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Resumo

Autoria de código é uma informação importante sobre grandes sistemas de software.

Ela pode ser usada para investigar a divisão do trabalho, identificar colaboradores im-

portantes e avaliar perfis dos desenvolvedores, entre outros. No entanto, seu uso prático

no desenvolvimento de software ainda não é amplamente explorado. Para investigar

este problema, nesta tese propomos e avaliamos, através de estudos quantitativos e

qualitativos, aplicações práticas de autoria de código no desenvolvimento de software.

Inicialmente, definimos um conjunto de conceitos centrados em autoria, que usamos

para investigar as equipes de desenvolvimento de 115 projetos de código aberto, in-

cluindo uma análise aprofundada do kernel do Linux. Depois disso, usamos métricas

de autoria para abordar dois problemas bem conhecidos de Engenharia de Software:

(1) avaliar a concentração de conhecimento em projetos de software e (2) identificar

desenvolvedores qualificados para manter arquivos de código fonte específicos. Para

resolver o primeiro problema, propomos um novo algoritmo para estimar truck factors

(TF), uma métrica popular para revelar membros essenciais em um projeto. Usamos

esse algoritmo para estimar o TF de 133 projetos e validamos os resultados entrevis-

tando os desenvolvedores. Também aplicamos esse algoritmo para identificar eventos

TF—isto é, situações em que todos os desenvolvedores TF abandonam o projeto—

em um conjunto de 1.932 projetos populares do GitHub. Neste estudo, identificamos

eventos TF em 315 projetos (16%) e observamos que 128 deles (41%) sobreviveram ao

seu mais recente evento, ou seja, novos desenvolvedores assumiram o desenvolvimento

do projeto. Em seguida, entrevistando os desenvolvedores, relatamos as práticas de

programação que ajudaram esses projetos a superar tais eventos. Finalmente, para

abordar o segundo problema, investigamos a eficácia de métricas de autoria de código

para identificar mantenedores de código em 10 projetos (8 de código aberto e 2 comerci-

ais). Os resultados revelam as limitações das técnicas existentes e fornecem orientações

sobre como melhorá-las, controlando dados sobre tamanho do código e recência.

Palavras-chave: Autoria de código, desenvolvedores chave, truck factor.
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Abstract

Code authorship is a key information about large software systems. It can be used

to reason about the division of work in software projects, to identify key collabora-

tors, and to assess developers’ profiles, among others. However, its practical usage in

software development is not widely explored. To tackle this problem, in this thesis,

we propose and evaluate, through a set of quantitative and qualitative studies, prac-

tical applications of code authorship in software development. First, we define several

authorship-centric concepts, which we use to investigate the development teams of 115

open source projects, including an in-depth analysis of the Linux kernel. After that, we

use code authorship metrics to address two well-known software engineering problems:

(1) assess knowledge concentration in software projects, and (2) identify skilled devel-

opers to maintain specific source code files. To address the first problem, we propose

a novel algorithm to estimate truck factors (TF), a popular metric to reveal essential

project members. We use this algorithm to estimate the TF of 133 projects and vali-

date the results by surveying the systems’ developers. We also apply this algorithm to

identify TF events—i.e., situations where all TF developers abandon the project—in

a set of 1,932 popular GitHub projects. In this study, we identified TF events in 315

projects (16%) and observed that 128 of them (41%) survived their most recent TF

event, i.e., new developers assumed the project development. Then, by surveying the

systems’ developers, we report the programming practices that helped these projects

to overcome such events. Finally, to address the second problem, we investigate the

effectiveness of code authorship metrics to identify skilled source code maintainers in

10 projects (8 open source and 2 commercial). The results reveal the limitations of

existing techniques and provide insights on how to improve them by controlling code

size and recency data.

Keywords: Code authorship, key developers, truck factor.
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Chapter 1

Introduction

1.1 Motivation and Problem

Software engineering is a collective effort, requiring the coordination of large devel-

opment teams [Crowston and Howison, 2005; Herbsleb, 2007; Mistrík et al., 2010].

Furthermore, to tackle complexity and size, software systems are usually partitioned in

components and sub-components, which ideally can be implemented in parallel [Parnas,

1972]. These key characteristics of software development projects—collaborative work

and modularization—increase the value of code authorship information, which can be

used to identify the best developers for a maintenance task, characterize developer’s

profiles, and analyze development teams.

Essentially, the goal of measuring code authorship is to identify those developers

who made significant changes to specific code units; in other words, those developers

who can be viewed as authors of the code and therefore have expertise on it. However,

software systems are in constant change and evolution [Lehman et al., 1997]. For this

reason, source code authorship is fundamentally different from authorship in other

contexts, like in books or scientific research papers, where the authors are explicitly

informed and do not change with time. In software, code artifacts are created by one

developer, but later changed by possibly hundreds of developers [Fritz et al., 2014].

On the one hand, this dynamic behavior makes it particularly challenging to identify

the authorship of code elements. On the other hand, it only increases the importance

of having updated authorship information for software system components. Finally,

in distributed development environments, as usual nowadays, identifying authorship

is especially a relevant task. In such cases, the geographic distance and consequent

communication problems can lead to poor interactions among developers, making more

complex to infer who is responsible or expert in each part of the system [Herbsleb et al.,

1



2 Chapter 1. Introduction

2001; Mistrík et al., 2010].

In this scenario, version control systems (VCS) such as Subversion (SVN) or Git

provide key data to identify code authorship, because they keep information about the

changes the developers made in the code. Taking advantage of this source of data,

several techniques were proposed to infer and measure code authorship [McDonald and

Ackerman, 2000; Mockus and Herbsleb, 2002a; Girba et al., 2005; Bird et al., 2011;

Casalnuovo et al., 2015; Rahman and Devanbu, 2011; Fritz et al., 2014]. In summary,

these techniques were proposed to recommend code experts [Minto and Murphy, 2007;

Begel et al., 2010], to notify developers on changes of interest [Hattori and Lanza,

2009; Ma et al., 2009] and to reveal the relationship between code authorship and

software quality [Bird et al., 2011; Rahman and Devanbu, 2011; Greiler et al., 2015;

Thongtanunam et al., 2016]. However, the usage of code authorship to investigate

how the implementation work is organized in modern software systems is not widely

explored. We argue that using authorship metrics to investigate development teams can

provide interesting insights about the developers who indeed drive the development of

software projects, avoiding potential biases resulting from counting a large number of

minor contributors. Additionally, code authorship has an inherent potential to address

important software engineering problems, such as to assess concentration of knowledge

in software projects. This potential can be explored by proposing and evaluating new

practical applications of code authorship.

1.2 Proposed Thesis

In this thesis, we propose to answer four overarching questions related to measuring

and using code authorship in software projects. We start by investigating code au-

thorship parameters in 115 popular GitHub projects, including an in-depth analysis

of how these parameters evolve in the Linux kernel (Q1). After that, by relying on

code authorship techniques to identify key developers, we propose a new approach to

estimate truck factors—a popular metric that measures concentration of knowledge

in software projects (Q2). Then, we investigate how common truck factor are events

in open source systems (Q3). Finally, in the last question, we compare and investi-

gate limitations of existing code authorship techniques to identify software maintainers

(Q4). More details and motivations for each question are described next.

Q1. How is authorship organized and how does it evolve in software sys-

tems?



1.2. Proposed Thesis 3

Recent studies [Meneely and Williams, 2009; Bird et al., 2011; Lavallée and Robillard,

2015; Thongtanunam et al., 2016] confirm that human factors play a significant role in

the quality of software components. Other studies [Nagappan et al., 2008; Bird et al.,

2008; Cataldo et al., 2012] investigate to what extent the social organization of devel-

opment teams impact the system implementation. Essentially, these studies confirm

the importance of managing the social aspects of systems’ development. However, con-

trolling social factors and promoting organization patterns is a challenging task, which

grows exponentially in distributed development environments [Mockus and Herbsleb,

2001; Aspray et al., 2006; Jiménez et al., 2009; Prikladnicki et al., 2010]. In many

cases, the development team organization is not previously designed or planned, it just

arises during the development process. We argue this problem can be mitigated by

setting to build an empirical body of knowledge on how authorship-related measures

evolve in successful systems. Although previous studies investigate the organization

of development teams [Godfrey and Qiang Tu, 2000; Mockus et al., 2002; Koch and

Schneider, 2002; Dinh-Trong and Bieman, 2005], they do not rely—to the best of our

knowledge—on authorship metrics to identify the main contributors when analyzing

the work force of a system. Notwithstanding, ignoring the relative importance of these

developers can lead to misleading conclusions. The reason is that systems may have

thousands of developers, but usually, only a small portion of them drive the real de-

velopment [Mockus et al., 2002; Goeminne and Mens, 2011; Joblin et al., 2017]. In

other words, it is common that most developers perform only minor contributions,

particularly in open source projects. Therefore, in this first question our goal is to rely

on authorship measures to identify the key developers of a system, in order to provide

insights about the developers that indeed conduct a system development. This investi-

gation aims to provide general information about the authorship organization, such as

distribution of files per author, developers profile, and collaboration patterns.

Q2. Can code authorship metrics be used to estimate truck factors?

In the previous question (Q1), we propose to investigate how code authorship is orga-

nized and evolves in a large number of systems. In this second question, we investigate

the usage of code authorship in a more specific scenario: to assess concentration of

knowledge in software projects. To conduct this investigation, we adopt a well-known

concept proposed by the agile community, called truck factor (TF). A system’s truck

factor is defined as “the number of people on your team that have to be hit by a truck

(or quit) before the project is in serious trouble” [Williams and Kessler, 2003]. Systems

with a low truck factor spot strong dependencies towards a small set of developers,

probably suggesting the existence of knowledge silos in development teams. If such
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important developers abandon the project, the system’s maintenance can be seriously

compromised, leading to delays in launching new releases, and ultimately to the dis-

continuation of the project as whole. To prevent such issues, it is important to have

metrics to compute truck factors, which can contribute to reveal knowledge concentra-

tion problems in project systems.

Although widely discussed among eXtreme Programming (XP) practitioners,

there are few studies providing and validating truck factor measures for a large num-

ber of systems. In part, the absence of these studies is due to scalability problems of

existing approaches [Ricca et al., 2011; Hannebauer and Gruhn, 2014]. Their applica-

bility is usually limited to systems with small number of developers. Essentially, these

approaches do not rely on authorship metrics to identify important developers, but

instead consider that all developers who changed a file have knowledge on it. There-

fore, in this second question, our goal is to investigate whether authorship metrics can

be used to estimate truck factors in real systems, by focusing the analysis in the most

important developers instead of considering the entire set.

Q3. How common are truck factor events in open source projects?

In the previous question (Q2), we investigate the use of code authorship metrics to

estimate truck factors. However, there is still a lack of studies that go beyond mea-

suring TF and investigate how common TF events are, i.e., situations where all TF

developers abandon the project. Essentially, in order to represent a real risk to software

development, TF events should occur with some frequency in the development history

of a large sample of systems. Additionally, by investigating how developers handle such

events, we can get important insights on how to overcome them. In particular, open

source projects represent an interesting case of study. On the one hand, they are more

susceptible to lose important developers because they usually have no financial support

and, in many cases, the developer’s involvement with the project is limited because

this activity does not represent his/her main job [Eghbal, 2016; Coelho and Valente,

2017]. On the other hand, open source projects usually have an active community of

developers and users, which can provide new skilled contributors, if needed [Jensen and

Scacchi, 2007]. Therefore, in this third question we investigate how common TF events

are in open source systems and how these systems handle such events.

Q4. Can code authorship identify software maintainers?

Changes made by developers without the adequate expertise can cause a degradation of

a system’s structure, which makes expensive to update the software, a problem known

as “software aging” [Parnas, 1994]. To attenuate this problem, when a piece of code
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needs to be changed, it is important to identify who the skilled developers on it are .

However, this is a challenging task, specially in distributed and collective development

environments, as usual nowadays. In this context, code authorship metrics can help to

identify skilled software developers. Although previous studies have proposed the use

of code authorship metrics to identify experts [McDonald and Ackerman, 2000; Mockus

and Herbsleb, 2002b; Fritz et al., 2014], the effectiveness of the existing techniques, as

well as their possible limitations, remain unclear. Therefore, in this last question, we

assess the use of code authorship techniques to identify skilled developers for specific

code units.

1.3 Outline

The studies that comprise the core of this thesis, with the exception of one, were pub-

lished in software engineering conference and journals. Therefore, the thesis’ chapters

preserve the original structure of the manuscripts in order to facilitate independent

read. Due to this structure, although all chapters have their particular contributions,

some redundancy can be found in the procedures and methodologies. We organized

the remainder of this work as follows:

Chapter 2: Measuring and Analyzing Code Authorship. In this chapter, we

initially present a detailed case study with the Linux kernel, analyzing aspects of its

development organization using code authorship measures, therefore addressing Q1.

Our analysis accounts for 56 stable releases, spanning a period of over 11 years of de-

velopment. In summary, this analysis reveals that (i) the distribution of the number of

files per author in the Linux kernel is highly skewed, (ii) most authors are specialists,

and (iii) authors with a high number of co-authorship connections tend to work with

authors with fewer connections. Additionally, we contrast these results with the ones

of an extended dataset, composed of 114 projects, and we show that most of the au-

thorship patterns observed in the Linux kernel are also common in other open source

systems. This chapter consists of the following publication:

Avelino, G., Passos, L., Hora, A., and Valente, M. T. (2017) Assessing Code Author-

ship: The Case of the Linux Kernel. In 13th International Conference on Open Source

Systems (OSS), pages 151-163.

Chapter 3: Estimating Truck Factors. In this chapter, we investigate a practical

application of code authorship, by proposing a new approach to estimate truck factors,

therefore addressing Q2. We apply the proposed approach in a corpus of 133 popu-
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lar open source projects hosted on GitHub. The results indicate that the majority of

these projects have a low truck factor (TF ≤ 2). Additionally, we provide empirical

evidence of the reliability of our truck factor estimates, as a product of surveying the

main contributors of the target systems. From the survey, we also report the practices

that developers argue as most useful to overcome a truck factor event. This chapter

consists of the following publication:

Avelino, G., Passos, L., Hora, A. C., and Valente, M. T. (2016). A novel approach for

estimating truck factors. In 24th International Conference on Program Comprehension

(ICPC), pages 1-10.

Chapter 4: Investigating Truck Factor Events. In this chapter, we address

Q3 by investigating truck factor events in a dataset built with 1,932 popular GitHub

projects. We identify that 315 projects (16%) experienced at least one truck factor

event and among them, 128 projects (41%) survived their most recent observed truck

factor event. We conclude the study by presenting the results of a survey with 33

developers that helped the surviving systems to overcome the detected TF events.

Chapter 5: Identifying Software Maintainers. In this chapter, we selected three

code authorship techniques and evaluated their effectiveness on supporting software

maintainers recommendation, addressing Q4. The selected metrics are: (1) the Num-

ber of Commits [Bird et al., 2011; Casalnuovo et al., 2015]; (2) the Number of Lines

of Code in the Last Version [Girba et al., 2005; Rahman and Devanbu, 2011]; and

(3) the Degree of Authorship (DOA) [Fritz et al., 2014]—a linear regression approach

for defining experts. We apply the three techniques in 10 projects (2 commercial and

8 open-source) and compare the results with an oracle we built from surveying 159

developers. Additionally, we investigate the cases where the three techniques fail. We

also suggest opportunities of improvements by controlling information about file size

and recency of the changes. This chapter consists of the following publication:

Avelino, G., Passos, L., Petrillo, F., and Valente, M. T.(2018). Who Can Maintain

this Code? Assessing the Effectiveness of Repository-Mining Techniques for Identify-

ing Software Maintainers. In IEEE Software, pages 1-15.

Chapter 6: Conclusion. This final chapter concludes the thesis and gives suggestions

for future research.



Chapter 2

Measuring and Analyzing Code

Authorship

Code authorship is a key information about large-scale software projects. Among oth-

ers, it reveals division of work, key collaborators, and developers’ profiles. Seeking to

better understand authorship in large and successful open source communities, we take

the Linux kernel as our first case study. In total, we analyze authorship across 56

stable releases. Our analysis is centered around the Degree-of-Authorship (DOA) met-

ric, which accounts for first authorship events (file creation), as well as further code

changes. Authorship along the Linux kernel evolution reveals that: (i) only a small

portion of developers (26%) makes significant contributions to the code base; this ratio

is almost constant during the Linux kernel evolution; (ii) the number of files per author

is highly skewed—a small group of top-authors (3%) is responsible for hundreds of files,

while most authors (75%) are responsible for at most 11 files; (iii) most authors in

Linux (75%) are specialists and the relation between specialists and generalists tends

to be constant; (iv) authors with a high number of co-authorship connections tend to

work with authors with fewer connections. Furthermore, we replicate the study in an

extended dataset, composed of 114 projects. We identify that most of the authorship

patterns observed in the Linux kernel are also common to other open source systems.

2.1 Introduction

Software engineering is essentially a collective effort, requiring the coordination of large

developer teams [Crowston and Howison, 2005; Herbsleb, 2007; Mistrík et al., 2010]. To

tackle complexity and size, software systems are usually partitioned into subsystems,

allowing developers to parallelize implementation [Parnas, 1972]. Hence, collaborative

7
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work and modularization are key players in software development, specially in the

context of open source systems.

In a collaborative setup imposed by open source development, code authorship

allows maintainers to assess overall division of work among project members (e.g., to

seek better working balance), identify profiles withing the team (e.g., specialists versus

generalists), and find best fitting developers for a target task.

In this chapter, we initially set to understand authorship in a large and long-lived

successful system—the Linux kernel. Our goal is to identify authorship parameters from

the Linux kernel evolution history, as well as interpret why they appear as such. At all

times, we also check whether those parameters apply to the subsystem level, allowing

us to assess their generality across different parts of the kernel. This analysis accounts

for 56 stable releases (v2.6.12–v4.7), spanning a period of over 11 years of development

(June, 2005–July, 2016). Additionally, in a second study, we contrast the authorship

results computed for the Linux kernel with the ones computed for a dataset of 114

popular open source systems, retrieved from GitHub.

First Study (Linux Kernel). First, when investigating the Linux kernel authorship

history, we provide answers to four research questions:

RQ1. What is the proportion of developers ranked as authors?

Motivation: In large open source communities, most developers perform occasional and

minor contributions [Mockus et al., 2002; Goeminne and Mens, 2011; Joblin et al.,

2017]. With that insight, not all contributors perform significant changes, but how

many do? Hence, this research question allows to reveal the proportion of developers

with significant contributions to Linux development, defining the project working force

to be studied.

RQ2. What is the distribution of the number of files per author?

Motivation: Answering such a question provides us with a measure of the work overload

within team members, as well as how that evolves over time.

RQ3. How specialized is the work of Linux authors?

Motivation: Following the Linux kernel architectural decomposition, we seek to under-

stand the proportion of developers who have a narrower understanding of the system

(specialists), versus those with a broader knowledge (generalists). Specialist developers

author files in a single subsystem; generalists, in turn, author files in different subsys-

tems. Answering this research question seeks to assess how effective the Linux kernel
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architectural decomposition is in fostering specialized work, a benefit usually expected

from a good modularization [Sullivan et al., 2001; Baldwin and Clark, 1999].

RQ4. What are the properties of the Linux co-authorship network?

Motivation: The authorship metric we use enables identifying multiple authors per file,

evidencing a co-authorship relation among developers [Meneely and Williams, 2011].

Such relations form a network—vertices denote authors and edges connect authors shar-

ing common authored files. This question seeks to identify co-authorship properties in

the Linux kernel evolution. We compute and discuss several properties, including mean

degree, number of solitary vertices, clustering, and assortative coefficients, among oth-

ers.

Second Study (114 open source projects). We extended the initial study (Linux

kernel) by applying the same authorship-related metrics to a dataset of 114 popular

(number of stars) open source systems, retrieved from GitHub. We contrast the studies

results and observe that most of the authorship patterns firstly identified in the Linux

kernel are also present in this extended dataset. For example, most projects in the

extended dataset present skewed distribution of the number of files per author and a

high number of specialists.

Organization. The remainder of this chapter is organized as follows. Section 2.2

provides a description of our study design. Section 2.3 details our results, providing

answers for the four research questions. Section 2.4 discusses our key findings when

investigating these questions. Section 2.5 compares the Linux kernel measures with the

ones computed for other 114 open source projects. Sections 2.6 and 2.7 discuss threats

to validity and related work, respectively. Section 2.8 concludes the chapter.

2.2 Study Design

In this section, we first present the metric we used to identify source code authors.

Then, we describe the Linux kernel architectural decomposition and how we collect

and process the development data used in this study.

2.2.1 Author Identification

At the core of our study lies the ability to identify and quantify authorship at the

source code level. To identify file authors, as required by our five research questions,

we employ a normalized version of the degree-of-authorship (DOA) metric [Fritz et al.,
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2010, 2014]. The metric is originally defined in absolute terms:

DOAA(d, f) = 3.293 + 1.098 ∗ FA+ 0.164 ∗ DL− 0.321 ∗ ln(1 + AC ) (2.1)

From the provided formula, the absolute degree of authorship of a developer d in a

file f depends on three factors: first authorship (FA), number of deliveries (DL), and

number of acceptances (AC). If d is the creator of f , FA is 1; otherwise it is 0; DL is

the number of changes in f made by d; and AC is the number of changes in f made

by other developers. DOAA assumes that FA is by far the strongest predictor of file

authorship. Further changes by d (DL) also contribute positively to his authorship,

but with less importance. Finally, changes by other developers (AC) contribute to

decrease someone’s DOAA, but at a slower rate. The weights in Equation 2.1 stem

from an experiment with professional Java developers [Fritz et al., 2014]. We reuse

such thresholds without further modification.

Then, we define the normalized DOA (DOAN):

DOAN (d, f) = DOAA(d, f)/max ({DOAA(d
′, f) | d′ ∈ changed(f)}) (2.2)

In Equation 2.2, changed(f) denotes the set of developers who edited a file f up to a

snapshot of interest (e.g., release). This includes the developer who creates f , as well

as all those who later modify the file. DOAN ∈ [0..1]: 1 is granted to the developer

with the highest absolute DOA among those changing f ; in any other case, DOAN is

less than one.

Lastly, the set of authors of a file f is given by:

authors(f) = {d | d ∈ changed(f)∧DOAN (d, f) > 0.75∧DOAA(d, f) ≥ 3.293} (2.3)

The authors identification (Equation 2.3) depends on specific thresholds— 0.75 and

3.293. Those stem from a calibration setup when applying this equation to a large

corpus of open-source systems. Details about the calibration study are in Section 3.4.2.

DOA Trade-offs. Identifying code authorship is not trivial. Due to constant changes

by different collaborators, authorship is not granted to a single developer. Rather, a

single file may have different authors, with varying groups as the system evolves. Using

DOA certainly has limitations. For instance, DOA does not account for the number

of lines developers change on a given commit, nor why such lines are changed. On

the other side, the metric does have its strengths. In addition to file creation, DOA

accounts for different authorship events (e.g., deliveries and acceptances). The metric
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Table 2.1. Linux subsystems (release v4.7)

Subsystem # Files %

Driver 22,943 42%
Arch 17,069 32%
Misc 6,621 12%
Core 3,840 7%
Net 1,957 4%
Fs 1,809 3%
Firmware 151 0%

Total 54,400 100%

is also language-agnostic, as it does not consider file content, which favors automatic

mining of software repositories.

2.2.2 Linux Kernel Architectural Decomposition

Investigating authorship at the subsystem level requires a reference architecture of

the Linux kernel, as well as a mapping between elements at the source code level to

elements in the architectural model. Structurally, the Linux kernel architectural decom-

position comprises seven major subsystems [Corbet et al., 2005]: Arch (architecture

dependent code), Core (scheduler, IPC, memory management, etc), Driver (device

drivers), Firmware (firmware required by device drivers), Fs (file systems), Net (net-

work stack implementation), and Misc (miscellaneous files, including documentation,

samples, scripts, etc).

To map files in each subsystem, we rely on expert knowledge. Specifically, we use

the mapping rules set by G. Kroah-Hartman, one of the main Linux kernel developers.1

Table 2.1 provides information about the size, as measured by number of files, in each

kernel subsystem. As the table shows, Driver is the largest subsystem, followed by

Arch, Misc, and Core.

2.2.3 Data Collection

We study 56 stable releases of the Linux kernel, obtained from linus/torvalds GitHub

repository.2 A stable release is any named tag snapshot whose identifier does not have

a -rc suffix. To define the authors set of a file f in a given release r, we calculate

DOAN from the first commit up to r. Hence, all files from each release have at least

1https://github.com/gregkh/kernel-history/blob/master/scripts/stats.pl
2https://github.com/torvalds/linux



12 Chapter 2. Measuring and Analyzing Code Authorship

one author. It happens, however, that the Linux kernel history is not fully stored under

Git. Linus Torvalds explains:3

I’m not bothering with the full history, even though we have it. We can

create a separate "historical" git archive of that later if we want to, and in

the meantime it’s about 3.2GB when imported into git - space that would

just make the early git days unnecessarily complicated, when we don’t have

a lot of good infrastructure for it.

We use git graft4 to join the history of all releases prior to v2.6.12 (the first

release recorded in Git) with those already controlled by Git (≥ v2.6.12). After joining,

we increment the Linux kernel Git history with 64,468 additional commits.

Given the entire Linux kernel evolution history, we then query the git repository

to filter stable release names, checking out each stable release at a time. For a given

release snapshot, we list its files, calculating the set of authors (Equation 2.3) for each

of them. In the latter case, we rely on git log --no-merges to discard merges and

retrieve all the changes to a given file prior to the release under investigation.

It is worth noting that prior to calculating the files authors, we map possible

aliases among developers, as well as eliminate unrelated source code files. Next, we

detail such steps.

Alias Detection. One core challenge in mining software repositories consists of alias

detection. An alias occurs when a single developer uses different identities to commit

changes; in such cases, one should track all changes as being of the same developer.

In Git, an identity comprises a username and email. To track changes in the face of

aliases, we first assign to a single developer all commits with exactly the same e-mail,

but with different names. For example, the email dmonakhov@openvz.org associates

to six different names: “Dmitry Monakhov”, “Monakhov Dmitriy”, “Dmitri Monakhov”,

“Dmitri Monakho”, “Dmitry”, and “Dmitriy Monakhov”. Then, we consider developer

names to be the same if they have a Levenshtein distance [Navarro, 2001] of at most

one. Such distance corresponds to the minimal number of single-character insertions,

deletions, or substitutions required to make two strings identical, respected the

limit of a single-character change. For example, “Haavard Skinnemoen” and “Havard

Skinnemoen” are considered to be the same name, since one insertion is needed to

make the two strings equal.

3https://github.com/torvalds/linux/commit/1da177e4c3f41524e886b7f1b8a0c1fc7321cac2
4https://git.wiki.kernel.org/index.php/GraftPoint
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File Cleaning. Code authorship should consider only the files representing the source

code of a target system. Thus, it should ignore documentation, images, examples,

third-party source code files, etc. To filter out files unrelated to the Linux kernel, we

use the Linguist library.5 GitHub uses the latter to identify a system’s language, as

well as files that should not be counted as part of the system (e.g., when collecting

repository statistics). We use Linguist to exclude unrelated files at each release we

analyze. For example, release v4.7 contains 54,400 files; of those, we remove around

20%. Most of the files we exclude consist of documentation (4,560) and device-tree

specifications (2,013).6 Additionally, we remove the Firmware subsystem from further

analysis, as most of its files are blobs.

2.2.4 Custom-made Infrastructure

Using custom-made scripts, we fully automate authorship identification, as well as the

collection of supporting data for the claims we make. Our infrastructure is publicly

available on GitHub.7 We encourage others to use it as means to independently repli-

cate/validate our results.

2.3 Results

In this section, we present the results we obtain by investigating the four research

questions introduced in Section 2.1

RQ1. Proportion of Authors

What is the proportion of developers ranked as authors?

In the latest release in our analysis (v4.7), the Linux kernel has 13,436 developers; of

those, 26% author at least one file. Figure 2.1a contrasts the number of developers

with the number of authors across different releases. In both cases, we identify a

steady increase, with similar growth rates. Specifically, there is an 8-fold increase in

the number of authors, from 432 (first release) to 3,459 (last release). The number of

developers, in turn, has grown 8.5 times.

Historically, the mean proportion of authors is 26.8%, with alternating periods of

small increases and decreases—see Figure 2.1b. Throughout the kernel development,

5https://github.com/github/linguist
6Files ending in dts and dtsi.
7https://github.com/gavelino/data_oss17
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(b) Proportion of authors over time

Figure 2.1. Authors and developers over time

Table 2.2. Author Ratio Evolution: Summary Statistics. Avg: Average, Std
Dev: Standard Deviation

Subsystem Min Max Avg ± Std Dev

Core 22.80% 28.39% 25.77 ± 1.56%
Driver 23.82% 26.87% 25.00 ± 0.80%
Arch 30.00% 35.32% 33.10 ± 1.28%
Net 12.28% 15.84% 13.63 ± 0.90%
Fs 9.85% 17.26% 12.61 ± 1.95%
Misc 11.88% 22.73% 14.85 ± 2.69%

All 25.66% 28.26% 26.86 ± 0.83%

the proportion of authors is nearly constant (Std dev= ± 0.83%). Thus, the heavy-load

maintenance of the kernel has been kept in the hands of a little more than one quarter

of all developers.
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Contrasting the authorship proportion at the subsystem level with the global

one shows that Core (mean 26%) and Driver (mean 25%) approximate to the global

average.8 As Table 2.2 shows, both subsystems display little variance in authorship

ratio, which follows directly from their low standard deviation (Std Dev). To a lesser

extent, the authorship ratio in Arch (33%) also approximates the global parameter; the

same does not occur for Net, Fs, and Misc. We interpret such discrepancies as follows.

As Core and Arch provide the basic functionality for the remaining parts of the

system, developers must have great confidence on the changes they propose, discour-

aging volunteers from performing small changes as a means to become kernel con-

tributors. In the latter case, authorship ratio increases. In addition, changing Arch

requires vendor-specific expertise when maintaining support for different CPUs. Thus,

knowledge becomes narrower, lifting author ratio. Driver follows a similar rationale,

requiring manufacturer-specific knowledge about the hardware to support.

Different from the latter three, Net and Fs require less hardware-specific knowl-

edge; in a sense, maintaining such subsystems is somehow easier, making them more

attractive for occasional and minor contributions. As a consequence, there is a decrease

in authorship.

Misc, due to a mix content, fits different goals, not necessarily in-tune with the

operating system itself (e.g., infrastructure for building the kernel). Its size, as given

in lines of code, tends to be stable across the kernel, indicating that Misc does not

change frequently [Passos et al., 2015].

From such insights, we hypothesize that the closer a subsystem is to vendor-

specific code (e.g, Arch and Driver) or to the "brain" of the kernel (Core), the harder

is to maintain code, inflating authorship.

In the last release, 26% of the Linux’s developers are authors, concentrating the

heavy-load of the Linux kernel maintenance. Such proportion is almost constant

over time. The proportion of authors is higher in subsystem that requires vendor-

specific knowledge (e.g., Driver and Arch) or an understanding of the kernel as a

whole (e.g., Core).

RQ2. Distribution of the Number of Files per Author

What is the distribution of the number of files per author?

8We use the terms average and mean interchangeably. Both should be interpreted as the arithmetic
mean.
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Figure 2.2. Distribution of the number of files per author in each release

The number of files per author is highly skewed. Figure 2.2 presents the boxplots of

files per author across all 56 releases (we adjust the boxplots for skewness—see [Hubert

and Vandervieren, 2008]). To simplify the visualization of the results, we present the

boxplots at each two releases. Globally, 50% of the authors responds to at most four

files (median), a measure that remains constant across all releases except one (v2.6.24);

for 75% of the authors (third quartile), the max number of files per author ranges from

11 to 16 along the releases. Outliers follow from the skewed distribution. Still, the

number of authors with more than 100 files is always lower than 7% of the authors,

ranging from 7% in the first release to 3% in the last one.

It is interesting to note that file authorship follows a pyramid-like shape of increas-

ing authority; at the top, Linus Torvalds acts as a "dictator", centralizing authorship

of most of the files (after all, he did create the kernel!). Bellow him lies his hand-picked

"lieutenants", often chosen on the basis of merit. Such organization directly reflects the

Linux kernel contribution dynamics, which is itself a pyramid [Bettenburg et al., 2015].

However, as the kernel evolves, we see that Torvalds is becoming more "benevolent".

As Figure 2.3 shows, the percentage of the Linux kernel files authored by Torvalds has

reduced from 45% (first release) to 10%, in v4.7. This decrease is not a simple result of

the Linux kernel growth. Actually, the number of files authored by him decreased 40%

in this period, suggesting that many of his files started to be maintained by other de-

velopers. Currently, Torvalds spends more time verifying and integrating patches than

writing code [Corbet et al., 2013].9 His "benevolence" appears to have a direct impact

9These results are also consistent with a recent interview from Linus Torvalds,
where he acknowledges that nowadays, Linux maintenance has much less dependence on
him than 15 years ago. See http://www.bloomberg.com/news/articles/2015-06-16/
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Figure 2.3. Percentage of files authored by the top-10 authors over time. The
line represents Linus Torvalds (top-1) and the bars represent the accumulated
number of files of the next top-9 authors
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Figure 2.4. Gini coefficients

downwards the authorship pyramid. For instance, the figure shows the percentage of

files in the hand of the top-10 Linux kernel authors is consistently decreasing. This

suggests that authorship is increasing at lower levels of the pyramid, becoming more

decentralized. This is indeed expected and, to an extent, required to allow the Linux

kernel to evolve at the pace it does.

To better comprehend the distribution of the number of files per author, we also

analyze Gini coefficients (Figure 2.4). Gini is a widely used metric to express the

wealth inequality among a target population [Gini, 1921]. Wealth, in this case, stands

the-creator-of-linux-on-the-future-without-him.
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Figure 2.5. Number of files per author (release v4.7)

for the number of files per author. The coefficient ranges from 0 (perfect equality, when

everyone has exactly the same wealth) to 1 (perfect inequality, when a single person

concentrates all the wealth). In all releases, the Gini coefficient is high, confirming

skewness. However, we notice a decreasing trend, ranging from a Gini of 0.88 in the first

release to 0.78 (v4.7). Such a trend further strengthens our notion that authorship in

the Linux kernel is becoming less centralized. Alternatively, it means that the number

of authors per file is becoming more equal.

The distribution of files per author is also highly skewed at the subsystem level.

For instance, in the last release (see Figure 2.5), the number of files per author up to

the 75% percentile in Fs, Arch, and Driver closely resemble one-another and the global

distribution as a whole—all share the same median (three). Core and Misc, however,

have less variability than the other subsystems, as well as lower median values (two

and one, respectively).

The number of files per author follows a highly skewed distribution in all analyzed

releases. However, it is becoming more equal over time. For example, the top-1

author owns 45% of the files in the first analyzed release, but only 10% of the files

in the last one.

RQ3. Work Specialization

How specialized is the work of Linux authors?

To assess work specialization, we introduce two author profiles. We call authors spe-
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Figure 2.6. Specialists and generalists over time

cialists if they author files in a single subsystem. Generalists, in turn, author files in

at least two subsystems. When classifying authors, we ignore files in the include/ di-

rectory. This directory may lead to misclassifications because it was designed to store

all Linux kernel headers files, independently of what subsystem the file belongs. As

Figure 2.6 shows, the number of specialists dominates the amount of generalists, both

in absolute terms as proportionally.

Proportionally, any given release has at least 72% of specialist authors, with

a maximum of 76%; at all times, no more than 28% of the authors are generalists.

Moreover, the proportion of generalists and specialists appears to be fairly stable across

the entire kernel (All) and its constituent subsystems (except for Misc)—see Figure 2.7.

It is important to note, that as a generalist developer authored files in at least two
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different subsystems, the number of generalists shown in All is not the sum of generalists

in each subsystem.

Looking at the division of generalists and specialists working in each subsystem

also allows to assess how much the Linux kernel architectural decomposition fosters

specialized work—a desired by-product of a good modularization design [Sullivan et al.,

2001; Baldwin and Clark, 1999]. We notice that the architectural decomposition plays a

key role in fostering specialists inside the Driver subsystem, but less so elsewhere. Thus,

the Linux kernel architecture partially fosters specialization. The reason it occurs so

extensively inside Driver follows from the plugin interface of the latter and its relative

high independence from other subsystems. Device-drivers are supposed to be self-

contained modules that are plugged into the kernel and loaded as needed [Corbet et al.,

2005; Passos et al., 2015]. There are cases, however, when developers must change other

parts of the kernel when adding new device drivers or maintaining them. An example

includes scattering code in Arch due to hardware detection limitations [Passos et al.,

2015]. In cases such as this, the knowledge to perform changes increases, leading to

the appearance of generalists within the Driver subsystem.

Similar to Driver, Net and Fs also follow a plugin-like model of development.

Counter-intuitively, however, both subsystems display a dominance of generalists . Our

hypothesis is that the maintenance of these systems interplays with other parts of the

kernel. For instance, a new distributive file system may require specific network pro-

tocols to be added or fine-tuned. Others also report a similar understanding [Bowman

et al., 1999].

The results in Arch and Core match our expectations. When maintaining either

subsystem, developers must be aware of possible side effects elsewhere; also, modular-

ization of both systems is harder to achieve, fostering less specialization. Often times,

for instance, developers must break programming interfaces to get better performance.

Other cases include the maintenance of CPU-specific code that has been historically

troublesome (e.g., ARM).10 Specifically, Core is the subsystem with the lowest per-

centage of specialized workers (21%). This is also expected since Core developers tend

to have expertise on Linux’s central features, which allows them to also work on other

subsystems.

Fine-grained specialization. We also investigate the specialization at a fine-grained

level. By adopting a more generic strategy, we consider each top-level directory as

a Linux kernel module.11 By applying this approach, in the last release (v4.7), we

10https://lkml.org/lkml/2011/3/17/492
11We discard files in the root and include directories.
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Figure 2.7. Percentage of specialists and generalists

divided the Linux kernel in 16 modules and the percentage of specialists and general-

ists are, respectively, 73% and 27%. The results at top-level directory are similar to

the obtained adopting the kernel subsystems division (respectively, 75% and 25%, in

v4.7). In other words, even considering a finer granularity (16 modules, instead of 6

subsystems) the specialization remains high in the Linux kernel.

Specialization is a common practice in the Linux kernel development over the years.

In 11 years of development, at least 72% of the Linux authors are specialists, i.e.,

all files they authored are located in a single subsystem. This is especially valid for

Driver authors. The most notable exception are Core developers, who tend to be

generalists.

RQ4. Co-authorship Properties

What are the properties of the Linux co-authorship network?

In this section, we investigate the collaborative nature of the Linux implementation
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Table 2.3. Percentage of files with multiple authorship (release v4.7)

All Driver Arch Core Net Fs Misc

28% 28% 28% 27% 30% 24% 20%

work. First, it is important to clarify that the author identification model we use

allows multiple authors per file; they only need to have a DOAN value that fits the

thresholds defined in Section 2.2.1. We compute the percentage of files with multiple

authorship per subsystem, as presented in Table 2.3. As we can see, most files have

a single author; however, the percentage of files with multiple authors is relevant. It

ranges from 20% of the files in Misc to 30% in Net. When considering the files in all

subsystems, it reaches 28%.

As many files in the Linux kernel result from the work of different authors, we

set to investigate such collaboration by means of the properties of the Linux kernel

co-authorship network. We model the latter as follows: vertices stand for Linux kernel

authors; an edge connects two authors vi and vj if ∃ f such that {vi, vj} ⊆ authors(f).

To strength the collaboration meaning of the co-authorship network, we filter edges

without a temporal overlap between the file authorship. In other word, we only connect

the developers vi and vj if at least one change in f performed by vi or vj occur while the

other developer is active (by considering her first and last commit in the repository).

Differently from books and scientific papers, our co-authorship network does not

account for a possible hierarchy among authors (first author, second author, etc).

Rather, we take all the authors of a file to be equally important co-authors.

To answer our research question, we initially analyze the latest co-authorship net-

work of the entire kernel, as given by the last release in our corpus (v4.7). When doing

so, we measure four metrics: number of vertices, mean degree, clustering coefficient, and

assortative coefficient. At all times, we contrast the system level network with those

at the subsystem level. Additionally, we investigate how the values we report came

to be, analyzing their historical evolution. Figure 2.8 shows a fragment of the latest

co-authorship network (note the central role of Linus Torvalds). Table 2.4 presents the

values of our target metrics.12

The number of vertices (authors) determines the size of a co-authorship network.

The mean degree network, in turn, inspects the number of co-authors that a given

author connects to. In the system level network for release v4.7 (All), the mean vertex

degree is 3.44, i.e., on average, a Linux author collaborates with 3.44 other authors. At

the subsystem level, Driver forms the largest network (2,604 authors, 75%), whereas

12We use the R igraph (version 1.0.1) to calculate all measures.
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Figure 2.8. Fragment of the Linux co-authorship network

Table 2.4. Co-authorship network properties (release v4.7)

All Driver Arch Core Net Fs Misc

Vertices 3,459 2,604 1,145 1,083 269 175 78
Mean Degree 3.44 2.56 3.03 1.57 2.46 2.55 0.74
Clustering 0.077 0.069 0.126 0.070 0.199 0.174 0.200
Assortativity -0.084 -0.130 -0.072 -0.083 -0.025 -0.154 -0.117

Misc results in the smallest one (78 authors, 2%). Arch has the highest mean degree

(3.03 collaborators per author); Misc has the lowest (0.74 collaborators per author).

Linus Torvalds has connections with 215 other authors. His collaborations spread over

all subsystems and range from 92 collaborations in Driver to five collaborations in

Misc. Excluded Torvalds, the top-2 and top-3 authors with more collaborators have

156 and 117 collaborators, respectively.

The third metric concerns the clustering coefficient of the co-authorship network.

Also known as graph transitivity, this coefficient reveals the degree to which adjacent

vertices of a given vertex tend to be connected [Watts and Strogatz, 1998]. In a co-

authorship network, the coefficient gives the probability that two authors who have a

co-author in common are also co-authors themselves. A high coefficient indicates that

the vertices tend to form high density clusters. The clustering coefficient of the Linux

kernel is small (0.077). Nonetheless, Misc, Net, and Fs exhibit a higher tendency to

form high density clusters (0.200, 0.199, and 0.174, respectively) in comparison to other

subsystems. The three subsystems are the smallest analyzed, a factor that influences
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Table 2.5. Number of files authored by Solitary Authors (i.e., authors that do
not have co-authors)

Number of Files 1 File 2 Files 3 Files >3 Files Total

Solitary Authors 495 182 60 101 838

the development of collaboration clusters [Albert and Barabási, 2002].

Last, we compute a measure called assortativity coefficient, which correlates the

number of co-authors of an author (i.e. its vertex degree) with the number of co-

authors of the authors it is connected to [Newman, 2003]. Ranging from -1 to 1, the

coefficient shows whether authors with many co-authors tend to collaborate with other

highly-connected authors (positive correlation). In v4.7, all subsystems have negative

assortativity coefficients, ranging from −0.154 in Fs to −0.025 in Net subsystem. This

result diverges from the one commonly observed in scientific communities [Newman,

2004]. Essentially, this suggests that Linux kernel developers often divide work among

experts who help less expert ones. These experts (i.e., highly-connected vertices), in

turn, usually do not collaborate among themselves (i.e., the networks have negative

assortative coefficients).

In the co-authorship networks, there is a relevant amount of solitary authors—

authors that do not have co-authorship with any other developer. As Table 2.5 shows,

24% (838) of Linux kernel developers are solitary, authoring few files. Only 12% of

solitary authors have more than three files; a single outlier exists in v4.7, authoring 27

files, all in Driver. In fact, it is worth noting that 59% of solitary authors work in the

Driver subsystem. The latter is likely to follow from the high proportion of specialists

within that subsystem (see RQ.3).

Evolution of Co-authorship network metrics. We set to investigate how the

mean degree, clustering coefficient, and assortative coefficients evolved to those in

release v4.7. Figure 2.9 displays the corresponding graphics.

Despite a period of decrease, the mean degree (see Figure 2.9a) has little vari-

ation from the first release (3.55) to the last one (3.44). Clustering coefficient (see

Figure 2.9b), in turn, varies from 0.099 (first release) to 0.077 (v4.7). Since the mean

degree does not vary considerably, we interpret such decrease as an effect of the growth

of the number of authors (network vertices). The latter creates new opportunities of

collaboration, but these new connections do not increase the density of the already ex-

isting clusters. A similar behavior is common in other networks, as described by Albert

and Barabási [2002].

We observe a relevant variation in the evolution of assortativity coefficients—see
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(c) Assortativity coefficient

Figure 2.9. Co-authorship network properties over time

Figure 2.9c. Measurements range from -0.255 in the first release to -0.084 in v4.7. Such

a trend aligns with the decrease of the percentage of files authored by Linus Torvalds

and the other top authors (refer to RQ.3). With less files, these authors are missing

some of their connections and becoming more similar (in terms of vertex degree) to

their co-authors.

On average, a Linux author collaborates with 3.4 other authors and this number

is almost constant over time. Moreover, the co-authorship network indicates that

authors that collaborate with many other do so in a way to “help” authors who

collaborate less, suggesting some sort of mentorship.
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2.4 Discussion

The Importance of Code Authorship. Studies on open source communities can

lead to misleading conclusions if the relative importance of the developers is not con-

sidered. The reason is that open source systems may have thousands of developers, but

they usually have much less authors. In this context, authorship measures—like the

DOA model used in this thesis—can help to automatically identify the key developers of

each file in a large open source project. By collecting authorship data for each file, we

can also reason about many organizational aspects of a development team, as reported

in this chapter. For example, we used authorship measures to reveal the workload of

Linux’s authors (75% of them are authors of at most 11 files) and their degree of spe-

cialization (more than 72% of the authors are specialists in a single subsystem). Since

the DOA model is computed using commit histories, it can also be used to study the

evolution of these measures. For example, after collecting authorship data for 56 Linux

releases, we showed that the number of files authored by the top-1 author suffered a

major decrease (from 45% of the system’s files to 10%). We also reported that ratio of

specialists and generalists is almost constant over time (72% vs 28%).

Interestingly, the Linux Foundation releases an annual report on the state of the

kernel development [Corbet et al., 2015]. In one of its sections, this document describes

“who is doing the work” of developing the Linux kernel. To answer this question, the

study ranks the developers by number of changes. It reports, for example, that the

top-10 individual developers have contributed with 8.4% of the number of changes.

However, the report does not provide information about the specialization of such

developers and how frequently they collaborate to solve implementation or evolution

tasks.

In summary, code authorship measures can be used to check some important prop-

erties and practices in software development, like the ability of an open source system

to attract not only new developers, but also new authors; to assess the contributions of

paid developers in commercial software (since in this case we should expect all devel-

opers to be authors of at least some files); to assess the concentration of knowledge in

few team members, which can raise concerns in case they leave the project (which can

happen both in open source and in commercial projects); to check whether the criteria

used to decompose a system in modules is indeed able to foster the specialization of the

work force, as usually expected from software modularization; and to use information

on multiple authorship to check practices like collective ownership of the code base, as

commonly advocated by agile methodologies [Beck and Andres, 2004].
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Linux Kernel Evolution and Conway’s Law. Proposed in 1968, Conway’s Law

asserts that “organizations are constrained to produce application designs which are

copies of their communication structures” [Conway, 1968]. Although, proposed in the

context of formal organizations, it is also worth to investigate whether it applies to

more informal organizations, like open source communities. After reasoning on its

use in the context of our study, we are inclined to affirm that Conway’s Law does

not hold in Linux. Indeed, we collect preliminary evidences that in Linux an inverse

form of this law better explains the relation between the organization of the Linux

development team and the architecture of the system. By inverse, we mean that it

is the system’s architecture that shaped Linux’s development team in the last ten

years. Linux follows a monolithic architecture, with a Core component responsible

for its main features [Love, 2010]. The other subsystems provide specialized services,

like Drivers, Net, and Fs. This early architectural decision was crucial to define some

key characteristics of the Linux’s development team along the years. Our study, for

example, shows that Linux has a group of top-authors, who are generalists and therefore

work not only in the Core but also in other subsystems. By contrast, the remaining

authors tend to focus their work in specific subsystems.

2.5 Measuring Code Authorship in a Large Dataset

In this section, we describe an extension of the Linux kernel study, in which we apply

the authorship-related metrics proposed in this work to a large dataset. This dataset

is composed of 114 open source systems, which are implemented in six different pro-

gramming languages. These systems come from the truck factor study described in

Chapter 3. The original dataset contains 133 systems, but we removed the torvalds/linux

repository because it was previously analyzed (Section 2.3) and also systems with less

than 2 top-level directories (8 repositories) or less than 10 authors (13 repositories).13

These last two filters were used to allow, respectively, the computation of the special-

ization and co-authorship measures.

Figure 2.10 presents the code authorship measures. In the first violin plot (Fig-

ure 2.10a) we can observe that the proportion of authors is small in most of the studied

systems (the first, second, and third quartiles are 16%, 21%, and 32%, respectively).

This behavior was previously observed in the Linux kernel (26%). However, we found

systems with a high ratio of authors, which usually are systems with a relevant number

of paid developers and some of them are supported by commercial organizations. This

13Three systems match the two filters, therefore in total these filters remover 18 repositories.
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Figure 2.10. Authorship measures in an extended dataset of 114 open source
systems. The Linux kernel results are represented by the red dots.

is the case of three out of five outliers, including systems like v8/v8 (76%), WordPress/-

WordPress (72%), and JetBrains/intellij-community (62%). We also detected two language

interpreters among the top-6 systems: ruby/ruby (68%) and php/php-src (56%).

The second violin plot (Figure 2.10b) presents the Gini coefficients. The high

coefficients (the first, second, and third quartiles are 0.73, 0.79, and 0.83, respectively)

show that the distribution of the number of files per author is highly skewed in most

of the systems in the dataset. The systems with a more equal distribution (outliers)

are github/linguist (0.49), resque/resque (0.50), fzaninotto/Faker (0.53), and alexreisner/geocoder

(0.57). Most of these outliers have few authors; however fzaninotto/Faker, with 180 au-

thors, is an exception. Its low Gini coefficient, when contrasted with the other systems

in the dataset, is a result of its plugin-based software architecture. fzaninotto/Faker has a

small core and most of the repository’s files are plugins (called providers) developed by

the community. Again, the Linux kernel’s Gini coefficient (0.78) is close to the median

value of the distribution in the extended dataset.

Finally, the third violin plot (Figure 2.10c) presents the proportion of specialists;

in this case, we consider as subsystem the top-level directories of the cloned reposito-

ries. The high specialization observed in the Linux kernel (73%, by using the directory

approach) its also found in most of the systems in our extended dataset (the first,

second, and third quartiles are 54%, 67%, and 83%, respectively).
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Figure 2.11. Co-authorship measures in an extended dataset of 114 open source
systems. The Linux kernel results are represented by the red dots.

Co-authorship measures. We also build the co-authorship network of the 114 sys-

tems in the extended dataset. Figure 2.11 presents the co-authorship measures. The

first violin plot (Figure 2.11a) shows the mean degree, which is low in most of the

systems (the first, second, and third quartiles are 1.29, 1.69, and 2.33, respectively).

Similar to what we observed in Figure 2.10a, high mean degrees are more common

in repositories supported by commercial organizations—e.g., JetBrains/intellij-community

(9.44), v8/v8 (7.53), and WordPress/WordPress (4.33)—and in language interpreters—

e.g., php/php-src (5.33) and ruby/ruby (4.43). Although not so high as in these commercial

projects, the Linux kernel also presents a high mean degree (2.74), when contrasting

with the entire dataset results (mean equal to 2.09).

The clustering coefficient (Figure 2.11b) indicates that most systems have a low

probability to form high density co-authorship clusters (the first, second, and third

quartiles are 0.04, 0.10, and 0.28, respectively). This trend is also followed by the

Linux kernel (0.07).

Finally, the assortativity coefficients are presented in the third violin plot (Fig-

ure 2.11c). With the exception of webscalesql/webscalesql-5.6 (0.05), all the repositories

have negative coefficients. In other words, authors with a high number of co-authorship

connections tend to collaborate with authors with less connections, suggesting some

sort of mentorship. This behavior was previously observed in the Linux kernel (−0.11),

but it is more intense in the extended dataset. As example, the clustering coefficients
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of bumptech/glide and getsentry/sentry are −1.00 (the minimal possible value). These two

repositories have one main author and all co-authorship connections are between this

main author and authors without any additional connections.

Most of the authorship patterns previously observed in the Linux kernel are also

common in an extended dataset of 114 popular GitHub open source projects. For

example, the repositories in this dataset also have few authors, skewed distributions

of the number of files per author, and a high proportion of specialists. Additionally,

the co-authorship network measures confirm some initial assumptions about co-

authorship patterns, such as: most of the repositories have a low mean degree (but

this is higher in projects with commercial support), and it is common some kind

of mentorship, where authors with many co-authorship connections are connected

with authors with fewer connections.

2.6 Threats to Validity

Construct Validity. With respect to construct validity, our results depend on the

accuracy of DOA calculations. Currently, we calculate the degree-of-authorship values

using weights from the analysis of other systems [Fritz et al., 2010, 2014]. Although

the authors of the absolute DOA claim that their weights are general, we cannot

fully eliminate the threat that the choice of weights pose to our results. However,

we previously applied them when analyzing different open source systems, obtaining

positive feedback from developers [Avelino et al., 2016].

Additionally, our normalized DOA measures may also vary due to possible

developer aliases. We mitigate such a threat by handling the most common sources of

aliasing—see Section 2.2.3.

Internal Validity. We measure authorship considering only the commit history of

the official Linux kernel Git repository. Hence, we do not consider forks that are

not merged into the mainstream development. Although these changes might be

relevant to some (e.g., studies about integration activities, like rebasing and cherry-

picking [German et al., 2015]), they are not relevant when measuring authorship of the

official Linux kernel codebase. We also consider that all commits have the same im-

portance when computing authorship. As such, we do not account for the granularity

of changes (number of lines of code modified, deleted or inserted) nor their semantics

(e.g.„ bug fixes, new features, refactoring, etc). In open source systems, it is common
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that many contributors do not have permission to directly commit their code to the

main source code repository. In such scenario, their code, when approved, is integrated

by another developer (the committer). Git systems store both information, the author

and the commiter of the changes. To give credit to the developer who really performed

the change, our approach relies on the author information to compute files’ authorship.

External Validity. The metrics we use can be applied to any software repository un-

der a version control system. Additionally to Linux kernel we applied the same metrics

to a large dataset of open source systems. Although the results confirm that most of

the findings identified in the Linux kernel are also common in the extended dataset,

we cannot assume that the findings about workload, specialization, and collaboration

among file authors are general. In special to not open source systems. Nonetheless, we

pave the road for further studies to validate our findings in such development environ-

ment.

2.7 Related Work

Code Authorship. McDonald and Ackerman propose the “Line 10 Rule”, one of the

first and most used heuristics for expertise recommendation [McDonald and Ackerman,

2000]. The heuristic considers that the last person who changes a file is most likely

to be “the” expert. Expertise Browser [Mockus and Herbsleb, 2002a] and Emergent

Expertise Locator [Minto and Murphy, 2007] are alternative implementations to the

“Line 10 Rule”. A finer-grained approach that assign expertise based on the percentage

of lines a developer has last touched are used by Girba et al. [2005] and Rahman

and Devanbu [2011]. Similarly, version control systems provide “blame” tools, like git-

blame [Chacon and Straub, 2014] and svn-blame [Pilato et al., 2008]. Essentially, these

tools reveal the authors who last modified each line in a file.

Our study relies on the Degree-of-Authorship (DOA) metric [Fritz et al., 2010,

2014] to identify developers who perform the most significant contributions to a file.

Different from the “Line 10 Rule”, the DOA equation considers the whole version his-

tory to compute the degree-of-authorship of a developer with respect to a given code

element. DOA is one of the components of the Degree-of-Knowledge (DOK) model,

which combines authorship and interaction data to identify source code experts. We

use only the authorship component because the interaction component requires a plugin

to monitor the development environment.

Social Network Analysis (SNA). Research in this area usually extracts information
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from source code repositories to build a social network, adopting different strategies

to create the links between developers. López-Fernández et al. [2006] apply SNA to

study the relationship among developers and how they collaborate in different parts

of a project. They use a coarse-grained approach, linking developers that perform

commits to the same module. Other studies rely on fine-grained relations, building

networks connecting developers that change the same file [Yang, 2014; Meneely et al.,

2008; Jermakovics et al., 2011; Bird et al., 2011]. Joblin et al. [2015] propose an

even more fine-grained approach. They claim that file-based links result in a dense

network, which obscures important network properties, such as community structure.

For this reason, they connect developers that change the same function in a source

code. Our results, although centered on file-level information, do not produce dense

networks, as authorship requires that developers make significant contributions to a

file. Consequently, files usually have few authors. Other studies build social networks

from mailing lists [Bird et al., 2008; Zhang et al., 2011], issue tracks [Panichella et al.,

2014; Hong et al., 2011], or connect developer that work in the same projects, building

inter-projects networks [Madey et al., 2002; Xu et al., 2005] . They also investigate the

use of collaboration networks to predict failures [Meneely et al., 2008; Pinzger et al.,

2008; Bird et al., 2011] and to assess peer review process [Yang, 2014].

Studies on Open Source Development One of the first studies on open source soft-

ware development was conducted by Mockus et al. [2002]. The authors investigate the

Apache and Mozilla ecosystems, including aspects such as developer’s participation,

core team size, code ownership, productivity, and defect density. They also compare

their results with commercial projects. Vasilescu et al. [2014b] investigate how the

workload of the contributors varies across projects in the Gnome community. Recent

studies were also conducted using GitHub projects. For example, there is work investi-

gating the impact of GitHub features, such as social coding [Vasilescu, 2014; Vasilescu

et al., 2014a], pull requests [Gousios et al., 2014; Tsay et al., 2014] and distributed

version control [Barr et al., 2012; Rodriguez-Bustos and Aponte, 2012]. Other studies

investigate the influence of programming language on software quality [Ray et al., 2014]

and the characteristics of community contributions [Padhye et al., 2014].

In contrast with some of such work, our study does not try to explain the OSS

development model or specific characteristics of the GitHub environment. Instead, we

propose a set of code authorship based metrics that can be applied to analyze the

development and evolution of software projects.
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2.8 Conclusion

Seeking to contribute to a better understanding of how authorship-related measures

evolve in successful open source communities, we extract and analyze authorship pa-

rameters from 1 + 114 systems. Initially, we propose and investigate authorship mea-

sures in the Linux kernel. By mining over 11 years of the Linux kernel commit history,

we reveal some organizational aspects of the Linux development team, such as authors

workload, degree of specialization and co-authorship patterns. Complementary, we ap-

ply the same authorship measure to an extended dataset of 114 popular projects and

confirm that the authorship patterns observed in the Linux are also followed by other

open source systems.





Chapter 3

Estimating Truck Factors

Truck Factor (TF) is a metric proposed by the agile community as a tool to identify

concentration of knowledge in software development environments. It states the min-

imal number of developers that have to be hit by a truck (or quit) before a project is

incapacitated. In other words, TF helps to measure how prepared is a project to deal

with developer turnover. Despite its clear relevance, few studies explore this metric.

Altogether there is no consensus about how to calculate it, and no supporting evidence

backing estimates for systems in the wild. To mitigate both issues, we propose a novel

(and automated) approach for estimating TF-values, which we execute against a corpus

of 133 popular project in GitHub. We later survey developers as a means to assess the

reliability of our results. Among others, we find that the majority of our target systems

(65%) have TF ≤ 2. Surveying developers from 67 target systems provides confidence

towards our estimates; in 84% of the valid answers we collect, developers agree or par-

tially agree that the TF’s authors are the main authors of their systems; in 53% we

receive a positive or partially positive answer regarding our estimated truck factors.

3.1 Introduction

A system’s truck factor (TF) is defined as “the number of people on your team that

have to be hit by a truck (or quit) before the project is in serious trouble” [Williams

and Kessler, 2003]. Systems with a low truck factor spot strong dependencies towards

specific personnel, forming knowledge silos among developer teams. If such knowledge-

able personnel abandon the project, the system’s lifecycle is seriously compromised,

leading to delays in launching new releases, and ultimately to the discontinuation of

the project as whole. To prevent such issues, comprehending a system’s truck factor is

a crucial mechanism.

35
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Currently, the existing literature defines truck factor loosely. For the most part,

there is neither a formal definition of the concept nor means to estimate it. The

main exception we are aware of stems from the work of Zazworka et al. [2010]. Their

definition, however, as well as follow-up works [Ricca and Marchetto, 2010; Ricca et al.,

2011], is not backed by empirical evidence from real-world software systems. Stated

otherwise, TF-estimates, as calculated by Zazworka’s approach, lack reliability evidence

from systems in the wild.

Our work aims to improve the current state of affairs by proposing a novel ap-

proach for estimating truck factors, backed up by empirical evidence to support the

estimates produced. In particular, we define an automated workflow for TF-estimation,

which we apply to a target corpus comprising 133 systems in GitHub. In total, such

systems have over 373K files and 41 MLOC; their combined evolution history sums

to over 2 million commits. By surveying and analyzing answers from 67 target sys-

tems, we provide evidence that in 84% of valid answers, developers agree or partially

agree that the TF’s authors are the main authors of their systems; in 53% we receive

a positive or partially positive answer regarding our estimated truck factors.

From the work presented in this chapter, we claim the following contributions:

1. A novel approach for estimating a system’s truck factor, as well as a publicly

available supporting tool.1

2. An estimate of the truck factors of 133 GitHub systems. All our data is publicly

available for external validation,2 comprising the largest dataset of its kind.

3. Empirical evidence of the reliability of our truck factor estimates, as a product of

surveying the main contributors of our target systems. From the survey, we also

report the practices that developers argue as most useful to overcome a truck

factor event.

This chapter is organized as follows. We start by presenting a concrete example

of truck factor concerns in the early days of Python development (Section 3.2). Next,

in Section 3.3, we present our novel approach for truck factor estimation, detailing all

its constituent steps. Next, Section 3.4 discusses our validation methodology, followed

by the truck factors of our target systems in Section 3.5. We proceed to present our

validation results from a survey with developers (Section 3.6), further discussing results

in Section 3.7. We argue about possible threats in Section 3.8. We present the related

work in Section 3.9, concluding the study in Section 3.10.

1https://github.com/aserg-ufmg/Truck-Factor
2http://aserg.labsoft.dcc.ufmg.br/truckfactor
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3.2 Truck Factor: An Example from the Early Days

of Python

“What if you saw this posted tomorrow: Guido’s unexpected death has come as a shock

to us all. Disgruntled members of the Tcl mob are suspected, but no smoking gun has

been found..."—Python’s mailing list discussion, 1994.3

Years before the first discussions about truck factor in eXtreme Programming

realms,4 this post illustrates the serious threats of knowledge concentration in software

development. By posting the fictitious news in Python’s mailing list, the author, an

employee at the National Institute of Standards and Technology/USA, wanted to foster

the discussion of Python’s fragility resulting from its strong dependence to its creator,

Guido van Rossum:

“I just returned from a meeting in which the major objection to using Python was

its dependence on Guido. They wanted to know if Python would survive if Guido

disappeared. This is an important issue for businesses that may be considering the use

of Python in a product."

Fortunately, Guido is alive. Moreover, Python no longer has a truck factor of

one. It has grown to be a large community of developers and the third most popular

programming language in use.5 However, the message illustrates that Python was, at

least by some, considered a risky project. As knowledge was not collective among its

team members, but rather concentrated in a single “hero", in the absence of the latter,

discontinuation was a real threat, or at minimum, something that could cause extreme

delays. Projects with low truck factor, as Python was in 1994, face high adoption risk,

discouraging their use.

To facilitate decision making, it is crucial to quantify the risks of project failure

due to personnel lost. This information serves not only business managers assessing

early technology adoption risks, but also maintainers and project managers aiming

to identify early knowledge silos among development teams. Timely action plans can

then be devised as a means to prevent long-term failure. In that direction, reliable

estimations of a project’s truck factor is a must.

3http://legacy.python.org/search/hypermail/python-1994q2/1040.html
4http://www.agileadvice.com/2005/05/15/agilemanagement/truck-factor/
5https://redmonk.com/sogrady/2018/03/07/language-rankings-1-18/, last accessed on

June, 2018
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Figure 3.1. Proposed approach for truck factor calculation

3.3 Proposed Approach

The proposed approach calculates the truck factor of a target system by processing its

evolution history. We assume the latter to be managed by a version control system, in

addition to having access to a local copy of the repository of the target subject.

The process comprises five major steps—see Figure 3.1. Step 1 checkouts the

latest point in the commit history, listing all the source files therein. Step 2 handles

possible aliases among developers, i.e., cases where a single developer has multiple Git

users. Step 3 traces the history of each source code file. From such traces, step 4

identify the authors in the system, as well as their authored files. With the list of

authors and their authored files, step 5 estimates the truck factor of the entire system.

We execute the given process to automatically estimate the truck factor of



3.3. Proposed Approach 39

projects whose evolution is managed by Git. In the following, we detail each step.

3.3.1 Main Steps

Step 1: List Target Source Files. To obtain the list of target files, first, the process

switches to the master branch of the target repository, checking out its latest commit.

Then, it enumerates the path of all source files of the given snapshot, excluding all

other file types (e.g., files representing documentation, images, examples, etc), as well

as the files listed in the ignorable source file list, given as input. It also discards source

files associated with third-party libraries (i.e., files that are not developed in the system

under analysis). Our decision is conservative. An existing survey from JavaOne’146

reports that nearly two-thirds of polled senior IT professionals have Java applications

with half of their code coming from third-party sources. Thus, if developers store third-

party code in the system’s main Git repository (e.g., as backup, to facilitate build, etc),

and third-party code is as large as the poll suggests, truck factor estimates are likely

to be significantly affected.

Excluding third-party code requires being able to identify it in the first place. As

such, our approach employs Linguist,7 an opensource tool from GitHub. Linguist is

actively developed, and it is constantly being updated by the GitHub community to

include new pattern matching rules to identify third-party file names. Linguist’s orig-

inal goal is to detect the programming language of GitHub projects—as in our case,

this is sensitive to external code.

Step 2: Detect Developer Aliases. Each user in Git is a pair (dev-name, email)—

e.g., (“Bob Rob”, “bob.rob@example.com”). It happens, however, that a single devel-

oper may be associated with many Git user accounts, leading to developer aliases. To

handle aliases our approach applies the same strategy described in Section 2.2.3. As a

result of alias detection, step 2 outputs a mapping from Git users to a single developer

name (mapped-dev-name).

Step 3: Trace Change History. This step traces the evolution history of each tar-

get file, taking as input the results of the previous two steps. To perform the tracing,

our approach collects the system’s commits using the git log –find-renames command.

This command returns all commits of a repository and identifies possible file renames.

Then, it processes each commit, extracting three pieces of information: (i) the path of

the file we are collecting the trace; (ii) the mapped-dev-name of the developer perform-

ing the change; and (iii) the type of the change—file addition, file modification, or file

6http://tinyurl.com/javaone14-survey
7https://github.com/github/linguist
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rename.

Step 4: Define Authorship. Given the change traces of each file in the target

snapshot of the project at hand, this step defines the author list of each file. Differ-

ent alternatives could be used as a means for determining authorship—e.g., [Anvik

et al., 2006; Minto and Murphy, 2007; Schuler and Zimmermann, 2008; Hattori and

Lanza, 2009; Fritz et al., 2010, 2014]. Among those, we chose the degree-of-authorship

(DOA) metric [Fritz et al., 2010, 2014], which is normalized after calculation. Details

about how we adapt the DOA metric to identify the authors of a file were previously

described in Section 2.2.1. As a result, this step outputs a list of associations from

authors (mapped-dev-names) to their related authored files.

Step 5: Estimate Truck Factor. Taking a list A of authors (mapped-devs) and

their associated authored files (one or more file paths), this step estimates the system’s

truck factor. Our estimation relies on a coverage assumption: a system will face serious

delays or will be likely discontinued if its current set of authors covers (i.e., authored)

less than 50% of the current set of files in the system. Following such assumption,

our truck factor estimation algorithm implements a greedy heuristic—see Algorithm 1.

Starting with a truck factor of zero, the algorithm iterates over the authors’ file list A

(lines 4–11), verifying at each iteration whether the current authors’ coverage is below

0.5 (line 6). If so, the algorithm stops the iteration—maintenance is likely to be ham-

pered; otherwise, it removes the top author from A (line 9), increasing truck factor

by one (line 10). The top author in a given iteration is the mapped-dev authoring the

highest number of files in A.8 Whenever A shrinks, another iteration follows, provided

A is not empty. This process continues until A becomes empty or coverage is less than

0.5.

3.4 Validation Methodology

To validate our approach, we select 133 systems from GitHub. For each target system,

we estimate its truck factor. This section details our corpus selection and how we setup

our approach for estimating truck factors for our chosen subjects. We also discuss how

we survey developers as a means to validate our estimates and get further insights.

8This is obtained by finding the entry ei = (ai,filepath-listi) ∈ A s.t. ∄ ej = (aj ,filepath-listj) ∈
A ∧ ej 6= ei ∧ |filepath-listj | > |filepath-listi|. If there exist more than one top author, we just take the
first one we find.



3.4. Validation Methodology 41

Algorithm 1: Truck factor algorithm.

Input: List of authors’ files A

Output: System truck factor
1 begin

2 F ← getSystemFiles(A);
3 tf ← 0;
4 while A 6= ∅ do

5 coverage ← getCoverage(F , A);
6 if coverage < 0.5 then

7 break;

8 end

9 A ← removeTopAuthor(A);
10 tf ← tf + 1;

11 end

12 return tf ;

13 end

3.4.1 Selection of Target Subjects

To select a target set of subjects, we follow a procedure similar to other studies investi-

gating GitHub [Yamashita et al., 2015; Gousios et al., 2014; Kalliamvakou et al., 2014;

Ray et al., 2014]. First, we query the programming languages with the largest number

of repositories in GitHub. We find six main languages (L): JavaScript, Python, Ruby,

C/C++, Java, and PHP. We then select the 100-top most popular repositories within

each target language (as collected from GitHub on February 25th, 2015). Popularity,

in this case, is given by the number of times a repository has been starred by GitHub

users. Considering only the most popular projects in a given language (Sℓ), we re-

move the systems in the first quartile (Q1) of the distribution of three metrics, namely

number of developers (nd), number of commits (nc), and number of files (nf ). After

filtering out subjects in Q1, we compute the intersection of the remaining sets. From

the previous steps, we get an initial set of prospective subjects T 0. Formally,

T 0 =
⋃

ℓ∈L

T 0

nd
(ℓ) ∩ T 0

nc
(ℓ) ∩ T 0

nf
(ℓ)

where
T 0

nd
(ℓ) = Sℓ −Q1(nd(Sℓ))), T 0

nc
(ℓ) = Sℓ −Q1(nc(Sℓ))),

T 0

nf
(ℓ) = Sℓ −Q1(nf (Sℓ)))

From T 0, we determine a new subset T 1 including only the systems whose repos-

itories stem from a proper migration to GitHub. Specifically, we remove systems with

more than 50% of their files added in less than 20 commits—less than 10% of the min-

imal number of commits we initially considered. This evidences that a large portion
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Table 3.1. Target repositories

Language Repos Devs Commits Files LOC

JavaScript 22 5,740 108,080 24,688 3,661,722
Python 22 8,627 276,174 35,315 2,237,930
Ruby 33 19,960 307,603 33,556 2,612,503
C/C++ 18 21,039 847,867 107,464 19,915,316
Java 21 4,499 418,003 140,871 10,672,918
PHP 17 3,329 125,626 31,221 2,215,972
Total 133 63,194 2,083,353 373,115 41,316,361

of a system was developed using another version control platform and the migration

to GitHub could not preserve the original version history. From the resulting set of

prospective subjects (|T 1| = 135), we manually inspect the documentation in each

repository to identify and eliminate duplicate subjects. Our inspection shows raspber-

rypi/linux and django/django-old as duplicate cases. The first, despite not being a fork, is

very similar to torvalds/linux; in fact, it is a clone of the Linux kernel, with extensions

supporting RaspberryPi-based boards. The second is an old version of a repository

already in T 1.

After excluding raspberrypi/linux and django/django-old, we are left with 133 subjects

(T 2), which represent the most important systems per language in GitHub, imple-

mented by teams with a considerable number of active developers and with a con-

siderable number of files. Table 3.1 summarizes the characteristics of the repositories

of our chosen subjects. Ruby is the language with more systems, 33 in total. The

programming language with less systems is PHP, with 17 projects. Accounting all our

chosen subjects, their latest snapshots accumulate over 373K files and 41 MLOC; their

combined evolution history sums to over 2 million commits. Our targets also have

a large community of contributors, accumulating to over 60K developers. The violin

plots in Figure 3.2 depict each distribution.

3.4.2 Setting up Inputs

Our approach requires as input a listing of ignorable source files of a system, in addition

to a tuple of the DOA thresholds (k and m). Next, we detail how we set both inputs.

List of Ignorable Source Files. To create the list of ignorable files, we manually inspect

the first two top-level directories in each target repository, seeking to find third-party

libraries undetected by Linguist. Also, as Linguist is architecture and system agnostic,

we look for plugin-related code in systems with a plugin-based architecture. As with



3.4. Validation Methodology 43

197

100

1k

10k

(a) Developers

D
e
ve

lo
p
e
rs

 (
lo

g
)

4.2k

1k

10k

100k

500k

(b) Commits

C
o
m

m
it
s
 (

lo
g
)

584

100

1k

10k

100k

(c) Files
F

ile
s
 (

lo
g
)

44.8k

1k

10k

100k

1m

10m

(d) Lines of Code

L
in

e
s
 o

f 
C

o
d
e
 (

lo
g
)

Figure 3.2. Target subjects

third-party code, plugins may highly influence a system’s truck factor. For instance, in

the Linux kernel, driver plugins are the most common feature type [Passos et al., 2015];

since driver features generally denote optional features targeting end-user selection, the

kernel itself is independent from them. In the case of torvalds/linux, we exclude all driver-

related code, which is, for the most part, inside the driver folder of the Linux kernel

source code tree.9

In addition to the Linux kernel repository, two other systems have a large amount

of plugin-related code: Homebrew/homebrew and caskroom/homebrew-cask. Homebrew is a

package manager in Mac OS for handling the installation of different software systems.

Its implementation allows contributors to push new formulas (automated installation

recipes) to the system’s remote repository, leading to thousands of formulas. As an

extensible software system, Homebrew has one of the largest base of developers on

GitHub (more than 5K developers, as of July 14th, 2015). Considering all its formulas,

Homebrew’s TF, as computed by our heuristic, is 250. After excluding the files in folder

Library/Formula, however, HomeBrew’s truck factor reduces to 2. This clearly evidences

the sensitivity of TF-values in the face of external code. As for caskroom/homebrew-cask,

we ignore its Casks directory.

In total, our list of ignorable files excludes 10,450 entries.

9Specifically, we identify all driver-related code by executing a specialized script from G. Kroah-
Hartman, one of the main developers of the Linux kernel. Available at https://github.com/gregkh/
kernel-history.
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Setting DOA Thresholds. To find suitable thresholds to the Equation 2.3, we manually

inspect a random sample of 120 files stemming from the six most popular systems

in our target corpus (T 2), one for each target language we account for. This results

in files from mbostock/d3 (JavaScript), django/django (Python), rails/rails (Ruby), torvald-

s/linux (C/C++), elasticsearch/elasticsearch (Java), and composer/composer (PHP). We then

compute the normalized DOA values (DOAN ) for each developer contributing at least

one commit changing a file in our sample. Initially, we note that DOAN values be-

low 0.50 lead to doubtful authorships. We measure doubtfulness by contrasting our

authorship results with ranks we extract from git-blame reports. The latter contains

the last developer who modified each line in a file [Chacon and Straub, 2014]; by rank-

ing developers according to the number of their modified lines, authors are likely to

be those with higher ranks. Fixing 3.293 (which corresponds to the constant term in

DOA’s linear equation) as minimal absolute DOA (DOAA) and resetting the threshold

for DOAN to 0.75 better aligns results. Specifically, 64% of the authors selected using

those thresholds are classified as the top-1 ranked developer from git-blame; in 91% of

the cases, they are among the top-3 in the ranking list of git-blame, whereas 7% lie

between the 4th and 8th positions. In only three cases (2%), the authors do not pair

with any developer from git-blame rankings.

3.4.3 Survey Design and Application

After collecting the truck factors of our chosen targets, we set to elaborate survey

questions aiming to confirm the reliability of our results, as well as an instrument

to get further insights. Following best practices in survey design [Shull et al., 2007],

we assure clarity, consistency, and suitability of our questions by running a feedback

loop between the survey author and two other members of our research group. We

also perform a pilot study to identify early problems, such as whether our language

correctly captures the intent of our questions. From the pilot study, we note few, but

important communication issues, which we fix accordingly.

Survey Questions. After our pilot study, we phrase our questions as follows.

Question 1. Do developers agree that top-ranked authors are the main

developers of their projects?

This question seeks to assess the accuracy of our top authorship results. The top-ranked

authors of a system are those we remove during the iteration step of our greedy-heuristic

(recall Algorithm 1), i.e., those responding for a system’s truck factor. Note that we

use the term main developers, not authors. Our pilot study shows that developers tend
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to consider the creator of a file as its main author.

Question 2. Do developers agree that their project will be in trouble if they

loose the developers responding for its truck factor?

This question aims to validate our TF estimates. If we receive a positive feedback in

this question, we can conclude that code authorship is an effective proxy.

Question 3. What are the development practices and characteristics that

can attenuate the loss of the developers responsible for a system’s truck

factor?

Our intention here is to reveal the instruments developers see as most effective to

circumvent the loss of important developers—e.g., by devising better documentation,

codification rules, modular design, etc.

Survey Application. Before contacting developers and applying our survey, we aim at

calling their attention by promoting our work in popular programming forums (e.g.,

Hacker News) and publishing a preprint at PeerJ (https://peerj.com/preprints/

1233).

After promotion, we apply the survey by opening GitHub issues in all target

projects allowing such a feature (114 out of 133). The choice for issues is twofold:

(i) issues foster public discussions among project developers; (ii) issues document all

discussions, making them available for later reading. Potential readers include new

developers, end-users interested on the target systems, researchers, etc.

Our posting period ranges from July 31th to August 11th, 2015. In the following

weeks, we set to collect answers, respected the deadline of August 25th, 2015. In total,

we collect answers from developers of 67 systems. In 37 of those, there is a single

answer from a single developer. However, often, the issues include discussions among

different project members. For example, in saltstack/salt, we have comments from six

developers. In total, we accumulate 170 discussion messages from 106 respondents;

96 messages stem (57%) from the top-10 contributors of the 67 participating projects.

Figure 3.3 characterizes all participants according to their level of project contribution.

We get the list of top contributors by consulting the project’s statistics as provided

by GitHub. To exclude unreliable answers, we discard issues that do not have a single

answer from a top-10 project contributor—five issues in total. Thus, we are left with 62

participating systems, as we have one issue per system. Among the issues that we do

not exclude from analysis, we find 96 different respondents. Some messages are quite

detailed. For instance, a message in an issue in elastic/elasticsearch contains 1,670 words.



46 Chapter 3. Estimating Truck Factors

0

5

10

15

20

25

T
o

p
−

1

T
o

p
−

2

T
o

p
−

3

T
o

p
−

4

T
o

p
−

5

T
o

p
−

6

T
o

p
−

7

T
o

p
−

8

T
o

p
−

9

T
o

p
−

1
0

N
o

n
−

to
p

Respondents

N
u
m

b
e
r 

o
f 
R

e
s
p
o
n
d
e
n
ts

Figure 3.3. Respondents profile

In fact, according to the respondent, it triggered interesting internal discussions.

Survey Analysis. To compile the survey results, we analyze the discussions of our

opened issues. For the first two questions, we classify answers according to four levels:

agree, partially agree, disagree, or unclear. The fourth level refers to cases where we

cannot derive a clear position from an answer. Two authors of this study independently

classified all answers, later crosschecking their results.

As for our third question, we categorize answers to identify common practices

and characteristics.

3.5 Truck Factor Estimates

In this section, we describe the outputs of applying the proposed approach on the 133

projects of the selected dataset.

3.5.1 Preceding Output

Target List of Source Files (Step 1). Using our input list of ignorable files (see Sec-

tion 3.4), as well as the automated exclusion by Linguist, we estimate the authorship

of 243,660 files (33 MLOC)—34% less files than the original set in our subjects. The

most frequent kind of files we remove concern JavaScript (5,125), PHP (3,099), and

C/C++ (2,049) source files. Decreasing the number of target files decreases the target
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Figure 3.4. Proportion of developers ranked as authors

number of developers (63,193) and commits (1,262,130), a reduction of 28% and 39%

w.r.t the original state of our target repositories.

Authorship List (Step 4). By applying the normalized DOA to define the list of authors

in each target system, as well as their authoring files, step 4 reveals the proportion of

developers ranked as authors—see Figure 3.4. For most systems, such proportion is

relatively small; the first, second, and third quartiles are 16%, 23%, and 36%, respec-

tively. Interestingly, systems with a high proportion of authors usually have support

of private organizations. Examples include four of the top-10 systems with the highest

author ratio among developers, such as v8/v8 (75%), JetBrains/intellij-community (73%),

WordPress/WordPress (67%), and Facebook/osquery (62%). We also detect two language

interpreters among the top-10 systems: ruby/ruby (72%) and php/php-src (59%). At the

other extreme, there are systems with a very low author ratio—e.g., sstephenson/sprockets

(3%) and jashkenas/backbone (2%). Backbone is an interesting example, with only six au-

thors amongst its 248 developers. These six authors monopolize 67% of commits. A

similar situation occurs with sprockets (a Ruby library for compiling and serving web

assets): although 61 developers associate to commits in the evolution history, 95% of

commits come from two authors only; moreover, 27 developers respond for a single

commit modifying a single line of code.

3.5.2 Results

Figure 3.5 presents the distribution of the truck factor amongst our subjects. The first,

second, and third quartiles are 1, 2, and 4, respectively. Most systems have a small
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Table 3.2. Systems with highest truck factors

System TF
torvalds/linux 57
fzaninotto/Faker 23
android/platform_frameworks_base 19
moment/moment 19
php/php-src 18
odoo/odoo 14
fog/fog 12
git/git 12
webscalesql/webscalesql-5.6 11
v8/v8 11
Seldaek/monolog 11
saltstack/salt 11
JetBrains/intellij-community 9
rails/rails 9
puppetlabs/puppet 9

truck factor: 45 systems (34%) have TF= 1 (e.g., mbostock/d3 and less/less.js); in 42

systems (31%), TF= 2, including well-known systems such as clojure/clojure, cucumber/

cucumber, ashkenas/ backbone and elasticsearch/elasticsearch. Systems with high TF-values,

however, do exist. Table 3.2 presents the top-15 systems with the highest truck fac-

tors. Among those, torvalds/linux has TF= 57, followed by fzaninotto/Faker (TF= 23) and

android/platform_frameworks_base (TF= 19). Other well-known systems include php/php-src

(TF= 18), git/git (TF= 12), v8/v8 (TF = 11), and rails/rails (TF= 9).
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Table 3.3. Answers for Survey Question 1

Agree Partially Disagree Unclear
31 (50%) 18 (29%) 9 (15%) 4 (6%)

3.6 TF Validation: Surveying Developers

We present our survey results from our filtered set of issues and their underlying

messages—we only account for issues having at least one message from a top-10

project contributor. In total, the answers we analyze stem from 106 respondents, of

which 84 are top-10 contributors. The final number of participating systems is 62.

Question 1. Do developers agree that the top-ranked authors are the main

developers of their projects?

Table 3.3 summarizes the answers for our first question. Respondents of 31 systems

(50%) fully agree with our list of main developers. Example agreements:

“Yes, that’s me."—developer from (bjorn/tiled).

“I think that it is a reasonable statement to make. They have contributed by far the

most and paved the way for the rest of us."—developer from (composer/composer).

Developers of 18 systems (29%) partially agree with our list of top-ranked

authors. The main disagreement stems from the historical balance between older and

newer developers:

“Yes and no, historically yes, currently no, a team has been picking up the activity,

your analysis seems to be biased on capital (existing files) rather than activity (current

commits)."—developer from (kivy/kivy).

“I would have added @DayS and @WonderCsabo as main developers."—developer

from (excilys/androidannotations).

The latter answer illustrates a situation where we report two top-authors in a target

project; the respondent, although agreeing with our suggestion, recommends adding

two other developers. The latter two have many recent commits; in contrast, one of the

top authors we recommend is no longer active, strengthening the developer’s argument.

The two top-authors from our degree-of-authorship measures cover 41% and 26% of

files, respectively. The two suggested by our respondent account for 9% and 17% (see

Figure 3.6). However, we do note a gradual decrease in the number of authored files

by the top developer we suggest, while an increasing trend for one of the two that our
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Figure 3.6. Percentage of files per author in excilys/androidannotations (top-4
authors)

respondent recommends.

Developers of nine systems (15%) disagree with our list. Six developers indicate

that other contributors are now responsible for their projects. Example disagreements

include:

“No. TJ has been away from Jade for quite some time now. @ForbesLindesay is

considered the main maintainer/developer of Jade."—developer from (jadejs/jade).

“No, Burns hasn’t been contributing for a while now. I’ve taken over what he was

doing."—developer from (backup/backup).

Other disagreements are due to auto-generated code. Finally, a single developer

has a negative attitude towards the question, providing us with no insights.

Question 2. Do developers agree that their projects will be in trouble if

they loose the truck factor authors?

Table 3.4 summarizes results concerning this question. Developers of 24 systems

(39%) agree with our truck factor results. Most positive answers are concise, usually

a straight “yes” (14 answers). We consider as agreement answers that acknowledge a

serious impact to the project if the given developers are to be absent, such as in:

“If both of us left, the project would be kind of unmaintained."—developer from

(SFTtech/openage).

“Initially, yes. However, given the size of the Grunt community, I believe a new
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Table 3.4. Answers for Survey Question 2

Agree Partially Disagree Unclear
24 (39%) 6 (10%) 27 (43%) 5 (8%)

maintainer could be found."—developer from (gruntjs/grunt).

“If Wladimir or Pieter left, it would be a serious loss, but not fatal I think."—developer

from (bitcoin/bitcoin).

Among the positive answers, we find a system that in fact “lost” its single truck

factor author—pockethub/PocketHub. The project implements a GitHub Android client,

originally released as part of the GitHub platform. A GitHub employee is identified as

the system’s single author, accounting for 78% of all source files. However, as stated

in the repository home page, GitHub no longer maintains the app. The repository is

almost inactive, receiving very few commits per month. The last release dates from

February 2014 (still as a GitHub project). One developer reports that low community

involvement is the reason for the project’s trouble, as there are only three people

working on the project and this is not their full time job.

Six answers are partial agreements. Examples:

“Somewhat agree. A loss in one area would mean a temporary dip in maintenance of

that area until someone else stepped in."—developer from (saltstack/salt).

“Not necessarily, there’s a long list of both small and significant contributors that had

to understand a large piece of the code base to implement a feature or fix."—developer

from (justinfrench/formtastic).

Developers of 27 systems disagree with our TF-values. Six developers (22%) have

negative answers to our question, but do not provide further details; 21 developers

(78%) justify their answer stating that others could take over the project:

“Backup shouldn’t be in trouble. . . It’s an open source project, anyone can start

contributing if they want to."—developer from (backup/backup).

We find two systems surviving the “loss” of the truck factor authors in our list:

“Coda was the author of the majority of the code. He left the project around a year

ago. Some issues were going a long time without resolution, at which point I offered

to maintain the project."—developer from (dropwizard/metrics).

“Your questions are timely, since Roland [the main author] has already left the project

. . . and we are not in trouble."—developer from (caskroom/homebrew-cask).
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Table 3.5. Practices to attenuate the truck factor

Practice Answers
Documentation 36
Active community 15
Automatic tests 10
Code legibility 10
Code comments 7
Founding/Paid developers 5
Popularity 5
Architecture and design 4
Shared repository permissions 4
Other implementations 2
Knowledge sharing practices 2
Open source license 2
Miscellaneous 9

In the case of dropwizard/metrics, it has been partially affected by the loss of its

single truck factor author, as another developer was able to take over the project. As

for caskroom/homebrew-cask, the respondent highlights two factors helping their transition

after loosing their single truck factor author: (a) comprehensive documentation; (b)

developers ready to transmit the rules and requirements to newcomers.

Question 3. What are the development practices that can attenuate the

loss of top-ranked authors?

Table 3.5 summarizes answers. Documentation is the practice with the largest number

of mentions across answers (36 answers), followed by the existence of an active com-

munity (15 answers), automatic tests (10 answers), and code legibility (10 answers).

We group practices with a single answer under the miscellaneous category—e.g., im-

plementation in an specific programming language, periodic team chats, code reviews,

support to classical algorithms, etc. In addition, we received seven “yes/no” answers,

which are nonsensical given the nature of the question (not shown).

Although not development practices, having active communities and paid de-

velopers appear frequently among the answers we analyze. Both reasons appear as

justifications for not concerning with top-authors lost:

“I’d say that the vibrant community is the reason for it."—developer from (rails/rails).

“We have a handful of other maintainers and a large body of contributors who are in-

terested in Homebrew’s future."—developer from (Homebrew/homebrew).
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“The people you listed are paid to work on the project, along with a number of others.

So if the four of us took off, the project would hire some more people"—developer from

(ipython/ipython).

3.7 Discussion

In this section, we discuss the lessons we learn in our study. We also lay out directions

for future research on truck factor measurements and applications.

3.7.1 DOA Results

The results produced by the DOA model seem accurate when applied to a large col-

lection of systems. For the first survey question, the developers of 49 systems (84%

of the valid answers) agree or partially agree with our results. Despite that, some

developers report that the model gives high emphasis on first authorship (FA) events.

In the same question of our survey, six developers disagree with our results exactly due

to this resilience of the DOA model in transferring authorship from the first author

to another one. This applies in systems where a single developer creates the bulk of

the code, but later switches role (e.g., project leader or mentor), becoming less active

in development activities. In fact, some developers suggest that DOA computation

should consider only the most recent development history, e.g., commits performed in

the last year. One developer from clojure/clojure explicitly declares that “if the code is old

enough, even the original author will have to approach it with essentially fresh eyes.”

3.7.2 Challenges on Computing Truck Factors

We receive answers for 67 (out of 114) systems. This high response ratio (59%) is

certainly a consequence of the importance that developers give to the truck factor con-

cept. By analyzing the answers, we see that developers generally recognize the impact

that the truck factor may have in the public reputation of their systems. However, it is

worth noting that estimating this concept automatically has many challenges. A few

developers refused to answer our question, stating for example that “it is an existential,

speculative question that I will not attempt to answer ” (developer from mbostock/d3).

A second developer states that “the truck factor is mostly concerned with institutional

memory getting lost. No automatic system can account for this lost, unless all project

communication is public.” (developer from libgdx/libgdx). Our survey also reveals that
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developers usually consider documentation as the best practice to overcome a truck

factor episode.

Despite the challenges in computing truck factors automatically, our code-

authorship-coverage heuristic presents compelling results. We receive positive or par-

tially positive answers for 30 systems (53% of the valid answers). Even when developers

do not agree with our estimation, it is not completely safe to discard a possible damage

to the system. For example, six developers state that truck factor is not a concern in

open source systems, since it is always possible to recruit new core developers from

their large base of contributors. In fact, we observe a successful transition of core de-

velopers in at least two systems. In contrast, we cannot discard the risks inherent to

such transitions, specially when they should take place due to a sudden and unplanned

truck-factor-like episode.

Developers also pointed two concrete problems in our heuristic for computing

truck factors. First, it considers all files in a system as equally important in terms of

the features they implement. However, not all requirements and features are equally

critical to a system survivability. We address this problem by discarding some files

from our analysis, in the cases they lead to highly skewed results (e.g., recipes from

Homebrew/homebrew). However, in other systems this partition between core and non-

core files is less clear (at least, to non-experts). Second, the heuristic does not account

the last time a file is changed. In the survey, some developers claim that losing the

author of a very stable file is not a concern (since they probably will not depend again

on this author to maintain the file). When such files are common in a system, the

heuristic can be adapted to just consider recently changed files.

3.8 Threats to Validity

Construct Validity. We compute the degree-of-authorship using weights derived for

other systems [Fritz et al., 2010, 2014]. Therefore, we cannot guarantee these weights

as the most accurate ones for assessing authorship on GitHub projects. However, the

authors of the DOA formula show that the proposed weights are robust enough to

be used with other systems, without computing a new regression. Still, we mitigate

this threat by initially inspecting the DOA results for 162 pairs of authors and files.

Contrasting results with those from git-blame suggest DOA-values to be reliable.

The presence of non-source code files, third party libraries, and developers aliases

can also impact our results. To address these threats, our tool performs file cleaning

and alias handling steps before calculating truck factor estimates.
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Internal Validity. Our approach computes the authors of a file by considering all the

changes performed in the target file. Therefore, our approach is sensitive to loss of part

of the development history as result of a erroneous migration to GitHub. We mitigate

this threat using a heuristic to detect systems with clear evidence that most of its

development history was performed using another version control platform and that

this history could not be correctly migrated to GitHub. Moreover, the full development

history of a file can be lost in case of renaming operations, copy or file split (e.g., as

result of a refactoring operation like extract class [Fowler, 1999]). We address the former

problem using Git facilities (e.g., git log –find-renames). However, we acknowledge the

need for further empirical investigation to assess the true impact of the other cases.

External Validity. We carefully select a large number of real-world systems coming from

six programming languages to validate our approach. Despite these observations, our

findings—as usual in empirical software engineering—cannot be directly generalized

to other systems, mainly closed-source ones. Many others aspects of the development

environment, like contribution policies, automatic refactoring, and development process

may impact the truck factor results and it is not the goal of this study to address all

of them.

Finally, to assess the impact of the aforementioned threats in our results, we

conducted a survey with developers of the systems under analysis, as reported in Sec-

tion 3.6.

3.9 Related Work

Although widely discussed among eXtreme Programming (XP) practitioners, there are

few studies providing and validating truck factor measures for a large number of sys-

tems. Zazworka et al. [2010] are probably the first to propose a formal definition for

TF, specifically to assess a project’s conformance to XP practices. For the purpose of

simplicity, their definition assumes that all developers who edit a file have knowledge

about it. Furthermore, they only compute the TF for five small projects written by

students. Ricca and Marchetto [2010]; Ricca et al. [2011] use Zazworka’s definition to

compute truck factors for opensource projects. In their first work, they propose the use

of the TF algorithm as a strategy to identify “heroes” in software development environ-

ments. In their second work, the authors point for scalability limitations in Zazworka’s

algorithm, which only scales to small projects (≤ 30 developers). In our study, 122 out

of 133 systems have more than 30 developers (maximum is torvalds/linux, with thousands

of developers among non-driver files). Hannebauer and Gruhn [2014] further explore



56 Chapter 3. Estimating Truck Factors

the scalability problems of Zazworka’s definition, showing that its implementation is

NP-hard. Cosentino et al. [2015] propose a tool to calculate TF for Git-based repos-

itories. They use a hierarchical strategy, aggregating file-level authorship results to

modules and, in a second step, aggregating module-level results into systems. They

evaluate their tool with four systems developed by members of their research group.

Overall, our study differs from the previous ones in three main points: we use the

DOA model to identify the main authors of a file; we evaluate our approach in a large

dataset composed of real-world software from six programming languages; we validate

our results with expert developers.

3.10 Conclusion

This study proposes and evaluates a heuristic-based approach to estimate a system’s

truck factor, a concept to assess knowledge concentration among team members. We

show that 87 systems (65%) have TF ≤ 2. We validate our results with the developers

of 67 systems. In 84% of the valid answers, respondents agree or partially agree that

the TF’s authors are the main authors of their systems; in 53% of the valid answers we

receive a positive or partially positive answer regarding the estimated truck factors.

According to the surveyed developers, documentation is the most effective devel-

opment practice to overcome a truck factor event, followed by the existence of an active

community and automatic tests. We also comment on the main lessons we learned from

the developers’ answers to our questions.



Chapter 4

Investigating Truck Factor Events

The maintenance and evolution of open source projects frequently relies on a small

number of core developers. The loss of such core developers, known as a truck factor

event, might be detrimental for these projects and even threaten their entire continu-

ation. In this chapter, we adopt a mixed-methods approach to investigate truck factor

events. First, we carefully select 1,932 popular GitHub projects and observe that 315

projects (16%) experienced a truck factor event; among them, 128 projects (41%) sur-

vived their most recent truck factor event, i.e., new developers assumed the project

development. Next, we conduct a survey with developers that have been instrumental

in project survival. This survey indicates that (i) in most cases the new maintainers

were aware of the project discontinuation risks when they started to contribute; (ii)

their own usage of the systems is the main motivation to contribute to projects that

faced truck factor events; (iii) human and social factors played a key role when making

these contributions; and (iv) lack of time and the difficulty to obtain push access to the

repositories are the main barriers faced by the new truck factor developers.

4.1 Introduction

Open source software has an increasing importance in our society: 72% of GitHub

survey participants report that they always seek out OSS options when finding new

tools.1 Several popular and complex applications, including operating systems and

office suites, are currently available under open source licenses. Additionally, most

proprietary software nowadays depends on a variety of open source frameworks and

libraries: e.g., Instagram publicly acknowledges and thanks the developers responsi-

1http://opensourcesurvey.org/2017/

57
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ble for the open source libraries used in their site.2 Notwithstanding, there is also a

growing concern on the sustainability of modern open source projects, since they are

usually managed by a small number of developers, without financial support [Eghbal,

2016]. OpenSSL, a cryptography library that provides secure communications with

Web servers, is a remarkable example. Despite being used by two-thirds of all Web

servers, the project was maintained by a single developer until 2014, when a major

bug, nicknamed Heartbleed, affecting millions of sites was detected in its implementa-

tion [Durumeric et al., 2014].

An easy way to communicate and understand the dependency of a software

project on key developers is the notion of Truck Factor, also known as Bus or Lot-

tery Factor. The Truck Factor (TF) of a project is the minimal number of developers

that the project depends on for its maintenance and evolution [Williams and Kessler,

2003]. Stated otherwise, if the TF developers abandon the project (after winning in the

lottery or being hit by a truck) the project maintenance will be importantly affected.

Recently, a number of researchers turned their eyes on the importance of studying the

Truck Factor of software projects, specifically open source ones. For example, Zaz-

worka et al. [2010] were the first to propose a heuristic to compute TFs by mining

data from version repositories. Cosentino et al. [2015] worked on a tool (and novel

algorithm) for the same purpose, but targeting git-based repositories. Later, Avelino

et al. [2016] proposed a heuristic to estimate TFs, based on a code authorship metric

(see Chapter 3). However, we still lack studies that go beyond measuring TF towards

more profound understanding of what happens when influential TF developers leave

the project, a situation we refer to as a TF event.

In this chapter, we adopt a mixed-method approach to investigate TF events

aiming to better understand what happens to projects when influential TF developers

depart. On the one hand, we focus on three research questions and empirically inves-

tigate a large set of GitHub projects, as will be explained in detail next. On the other

hand, we qualitatively analyze the responses of TF developers who took over a project

after it was abandoned (by its original TF developers) to answer our last three research

questions. The remainder of this section briefly describes these research questions and

lists our contributions.

Our first question is RQ1. How common are TF events in open source projects?

In a way this question is a sanity check: if TF events are rare, then the risk of project

maintenance and evolution being affected by such events is limited, and the concept of

TF is of limited use. Second, while a TF event can be expected to affect the project

2https://www.instagram.com/about/legal/libraries/
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maintenance and evolution, the project might overcome those difficulties. We would

like to know RQ2. How often open source projects survive TF events and RQ3.

What are the distinguishing characteristics of the surviving projects? Next, if a project

survived a TF event, then there is one or more developers that took responsibility

for further project evolution after the first group of TF developers has left. Hence,

we check RQ4. Do new TF developers perceive risks of project discontinuation? and

explore RQ5. What motivates a developer to assume an open source project after it

faces a TF event? Finally, we investigate RQ6. What project characteristics most

facilitate or hamper the work of recently arrived TF developers?

To answer these questions we first collect and curate a large dataset of 1,932

GitHub projects. We then propose a methodology to identify TF events in the commit

history of these systems, using the algorithm presented in Chapter 3. We use this

methodology to provide quantitative answers to the first three research questions. Fi-

nally, we report the results of a survey with 33 new TF developers, i.e., developers who

assumed the maintenance of a studied project after it was abandoned by its original

TF developers. We use this survey to provide qualitative answers to the last three

proposed research questions.

Our contributions are threefold. First, we propose a methodology to identify

TF events by mining software repositories and particularly to identify systems that

survive these events (Section 4.2). Second, we show that TF events are not just a the-

oretical concept: we provide a throughout characterization of 357 truck factor events,

detected during the evolution of 1,932 popular GitHub projects; furthermore, we show

that only 41% of the projects facing a TF event fully recover the maintenance work

after the events (Section 4.4). Finally, by surveying TF developers that assumed the

maintenance of the surviving systems, we reveal that 53% were previously using these

systems, i.e., they were motivated by their own need to fix bugs or to implement fea-

tures; we also found that human and social characteristics had a key role to make the

work of these contributors easier (Section 4.5).

We organize this chapter as follows. Section 4.2 defines concepts and methodolo-

gies used in the study. Section 4.3 provides a description of our study design. Section

4.4 presents the results of a quantitative investigation. Section 4.5 reports the results

of a survey with TF developers of the surviving systems. Section 4.6 summarize and

discusses the key study findings. Sections 4.7 discuss threats to validity. Section 4.9

concludes the study.
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4.2 Truck Factor

In this section, we first define important concepts used in this chapter. Then, we

describe the approach used to identify TF events and the systems that survived such

events.

4.2.1 Definitions

These are key definitions used throughout this chapter.

• Truck factor (TF): minimal number of developers on a project that have to be

hit by a truck (or quit) before the project gets in serious trouble [Williams and

Kessler, 2003; Zazworka et al., 2010; Lavallée and Robillard, 2015].

• TF developers: minimal set of developers {d1, d2, ..., dn} that if leave will put a

project in trouble. Typically, algorithms to estimate TF also compute this set.

• TF event: when all TF developers abandon the project, putting its maintenance

and evolution in trouble.

• Surviving system: a system that survives a TF event, by attracting new TF

developers who assume its maintenance.

4.2.2 Identifying Truck Factor Events

To search for TF events, we first estimate the TF of a system at a time t and verify

whether the TF developers abandoned the system before t. In this study, we consider

that a developer abandoned a project if her last commit occurred at least one year be-

fore the most recent repository commit. Existing studies rely on different thresholds to

classify developers inactivity or departure from a project, including three months [Con-

stantinou and Mens, 2017b], six months [Lin et al., 2017; Foucault et al., 2015], and

one year [Izquierdo-Cortazar et al., 2009]. Since truck factor is viewed as a drastic

event, we decide to be conservative and use a minimal one-year of inactivity period

to define that a developer abandoned a project. To estimate truck factors we use the

algorithm proposed in Chapter 3.

We use an example to illustrate how we identify TF events. Consider the fragment

of the composer/satis3 development history shown in Figure 4.1. To preserve the privacy
3https://github.com/composer/satis
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Figure 4.1. TF event on composer/satis

of the contributors involved in our example, we replace their usernames with fictitious

ones. Suppose we first compute the system’s TF in January 2015. At this point, the

TF estimated by the algorithm equals one since Alice is the (unique) TF developer.

As Alice is active in January 2015 (she has a commit after this date), no TF event is

observed in this first period. In the next computation (January 2016), TF increases to

two, with Alice and Bob as the TF developers. Moreover, both developers abandoned

the project before this date: Alice in August 2015 (date of her last commit) and Bob in

December 2015. Therefore, we assume that composer/satis faced a TF event in December

2015, when the last TF developer abandoned the project. We repeat this procedure

in intervals of one year, aiming to check for TF events in multiple points of a project

history.

4.2.3 Identifying Surviving Projects

Although TF events have a major impact in the maintenance and evolution of software

projects, projects can survive such events. In other words, by definition a TF event

puts a project at serious risk, but it does not necessarily imply project termination.

For example, after TF events the development may continue with new developers,

who have taken charge of the project. In contrast, when no significant development is

performed after a TF event, the project is at risk. Such projects are identified in our

analysis since subsequent TF computations provide an identical set of TF developers

as the ones of previous time periods.

Definition: Formally, let TF 1, TF 2, ..., TF n, be a sequence of TF developer sets at dif-

ferent time periods, where TF t represents the TF developer set of a system S computed

at time t. We say that S survived a TF event at t1 if there exists t2, 1 ≤ t1 < t2 ≤ n,

such that

(a) all d ∈ TF t1 abandoned the project before t1, and
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Figure 4.2. Surviving on a TF event on composer/satis

(b) TF t2 \ TF t1 6= ∅, i.e., at the time interval [t1, t2] at least one new developer

performed important contributions to the point of entering in TF t2 .

As illustrated in Figure 4.2, our running example (composer/satis) follows these two

conditions, assuming t1 = Jan 2016 and t2 = Jan 2017. All TF developers identified

in January 2016 have abandoned the project before this date (condition (a)). Further-

more, in January 2017, a new TF developer (Charlotte) is identified (condition (b)).

Therefore, we consider that composer/satis survived a TF event.

As a final note, a project may subsequently face multiple TF events. In general,

a system survives if it survives all observed TF events (if any), or, equivalently, the

most recently observed TF event (if any).

4.3 Study Design

We adopt a mixed-methods approach and combine a large scale analysis of version

control repository data with a survey. Mixed-methods are appropriate for the prag-

matic stance common in software engineering research, and were often applied in the

past [Easterbrook et al., 2008].

4.3.1 Dataset & Preprocessing

To perform the quantitative part of the study, we built a dataset with GitHub projects.

Initially, we focus on six programming languages with the largest number of GitHub

repositories: JavaScript, Python, Ruby, C/C++, Java, and PHP. Next, we select the

top-500 most starred repositories for each of those languages at the moment of analysis

(June 2017). Next we cloned the selected repositories. To safeguard the quality of the
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Figure 4.3. Number of projects by language.

dataset we filter the resulting collection of 3,000 GitHub repositories, as explained in

the next paragraphs.

First of all, some projects do not use GitHub exclusively or did not use GitHub

exclusively during their entire history. Moreover, as recognized by Kalliamvakou et al.

[2015], migrating to GitHub from a different platform does not necessarily preserve the

commit history. Since the identification of TF events depends on developer commit

activity, partial omission of the project history might lead to misidentification of TF

developers, thus threatening the validity of our results. To eliminate this threat, we

filter out repositories where more than 50% of the files are added in less than 20

commits: we consider such a massive import of files an indication that an important

part of the project history has taken place outside GitHub. By applying this filter, we

exclude 677 projects. Second, the algorithm we use to compute TFs requires at least

two years of commit history. Therefore, we filter out repositories containing less than

two years of development activity; in doing so, 338 more projects are excluded.

We complement the filtering process with a manual inspection of the resulting

1,985 systems. Particularly, we manually inspect the project description searching

for indications that the project does not represent a software unit. Among others,

we found repositories containing books, awesome-lists (sets of suggested books, links,

etc.), technology code samples, and projects that, in their description, explicitly state

themselves as unmaintained. We have manually identified and excluded 53 projects.

The resulting dataset is composed of 1,932 (= 3, 000− 677− 338− 53) projects.

As shown in Figure 4.3, most projects are implemented in Ruby (398 projects,

21%); on the other side, Java is the language with fewest projects (226 projects, 12%).

Figure 4.4 shows violin plots with the distribution of the number of developers, files,

commits and stars per project (please note the logarithmic scale). The median values
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Figure 4.4. Distribution of the number of developers, commits, files, and stars.

are indicated inside the violin plots. We conclude that the dataset constructed typically

includes large systems, both in size and in number of developers; the systems also have

a large number of commits and are popular (number of stars).

4.3.2 Aliases Handling

The correctness of TF computations highly depends on the set of distinct develop-

ers. However, developers do not necessarily use only one alias when contributing to

a project [Kouters et al., 2012; Goeminne and Mens, 2013]. Therefore, it is impor-

tant to detect and handle aliases among the developers of the 1,932 projects in our

dataset. Essentially, aliases occur when the same developer uses multiple e-mails to

push commits to a system [Kouters et al., 2012; Wiese et al., 2016]. To detect aliases,

we use a feature of the GitHub API that maps a commit author to its GitHub account.

Essentially, GitHub uses the e-mail address in the commit header to link the commit

to a GitHub user. Using this feature, we mapped each developer of each system to

their GitHub account. In a given system, developers d1 and d2 are considered the same

when they share the same GitHub account. As a downside, this approach does not

handle the cases where developers have multiple GitHub accounts. However, in our

experience and preliminary tests, this situation is rare. The most frequent cause of

aliases is developers using different machines, with their local GitHub configured with

distinct e-mails.

Figure 4.5 shows a violin plot with the percentage of aliases in each project. As

we can observe, there is a significant percentage of aliases in our dataset (1st quartile=
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Figure 4.6. TF of the 1,932 projects in our dataset

7%, median= 11%, and 3rd quartile= 15%). yusugomori/DeepLearning is an interesting

outlier: the system has a single developer, who made commits using five different

e-mails. Therefore, the percentage of multiple aliases in the system is 100%.

4.3.3 Estimating Truck Factors

After selecting the systems and handling aliases, we compute TFs for the 1,932 projects

in our dataset, using the last version in our cloned repositories. Figure 4.6 presents a

histogram with the TF results. As we can observe, most projects have a low TF. For

example, the percentage of projects with TF = 1 is 57%, while less than 6% have a TF

higher than 5. The highest TF is 26, computed for edx/edx-platform, which is the software

platform that supports edX massive open online courses. These findings concur with

the earlier results of Chapter 3 that reported that 65% of the evaluated systems have
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TF ≤ 2, based on a sample of 133 popular GitHub projects.

Most open source projects have low TFs. In a sample of 1,932 projects, 57% have

TF = 1 and 25% have TF = 2. The highest TF in our sample is 26 developers.

4.4 Searching for TF Events and Surviving Projects

In this section, we describe a quantitative exploration of the collected data, aiming to

answer three key research questions:

RQ1. How common are truck factor events in open source projects? To start our

investigation, we assess whether TF events indeed happen in open source development.

RQ2. How often open source projects survive a truck factor event? Assuming the

previous question reveals that TF events indeed occur, this second question takes a

step further and investigates how often projects overcome such events.

RQ3. How surviving projects differ from non-surviving ones? Finally, assuming we find

projects that survived their TF events, we compare them with other projects that did

not have the same fate. The goal is to identify characteristics that might help projects

to overcome the loss of TF developers.

RQ1. Truck Factor Events

How common are truck factor events in open source projects?

We identify truck factor events in 315 projects, 16% of our dataset. Most of the projects

faced only one event (88%); however some projects faced two (11%) or even three (<

0.1%) truck factor events. Figure 4.7 shows the percentage of TF events grouped by

truck factor. As expected, most events are observed in systems with a small truck

factor. For example, 66% of the truck factor events happens in projects with a truck

factor equal to one. This means that most projects that face TF events are maintained

by one core developer. In contrast, only two TF events occur in projects with a TF

higher than four: etsy/logster (TF = 7) and PointCloudLibrary/pcl (TF = 6). etsy/logster

is a small project, with only 13 files and 117 commits at the TF event. By contrast,

PointCloudLibrary/pcl is a large project, with 9,568 commits and 2,204 files, when the TF

event was detected. All TF developers started to contribute to this project in the first

year of its development (2011). Although they were active contributors (more than
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Figure 4.7. Projects facing TF events

Figure 4.8. Contributions to PointCloudLibrary/pcl over time (screenshot from
GitHub). A TF event occurred at June, 2015 (vertical red line), according to the
proposed methodology.

90 commits), they abandoned the project before 2015. To show the impact of their

departure, Figure 4.8 shows a screenshot with the contributions to PointCloudLibrary/pcl,

as available on its GitHub page.4 We can see that most contributions happened before

June, 2015, when the project faced a TF event according to our methodology (vertical

red line, in the figure). This was the date of the last commit of one of the TF devel-

opers. The commits of the other five TF developers all happened before May, 2014.

It is interesting that PointCloudLibrary/pcl has had financial support from a non-profit

organization,5 as indicated in the project’s README page on GitHub. However, the

site of this organization and its accounts in social networks do not receive updates since

2014, which is therefore close to the TF event date, as identified by our methodology.

Truck Factor is not just a theoretical concept: 16% of the studied projects faced

at least one TF event during their development; 66% of these events happened in

systems with TF=1, which are 55% of the projects.

4https://github.com/PointCloudLibrary/pcl/graphs/contributors
5http://www.openperception.org
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Figure 4.9. Age of the repositories with TF events

Figure 4.9 shows the age of the repositories with TF events, considering their

creation date on GitHub. As we can see, most projects facing TF events (71%) have

between 4 and 7 years of development. In the full dataset, 61% of the projects have

between 4 and 7 years. Figure 4.10 shows when these events happen, in terms of number

of development years and counting only the first event, for projects with multiple TF

events. As we can observe, there is a concentration of TF events in the first years of

development; 59% of the studied events happened in the first two years of development.

In fact, in some cases the event happened right after the repository creation. For

example, in 24 projects the TF developers abandoned the projects in the first six

months.

59% of the TF events happened in the first two years of development; but 71% of

the projects with TF events have now between 4 and 7 years of development.

RQ2. Survival Rate

How often open source projects survive a truck factor event?

A project survives a TF event when it survives the last observed event. In total, 128

projects (out of 315 projects) overcome their TF events, which represents a survival

rate of 41%. In most cases (86%) we detected that only one TF developer was at-

tracted to the project and was responsible for its survival. However, there are cases

where two (12%) or even three (2%) new TF developers were attracted to the projects.

Additionally, in 64% of these cases the attraction occurred in the first year after the
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Figure 4.10. When do TF events happen (counting from the repositories cre-
ation)
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Figure 4.11. When do projects survive a TF event

TF event, as presented in Figure 4.11. Therefore, as expected, it is more difficult to

recover project maintenance after years of inactivity.

It is possible to recover from TF events: 41% of the projects survived their last

observed TF event, usually by attracting a single new TF developer (86%).

A developer is called a newcomer if her first commit occurs after the last observed

TF event; otherwise, she is an old-contributor. In most surviving projects (52%), the

new TF developers are all old-contributors. However, a significant part of the projects

survived with the help of newcomers (41%) or by attracting both newcomers and old

contributors (7%).
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Figure 4.13. Percentage of commits after the last observed TF events

Newcomers play a key role when recovering from TF events. They participated in

the recovery of 48% of the surviving projects.

RQ3. Surviving vs Non-surviving Projects

How surviving projects differ from non-surviving ones?

First, Figures 4.12 and 4.13 show respectively the distribution of the absolute number

and the percentage of commits after the last TF event detected in each surviving project

(128 projects) and also in the non-surviving ones (187 projects). Before discussing these

figures, we stress that a TF event should have a major impact on a project maintenance

and evolution, but this does not necessarily mean the project maintenance has ceased

after the event. Therefore, we can have commits after TF events in non-surviving

systems; however, these commits are not performed by important developers. This

means that the projects continue to be at risk even in the presence of commits after
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Figure 4.14. Number of developers, commits and files, for surviving and non-
surviving projects (at the date of the studied TF events)

the TF event. Indeed, the violin plots in Figures 4.12 and 4.13 show a clear difference

between surviving and non-surviving systems. The surviving systems have 505 commits

(56%) after the last detected TF event, whereas the non-surviving ones have only 126

commits (15%), considering the median values. The third quartile measures are 949

commits (72%), for surviving projects; and 289 commits (29%), for non-surviving ones.

These differences are confirmed using the one-sided version of the Mann-Whitney test

(p-value ≤ 5%). The effect size, according to Cliff’s delta [J. Grissom and J. Kim,

2005], is large in both cases: d = 0.64, for the number of commits; and d = 0.79, for

the percentage of commits after the last TF events.

After confirming the difference between the relative number of commits after the

TF events of the surviving and non-surviving projects, we also compare them using

other metrics. Figure 4.14 shows violin plots with the distribution of the number of

developers, number of commits, and number of files of the surviving and non-surviving

projects. All values refer to the date of the studied TF events. Interestingly, the

surviving projects have less developers than the non-surviving ones (32 vs 47, median

values). They also have less commits (384 vs 694, median values) and less files (54 vs

85), which is confirmed using the one-sided version of the Mann-Whitney test (p-value

≤ 5%). However, as computed using Cliff’s delta, the effect size of this difference is

negligible for number of files (d = 0.13) and small for number of commits (d = 0.25)

and developers (d = 0.26).
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At the moment of the TF events, we found no major difference between surviving

and non-surviving projects, in terms of number of developers, commits, and files.

4.5 Survey with TF Developers

In this section, we report the results of a survey with the new TF developers of the

surviving projects, i.e., developers that played a major role in the maintenance of

these systems after the identified TF events. We rely on this survey to provide answers

to the last three research questions:

RQ4. Do new TF developers perceive risks of project discontinuation? The intention

is to check whether the developers perceived the projects being at risk, before making

the contributions that led them to reach a TF developer status.

RQ5. What motivates a developer to assume an open source project after it faces a

TF event? In this investigation, we consider that a developer assumes a project when

it becomes one of its TF developers. The intention is to provide insights on how open

source project managers should proceed to attract new TF developers to their systems.

RQ6. What project characteristics most facilitate or hamper the work of recently ar-

rived TF developers? The intention is to shed light on programming and management

practices that should be promoted (or avoided) in open source development.

4.5.1 Survey Design

For each surviving project (128 projects), we select their new TF developers. After

excluding the ones without a public and valid e-mail address, we have identified 144

potential participants. We sent an e-mail to these developers with four questions: (1)

Did you think that [project] was at risk of being discontinued before deciding to make

major contributions to its continuation? (2) Why did you decide to make these con-

tributions? (3) What project characteristics and practices helped you to make these

contributions? (4) What were the main barriers you faced when making these contri-

butions?

From the 144 e-mails we sent, four returned due to an invalid address. In total,

we received 33 answers, representing a response rate of 24% (33/(144− 4)); this rate is

more than what has been achieved by previous studies [Palomba et al., 2015; Vasilescu

et al., 2015]. To process the answers, we rely on Thematic Analysis [Cruzes and Dyba,
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2011], which consists of (i) initial reading of the developer responses; (ii) generating

initial codes for each response; (iii) searching for themes; (iv) reviewing the themes to

find opportunities for merging among themes; and (v) defining and naming the final

themes. These steps were performed by the author of this thesis; after that the final

themes were checked and revised with a second member of our research group.

RQ4. Discontinuation Risks

Do new TF developers perceive risks of project discontinuation?

We started the survey with the question about the perception of the discontinuation

risks, according to the new TF developers. The purpose of this question is twofold.

First of all, it serves as an additional validation of the importance of the TF event: if

developers believe that the project is at risk of discontinuation after the TF event, then

further evolution of the project is indeed threatened. Second, this question assesses

awareness of the new TF developers; awareness of the context and therefore of their

tasks helps team coordination in software development [Espinosa et al., 2007].

Table 4.1 summarizes the results for this question. Most respondents (18 devel-

opers, 60%) agreed that the projects were facing risks of discontinuation. Examples of

positive answers include: “when I thought the project would die, I started making con-

tributions to it once again" (D8); and “yes, otherwise the project would been completely

abandoned" (D9). Furthermore, we classify as a partial agreement five cases (17%)

where the developers reported problems in the projects, but were not clear about their

severity, or mentioned the problem was mitigated by another developer who also en-

tered in the TF set. As examples, we have these answers: “[the] development had

slowed" (D14); and “A new primary developer stepped in and took responsibility of the

project after the original developer left." (D32). Indeed, the developer mentioned by

D32 was also identified as a new TF developer in our study; therefore, we contacted him

for our survey, but unfortunately he did not reply to our e-mail. Finally, six developers

(20%) answered that they did not perceive the projects as being at risk. Usually, these

developers were succinct in their answers (just answering no, for example). Remark-

ably, among the negative answers, one developer mentioned the project is supported

by a major software company, which contributes to reduce the discontinuation risks, in

his opinion: “this open source project is actually backed by a for profit company, so the

project didn’t risk being abandoned" (D24). Finally, we classify one answer as unclear,

because it is not related to the provided question. Four respondents did not answer

this survey question.
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Table 4.1. Did you perceive the projects at risk?

Yes Partially No Unclear

18 (60%) 5 (17%) 6 (20%) 1 (3%)

Table 4.2. Motivations to contribute

Motivations Devs %

Because I was using the project 17 53
To contribute to an open source project 11 34
To avoid the project discontinuation 5 16
I have interest on the project area 4 13
I get paid to contribute 4 13
To improve my own skills 3 9
I have the skills required by this project 3 9
It is a successful project 3 9
Others 7 22

77% of the TF developers were aware (or partially aware) of the risks faced by

the surviving systems, before making the contributions responsible for the project

recovery.

RQ5. Motivations

What motivates a developer to assume an open source project after it faces a TF event?

With this question, we aim to reveal the reasons that motivated the new TF developers

to make their major contributions to the projects. Table 4.2 summarizes the main

reasons mentioned by the surveyed developers. Because I was using the project to

address my personal or professional needs is the most common reason, according to 17

participants (53%). As examples, we have these answers: “I used the [project] in my own

products and was struggling with a few bugs so I decided to fix them and contribute back"

(D14); “mostly because I used [project] heavily and was asked for documentation and

improvements from within my company" (D16); and “I used the project professionally

and was in a position to provide some level of support as part of my job" (D23). To

contribute to an open source project is the second most common reason, according

to 11 participants (34%). For example, one participant mentioned “contributing to

open-source to give back to community" (D4). To avoid the project discontinuation

is mentioned by five developers (16%), as in these answers: “I was the only additional

contributor on the project so I was the only person capable of keeping it alive" (D7); and
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Table 4.3. Characteristics that helped new TF developers

Type Characteristics Devs %

Human/ Friendly and active owners/members 12 41
Social I liked/knew the project 3 10

Technical

Programming language 4 14
Well-known SE principles 4 14
Pull based development 4 14
Continuous integration 2 7
Clean and well-designed code 2 7
Code revision 1 3

Others

Main repository access 3 10
Job support 2 7
Small or simple project 2 7
Open source license 1 3

“it will die if I don’t [contribute], and I think it still has value." (D13). The remaining

reasons mentioned by the participants are as follows: I have interest on the project

area (4 developers), I get paid to contribute (4 developers), to improve my own skills

(3 developers), I have the right skills to contribute to this project (3 developers), it is a

successful project (3 answers), it is a promising or interesting project (2 answers), I was

invited to contribute (2 answers), for personal satisfaction (2 answers), and to attract

developers to my company (1 answer). One respondent did not answer this question.

The developers responsible to reactivate the maintenance of the surviving projects

were motivated by their own usage of the projects (17 developers, 53%). They

also intended to contribute back to an open source community (34%) or avoid the

project discontinuation (16%).

RQ6. Enablers and Barriers

What project characteristics most facilitate or hamper the work of recently arrived TF

developers?

We start with the project characteristics that facilitated the attraction of the new TF

developers. As presented in Table 4.3, we organize these characteristics in three groups:

human and social characteristics (15 answers), technical characteristics (17 answers),

and other characteristics (8 answers). The most mentioned human and social charac-

teristic is the presence of friendly and active project owners or members (12 answers).



76 Chapter 4. Investigating Truck Factor Events

Table 4.4. Barriers faced by new TF developers

Type Barriers Devs %

Human/
Social

Lack of time 7 26
Lack of experience 3 11
Unfriendly maintainers 2 7

Technical
Need to keep backward compatibility 4 15
Lack of well-known SE principles 1 4

Others
Lack of access to the main repository 5 19
Large number of pending issues 3 11
No financial support 2 7

No barriers - 4 15

As examples, we have these answers: “it has been [dev-name]’s kindness to my first

contributions and his help to me, and later other cool developers’ support" (D6); “the

responsiveness of the existing maintainer was the key factor to my ongoing contribu-

tions" (D11). Among others, technical characteristics include the usage of a specific

programming language (4 answers) or following well-known software engineering prin-

ciples and practices (4 answers). The last category groups factors like permission to

access the main repository (3 answers) and financial support by a company (2 answers).

Four respondents did not answer this question.

The characteristics that helped on the attraction of new TF developers have a

social, technical or external nature. Friendly and active maintainers is the most

mentioned facilitator, indicated by 12 developers (41%).

To complement the answer to RQ6, we also asked the new TF developers about

the barriers they faced when making the contributions that led them to achieve a status

of TF developer. As in the case of the first part of the question, we organize the answers

mentioned by the participants in three groups: human and social barriers (12 answers),

technical barriers (5 answers), and other barriers (10 answers). Table 4.4 presents the

answers in each group. As we can observe in this table, most answers denote human

and social barriers. Particularly, lack of time is the most common barrier mentioned

by the survey participants (7 answers). As examples, we have these answers: “I have

other projects to maintain." (D3); and “time is always an issue, especially because the

range of features is fairly wide" (D23). Technical barriers include the requirement to

keep backward compatibility and do not introduce bugs (4 answers) and the lack of solid

software engineering principles (1 answer). Another barrier commonly mentioned by
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the participants is the difficulty to obtain access to the main repository (5 answers).

The participants justify the need to obtain this access because the maintainers are

absent (D2, D12) or the project was abandoned (D8, D9). Four developers mentioned

they faced no barriers at all. Six developers did not answer this question.

Human and social barriers are the most common ones faced by new TF developers;

particularly, lack of time is the most common barrier.

4.6 Discussion

In this section, we summarize and discuss the relevance of our study findings.

Truck factor is not only a theoretical metaphor: In the case of open source development,

it is possible to argue that truck factor is just a theoretical scenario, since the code

is public and others can assume the maintenance work if the key developers abandon

the project. In fact, one of the participants of the survey provides an argumentation

in this direction: “it’s open source, if people want to use it, they will use it. If it’s

missing features they really want/need, they will submit PR’s, or fork and maintain

their own copy." (D30). Undoubtedly, if the code is public on GitHub, anyone has the

legal permission (according to the project’s open source license) to collaborate with or

fork the project. Moreover, GitHub provides many useful instruments to facilitate this

process, like easy forking or pull requests. Despite that, our study shows that even

popular projects may fail to attract new contributors after being abandoned by the

original TF developers. More precisely, only 41% of the projects have fully recovered

the maintenance activity after the TF events studied in our work. We hypothesize

that assuming the maintenance of an open source project is a complex task, which

requires time, technical and social skills and familiarity with the project domain; many

projects therefore do not succeed to find developers with this profile and face serious

maintenance problems or even fail after being abandoned by their TF developers.

Interestingly, we also found arguments in the opposite direction, stating that

Truck Factor is a less important concern in software projects backed by a company

regardless of the project being open source. We received at least two answers hinting

in this direction, as this one: “Most of the questions are not relevant because [Project]

is actually a large project with formal sponsorship by [Company]" (D33). In other

words, these developers consider that Truck Factor is a real concern only in projects

without financial support, as is the case of most open source projects.
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How to overcome a TF event: Although we show that TF events are a reality in

open source development, we also found that it is possible to survive these events

and to recover the maintenance after attracting new developers to the TF set. By

surveying these new TF developers, we shed light on two key characteristics of the

surviving projects. First, the surveyed developers decided to assume the maintenance

of these projects motivated by their own needs, since they were using the projects and

require new features or fix existing bugs. Therefore, this finding suggests a connection

between the number of users of an open source project and its resilience to TF events.

Particularly, 53% of the TF developers surveyed in our study were attracted because

they were earlier users of the projects and therefore had personal interests in avoiding

their failure. Second, human and social factors have a key role on attracting new TF

developers. According to the survey participants, 51% of the factors that helped in

their attraction are social in nature; and 44% of the barriers faced in this process are

also human and social ones. The importance of human and social barriers to technical

contributions was also observed by Palomba et al. [2018]. Our findings, therefore,

confirm the importance of human and social factors in open source development. This

is particularly the case if most contributions are voluntary, as indicated by one of the

survey respondents: “There is no authority over the top that chooses who will work on

what. We are all contributing during our “free” time, for only the “enjoyment” of it.

So, we sort of contribute only where it “feels” good." (D26)

4.7 Threats to validity

External Validity: The dataset used in this study was carefully selected from popular

projects on GitHub, coming from six different programming languages. However,

our findings cannot be generalized to other projects and particularly to closed-source

projects. Indeed, our survey results suggest that TF events in the context of software

with financial support might have very different characteristics.

Internal Validity: Our approach uses data from the entire development history of a

project to identify TF events, therefore it is sensitive to the loss of parts of this history

(e.g., migrating the project’s code from another version control system to GitHub

without preserving the previous development history). To mitigate this threat, we

remove from our dataset the projects with evidence of a corrupted migration to

GitHub—see Section 4.3.1. We also manually removed non-software projects, such as

books and tutorials.
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Construct Validity: With respect to construct validity, our results depend on the ac-

curacy of truck factor computations. Therefore, to mitigate this threat we used the

TF algorithm that presents the best accuracy, as pointed by a recent comparative

study [Ferreira et al., 2017]. Another threat to the validity of our work stems from the

selected threshold of one year to identify abandoners. However, there is no consensus

in the literature on appropriate thresholds to identify such developers, e.g., Constanti-

nou and Mens [2017a] used a 1-year threshold as well, while Lin et al. [2017] used a

180-day threshold to find developers abandoning a project. Since this study focuses

on key developers, we believe that a less strict threshold can reduce the effect of this

threat in our analyses. Additionally, the truck factor measures may also vary due to

possible developer aliases. We mitigate such a threat by carefully handling the most

common sources of aliasing—see Section 4.3.2.

4.8 Related work

Truck factor is a concept defined by the agile community to assess knowledge concen-

tration in software projects. As the concept initially lacked a formal definition, the

first works in this area focused on proposing algorithms to compute truck factors. The

first algorithm to this purpose was proposed by Zazworka et al. [2010]. After that, it

was used by Ricca and Marchetto [2010] and Torchiano et al. [2011], respectively, to

investigate the presence of “heroes” in open source projects and to investigate thresh-

old values to use when computing truck factors. However, as further demonstrated

by Ricca et al. [2011] and Hannebauer and Gruhn [2014], Zazworka’s algorithm suffers

from scalability problems, which limits its applicability to real systems. To address

these problems, new algorithms were proposed: Cosentino et al. [2015] proposed a hier-

archical algorithm, which aggregates file-level authorship results to modules and, in a

second step, aggregates module-level results into systems; Rigby et al. [2016] proposed

a solution inspired by a Monte Carlo simulation algorithm; and Avelino et al. [2016] use

code authorship metrics to identify source code files’ authors [Fritz et al., 2010, 2014].

Essentially, Avelino’s algorithm relies on a greedy approach to identify the developers

that together control the authorship of most files in a system. In a recent work, Ferreira

et al. [2017] compared these three algorithms and concluded that Avelino’s algorithm is

the most accurate one. However, the aforementioned works did not investigate whether

TF events really occur and what happens with open source projects after such events.

Truck Factor can be considered as a particular case of turnover, involving the

principal developers of a project. Turnover of developers in general is a well-studied
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phenomenon in software engineering. Foucault et al. [2015] report the negative impacts

of turnover in the internal quality of five open source projects. Hilton and Begel [2018]

recently studied internal turnover in a major software company, with more than 30K

employees. By surveying a sample of 374 of such employees, they reveal what causes

engineers to consider leaving their teams, why they leave, how they learn about new

teams, and how they decide which team to join. Lin et al. [2017] conducted a similar

study, but with focus on five open source projects. They show that developers are

retained when they (i) start contributing to the projects earlier, (ii) maintain both

code developed by others and their own code, and (iii) mainly code instead of writing

documentation.

Motivations and barriers to contribute to open source systems were previously

investigated for different developer profiles: one-time code contributors (developers

that have only one patch accepted) [Lee et al., 2017], casual contributors (develop-

ers with few contributions and who have no intention to become an active project

member) [Pinto et al., 2016], newcomers [Steinmacher et al., 2015, 2016], and core

developers [Coelho et al., 2018]. Regarding the reasons that motivate developers to

contribute to open source, some of these studies also show that core developers are

motivated by their personal needs, as we concluded for the specific case of new TF

developers. By contrast, one-time contributors and casual contributors are mainly mo-

tivated by the need to fix minor bugs. Lack of time is a common barrier to contribute,

mentioned by core developers, one-time contributors, and casual contributors. It was

also commented by the new TF developers surveyed in our study. Steinmacher et al.

[2015] defined a conceptual model composed of 58 barriers that may hamper newcom-

ers’ first contributions. They list and classify these barriers, but do not provide insights

on which are the most common ones. Coelho and Valente [2017], report a survey with

the maintainers of 104 failed open source projects, i.e., projects that are not maintained

anymore. According to their survey, the most common reasons for open source project

failures are the appearance of a strong competitor, obsolescence, and lack of time or

interest of the project owners.

4.9 Conclusion

In this chapter, we presented an in-depth investigation of the occurrence of TF events in

open source projects, i.e., the abandonment of a project by its principal developers. We

showed that TF events are not only a metaphor, but they indeed happen in open source

projects (in 16% of such projects, at least in our sample of 1,932 GitHub projects).
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Additionally, we showed that projects survive such events, by attracting new core

contributors (41% of the projects survived a TF event, in our sample). Finally, we

reveal the motivations that led these developers to take over the studied projects, after

the projects faced a TF event; we also reveal the principal enablers and barriers faced

by these developers during this process. This list of enablers and barriers can be used

by project leaders to improve the management practices employed in their projects.

Finally, open source communities should be made aware of successful cases of

projects overcoming TF events, as we report in our study, and motivate developers to

actively contribute to projects at risk due to TF events.

As a final note, our data is publicly available at this GitHub repository: https:

//github.com/gavelino/tfevents_data.





Chapter 5

Identifying Software Maintainers

In large and complex systems, identifying developers capable of maintaining a source

code file is an important but challenging task. In this context, repository-mining tech-

niques can help by providing some level of automation. Still, whether such techniques

effectively identify skilled software maintainers is yet unclear. To shed light on this

issue, we evaluate three techniques supporting software maintainers recommendation,

namely (1) the number of changes a developer makes; (2) the number of lines a devel-

oper owns in the last version of a file; and (3) a linear regression approach for defining

experts. We apply these techniques against the evolution history of ten systems, con-

trasting recommendations with an oracle built from surveying developers. We concluded

that practitioners should use the approach based on linear regressions, since it has the

best performance after controlling for size/recency, closely followed by number of com-

mits.

5.1 Introduction

When software needs to be fixed or improved, identifying who is able to maintain,

assist, or review a particular source code file can be a wicked task. Particularly, many

software projects follow collective code ownership practices, as encouraged for example

by agile software development methodologies. In these projects, it is common to have

files with multiple contributors, sometimes reaching dozens of them. Among these

contributors, some are responsible for the major changes in the files, while others can

be considered as peripheral contributors, who perform only minor and less important

maintenance tasks. However, usually, there is no clear and easily defined frontier

separating peripheral from major contributors [Joblin et al., 2017]. This separation is

important for example when a critical bug is reported and project managers have to

83
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rapidly identify an expert developer capable to fix it.

In this context, different repository-mining techniques can be applied to identify

skilled software developers from the historical data kept by version control systems

(VCS) [McDonald and Ackerman, 2000; Mockus and Herbsleb, 2002b; Fritz et al., 2014].

By mining the development history, the goal is to infer developers able to maintain a

file or a more specific unit of code. However, the extent that existing techniques

successfully recommend software maintainers, as well as possible limitations, remains

unclear. We shed light on this matter by evaluating three popular techniques: (1)

the Number of Commits [Bird et al., 2011; Casalnuovo et al., 2015]; (2) the Number of

Lines of Code in the Last Version Girba et al. [2005]; Rahman and Devanbu [2011] and;

(3) the Degree of Authorship (DOA) [Fritz et al., 2014]—a linear regression approach

for defining experts. We apply all three against the evolution history of 10 systems

(2 commercial and 8 open-source), comparing results with an oracle we build from

surveying developers. We point out for the use of recency and file size information as a

strategy to improve the effectiveness of the compared techniques. We also recommend

the use of the DOA technique to identify maintainers, since it has the best performance,

after controlling for size/recency, closely followed by Commits.

We organize this chapter as follows. Section 5.2 presents the three techniques

evaluated in this study. Section 5.3 provides a description of our study design. Sec-

tion 5.4 presents the results of the techniques comparison which are better examined

and discussed in Section 5.5. Finallly, Sections 5.6 and 5.7 examine threats to validity

and concludes the study, respectively.

5.2 Evaluated Techniques

From the existing literature, we find three main techniques to recommend expertise

from version control systems. The selected techniques depend on measures that are

available on git-based version control systems or that are straightforward to compute.

Moreover, although the selected techniques do not represent an exhaustive list of ap-

proaches to recommend software maintainers, they cover the key concepts adopted by

most of them.

Number of Changes (Commit)

This technique counts the number of changes to define the experts on a file. The

expertise of a developer d over a file f is defined by counting the number of commits
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performed by d in f . Bird et al. [2011] and Casalnuovo et al. [2015] use it to identify

experts at the level of modules and methods, respectively.

Number of Lines of Code in the Last Version (Blame)

This technique relies on blame-like tools to obtain the developer who last modified a

line in a file. It considers expertise as the percentage of the number of lines associated

to a given developer. Girba et al. [2005] consider a file expert the developer with more

associated blame lines in a given system snapshot. Rahman and Devanbu [2011] rely

on this technique to assess expertise of developers responsible for defective code.

Degree of Authorship (DOA)

As proposed by Fritz et al. [2014], this technique considers three events to compute the

degree of authorship (DOA) of a developer d in a file f : first authorship (FA), number

of deliveries (DL), and number of acceptances (AC). If d is the creator of f , FA is 1;

otherwise it is 0; DL is the number of changes in f made by d; and AC is the number

of changes in f made by other developers. The DOA measure is defined as follow:

DOA(d, f) = 3.293 + 1.098 ∗ FA+ 0.164 ∗ DL− 0.321 ∗ ln(1 + AC ) (5.1)

In this equation, FA and DL contribute to increment the DOA value, the former

with higher importance than the latter. In an opposite way, changes made by other

developers (AC ) decrease the DOA value. The weights used in this equation were

empirically derived from a study with Java developers [Fritz et al., 2014]. Although

their use in other systems is as threat, the authors of the DOA metric claim the model

is robust enough to be applied in different systems. Additionally, we previously used

DOA to compute the truck factor of popular systems on GitHub, obtaining positive

feedback from developers (Chapter 3).

5.3 Study Design

5.3.1 Target Systems

We compare the described techniques in ten systems, including two commercial systems

and eight open-source systems. The commercial systems (Commercial #1 and Commer-

cial #2) are, respectively, a web platform for digital media and the client of a VoIP
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Figure 5.1. Steps to construct the authorship oracle

communication system. We omitted the names due to confidential reasons. They are

developed by different teams and represent the main product of two companies, which

are located in Brazil (Commercial #1) and Canada (Commercial #2). We also used the

following open-source systems: Salt, Django, Moment, Ember.js, Faker, Monolog, Fog,

and Puppet. These systems, which are implemented in four different programming

languages, come from the truck factor study described in the Chapter 3.

5.3.2 Oracle

Our investigation requires an oracle to compare the results produced by the techniques.

We create this oracle by asking the system developers about their knowledge on a ran-

dom set of files. As illustrated in Figure 5.1, the oracle construction comprises four

steps:

Step 1: Extract development history. We extract the development history from

the repositories using the git log ––no-merges ––find-renames command, which returns

all no-merge commits of a repository and identifies possible file renames. We process

each commit, extracting three pieces of information: (i) the file path; (ii) the developer

who performed the change; and (iii) the type of the change—addition, modification,

or rename. Rename information is used to join the development history of a file (old

and new file names). Additionally, we discard files that do not contain source code
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(e.g., images, documentation) and third-party libraries. We also handle developers

alias. To perform these tasks we follow the same automatic procedures described in

Section 3.3.1.

Step 2: Generate survey sample. Given the development history of a system, we

first discard developers with invalid e-mails and source code files that are touched by

only one developer. The survey sample for a given system is generated executing the

following procedure: (i) we randomly select a file and retrieve the list of developers

who changed it; (ii) we discard the file if at least one of these developers reached the

maximal limit of files (files_limit); (iii) otherwise, we add the file to the list of each

developer; (iv) we repeat the procedure until there are no more files to be verified. Af-

ter consulting the commercial systems’ managers, we decide to ask each developer on

her knowledge about a list of at most 50 files (files_limit = 50). For the open-source

systems, we set files_limit = 10 to do not discourage the developers to answer the

survey. This second step produces a list of pairs (developer, file) for each system in our

dataset. In total, we generate a sample with 3,068 pairs, covering 1,109 files and 740

developers.

Step 3: Apply the survey. After producing the survey sample, we send an e-mail

to each developer d asking him/her to assess his/her knowledge on each file f in the

sample. The developers are invited to rank their knowledge using a scale from 1 (one)

to 5 (five), where (1) means no knowledge about the file; and (5) means complete

knowledge about the file. We also request them to explain or comment their answers

in an optional text field. In total, we send 668 e-mails and received answers from 159

developers, resulting in a response rate of 24%. Additionally, these answers correspond

to 1,209 pairs (developer, file), covering 654 files.

Step 4: Process answers. Figure 5.2 (Answers) shows the distribution of the an-

swers we received for each group of systems. Score five is the most popular one in the

commercial systems (31%), while score three is the most popular in the open-source sys-

tems (27%). We applied the non-parametric Wilcoxon-Mann-Whitney test [Wilcoxon,

1992] to compare the two distributions and the result shows they are statistically

different (p-value < 0.01). Finally, we classify the answers in two disjointed sets: de-

clared maintainers (OM) and declared non-maintainers (O
M

). A declared maintainer

is a developer who declared to have a knowledge greater than three in a file; other-

wise, she is a declared non-maintainer. As we can observe in Figure 5.2 (Type), most

developers are declared non-maintainers (52% and 54%, for commercial and open-

source systems, respectively). Therefore, although all the respondents had changed

the files included in the study at least once, most of them answered they have limited
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Figure 5.2. Distribution of the survey answers

knowledge on these files. The data generated for this study is publicly available at:

https://github.com/gavelino/authorship-data.

5.3.3 Inferring Maintainers and Non-maintainers

In this section, we describe how we use the techniques presented in Section 5.2 to clas-

sify the developers as maintainers or non-maintainers of a file. First, for a given file f

we normalize the measures produced by each technique. We define that expertise(d, f)

is 1 to the developer with the highest measure for f , otherwise it receives a propor-

tional value. For example, if f1 was modified by three developers d1, d2, and d3 and

they performed, respectively, five, four, and two commits, their normalized value us-

ing the Commit technique are expertise(d1, f1) = 1.0, expertise(d2, f1) =
4

5
= 0.8, and

expertise(d3, f1) =
2

5
= 0.4. A similar normalization happens with the Blame and DOA

measures (i.e., the highest measure is normalized to 1; the other measures receive a

proportional value in the range 0 to 1).

We consider the developer d of a file f as a maintainer candidate if she has an

expertise greater than or equal to a threshold k; otherwise she is a non-maintainer can-

didate. For instance, by taking the previous example, if we adopt k = 0.5, d1 and d2 are

classified as maintainer candidate of f1, while d3 is classified as non-maintainer candi-

date. For the sake of clarity and brevity, maintainer and non-maintainer candidates

are just called maintainer and non-maintainer in the remainder of this article.

5.3.4 Evaluation Metrics

Although in the survey we obtained a response ratio greater than the one common

in software engineering studies [Kitchenham and Pfleeger, 2008; Palomba et al., 2015;
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Vasilescu et al., 2015], our oracle is not complete, because not all developers who

changed a file answered the survey. Therefore, it is not possible to compare the tech-

niques using precision and recall because these measures require a complete ground

truth, which can be used to answer whether any recommendation is correct or not. In-

stead, using the oracle data, we calculate the ratio of correct classifications produced by

each technique (Commit, Blame, and DOA). Specifically, we compute the maintainers

hit ratio (HRM) of a given technique using the following equation:

HRM(k) =
|{(d, f) ∈ OM | expertise(d, f) ≥ k}|

|OM |
(5.2)

Therefore, HRM(k) is the ratio of declared maintainers (OM) that a given tech-

nique correctly identifies. As described in Section 5.3.3, we consider that d is a main-

tainer of a file f if expertise(d, f) ≥ k. The hit ratio of non-maintainers (HR
M

) is

computed using a similar approach, but using the set O
M

and considering as non-

maintainers the ones whose expertise(d, f) < k, as follows:

HR
M
(k) =

|{(d, f) ∈ O
M
| expertise(d, f) < k}|

|O
M
|

(5.3)

Both HRM and HR
M

are important to evaluate the results of the studied tech-

niques. For example, a high HRM but a low HR
M

may indicate the technique is

inflating the number of maintainers, erroneously classifying many developers with low

knowledge as maintainers. Therefore, we also compute the harmonic mean (HM ) of

the hit ratios of maintainers and non-maintainers, as given by the following equation.

HM (k) =
2 ∗ HRM(k) ∗ HR

M
(k)

HRM(k) + HR
M
(k)

(5.4)

We adopt an harmonic mean instead of the arithmetic mean because the former is

less sensitive to outliers. For example, suppose that HRM = 90% and HR
M

= 20%.

This is not an interesting result, because HR
M

is very low. In this case, HM is 33%,

whereas the arithmetic mean is 55%. Therefore, the harmonic mean better reflects

(and penalizes) the unbalanced nature of these HRM and HR
M

values.

To illustrate the use of these evaluation metrics, Figure 5.3 presents a toy exam-

ple. The figure shows developers d1, d2, d3, and d4 who changed a given file f and

their expertise measures as computed by Blame, Commit, and DOA. We can also ob-

serve the sets of declared maintainers (OM = {d2, d4}) and declared non-maintainers

(O
M

= {d1, d3}) for f . In the bottom, we present the classification results produced

by the proposed evaluation metrics, assuming k = 0.5. Blame correctly classifies

one maintainer (d2) and one non-maintainer (d1). Since |OM | = |O
M
| = 2, then
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d2, d4

Blame = 0.3 

Commit = 0.6

DOA = 0.1

Blame = 0.6 

Commit = 0.4

DOA = 0.6

Blame = 0.7

Commit = 0.2

DOA = 0.3 

OM

k = 0.5

Blame = 0.1

Commit = 0.6

DOA = 0.3 

d1, d3

OM

d1

d2

d3

d4

TECHNIQUE M M HRM HRM HM

Blame

Commit

DOA

d2, d3 d1, d4 0.50 0.50 0.50

d1, d4 d2, d3 0.50 0.50 0.50

d2 d1, d3, d4 0.50 1.00 0.67

_

_

_

Figure 5.3. Computing HRM , HR
M

, and HM for a hypothetical file f . In
the bottom part, underlined values denote developers correctly classified by the
techniques as maintainers (M) and non-maintainers (M ) according to the oracles
OM and O

M
, and assuming a threshold k = 0.5.

HRM = HR
M

= 1

2
= 0.50, and HM = 0.50 for Blame. The same results are obtained

by Commit. DOA correctly classifies one maintainer (d2) and two non-maintainers

(d1, d3), obtaining the following results: HRM = 1

2
= 0.50, HR

M
= 2

2
= 1.00 and

HM = 0.67.

5.4 Results

To compare the techniques to infer maintainers and non-maintainers, we use the har-

monic mean (HM ), as described in the previous section. As this measure depends on

a threshold k, we vary k from 0 to 1, using steps of 0.1. By considering the results

in Figure 5.4, we can identify the best technique for each group of systems (commer-

cial and open-source). For commercial systems, Blame obtains the highest HM (67%,

k = 0.1), closely followed by Commit (66%, k = 0.2), while DOA has the lowest one

(63%, k = 0.6). On the other hand, for open-source systems the best result is obtained

by Commit (63%, k = 0.6), closely followed by DOA (62%, k = 0.8) and Blame (60%,

k = 0.1). In summary, although Blame and Commit provide slightly better results, re-

spectively for commercial and open-source systems, the three techniques present similar

performance on classifying developers as maintainers or non-maintainers (HM ranging

from 60% to 67%).
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Figure 5.4. Harmonic mean (HM )

In Figure 5.4, we also observe that DOA is more susceptible to threshold varia-

tions, while Commit and Blame provide more stable results, specially when we consider

k ≥ 0.2. Additionally, Commit and mainly Blame achieve high HM measures (> 50%)

with a low k, while DOA requires k > 0.5 to produce values higher than 50%.

5.5 Discussion

In this section, we analyze examples in which the studied techniques fail and we also

shed light on their limitations. Then, we evaluate the impact of using different thresh-

olds to judge the technique results in scenarios where they are more likely to fail.

5.5.1 When and Why the Techniques Fail

We start by contrasting the cases where the three techniques succeed (AllHit) on

identifying the maintainers of the studied systems against the cases where they all

fail (AllMiss). To compute these cases we configured the techniques with their best

thresholds, as pointed in Section 5.4. We identified 270 pairs (developer, file) in AllHit

and 96 pairs in AllMiss. For each pair (developer, file) in AllHit or AllMiss, Figure 5.5

shows the distribution of the percentage of commits performed in the selected file by

the respective developer. We can see that when all the techniques fail (first plot) the

percentage of commits by the considered developers is usually lower than when they all

succeed (second plot). Indeed, in most of the AllMiss cases the percentage of commits

by the selected developers is low—75% of the missed maintainers have less than 8% of

the files’ commits. In other words, in the AllMiss cases the studied techniques failed

because the developers classified themselves as maintainers despite having a small

percentage of the files’ commits. To clarify the failure reasons, we manually inspected

the 96 pairs (developer, file) in AllMiss. We found three major reasons:
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Figure 5.5. Distribution of the percentage of commits by a developer d who is a
declared maintainer of a file f when all techniques failed to identify this condition
(AllMiss) and when all techniques correctly identified this condition (AllHit).

• Recency: in 24 cases (25%), there is less than one month that the developers

modified the file. Although most of them had done few and minor contributions,

they considered to have good knowledge on these files. Furthermore, recency

influences other 11 cases (11%) where the developer is the last one to change

the file. However, the recency of the contributions is not caught by any of the

studied techniques. For example, a concern about this question is mentioned

in the following answer of a Django developer: “I don’t know if you are taking

time into account, but I’d expect this to be a significant factor”. We also found

evidences that the familiarity with a file decays over time. For example, we

received the following comment of a Puppet developer: “I believe I submitted a

patch about 3 years. At the time, I probably understood what I was doing but it’s

too long ago now”.

• File size: the number of lines of a file also seems to influence the results. In

fact, in 13 failures (14%) the changed files are small (≤ 26 lines of code, which

is the first quartile of the file size distribution in the entire oracle). This factor

is mentioned by a Django developer to justify his answer: “This is a tiny file, so

having added one line of code, I’ve contributed a significant portion of it I guess”.

By contrast, a large file requires more effort to gain knowledge on its content, as

exposed by another Django maintainer: “On a relatively big piece (such as this

1K+ lines file) with a bunch of authors, I might be very knowledgeable about the

piece of code I touched but know basically nothing about the rest”.
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Figure 5.6. Distribution of declared maintainers and declared non-maintainers
according to the following factors: recency (in days from the last developer com-
mit) and file size (in LOC).

• Extra-repository activities: in the remaining cases, we could not find evi-

dences from the collected data to support the failure results. For example, in

Commercial #2, a developer rated his knowledge with a score four but performed

only one commit, months ago, in a highly modified and large file (344 commits,

by 25 different developers, 700 lines of code). Analyzing this case, we found that

he recently worked in a new client-side module, and the file in question is a facade

widely used by this new module. This suggests that activities not reflected in

the commit history can also be a source of code knowledge. Additionally, two

Commercial #1 developers mentioned their participation in the design of the sys-

tem as the source of knowledge in specific files (e.g., “this file represents a concept

defined in the beginning of the project. The knowledge came from participating in

the file definition”).

To better evaluate the failure reasons identified in the manual investigation, Fig-

ure 5.6 presents the distribution of the pairs (developer, file) regarding recency (in days

from the last commit) and file size (in LOCs). The entire oracle is represented, but we

show separately declared maintainers and declared non-maintainers pairs. According

to a Wilcoxon-Mann-Whitney test, the presented distributions are statistically differ-

ent (p-value < 10−8, in both cases). Regarding recency, the median number of days

from the last commit is 71 days for declared maintainers and 134 days for declared non-

maintainers. Regarding file size, the median size is 60 LOC for declared maintainers

and 96 LOCs for declared non-maintainers. This result reinforces that developers are
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Algorithm 2: IsMaintainer Test

Input: Developer d, file f

Output: True if d is a maintainer of f ; False, otherwise
1 function isMaintainer (d, f)
2 begin

3 adj ← 1;
4 if "f is a small file" then

5 adj ← adj - k1;
6 else if "f is a large file" then

7 adj ← adj + k2;
8 if "d recently modified f" then

9 adj ← adj - k3;
10 else if "d modified f a long time" then

11 adj ← adj + k4;
12 adjThreshold ← k * adj;
13 return expertise(d,f) ≥ adjThreshold;

14 end

more likely to declare themselves as maintainers when they recently modified a file or

when this file is small. By contrast, large files and files modified a long time ago tend

to encourage a negative response from developers.

5.5.2 Controlling for File Size and Recency

The results presented so far depend on a threshold to classify a developer d as a

maintainer of a file f. Different thresholds are used for each technique; but for a given

technique, the same threshold is used to classify developers as maintainers or non-

maintainers of all files. However, as concluded in Section 5.5.1, the techniques tend to

fail when the modified files are small (or large); and when the last modification by a

developer in a file was performed recently (or a long time ago). Therefore, we decided

to experiment different thresholds for the mentioned scenarios. Instead of having a

single threshold, we adjust this value according to the following thresholds: small files

(k1), large files (k2), files recently modified by the developer (k3), files modified a long

time ago (k4); plus the previously used threshold for the remaining cases (k). We used

the first quartile of the file size distribution in lines of code to classify the small files

in a system; the last quartile is used to classify the large files. The first quartile of the

number of days of the last commit by the developers of a system is used to classify the

recently modified files; the last quartile classifies the files modified a long time ago. For

each system, we experiment different values of ki, ranging from 0.0 to 1.0 with steps of

0.05. The test described in the Algorithm 2 is then used to decide whether a developer

d is a maintainer of a file f .

The improvements on the HM values (harmonic mean of the hit ratio of main-
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Figure 5.7. Harmonic mean (HM ) of the hit ratio of maintainers and non-
maintainers achieved when controlling for file size and recency

tainers and non-maintainers) using these thresholds are as follows:

• For Blame, the HM improvements range from 0% (Ember.js) to 14% (Puppet).

• For Commit, the improvements range from 0% (Monolog, Salt, Moment, and

Django) to 41% (Fog).

• For DOA, the improvements range from 0% (Monolog and Salt) to 95% (Fog).

Fog is the system with the highest improvement because most of the answers for

the system refer to recently modified files.

Figure 5.7 shows the HM results of each system considering the proposed im-

provements. As we can see, DOA presents the highest gain after controlling for size

and recency. It achieves the best HM values for six systems (one shared with Com-

mit), followed by Commit (four systems) and Blame (two systems, one shared with

Commit).

5.6 Threats to Validity

To construct the oracle we split the answers in two sets: declared maintainers

(score > 3) and declared non-maintainers (score ≤ 3). Although a score three may

represent an acceptable knowledge, we followed a more conservative criterion, only

classifying as declared maintainers the developers that informed a higher knowledge

on the files. A second threat relates to the fact that some developers might provide

unreliable answers. For example, developers might overestimate their scores aiming to

obtain personal credits. To minimize this threat, we informed in the beginning of the
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survey that the study has not a commercial purpose and we also avoid to send a large

number of questions to the developers. Finally, the study results are based on the data

extracted from 10 real-world systems. Therefore, our findings may not generalize to

other systems.

5.7 Conclusion

We summarize our major findings as follows:

1. When used without control for particular cases, DOA, Commit, and Blame have

similar performance, with the harmonic mean (HM ) of maintainers and non-

maintainers hit ratios ranging from 60% to 67%.

2. However, when controlling for file size and recency, the improvements on HM

are relevant. These improvements reach 95% (DOA), 41% (Commit), and 14%

(Blame).

3. After controlling for file size and recency, DOA presents the highest HM results

in five systems, followed by Commit (four systems) and Blame (two systems).

Practical Implications: In many contexts, project managers have to identify possible

maintainers for source code files. In this chapter, we investigated three techniques

for this purpose, based on data extracted from version control systems. As a first

practical implication, we showed that practitioners with interest in these techniques

should consider file size and recency information. As a second implication, we showed

that practitioners should use the DOA technique to identify maintainers, since it has

the best performance (after controlling for size/recency, closely followed by Commits).
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Conclusion

This chapter concludes this thesis by revisiting each question introduced in Chapter 1

and discussing our main contributions, then pointing directions for future research.

6.1 Contributions

This thesis explored, through a set of quantitative and qualitative studies, the use of

code authorship algorithms to understand the organization of system’s development

teams. Through the thesis we proposed new metrics, conducted empirical investi-

gations, and surveyed systems developers. This study was guided by the following

questions:

Q1. How is authorship organized and how does it evolve in software sys-

tems?

To address this question, in Chapter 2, we conducted a study where we investigated how

authorship measures evolve in Linux kernel development and after that we extended

the analysis to a dataset of 114 systems. We proposed a set of authorship-center

metrics and used them to investigate authorship characteristics of the Linux kernel

development, such as distribution of the number files per author, work specialization,

and co-authorship patterns. After, we contrasted the Linux results against the ones we

computed for the extended dataset. The main contributions of this study are: (i) an

in-depth investigation of authorship in a large, successful, and long-lived open-source

community, backed up by several authorship measures; (ii) a formal definition of several

authorship-centric concepts, such as authors and specialists/generalists, which others

may use as a common ground to study the social organization of software systems;

and (iii) the confirmation that the authorship patterns observed in the Linux are also

97
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followed by other popular open source systems.

Q2. Can code authorship metrics be used to estimate truck factors?

We addressed this question, in Chapter 3, by proposing a new approach to estimate

truck factors, based on code authorship to identify key developers. We applied this

approach to estimate the TF of 133 popular project systems and validated the results

by surveying important developers of these systems. In summary, our contributions

are: (i) a new approach for estimating truck factors, as well as empirical evidence on

the reliability of its results; (ii) a tool for estimating truck factors, which is publicly

available on GitHub;1 (iii) the estimation of the truck factor of 133 popular GitHub

systems, which shown that most systems have low TF (65% of the systems have a

TF ≤ 2); and (iv) a list of practices the developers see as most effective to deal with

the loss of key developers.

Q3. How common are truck factor events in open source projects?

To address this question, in Chapter 4, we extended the previous TF study (Chap-

ter 3), by investigating the occurrence of TF events in a large dataset composed of

1,932 open source systems. Our results showed that 16% of the projects faced at least

one TF event, and a significant portion (41% of these projects) were able to survive

the detected events. The main contributions of this study are: (i) a methodology to

identify TF events and surviving systems based on mining repository data; (ii) an

empirical confirmation that truck factor is not a theoretical concept, by identifying a

representative number of TF events in an open source dataset; and (iii) a list of moti-

vations, enablers, and barriers that developers face when helping open source projects

to overcome a TF event, collected by surveying these developers.

Q4. Can code authorship identify software maintainers?

To address this question, in Chapter 5, we selected three well-known authorship tech-

niques and compared their performance on identifying source code maintainers in 10

systems (2 commercial and 8 open source systems). To evaluate the techniques per-

formance we relied on an oracle built by surveying the systems’ developers. Our con-

tributions are: (i) an evaluation of the effectiveness of code authorship techniques on

suggesting code maintainers; (ii) an analysis of the limitations of the techniques which

provides insights on how to improve them by controlling code size and recency data;

and (iii) an oracle of code expertise with 1,209 pairs (developer, file), which can be

1https://github.com/aserg-ufmg/Truck-Factor
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used in other studies, since it is publicly available on GitHub.2

6.2 Discussion

In this section, we discuss and put our findings in perspective.

6.2.1 Code Authorship Applicability

Code authorship has been used to identify and recommend experts for parts of the

code [McDonald and Ackerman, 2000; Mockus and Herbsleb, 2002a; Minto and Mur-

phy, 2007; Begel et al., 2010], however its application to investigate how the work

force of a software system is organized and evolves was not explored before. In the

studies developed in this thesis, we showed that code authorship can be used to iden-

tify important characteristics of development teams, including potential risks, such as

knowledge concentration. Additionally, as code authorship is easily computed from

data available on source code repositories, the measures proposed in this thesis can be

used by supporting tools to monitor and control important properties and practices

in software development. For example, they can be used to identify the ability of an

open source system to attract not only minor contributors, but also key developers; to

check whether the criteria used to decompose a system in modules is indeed able to

foster the specialization of the work force, as usually expected from software modular-

ization [Parnas, 1972]; to check practices like collective ownership of the code base, as

commonly advocated by agile methodologies [Beck and Andres, 2004]; and to assess

the concentration of knowledge in few team members. In that direction, we developed

a prototype tool that provides, among other information, authorship measures about

popular systems on GitHub. This tool is publicly available at http://gittrends.io.

6.2.2 Truck Factor is a Real Risk in Open Sourve

Additionally to propose a new approach to estimate truck factors (Chapter 3), we also

investigate cases where truck factor events indeed occur (Chapter 4). By analyzing the

development history of a large set of open source projects we were able to identify a

significant number of TF events. We also showed that although some of these projects

were able to overcome the detected TF events, this is not the case for most of them.

These results show that TF events is really a risk. Specially, because many popular

projects have a small truck factor. Although we only investigated TF events in open

2https://github.com/gavelino/authorship-data
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source projects, we cannot discard the potential risks of TF events in commercial

projects, once developer turnover is also an issue in these systems [Zhou and Mockus,

2010; Rigby et al., 2016; Hilton and Begel, 2018].

Interestingly, by comparing the answers given by the developers in the two TF

studies (Chapters 3 and 4), we observed divergences among the project characteristics

cited as most relevant to attenuate the loss of TF developers. In the first study,

the developers mentioned documentation as the most important project characteristic,

while in the second study, the presence of a friendly and active community was the most

common answer. While technical factors are important and they are also mentioned

by the new TF developers, human factors may be more relevant when helping projects

to survive TF events. This divergence seems to indicate a discrepancy about what

is perceived as important and what is really important when helping projects to deal

with the loss of important developers.

6.3 Future Work

The authorship investigations conducted to address Q1, Q2, and Q3 used datasets

built with open source systems, collected from GitHub. Although we took care to

select a large sample of important and representative projects, our findings cannot

be generalized to other projects and particularly to closed-source projects. Therefore,

future research should investigate to which extent our results are applicable to such

systems. In special, they can investigate whether trends such as skewed distribution

of the number of files per authors, high number of specialists, and low Truck factor,

also happen in commercial systems. To facilitate replication, we publish our tools

and datasets on GitHub. They are available at https://github.com/gavelino/phd_

thesis.

Among the answers we received when addressing Q2 and Q3, there are sug-

gestions on how improving our metrics. Future research can introduce and evaluate

these improvements suggested by the surveyed developers. As an example, to con-

sider the relative importance of the code units (e.g., by counting the number of other

code units that depend on them) in the estimation of truck factors. Additionally, the

study conducted to address Q4 pointed improvements opportunities on code author-

ship techniques, by controlling data about file size and recency of the changes. These

improvements can provide more accurate code maintainers suggestions and also can

help to improve the results proposed in this work, including TF estimations.

When addressing Q3, we focused our analysis on the surviving projects, by sur-
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veying the developers that helped their projects to survive the TF events. Future work

can investigate the non-surviving projects looking for reasons why they were not able

to survive.

Finally, another line of future work is the design, implementation, and evaluation

of tools to assess the risks faced by an open source project, in case it is abandoned

by its TF developers. For example, to inform which part of the project will become

unmaintained in such cases. This assessment is particularly important to the users of

such projects. We also see space to investigate recommenders of TF developers for a

system, based for example on their own usage of the projects.
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