0.381 ± 0.003
KNNsynt 0.303 ± 0.007 0.449 ± 0.006 0.365 ± 0.003

RFsynt +KNNsynt 0.329 ± 0.007 0.464 ± 0.005 0.387 ± 0.003

of the best L2R strategy with the whole set of attributes, except the syntactic ones

(RF ) with the same strategy including these attributes (RFsynt), both exploiting co-

occurrences with the available tags. We found that results for RF and RFsynt in this

specific scenario are statistically tied, for all datasets and evaluation metrics. This

occurs because tag co-occurrences with the initial tags provide strong candidate tags

and tag quality evidence, reducing the need for complementary evidence such as our

syntactic attributes to distinguish relevant from non relevant candidates. However, for

the cold start scenario, when these co-occurrences cannot be exploited, our syntactic

attributes provide clear benefits, as we will present next.
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Effectiveness of the Baselines in Cold Start

Table 7.7 shows average P@5, Recall@5 and NDCG@5 for all methods in the three

datasets, along with corresponding 95% confidence intervals. We start our analysis

comparing the results of the baselines (first five rows in Table 7.7, for each dataset and

evaluation metric). First, we turn our attention to the non-supervised approaches, each

one focused on different evidence of tag quality, namely, CTTR and KNN . In general,

KNN is the strongest non-supervised method, with gains of up to 44% in P@5 over

CTTR. This is probably because KNN takes tags (originated from similar objects) as

candidates, as opposed to the other strategy, which exploit other textual features of

the target object, which are noisier (carry a larger number of irrelevant terms) than

tags [Figueiredo et al., 2012], besides co-occurrences of these words with tags.

Out of all baselines, the strategy with the best overall performance is the RF

based approach, with gains of up to 15% in P@5, 5% in Recall@5 and 15% in

NDCG@5 over the second best baseline, which varies according to each dataset (KNN

in MovieLens, PoS+TFIDF in LastFM and RankSVM in Bibsonomy). In comparison

with PoS+TFIDF, RF results present 58%, 56% and 49% higher P@5, Recall@5 and

NDCG@5, respectively. PoS+TFIDF is limited to candidate tags extracted from the

target object’s description, and exploit only word frequency and PoS labels. In compar-

ison with CTTR, RF produces gains of up to 55%, 15% and 66% in P@5, Recall@5 and

NDCG@5, respectively, because RF exploits a larger set of candidate tags (not only

extracted from co-occurrences and from the textual features of the target object, as

performed by CTTR, but also from similar objects). Moreover, RF exploits more tag

quality attributes, and automatically combines them using an L2R technique. CTTR,

instead, focuses only on frequency statistics of words extracted from the target object

and co-occurrences between tags and these words, and does not exploit L2R.

Adding new Attributes Related to Syntactic Properties

Now we compare RFsynt and RankSVMsynt results with those produced by the

baselines, in order to assess the benefits of including our new syntactic attributes. We

note that RFsynt outperforms RF in two of our datasets (MovieLens and LastFM),

with gains of up to 16% in P@5, 20% in Recall@5 and 17% in NDCG@5. The same

conclusions hold for the comparison between RankSVMsynt and RankSVM . The former

outperforms the latter with gains of up to 37% in P@5, 38% in Recall@5 and 37% in

NDCG@5.

This attests the capacity of our new syntactic structure tag quality attributes

to improve tag recommendation, specially in a cold start scenario in which tag co-
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occurrences with previously assigned tags (in the target object) cannot be exploited.

Another characteristic of the studied datasets, particularly MovieLens and LastFM, is

that the (user-generated) descriptions are usually short and may present low quality,

making it difficult to rank candidates solely by statistical properties of words such as

TF and IDF, as performed by RF or RankSVM . On the other hand, even short and

low quality texts may present some syntactic properties that can be used as evidence

to generate and rank candidate tags, favoring RFsynt and RankSVMsynt .

In the Bibsonomy dataset, RFsynt and RF results are statistically tied (as well as

RankSVMsynt and RankSVM), probably because the descriptions (abstracts of publi-

cations) tend to present higher quality (compared to MovieLens and LastFM objects).

These descriptions usually present an adequate size, and the most important key-

words of the text tend to re-appear in the different textual features (title, abstract)

[Figueiredo et al., 2012]. Thus, word statistics such as TF and wTF are effective in

this dataset, making the new proposed attributes less essential to discriminate tags

from other words. Comparing the results for MovieLens and LastFM datasets, gains

in MovieLens are considerably higher, mainly due to the fact that MovieLens descrip-

tions are usually shorter than LastFM’s, and consist of movie synopsis, which tend to

hide part of the plot. These characteristics make the use of syntactic properties more

important to identify and rank tags in MovieLens.

Comparing our best method against PoS+TFIDF (which is the only baseline that

exploits a syntactic attribute (word’s PoS), RFsynt greatly outperforms PoS+TFIDF,

with gains of up to 55% in P@5, 57% in Recall@5 and 46% in NDCG@5, in all datasets.

This is due to two main factors: (1) RFsynt exploits other 11 syntactic patterns that

are not exploited by PoS+TFIDF, and (2) RFsynt extracts and rank candidate tags

not only from the target object’s description (as performed by PoS+TFIDF), but also

from similar objects and from tags that co-occur (in training data) with words in the

other textual features of the target object, making RFsynt a more robust and complete

method.

Thus, we found that our syntactic attributes are responsible for significant im-

provements in at least two datasets, in which statistical properties of the candidate

tags, in isolation, cannot discriminate relevant from non-relevant candidates.

Attribute Importance Analysis

In this section, we estimate the importance of all tag quality attributes exploited

in the cold start scenario, by RFsynt and RankSVMsynt . Our goal is to compare the

usefulness of our new proposed attributes with relation to the other attributes, as well
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as to determine a smaller set of the best, non redundant attributes.

We performed attribute importance analysis in two different ways: calculating the

Information Gain (IG) [Baeza-Yates and Ribeiro-Neto, 1999] of each attribute, and the

absolute values of their corresponding weights (averaged over the 5 folds) in the model

generated by RankSVMsynt . The top-10 most discriminative attributes according to

these measures are respectively listed in Tables 7.8 and 7.9, normalized so that they

sum up 1.

Table 7.8. Top-10 tag quality attributes ranked according to Information Gain.

MovieLens LastFM Bibsonomy

SWordToTag 0.27 SWordToTag 0.30 TermScore 0.38
TermScore 0.22 TermScore 0.26 Entropy 0.10
Entropy 0.10 Pred 0.18 wTF 0.09
Relative position 0.10 Entropy 0.06 Pred 0.08
Pred 0.09 wTF 0.05 SWordToTag 0.08
IFF 0.06 Relative position 0.04 STitleToTag 0.08
Stability 0.05 IFF 0.04 IFF 0.05
Sentence root 0.05 Stability 0.03 Stability 0.05
Seq. synt. funct. 0.03 Token’s head 0.02 Relative position 0.05
Token’s head 0.03 Seq. synt. funct. 0.02 Seq. synt. funct. 0.03

Table 7.9. Top-10 tag quality attributes ranked according to SVM weights.

MovieLens LastFM Bibsonomy

TermScore 0.19 TermScore 0.36 STitleToTag 0.14
STitleToTag 0.15 PoS 0.14 PoS 0.12
Seq. of tokens 0.14 STitleToTag 0.12 TermScore 0.11
Synt. funct. 0.13 TS 0.05 Synt. funct. 0.11
PoS 0.11 wTS 0.05 SWordToTag 0.09
PoS of token’s head 0.06 SWordToTag 0.05 PoS of token’s head 0.08
Synt. funct. of token’s
head

0.05 Token’s head 0.04 Token 0.07

SWordToTag 0.03 Seq. synt. funct. 0.03 Seq. synt. funct. 0.07
TS 0.03 PoS of token’s head 0.03 Token’s head 0.05
wTS 0.03 Token 0.03 Synt. funct. of token’s

head
0.04

According to IG values (Table 7.8) , we note that at least 1 (up to 3) syntactic

structure related attributes appear among the top 10 list of all applications, confirming

that they are indeed useful for tag recommendation purposes. Moreover, traditional,

word frequency based attributes such as TF do not appear in Table 7.8 as they were

ranked below our new attributes. This occurs mainly due to the fact that, as discussed

above, the user-generated texts in Web 2.0 applications are usually short and may

present low quality. This issue is more noticeable in LastFM (where the title is simply

an artist/band name) and MovieLens (where the movie title and description may be

vague and hide part of the movie plot). In Bibsonomy, the descriptions (abstracts) tend

to present a higher quality, as discussed above. Although the exact order of attributes

differ when considering SVM weights, we can obtain similar conclusions from Table
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7.9. Even a larger number of our syntactic related attributes appear among the top

attributes with larger SVM weights. These results are consistent with those shown in

Section 7.1.3.

In all applications, the attributes with highest IG values are the ones related

to a graph-based tag recommendation approach (TermScore) and word co-occurrence

with tags (SWordToTag), because they represent key attributes for tag recommenda-

tion in cold start. Although these attributes present the highest IG values, they may

not be discriminative enough in isolation, as noted from the various baseline results.

Thus, clearly some new syntactic related attributes do bring significant improvements

for recommendation. Among the syntactic structure related attributes, the most dis-

criminative attributes, according to the IG metric, are: (1) the sequence of syntactic

functions that form a path between the candidate tag and the root in the syntactic

dependence tree (“Seq. synt. funct.”), (2) the root of the sentence that contains the

candidate tag (“Sentence root”), and (3) the token that is the head of the candidate

tag in the tree (“Token’s head”).
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Figure 7.2. P@5 results for KNN and KNNsynt as a function of the number of
top initial recommendations exploited by these methods.

Neighborhood Expansion

Now we analyze to which extent we can further improve tag recommendation

using a k-nearest neighbors based technique. Unlike the traditional KNN baseline,

which computes the neighborhood of the target object using TFIDF weights of the

words in its textual features, KNNsynt exploits the scores provided by RFsynt (the best

tag recommender analyzed above) as weights.

Comparing KNNsynt with the traditional KNN , we note that KNNsynt produces

large improvements in MovieLens (50%, 55% and 54% in P@5, Recall@5 and NDCG@5,

respectively). For LastFM, the gains are modest (3%, 5% and 1.4% in P@5, Recall@5

and NDCG@5, respectively). For Bibsonomy, there are even more modest gains (or

statistical ties). To investigate this difference in KNNsynt gains among the datasets, we
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measured the effectiveness of a simple tag recommender based on TFIDF only, which

is the measure used by KNN to represent objects and compute their similarity. We

note that TFIDF recommendations for MovieLens present considerably lower precision

than the recommendations obtained for the other two datasets (57% and 375% lower

precision with relation to LastFM and Bibsonomy, respectively), because of the dif-

ferences in the characteristics of the descriptions across datasets, as aforementioned.

Thus, the generation of a better object representation with stronger initial candidate

tags is much more necessary in MovieLens than in the other two datasets. In spite of

these cases of lower gains and statistical ties, as we shall see below, the combination of

KNNsynt with RFsynt is robust enough to provide gains in all datasets.

Now we analyze the impact of the tuning parameters in the effectiveness of the

neighborhood based tag recommenders. We have analyzed the impact of the number

of neighbors (K) in Section 6.3, which affected both KNNsynt and KNN similarly.

Another important parameter for the nearest neighbors based tag recommenders is

the number of initial terms to consider in the target object representation. As we

mentioned in Section 5.3.2, the content of the textual features of an object may contain

noise, and thus it is useful to consider only the most relevant terms (here referred to

as initial candidate tags) to represent objects and compute their similarity. Here, we

evaluate two alternative approaches: the traditional, based on TFIDF (KNN ), and

our new approach, based on the score provided by RFsynt (KNNsynt). Figure 7.2 shows

P@5 results for different values of the number of initial recommended candidate tags

(r) for both methods and three datasets. As expected, when r is too low (r=1),

both methods present their lowest precision. However, as we increase r, KNN and

KNNsynt present different behaviours: for KNNsynt , the best results occur when r=5

and their precision decreases as we increase r. However, the opposite occurs for KNN ,

increasing precision as we increase r, until convergence (using all initial candidate tags

as object representation). This occurs because TFIDF, in isolation, could not rank

all representative terms of the target object among the top positions, and thus it was

necessary to use all terms to reach better results. On the other hand, KNNsynt is

able to better select the most representative candidates, achieving good results using

only a few initial tag candidates. However, including too many initial tag candidates

in KNNsynt starts to be detrimental to its effectiveness, probably because the initial

candidates provided by RFsynt are not restricted to the target object, and thus may

bring some noise. In spite of it, KNNsynt reaches better results than KNN , specially

for the MovieLens dataset, as aforementioned.

Now, we turn our attention to our final, most complete approach to address

cold start, KNNsynt + RFsynt . We find that it consistently produces the best results in
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this scenario. It outperforms the best baseline with gains of up to 21% in P@5, 26%

in Recall@5 and 21% in NDCG@5 (e.g., in MovieLens dataset). For the other two

datasets, the gains are more modest (around 3% in all considered evaluation metrics),

due to the aforementioned reasons. Although the gains are modest in two datasets,

we note that this method presents little additional cost with relation to RFsynt : it

consists in adding up the results of KNNsynt , which is a straightforward neighborhood

based approach, and RFsynt . In turn, RFsynt offers a low additional cost with relation

to the baseline RF , because the computational cost of our new syntactic attributes is

inferior to the cost to compute various of the attributes exploited by RF , such as tag

co-occurrence and neighborhood based attributes.

Thus, we found that it is worth exploiting the neighborhood of the target object

to achieve further (though modest) gains over the best strategy found in the previous

section (RFsynt).

7.1.4 Personalized Tag Recommendation Results

We now discuss the most relevant results of our new personalized tag recommen-

dation methods (4 heuristics and 3 L2R-based strategies), comparing them against

the PITF baseline. Table 7.10 shows P@5 results for all personalized methods and

datasets. Recall@5 and NDCG@5 results are shown in Tables 7.11 and 7.12, respec-

tively.

Once again, all reported results are averages over 5 folds (test sets), whereas the

results of GP and RF are averages over 25 runs (5 folds, 5 random generator seeds).

Tables 7.10-7.12 show 95% confidence intervals, indicating that, with that confidence,

most results deviate from the means by less than 2%. For each dataset, the tables are

broken into 3 blocks: baseline, new heuristics and L2R-based methods. Best results

and statistical ties (according to a 2-sided t-test3 with p-value < 0.05) within each

block are shown as shaded entries. Best overall results (and statistical ties) are shown

in bold. Recall that we do not show results of the personalized methods for YahooVideo

as our dataset of this application does not identify the user who assigned each tag.

Unsupervised Heuristics

We start by comparing our new heuristics against the baseline PITF. We found

that our best heuristic considering overall results (LATRE+wTS+UF ) produces gains

in P@5 ranging from 48% to 251%, and in Recall@5 and NDCG@5 of up to 255% and

3Like for object-centered tag recommendation, we also applied the Bonferroni correction on the
results of personalized tag recommendation.
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Table 7.10. Personalized tag recommendation: average P@5 results and 95%
confidence intervals (best results within each block - baselines, heuristics, and
L2R-based strategies - in shaded entries; best overall results in bold).

Strategy Bibsonomy LastFM MovieLens YouTube

PITF 0.332 ± 0.003 0.528 ± 0.002 0.424 ± 0.003 0.145 ± 0.002
Sum+

uwTS+UF 0.525 ± 0.001 0.633 ± 0.003 0.545 ± 0.010 0.525 ± 0.002
Sum

+
wTS+UF 0.523 ± 0.002 0.488 ± 0.003 0.439 ± 0.009 0.525 ± 0.002

LATREu+wTS+UF 0.536 ± 0.002 0.633 ± 0.004 0.562 ± 0.008 0.507 ± 0.002
LATRE+wTS+UF 0.548 ± 0.002 0.781 ± 0.003 0.374 ± 0.011 0.507 ± 0.002

GP-based 0.542 ± 0.006 0.812 ± 0.004 0.563 ± 0.009 0.535 ± 0.004
RankSVM-based 0.559 ± 0.001 0.707 ± 0.003 0.557 ± 0.005 0.544 ± 0.001

RF-based 0.601 ± 0.001 0.840 ± 0.001 0.588 ± 0.010 0.572 ± 0.002

Table 7.11. Personalized tag recommendation: average Recall@5 results and
95% confidence intervals (best results within each block - baselines, heuristics,
and L2R-based strategies - in shaded entries; best overall results in bold).

Strategy Bibsonomy LastFM MovieLens YouTube

PITF 0.329 ± 0.003 0.520 ± 0.002 0.423 ± 0.003 0.132 ± 0.002
Sum+

uwTS+UF 0.519 ± 0.001 0.617 ± 0.003 0.542 ± 0.010 0.483 ± 0.001
Sum

+
wTS+UF 0.517 ± 0.002 0.473 ± 0.003 0.438 ± 0.009 0.483 ± 0.001

LATREu+wTS+UF 0.530 ± 0.003 0.616 ± 0.004 0.560 ± 0.008 0.468 ± 0.002
LATRE+wTS+UF 0.542 ± 0.002 0.760 ± 0.002 0.372 ± 0.011 0.468 ± 0.002

GP-based 0.534 ± 0.006 0.789 ± 0.004 0.561 ± 0.009 0.491 ± 0.003
RankSVM-based 0.552 ± 0.001 0.688 ± 0.003 0.554 ± 0.005 0.499 ± 0.001

RF-based 0.592 ± 0.002 0.816 ± 0.001 0.585 ± 0.010 0.525 ± 0.001

295%, respectively. Average gains across all datasets are 121% (P@5), 122% (Recall@5)

and 157% (NDCG@5). Thus, using a combination of tag co-occurrences, multiple

textual features and metrics of relevance, including a metric that captures the tagging

history of the user (UF ), can greatly outperform recommendation methods that are

based only on the interrelationships between users, objects and tags, like PITF.

The effectiveness of PITF is particularly poor in YouTube due to the non-

collaborative nature of the application, where the user who uploaded the object is the

only who can assign tags to it. This characteristic makes training data sparser, limit-

ing the benefits of PITF, which depends on a sufficient amount of postings involving

a user u and an object o to recommend relevant tags for the pair 〈u, o〉. Nevertheless,

we note that even in collaborative tagging applications, such as Bibsonomy, LastFM

and MovieLens the gains of our heuristics over PITF are very large. For example, in

Bibsonomy, LATRE+wTS+UF outperforms PITF by as much as 65% in P@5 (see

Table 7.10).

We note that, like PITF, our methods also exploit the vocabulary of the target

user, expressed by the tags assigned by her to other objects, as a representation of her

interests and main evidence to support personalization. We argue that it is not unlikely

that the same user may assign tags to similar objects as these objects better match

the user interests and vocabulary. Thus, as our results confirm, it may be interesting
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to recommend tags that the user had already assigned to other objects.

Table 7.12. Personalized tag recommendation: average NDCG@5 results and
95% confidence intervals (best results within each block - baselines, heuristics,
and L2R-based strategies - in shaded entries; best overall results in bold).

Strategy Bibsonomy LastFM MovieLens YouTube

PITF 0.256 ± 0.002 0.412 ± 0.002 0.298 ± 0.003 0.127 ± 0.001
Sum+

uwTS+UF 0.471 ± 0.002 0.603 ± 0.004 0.503 ± 0.009 0.525 ± 0.002
Sum

+
wTS+UF 0.469 ± 0.002 0.464 ± 0.004 0.384 ± 0.007 0.525 ± 0.002

LATREu+wTS+UF 0.487 ± 0.002 0.605 ± 0.004 0.520 ± 0.008 0.503 ± 0.002
LATRE+wTS+UF 0.501 ± 0.001 0.747 ± 0.003 0.308 ± 0.010 0.503 ± 0.002

GP-based 0.506 ± 0.004 0.809 ± 0.004 0.521 ± 0.009 0.541 ± 0.003
RankSVM-based 0.512 ± 0.002 0.665 ± 0.004 0.525 ± 0.004 0.538 ± 0.001

RF-based 0.553 ± 0.002 0.828 ± 0.002 0.555 ± 0.011 0.578 ± 0.002

Next, we compare our four proposed heuristics, focusing first on the two dif-

ferent types of tag co-occurrence patterns exploited by them: (1) between tags

assigned to the same object by various users (exploited by Sum+wTS+UF and

LATRE+wTS+UF ), and (2) between tags assigned by the same user to the same

object (used by Sum+
uwTS+UF and LATREu+wTS+UF ). In YouTube, these two

kinds of co-occurrence patterns lead to the same results, since only one user can assign

tags to an object. In the other three applications, interestingly, the most effective type

of co-occurrence pattern depends on the co-occurrence based method exploited by the

recommendation strategy (Sum+ or LATRE ). On the one hand, if the recommenda-

tion is based on Sum+, which exploits relationships between only 2 tags, type (2) is

preferred as Sum+
uwTS+UF produces results that are, if not statistically tied, much

better than those produced by Sum+wTS+UF . For example, the improvements in

P@5 reach 30% in the LastFM dataset. This occurs due to the larger amount of noise

generated when co-occurrences between all tags in an object are considered. On the

other hand, exploiting co-occurrences between tags assigned to the same object by

various users may benefit LATRE , which exploits more complex association rules (i.e.,

co-occurrences between more than 2 tags), being more resilient to noise. For exam-

ple, the improvements in P@5 of LATRE+wTS+UF over LATREu+wTS+UF vary

from 2% up to 23% in Bibsonomy and LastFM datasets. The exception is the Movie-

Lens dataset, where the best alternative is LATREu+wTS+UF , which presents 34%

higher precision than LATRE+wTS+UF . This exception is possibly due to (1) the

much smaller size of MovieLens dataset (and thus smaller training data for association

rule mining) and (2) the higher divergence of tags that different users apply to the

same object in MovieLens dataset may cause the generation of noisier co-occurrence

patterns when considering co-occurrences between tags posted by different users. Con-

sidering all objects annotated by at least two users, only 25% of the tags were assigned
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by more than 1 user to the same object in MovieLens, against 34% in LastFM and

28% in Bibsonomy. The same conclusions hold for the other three evaluation metrics

considered4.

Consistently with the results of the object-centered recommendation methods

that they extend, we find that LATRE+wTS+UF (or LATREu+wTS+UF in Movie-

Lens case) outperforms Sum+
uwTS+UF in all datasets but YouTube. For example,

LATRE+wTS+UF outperforms Sum+
uwTS+UF with gains of 3% in P@5, on average,

in both LastFM and Bibsonomy, while experiencing only a small loss (less than 1%) in

YouTube. In MovieLens, LATREu+wTS+UF also outperforms Sum+
uwTS+UF by

3% in P@5. Similarly, the average gains produced by LATRE+wTS+UF on LastFM

and Bibsonomy (and by LATREu+wTS+UF in MovieLens) are 4% in Recall@5 and

NDCG@5, respectively, whereas the losses in YouTube do not exceed 1.1%. Thus,

LATRE+wTS+UF and LATREu+wTS+UF are the best heuristic for personalized

tag recommendation.

Learning-to-Rank based Strategies

Like observed for object-centered tag recommendation, all three evaluated L2R-

based methods provide further improvements over the heuristics for personalized tag

recommendation, in all datasets, although the RF-based strategy is clearly the best

performer. For instance, the improvements in P@5 achieved with the RF-based

strategy over the best heuristic (that is, LATREu+wTS+UF for MovieLens and

LATRE+wTS+UF for the other datasets) are 9%, on average, across all datasets.

Similarly, average gains in Recall@5 and NDCG@5 are 8.4% and 11%, respectively.

Moreover, the RF-based strategy consistently outperforms the best of the other two

L2R-based strategies in around 5%, on average, in any of the considered metrics. These

results confirm the benefits of exploiting Random Forest as an L2R approach for tag rec-

ommendation, and the resilience of our methods when applied to both object-centered

and personalized tag recommendation tasks, as discussed in Section 7.1.4.

Overall, an important factor that explains the success of our personalized methods

(both heuristics and L2R-based methods) is that, as previously mentioned, they can

provide relevant recommendations for a user even if she does not present a history of tag

assignments. In that case, the extraction of candidates from tag co-occurrences and

multiple textual features provide more general recommendations for the considered

object, which can be relevant to any user. If the user is more active, however, our

4We also compared the purely co-occurrence based methods Sum+ and LATRE with Sum+
u

and
LATREu, respectively, obtaining the same conclusions.
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methods can provide a higher level of personalization, due to the use of the UF metric.

In other words, our methods are flexible and robust to deal with both object-centered

and personalized tag recommendation tasks. In particular, the RF -based strategy has

shown to be the the most effective solution for both tag recommendation tasks.

7.1.5 Benefits of Personalization in Tag Recommendation

In this section, we quantitatively compare our best object-centered and person-

alized methods under similar conditions, in order to attest if personalized tag recom-

mendations might provide better descriptions of the object when compared to object-

centered recommendations, thus improving services that rely on those descriptions,

such as search and content recommendation. In other words, we intend to assess

whether our user-related tag quality attributes promote globally relevant tags, i.e.,

tags that can be relevant to some user (not necessarily the target one).

Specifically, we compare the results produced by the RF-based object-centered

and personalized tag recommendation methods for each user against the same expected

answer. In other words, for each target object-user pair 〈o, u〉, we use the same input

tags Io to feed both methods, and compare their results against the same expected

answer Yo. To guarantee a fair comparison of both methods, we build these two tag

sets such that each one contains half of the tags posted by each user who assigned

tags to o (randomly selected). Note that this setup is different from the ones used

in Sections 7.1.1 and 7.1.4. In the former, the tags of the object were randomly split

into Io and Yo, with no consideration to the user(s) who posted them. In the latter,

Io consisted of half of the tags posted by the target user u and all tags posted by any

other user, and the recommended tags were compared against the other tags posted by

u (Yo,u). Thus, the results presented here are different from those discussed in the two

previous sections. In particular, unlike in the experiments discussed in Section 7.1.4,

we here compare the tags recommended by the personalized method for a user u with

all tags that were not used as input (i.e., all tags in Yo), and not only those posted by

u (Yo,u). This is because, unlike in the previous section, our goal here is to assess the

relevance of the suggested tags to the target object only (regardless of their relevance

to the target user). Note also that, for a given object o, the object-centered method

produces the same results to all users.

Precision, recall and NDCG of both methods are shown in Table 7.13 for the

Bibsonomy, LastFM, MovieLens and YouTube datasets. Note that the personalized

strategy produces results that significantly outperform the object-centered method.

The average gain in p@5 is 15% across the four datasets, while corresponding gains
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in recall@5 and NDCG@5 are 17% and 16%, respectively. That is, having fixed the

expected answer, the personalized recommendations match this expected answer more

closely than the object-centered recommendations. These results are in alignment with

observations in [Rendle et al., 2009a; Rendle and Schmidt-Thie, 2010], which showed

that their personalized tag recommenders outperform even the theoretical upper-bound

for any non-personalized tag recommender.

Table 7.13. Relevance of our RF-based object-centered and personalized tag rec-
ommendations to the target object: average results and 95% confidence intervals
(best results for each datast in bold).

Application Method P@5 recall@5 NDCG@5

Bibsonomy
Object-centered 0.550 ± 0.002 0.535 ± 0.002 0.506 ± 0.003

Personalized 0.576 ± 0.001 0.562 ± 0.001 0.533 ± 0.002

LastFM
Object-centered 0.595 ± 0.002 0.211 ± 0.001 0.602 ± 0.001

Personalized 0.713 ± 0.002 0.285 ± 0.002 0.728 ± 0.002

MovieLens
Object-centered 0.392 ± 0.005 0.221 ± 0.004 0.414 ± 0.004

Personalized 0.505 ± 0.007 0.270 ± 0.003 0.545 ± 0.008

YouTube
Object-centered 0.543 ± 0.002 0.498 ± 0.002 0.553 ± 0.002

Personalized 0.572 ± 0.002 0.525 ± 0.001 0.578 ± 0.002

Thus, these results are evidence that personalization may improve the quality of

the tag recommendations, providing tags that not only might be more important to

the target user, and thus to other users with similar interests and profiles, but also

that cover the different facets of the object, allowing a more complete description of

the content than object-centered recommendations.

7.2 Relevance, Novelty and Diversity Driven

Methods

In this section, we present results of our proposed methods that address relevance,

novelty and diversity aspects. Our main research question we aim at answering here

is:

RQ4: Can we improve novelty and diversity of tag recommendation, while keeping the

same levels of relevance?

First we analyze results of our implicit method GPrnd (Section 7.2.1), then we

discuss the results of the three explicit methods, namely, RFt , xTReD and xTReND

(Section 7.2.2).
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Table 7.14. Average results and 95% confidence intervals. Best results and
statistical ties in bold.

Collection Method NDCG@5 AIP@5 AILD@5 α-NDCG@5 S-Recall@5

Bibsonomy
GP 0.406 ± 0.006 0.539 ± 0.007 0.954 ± 0.004 0.589 ± 0.011 0.782 ± 0.007
GPrnd 0.404 ± 0.005 0.663 ± 0.011 0.976 ± 0.002 0.493 ± 0.008 0.714 ± 0.007

LastFM
GP 0.440 ± 0.008 0.282 ± 0.005 0.845 ± 0.004 0.362 ± 0.008 0.503 ± 0.008
GPrnd 0.442 ± 0.005 0.345 ± 0.016 0.882 ± 0.007 0.386 ± 0.009 0.537 ± 0.013

MovieLens
GP 0.388 ± 0.002 0.504 ± 0.007 0.942 ± 0.001 0.282 ± 0.009 0.439 ± 0.013
GPrnd 0.363 ± 0.005 0.517 ± 0.018 0.943 ± 0.005 0.258 ± 0.008 0.404 ± 0.015

YahooVideo
GP 0.770 ± 0.004 0.434 ± 0.004 0.903 ± 0.004 0.496 ± 0.008 0.561 ± 0.005
GPrnd 0.759 ± 0.006 0.483 ± 0.007 0.926 ± 0.003 0.501 ± 0.008 0.554 ± 0.005

YouTube
GP 0.530 ± 0.002 0.608 ± 0.002 0.974 ± 0.001 0.743 ± 0.002 0.951 ± 0.001
GPrnd 0.520 ± 0.003 0.659 ± 0.004 0.975 ± 0.001 0.711 ± 0.003 0.938 ± 0.002

7.2.1 Implicit Method

In this Section, we aim to answer the following question: How does our new

solution GPrnd perform compared to the state-of-the-art relevance-driven method GP?

Table 7.14 shows results for relevance (NDCG), novelty (AIP), implicit diversity

(AILD) and explicit diversity (α-NDCG and S-Recall5), all evaluated on the top k=5

positions of the ranking. The explicit diversity results for LastFM, MovieLens and

YouTube datasets are based on explicit categories, while Bibsonomy and YahooVideo

results are based on latent topics produced by LDA technique. We also evaluated

LastFM, MovieLens and YouTube datasets using latent topics, obtaining similar re-

sults.

Comparing our new strategy GPrnd with the method it extends (GP), we obtained

gains in AIP (novelty) of 23% in Bibsonomy, 22% in LastFM, 2.5% in MovieLens, 8.5%

in YouTube and 11% in YahooVideo, losing at most 2% in NDCG in most datasets

(except in MovieLens, which presented a 6% loss in NDCG). Thus, it is possible to

obtain novel recommendations while maintaining similar levels of relevance with the

new proposed objective function, although relevance and novelty may be conflicting

objectives. However, it is more difficult to improve implicit diversity, since the AILD

results are already very high in GP . In fact, our gains are below 4.5%. This happens

because the data is sparse, making the values of distance between tags typically large,

with small differences between them, given that there is little information about tag

co-occurrences (the source of information for AILD to estimate the semantic differences

between tags).

We find that the RFrnd results for the explicit diversity evaluation metric vary

from modest gains of 7%, 6% and 7% in α-NDCG , ERR-IA and S-Recall , respectively

(in LastFM dataset) to losses of up to 16%, 17% and 9% in these metrics. One possible

5ERR-IA results are similar to the other explicit diversity metrics, thus we omitted them to
improve readability.
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reason for the inexistence of improvements in explicit diversity in most datasets is that

AILD metric promotes infrequent tags, which tend to be more dissimilar to any tag

since there is little information about their co-occurrence. On the other hand, these

infrequent tags do not carry information about the (more general) topics they are

related, thus providing low explicit diversity improvements, if any.

In sum, we found that RFrnd provides reasonable gains in novelty without signif-

icantly harming relevance, but the gains in diversity (both implicit and explicit) are

modest or inexistent. In the next section, we analyze methods that exploit diversity

explicitly, maximizing the topic coverage of the tag recommendations.

7.2.2 Explicit Methods

Now we turn our attention to our new methods that exploit explicit (topic) diver-

sity, namely, xTReD , RFt and xTReND , comparing them against the best relevance-

driven alternative found in the previous sections (RF ). More specifically, we aim at

answering the following questions, derived from RQ4 :

RQ4.1: Do our new topic related attributes contribute to produce better tag recom-

menders?

RQ4.2: How do our new solutions RFt , xTReD and xTReND perform compared to

each other and to the best relevance-driven method (i.e., RF )?

RQ4.3: Is the use of latent topics a viable alternative to our solutions when the target

application does not possess an explicit category system to organize content?

RQ4.4: To which extent can we effectively promote novelty and explicit diversity without

harming relevance in tag recommendation?

We address RQ4.1 by comparing our new RFt method, which incorporates di-

versity and novelty at the attribute level, with the relevance-driven RF method. We

tackle RQ4.2 by comparing our new methods RFt , which captures all three aspects in

the attribute level, while focusing on relevance in its objective, xTReD , that captures

explicit diversity and relevance, but do not try to optimize novelty in its objective

function, and xTReND , which fully captures all three aspects at both attribute and

objective levels. As RQ4.3 covers an orthogonal/transversal aspect concerning all pre-

vious questions, we tackle it in the context of each individual comparison, analyzing

results for all previous questions with explicit categories and latent topics. All these

comparisons, which cover various datasets, are presented in Sections 7.2.2.1-7.2.2.3. We

then tackle RQ4.4 by exploring the trade-off among relevance, novelty and diversity in

Section 7.2.3.

Tables 7.15 and 7.16 show average NDCG (relevance), AIP (novelty), α-NDCG,
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ERR-IA and S-Recall (diversity) results for all methods and datasets for two evaluation

scenarios: (1) using the predefined categories available in the datasets as topics, and (2)

exploiting latent topics. These results were computed over the top k=5 recommended

tags, and produced with all methods parameterized according to the best parameter

values obtained in the validation set (as shown in Tables 6.2-6.4). Note that Table

7.15 shows results only for the three datasets where predefined categories are available

(namely, LastFM, MovieLens and YouTube).

Table 7.15. Relevance, novelty and diversity of the top k=5 recommended tags
by all methods (best average results and statistical ties according to a two-sided
t-test with p < 0.05 are shown in bold). Evaluation scenario: Using pre-defined
categories as topics.

Method NDCG AIP α-NDCG ERR-IA S-Recall

L
a
st

F
M RF 0.483 ± 0.003 0.325 ± 0.003 0.404 ± 0.006 0.365 ± 0.005 0.583 ± 0.009

RFt 0.508 ± 0.005 0.328 ± 0.003 0.546 ± 0.011 0.492 ± 0.009 0.738 ± 0.014
xTReD 0.472 ± 0.003 0.353 ± 0.001 0.579 ± 0.008 0.532 ± 0.006 0.729 ± 0.011
xTReND 0.504 ± 0.004 0.365 ± 0.003 0.591 ± 0.011 0.530 ± 0.009 0.780 ± 0.014

M
ov

ie
L
en

s

RF 0.415 ± 0.005 0.515 ± 0.005 0.272 ± 0.010 0.220 ± 0.009 0.446 ± 0.011
RFt 0.428 ± 0.004 0.509 ± 0.004 0.354 ± 0.019 0.285 ± 0.016 0.559 ± 0.017
xTReD 0.409 ± 0.005 0.523 ± 0.004 0.383 ± 0.006 0.316 ± 0.007 0.575 ± 0.014
xTReND 0.415 ± 0.005 0.593 ± 0.005 0.437 ± 0.010 0.352 ± 0.010 0.664 ± 0.013

Y
o
u
T
u
b
e RF 0.553 ± 0.002 0.610 ± 0.001 0.749 ± 0.003 0.717 ± 0.003 0.949 ± 0.001

RFt 0.555 ± 0.002 0.610 ± 0.001 0.798 ± 0.002 0.761 ± 0.002 0.973 ± 0.001
xTReD 0.535 ± 0.002 0.607 ± 0.001 0.838 ± 0.002 0.813 ± 0.003 0.980 ± 0.001
xTReND 0.536 ± 0.002 0.651 ± 0.001 0.837 ± 0.002 0.807 ± 0.002 0.985 ± 0.001

In the following, we discuss these results by focusing first on how our new RFt

method compares against our best relevance-driven method RF . These two methods

have the same relevance-driven objective function and differ at the attribute level: RFt

adds new topic-related attributes capturing explicit diversity. This discussion, which

tackles RQ4.1, is presented in Section 7.2.2.1. We then approach RQ4.2 by comparing

our new methods xTReND and xTReD in Section 7.2.2.2, and comparing xTReND and

RFt , in Section 7.2.2.3. The treatment of RQ4.3 perpasses all those analyses.

7.2.2.1 Do Topic Related Attributes Contribute to Producing Better Tag

Recommendations?

We start by comparing the RF-based strategies, whose objective functions are

focused on relevance only6. Considering the use of categories as source of topics, Table

7.15 shows that our new RFt strategy greatly outperforms RF strategy in terms of all

three diversity metrics in all datasets. The improvements in α-NDCG, ERR-IA and

6Although RFt also exploits diversity attributes, its objective function is based only on relevance.
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Table 7.16. Relevance, novelty and diversity of the top k=5 recommended tags
by all methods (best average results and statistical ties according to a two-sided
t-test with p < 0.05 are shown in bold). Evaluation scenario: Using latent topics
(LDA).

Method NDCG AIP α-NDCG ERR-IA S-Recall

B
ib

so
n
o
m

y RF 0.455 ± 0.003 0.554 ± 0.001 0.574 ± 0.004 0.479 ± 0.004 0.781 ± 0.003
RFt 0.455 ± 0.003 0.555 ± 0.001 0.580 ± 0.005 0.482 ± 0.004 0.789 ± 0.004
xTReD 0.443 ± 0.001 0.553 ± 0.001 0.668 ± 0.003 0.561 ± 0.003 0.878 ± 0.002
xTReND 0.444 ± 0.001 0.569 ± 0.001 0.673 ± 0.004 0.564 ± 0.004 0.883 ± 0.003

L
a
st

F
M RF 0.483 ± 0.001 0.325 ± 0.001 0.570 ± 0.007 0.535 ± 0.008 0.807 ± 0.006

RFt 0.490 ± 0.001 0.324 ± 0.001 0.587 ± 0.008 0.552 ± 0.008 0.824 ± 0.007
xTReD 0.468 ± 0.001 0.326 ± 0.001 0.716 ± 0.006 0.678 ± 0.006 0.956 ± 0.003
xTReND 0.473 ± 0.002 0.333 ± 0.001 0.725 ± 0.007 0.688 ± 0.007 0.960 ± 0.003

M
ov

ie
L
en

s

RF 0.415 ± 0.002 0.515 ± 0.002 0.452 ± 0.009 0.378 ± 0.009 0.656 ± 0.010
RFt 0.426 ± 0.003 0.506 ± 0.001 0.431 ± 0.012 0.381 ± 0.010 0.653 ± 0.016
xTReD 0.411 ± 0.002 0.515 ± 0.001 0.570 ± 0.007 0.472 ± 0.007 0.816 ± 0.008
xTReND 0.418 ± 0.003 0.531 ± 0.001 0.542 ± 0.014 0.482 ± 0.012 0.799 ± 0.014

Y
a
h
o
o
V

id
eo RF 0.809 ± 0.001 0.433 ± 0.001 0.509 ± 0.001 0.341 ± 0.002 0.586 ± 0.001

RFt 0.810 ± 0.001 0.433 ± 0.001 0.507 ± 0.001 0.339 ± 0.002 0.585 ± 0.002
xTReD 0.788 ± 0.001 0.439 ± 0.001 0.561 ± 0.001 0.382 ± 0.002 0.623 ± 0.001
xTReND 0.779 ± 0.002 0.463 ± 0.001 0.568 ± 0.005 0.385 ± 0.006 0.628 ± 0.004

Y
o
u
T
u
b
e RF 0.553 ± 0.002 0.610 ± 0.001 0.556 ± 0.005 0.507 ± 0.005 0.834 ± 0.004

RFt 0.553 ± 0.002 0.610 ± 0.001 0.556 ± 0.005 0.507 ± 0.005 0.834 ± 0.004
xTReD 0.539 ± 0.001 0.608 ± 0.001 0.691 ± 0.002 0.645 ± 0.003 0.955 ± 0.001
xTReND 0.540 ± 0.001 0.609 ± 0.001 0.684 ± 0.004 0.638 ± 0.004 0.952 ± 0.002

S-Recall reach up to 35%, 35%, and 28%, respectively. Corresponding average gains,

computed across all datasets, are 24%, 23% and 18%, respectively. We note that the

increases in all three diversity metrics are smaller on YouTube, because objects in this

dataset (videos) are associated with only one category, which reduces the room for

improvements from the use of topic related attributes.

Although both strategies have relevance as the only objective to be maximized,

RFt obtains such great improvements in diversity over RF by exploiting attributes

that promote tags that are highly related to the topics of the target object, and thus

have higher chances to cover these topics. Such gains in diversity are accompanied by

some (more modest) improvements also in terms of relevance of the recommendations:

the average NDCG of RFt is up to 5% higher. We note that these gains come with no

significant additional cost since the new topic related attributes are easy to compute.

Indeed, all probabilities required to compute these attributes can be calculated offline.

Regarding novelty of the recommendations, the average AIP results of both RF

and RFt are statistically tied, except in the MovieLens dataset, although the difference

is under 2% in this case. One possible explanation for the slightly smaller average AIP

obtained with RFt in this dataset is that MovieLens genres are semantically broader
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than the categories of the other datasets. As a consequence, tags in this dataset that

are more related to the topics (and thus are promoted by RFt) tend to be more general

and occur more often, thus having lower AIP, if compared to tags in the other datasets.

If LDA topics are used (Table 7.16), the gains of RFt in relevance and diversity

over RF are much more modest (if any), probably because the topics are generated in

an unsupervised way, exploiting only the previously assigned tags. Some of these tags

might be too general (such as “seen” and “based”) or even too noisy (i.e., unrelated to

the object’s content), and thus might not be very appropriate for topic inference. Yet,

we do observe some statistically significant improvements in average NDCG (e.g., in

MovieLens) as well as in each diversity metric (e.g., LastFM and Bibsonomy). Such

improvements reach 3% in average NDCG and in average α-NDCG.

7.2.2.2 Is xTReND effective when compared to xTReD?

We now compare xTReND , our new diversifier with novelty promotion, with our

xTReD diversifier. In common, they address relevance and diversity at the objec-

tive function level, although only xTReND directly exploits popularity based novelty.

Moreover, only xTReND includes the new topic related attributes.

Table 7.15 shows that, when categories are used as topics, xTReND outperforms

xTReD with gains in AIP (novelty) of 8% on average, and maximum gains of 13%. The

corresponding gains when LDA topics are used are 3% and 6%, respectively, according

to Table 7.16. These gains are due to the promotion of tags with higher IFF . The

surprising aspect is that such gains are achieved with no harm to diversity or relevance

in most cases. Indeed, our results show that, for most datasets and scenarios, xTReND

produces at least the same diversity as xTReD , while in some cases there are large

improvements.

Note, for instance, the increase in 14% of average α-NDCG if categories are used,

and in 2% of average ERR-IA when LDA topics are used, both in the MovieLens

dataset. Indeed, if categories are used as source of topics, the diversity of the results

produced by xTReND is at least as good as that of xTReD , although often better, in

all cases, which indicates that it is possible to promote more specific tags that also

are highly related to the topics of the object. The few exceptions when the novelty

promoted by xTReND hurts diversity occur when LDA topics are used (e.g., α-NDCG

and S-Recall on MovieLens). However, the differences in such cases are under 5%, and

are probably due to the higher focus given by xTReD to diversity when compared to

xTReND , which also promotes novelty.

Similarly, we note that the improvements in average AIP (novelty) obtained with
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xTReND over xTReD also come with no detrimental impact on relevance. Instead, we

do observe some significant improvements in average NDCG, with gains reaching 7%

(e.g., LastFM when categories are used).

7.2.2.3 How does xTReND compare to RFt?

We now compare RFt , which captures relevance, novelty and diversity aspects

at the attribute level only, with xTReND , which addresses all three aspects at both

attribute and objective function levels.

Table 7.15 shows that, if categories are used as the source of topics, xTReND

outperforms RFt in terms of both diversity and novelty with gains of 11% in average

AIP, 12% in average α-NDCG, 12% in average ERR-IA and 9% in average S-Recall ,

all computed on average across all datasets. The maximum improvements on these

metrics on any dataset reach 16%, 24%, 24% and 19%, respectively.

According to Table 7.16, the results are similar if LDA topics are used: the gains

in average AIP, α-NDCG, ERR-IA, and S-Recall are, on average, 3.4%, 20%, 22%,

14%, respectively, reaching 7%, 26%, 26% and 22% (also respectively). We note that

such gains come with only a small impact (if any) on relevance: compared to RFt , the

average NDCG results produced by xTReND is at most 4% lower. Thus, it is possible

to provide further gains in diversity and novelty by exploiting these aspects at the

objective function level.

7.2.3 Trade-offs Among Relevance, Novelty and Diversity

Finally, we tackle research question RQ4.4, and analyze the trade-offs among

relevance, novelty and diversity by quantifying how each aspect is affected as we favor

one over the others. Ultimately, we want to assess the extent to which one can improve

novelty and/or diversity without significantly hurting relevance. To this end, we focus

on our best method, xTReND , which explicitly captures all three aspects, and ana-

lyze its sensitivity to parameters α and β, the weights given to novelty and diversity,

respectively.

We vary α and β in the same ranges of values used for parameterizing the method

(see Section 6.3), and evaluate the relevance, diversity and novelty of the recommenda-

tions produced by xTReND in the test sets. We perform experiments in each evaluation

scenario and, when using latent topics, we also analyze the impact of varying the num-

ber of topics nZ (see discussion below). As we vary α (or β) we compare the results

produced by xTReND with: (1) the results produced by xTReND when the parameter

being varied is set to 0 but all other parameters are fixed at their best values (as shown
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in Table 6.2), and (2) the results obtained when α=β=0, that is, the results produced

by RFt . The first comparison allows us to assess whether favoring one factor impacts

the other compared to the case when the latter is maximized (i.e., corresponding weight

is set at the best value). The second comparison allows us to assess the extent to which

relevance is degraded as we favor novelty or diversity since, as shown in Tables 7.15

and 7.16, RFt produces the best results in terms of relevance in all datasets.

Figures 7.3-7.4 show the impact of parameter α on the average AIP (novelty),

NDCG (relevance) and α-NDCG (diversity) results in both evaluation scenarios, while

Figures 7.5-7.6 show the impact of parameter β on the same metrics. All figures

show the impact of one parameter when all other parameters are kept fixed at their

best values. Results for the other diversity evaluation metrics are similar to those of α-

NDCG, and thus are omitted. We note that Figures 7.3 and 7.5 show results only for the

three datasets where predefined categories are available (namely, LastFM, MovieLens

and YouTube). We also note that all figures report average results computed over

the top k=5 recommended tags, along with corresponding 95% confidence intervals,

although some intervals are not visible as they are smaller than the symbols used.
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Figure 7.3. Impact of varying parameter α on average NDCG (relevance), AIP
(novelty) and α-NDCG (diversity), computed over the top k=5 recommended
tags. Evaluation scenario: Using pre-defined categories as topics.

Focusing first on the impact of α, Figures 7.3-7.4 show that average AIP results

always increase as we increase the values of α, which is expected. However, values

of α beyond a certain threshold, which depends on the dataset, are harmful to both

relevance and diversity. Such large values of α lead to recommending very rare tags,

which may be noisy and usually present low information about the topics they belong

to. For example, setting α to the maximum value tested (α = 0.1) causes an increase

in average AIP of as much as 105%. However, such improvements come at the cost of

a decrease in average NDCG, compared to the initial scenario of α=0 (and β set to

the best choice for each dataset), which varies from 36% to 73%. Similarly, the drop in

average α-NDCG (diversity) varies from 3% to 35%. Compared to the results produced
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(e) YouTube

Figure 7.4. Impact of varying parameter α on average NDCG (relevance), AIP
(novelty) and α-NDCG (diversity), computed over the top k=5 recommended
tags. Evaluation scenario: Using latent topics (LDA).

by RFt (i.e., α = β = 0), the increase in average AIP is even higher (up to 111%) but

so is the decrease in average NDCG, which varies from 52% to 74%. Similarly, the

reduction in average α-NDCG varies from 1% to 17%.
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Figure 7.5. Impact of varying parameter β on average NDCG (relevance), AIP
(novelty) and α-NDCG (diversity), computed over the top k=5 recommended
tags. Evaluation scenario: Using pre-defined categories as topics.

We now turn to the impact of β on the results. Figures 7.5-7.6 show that, as

expected, the average α-NDCG results (diversity) always increase with β but so do the

average AIP results (novelty). This indicates that tags that are highly related to the

topics of the target object (diversity) also present a good level of specificity (novelty).

However, very large values of β may hurt relevance by promoting tags related to the
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Figure 7.6. Impact of varying parameter β on average NDCG (relevance), AIP
(novelty) and α-NDCG (diversity), computed over the top k=5 recommended
tags. Evaluation scenario: Using latent topics (LDA).

topics of the target object but less related to the object in particular. For example,

compared to the case when β = 0 and the other parameters are set at their best values,

increasing β to 1 leads to improvements in average α-NDCG and AIP of as much as

40% and 47%, respectively. But it also causes a quite dramatic decrease in average

NDCG (from 13% to 25%). The differences are even more striking when we compare

these results against those produced by RFt : whereas the improvements in average

α-NDCG and AIP reach 58% and 47%, respectively, the impact in relevance may be

quite detrimental, with losses of as much as 40% in average NDCG.

Yet, as discussed in Section 7.2.2.3, it is possible to obtain improvements in both

diversity and novelty if we allow a small degradation in relevance (up to ǫ=4%). To

further analyze the trade-offs among novelty, diversity and relevance, we here consider

a more restrictive scenario when the maximum degradation in average NDCG allowed

is only ǫ=1%. Results indicate that xTReND is still capable of producing gains in nov-

elty and diversity under such constraints. When categories are exploited, the gains in

α-NDCG (diversity) reach 8%, 14% and 2% for the LastFM, MovieLens and YouTube

datasets, respectively, when compared to results produced by RFt . The correspond-

ing gains in average AIP (novelty) reach 11%, 7% and 3%, respectively. When latent

topics are exploited, there are gains of 10%, 10%, 16%, 4% and 13% in average α-

NDCG for the Bibsonomy, LastFM, MovieLens, YahooVideo and YouTube datasets.
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Figure 7.7. Impact of varying the number of LDA topics on average AIP (nov-
elty) and α-NDCG (diversity) computed over top k=5 recommended tags: average
increase over no diversification and novelty promotion.

The corresponding gains in average AIP are 2%, 8%, 3.4%, 3% and 1%. Thus, even

if we severely restrict any possible degradation in relevance, xTReND can still achieve

substantial improvements in diversity and novelty, particularly considering that simul-

taneously maximizing these three (often conflicting) objectives is quite challenging.

The aforementioned results using LDA topics were obtained by setting the

number of latent topics nZ at the best values obtained in the validation set for each

dataset (Table 6.2). The larger the value of nZ , the more specific the generated topics

are, which may impact the diversity and the novelty of the recommended tags. Thus,

as a final set of experiments, we evaluate how the novelty, diversity and relevance

of the results produced by xTReND using latent topics is affected as we vary the

number of topics used in 5, 10, 100. In these experiments, α and β are set at their

best values. Figure 7.7 shows improvements in average α-NDCG (diversity) and

average AIP (novelty)7 obtained over the initial recommendations produced by RFt

for different numbers of LDA topics. For every dataset, we find that the number of

topics does not impact the relevance of the results. That is, average NDCG results are

statistically tied across all values of nZ tested, being thus omitted from the graphs.

In contrast, the improvements in average AIP, compared to RFt , slightly increase as

7We here analyze diversity and novelty gains, instead of absolute values of the evaluation metrics,
because the absolute values are not directly comparable for different values of nZ .
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a larger number of topics is used (the improvements increase by as much as 11%).

Such increase in average AIP occurs because in order to cover more specific topics

the diversifier promotes tags that are probably more specific as well, and thus, with

higher IFF values. However, α-NDCG gains tend to be higher for a smaller number

of topics, as they are are easier to cover compared to when a larger number of more

specific topics are used. The exception is YahooVideo, in which the improvements

in α-NDCG are larger for the higher value of nZ . We conjecture that this might be

due to the larger number of collaboratively created tags present in that application,

allowing a higher variability of tags and thus latent topics.

7.2.4 Summary of the Results of the Explicit Methods

We here summarize our main findings with respect to research questions

RQ4.1-RQ4.4. Our experimental results revealed that:

(1) the use of our new topic related metrics at the attribute level by an L2R-based

tag recommendation approach such as RF does contribute to produce better tag

recommendations, particularly if predefined categories are used as topics, allowing

substantial gains in diversity as well as some (modest) gains in relevance (RQ4.1);

(3) xTReND provides a better trade-off among the three objectives (relevance, novelty

and diversity), being the best alternative between our three new explicit solutions

(RQ4.2);

(4) though more modest, the improvements of our new methods over the baselines

are still significant if LDA topics are used, implying that such unsupervised topic

inference strategy can be used to extend the applicability of our solutions to scenarios

where predefined categories are not available (RQ4.3); and

(5) although relevance, novelty and diversity of recommendations may seem conflicting

objectives, it is possible to effectively increase novelty and diversity with only a slight

impact on relevance (RQ4.4).
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7.3 Chapter Summary

In this chapter, we presented the experimental results we have obtained to answer

the research questions proposed in this thesis. The four main fronts related to the tag

recommendation problem we have evaluated are: (1) the combination of tag quality

attributes (some of them proposed here) by means of L2R techniques, with focus on

maximizing the relevance of the recommended tags; (2) the new tag quality attributes

(based on syntactic properties) and techniques (neighborhood expansion) developed

to tackle cold start in tag recommendation; (3) the personalization of the proposed

methods; and (4) the improvements in novelty and diversity. In the next chapter, we

provide a summary of the results in all of these fronts, as well as directions for future

work.



Chapter 8

Conclusions and Future Work

In this chapter we present a summary of the results of this thesis (Section 8.1)

and provide directions for future work (Section 8.2).

8.1 Summary of Results

Recall from Chapter 1 the main research questions that drive this study:

RQ1: How can we improve the relevance of the recommended tags by means of a com-

bination of tag quality attributes?

RQ2: How can we generate and rank candidate tags in a cold start scenario in which

there are no previously available tags?

RQ3: How can we extend the proposed methods to provide personalized recommenda-

tions?

RQ4: How can we improve novelty and diversity of tag recommendation, while keeping

the same levels of relevance?

The main results obtained in each of these topics are discussed in Sections 8.1.1

to 8.1.4.

8.1.1 RQ1 - Combination of Tag Quality Attributes

We combined a number of tag quality attributes by means of heuristics and L2R-

based techniques. Some of these attributes and techniques have already been proposed

and evaluated in our previous work [Belém et al., 2011]. Other attributes, namely,

the topic-related attributes (addressed in RQ4), and syntactic attributes (addressed in

RQ2) are novel contributions of this thesis.

125
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The best analyzed L2R-based strategy outperforms the state-of-the-art heuris-

tic, producing gains of up to 29% in average NDCG. Among the L2R based strategies,

there is a clear winner group of methods: Random Forests (RF ), MART and λ-MART ,

which produces gains ranging from 4% to 12% in average NDCG over the best of the

remaining L2R-based methods (i.e., the previously proposed methods GP , RankSVM

and Rankboost). Furthermore, we found that the L2R approach presents a very low ad-

ditional recommendation time (under 3%) when compared with the best unsupervised

heuristic (LATRE). Besides the promising results, the flexibility of the L2R frame-

work in terms of the incorporation of new attributes and ability to maximize different

target measures (as we do here, when adding personalization, novelty and diversity

aspects, as well as addressing cold start) makes it an attractive solution for the tag

recommendation problem.

It is also worth mentioning that, besides combining tag quality attributes, we

also tested combinations of L2R methods by means of a stacking technique, and some

straighforward strategies such as summing up the scores given by each method. How-

ever, for the same set of attributes, these strategies did not outperform the best L2R

based method (RF) in isolation. In general, we note that the greatest gains are achieved

when we combine different (and complementary) sources of candidate tags and tag

quality attributes.

8.1.2 RQ2 - Addressing Cold Start with Syntactic Attributes

and Neighborhood Expansion

In this front of work, we proposed syntactic related attributes and nearest neigh-

bor techniques to extend and improve tag recommendation methods in a cold start

scenario. We note that these techniques provide much higher gains in this particular

scenario than in a scenario in which there are some tags available in the target object,

since tag co-occurrences with these initial tags are strong evidence of the quality of a

candidate tag, reducing the need for additional attributes.

First, we investigated syntactic patterns of the text associated with Web 2.0 ob-

jects that can be exploited to identify and recommend tags. We also proposed new

tag quality attributes based on these syntactic patterns, exploiting them to further

improve our proposed L2R-based tag recommenders in the given scenario. Our ex-

periments showed that our proposed syntactic attributes are responsible for significant

improvements (up to 17% in precision over the best relevance-driven method). A

feature importance analysis confirmed that our new attributes are among the most

discriminative for the problem in hand, in particular the sequence of syntactic depen-
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dencies between the candidate tag and the root of the sentence, the token connected

to the candidate tag in the syntactic tree, and the root of the sentence.

Moreover, we also analyzed to which extent we can further improve tag recom-

mendations by exploiting the neighborhood of the target object (i.e., similar objects).

We used the L2R-based tag recommender with syntactic attributes to compute a new,

complementary neighborhood. Recommendations based on this new neighborhood

outperformed those generated from traditional nearest neighbors approaches, which

exploit only TFIDF as weights for terms in an object. Finally, KNNsynt + RFsynt ,

our combination of both neighborhood and L2R-based tag recommenders, consistently

produced the best results, with gains of up to 21% over RF .

8.1.3 RQ3 - Personalization of Tag Recommendation

We proposed four heuristics and evaluated three new L2R-based methods (RF ,

RankSVM and GP) to address the personalized tag recommendation problem. Fur-

thermore, we have provided a quantitative assessment of the benefits of personalized

tag recommendation to provide better descriptions of the target object.

We found that our heuristics produced gains of up to 157% in average NDCG

over a state-of-the-art personalized tag recommendation method (PITF ). Our best L2R

method, RF , provided average relevance gains of 9% over our best heuristic and gains

of 5% over our previous L2R-based strategies (i.e., RankSVM and GP). Comparing

our best personalized and object-centered tag recommendation methods, both based

on the RF technique, we found that the former outperforms the latter, with average

gains of 15% in relevance. Thus, we found that personalization brings benefits when

applied to provide better descriptions of the target object.

8.1.4 RQ4 - Improving Novelty and Diversity of Tag

Recommendation

We have proposed four new tag recommendation methods aiming at exploiting

novelty and diversity, in different levels. Our first method, called GPrnd , extends the

relevance-driven method GP , which already incorporates some novelty aspects at the

attribute level, to include novelty and diversity metrics at both attribute and objective

function levels. The second method, called RFt , extends the relevance-driven approach

based on RF to include new tag attributes that capture the extent to which a candidate

tag is related to the topics (e.g., categories) of the target object. This solution indirectly

captures topic diversity while trying to maximize relevance in its objective function.
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Unlike RFt , our third method, Explicit Tag Recommendation Diversifier (xTReD),

directly exploits topic diversity, by re-ranking the recommendations provided by any

tag recommender. Finally, our fourth proposal, called Explicit Tag Recommendation

Diversifier with Novelty Promotion (xTReND), generalizes xTReD , to fully exploit

relevance, novelty and topic diversity.

Our evaluation showed that GPrnd provides reasonable gains in novelty without

significantly harming relevance when compared to GP , but the gains in diversity (both

implicit and explicit) are modest (at best). We also found that the use of our new topic

related metrics at the attribute level (as performed by RFt) does contribute to produce

better tag recommendations, particularly if predefined categories are used as topics,

allowing substantial gains in diversity (up to 35%) as well as some (modest) gains in

relevance (up to 5% in average NDCG), when compared to RF . Overall, our new

method, xTReND , is the best out of the four new methods, considering the trade-offs

among relevance, novelty and diversity. Though more modest, the improvements of our

new methods over the baselines are still significant if LDA topics are used, implying

that such unsupervised topic inference strategy can be used to extend the applicability

of our solutions to applications where predefined categories are not available. Finally,

although relevance, novelty and diversity of recommendations may seem conflicting

objectives, it is possible to effectively increase novelty and diversity with only a slight

impact on relevance.

8.2 Future Work

In this thesis, we have adopted a fully automatic evaluation methodology to

measure relevance, novelty and diversity of our results. As discussed in Section 6.2,

regardless of its limitations, this is a well-established and widely adopted evaluation

protocol in the area, and allowed us to cover a large number of methods and datasets.

In our preliminary experiments with volunteers, we did not obtain a sufficient amount

of evaluations to get statistically significant results. Thus, we leave the manual evalu-

ation methodology as future work, performing it by either experiments with external

volunteers or with real users of a running tag recommendation system (if possible).

Another possible research direction would be evaluating novelty and diversity in a

personalized perspective. For example, we can define novelty in the context of specific

users, such that a tag is novel for a given user u if it was not previously assigned by

him to other objects. However, preliminary experiments with approaches that exploit

user-related novelty produced no significant improvements on novelty without harm-
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ing relevance. This occurs because the user-related novelty and the relevance metric

that estimates the user interests are conflicting pieces of evidence of the quality of a

tag. Regardless of this result, further investigations could be performed, for exam-

ple, identifying the topics of interest of the target user and diversifying personalized

recommendations considering these topics.

Another interesting line of future work is in improvements in the learning tech-

niques (as opposed to our current focus on tag quality attribute engineering). This

can be performed, for example, by including boosting to the methods that originally

do not exploit this technique (e.g., GP and RF). Another interesting topic related to

machine learning that is worth studying in our problem is the transfer learning from

models learned in a given dataset and applied to another.
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