
AN ALGEBRAIC FRAMEWORK FOR

QUANTITATIVE INFORMATION FLOW

ARTHUR AMÉRICO PASSOS DE REZENDE

AN ALGEBRAIC FRAMEWORK FOR

QUANTITATIVE INFORMATION FLOW

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Mário S. Alvim
Coorientador: Annabelle McIver

Belo Horizonte

Julho de 2018

ARTHUR AMÉRICO PASSOS DE REZENDE

AN ALGEBRAIC FRAMEWORK FOR

QUANTITATIVE INFORMATION FLOW

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Mário S. Alvim
Co-Advisor: Annabelle McIver

Belo Horizonte

July 2018

© 2018, Arthur Américo Passos de Rezende

 Todos os direitos reservados

Ficha catalográfica elaborada pela Biblioteca do ICEx - UFMG

Rezende, Arthur Américo Passos de

R467a An algebraic framework for quantitative information
 flow / Arthur Américo Passos de Rezende — Belo
 Horizonte, 2018.
 xxi, 104 f.: il.; 29 cm.

 Dissertação (mestrado) - Universidade Federal
 de Minas Gerais – Departamento de Ciência da
 Computação.

 Orientador: Mário Sérgio Ferreira Alvim Júnior.
 Coorientadora: Annabelle McIver

 1. Computação – Teses. 2. Teoria da informação.
 3. Redes de informação - Controle de acesso.
 I. Orientador. II. Coorientadora. III. Título.

CDU 519.6*44(043)

Acknowledgments

First of all, I would like to thank Professor Mário Sérgio Alvim. I had the honour to be
the first graduate student he advised, and he did an exceptional job. Mário is the most
hard-working academic I have ever met, always trying to do his best in all the different
activities that his position consists of. His passion for research is contaminating, and his
dedication to being the best teacher possible is truly inspiring. The career and personal
advise I received from him are invaluable, and he is a professional I will always look
up to as a model in my career.

I would also like to thank Professor Annabelle McIver, who, despite the distance,
was present at every step during my degree. Annabelle is a brilliant and creative
researcher, and a very kind person. Working with her during these last two years
was an extremely rewarding experience. Having her as an advisor was a privilege,
and a fundamental piece in my growth as a researcher. I cannot express how much I
appreciate all the time and effort she put into my academic formation.

I would like to express my deep appreciation to Professors Gabriel Coutinho,
Vinícius Fernandes dos Santos and Carlos Olarte for dedicating part of their time to
read this thesis. Their observations were extremely helpful, greatly improving the
quality of this work and prompting illuminating discussions about its content, which
might lead to many interesting new research topics.

I am grateful for all the friends I have made in the Computer Science Department,
especially for all the members of the INSCRYPT lab. I am particularly grateful for
the help I received from my friends Artur Vaz, with whom I published a paper and
had great conversations about my research topics; Thiago Vieira, who has been a great
colleague to talk about the most diverse subjects in Quantitative Information Flow;
and Guilherme Gomes, who was the first to suggest I should undertake a master’s
degree in Computer Science, and who helped me with my first steps in the field.

Many thanks to Dr. Catuscia Palamidessi and Dr. Kostas Chatzikokolakis for
the amazing time I had during my internship at INRIA. Working with such brilliant
and passionate researchers was an amazingly enriching experience, and I am very glad

ix

for having met some great people whose friendships I hope to cultivate. I would also
like to thank INRIA for the financial support I received during my stay.

I am extremely fortunate to have a considerable number of really good friends.
I dare not try to mention them all, for fearing to forget someone (and consequently
ending up having fewer really good friends). I would like them to know how much I
appreciate their friendship, and their always being there, supporting me through the
hard parts of life and celebrating with me the good bits. Know that I will always be
there to return the favour.

I would like to thank my girlfriend Cassi for all her love and support. Thank you
for being a constant source of happiness and companionship. I can only hope to make
as much a positive impact on your life as you do in mine.

I am very grateful for my family; they are the most precious thing I have, and
from them I learned the most important values that guide my life. Special thanks are
due to my aunts Tê and Du and to my cousins Ana Flávia, Fernanda, Isabela and
Guilherme. There are no words that can describe how lucky I am to have you in my
life.

I would particularly like to thank my parents for their unwavering love, support
and dedication, and for all the sacrifices they have made to guarantee I would always
have access to the best education possible. They are the most important people in my
life, and anything I have achieved or will ever achieve is largely due to them.

Finally, I am grateful to all Brazilian citizens, who paid for my academic education
since my undergraduate degree; including the financial support I received from CAPES
during my master’s course.

x

Abstract

The field of quantitative information flow (QIF) is concerned with measuring and
controlling information leakage in computational systems. The traditional approach
to QIF models systems as monolithic information-theoretic channels. Many real-world
systems, however, consist of a collection of interacting parts and are better represented
by an assemblage of channels.

In this thesis, we investigate the information leakage properties of channel com-
positions with regards to the recently developed g-leakage framework. We study five
different types of compositions, each capturing a typical way in which parts interact in
real-world systems. For each type, we derive equivalences and bounds that relate their
information leakage to that of their components. We also establish whether monotonic-
ity holds, i.e., whether a component can always be substituted with a more secure one
without compromising the security of the system as a whole. Perhaps surprisingly, our
results prove that monotonicity does not always hold.

Furthermore, we establish and compile a number of algebraic properties, and
model two well-known security protocols in the literature, the Dining Cryptographers
and the Crowds protocols. Our results yield simple algorithms to model their respective
channels and, for the latter, one that is faster than the state-of-the-art algorithms in
the literature.

Palavras-chave: Quantitative Information Flow, Channel Composition, Information
Leakage, g-leakage.

xi

Resumo

O campo de fluxo de informação quantitativo (QIF) se interessa em medir e contro-
lar vazamentos de informação em sistemas computacionais. A abordagem tradicional
em QIF modela sistemas como canais de teoria de informação indivisíveis. Contudo,
muitos sistemas reais consistem em várias partes que interagem entre si, sendo melhor
representados por uma coleção de canais.

Nessa dissertação, investigamos as propriedades de vazamento de informação de
composições de canais com respeito ao recentemente proposto arcabouço de g-leakage.
Nós estudamos cinco tipos de composições que capturam maneiras típicas com que
partes interagem em sistemas reais. Para cada tipo, nós derivamos equivalências e
limites que relacionam o seu vazamento de informação com a de seus componentes. Nós
também estabelecemos se eles respeitam monotonicidade, isso é, se um componente
sempre pode ser substituído por um mais seguro sem comprometer a segurança do
sistema como um todo. Talvez surpreendentemente, nossos resultados provam que esse
nem sempre é o caso

Além disso, nós estabelecemos e compilamos algumas propriedades algébricas, e
modelamos dois famosos protocolos da literatura, o Dining Cryptographers e o Crowds.
Nossos resultados possibilitam algoritmos simples para o cálculo de seus canais e, para
o segundo protocolo, um algoritmo mais rápido do que aqueles do estado da arte na
literatura.

Palavras-chave: Fluxo de Informação Quantitativo, Composição de Canais, Vaza-
mento de Informação, g-leakage.

xiii

List of Figures

1.1 Schematic representation of the Dining Cryptographers protocol as: (i) a
monolithic channel (top); (ii) a composition of two channels (middle); and
(ii) a composition of eight channels (bottom). 6

xv

List of Tables

2.1 A channel represented as a matrix. 15
2.2 The joint probability distribution induced by π = (1/2, 1/3, 1/6) and channel

C of Table 2.1. 16
2.3 The posterior distributions calculated from the joint distribution p in table

2.2. 16
2.4 The hyper-distribution [π 〉C], where π = (1/2, 1/3, 1/6) and C is the channel

given in Table 2.1. The outer distribution is depicted in the first line, and
the inner distributions on the columns. 17

3.1 Summary of the distributivity rules. The lines represent the operator being
distributed, and the columns the operators upon which the distributivity
is acted. For instance, ‖ distributes over p⊕ with equality, and A4
distributes over ‖ with anti-refinement. 39

3.2 Channel representing toss of coin Coin i. 42
3.3 Channels Dining1, in which p1 = p2 = p3 = 0.5; Dining2, in which p1 =

p2 = p3 = 0.7, and Dining3, in which p1 = 0.6, p2 = 0.7 and p3 = 0.8. . . . 43

xvii

Contents

Acknowledgments ix

Abstract xi

Resumo xiii

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Quantitative Information Flow . 2
1.2 Thesis objective: g-leakage properties of channel compositions 3

1.2.1 Specific objectives . 4
1.3 A motivating example: the Dining Cryptographers protocol 5
1.4 Contributions . 7
1.5 Related work . 7
1.6 Thesis roadmap . 8

2 Preliminaries and Literature Review 9
2.1 Secrets, knowledge and information . 9

2.1.1 Shannon entropy . 10
2.1.2 Guessing entropy . 10
2.1.3 Bayes vulnerability . 11
2.1.4 g-vulnerability . 12

2.2 Systems and information leakage . 14
2.2.1 Systems as information-theoretic channels 14
2.2.2 Knowledge updating and hyper-distributions 15
2.2.3 Posterior information measures and information leakage 17

xix

2.3 Channel ordering and equivalence . 21
2.3.1 Abstract channels and reduced matrices 21
2.3.2 Cascading and leakage ordering 23

2.4 Expressiveness of the g-leakage framework 24

3 Operators and their Algebraic Properties 27
3.1 Introducing the operators . 27

3.1.1 Parallel composition operator (‖). 28
3.1.2 Visible choice operator (p ·t). 29
3.1.3 Hidden choice operator (p⊕). 29
3.1.4 Visible if-then-else operator (A4) 31
3.1.5 Hidden if-then-else operator (A4+) 32

3.2 Algebraic properties of operators . 33
3.2.1 Commutativity, associativity and idempotency 34
3.2.2 Null and transparent channels 35
3.2.3 Distributive properties . 37
3.2.4 Properties regarding cascading 39

3.3 The Dining Cryptographers protocol (cont.) 41

4 Leakage Properties 45
4.1 The problem of compositional vulnerability 45

4.1.1 Compositional vulnerability for the parallel operator 45
4.1.2 Compositional vulnerability for visible choice 47
4.1.3 Compositional vulnerability for hidden choice 48
4.1.4 Channel and vulnerability restrictions 50
4.1.5 Compositional vulnerability for visible if-then-else 52
4.1.6 Compositional vulnerability for hidden if-then-else 53

4.2 The problem of relative monotonicity 55
4.2.1 Relative monotonicity for the parallel operator 56
4.2.2 Relative monotonicity for visible choice 59
4.2.3 Relative monotonicity for hidden choice 60
4.2.4 Relative monotonicity for visible if-then-else 62
4.2.5 Relative monotonicity for hidden if-then-else 63

5 Case Study: the Crowds protocol 65
5.1 Description of the protocol . 65
5.2 Modelling the protocol . 66

xx

6 Conclusion 73

Bibliography 75

Appendix A Proofs of Chapter 3 77
A.1 Commutativity, associativity and idempotency 77
A.2 Null and transparent channels . 83
A.3 Distributive properties . 87
A.4 Properties regarding cascading . 100

xxi

Chapter 1

Introduction

The last few decades have witnessed an astonishing rise in the use of technology in
day-to-day life. Having constant access to the Internet through all sort of devices is
now a constant motif in the routine of a great number of people, and the results of this
constant flow of information have changed almost all aspects of our civilization.

Being it inconceivable that society will ever abandon all the conveniences and
practicalities provided by this new technological arrangement, one of the most pressing
concerns of our age is understanding the various hazards within the technology we use
on a daily basis and devising ways to either prevent or remedy them.

One such hazard regards individual security and privacy, which can be put in peril
by our partaking in diverse online activities, from the seemingly harmless data collec-
tion in social media for advertisement purposes to the more evident risks associated
with Internet banking and e-commerce. Therefore, a solid framework for assessing the
security liabilities of such systems is paramount for the safety and general well-being
of our ever connected society.

In this thesis, we investigate aspects of foundational and practical interest to
the field of Quantitative Information Flow (QIF). A central focus of recent research
in QIF has been to establish a robust framework to quantify sensitive information
leakage in computational systems, enabling us to properly assess security risks in real-
life scenarios. The traditional approach to QIF, however, models systems as monolithic
blocks represented as information-theoretic channels. This approach overlooks the fact
that most realistic systems are the composition of many interacting parts. In this thesis
we focus on extending the QIF framework to facilitate the analysis of large or complex
systems that can be described as compositions of smaller components.

1

2 Chapter 1. Introduction

1.1 Quantitative Information Flow

Protecting sensitive information from unintended disclosure is a crucial research topic
in computational security. Intuitively, it may seem that we should always aim at com-
pletely eradicating any leakage of sensitive information in our systems. This stance,
however, can be so restrictive in practice as to render many desirable system function-
alities impossible to be implemented, and we must face the fact that some information
leakage is often inevitable. An execution of a password checker, for example, will al-
ways leak some information about the secret password kept by the system, as it will
be always revealed whether or not the user’s input was the correct password.

We rely on systems such as password checkers not because they are leakage-free,
but because we intuitively understand that the amount of information they reveal is
acceptably small. It follows from this intuition, therefore, the need to develop a mathe-
matical framework within which we can not only identify the occurrence of information
leakage but also quantify it. The field of Quantitative Information Flow (QIF) takes
interest in studying how much information systems leak, and in developing techniques
to prevent those leaks.

Being mainly interested in quantifying information, many of the foundational
aspects of QIF are based on Information Theory, and a number of information-theoretic
frameworks have been successfully used to model security systems. These models
usually describe the secret or sensitive information in question as a secret input (or
simply secret) which is fed to the system. This input can be a number of different
things, including passwords, users’ identities or locations. The value of this secret is
object to the ambition of an adversary, an external observer who wishes to obtain
information about the secret input value. We model the knowledge that the adversary
has about the secret by a probability distribution over the possible values that the
secret can take. In particular, before the first execution of the system, the adversary
is assumed to have some prior knowledge about the secret, which we model by a
prior distribution. For example, if the adversary knows the secret to be defined by
a randomly generated string, his prior knowledge can be represented by a uniform
probability distribution on the set of all randomly generated strings.

The secret value can interfere with the system’s behaviour that is visible to the
adversary (such as execution time, dissipated heat, or the value of a public variable),
who might improve his knowledge of the secret value by factoring in the information
obtained by observing the system. We model the system as an information-theoretic
channel, which is a simple yet useful model that abstracts away any specificities of the
systems not linked to information leakage. This channel reflects the probability that an

1.2. Thesis objective: g-leakage properties of channel compositions 3

execution of the system will yield a certain public output given a secret value. When-
ever the system is run and produces a public output, we are able to use the channel
to model the new state of knowledge of the adversary, which is another probability
distribution obtained from the prior distribution via Bayesian updating. We call the
updated distribution a posterior distribution.

In order to quantify how much information the adversary currently possesses we
need to use an information measure, which is a function that maps probability distri-
butions to real numbers. This function yields how much information each probability
distribution contains, enabling us to assess how vulnerable the secret is at the current
state of knowledge of the adversary. We then take the value yielded by the prior distri-
bution under this measure as the prior vulnerability of the secret, and average the value
of this function over all possible posterior distributions — one for each output — to
obtain the posterior vulnerability of the secret after the run of a system. By comparing
the posterior and prior vulnerabilities, we are able to assess by how much the system
increases the vulnerability of the secret, and therefore acquire a better understanding
of its security properties.

Far from being trivial, the choice of information measure is the subject of ongoing
discussion in the literature, some of which we give a brief overview in Chapter 2.
Recently, Alvim et al. [2012] proposed the g-leakage framework, which was shown by
Alvim et al. [2016] to generalize any reasonable information measure (i.e., that satisfies
some intuitive information-theoretic properties). Having this versatile characteristic of
the g-leakage framework in mind, we concentrate our investigations in this thesis on
this framework.

1.2 Thesis objective: g-leakage properties of

channel compositions

Having been proposed only in 2012, it is not surprising that there is much foundational
work to be done regarding the g-leakage framework and its properties. One aspect of
this framework in which more in-depth studies have only recently begun is its behaviour
regarding channel compositions [Kawamoto et al., 2017; Engelhardt, 2017; Alvim et al.,
2018]. A channel composition is a combination of two or more channels that can be itself
regarded as a channel. The study of the g-leakage properties of channel compositions
is paramount for future applications of the framework as it enables, on a number of
occasions, a simpler or faster approach to either modelling a system as a channel or
studying the leakage properties of a given channel.

4 Chapter 1. Introduction

There are at least two clear problems in QIF that would benefit from research on
channel compositions. The first one concerns the very task of modelling real-life systems
as information-theoretic channels. Despite channels being relatively simple objects,
obtaining a correct model can be a challenge in itself, and numerous tools have been
used for that end, such as probabilistic model checking [Chatzikokolakis et al., 2008;
Kawamoto et al., 2017; Américo et al., 2017] and reachability analysis of probabilistic
automata [Andrés et al., 2010]. In many cases, the system of interest can be naturally
described as a composition of simpler or smaller parts, and its modelling can benefit
greatly by a well-established framework that contemplates channel compositions.

A second problem that can benefit from our investigations emerges when the
channel itself is very large — i.e., with a large number of possible secret values and
producible behaviours. In such situations, a direct calculation of the leakage properties
of a channel might be computationally infeasible. A compositional approach, however,
can sometimes circumvent this issue, allowing us to infer some of the larger channel
g-leakage properties in terms of that of its components.

Concisely, we can define the main objective of this thesis as follows.

Main objective: Study the g-leakage properties of channel compositions, and estab-
lish results regarding how they are related to the g-leakage properties of their compo-
nents.

1.2.1 Specific objectives

In this section, we present two specific objectives of this thesis. The first and more
straightforward one is to find a way to determine how much information a composition
of channels leaks solely by evaluating its components.

First specific objective: Vulnerabilities of channel compositions Given two chan-
nels and their composition,

1. Can we establish how much information the composition leaks by examining how
much each channel leaks individually?

2. Failing that, can we at least establish upper and lower bounds to the leakage of
the composition in terms of the leakage of their components?

Our second specific objective is based on a question of practical interest: given a
composition of channels, are we able to substitute one channel for a safer one without
compromising the security of the composition?

1.3. A motivating example: the Dining Cryptographers protocol 5

More formally, we can state this goal as follows.

Second specific objective: relative monotonicity of compositions Consider two
channels C1 and C2 such that the information leakage of C1 is never greater than the
information leakage of C2.

1. Given a third channel C, is the information leakage of the composition of C1 and
C less than or equal to that of the composition of C2 and C? In other words, is
it possible to ensure that the overall leakage of a system does not increase if we
decrease the leakage of its individual components?

2. Conversely, for two channels C1, C2, if the composition of C1 and C does not leak
more information than the composition of C2 and C for any channel C, can we
deduce that C1 does not leak more information than C2?

1.3 A motivating example: the Dining

Cryptographers protocol

The compositional approach we present in this thesis seems particularly natural for
modelling security protocols, which often involve interactions among various entities.
In this section, we give an idea of how our framework can be applied to model the
well-known Dining Cryptographers anonymity protocol, proposed by Chaum [1988].

The protocol is usually explained in the following way. A group of n cryptogra-
phers has been invited for dinner by the NSA (American National Security Agency),
who will either pay the bill, or secretly ask one of the cryptographers to be the payer.
The cryptographers want to determine whether one among them is the payer, or
whether the NSA is, but maintaining the payer identity unrevealed in the former case.
For that, they execute the following protocol. Sitting on a round table, each cryptog-
rapher tosses a coin and privately shares the result only with the cryptographer to his
right. Therefore, each cryptographer knows the result of two tosses, his own and that
of the participant to his left.

After tossing his coin and sharing his result, each cryptographer makes a public
announcement based on the coins he observed. If the cryptographer is not paying the
bill, he announces 0 if the two coins he saw landed on the same face, or 1 if they
disagreed. If he was asked to be the payer, however, he will invert the announcement,
saying 1 if the coins agreed with each other and 0 if they did not.

6 Chapter 1. Introduction

Representing a coin toss that landed on heads by 1 and one that landed on tails by
0, a non-paying cryptographer is simply outputting the exclusive-or of the two results
he had access to. Let us first analyse what happens whenever the NSA is paying the
bill. In this case, if we take the exclusive-or of all cryptographers’ outputs, it will be the
same as taking the exclusive-or of all coins twice, as each coin is shared between two
participants. Therefore, whenever the NSA is sponsoring the dinner, the exclusive-or
of the outputs shall be 0 — or in other words, their sum is even.

If one of the cryptographers is paying, however, the sum of all announcements
will be either increased or decreased by one. Thus, by undertaking this protocol, the
cryptographers can infer that the NSA is paying for the dinner if, and only if, the sum
off all their announcements is even. Chaum [1988] showed that, if all coins are fair,
no information is leaked about who the paying cryptographer is — i.e., neither the
non-paying cryptographers, nor any external observer obtains any information about
the payer’s identity, if it is not the NSA.

Figure 1.1. Schematic representation of the Dining Cryptographers protocol as:
(i) a monolithic channel (top); (ii) a composition of two channels (middle); and
(ii) a composition of eight channels (bottom).

Despite the Dining Cryptographers relative simplicity, deriving its channel can be
a challenging task. Since each of the n cryptographers can announce either 0 or 1, the
size of the output set and, consequently, of the channel, increases exponentially with
the number of cryptographers. The problem is worsened by the fact that computing
the probabilities constituting the entries of the channel is not trivial. The algebra we
introduce in this thesis allows for an intuitive and compositional way of building a
channel for a protocol from each of its components.

1.4. Contributions 7

To illustrate the concept, Figure 1.3 depicts three alternative representations,
using channels, for the Dining Cryptographers with 4 cryptographers and 4 coins. In
all models, the input is the identity of the payer (one of the cryptographers or the NSA),
and the output are the public announcements of all cryptographers. The top model
uses a single (enormous) channel to represent the protocol; the middle one models the
protocol as the interaction between two smaller components (the coins and the party
of cryptographers); the bottom one uses interactions between even smaller channels
(one for each coin and each cryptographer).

We will return to this example in Section 3.3, after introducing our operators, to
give an explicit modelling of this protocol.

1.4 Contributions

The main contributions of this thesis are the following:

1. A compilation of algebraic and information-theoretic properties of operators that
represent compositions of channels based on interactions common to real-life sys-
tems. Namely, we investigate the parallel, visible choice, hidden choice, visible
if-then-else and hidden if-then-else operators;

2. An investigation of the algebraic properties of these operators, the results of
which are compiled in Section 3.2 . These properties can prove to be helpful
tools when studying models described by several channel compositions;

3. Results that address both specific objectives discussed in Section 1.2.1 for each
type of channel composition;

4. The modelling of two anonymity protocols well-known in the literature, the
Crowds [Reiter and Rubin, 1998] and the Dining Cryptographers [Chaum, 1988].
In particular, we derive an algorithm faster than those in the literature to derive
a channel for the latter.

1.5 Related work

Compositionality is a fundamental notion in computer science, being a natural way
of inductively building data structures and the basis of many “divide and conquer”
algorithms. The development of compositional frameworks for security systems has
been subject of growing interest in the QIF community during the past decade.

8 Chapter 1. Introduction

Espinoza and Smith [2013] derived a number of min-capacity bounds for different
channel compositions, including cascading and parallel composition.

However, it was not until recently that compositionality results regarding the
more general g-leakage information measure started to be explored. Kawamoto et al.
[2017] defined a generalization of the parallel operator for channels with different input
sets, and gave upper bounds for their corresponding information leakage. Our bound
for compatible channels (Theorem 4.2) are tighter than theirs.

Recently, Engelhardt [2017] defined the mix operator, another generalization of
parallel composition, and derived results similar to ours regarding the parallel opera-
tor. Specifically, he provided commutative and associative properties (Equations (3.1)
and (3.6)), and from his results the lower bound of Theorem 4.1 can be inferred. He
also proved properties similar to Equations (3.16) and (3.19), albeit using more restric-
tive definitions of null and transparent channels. Both Kawamoto et al. [2017] and
Engelhardt [2017] provided results similar to Corollary 4.18.

Just recently, Alvim et al. [2018] investigated some algebraic properties of hidden
and visible choice operators in the context of game-theoretic aspects of QIF, and derived
Theorems 4.3 and 4.5.

1.6 Thesis roadmap

After this introduction, we present some preliminaries on QIF and the g-leakage frame-
work in Chapter 2. Chapter 3 introduces the different types of compositions we inves-
tigate in this thesis, and a list of their algebraic properties.

The results regarding the two specific objectives defined in Section 1.2.1 are de-
tailed in Chapter 4, and are followed by the case studies regarding the Crowds and
the Dining Cryptographers protocols in Chapter 5. Finally, Chapter 6 concludes the
thesis.

Chapter 2

Preliminaries and Literature Review

In this chapter, we introduce some important results in the literature regarding the
g-leakage framework and QIF in general.

2.1 Secrets, knowledge and information

The most basic notion when reasoning about computer security is that of a secret.
A secret is some sensitive information that should not be disclosed, such as a user’s
identity, social security number or current location. The set of secret values X is the
set of all possible values the secret can take. We assume X is nonempty and finite.

In the QIF framework, it is assumed the existence of an adversary that is inter-
ested in obtaining some information regarding the value of the secret. We model the
adversary’s knowledge or state of knowledge about the secret as a probability distribu-
tion π ∈ DX , where DX is defined as follows.

Definition 2.1. Let A be a nonempty and finite set. We define DA as the set of all
probability distributions over A.

Given π ∈ DA, the support of π is the set dπe = {a ∈ A | π(a) > 0}.

For example, suppose the secret is a four bit string produced at random. An
appropriate choice of the set of secret values would be the set X = {0, 1}4, while the
probability distribution which best represents the knowledge of the adversary is the
uniform distribution πu ∈ DX , given by πu(x) = 1/|X | for all x ∈ X .

Given a state of knowledge π ∈ DX , we wish to assess how much information
the adversary has about the aspects of the secret he is interested in. This is done by a
suitable information-theoretic measure.

9

10 Chapter 2. Preliminaries and Literature Review

Definition 2.2. An information-theoretic measure, or simply information measure, is
a function φ : DX → R.

Needless to say, not all functions DX → R constitute a reasonable choice for
an information-theoretic measure. A necessary, though not sufficient, condition for an
information-theoretic measure to be reasonable is to be either a vulnerability measure
or an uncertainty measure.

Definition 2.3. A vulnerability measure is an information-theoretic measure φ such
that φ(π1) > φ(π2) if, and only if, the adversary possesses more information about the
secret with knowledge π1 than with knowledge π2.

Definition 2.4. An uncertainty measure is an information-theoretic measure φ such
that φ(π1) > φ(π2) if, and only if, the adversary possesses more information about the
secret with knowledge π2 than with knowledge π1.

We may use the terms vulnerability and uncertainty instead of vulnerability mea-
sure and uncertainty measure, respectively.

Far from being trivial, the choice of which information measure to use has been
subject of much discussion on the literature. We present a brief description of the most
common choices in QIF.

2.1.1 Shannon entropy

The first information measure used in QIF was Shannon entropy [Shannon, 1948],
which is largely used in Information Theory.

The Shannon entropy of a distribution π ∈ DX represents, loosely speaking, the
minimum average amount of Boolean questions (i.e., questions of the form “is the secret
an element of subset X ′ ⊂ X ?”) an adversary with knowledge π would need to identify
the secret value. Hence, it is an uncertainty measure.

Definition 2.5. Given a nonempty and finite set X , the Shannon entropy is the func-
tion H : DX → R defined as

H(π) = −
∑
x∈X

π(x) log2(π(x)).

2.1.2 Guessing entropy

Guessing entropy, first proposed by Massey [1994], is also an uncertainty measure. It
measures the expected number of tries an adversary, using an optimal strategy, would

2.1. Secrets, knowledge and information 11

need to correctly guess the secret by only asking questions of the type “is the secret
value x?”.

Definition 2.6. Given a nonempty and finite set X , the guessing entropy is the func-
tion G : DX → R defined as

G(π) =

|X |∑
i=1

iπ(xi),

where {xi}i∈{1,...,|X |} is an indexing of X such that i < j =⇒ π(xi) ≥ π(xj).

2.1.3 Bayes vulnerability

It was noted by Smith [2009] that both Shannon entropy and guessing entropy are not
appropriate to model scenarios in which the adversary has only one shot at guessing
the secret correctly.

For example, suppose X = {x1, x2, x3, ..., x9}, and consider two probability dis-
tributions π1, π2 ∈ DX , given by

π1(xi) =

1/2, if i = 1,

1/16, otherwise.
π2(xi) =

1/4, if i ≤ 4,

0, otherwise.

If the adversary is interested in guessing the secret value correctly in one try, π1

should represent a state of knowledge containing more information than π2, since the
odds of getting the result correct on the first case are 50%, while being only 25% on
the latter. However, Shannon entropy yields

H(π1) =
1

2
+ 8× 4× 1

16
=

5

2
, H(π2) = 4× 2× 1

4
= 2,

while guessing entropy gives us

G(π1) =
1

2
+

8(9 + 2)

2
× 1

16
=

13

4
, G(π2) =

4(1 + 5)

2
× 1

4
= 3.

Being uncertainty measures, both Shannon and Guessing entropies therefore deem
that the adversary is better served with knowledge π2 than π1.

To address this issue, Smith suggested the use of Bayes vulnerability as an infor-
mation measure.

12 Chapter 2. Preliminaries and Literature Review

Definition 2.7. Given a nonempty and finite set X , the Bayes vulnerability is the
function V : DX → R defined as,

V (π) = max
x∈X

π(x).

As its name suggests, the Bayes vulnerability is a vulnerability measure. Its value
reflects simply the probability the adversary has of guessing the secret correctly in one
try, if he picks a best guess according to his knowledge.

2.1.4 g-vulnerability

We now define g-vulnerability, the information measure used on the g-leakage frame-
work, and the one we will focus on the rest of this thesis.

Implicit in the definition of Bayes Vulnerability is the assumption that the only
interest of the adversary is obtaining the secret value exactly, and in one try. However,
there are several situations in which this assumption is inaccurate, as the adversary
may be satisfied by learning the secret value only partially, or after several guesses. For
example, an adversary can benefit from knowing the neighbourhood of a user, despite
his complete address being out of reach; and any intruder would not be unhappy by
managing to invade a system only after guessing the pass-code in his third try.

To model the above scenarios, and many others, Alvim et al. [2012] introduced
the g-leakage framework. This framework proposed a vulnerability measure that is
predicated in a gain function g.

Definition 2.8. LetW and X be finite, nonempty sets. A gain function g is a function
of type g : W ×X → [0, 1]. Given a finite, nonempty set X , we define GX as the set
of all gain functions over X , i.e.

GX = {g | g :W ×X → [0, 1], where W ⊂ N is nonempty and finite}.

We restrict the choice of W to a finite subset of natural numbers because GX
would not be a well-defined set otherwise. As the names of the actions themselves
are not relevant, this does not affect our framework. A similar approach is taken in
Definition 2.15, for the same reason.

The set W is called the set of actions the adversary can take, and g(w, x) rep-
resents the gain the adversary obtain by taking action w ∈ W when the secret value
is x ∈ X . Unless otherwise stated, we use W to refer to the action set of the gain
function relevant to the context.

2.1. Secrets, knowledge and information 13

Given a probability distribution π ∈ DX and a gain function g ∈ GX , we define
the g-vulnerability of π as the adversary’s largest expected gain among all actions.

Definition 2.9. Given a nonempty and finite set X and a gain function g ∈ GX ,
g-vulnerability is a function Vg : DX → R defined as, for all π ∈ DX ,

Vg(π) = max
w∈W

∑
x∈X

π(x)g(w, x).

2.1.4.1 Some examples of gain-functions

As an illustration of the versatility of the g-leakage framework, we briefly present some
interesting examples of gain functions studied by Alvim et al. [2012].

Definition 2.10. The identity gain function gid ∈ GX is a function gid : X×X → [0, 1]

defined as, for all x, x′ ∈ X ,

gid(x, x′) =

1 if x = x′,

0 otherwise.

This gain function makes g-vulnerability coincide with Bayes vulnerability, since

Vgid(π) = max
x′∈X

∑
x∈X

π(x)gid(x
′, x) = max

x∈X
π(x) = V (π).

Therefore, g-vulnerability can be seen as a generalization of Bayes vulnerability.

Definition 2.11. A gain function g ∈ GX is said to be a pertinence gain function if
it is a function g :W ×X → [0, 1], where W ⊂ 2X and, for all W ∈ W, x ∈ X ,

g(W,x) =

1 if x ∈ W,

0 otherwise.

This family of gain functions is extremely useful whenever the adversary obtains
a significant gain by inferring the secret value to be a member of one subset of X .

Two more specific types of pertinence gain functions of practical use are partition
gain functions and k-tries gain functions.

Definition 2.12. A pertinence gain function g : W × X → [0, 1] is a partition gain
function if W is a partition of X .

14 Chapter 2. Preliminaries and Literature Review

A partition gain function models the scenario when the adversary obtains maxi-
mum gain by correctly identifying to which of the subsets ofW the secret value belongs.
It can be useful in a number of situations, for example when the sole objective of the
adversary is knowing only the first few bits of a secret, or the last numbers of a user’s
credit card. Note that the identity gain function is a partition gain function whose
action set is W = {{x} | x ∈ X}.

Definition 2.13. A pertinence gain function g : W × X → [0, 1] is a k-tries gain
function if W = {W ∈ 2X | |W | ≤ k}.

As hinted by its name, k-tries gain function are useful for modelling scenarios
in which the adversary can make up to k guesses, being rewarded whenever one of
his guesses is correct; a common occurrence, for example, in ATM machines, online
banking and email providers.

2.2 Systems and information leakage

2.2.1 Systems as information-theoretic channels

Beside secrets, another fundamental notion in QIF is that of computational systems
(or simply systems), which can be a variety of things, such as security protocols or
computer programs. In the QIF framework, a computational system processes a secret
and produces a behaviour observable to the adversary. We define the output set of the
system as the set Y of all the different producible behaviours of the system visible to
the adversary. Those behaviours can be, for example, running time, a message printed
on the screen, or the value assigned to a public variable.

In our framework, we model a system as an information-theoretic channel, or
channel for short. This representation preserves the information-theoretic properties
of the system, while abstracting away its irrelevant technicalities.

Definition 2.14. Let X , Y be finite and nonempty sets. An information-theoretic
channel is a function C : X × Y → [0, 1], such that ∀x ∈ X ,

∑
y∈Y C(x, y) = 1.

The sets X and Y are referred to as, respectively, the input and output sets of
channel C.

A system with input set X and output set Y can be modelled as a channel
C : X ×Y → [0, 1] in which C(x, y) is the conditional probability that the system will
produce behaviour y ∈ Y given that x ∈ X is the secret input value. The restriction

2.2. Systems and information leakage 15

∑
y∈Y C(x, y) = 1 guarantees that, for each x ∈ X , the values of C(x, y) are indeed a

probability distribution over Y .
It is sometimes useful to represent channels as matrices, associating a line with

each input value and a column with each output value. For example, Table 2.1. rep-
resents a channel C : X × Y → [0, 1], where X = {x1, x2, x3} and Y = {y1, y2, y3, y4}.
By examining it we can infer that, for example, C(x2, y3) = 1/4 and C(x3, y1) = 1.

C y1 y2 y3 y4

x1
1/2 1/4 1/8 1/8

x2
1/4 1/2 1/4 0

x3 1 0 0 0

Table 2.1. A channel represented as a matrix.

Definition 2.15. Let X , Y be finite and nonempty sets. We define CYX as the set of
all channels that have X as input set and Y as output set, and CX as the set of all
channels that have X as input set. That is,

CYX = {C |C:X × Y → [0, 1] and C is a channel},

CX = {C |C:X × Y → [0, 1] for some nonempty finite set Y⊂N, and C is a channel}.

For the sake of brevity, when no confusion arises, we may say “let C ∈ CYX ” as a
shorthand for “let X , Y be finite and nonempty sets, and C ∈ CYX ” or, when the input
set is already defined, for “let Y be a finite and nonempty set and C ∈ CYX ”.

2.2.2 Knowledge updating and hyper-distributions

We assume that the adversary knows the channel corresponding to the system, i.e. he
knows the conditional probability of each output value given each secret value. This
pessimistic assumption gives a strong guarantee on the amount of information leaked
by the system, and is in line with Kerckhoffs’s principle, stated by Kerckhoffs [1883]
in the context of cryptography systems. According to this principle, a (cryptographic)
system should be secure even if the adversary knows everything about the system, but
the secret key. This approach is opposed to the idea of guaranteeing security through
obscurity, in which one relies in the fact that the adversary does not know some aspects
of the system.

By observing the behaviour of a system, the adversary may use the channel to
update his knowledge — thus obtaining more information about the secret. Let the
probability distribution π ∈ DX represent the adversary’s initial knowledge, also called

16 Chapter 2. Preliminaries and Literature Review

a prior distribution or simply prior, and let C ∈ CYX be the channel modelling the system
in question. The prior π and channel C induce a joint probability distribution over the
set X × Y .

p(x, y) y1 y2 y3 y4

x1
1/4 1/8 1/16 1/16

x2
1/12 1/6 1/12 0

x3
1/6 0 0 0

Table 2.2. The joint probability distribution induced by π = (1/2, 1/3, 1/6) and
channel C of Table 2.1.

Definition 2.16. Given C ∈ CYX , π ∈ DX we define their joint probability distribution
p ∈ D(X × Y) as p(x, y) = π(x)C(x, y), for all x ∈ X , y ∈ Y.

We define the marginal distribution pY ∈ DY as pY(y) =
∑

x∈X p(x, y), and, for
each y ∈ Y such that pY(y) > 0, the conditional distribution pX|y ∈ DX as pX|y(x) =

p(x,y)/pY (y). We define pX ∈ DX and pY|x ∈ DY analogously.

Notice that pX coincides with π and, for all x ∈ X such that π(x) > 0 and for all
y ∈ Y , pY|x(y) = C(x, y).

After observing the output y ∈ Y , the state of knowledge of the adversary changes
accordingly, being updated from π to the distribution pX|y — i.e., the distribution
reflecting the probability of each secret value, given behaviour y. We give the name
of posterior distribution to the distribution modelling the knowledge of the adversary
after the execution of the system. Each channel C ∈ CYX and prior π ∈ DX induce a
set of posterior distributions, one for each possible output value. As can be seen in
Table 2.3, some of these posterior distributions can be identical.

pX|y1 pX|y2 pX|y3 pX|y4
x1

1/2 3/7 3/7 1
x2

1/6 4/7 4/7 0
x3

1/3 0 0 0

Table 2.3. The posterior distributions calculated from the joint distribution p
in table 2.2.

The effect of channel C can thus be summarized as mapping a prior π ∈ DX to
a collection of posterior distributions pX|y, each associated with a probability pY(y) (in
this case, pY = (1/2, 7/24, 7/48, 1/16)). We can reason concisely about this effect with the
aid of the concept of hyper-distributions over the set of secrets.

2.2. Systems and information leakage 17

Definition 2.17. Let X be a finite and nonempty set. D(DX), also denoted by D2X ,
is the set of probability distributions over DX with finite support, where the support of
∆ ∈ D2X is the set d∆e = {π ∈ DX |∆(π) > 0}.

An element ∆ ∈ D2X is called a hyper-distribution over X . We refer to the ele-
ments of d∆e as the inner distributions of ∆, and to the probability distribution ∆ over
d∆e (that is, the distribution over the inner distributions) as the outer distribution.

Definition 2.18. Let C ∈ CYX and π ∈ DX . Let p ∈ D(X ×Y) be their joint probability
distribution. The hyper-distribution [π 〉C] ∈ D2X is defined as, for all δ ∈ DX ,

[π 〉C](δ) =
∑

y∈dpYe;pX|y=δ

pY(y).

That is, [π 〉C] is the hyper-distribution whose inner distributions are the poste-
rior distributions obtained from π and C. In Definition 2.18, it is necessary to limit the
possible values of y to dpYe, as pX|y might be undefined otherwise. Note that identical
distributions are merged, as depicted in Table 2.4.

[π 〉C] 1/2 7/16 1/16

x1
1/2 3/7 1

x2
1/6 4/7 0

x3
1/3 0 0

Table 2.4. The hyper-distribution [π 〉C], where π = (1/2, 1/3, 1/6) and C is the
channel given in Table 2.1. The outer distribution is depicted in the first line,
and the inner distributions on the columns.

2.2.3 Posterior information measures and information leakage

To calculate how much information a system leaks, we need a measure that can be
applied to hyper-distributions of the type defined on Definition 2.18. For that end, we
define the concept of posterior information measures.

Definition 2.19. Let φ : DX → R be an information measure. We associate with it a
posterior information measure φ̂ : D2X → R, defined by, for all ∆ ∈ D2X ,

φ̂∆ =
∑
δ∈d∆e

∆(δ)φ(δ).

The next result shows that a posterior information measure gives us the expected
value of the associated information measure after the execution of the system.

18 Chapter 2. Preliminaries and Literature Review

Proposition 2.20. Let X be a nonempty and finite set, φ : DX → R be an information
measure, and φ̂ : D2X → R be its associated posterior information measure. Then, for
all C ∈ CYX and all π ∈ DX ,

φ̂[π 〉C] =
∑
y∈dpYe

pY(y)φ(pX|y).

Proof.

φ̂[π 〉C]

=
∑

δ∈d[π 〉C]e

[π 〉C](δ)φ(δ) (by Def. 2.19)

=
∑

δ∈d[π 〉C]e

 ∑
y∈dpYe;pX|y=δ

pY(y)

φ(δ) (by Def. 2.18)

=
∑

δ∈d[π 〉C]e

∑
y∈dpYe;pX|y=δ

pY(y)φ(pX|y) (δ = pX|y)

=
∑
y∈dpYe

pY(y)φ(pX|y) (∀y ∈ dpYe, ∃!δ ∈ d[π 〉C]e; δ = pX|y)

If φ(π) correctly models the amount of information the adversary has when his
state of knowledge is π ∈ DX , φ̂[π 〉C] is simply the expected value of the adversary’s
amount of information after he updates his knowledge by observing the behaviour of
the system.

As this thesis is focused on the g-leakage framework, we instantiate Definition
2.19 to obtain the posterior g-vulnerability V̂g : D2X → R. Following the literature,
we overload the notation and usually refer to it by the same symbol as the regular
g-vulnerability, Vg. Given a channel C ∈ CX and a prior π ∈ DX , we refer to Vg[π 〉C]

as the posterior g-vulnerability of channel C w.r.t. prior π.

Example 2.21. Consider the posterior distributions depicted in Table 2.3. Using
Proposition 2.20, we can calculate the posterior g-vulnerability of C with regard to
π = (1/2, 1/3, 1/6) and the identity gain function gid as follows

Vgid [π 〉C] =
∑
y∈Y

pY(y)Vgid(pX|y)

=
∑
y∈Y

pY(y) max
x∈X

(
pX|y(x)

)

2.2. Systems and information leakage 19

=
1

2
× 1

2
+

7

24
× 4

7
+

7

48
× 4

7
+

1

16
× 1

=
9

16
.

Therefore, the execution of a system modelled by C increases the g-vulnerability
of the secret from Vgid(π) = 1/2 to Vgid [π 〉C] = 9/16.

The next proposition gives us an alternative way of defining the g-vulnerability of
a channel w.r.t. a prior. This alternative is usually simpler in a number of situations,
and we will use it when proving many of our results.

Proposition 2.22. Let g ∈ GX , C ∈ CYX and π ∈ DX . Then,

Vg[π 〉C] =
∑
y∈Y

max
w∈W

∑
x∈X

π(x)C(x, y)g(w, x).

Proof.

Vg[π 〉C]

=
∑
y∈dpYe

pY(y)Vg(pX|y) (by Prop. 2.20)

=
∑
y∈dpYe

pY(y) max
w∈W

∑
x∈X

pX|y(x)g(w, x) (by Def. 2.9)

=
∑
y∈dpYe

max
w∈W

∑
x∈X

p(x, y)g(w, x) (p(x, y) = pX|y(x)pY(y))

=
∑
y∈dpYe

max
w∈W

∑
x∈X

π(x)C(x, y)g(w, x) (by Def. 2.16)

=
∑
y∈Y

max
w∈W

∑
x∈X

π(x)C(x, y)g(w, x) (∀y 6∈ dpYe, π(x)C(x, y) = 0)

Having defined the posterior g-vulnerability, we are able to define the leakage of
information occurring when an adversary with knowledge π ∈ DX observes a system
modelled by C ∈ CYX .

Definition 2.23. Let g ∈ GX , CYX and π ∈ DX . We define the multiplicative g-leakage
of C with regard to π as

Lg[π 〉C] =
Vg[π 〉C]

Vg(π)
,

20 Chapter 2. Preliminaries and Literature Review

and the additive g-leakage of C with regard to π as

L+
g [π 〉C] = Vg[π 〉C]− Vg(π).

The multiplicative and additive forms of g-leakage have both been studied in the
literature [Alvim et al., 2012, 2014], the former being a useful quantity when the ratio
of the posterior and prior information are of interest, and the latter when one wants
to reason about information leakage as an absolute value of information increase. The
choice between them should be made taking into consideration the specifics of the
problem at hand, and neither are considered “canonical” in the literature.

Note that, as Vg(π) does not depend on the channel, we have for any two channels
C1, C2 ∈ CYX

Lg[π 〉C1] ≤ Lg[π 〉C2]⇔ L+
g [π 〉C1] ≤ L+

g [π 〉C2]⇔ Vg[π 〉C1] ≤ Vg[π 〉C2].

Therefore, we can simply compare the appropriate posterior g-vulnerabilities
whenever we want to establish whether a channel leaks more information than an-
other.

We finish this section with an interesting result regarding g-vulnerabilities, es-
tablished by Alvim et al. [2012]. This theorem proves that the g-leakage framework
respects an important and intuitive property: the information an adversary has about
a secret is never expected to decrease when he observes the output of a system.

Theorem 2.24. Let C ∈ CYX , π ∈ DX and g ∈ GX . Then,

Vg[π 〉C] ≥ Vg(π).

Proof.

Vg[π 〉C]

=
∑
y∈Y

max
w∈W

∑
x∈X

π(x)C(x, y)g(w, x) (by Prop 2.22)

≥max
w∈W

∑
x∈X

π(x)g(w, x)
∑
y∈Y

C(x, y) (moving max outside a sum)

= max
w∈W

∑
x∈X

π(x)g(w, x) (C is a channel)

=Vg(π) (by Def. 2.9)

2.3. Channel ordering and equivalence 21

2.3 Channel ordering and equivalence

In this section, we investigate the properties that relate channels to their leakage,
obtaining a preorder among channels and a notion of equivalence. Some of these ideas
were proposed by Alvim et al. [2012], and were subsequently explored in depth by
McIver et al. [2014].

2.3.1 Abstract channels and reduced matrices

In this section we introduce abstract channels and reduced matrices. Loosely speaking,
these objects abstract aspects of channels that are irrelevant to their leakage properties
(such as input and output labels, or redundant outputs), and focus on the essential
information-theoretic ones. As we will see in Theorem 2.27, despite their different
formulations, abstract channels and reduced matrices are equivalent concepts.

As discussed on Section 2.2.3, the information leaked by a channel C, according
to a prior π, can be totally captured by the hyper-distribution [π 〉C]. Aiming at
abstracting away all other irrelevant properties of the channel, we define its abstract
channel as follows.

Definition 2.25. Let C ∈ CX . The abstract channel of C is a mapping from DX to
D2X , given by π 7→ [π 〉C], for all π ∈ DX .

Note that abstract channels provide a fully functional characterization of the be-
haviour of a channel. Sometimes, however, it is convenient to have a concrete, canonical
matrix-like representation of the function corresponding to a channel. Reduced matri-
ces do the job by ditching all input and output labels, and aggregating outputs that
induce the same posterior distribution for all priors.

Definition 2.26. Let C ∈ CYX . The reduced matrix [Cr] of channel C is a matrix
obtained by the following procedure:

1. Index X and Y, such that X = {x1, x2, ..., x|X |} and Y = {y1, y2, ..., y|Y|};

2. Define a matrix [C] with |X | lines and |Y| columns, whose entry on line i and
column j is equal to C(xi, yj);

3. Eliminate all columns consisting entirely of zeros;

4. Add together all columns that are scalar multiples of each other;

5. Order the columns lexicographically.

22 Chapter 2. Preliminaries and Literature Review

The lexicographically ordering of the columns at the end guarantees that to each
channel C corresponds a unique reduced matrix [Cr]. As the following theorem by
McIver et al. [2014] indicates, the two concepts above are equivalent.

Theorem 2.27. Let C1, C2 ∈ CX be two channels. [Cr
1] = [Cr

2] if, and only if, the
abstract channel of C1 is identical to the abstract channel of C2.

The intuition of the proof of this theorem is that a channel whose matrix is [Cr]

will always produce the same hyper-distribution as C for each prior, as it is not affected
by any of the steps on Definition 2.26.

The following example illustrates the concepts defined above. It emphasizes the
fact that channels with different matrices representations may, in fact, correspond to
the same abstract channel and reduced matrix; being equivalent from an information-
theoretic standpoint.

Example 2.28. Consider the following channels C1 and C2.

C1 y1 y2 y3

x1
2/5 0 3/5

x2
1/8 1/2 3/8

x3
2/15 2/3 1/5

C2 z1 z2 z3

x1 1 0 0

x2
1/2 2/7 3/14

x3
1/3 8/21 2/7

Despite perhaps appearing very different, by following the steps on Definition 2.26
we obtain

[Cr
1] = [Cr

2] =

 1 0

1/2 1/2

1/3 2/3

 .
Which implies, by Theorem 2.27, that C1 and C2 have the same abstract channel.

In fact, let π = (p1, p2, p3) be a distribution over the set X = {x1, x2, x3}. We have
that, for all δ ∈ DX ,

[π 〉C1](δ) = [π 〉C2](δ) =


6p1+3p2+2p3

6
, if δ = (6p1

6p1+3p2+2p3
, 3p2

6p1+3p2+2p3
, 2p3

6p1+3p2+2p3
),

3p2+4p3
6

, if δ = (0, 3p2
3p2+4p3

, 4p3
3p2+4p3

),

0, otherwise.

2.3. Channel ordering and equivalence 23

2.3.2 Cascading and leakage ordering

Cascading is a concept of fundamental importance on QIF. Intuitively, it models the
scenario in which the output of a system is fed as input to another system — in which
case we say that the output of the former is post-processed by the latter. It arises in
a number of real-world systems; for example, when some noise is introduced to mask
the physical location of a device, or simply when a computer program uses the output
of another program as its input.

Despite its apparent simplicity, cascading plays a pivotal role in ordering channels
according to their information leakage.

Definition 2.29. Let C ∈ CYX , D ∈ CZY be channels such that the output set of C is
equal to the input set of D. We define their cascade (CD) ∈ CZX as, for all x ∈ X ,
z ∈ Z,

(CD)(x, z) =
∑
y∈Y

C(x, y)D(y, z).

That a cascading of two channels is a channel can be readily seen, as∑
x∈X

(CD)(x, z)

=
∑
x∈X

∑
y∈Y

C(x, y)D(y, z) (by Definition 2.29)

=
∑
y∈Y

D(y, z)
∑
x∈X

C(x, y) (rearranging)

=
∑
y∈Y

D(y, z) (C is a channel)

=1 (D is a channel)

Notice that, having the matrix representation of C and D in mind, CD can be under-
stood as a matrix multiplication.

Definition 2.30. Let C1, C2 ∈ CX . We say that C2 is refined by C1, and write C2 v◦
C1, if there is a channel R such that C1 = C2R. We write C1◦w C2 if C2 v◦ C1.

We say that C1 and C2 are equivalent, and write C1 ≈ C2, if C1 v◦ C2 and
C1◦w C2.

We refer to v◦ as the refinement relation, ◦w as the anti-refinement relation and
≈ as the equivalence relation.

There is a strict relation between the equivalence relation defined above and the
notion of abstract channel, proved by McIver et al. [2014].

24 Chapter 2. Preliminaries and Literature Review

Theorem 2.31. Let C1, C2 ∈ CX . C1 ≈ C2 if, and only if, [Cr
1] = [Cr

2].

Intuitively, if C1 = C2R, it must not be possible to obtain more information from
C1 than from C2 since, once in possession of C2, we can simply feed its output to R to
obtain C1. This intuition is formalized in the following important result, conjectured
by Alvim et al. [2012] and finally proved by McIver et al. [2014].

Theorem 2.32 (The Coriaceous Theorem). Let C1, C2 ∈ CX . C2 v◦ C1 if, and only
if, Vg[π 〉C1] ≤ Vg[π 〉C2] for all g ∈ GX and all π ∈ DX .

Theorem 2.32 implies that the refinement relation (v◦) coincides with our notion
of security: if a channel C2 is refined by a channel C1, then C1 never leaks more
information about the secret than C2. This relationship is of great practical value,
since checking whether the refinement relation holds between two channels can be
simplified to checking whether one can be described as a cascading in which the other
is the first term.

We finish this section with a Corollary that summarizes the relation between
abstract channels, reduced matrices, the equivalence relation (≈) and posterior g-
vulnerabilities.

Corollary 2.33. Let C1, C2 ∈ CX . The following statements are equivalent.

1. C1 and C2 have the same abstract channel;

2. [Cr
1] = [Cr

2];

3. C1 ≈ C2;

4. ∀g ∈ GX , ∀π ∈ DX , Vg[π 〉C1] = Vg[π 〉C2].

2.4 Expressiveness of the g-leakage framework

The versatile nature of the g-leakage framework, as demonstrated in Section 2.1.4.1,
would be enough to justify the study of its properties. However, the framework can be
extended to be even more expressive than what our examples suggest.

Alvim et al. [2016] proved that, if we allow for gain functions with countably
infinite sets of guesses and negative values, the g-leakage framework can capture any
vulnerability measure that satisfies a set of intuitively-reasonable information-theoretic
axioms.

2.4. Expressiveness of the g-leakage framework 25

Before we enter into the details, we extend the g-leakage framework in the fol-
lowing manner. Given a set of secret values X , we first allow the set of actions to be
countably infinite, extending the set of gain functions from GX to the set

GX = {g | g :W ×X → R; where W ⊂ N is nonempty and

∀π ∈ DX ∃w ∈ W ;
∑
x∈X

π(x)g(w, x) ≥ 0}.

Given g ∈ GX , we redefine g-vulnerability as Vg[π] = supw∈W
∑

x∈X π(x)g(w, x).
The expressiveness of this extension of the g-leakage framework can be summa-

rized by the following result, proved by Alvim et al. [2016].

Theorem 2.34. Let X be a set of secret values. let φ : DX → R be a vulnerability
measure, and let φ̂ : D2X → R be its associated posterior measure (as in Definition
2.19), such that the following properties hold

1. φ is continuous over DX ;

2. Given C1, C2 ∈ CX , if C2 v◦ C1, then φ̂[π 〉C1] ≤ φ̂[π 〉C2] for all π ∈ DX .

Then ∃g ∈ GX such that φ = Vg. Conversely, for any g ∈ GX , Vg is a vulnera-
bility measure that respects both properties above.

Alvim et al. argues that the two properties in Theorem 2.34 are intuitively-
reasonable axioms any vulnerability measure should respect. The continuity property
captures the idea that very small changes on the probability distribution over the set
of secret values should not yield extreme differences on the vulnerability of the secret.

Meanwhile, property 2 guarantees that no information is gained by post-
processing an output of a channel. As we discussed in Section 2.3.2, this is an intuitive
requirement: if C1 and C2 are channels such that C1 = C2R for some channel R, the
adversary should be able to simulate C1 by feeding the output of C2 to R.

For the remainder of this thesis, we will return to our regular definitions of g-
leakage, i.e., we will call by gain functions the elements of the set GX , and define
g-vulnerability as in Definition 2.9.

Chapter 3

Operators and their Algebraic
Properties

In this chapter, we formally introduce the operators we studied. Each operator models
a type of interaction between components commonly found in real-life systems. Hence,
the study of their security properties is of immediate practical value.

After presenting the operators in Section 3.1, we explore some of their algebraic
properties in Section 3.2, such as commutativity, associativity and distributivity, among
others. These algebraic properties facilitate handling complex system representations,
often simplifying their descriptions.

3.1 Introducing the operators

All operators we considered in this thesis are functions that take two channels with the
same input set as arguments, and yield a channel also with the same input set. That
is, given an input set X , our operators are functions of the form CX × CX → CX . We
call two channels that have the same input set compatible. If, beyond that, they also
share the same output set, we say that they are of the same type.

Before we present the operators, we make the following definition, which is useful
to simplify the definitions and proofs that follow.

Definition 3.1. Let C ∈ CYX . We define, for all y′ 6∈ Y and all x ∈ X , C(x, y′) = 0.

This definition is a slight abuse of notation, as we still consider C ∈ CYX to be a
function over X × Y — we are merely “overloading” the notation to some elements in
which C is undefined. Definition 2.26 and Corollary 2.33 assure us that this abuse has

27

28 Chapter 3. Operators and their Algebraic Properties

no undesirable consequences, since appending a channel with a set of outputs whose
image is 0 does not change it in any meaningful way.

We now present the operators studied in this thesis. For the remaining of this
section, let X be a (finite and nonempty) set of secret values.

3.1.1 Parallel composition operator (‖).

Consider the scenario in which on a given database there is some user’s data that is of
interest to an adversary. Let us suppose that, by using a request modelled by channel
C1, the adversary is able to obtain the age of said user. Using, instead, another request
modelled by C2, he is able to infer a rough approximation of this user’s location. The
parallel composition operator ‖ applied to C1 and C2 models the situation in which the
adversary observes the results of both requests.

More generally, given C1 ∈ CY1X , C2 ∈ CY2X , the channel C1 ‖ C2 models the scenario
in which both channels C1 and C2 are fed the secret and each produces an output, both
of which can be observed by the adversary. This operator assumes that C1 and C2 are
independent given the secret — i.e., p(y1, y2|x) = p(y1|x)p(y2|x) for all x ∈ X , y1 ∈ Y1

and y2 ∈ Y2. Although there are certainly situations where independence does not
hold, the amount of systems that can be modelled with this operator justifies its study.

Definition 3.2. Let C1 ∈ CY1X , C2 ∈ CY2X be compatible channels. Their parallel
composition C1 ‖ C2 ∈ C(Y1×Y2)

X is defined as, for all x ∈ X , y1 ∈ Y1 and y2 ∈ Y2,

(C1 ‖ C2)(x, (y1, y2)) = C1(x, y1)C2(x, y2).

The parallel composition operator ‖: CX × CX → CX is the mapping (C1, C2) 7→
C1 ‖ C2, for all C1, C2 ∈ CX .

Notice that this definition follows directly from independence, as
C1(x, y1)C2(x, y2) = p(y1|x)p(y2|x).

As an example of this operator, consider the following channels C1, C2 and their
parallel composition.

C1 y1 y2

x1 0.1 0.9

x2 0.8 0.2

‖
C2 y1 y2

x1 1 0

x2 0.3 0.7

=

C1 ‖ C2 (y1, y1) (y1, y2) (y2, y1) (y2, y2)

x1 0.1 0 0.9 0

x2 0.24 0.56 0.06 0.14

3.1. Introducing the operators 29

3.1.2 Visible choice operator (p ·t).

Suppose there is a protocol that receives requests from users and randomly chooses
with probability p ∈ [0, 1] one of two servers, one modelled by C1 and another by C2,
to forward it to. Suppose further that the user will only know which server processed
her request after the execution of the protocol. This scenario can be modelled by
applying the visible choice operator p ·t to channels C1, C2.

Given p ∈ [0, 1], the channel C1 p ·t C2 models a system which, receiving an input,
chooses to feed it either to C1, with probability p, or to C2, with probability 1− p, and
reveals to the adversary (explicitly or implicitly) which channel was chosen.

Before giving a formal definition of this operator, we need to define the set oper-
ation of disjoint union, which is a modified set union operation that tags each element
with a label indicating the set they came from.

Definition 3.3. Let A, B be sets. The disjoint union of A and B is defined as

A t B = (A× {1}) ∪ (B × {2}).

Definition 3.4. Let p ∈ [0, 1] and let C1 ∈ CY1X , C2 ∈ CY2X be compatible channels.
Their visible choice (w.r.t. p) C1 p ·t C2 ∈ C(Y1tY2)

X is defined as, for all x ∈ X ,
(y, i) ∈ Y1 t Y2,

(C1 p ·t C2)(x, (y, i)) =

pC1(x, y) if y ∈ Y1 and i = 1,

(1− p)C2(x, y) if y ∈ Y2 and i = 2.

The visible choice operator (w.r.t p) p ·t : CX×CX → CX is the mapping (C1, C2) 7→
C1 p ·t C2, for all C1, C2 ∈ CX .

To illustrate this operator, consider the following application of 1/2 ·t to channels
C1, C2.

C1 y1 y2

x1 0.4 0.6

x2 0.8 0.2

1/2 ·t
C2 y1 y3

x1 1 0

x2 0.5 0.5

=

C1 1/2 ·t C2 (y1, 1) (y2, 1) (y1, 2) (y3, 2)

x1 0.2 0.3 0.5 0

x2 0.4 0.1 0.25 0.25

3.1.3 Hidden choice operator (p⊕).

Consider the following protocol to protect the identity of the participants of a yes/no
poll in a sensitive subject (e.g. drug use, political opinion, etc). Firstly, each participant
flips a fair coin. If it lands on heads, the participant answers the question sincerely.

30 Chapter 3. Operators and their Algebraic Properties

If it lands on tails, the participant proceeds to toss it again, answering "yes" to the
question if it lands on heads, and "no" otherwise. The interviewer, oblivious to the
result of the coin tosses, is then able to infer the results of the sincere answers of the
poll by subtracting the expected number of random "yes" and "no" answers from the
total data. However, the interviewer cannot know for sure whether any answer given
was sincere or not. Let C1 be a channel which always outputs the real answer, and C2

be a channel which outputs an answer randomly. This protocol can be modelled by
applying the hidden choice operator 1/2⊕ to C1 and C2.

Given p ∈ [0, 1], the channel C1 p⊕ C2 is similar to C1 p⊕ C2. Again, it models
a system which, receiving an input, chooses to feed it either to C1, with probability p,
or to C2, with probability 1− p. This time however, as the name suggests, the channel
that produced the output chosen is not explicitly revealed.

Definition 3.5. Let p ∈ [0, 1] and let C1 ∈ CY1X , C2 ∈ CY2X be compatible channels.
Their hidden choice (w.r.t. p) C1 p ·t C2 ∈ C(Y1∪Y2)

X is defined as, for all x ∈ X ,
y ∈ Y1 ∪ Y2,

(C1 p⊕ C2)(x, y) =


pC1(x, y) + (1− p)C2(x, y) if y ∈ Y1 ∩ Y2,

pC1(x, y) if y ∈ Y1 \ Y2,

(1− p)C2(x, y) if y ∈ Y2 \ Y1.

The hidden choice operator (w.r.t p) p⊕ : CX × CX → CX is the mapping
(C1, C2) 7→ C1 p⊕ C2, for all C1, C2 ∈ CX .

As an example, consider the composition C1 1/2⊕ C2 of the following channels C1,
C2.

C1 y1 y2

x1 0.4 0.6

x2 0.8 0.2

1/2⊕
C2 y1 y3

x1 1 0

x2 0.5 0.5

=

C1 1/2⊕ C2 y1 y2 y3

x1 0.7 0.3 0

x2 0.65 0.1 0.25

It might be helpful to compare this example to the one given for the visible choice
operator. Notice how the entries with the same output valued are “merged” into a single
one.

It might happen that the output sets of C1 and C2 are disjoint. In this
case, the adversary can completely deduce which channel was used, and we have
C1 p⊕ C2 ≈ C1 p ·t C2.

3.1. Introducing the operators 31

3.1.4 Visible if-then-else operator (A4)

Suppose now there is a computer program that takes as input a string of bits and
executes one of two processes. If the last bit of the string is 0, it executes a process
modelled by a channel C1, and, if the last bit is 1, it executes a process modelled by
a channel C2. Consider, further, that the system reveals to the adversary the last bit
of the secret after its execution. Letting A be the set of secret values whose last bit is
0, this system can be modelled by applying the visible if-then-else operator A4 to C1

and C2.
More generally, given a subset A of the secret set X , the visible if-then-else

operator models a scenario in which, similarly to visible and hidden choice, only one
of two systems will be used and yield an output. Instead of the choice being made
probabilistically, however, it is determined completely by the secret value. The channel
C1 A4 C2 models a system which, upon receiving the secret, feeds it to C1 if x ∈ A or
to C2 if x 6∈ A. As the name suggests, the system also reveals (explicitly or implicitly)
which channel yielded the output by the end of the execution.

Definition 3.6. Let A ⊂ X and let C1 ∈ CY1X , C2 ∈ CY2X be compatible channels.
Their visible if-then-else (w.r.t. A) C1 A4 C2 ∈ C(Y1tY2)

X is defined as, for all x ∈ X ,
(y, i) ∈ Y1 t Y2,

(C1 A4 C2)(x, (y, i)) =


C1(x, y) if x ∈ A, y ∈ Y1 and i = 1,

C2(x, y) if x 6∈ A, y ∈ Y2 and i = 2,

0, otherwise.

The visible if-then-else operator (w.r.t A) A4 : CX × CX → CX is the mapping
(C1, C2) 7→ C1 A4 C2, for all C1, C2 ∈ CX .

As an example, consider the following application of the visible if-then-else oper-
ator to channels C1, C2, with A = {x1, x2}. For purely didactic purposes, we provide
a larger example for this operator, as any composition with only two secret values and
|A| = 1 would completely reveal the secret.

C1 y1 y2

x1 0.5 0.5

x2 0.3 0.7

x3 0 1

x4 0.6 0.4

A4

C2 y1 y3

x1 0.1 0.9

x2 0.7 0.3

x3 0.4 0.6

x4 0.8 0.2

=

C1 A4 C2 (y1, 1) (y2, 1) (y1, 2) (y3, 2)

x1 0.5 0.5 0 0

x2 0.3 0.7 0 0

x3 0 0 0.4 0.6

x4 0 0 0.8 0.2

32 Chapter 3. Operators and their Algebraic Properties

3.1.5 Hidden if-then-else operator (A4+)
Consider now a computer program that performs one of two different tasks, the choice
of which is never revealed explicitly to the attacker, depending on the parity of an
integer secret value. Let C1 describe the programs behaviour when the secret value
is odd and C2 when it is even. Letting A be the subset of the secret values that are
odd, we can model this computer program by applying the hidden if-then-else operator

A4+ to C1 and C2.
The hidden if-then-else operator is similar to its visible counterpart. Letting

A ⊂ X ,the channel C1 A4+ C2 models a system that selects channel C1 if x ∈ A or C2

if x 6∈ A. This time, however, the channel selection is not revealed to the adversary.

Definition 3.7. Let A ⊂ X and let C1 ∈ CY1X , C2 ∈ CY2X be compatible channels.
Their hidden if-then-else (w.r.t. A) C1 A4+ C2 ∈ C(Y1∪Y2)

X is defined as, for all x ∈ X ,
y ∈ Y1 ∪ Y2,

(C1 A4+ C2)(x, y) =


C1(x, y) if x ∈ A and y ∈ Y1,

C2(x, y) if x 6∈ A and y ∈ Y2,

0 otherwise.

The hidden if-then-else operator (w.r.t A) A4+ : CX × CX → CX is the mapping
(C1, C2) 7→ C1 A4+ C2, for all C1, C2 ∈ CX .

If Y1 ∩ Y2 = ∅, the adversary can always tell which channel yielded the output,
and we have C1 A4+ C2 ≈ C1 A4 C2.

To illustrate this operator, we consider the composition C1 A4+ C2 for the follow-
ing channels C1, C2 and A = {x1, x2}.

C1 y1 y2

x1 0.5 0.5

x2 0.3 0.7

x3 0 1

x4 0.6 0.4

A4+

C2 y1 y3

x1 0.1 0.9

x2 0.7 0.3

x3 0.4 0.6

x4 0.8 0.2

=

C1 A4+ C2 y1 y2 y3

x1 0.5 0.5 0

x2 0.3 0.7 0

x3 0.4 0 0.6

x4 0.8 0 0.2

We suggest to the reader to compare this example to that given for the visible
if-then-esle operator. Notice that the columns representing the same output value are
combined into a single one.

Similarly to the hidden choice operator, if Y1 and Y2 are disjoint, the adver-
sary is able to infer which one among C1 and C2 produced the output. In this case,

3.2. Algebraic properties of operators 33

C1 A4+ C2 ≈ C1 A4 C2 .

3.2 Algebraic properties of operators

We now give a list of algebraic properties of the operators we introduced in the previous
section. These algebraic properties, among other things, enable us to simplify complex
channel descriptions and facilitate the derivation of security properties of the systems
they are modelling.

First, we briefly recall the refinement relation introduced in Section 2.3.2. Given
two channels C1, C2 ∈ CX , we write C2 v◦ C1 if there is a channel R such that C1 =

C2R. We say that C1 and C2 are equivalent, and write C1 ≈ C2, if C1 v◦ C2 and
C2 v◦ C1. Recall, also, that from Theorem 2.32 we know that a channel C1 refines a
channel C2 if, and only if, C1 never leaks more than C2, no matter the prior π and gain
function g. That is, for any channels C1, C2 ∈ CX ,

C2 v◦ C1 ⇔ ∀π ∈ DX ,∀g ∈ GX , Vg[π 〉C1] ≤ Vg[π 〉C2].

The definitions of our operators are dependent not only on the leakage properties
of the channels they act upon, but also on the names of the elements of the input
and output sets. Therefore, before we present their algebraic properties, we define
a stricter equivalence relation than the one given above, under which channels are
considered equivalent whenever their matrix representation is the same but for the
output values associated with each column.

Definition 3.8. Let C1 ∈ CY1X and C2 ∈ CY2X be compatible channels. We say that
C1 and C2 are equal up to a permutation, and write C1

◦
= C2, if there is a bijection

ψ : Y1 → Y2 such that C1(x, y) = C2(x, ψ(y)) for all x ∈ X , y ∈ Y1.

Note that if C1
◦
= C2, then C1 ≈ C2: let P ∈ CYY be given by P (y1, y2) = 1 if

φ(y1) = y2 and 0 otherwise. Then, C2 = C1P and C1 = C2P
T , where P T is the channel

whose matrix is the transpose of the matrix of P .
We will now present some algebraic properties we established for these operators.

Most proofs on this section are somewhat lengthy, so instead of keeping them in the
main body, we present them on Appendix 6.

In the remainder of this section, let X be a set of secret values, C1 ∈ CY1X , C2 ∈ CY2X
and C3 ∈ CY3X be compatible channels, p, q ∈ [0, 1] and A,B ⊂ X be subsets of the set
of secret values X . Let also A = X \ A and B = X \ B.

34 Chapter 3. Operators and their Algebraic Properties

3.2.1 Commutativity, associativity and idempotency

We first establish that our operators are associative and commutative. Strictly speak-
ing, the visible choice and hidden choice operators w.r.t some p ∈ [0, 1], and the visible
if-then-else and hidden if-then-else operators w.r.t some A are not, in general, com-
mutative or associative. The “commutative” and “associative” properties we establish
for them are relaxed versions, in which we allow the modification of the probability
values for the visible and hidden choice, and of the subsets of secrets for the visible
and hidden if-then-else.

Proposition 3.9 (Commutative Properties).

C1 ‖ C2
◦
= C2 ‖ C1, (3.1)

C1 p ·t C2
◦
= C2 (1−p) ·t C1, (3.2)

C1 p⊕ C2 = C2 (1−p)⊕ C1, (3.3)

C1 A4 C2
◦
= C2 A4 C1, (3.4)

C1 A4+ C2 = C2 A4+ C1. (3.5)

Proposition 3.10 (Associative Properties).

(C1 ‖ C2) ‖ C3
◦
= C1 ‖ (C2 ‖ C3), (3.6)

(C1 p ·t C2) q ·t C3
◦
= C1 p′ ·t (C2 q ′ ·t C3), (3.7)

(C1 p⊕ C2) q⊕ C3 = C1 p′⊕ (C2 q ′⊕ C3), (3.8)

(C1 A4 C2) B4 C3
◦
= C1 (A∩B)4 (C2 B4 C3), (3.9)

(C1 A4+ C2) B4+ C3 = C1 (A∩B)4+ (C2 B4+ C3), (3.10)

where p′=pq and q′=(q−pq)/(1−pq).

Aiming to establishing rules to simplify descriptions of channels, we consider the
results of combining a channel with itself.

3.2. Algebraic properties of operators 35

Proposition 3.11 (Idempotency).

C1 ‖ C1 v◦ C1, (3.11)

C1 p ·t C1 ≈ C1, (3.12)

C1 p⊕ C1 = C1, (3.13)

C1 A4 C1 v◦ C1, (3.14)

C1 A4+ C1 = C1. (3.15)

In the case of visible if-then-else, equivalence for idempotency does not hold in
general, as C1 A4 C1 completely reveals whether x ∈ A. Similarly, equivalence does
not hold in general for the parallel composition, as repeating a run of a probabilistic
system can reveal further information about the secret. However, equivalence holds for
it when we are dealing with deterministic channels — that is, channels whose values
are either 0 or 1, for any choice of input and output. This result is to be expected, as
the output of a deterministic channel is completely determined by the input, and there
can be no information gain for observing more than one execution of such a system.

Proposition 3.12. Suppose ∃C ∈ CX such that C is deterministic and C1 ≈ C. Then

C1 ‖ C1 ≈ C1.

3.2.2 Null and transparent channels

Null and transparent channels are important concepts on quantitative information flow.
Loosely speaking, a null channel is a channel that never leaks any information, while
a transparent channel is one that always completely reveals the secret value.

Formally, a null channel 0 ∈ CX is a channel that, for every prior π and gain
function g, Vg[π 〉 0] = Vg(π). From Theorem 2.24, we conclude that C v◦ 0 for all
C ∈ CX .

Proposition 3.13. A channel 0 ∈ CYX is a null channel if, and only if, for all y ∈ Y
and x, x′ ∈ X ,

0(x, y) = 0(x′, y).

On the other hand, a transparent channel I ∈ CYX is any channel such that, given
any C ∈ CX , I v◦ C. That is, I leaks at least as much information as any other
compatible channel, for every prior and gain function.

36 Chapter 3. Operators and their Algebraic Properties

Proposition 3.14. A channel I ∈ CYX is a transparent channel if, and only if, for all
y ∈ Y and x, x′ ∈ X such that x 6= x′,

I(x, y) > 0 =⇒ I(x′, y) = 0.

Being the null channel the channel that leaks the least, one might expect that its
composition with any channel C1 would be at least as secure as C1 alone. Analogously,
it could be assumed that the composition of C1 with a transparent channel would yield
a channel that leaks at least as much information as C1. We formalize these notions in
Propositions 3.15 and 3.16, which hold for any null channel 0 and transparent channel
I compatible with C1.

Proposition 3.15 (Null Channel Properties).

C1 ≈ (C1 ‖ 0), (3.16)

C1 v◦ (C1 p ·t 0), (3.17)

C1 v◦ (C1 p⊕ 0). (3.18)

The properties C1 v◦ C1 A4 0 and C1 v◦ C1 A4+ 0, however, do not hold in
general. We can build a simple counterexample for both cases considering the following
channels.

C1 y1 y2

x1 1 0

x2
1/2 1/2

01 y2

x1 1

x2 1

Given πu = (1/2, 1/2), we have Vg[π 〉C1] = 3/4. Meanwhile, letting A = {x1}, we have

C1 A4 01 (y1, 1) (y2, 1) (y2, 2)

x1 1 0 0

x2 0 0 1

C1 A4+ 01 y1 y2

x1 1 0

x2 0 1

which yield Vg[π 〉C1 A4 01] = Vg[π 〉C1 A4+ 01] = 1, so C1 6v◦ C1 A4 01 and C1 6v◦
C1 A4+ 01.

Proposition 3.16 (Transparent Channel Properties).

(C1 ‖ I) ≈ I, (3.19)

(C1 p ·t I) v◦ C1, (3.20)

(C1 A4 I) v◦ C1. (3.21)

3.2. Algebraic properties of operators 37

In general, (C1 p⊕ I) 6v◦ C1 and (C1 A4+ I) 6v◦ C1. Consider, for example, the
following channel C1, transparent channel I1, and their compositions, letting A = {x1}.

C1 y1 y2

x1 1 0

x2 0 1

I1 y1 y2

x1 0 1

x2 1 0

C1 1/2⊕ I1 y1 y2

x1
1/2 1/2

x2
1/2 1/2

C1 A4+ I1 y1 y2

x1 1 0

x2 1 0

Then, C1 1/2⊕ I1 and C1 A4+ I1 are null channels, while C1 is a transparent
channel. Therefore, C1 1/2⊕ I1 6v◦ C1 and C1 A4+ I1 6v◦ C1.

3.2.3 Distributive properties

We now consider distributive properties of the operators. These are not only helpful
when simplifying descriptions of channels, but also give us some insight on how to
organize our systems. If distributivity of an operator over another holds, we can choose
between either applying the former to the result of the latter or applying the latter
over the results of the former. In practice, this might allow us to manoeuvre parts of
systems by changing the order in which these compositions take place.

We will abuse the nomenclature and also establish properties regarding the “dis-
tribution” of an operator is over itself.

Proposition 3.17 (Distributivity for the Parallel operator).

C1 ‖ (C2 ‖ C3)◦w (C1 ‖ C2) ‖ (C1 ‖ C3), (3.22)

C1 ‖ (C2 p ·t C3)
◦
= (C1 ‖ C2) p ·t (C1 ‖ C3), (3.23)

C1 ‖ (C2 p⊕ C3) = (C1 ‖ C2) p⊕ (C1 ‖ C3), (3.24)

C1 ‖ (C2 A4 C3)
◦
= (C1 ‖ C2) A4 (C1 ‖ C3), (3.25)

C1 ‖ (C2 A4+ C3) = (C1 ‖ C2) A4+ (C1 ‖ C3). (3.26)

Proposition 3.18 (Distributivity for Visible Choice).

C1 p ·t (C2 q ·t C3) ≈ (C1 p ·t C2) q ·t (C1 p ·t C3), (3.27)

C1 p ·t (C2 q⊕ C3) = (C1 p ·t C2) q⊕ (C1 p ·t C3), (3.28)

C1 p ·t (C2 A4 C3)◦w (C1 p ·t C2) A4 (C1 p ·t C3), (3.29)

C1 p ·t (C2 A4+ C3) = (C1 p ·t C2) A4+ (C1 p ·t C3). (3.30)

38 Chapter 3. Operators and their Algebraic Properties

Proposition 3.19 (Distributivity for Hidden Choice).

C1 p⊕ (C2 q⊕ C3) = (C1 p⊕ C2) q⊕ (C1 p⊕ C3), (3.31)

C1 p⊕ (C2 A4+ C3) = (C1 p⊕ C2) A4+ (C1 p⊕ C3). (3.32)

Proposition 3.20 (Distributivity for Visible If-then-else).

C1 A4 (C2 ‖ C3)◦w (C1 A4 C2) ‖ (C1 A4 C3), (3.33)

C1 A4 (C2 p ·t C3) ≈ (C1 A4 C2) p ·t (C1 A4 C3), (3.34)

C1 A4 (C2 p⊕ C3) = (C1 A4 C2) p⊕ (C1 A4 C3), (3.35)

C1 A4 (C2 B4 C3)◦w (C1 A4 C2) B4 (C1 A4 C3), (3.36)

C1 A4 (C2 B4+ C3) = (C1 A4 C2) B4+ (C1 A4 C3). (3.37)

Proposition 3.21 (Distributivity for Hidden If-then-else).

C1 A4+ (C2 p⊕ C3) = (C1 A4+ C2) p⊕ (C1 A4+ C3), (3.38)

C1 A4+ (C2 B4+ C3) = (C1 A4+ C2) B4+ (C1 A4+ C3). (3.39)

The other possible distributive properties do not hold in general.

Proposition 3.22 (Non-distributivity). The following expressions do not, in general,
respect the refinement relation between them, in any direction

(C1 p ·t (C2 ‖ C3)) and ((C1 p ·t C2) ‖ (C1 p ·t C3)), (3.40)

(C1 p⊕ (C2 ‖ C3)) and ((C1 p⊕ C2) ‖ (C1 p⊕ C3)), (3.41)

(C1 p⊕ (C2 q ·t C3)) and ((C1 p⊕ C2) q ·t (C1 p⊕ C3)), (3.42)

(C1 p⊕ (C2 A4 C3)) and ((C1 p⊕ C2) A4 (C1 p⊕ C3)), (3.43)

(C1 A4+ (C2 ‖ C3)) and ((C1 A4+ C2) ‖ (C1 A4+ C3)), (3.44)

(C1 A4+ (C2 p ·t C3)) and ((C1 A4+ C2) p ·t (C1 A4+ C3)), (3.45)

(C1 A4+ (C2 B4 C3)) and ((C1 A4+ C2) B4 (C1 A4+ C3)). (3.46)

Perhaps, the only really surprising result of Proposition 3.22 is (3.40). When p⊕
or A4+ are the operator being distributed, the distribution may fail solely because of
the divergences on the output sets. Take (3.41) for example. If Y1 = Y2 = Y3, there
is a possibility that C1 p⊕ C2 and C1 p⊕ C3 (and therefore (C1 p⊕ C2) ‖ (C1 p⊕ C3))
are null channels and C1 p⊕ (C2 ‖ C3) is not. Analogously, if Y1 = Y2 × Y3, it is

3.2. Algebraic properties of operators 39

possible to have the opposite situation, in which C1 p⊕ (C2 ‖ C3) is a null channel,
while (C1 p⊕ C2) p⊕ (C1 p⊕ C3) is not.

We summarize all our distributivity results in Table 3.2.3.

‖ p ·t p⊕ A4 A4+

‖ ◦w
◦
= =

◦
= =

p ·t ≈ = ◦w =

p⊕ = =

A4 ◦w ≈ = ◦w =

A4+ = =

Table 3.1. Summary of the distributivity rules. The lines represent the operator
being distributed, and the columns the operators upon which the distributivity is
acted. For instance, ‖ distributes over p⊕ with equality, and A4 distributes
over ‖ with anti-refinement.

3.2.4 Properties regarding cascading

We conclude this section by exploring how our operators behave w.r.t. cascading
(defined in Section 2.3.2). Cascading of channels is fundamental in QIF, as it captures
the concept of a system post-processing the outputs of another system, and it is also the
key to the refinement relation v◦, fundamental to comparing leakage between channels.

The next propositions explore whether it is possible to express a composition
of two post-processed channels by post-processing their composition. By virtue of
cascading being a notion so closely related to leakage, these properties can facilitate
the security analysis of complex systems.

Proposition 3.23. Let D1 ∈ CZ1
Y1 , D2 ∈ CZ2

Y2 be channels. Then,

(C1D1) ‖ (C2D2) = (C1 ‖ C2)D‖,

where D‖ : (Y1×Y2)×(Z1×Z2)→ [0, 1] is defined as

D‖((y1, y2), (z1, z2)) = D1(y1, z1)D2(y2, z2)

for all y1∈Y1, y2∈Y2, z1∈Z1, and z2∈Z2.

40 Chapter 3. Operators and their Algebraic Properties

Proposition 3.24. Let D1 ∈ CZ1
Y1 , D2 ∈ CZ2

Y2 be channels. Then,

(C1D1) p ·t (C2D2) = (C1 p ·t C2)D ·t,

where D ·t:(Y1tY2)×(Z1tZ2)→[0, 1] is defined as

D ·t((y, i), (z, j)) =


D1(y, z), if i = j = 1,

D2(y, z), if i = j = 2,

0, otherwise.

for all y1∈Y1, y2∈Y2, z1∈Z1, z2∈Z2.

Proposition 3.25. Let D1 ∈ CZ1
Y1 , D2 ∈ CZ2

Y2 be channels. Then,

(C1D1) A4 (C2D2) = (C1 A4 C2)D ·t,

where D ·t is as defined in Proposition 3.24.

A similar rule, however, does not hold for hidden choice or hidden if-then-else.
As a counterexample, consider the following channels C1, C2, D1 and D2.

C1 y1 y2

x1 1 0

x2 0 1

C2 y1 y2

x1 0 1

x2 1 0

D1 z1 z2

y1 1 0

y2 0 1

D2 z1 z2

y1 0 1

y2 1 0

Consider also the cascadings C1D1 and C2D2, and the compositions C1 1/2⊕ C2 and
C1 {x1}4+ C2.

C1D1 z1 z2

x1 1 0

x2 0 1

C2D2 z1 z2

x1 1 0

x2 0 1

C1 1/2⊕ C2 y1 y2

x1
1/2 1/2

x2
1/2 1/2

C1 {x1}4+ C2 y1 y2

x1 1 0

x2 1 0

We see that C1D1 = C2D2. Then, (C1D1) 1/2⊕ (C2D2) = C1D1 is a trans-
parent channel, but C1 1/2⊕ C2 is a null channel. Thus, it is impossible to describe
(C1D1) 1/2⊕ (C2D2) as C1 1/2⊕ C2 post-processed by some channel.

Similarly, (C1D1) {x1}4+ (C2D2) = C1D1 is also transparent channel, but
C1 {x1}4+ C2 is a null channel, and the same argument applies. However, we can estab-
lish less general properties for these operators by considering only the case when both

3.3. The Dining Cryptographers protocol (cont.) 41

components are of the same type and are post-processed by a same channel C. In this
scenario, the result is the same as if we post-processed their entire composition by C.

Proposition 3.26. Let C1, C2 ∈ CYX be channels of the same type, let D ∈ CZY and let
p ∈ [0, 1]. Then, (C1D) p⊕ (C2D) = (C1 p⊕ C2)D.

Proposition 3.27. Let C1, C2 ∈ CYX be channels of the same type, let D ∈ CZY and let
A ⊂ X . Then, (C1D) A4+ (C2D) = (C1 A4+ C2)D.

3.3 The Dining Cryptographers protocol (cont.)

We now continue the example we introduced in Section 1.3, by developing a model of
the Dining Cryptographers protocol using the operators we defined in this chapter. We
consider the situation in which there are 4 cryptographers and 4 coins, and denote the
channel of the protocol by Dining . The input set of the channel is X = {c1, c2, c3, c4, n},
in which ci represents that cryptographer i is the payer, and n represents that the NSA
is the payer. The output set of the channel is Y = {0, 1}4, i.e., all 4-tuples representing
possible announcements by all cryptographers, in order.

Following the scheme in Figure 1.3 (middle), we begin by modelling the protocol
as the interaction between two channels, Coins and Announcements . The first channel
models the coin tosses, whereas the second one models the public announcements of
the cryptographers. Since in the protocol first the coins are tossed, and only then the
corresponding results are passed on to the party of cryptographers, a natural starting
point is to describe Dining as the cascading of these two channels:

Dining = (Coins)(Announcements).

The intuition behind this decision is to provide channel Announcements with the
result of the coin tosses, which are necessary to calculate the output of each cryptog-
rapher.

To specify channel Coins , we use the parallel composition of channels Coin1,
Coin2, Coin3 and Coin4, each representing one coin toss. Letting pi denote the proba-
bility of coin i landing on tails, these channels are defined as in Table 3.2. Besides the
result of the tosses, Coins also needs to pass on to Announcements the identity of the
payer. We then introduce a fifth channel, I ∈ CXX , that simply outputs the secret, i.e.,
I(x, x′) = 1 if x = x′, and 0 otherwise. Hence, a complete definition of channel Coins
is

Coins = Coin1 ‖ Coin2 ‖ Coin3 ‖ Coin4 ‖ I.

42 Chapter 3. Operators and their Algebraic Properties

Coin i Tails Heads
c1 pi 1−pi
c2 pi 1−pi
c3 pi 1−pi
c4 pi 1−pi
n pi 1−pi

Table 3.2. Channel representing toss of coin Coini.

As we proved in Proposition 3.10, parallel composition is associative, allowing us
to omit parentheses in the equation above.

We now specify the channel Announcements , which should take as input a 5-
tuple with five terms. The first four elements are the results of the coin tosses, and
the fifth is the identity of the payer. Therefore, the input set of this channel is X ′ =

{Tails,Heads}4 × X . The input has all the information necessary to determine the
output of each cryptographer, and we describe each participant as a channel with input
set X ′ and output set {0, 1}, the possible announcements. For example, the channel
Crypto1 below describes the first cryptographer.

Crypto1(t1, t2, t3, t4, x) =

1, if t4 = t1 and x = c1, or t4 6= t1 and x 6= c1,

0, otherwise.

Channels Crypto2, Crypto3 and Crypto4 describing the remaining cryptographers
are defined analogously. Channel Announcements is, hence, defined as

Announcements = Crypto1 ‖ Crypto2 ‖ Crypto3 ‖ Crypto4.

Note that our operators allow for an intuitive and succinct representation of the
channel Dining modelling the Dining Cryptographers protocol, even when the number
of cryptographers and coins is large.

The model we developed in this section gives us a straightforward way of calcu-
lating the channel of the protocol. In Table 3.3 we present the corresponding channels
for three cryptographers in three different scenarios. The top channel Dining1 depicts
a situation when all coins are fair. The middle one, Dining2, a situation when they
are all equal but unfair. Finally, channel Dining3 at the bottom represents a scenario
in which the coins are all different.

Since half of the outputs occur if and only if the secret is one of the cryptographers,
we can see that the protocol completely reveals whether the NSA is paying for dinner
in all three channels. Moreover, the fact that the first three lines in Dining1 are equal
shows that no information is leaked regarding which cryptographer is the payer if the

3.3. The Dining Cryptographers protocol (cont.) 43

coins are fair.

Dining1 001 010 100 111 000 011 101 110

c1 0.25 0.25 0.25 0.25 0 0 0 0

c2 0.25 0.25 0.25 0.25 0 0 0 0

c3 0.25 0.25 0.25 0.25 0 0 0 0

n 0 0 0 0 0.25 0.25 0.25 0.25

Dining2 001 010 100 111 000 011 101 110

c1 0.21 0.21 0.37 0.21 0 0 0 0

c2 0.21 0.37 0.21 0.21 0 0 0 0

c3 0.37 0.21 0.21 0.21 0 0 0 0

n 0 0 0 0 0.37 0.21 0.21 0.21

Dining3 001 010 100 111 000 011 101 110

c1 0.18 0.26 0.36 0.2 0 0 0 0

c2 0.2 0.36 0.26 0.18 0 0 0 0

c3 0.36 0.2 0.18 0.26 0 0 0 0

n 0 0 0 0 0.36 0.2 0.18 0.26

Table 3.3. Channels Dining1, in which p1 = p2 = p3 = 0.5; Dining2, in which
p1 = p2 = p3 = 0.7, and Dining3, in which p1 = 0.6, p2 = 0.7 and p3 = 0.8.

To analyse the leakage of these channels, we need to define a suitable gain func-
tion. We consider an adversary that is interested in obtaining the identity of a possible
payer among the cryptographers, but not interested in the scenario in which the NSA
is paying. A possible gain function with set of actionsW = {c1, c2, c3} (in which action
ci means the adversary guesses the payer is the cryptographer ci) is given by

gD(x, x′) =

1, if x = x′,

0, otherwise.

That is, the adversary gains whenever he guesses the correct identity of the payer,
unless it is the NSA. Consider the uniform prior πu = (0.25, 0.25, 0.25, 0.25), which
yields the g-vulnerability VgD [πu] = 0.25. The corresponding posterior g-vulnerabilities
are

VgD [πu 〉Dining1] = 0.25,

VgD [πu 〉Dining2] = 0.33,

44 Chapter 3. Operators and their Algebraic Properties

VgD [πu 〉Dining3] = 0.335.

As expected, the channelDining1 does not increase the vulnerability of the secret,
which reflects the complete secrecy of the protocol when the coins are fair. The same
cannot be said about channels Dining2 and Dining3, that additively increase the g-
vulnerability of the secret by 0.08 and 0.085, respectively.

Chapter 4

Leakage Properties

In this chapter we discuss the main contribution of this thesis: a series of results
showing how, using the proposed algebra, we can facilitate the security analysis of
compound systems. More specifically, we tackle the two specific objectives presented
in Section 1.2.1 for our operators.

For the remaining of the section, let C1 ∈ CY1X and C2 ∈ CY2X be compatible
channels. We also recall Definition 3.1: for all C ∈ CYX , we define C(x, y) = 0 for all
y 6∈ Y .

4.1 The problem of compositional vulnerability

The first problem consists in estimating the information leakage of a composition in
terms of the leakage of its components. This can be formalized as follows.

The problem of compositional vulnerability: Given a composition operator
∗ on channels, a prior π, and a gain function g, can we describe Vg[π 〉C1∗C2] in terms
of Vg[π 〉C1] and Vg[π 〉C2]?

4.1.1 Compositional vulnerability for the parallel operator

There is no description of Vg[π 〉C1 ‖ C2] as a function of Vg[π 〉C1] and Vg[π 〉C2] that
holds for all channels C1, C2 and prior π.

For example, consider the following channels and their parallel composition.

45

46 Chapter 4. Leakage Properties

C1 y1 y2

x1 1 0

x2 1 0

x3 0 1

C2 y1 y2

x1 1 0

x2 0 1

x3 0 1

C1 ‖ C2 (y1, y1) (y1, y2) (y2, y1) (y2, y2)

x1 1 0 0 0

x2 0 1 0 0

x3 0 0 0 1

Consider also the composition C1 ‖ C1, that is equivalent to C1 by Proposition
3.12. Let gid be as in Definition 2.10, and πu = (1/3, 1/3, 1/3).

We have that Vgid [πu 〉C1] = Vgid [πu 〉C2] = 2/3. Therefore, if the g-vulnerability
of a parallel composition could be described as a function of the g-vulnerability of its
components, Vgid [π 〉C1 ‖ C1] would be equal to Vgid [π 〉C1 ‖ C2]. However, we have
Vgid [πu 〉C1 ‖ C1] = 2/3 and Vgid [πu 〉C1 ‖ C2] = 1.

For the parallel composition, therefore, we shall explore upper and lower bounds.
We start with the following theorem, proving that the g-vulnerability of a parallel
composition is at least as high as that of its components.

Theorem 4.1 (Lower bound for Vg w.r.t. ‖). For all g ∈ GX and all π ∈ DX ,

Vg[π 〉C1‖C2] ≥ max(Vg[π 〉C1], Vg[π 〉C2]).

Proof. For all π ∈ DX and g ∈ GX ,

Vg[π 〉C1 ‖ C2]

=
∑
y1∈Y1

∑
y2∈Y2

max
w∈W

∑
x∈X

(C1 ‖ C2)(x, (y1, y2))g(w, x)π(x) (by Prop 2.22)

=
∑
y1∈Y1

∑
y2∈Y2

max
w∈W

∑
x∈X

C1(x, y1)C2(x, y2)g(w, x)π(x) (by def. of ‖)

≥
∑
y1∈Y1

max
w∈W

∑
y2∈Y2

∑
x∈X

C1(x, y1)C2(x, y2)g(w, x)π(x) (moving max outside a sum)

=
∑
y1∈Y1

max
w∈W

∑
x∈X

C1(x, y1)g(w, x)π(x)
∑
y2∈Y2

C2(x, y2) (rearranging)

=
∑
y1∈Y1

max
w∈W

∑
x∈X

C1(x, y1)g(w, x)π(x) (C2 is a channel)

=Vg[π 〉C1] (by Prop. 2.22)

The proof that Vg[π 〉C1 ‖ C2] ≥ Vg[π 〉C2] is analogous.

We present now the upper bound for Vg with regard to the parallel composition. It

4.1. The problem of compositional vulnerability 47

is obtained by multiplying the g-vulnerability of a component by the sum of the biggest
values of the other channel for each output. This upper bound is easy to calculate from
the description of C1 and C2, and can be specially useful when the channel C1 ‖ C2 is
very large — that is, when the size of the input and output sets makes the calculation
of Vg computationally infeasible.

Theorem 4.2 (Upper bound for Vg w.r.t. ‖). For all g ∈ GX and all π ∈ DX , let
X ′ = {x∈X | ∃w∈W; π(x)g(w, x) > 0}. Then

Vg[π 〉C1‖C2] ≤ min

(
Vg[π 〉C1]

∑
y2∈Y2

max
x∈X ′

C2(x, y2), Vg[π 〉C2]
∑
y1∈Y1

max
x∈X ′

C1(x, y1)

)
.

Proof. For all π ∈ DX and g ∈ GX ,

Vg[π 〉C1 ‖ C2]

=
∑
y2∈Y2

∑
y1∈Y1

max
w∈W

∑
x∈X

(C1 ‖ C2)(x, (y1, y2))g(w, x)π(x) (by Prop. 2.22)

=
∑
y2∈Y2

∑
y1∈Y1

max
w∈W

∑
x∈X

C1(x, y1)C2(x, y2)g(w, x)π(x) (by def. of ‖)

=
∑
y2∈Y2

∑
y1∈Y1

max
w∈W

∑
x∈X ′

C1(x, y1)C2(x, y2)g(w, x)π(x)

(if x 6∈ X ′, g(w, x)π(x) = 0)

≤
∑
y2∈Y2

∑
y1∈Y1

max
w∈W

∑
x∈X ′

C1(x, y1)

(
max
x′∈X ′

C2(x′, y2)

)
g(w, x)π(x)

(for all x ∈ X ′, C2(x, y2) ≤ max
x′∈X ′

C2(x′, y2))

=
∑
y2∈Y2

max
x′∈X ′

C2(x′, y2)
∑
y1∈Y1

max
w∈W

∑
x∈X ′

C1(x, y1)g(w, x)π(x) (rearranging)

=
∑
y2∈Y2

max
x∈X ′

C2(x, y2)Vg[π 〉C1] (by Prop. 2.22)

=Vg[π 〉C1]
∑
y2∈Y2

max
x∈X ′

C2(x, y2)

The proof that Vg[π 〉C1 ‖ C2] ≤ Vg[π 〉C2]
∑

y1∈Y1 max
x∈X ′

C1(x, y1) is analogous.

4.1.2 Compositional vulnerability for visible choice

Contrary to the parallel composition, the g-vulnerability of the visible choice compo-
sition can be easily calculated from the g-vulnerability of its components.

48 Chapter 4. Leakage Properties

Theorem 4.3 (Linearity of Vg w.r.t. p ·t). For all g ∈ GX , π ∈ DX and p ∈ [0, 1],

Vg[π 〉C1 p ·t C2] = pVg[π 〉C1] + (1− p)Vg[π 〉C2].

Proof. For all π ∈ DX , g ∈ GX and p ∈ [0, 1],

Vg[π 〉C1 p ·t C2]

=
∑

(y,i)∈Y1tY2

max
w∈W

∑
x∈X

(C1 p ·t C2)(x, (y, i))g(w, x)π(x) (by Prop. 2.22)

=
∑
y∈Y1

max
w∈W

∑
x∈X

(C1 p ·t C2)(x, (y, 1))g(w, x)π(x)

+
∑
y∈Y2

max
w∈W

∑
x∈X

(C1 p ·t C2)(x, (y, 2))g(w, x)π(x) (separating Y1 and Y2)

=
∑
y∈Y1

max
w∈W

∑
x∈X

pC1(x, y)g(w, x)π(x)

+
∑
y∈Y2

max
w∈W

∑
x∈X

(1− p)C2(x, y)g(w, x)π(x) (by def. of p ·t)

=pVg[π 〉C1] + (1− p)Vg[π 〉C2] (by Prop. 2.22)

4.1.3 Compositional vulnerability for hidden choice

The g-vulnerability of a hidden choice composition, however, cannot be assessed sim-
ply from the g-vulnerability of its components. Consider, for example, the following
channels and compositions.

C1 y1 y2

x1 1 0

x2 0 1

C2 y1 y2

x1 0 1

x2 1 0

C1 1/2⊕ C1 y1 y2

x1 1 0

x2 0 1

C1 1/2⊕ C2 y1 y2

x1
1/2 1/2

x2
1/2 1/2

Despite the fact that C1 ≈ C2, and therefore Vg[π 〉C1] = Vg[π 〉C2] for any prior π
and gain function g, we have that C1 1/2⊕ C1 is a transparent channel, while C1 1/2⊕ C2

is a null channel.
However, it is possible to establish upper and lower bounds for Vg[π 〉C1 p⊕ C2]

from the g-vulnerabilities of C1 and C2. In Chapter 5, we use these bounds to obtain
an algorithm to estimate the channel of the Crowds protocol [Reiter and Rubin, 1998].

We start by presenting a lower bound. Loosely speaking, the channel C1 p⊕ C2

can be seen as multiplying the values of C1 by p, of C2 by 1 − p, and summing them

4.1. The problem of compositional vulnerability 49

together. This bound is a consequence of the equation for Vg in Proposition 2.22 being
monotonically non-decreasing on each channel entry.

Theorem 4.4 (Lower bound for Vg w.r.t. p⊕). For all g ∈ GX , π ∈ DX and p ∈ [0, 1],

Vg[π 〉C1 p⊕ C2] ≥ max(pVg[π 〉C1], (1− p)Vg[π 〉C2]).

Proof. For all π ∈ X , g ∈ GX and p ∈ [0, 1],

Vg[π 〉C1 p⊕ C2]

=
∑

y∈Y1∪Y2

max
w∈W

∑
x∈X

(C1 p⊕ C2)(x, y)g(w, x)π(x) (by Prop. 2.22)

=
∑

y∈Y1∪Y2

max
w∈W

∑
x∈X

(pC1(x, y) + (1− p)C2(x, y))g(w, x)π(x) (by def. of p⊕)

≥
∑
y∈Y1

max
w∈W

∑
x∈X

(pC1(x, y) + (1− p)C2(x, y))g(w, x)π(x) (sub. nonegative terms)

≥
∑
y∈Y1

max
w∈W

∑
x∈X

pC1(x, y)g(w, x)π(x) (C2(x, y) ≥ 0)

=pVg[π 〉C1] (by Prop. 2.22)

The proof that Vg[π 〉C1 p⊕ C2] ≥ (1− p)Vg[π 〉C2] is similar.

Our next result shows that the g-vulnerability of a hidden choice of two channels
is never greater than that of a visible choice of the same channels, with regard to the
same probability p. This is intuitive, since the adversary has access to extra information
in the visible choice scenario — namely, which component was executed.

Theorem 4.5 (Upper bound for Vg w.r.t. p⊕). For all g ∈ GX , π ∈ DX and p ∈ [0, 1],

Vg[π 〉C1 p⊕ C2] ≤ pVg[π 〉C1] + (1− p)Vg[π 〉C2].

Proof. For all π ∈ DX , g ∈ GX and p ∈ [0, 1],

Vg[π 〉C1 p⊕ C2]

=
∑

y∈Y1∪Y2

max
w∈W

∑
x∈X

(C1 p⊕ C2)(x, y)g(w, x)π(x) (by Prop. 2.22)

=
∑

y∈Y1∪Y2

max
w∈W

∑
x∈X

(pC1(x, y) + (1− p)C2(x, y))g(w, x)π(x) (by def. of p⊕)

50 Chapter 4. Leakage Properties

=
∑

y∈Y1∩Y2

max
w∈W

∑
x∈X

(pC1(x, y) + (1− p)C2(x, y))g(w, x)π(x)

+
∑

y∈Y1\Y2

max
w∈W

∑
x∈X

pC1(x, y)g(w, x)π(x)

+
∑

y∈Y2\Y1

max
w∈W

∑
x∈X

(1− p)C2(x, y)g(w, x)π(x) (Ci(x, y) = 0 if y 6∈ Yi)

≤
∑

y∈Y1∩Y2

max
w∈W

∑
x∈X

pC1(x, y)g(w, x)π(x)

+
∑

y∈Y1∩Y2

max
w∈W

∑
x∈X

(1− p)C2(x, y)g(w, x)π(x)

+
∑

y∈Y1\Y2

max
w∈W

∑
x∈X

pC1(x, y)g(w, x)π(x)

+
∑

y∈Y2\Y1

max
w∈W

∑
x∈X

(1− p)C2(x, y)g(w, x)π(x) (distributing the max)

=
∑
y∈Y1

max
w∈W

∑
x∈X

pC1(x, y)g(w, x)π(x)

+
∑
y∈Y2

max
w∈W

∑
x∈X

(1− p)C2(x, y)g(w, x)π(x) (rearranging)

=pVg[π 〉C1] + (1− p)Vg[π 〉C2] (by Prop. 2.22)

Theorems 4.1, 4.3 and 4.5 above yield an interesting ordering between these three
operators.

Corollary 4.6 (Ordering between ‖, p ·t and p⊕). For all p ∈ [0, 1],

C1 ‖ C2 v◦ C1 p ·t C2 v◦ C1 p⊕ C2.

Proof. We have that pVg[π 〉C1] + (1 − p)Vg[π 〉C2] ≤ max(Vg[π 〉C1], Vg[π 〉C2]), so
Theorems 4.1 and 4.3 yield C1 ‖ C2 v◦ C1 p ·t C2. That C1 p ·t C2 v◦ C1 p⊕ C2 is clear
from Theorems 4.3 and 4.5.

We emphasize that the relation C1 p ·t C2 v◦ C1 p⊕ C2 is only valid for a given
p. In general, C1 p ·t C2 v◦ C1 q⊕ C2 is not true when p 6= q.

4.1.4 Channel and vulnerability restrictions

In contrast to the other operators, both the visible and hidden if-then-else operators
have the peculiarity of partially disregarding the channels they act on. For example,

4.1. The problem of compositional vulnerability 51

the values of C1(x, y) for x ∈ A have no influence on channels C1 A4 C2 or C1 A4+ C2.
Therefore, any result linking leakage properties of these compositions to Vg[π 〉C1]

and Vg[π 〉C2], which take the whole channels C1 and C2 into account, is bound to be
somewhat coarse. We are able to do much better, instead, by expressing their leakage
properties in terms of restrictions on those channels and gain functions. We define
those restrictions, and some of their properties, as follows.

Definition 4.7. Let C ∈ CYX be a channel and A ⊂ X . We define the restriction of
channel C to A, C|A : A× Y → [0, 1], as C|A(x, y) = C(x, y) for all x ∈ A, y ∈ Y.

It is worth noting that C|A is a channel in its own right.

Definition 4.8. Let X be an input set, A ⊂ X , and g ∈ GX . We define the subset
gain function gA :W ×X → [0, 1] of g w.r.t. A as, for all w ∈ W and x ∈ X ,

gA(w, x) =

g(w, x), if x ∈ A,

0, otherwise.

The idea of the subset gain function gA is that it considers only the values of the
channel for which x ∈ A. That is, for all π ∈ DX , g ∈ GX and C ∈ CYX ,

VgA [π 〉C] =
∑
y∈Y

max
w∈W

∑
x∈X

C(x, y)gA(w, y)π(x) =
∑
y∈Y

max
w∈W

∑
x∈A

C(x, y)g(w, y)π(x).

We now introduce two results relating channel restrictions to subset gain func-
tions, which will be useful when investigating leakage properties of the visible and
hidden if-then-else operators.

Proposition 4.9. Let C ∈ CYX , A ⊂ X , g ∈ GX and π ∈ X . Then,

VgA [π 〉C] = Vg′ [π
′ 〉C|A]

∑
x∈A

π(x),

where π′ ∈ DA is defined as π′(x) = π(x)∑
x′∈A π(x′)

for all x ∈ X , and g′ ∈ GA is a gain
function with the same set of actions W as g, defined as g′(w, x) = g(w, x) for all
w ∈ W and x ∈ A.

Proof.

VgA [π 〉C]

=
∑
y∈Y

max
w∈W

∑
x∈A

C(x, y)π(x)gA(w, x) (by Prop. 2.22)

52 Chapter 4. Leakage Properties

=

(∑
x∈A

π(x)

)∑
y∈Y

max
w∈W

∑
x∈A

C(x, y)gA(w, x)
π(x)∑

x′∈A π(x′)
(mul. and div. by

∑
x∈A

π(x))

=

(∑
x∈A

π(x)

)∑
y∈Y

max
w∈W

∑
x∈A

C(x, y)g′(w, x)π′(x) (by def. of π′, g′)

=Vg′ [π
′ 〉C|A]

∑
x∈A

π(x) (by Prop. 2.22)

Corollary 4.10. C2|A v◦ C1|A ⇐⇒ ∀π ∈ DX , ∀g ∈ GX . VgA [π 〉C1] ≤ VgA [π 〉C2].

Proof. Let π ∈ DX , g ∈ GX , and define π′ ∈ DX , g′ ∈ GA as in Proposition 4.9.
Then, by the same proposition,

C2|A v◦ C1|A =⇒ Vg′ [π
′ 〉C1|A] ≤ Vg′ [π

′ 〉C2|A] =⇒ VgA [π 〉C1] ≤ VgA [π 〉C2].

Conversely, let π ∈ A and g ∈ GA. Define π ∈ DX as π′(x) = π(x) if x ∈ A
and 0 otherwise, and define g′ ∈ GX similarly. Then, the left side of the equivalence
implies Vg[π 〉C1|A] ≤ Vg[π 〉C2|A].

After this little detour, we are ready to present the compositional vulnerability
results of the visible and hidden if-then-else operators.

4.1.5 Compositional vulnerability for visible if-then-else

Despite not being able to calculate Vg[π 〉C1 A4 C2] from Vg[π 〉C1] and Vg[π 〉C2], as
the visible if-then-else composition only takes into account part of the channels of the
components, we can fully describe it in terms of VgA [π 〉C1] and VgA [π 〉C2], where gA,
gA are defined as in Definition 4.8.

Theorem 4.11 (Linearity of Vg w.r.t A4). For all π ∈ DX , all sets A ⊂ X , and all
g ∈ GX ,

Vg[π 〉C1 A4 C2] = VgA [π 〉C1] + VgA [π 〉C2].

Proof.

Vg[π 〉C1 A4 C2]

=
∑

(y,i)∈Y1tY2

max
w∈W

∑
x∈X

(C1 A4 C2)(x, (y, i))π(x)g(w, x) (by Prop. 2.22)

=
∑

(y,i)∈Y1×{1}

max
w∈W

∑
x∈X

(C1 A4 C2)(x, (y, i))π(x)g(w, x)

4.1. The problem of compositional vulnerability 53

+
∑

(y,i)∈Y2×{2}

max
w∈W

∑
x∈X

(C1 A4 C2)(x, (y, i))π(x)g(w, x) (distributing)

=
∑
y∈Y1

max
w∈W

∑
x∈A

C1(x, y)π(x)g(w, x)

+
∑
y∈Y2

max
w∈W

∑
x∈A

C2(x, y)π(x)g(w, x) (by def. of A4)

=VgA [π 〉C1] + VgA [π 〉C2] (by Prop. 2.22)

4.1.6 Compositional vulnerability for hidden if-then-else

In an interesting parallel to visible and hidden choice, the g-vulnerability of a hidden
if-then-else composition cannot, in general, be calculated simply from VgA [π 〉C1] and
VgA [π 〉C2], contrary to its visible counterpart.

As an example, consider the following channels and compositions, with A = {x1}.

C1 y1 y2

x1 1 0

x2 0 1

C2 y1 y2

x1 0 1

x2 1 0

C1 A4+ C1 y1 y2

x1 1 0

x2 0 1

C1 A4+ C2 y1 y2

x1 1 0

x2 1 0

We have that C1 ≈ C2, and therefore, for any prior π and any gain function g

(including gA and gA), Vg[π 〉C1] = Vg[π 〉C2]. However, C1 A4+ C1 is a transparent
channel, and C1 A4+ C2 is a null channel, which implies there is no general way of
calculating Vg[π 〉C1 A4+ C2] simply from VgA [π 〉C1] and VgA [π 〉C2].

The next result establishes a lower bound for the hidden if-then-else, which states
that the g-leakage of the hidden if-then-else of two channels is never less than that of
its components, w.r.t. the appropriate subset gain functions.

Theorem 4.12 (Lower bound for Vg w.r.t A4+). For all π ∈ DX , all sets A ⊂ X and
all g ∈ GX ,

Vg[π 〉C1 A4+ C2] ≥ max(VgA [π 〉C1], VgA [π 〉C2]).

Proof.

Vg[π 〉C1 A4+ C2]

=
∑

y∈Y1∪Y2

max
w∈W

∑
x∈X

(C1 A4+ C2)(x, y)π(x)g(w, x) (by Prop. 2.22)

54 Chapter 4. Leakage Properties

=
∑

y∈Y1∪Y2

max
w∈W

(∑
x∈A

C1(x, y)π(x)g(w, x)

+
∑
x∈A

C2(x, y)π(x)g(w, x)

)
(by def. of A4+)

≥
∑

y∈Y1∪Y2

max
w∈W

∑
x∈A

C1(x, y)π(x)g(w, x) (subtracting nonegative terms)

=
∑
y∈Y1

max
w∈W

∑
x∈A

C1(x, y)π(x)g(w, x) (C1(x, y) = 0 if y 6∈ Y1)

=VgA [π 〉C1] (by Prop. 2.22)

The proof that Vg[π 〉C1 A4+ C2] ≥ VgA [π 〉C2] is similar.

The visible if-then-else of two channels always reveals at least as much informa-
tion as its hidden counterpart. This is intuitive, since the former chooses to execute
each component in the same manner as the latter, but informs the adversary of the
choice. The next theorem proves this intuition, providing an upper bound for the
g-vulnerability of the hidden if-then-else composition.

Theorem 4.13 (Upper bound for Vg w.r.t A4+). For all π ∈ DX , all sets A ⊂ X , and
all g ∈ GX ,

Vg[π 〉C1 A4+ C2] ≤ VgA [π 〉C1] + VgA [π 〉C2].

Proof.

Vg[π 〉C1 A4+ C2]

=
∑

y∈Y1∪Y2

max
w∈W

∑
x∈X

(C1 A4+ C2)(x, y)π(x)g(w, x) (by Prop. 2.22)

=
∑

y∈Y1∪Y2

max
w∈W

(∑
x∈A

C1(x, y)π(x)g(w, x)

+
∑
x∈A

C2(x, y)π(x)g(w, x)

)
(by def. of A4+)

≤
∑

y∈Y1∪Y2

max
w∈W

∑
x∈A

C1(x, y)π(x)g(w, x)

+
∑

y∈Y1∪Y2

max
w∈W

∑
x∈A

C2(x, y)π(x)g(w, x) (distributing the max)

=
∑
y∈Y1

max
w∈W

∑
x∈A

C1(x, y)π(x)g(w, x)

4.2. The problem of relative monotonicity 55

+
∑
y∈Y2

max
w∈W

∑
x∈A

C2(x, y)π(x)g(w, x) (Ci(x, y) = 0 if y 6∈ Yi)

=VgA [π 〉C1] + VgA [π 〉C2] (by Prop. 2.22)

For completeness, we present a corollary similar to Corollary 4.6, concisely stat-
ing the ordering relation between the if-then-else operators. This corollary follows
immediately from Theorems 4.11 and 4.13.

Corollary 4.14 (Ordering between if-then-else operators). For all A ⊂ X ,

C1 A4 C2 v◦ C1 A4+ C2.

4.2 The problem of relative monotonicity

The second problem concerns establishing whether a component channel of a larger
system can be safely substituted with another component, i.e., whether substituting
a component with a safer one can cause an increase in the information leakage of the
system as a whole. This can be formalized as follows.

The problem of relative monotonicity: Given a composition operator ∗ on
channels, is it the case that

C2 v◦ C1 ⇐⇒ ∀C ∈ CX , (C2 ∗ C) v◦ (C1 ∗ C) ?

We recall Theorem 2.32, which states that C2 v◦ C1 is equivalent to

∀π ∈ DX ,∀g ∈ GX , Vg[π 〉C1] ≤ Vg[π 〉C2].

Given an operator ∗, we refer to

C2 v◦ C1 =⇒ ∀C ∈ CX , (C2 ∗ C) v◦ (C1 ∗ C)

as the direct implication of relative monotonicity, and to

∀C ∈ CX , (C2 ∗ C) v◦ (C1 ∗ C) =⇒ C2 v◦ C1

as the converse implication of relative monotonicity.

56 Chapter 4. Leakage Properties

While relative monotonicity does not hold at all for some operators, even stronger
results can be found for the others. In this section, for all the operators that relative
monotonicity holds, we will try first proving the following stronger equivalence. Given
π ∈ DX and g ∈ GX ,

Vg[π 〉C1] ≤ Vg[π 〉C2]⇔ ∀C ∈ CX , Vg[π 〉C1 ∗ C] ≤ Vg[π 〉C2 ∗ C]. (4.1)

These stricter results may be of practical interest in a number of situations in
which when we know π and g — i.e., the knowledge and interests of the adversary. It
can be handy, in these cases, to establish some form of relative monotonicity even for
channels that do not respect the refinement relation in any direction.

4.2.1 Relative monotonicity for the parallel operator

As we will see in this section, relative monotonicity does hold for the parallel operator.
However, the direct implication on equivalence (4.1)— i.e., the implication

Vg[π 〉C1] ≤ Vg[π 〉C2] =⇒ ∀C ∈ CX , Vg[π 〉C1 ‖ C] ≤ Vg[π 〉C2 ‖ C] (4.2)

does not hold for all π ∈ DX and all g ∈ GX .
As a counter-example, consider the following channels.

C1 y1 y2

x1 1 0

x2 1 0

x3 0 1

C2 y1 y2

x1 1 0

x2 0 1

x3 0 1

Let πu = (1/3, 1/3, 1/3) and let gid be as in Definition 2.10. Then,
Vgid [πu 〉C1] ≤ Vgid [πu 〉C2]. However, if we consider the composition of both with
C2, we obtain.

C1 ‖ C2 (y1, y1) (y1, y2) (y2, y1) (y2, y2)

x1 1 0 0 0

x2 0 1 0 0

x3 0 0 0 1

C2 ‖ C2 (y1, y1) (y1, y2) (y2, y1) (y2, y2)

x1 1 0 0 0

x2 0 0 0 1

x3 0 0 0 1

4.2. The problem of relative monotonicity 57

Which yields Vgid [πu 〉C1 ‖ C2] = 1 and Vgid [πu 〉C2 ‖ C2] = 2/3, therefore
Vgid [πu 〉C1 ‖ C2] > Vgid [πu 〉C2 ‖ C2].

There is still, however, a result stricter than relative monotonicity that we can
prove for the parallel operator. We present two weaker monotonicity results, obtained
by restricting the antecedent in implication 4.2 to a stronger condition: either ∀π ∈
DX , Vg[π 〉C1] ≤ Vg[π 〉C2] for a fixed g, or ∀g ∈ GX , Vg[π 〉C1] ≤ Vg[π 〉C2] for a
fixed π.

These conditions, despite being more restrictive, are still useful. When we can
establish that a channel C1 is always at least as secure as a channel C2 for either a
given knowledge of the adversary (represented by the prior π) or a given preference of
the adversary (represented by the gain function g), we can use them to guarantee that
substituting C1 for C2 on a parallel composition would not turn the system less secure.

We first enunciate the result for fixed g.

Theorem 4.15. For all g ∈ GX ,

∀π ∈ DX , Vg[π 〉C1] ≤ Vg[π 〉C2]⇒ ∀π ∈ DX ,∀C ∈ CX , Vg[π 〉C1 ‖ C] ≤ Vg[π 〉C2 ‖ C].

Proof. We will prove the contrapositive.

Let g ∈ GX . Assume that there is a probability distribution π ∈ DX and a
channel C ∈ CZX such that

Vg[π 〉C1 ‖ C] > Vg[π 〉C2 ‖ C].

From Proposition 2.22, we derive

∑
z∈Z

∑
y1∈Y1

max
w∈W

(∑
x∈X

C1(x, y1)C(x, z)g(w, x)π(x)

)
>

∑
z∈Z

∑
y2∈Y2

max
w∈W

(∑
x∈X

C2(x, y2)C(x, z)g(w, x)π(x)

)
.

For this inequality to hold, it must be true that, for some z′ ∈ Z,

∑
y1∈Y1

max
w∈W

(∑
x∈X

C1(x, y1)C(x, z′)g(w, x)π(x)

)
>

∑
y2∈Y2

max
w∈W

(∑
x∈X

C2(x, y2)C(x, z′)g(w, x)π(x)

)
.

58 Chapter 4. Leakage Properties

The above inequality also implies that
∑

x′∈X C(x′, z′)π(x′) > 0, otherwise the
left hand-side could not possibly be strictly greater than the right hand-side. We can
therefore divide both sides by this quantity. Being a positive constant, we can put it
“inside” the max in both sides, yielding

∑
y1∈Y1

max
w∈W

∑
x∈X

(
C1(x, y1)g(w, x)

C(x, z′)π(x)∑
x′∈X (C(x′, z′)π(x′))

)
>

∑
y1∈Y2

max
w∈W

∑
x∈X

(
C2(x, y2)g(w, x)

C(x, z′)π(x)∑
x′∈X (C(x′, z′)π(x′))

)
.

We now define π′ : X → R as

π′(x) =
C(x, z′)π(x)∑

x′∈X (C(x′, z′)π(x′))
.

It is clear that π′ ∈ DX , for it is a non-negative function whose values sum to 1.
Therefore, the above inequality reduces to∑

y1∈Y1

max
w∈W

∑
x∈X

C1(x, y1)g(w, x)π′(x) >
∑
y2∈Y2

max
w∈W

∑
x∈X

C2(x, y2)g(w, x)π′(x).

That is, Vg[π′ 〉C1] > Vg[π
′ 〉C2], which completes the proof.

We now state the direct implication result for when we fix the prior distribution.

Theorem 4.16. For all π ∈ DX ,

∀g ∈ GX , Vg[π 〉C1] ≤ Vg[π 〉C2]⇒ ∀g ∈ GX , ∀C ∈ CX , Vg[π 〉C1 ‖ C] ≤ Vg[π 〉C2 ‖ C].

Proof. The proof is very similar to that of Theorem 4.15. We will, again, prove the
contrapositive.

Let π be a prior distribution. Assume that there is a gain function g ∈ GX and
a channel C ∈ CX such that

Vg[π 〉C1 ‖ C] > Vg[π 〉C2 ‖ C].

Similarly to the proof of Theorem 4.15, this implies that ∃z′ ∈ Z such that

∑
y1∈Y1

max
w∈W

(∑
x∈X

C1(x, y1)C(x, z′)g(w, x)π(x)

)
>

4.2. The problem of relative monotonicity 59

∑
y2∈Y2

max
w∈W

(∑
x∈X

C2(x, y2)C(x, z′)g(w, x)π(x)

)
.

We now define another gain function g′(w, x) = C(x, z′)g(w, x). Substituting this
value in the inequality above, we obtain∑

y1∈Y1

max
w∈W

∑
x∈X

C1(x, y1)g′(w, x)π(x) >
∑
y2∈Y2

max
w∈W

∑
x∈X

C2(x, y2)g′(w, x)π(x).

That is, Vg′ [π 〉C1] > Vg′ [π 〉C2], which completes the proof.

As we show in our next result the converse implication of (4.1) holds for the
parallel operator.

Theorem 4.17. For all π ∈ DX and all g ∈ GX

∀C ∈ CX , Vg[π 〉C1 ‖ C] ≤ Vg[π 〉C2 ‖ C] =⇒ Vg[π 〉C1] ≤ Vg[π 〉C2].

Proof. Let 0 ∈ CX be a null channel. From Equation 3.16 in Proposition 3.15, we
obtain

Vg[π 〉C1]

=Vg[π 〉C1 ‖ 0] (from Proposition 3.15)

≤Vg[π 〉C2 ‖ 0] (from assumption)

=Vg[π 〉C2] (from Proposition 3.15)

Having established the stricter results, we enunciate the original formulation of
the relative monotonicity as a corollary.

Corollary 4.18 (Relative monotonicity for ‖).

C2 v◦ C1 ⇐⇒ ∀C ∈ CX , (C2 ‖ C) v◦ (C1 ‖ C).

4.2.2 Relative monotonicity for visible choice

For the visible choice operator, the equivalence in (4.1) holds. Note, however, that
because Vg[π 〉C1 p ·t C] ≤ Vg[π 〉C2 p ·t C] is vacuously true if p = 0, we consider only
p ∈ (0, 1].

60 Chapter 4. Leakage Properties

Theorem 4.19. For all g ∈ GX , π ∈ DX and p ∈ (0, 1],

Vg[π 〉C1] ≤ Vg[π 〉C2]⇐⇒ ∀C ∈ CX , Vg[π 〉C1 p ·t C] ≤ Vg[π 〉C2 p ·t C].

Proof. For all p ∈ (0, 1], π ∈ DX and g ∈ GX

Vg[π 〉C1] ≤ Vg[π 〉C2]

⇔pVg[π 〉C1] ≤ pVg[π 〉C2] (p > 0)

⇔∀C ∈ CX . pVg[π 〉C1] + (1− p)Vg[π 〉C]

≤ pVg[π 〉C2] + (1− p)Vg[π 〉C] (adding in both sides)

⇔∀C ∈ CX . Vg[π 〉C1 p ·t C] ≤ Vg[π 〉C2 p ·t C] (from Theorem 4.3)

Corollary 4.20 (Relative monotonicity for p ·t).

C2 v◦ C1 ⇐⇒ ∀C ∈ CX , (C2 ‖ C) v◦ (C1 ‖ C).

4.2.3 Relative monotonicity for hidden choice

Perhaps surprisingly, the direct implication of relative monotonicity does not hold for
the hidden choice operator.

Theorem 4.21 (Relative monotonicity for p⊕, direct implication). Let X be an input
set such that |X | ≥ 2. For all p∈(0, 1), there are C1, C2 ∈ CX such that

C2 v◦ C1 and ∃π ∈ DX ,∃g ∈ GX ,∃C ∈ CX , Vg[π 〉C1 p⊕ C]>Vg[π 〉C2 p⊕ C].

Proof. Let X = {x1, x2, ..., xn} be an input set, where n = |X |. Let πu ∈ X be such
that πu(x) = 1/n for all x ∈ X , and let gid ∈ GX be as in Definition 2.10. Furthermore,
let Y = {y1, y2, ..., yn} and channels C2, C3 ∈ CYX defined as

C2(xi, yj) =

1, if j = i+ 1 or i = n and j = 1,

0, otherwise,
C3(xi, yj) =

1, if i = j,

0, otherwise,

for all i, j ∈ {1, ..., n}. We divide the proof in two cases:

4.2. The problem of relative monotonicity 61

Case 1: (p ≤ 0.5) Let C1 ∈ CYX be defined as follows.

C1(xi, yj) =

1/2, if j = 1, or j = 2,

0, otherwise,

for all i, j ∈ {1, ..., n}. Notice that C2 is a transparent channel, and therefore C2 v◦ C1.

We have, for all i, j ∈ {1, ..., n},

(C1 p⊕ C3)(xi, yj) =



1− p/2, if i = j = 1 or i = j = 2,

1− p, if i = j and i > 2,

p/2, if j ∈ {1, 2} and i 6= j,

0, otherwise.

(C2 p⊕ C3)(xi, yj) =


1− p, if i = j,

p, if j = i+ 1 or i = n and j = 1,

0, otherwise.

We notice from Proposition 2.22 that for any channel C ∈ CYX , Vgid [πu 〉C] =

1/|X |
∑

y∈Y maxx∈X C(x, y). Therefore, Vgid [πu 〉C1 p⊕ C3] = 1/n(1 + (n− 1)(1− p)) and
Vgid [πu 〉C2 p⊕ C3] = 1− p. Thus, we have Vgid [πu 〉C1 p⊕ C3] > Vgid [πu 〉C2 p⊕ C3].

Case 2: (p > 0.5) Let C1 ∈ CYX be defined as follows.

C1(xi, yj) =


3/2− 1/2p, if i = j,

1/2p− 1/2, if j = i+ 1 or i = n and j = 1,

0, otherwise.

for all i, j ∈ {1, ..., n}. Since C2 is a transparent channel, C2 v◦ C1.

We have, for all i, j ∈ {1, ..., n},

(C1 p⊕ C3)(xi, yj) =


p/2 + 1/2 if i = j,

1/2− p/2 if j = i+ 1 or i = n and j = 1,

0 otherwise.

62 Chapter 4. Leakage Properties

(C2 p⊕ C3)(xi, yj) =


1− p if i = j,

p if j = i+ 1 or i = n and j = 1,

0 otherwise.

Thus, Vgid [πu 〉C1 p⊕ C3] = 1
2
(p + 1) and Vgid [πu 〉C2 p⊕ C3] = p. Hence,

Vgid [πu 〉C1 p⊕ C3] > Vgid [πu 〉C2 p⊕ C3].

The converse implication of relative monotonicity, however, holds even in the
stricter form of Equation (4.1).

Theorem 4.22 (Relative monotonicity for p⊕, converse implication). For all g ∈ GX ,
π ∈ DX and p ∈ (0, 1],

∀C ∈ CX , Vg[π 〉C1 p⊕ C] ≤ Vg[π 〉C2 p⊕ C]⇒ Vg[π 〉C1] ≤ Vg[π 〉C2].

Proof. For all π ∈ DX and g ∈ GX ,

Vg[π 〉C1]

=Vg[π 〉C1 p⊕ C1] (from Proposition 3.11)

≤Vg[π 〉C2 p⊕ C1] (from assumption)

≤pVg[π 〉C2] + (1− p)Vg[π 〉C1] (from Theorem 4.5)

Thus, Vg[π 〉C1] ≤ pVg[π 〉C2]+(1−p)Vg[π 〉C1], which yields Vg[π 〉C1] ≤ Vg[π 〉C2].

4.2.4 Relative monotonicity for visible if-then-else

For both the visible and hidden if-then-else operators, we consider restrictions of chan-
nels as in Definition 4.7 and subset gain functions as in Definition 4.8. This is because,
as discussed in the beginning of Section 4.1.4, these operators disregard partially the
values of each channel, and we can obtain much more useful results by disregarding
these parts as well.

By considering the g-leakage of the components with the appropriate subset gain
function, the strict version of relative monotonicity in equation 4.1 holds for the visible
if-then-else operator. However, as Vg[π 〉C1 A4 C] ≤ Vg[π 〉C2 A4 C] is vacuously true
if A = ∅, we force A to be nonempty in our results.

Theorem 4.23. Let A ⊂ X such that A 6= ∅, g ∈ GX and π ∈ DX . Then

VgA [π 〉C1] ≤ VgA [π 〉C2]⇐⇒ ∀C ∈ CX , Vg[π 〉C1 A4 C] ≤ Vg[π 〉C2 A4 C].

4.2. The problem of relative monotonicity 63

Proof.

VgA [π 〉C1] ≤ VgA [π 〉C2]

⇔∀C ∈ CX . VgA [π 〉C1] + VgA [π 〉C] ≤ VgA [π 〉C2] + VgA [π 〉C] (add. both sides)

⇔∀C ∈ CX . Vg[π 〉C1 A4 C] ≤ Vg[π 〉C2 A4 C] (by Theorem 4.11)

Corollary 4.24 (Relative monotonicity for A4).

C2|A v◦ C1|A ⇐⇒ ∀C ∈ CX , (C2 A4 C) v◦ (C1 A4 C).

Proof. Follows from Theorem 4.23 and Corollary 4.10.

4.2.5 Relative monotonicity for hidden if-then-else

In an interesting parallel to the visible and hidden choice operators, the direct impli-
cation of relative monotonicity does not hold for the hidden if-then-else, in contrast to
its visible counterpart.

Theorem 4.25 (Relative monotonicity for A4+ , direct implication). Let X be a finite
set such that |X | > 1, and let A (X and A 6= ∅. Then, there are compatible channels
C1, C2 ∈ CX such that

C2|A v◦ C1|A and ∃g ∈ GX , ∃π ∈ DX ,∃C ∈ CX , Vg[π 〉C1 A4+ C] > Vg[π 〉C2 A4+ C].

Proof. Let |X | = n, and let X = {x1, ..., xn} be an idexing of X . Without losing
generality, let A = {x1, ..., xk}, for some k = |A| < n. Let Y = {y1, ..., yn}. We define
C1, C2 ∈ CYX as

C1(xi, yj) =

1, if i = j,

0, otherwise.
C2(xi, yj) =

1, if i = n− j + 1,

0, otherwise.

for all i, j ∈ {1, ..., n}. Note that C1|A and C2|A are both transparent channels, and
thus, C2|A v◦ C1|A.

64 Chapter 4. Leakage Properties

We have, for all i, j ∈ {1, ..., n},

(C1 A4+ C1)(xi, yj) =

1, if i = j,

0, otherwise.

(C2 A4+ C1)(xi, yj) =


1, if i = j and i ≤ k,

1, if i = n− j + 1 and i > k,

0, otherwise.

Let πu ∈ DX be the uniform distribution over X and gid be as in Def-
inition 2.10. From Proposition 2.22 we derive that, for any channel C ∈ CYX ,
Vgid [πu 〉C] = 1/|X |

∑
y∈Y maxx∈X C(x, y). We thus obtain Vgid [πu 〉C1 A4+ C1] = 1.

Notice that, for j ≥ max(k, n − k), (C2 A4+ C1)(xi, yj) = 0 for all i ∈ {1, ..., n}.
Therefore, Vgid [πu 〉C2 A4+ C1] ≤ 1/n(max(k, n− k)). Since 0 < k < n, we obtain

Vgid [πu 〉C1 A4+ C1] > Vgid [πu 〉C2 A4+ C1].

The converse implication of the stronger version relative monotonicity (Equation
(4.1)), however, does hold for the hidden if-then-else operator.

Theorem 4.26 (Relative monotonicity for A4+ , converse implication). For all g ∈ GX ,
π ∈ DX and A ⊂ X such that A 6= ∅,

∀C ∈ CX , Vg[π 〉C1A4+ C] ≤ Vg[π 〉C2A4+ C]⇒ Vg[π 〉C1] ≤ Vg[π 〉C2].

Proof. Let y3 be an element such that y3 6∈ Y1 ∪ Y2, and C3 ∈ C{y3}X . Since Y1

and {y3} are disjoint, for all π ∈ DX and g ∈ GX , we have Vg[π 〉C1 A4+ C3] =

Vg[π 〉C1 A4 C3] = VgA [π 〉C1]+VgA [π 〉C3]. Similarly, Vg[π 〉C2 A4+ C3] = VgA [π 〉C2]+

VgA [π 〉C3].
Therefore, Vg[π 〉C1 A4+ C3] ≤ Vg[π 〉C2 A4+ C3] =⇒ VgA [π 〉C1] ≤ VgA [π 〉C2].

Chapter 5

Case Study: the Crowds protocol

The interest in a better understanding regarding the leakage properties of channel
compositions is not limited to the foundational aspects of QIF. The investigations
presented in this thesis also aim to have immediate practical value: reasoning about
systems in an algebraic manner does often provide us with easier or more efficient ways
to model them and and study their leakage properties.

In this chapter, we use the operators studied in this thesis to model the well-
known Crowds [Reiter and Rubin, 1998] protocol. We were able to use some of our
results from Chapters 3 and 4 to devise an algorithm for obtaining an appropriate
channel representation.

5.1 Description of the protocol

The Crowds protocol, developed by Reiter and Rubin [1998], is one of the best known
anonymity protocols in the literature, and its ideas were essential for the widely used
Onion Routing protocol [Goldschlag et al., 1996]. Crowds was designed to be used by a
group of users who wish to anonymously send requests to a server. When a user wants
to send a request to the server, he first randomly picks a user in the group (maybe
himself) and forwards the request to that user. From that point on, each user, upon
receiving a request, sends it to the server with probability p ∈ (0, 1], or forwards it
to another user with probability 1−p. This second phase is repeated until the request
finally reaches the server. Assuming every user acts in good faith, the server (which
doubles as the adversary in this case) is usually not able to derive much information
about the identity of the initiator of the request.

In order to obtain more information from the protocol, the server might employ
corrupt users, who infiltrate among the regular, honest, ones. When a corrupt user

65

66 Chapter 5. Case Study: the Crowds protocol

receives a forwarded request, he shares the identity of the forwarder with the server,
and we say that the forwarder was detected. As no information can be gained after a
corrupt user intercepts a request, we need only to consider the execution of the protocol
until a detection occurs, or the message reaches the server.

In the original description of Crowds, all users have equal probability of being
forwarded a message, regardless of the forwarder. The channel modelling such a case is
easily computed, and well-known in the literature. Here we consider the more general
case in which each user may employ a different probability distribution when choosing
which user to forward a request to. Thus, we can capture scenarios in which not all
users can easily reach each other (a common problem in, for instance, ad-hoc networks).
We make the simplifying assumption that corrupt users are evenly distributed, i.e., that
all honest users have the same probability q ∈ (0, 1] of choosing a corrupt user as a
recipient when forwarding a request.

5.2 Modelling the protocol

We model Crowds as a channel Crowds:X×Y→[0, 1]. The input of the channel, taken
from set X={u1, u2, . . . , unh

}, represents the identity ui of the honest user (among a
total of nh honest users) who initiated the request.

The output of the channel can be of two different types. Either one honest user
forwards a request to a corrupt one, in which case the output is the identity of the
detected user, or the request eventually reaches the server, in which case the output is
the identity of the user who finally forwarded it to the server. Outputs of the first type
are represented by the set D={d1, d2, . . . , dnh

}, in which di indicates that user ui was
detected, while outputs of the second type are represented by the set S={s1, s2, . . . , snh

}
(disjoint from D), in which si indicates that user ui forwarded a message to the server.
The output set of Crowds is, therefore, Y = D ∪ S.

To compute the entries of the channel, we model the protocol as a time-stationary
Markov chain M = (U ,P), whose set of states is the set of honest users U , and its
transition function P is such that P (ui, uj) is the probability of uj being the recipient
of a request forwarded by ui, given that ui will not be detected.

To help us model the protocol, we first define four auxiliary channels, whose
purpose will be clear soon. Two transparent channels Id ∈ CDU and Is ∈ CSU , defined as,

5.2. Modelling the protocol 67

for all i, j ∈ {1, ..., nh},

Id(ui, dj)=Is(ui, sj) =

1, if i = j,

0, otherwise,

and two other channels Pd ∈ CDD and Ps ∈ CSS , based on the transition function of our
Markov chain M , defined as, for all i, j ∈ {1, ..., nh}

Pd(di, dj)=Ps(si, sj)=P (ui, uj).

We begin by reasoning about what happens if each request can be forwarded
only once. There are two possible situations: either the initiator of the request is
detected, or he succeeds in forwarding his request to an honest user, who will in turn
send it to the server. The channel corresponding to the initiator being detected is Id,
since in this case the output has to be di whenever ui is the initiator. The channel
corresponding to the latter situation is IsPs—i.e., the channel Is postproccessed by Ps.
This is because, being Ps based on the transition function ofM , the entry (IsPs)(ui, sj)

gives us exactly the probability that user uj received the request originated by user ui
after it being forwarded once. Therefore, when Crowds is limited to one forwarding,
it can be modelled by the channel Id q⊕ IsPs

1, representing the fact that: (1) with
probability q the initiator is detected, and the output is generated by Id; and (2) with
probability 1− q the output is generated by IsPs.

Let us now restrict our protocol to at most two forwards. If the initiator is not
immediately detected, the first recipient will have a probability p of sending the message
to the server. If the recipient forwards the message instead, he may be detected.
Because the request was already forwarded once, the channel that will produce the
output in this case is IdPd (notice that, despite this channel being equivalent to IsPs, it
is of a different type). On the other hand, if the first recipient forwards the message to
an honest user, this second recipient will now send the message to the server, making the
protocol produce an output according to IsPsPs (or simply IsP 2

s), since (IsP
2
s)(ui, sj)

is the probability that user uj received the request originated by user ui after it being
forwarded twice. Therefore, when Crowds is limited to two forwards, it can be modelled
by the channel Id q⊕ (IsPs p⊕ (IdPd q⊕ IsP

2
s)). Note the disposition of the parentheses,

as it reflects the order in which the events occur. First, there is a probability q of
the initiator being detected, and 1 − q of the protocol continuing. Then, there is a

1To simplify notation, we assume cascading has precedence over hidden choice, i.e., AB p⊕ CD =
(AB) p⊕ (CD).

68 Chapter 5. Case Study: the Crowds protocol

probability p of the first recipient sending it to the server, and so on.

Similarly, limiting the protocol to three forwards, we obtain the channel
Id q⊕ (IsPs p⊕ (IdPd q⊕ (IsP

2
s p⊕ (IdP

2
d q⊕ IsP

3
s)))). Proceeding this way, we can

inductively construct a sequence {Ci}i∈N∗ ,

Ci = Id q⊕ (IsPs p⊕ (IdPd q⊕ (. . . p⊕ (IdP
i−1
d q⊕ IsP

i
s) . . .))),

in which each Ci represents our protocol capped at i forwards per request. We will use
this sequence to obtain an approximation of Crowds in Theorem 5.4. A straightforward
proof would be too lengthy, however, so we break it into a discussion and a series of
lemmas.

For starters, the limited versions of the protocol, modelled by {Ci}i∈N, should
behave more and more similarly to the unlimited Crowds as i becomes large. Indeed,
the probability of the original protocol to exceed n forwards is (1 − p)n(1 − q)n+1,
which means that the probability of Crowds behaving differently than Cn can be made
arbitrarily low for a large enough choice of n. We can, therefore, obtain a description
of Crowds by taking limi→∞Ci, if such limit exists.

We now proceed to prove the lemmas that will culminate with Theorem 5.4. The
outline is the following. First, we use the associativity of the hidden choice operator
to rearrange the parenthesis of the channels Ci. Then, we prove the existence of the
limit limi→∞Ci. Finally, we prove a small lemma that simplifies the upper-bound on
Theorem 5.4.

Lemma 5.1. Let n be a positive integer and {Ai}i∈{0,1,...,n} a collection of compatible
channels. If q, p ∈ [0, 1] and are not both 0, then

A0 q⊕ (A1 p⊕ (... p⊕ An)...) =
((
...
(
A0 t0

t1

⊕ A1

)
t1
t2

⊕ ...
)

t(n−1)
⊕ An

)
, for even n,

A0 q⊕ (A1 p⊕ (... q⊕ An)...) =
((
...
(
A0 t0

t1

⊕ A1

)
t1
t2

⊕ ...
)

t(n−1)
⊕ An

)
, for odd n,

where

t2i = 1− (1− q)i+1(1− p)i, and (5.1)

t(2i+1) = 1− (1− q)i+1(1− p)i+1. (5.2)

Proof. Firstly, from Equation (3.8) on Proposition 3.10, we deduce the following equiv-
alence. For any probabilities u, v ∈ [0, 1] (with u and v not both 0) and compatible

5.2. Modelling the protocol 69

channels C1, C2 and C3:

C1 u⊕ (C2 v⊕ C3) = (C1 u
u+v−uv

⊕ C2) (u+v−uv)⊕ C3. (5.3)

Now, we proceed to the proof. We prove by induction on n on the set of positive
integers.

The case when n = 1 is immediate. Let us suppose it is proven for n ≥ 1. Then,
if n is odd,

A0 q⊕ (... p⊕ (An−1 q⊕ (Anp⊕An+1)))

=A0 q⊕ (... p⊕ (An−1 q⊕ A′n)...)) (let A′n=An p⊕ An+1)

=

(
...
(
A0 t0

t1

⊕ ...
)

t(n−2)
t(n−1)

⊕ An−1

)
t(n−1)

⊕ A′n (by ind. hyp.)

=

(
...
(
A0 t0

t1

⊕ ...
)

t(n−2)
t(n−1)

⊕ An−1

)
t(n−1)

⊕ (An p⊕ An+1) (A′n = An p⊕ An+1)

=

(
...
(
A0 t0

t1

⊕ ...
)

t(n−1)
t(n−1)+p−pt(n−1)

⊕An

)
t(n−1)+p−pt(n−1)

⊕ An+1 (by Eq.(5.3))

=

(
...
(
A0 t0

t1

⊕ ...
)

t(n−1)
tn

⊕ An

)
tn⊕ An+1 (by Eq.(5.1), (5.2))

The proof for when n is even is almost identical.

Lemma 5.2. If q and p are not both 0, lim
i→∞

Ci exists.

Proof. Each Ci is a channel of type U × (D ∪ S), and can thus be understood as an
element of the set R|U×(D∪S)|. Therefore, if each entry of Ci converges to a real value
as i→∞, then lim

i→∞
Ci exists.

Having that in mind, we prove that, for all j, k ∈ {1, 2, ..., n}, {Ci(uj, dk)}i∈N∗
and {Ci(uj, sk)}i∈N∗ are Cauchy sequences in the reals. We start by proving that
{Ci(uj, dk)}i∈N∗ is a Cauchy sequence.

Let ε > 0. From equations (5.1) and (5.2), lim
i→∞

ti = 1. Therefore, ∃M ∈ N \ {0}
such that i > M =⇒ 1− ti < ε/2.

Suppose m1,m2 > M + 1. By lemma 5.1, we have

Cm1 =

(((
...
(
Id t0

t1

⊕ IsPs

)
t1
t2

⊕ IdPd

)
t2
t3

⊕ ...
)

t(2M−1)
t2M

⊕ IdP
M
d

)
t2M⊕ D1,

Cm2 =

(((
...
(
Id t0

t1

⊕ IsPs

)
t1
t2

⊕ IdPd

)
t2
t3

⊕ ...
)

t(2M−1)
t2M

⊕ IdP
M
d

)
t2M⊕ D2,

70 Chapter 5. Case Study: the Crowds protocol

where Di = IsP
M+1
s p⊕ (IdP

M+1
d q⊕ (... q⊕ IsP

mi
s)...), for i ∈ {1, 2}. The definition of

hidden choice then gives us

Cm1(uj, dk) =t2M

(
...
(
Id t0

t1

⊕ ...
)

t(2M−1)
t2M

⊕ IdP
M
d

)
(uj, dk) + (1− t2M)D1(uj, dk),

Cm2(uj, dk) =t2M

(
...
(
Id t0

t1

⊕ ...
)

t(2M−1)
t2M

⊕ IdP
M
d

)
(uj, dk) + (1− t2M)D2(uj, dk).

Thus,

|Cm1(uj, dk)− Cm2(uj, dk)|

=|(1− t2M)D1(uj, dk)− (1− t2M)D2(uj, dk)|

≤|(1− t2M)D1(uj, dk)|+ |(1− t2M)D2(uj, dk)| (|a− b| ≤ |a|+ |b|)

≤|(1− t2M)|+ |(1− t2M)| (Di(uj, dk) ≤ 1)

<ε/2 + ε/2 = ε (2M > M)

The proof that for {Ci(uj, sk)}i∈N is a Cauchy sequence is almost identical.

Lemma 5.3. Let π ∈ DX for some finite set X and g be any gain function. Let
n ∈ N \ {0, 1} and {Ai}i∈{1,2,...,n} be a collection of channels with input X such that

i < j =⇒ Vg[π 〉Ai] ≥ Vg[π 〉Aj].

Let {pi}i∈{1,...,n−1} be a collection of real numbers in the interval [0, 1]. Then, for
any n ∈ N,

Vg[π 〉A1 p1⊕ (A2 p2⊕ (... pn−1⊕ (An)))] ≤ Vg[π 〉A1].

Proof. We proceed by induction on the size of the collection. The theorem is true for
n = 2 since, from Theorem 4.5,

Vg[π 〉A1 p⊕ A2] ≤ pVg[π 〉A1] + (1− p)Vg[π 〉A2] ≤ Vg[π 〉A1].

Suppose it is true for n ≥ 2 and let {Ai}i∈{1,...,n+1} be a collection of n+1 channels
with the property described in the Lemma. Then,

Vg[π 〉A1 p1⊕ (A2 p2⊕ (... pn⊕ (An+1)))]

≤p1Vg[π 〉A1] + (1− p1)Vg[π 〉A2 p2⊕ (... pn⊕ An+1)] (by Theorem 4.5)

5.2. Modelling the protocol 71

≤p1Vg[π 〉A1] + (1− p1)Vg[π 〉A2] (by the ind. hypothesis)

≤p1Vg[π 〉A1] + (1− p1)Vg[π 〉A1] = Vg[π 〉A1] (Vg[π 〉A1] ≥ Vg[π 〉A2])

We are finally in the position to prove our main result.

Theorem 5.4. Let {ti}i∈N be the sequence defined by equations (5.1) and (5.2) .

Let Km=((. . . (Id t0/t1⊕ IsPs) t1/t2⊕ . . .) t2m−1/t2m⊕ IdP
m
d . Then, for all π ∈ DX ,

g ∈ GX and all m ∈ N∗,

Vg[π 〉 lim
i→∞

Ci] ≥ t2mVg[π 〉Km], (5.4)

Vg[π 〉 lim
i→∞

Ci] ≤ t2mVg[π 〉Km] + (1− t2m)Vg[π 〉 IsPm+1
s], and (5.5)

(1− t2m)Vg[π 〉 IsPm+1
s] ≤ (1− q)m+1(1− p)m. (5.6)

Proof. From Lemma 5.1, we note that, for any m′ > m, Cm′ can be written as

Cm′ =

(((
...
(
Id t0

t1

⊕ IsPs

)
t1
t2

⊕ IdPd

)
t2
t3

⊕ ...
)

t2m−1
t2m

⊕ IdP
m
d

)
t2m⊕ D,

Cm′ =Km t2m⊕ D. (5.7)

Where D = IsP
m+1
s p⊕ (IdP

m+1
d q⊕ (... q⊕ IsP

m′
s)...). From Equation (5.7) and

Theorem 4.4, we derive that, for any m′ > m,

Vg[π 〉Cm′] ≥ t2mVg[π 〉Km].

For each π and g, Vg[π 〉C], being a sum of maxima of continuous functions over
C, is itself continuous over C. Therefore, the equation above implies (5.4)

For the proof of the upper bound, Theorem 4.5 gives us

Vg[π 〉Cm′] ≤t2mVg[π 〉Km] + (1− t2m)Vg[π 〉D].

Notice that, ∀k, j ∈ N∗, IsP k
s
◦
= IdP

k
d , and IsP k

s v◦ IsP k+j
s = (IsP

k
s)P j

s . Thus,
Lemma 5.3 yields Vg[π 〉D] ≤ Vg[π 〉 IsPm+1

s]. Thus

Vg[π 〉Cm′] ≤t2mVg[π 〉Km] + (1− t2m)Vg[π 〉 IsPm+1
s],

which, by continuity of Vg, implies the upper bound (5.5).

72 Chapter 5. Case Study: the Crowds protocol

Finally, to prove Equation (5.6), it suffices to notice that

(1− t2m)Vg[π 〉 IsPm+1
s]

≤1− t2m (Vg[π 〉 IsPm+1
s] ≤ 1)

=(1− q)m+1(1− p)m (by Equation (5.1))

Notice that, from the proof of Theorem 5.4, we can actually derive two stronger
conditions than Equations (5.4) and (5.5). Namely, that for all m′ > m,

Vg[π 〉Cm′] ≥ t2mVg[π 〉Km],

Vg[π 〉Cm′] ≤ t2mVg[π 〉Km] + (1− t2m)Vg[π 〉 IsPm+1
s].

Equations (5.4) and (5.5) provide an effective way to approximate the g-leakage
of information of the channel Crowds with arbitrary precision, whereas Equation (5.6)
lets us easily estimate how many interactions are needed to achieve any degree of
precision.

To obtain Km, we need to calculate m matrix multiplications due to the cascad-
ings, andmmatrix additions due to the hidden choices. Thus, Theorem 5.4 implies that
we can obtain a channel whose posterior vulnerability differs from that of Crowds by at
most (1−q)m+1(1−pm) in ≈O(mnωh) time, where ω is the exponent corresponding to the
complexity of matrix multiplication. Even for low values of p and q, (1−q)m+1(1−p)m

decreases very fast. For instance, to obtain a precision of 0.001 on the leakage bound,
we need m=10 when (1−q)(1−p) is 0.5, m=20 when it is 0.7, and m=66 when it is
0.9, regardless of the number nh of honest users.

Therefore, our method has time complexity O(nωh) when the number of users is
large (which is the usual case for Crowds), and reasonable values of p, q, and precision
desired. To the best of our knowledge this method is the fastest in the literature,
beating the previous O(nω+1

h) that can be achieved by modifying the method developed
by Andrés et al. [2010]—although their method does not require our assumption of
corrupt users being evenly distributed.

Chapter 6

Conclusion

In this thesis, we studied in depth five compositional operators in Quantitative Infor-
mation Flow. While the parallel, visible choice and hidden choice operators have been
treated elsewhere, this thesis is, to the best of our knowledge, the first study regarding
the visible and hidden if-then-else operators in the field.

The first objective of this thesis was to address the specific questions on Chapter
1. Once this was done, we set ourselves to the task of giving the most general account
of these operators we possibly could, which led to the algebraic properties described in
Chapter 4.

After that, it seemed natural to give a glimpse on the kind of modelling these
operators could be useful for. For that end, we presented in Chapter 5 two well-known
security protocols in the literature, the Dining Cryptographers [Chaum, 1988] and the
Crowds [Reiter and Rubin, 1998] protocols. We believe that a great number of systems
and security protocols can be modelled in similar manners, which in some cases might
lead to a more efficient way to calculate their leakage properties. Case in point, the
model of the Crowds protocol we provided in Chapter 5 naturally suggested a fast and
very simple algorithm to compute its channel, as we discussed after Theorem 5.4.

The study of compositionality in Quantitative Information Flow is only beginning,
and its results promise to significantly enhance not only our capacity to model and
study real-life scenarios, but also our understanding of information leakage as a whole.
One natural future direction of inquiry concerns studying analogues of the operators
studied in this thesis to abstract channels, as in Definition 2.25. Another topic for
future research regards the utility of a system — that is, how useful the system is from
the point of view of the user. We believe the operators studied in this thesis can also
be applied in a similar manner in this scenario, and the utility of a composition might
be studied from that of its components.

73

Bibliography

Alvim, M. S., Chatzikokolakis, K., Kawamoto, Y., and Palamidessi, C. (2018). Leakage
and protocol composition in a game-theoretic perspective. In Proc. of POST, pages
134--159.

Alvim, M. S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., and Smith,
G. (2014). Additive and multiplicative notions of leakage, and their capacities. In
Proc. of CSF, pages 308--322. IEEE.

Alvim, M. S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., and Smith,
G. (2016). Axioms for information leakage. In Proc. of CSF, pages 77--92.

Alvim, M. S., Chatzikokolakis, K., Palamidessi, C., and Smith, G. (2012). Measuring
information leakage using generalized gain functions. In Proc. of CSF, pages 265–279.

Américo, A., Vaz, A., Alvim, M., Campos, S., and McIver, A. (2017). Formal analysis
of the information leakage of the DC-nets and crowds anonymity protocols, pages
142--158. Lecture Notes in Computer Science. Springer International Publishing.

Andrés, M. E., Palamidessi, C., van Rossum, P., and Smith, G. (2010). Computing the
leakage of information-hiding systems. In Proc. of TACAS, volume 6015 of LNCS,
pages 373–389. Springer.

Chatzikokolakis, K., Palamidessi, C., and Panangaden, P. (2008). Anonymity protocols
as noisy channels. Inf. and Comp., 206(2–4):378--401.

Chaum, D. (1988). The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1:65--75.

Engelhardt, K. (2017). A better composition operator for quantitative information flow
analyses. In European Symposium on Research in Computer Security, Proceedings,
Part I, pages 446--463.

75

76 Bibliography

Espinoza, B. and Smith, G. (2013). Min-entropy as a resource. Inf. and Comp., 226:57-
-75.

Goldschlag, D. M., Reed, M. G., and Syverson, P. F. (1996). Hiding routing informa-
tion. In Anderson, R., editor, Information Hiding, pages 137--150, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Kawamoto, Y., Chatzikokolakis, K., and Palamidessi, C. (2017). On the Composi-
tionality of Quantitative Information Flow. Logical Methods in Computer Science,
Volume 13, Issue 3.

Kerckhoffs, A. (1883). La cryptographie militaire. Journal des sciences militaires,
IX:5–38.

Massey (1994). Guessing and entropy. In Proceedings of the IEEE Int. Symposium on
Information Theory, page 204. IEEE.

McIver, A., Morgan, C., Smith, G., Espinoza, B., and Meinicke, L. (2014). Abstract
channels and their robust information-leakage ordering. In Proc. of POST, volume
8414 of LNCS, pages 83--102. Springer.

Reiter, M. K. and Rubin, A. D. (1998). Crowds: anonymity for Web transactions.
ACM Trans. on Information and System Security, 1(1):66--92.

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Tech-
nical Journal, 27:379--423, 625–56.

Smith, G. (2009). On the foundations of quantitative information flow. In Proc. of
FOSSACS, volume 5504 of LNCS, pages 288--302. Springer.

Appendix A

Proofs of Chapter 3

Here we present the proofs of Chapter 3. Throughout this appendix, let C1 ∈ CY1X ,
C2 ∈ CY2X and C2 ∈ CY2X . We recall Definition 3.1: given any C ∈ CYX , we define
C(x, y′) = 0 for any y′ 6∈ Y .

The sections of this appendix are named as in Section 3.2.

A.1 Commutativity, associativity and idempotency

Proposition 3.9 (Commutative Properties).

C1 ‖ C2
◦
= C2 ‖ C1, (3.1)

C1 p ·t C2
◦
= C2 (1−p) ·t C1, (3.2)

C1 p⊕ C2 = C2 (1−p)⊕ C1, (3.3)

C1 A4 C2
◦
= C2 A4 C1, (3.4)

C1 A4+ C2 = C2 A4+ C1. (3.5)

Proof. (3.1) The bijection is given by ψ((y1, y2)) = (y2, y1). For all x ∈ X , y1 ∈ Y1 and
y2 ∈ Y2,

(C1 ‖ C2)(x, (y1, y2))

=C1(x, y1)C2(x, y2) (by def. of ‖)

=(C2 ‖ C1)(x, (y2, y1)) (by def. of ‖)

(3.2) The bijection is given by ψ((y, 1)) = (y, 2) and ψ((y, 2)) = (y, 1). For all

77

78 Appendix A. Proofs of Chapter 3

x ∈ X and (y, 1) ∈ (Y1 t Y2),

(C1 p ·t C2)(x, (y, 1))

=pC1(x, y) (by def. of p ·t)

=(C2 (1−p) ·t C1)(x, (y, 2)) (by def. of (1−p) ·t)

Similarly, for all x ∈ X and (y, 2) ∈ (Y1 t Y2)

(C1 p ·t C2)(x, (y, 2))

=(1− p)C2(x, y) (by def. of p ·t)

=(C2 (1−p) ·t C1)(x, (y, 1)) (by def. of (1−p) ·t)

(3.3) For all x ∈ X and y ∈ Y1 ∪ Y2 ,

(C1 p⊕ C2)(x, y)

=pC1(x, y) + (1− p)C2(x, y) (by def. of p⊕)

=(C2 (1−p)⊕ C1)(x, y) (by def. of (1−p)⊕)

(3.4) The bijection is given by ψ((y, 1)) = (y, 2) and ψ((y, 2)) = (y, 1). For all
x ∈ A and (y, 1) ∈ Y1 t Y2,

(C1 A4 C2)(x, (y, 1))

=C1(x, y) (by def. of A4)

=(C2 A4 C1)(x, (y, 2)) (by def. of A4)

Similarly, for all x ∈ A and (y, 2) ∈ Y1 t Y2

(C1 A4 C2)(x, (y, 2))

=C2(x, y) (by def. of A4)

=(C2 A4 C1)(x, (y, 1)) (by def. of A4)

For all other pairs (x, (y, i)) ∈ X × (Y1 t Y2) not contemplated above,

(C1 A4 C2)(x, (y, i)) = (C2 A4 C1)(x, ψ(y, i)) = 0,

A.1. Commutativity, associativity and idempotency 79

(3.5) For all x ∈ A and y ∈ Y1 ∪ Y2,

(C1 A4+ C2)(x, y)

=C1(x, y) (by def. of A4+)

=(C2 A4+ C1)(x, y) (by def. of A4+)

Similarly, for all x ∈ A and y ∈ Y1 ∪ Y2

(C1 A4+ C2)(x, y)

=C2(x, y) (by def. of A4+)

=(C2 A4+ C1)(x, y) (by def. of A4+)

Proposition 3.10 (Associative Properties).

(C1 ‖ C2) ‖ C3
◦
= C1 ‖ (C2 ‖ C3), (3.6)

(C1 p ·t C2) q ·t C3
◦
= C1 p′ ·t (C2 q ′ ·t C3), (3.7)

(C1 p⊕ C2) q⊕ C3 = C1 p′⊕ (C2 q ′⊕ C3), (3.8)

(C1 A4 C2) B4 C3
◦
= C1 (A∩B)4 (C2 B4 C3), (3.9)

(C1 A4+ C2) B4+ C3 = C1 (A∩B)4+ (C2 B4+ C3), (3.10)

where p′=pq and q′=(q−pq)/(1−pq).

Proof. (3.6) The bijection is given by ψ(((y1, y2), y3)) = (y1, (y2, y3)). For all x ∈ X ,
y1 ∈ Y1, y2 ∈ Y2 and y3 ∈ Y3,

((C1 ‖ C2) ‖ C3)(x, ((y1, y2), y3))

=(C1 ‖ C2)(x, (y1, y2))C3(x, y3) (by def. of ‖)

=C1(x, y1)C2(x, y2)C3(x, y3) (by def. of ‖)

=C1(x, y1)(C2 ‖ C3)(x, (y2, y3)) (by def. of ‖)

=(C1 ‖ (C2 ‖ C3))(x, (y1, (y2, y3))) (by def. of ‖)

(3.7) The bijection is given by ψ(((y1, 1), 1)) = (y1, 1), ψ(((y2, 2), 1)) = ((y2, 1), 2)

and ψ((y3, 2)) = ((y3, 2), 1). For all x ∈ X and ((y, 1), 1) ∈ (Y1 t Y2) t Y3 ,

((C1 p ·t C2) q ·t C3)(x, ((y, 1), 1))

80 Appendix A. Proofs of Chapter 3

=pqC1(x, y) (by def. of p ·t, q ·t)

=p′C1(x, y) (by def. of p′)

=(C1 p′ ·t (C2 q ′ ·t C3))(x, (y, 1)) (by def. of p′ ·t, q ′ ·t)

For all x ∈ X and ((y, 2), 1) ∈ (Y1 t Y2) t Y3,

((C1 p ·t C2) q ·t C3)(x, ((y, 2), 1))

=(1− p)qC2(x, y) (by def. of p ·t, q ·t)

=(1− p′)q′C2(x, y) (by def. of p′, q′)

=(C1 p′ ·t (C2 q ′ ·t C3))(x, ((y, 1), 2)) (by def. of p′ ·t, q ′ ·t)

For all x ∈ X and (y, 2) ∈ (Y1 t Y2) t Y3 ,

((C1 p ·t C2) q ·t C3)(x, (y, 2))

=(1− q)C3(x, y) (by def. of p ·t, q ·t)

=(1− p′)(1− q′)C3(x, y) (by def. of p′, q′)

=(C1 p′ ·t (C2 q ′ ·t C3))(x, ((y, 2), 2)) (by def. of p′ ·t, q ′ ·t)

(3.8) (p⊕) For all x ∈ X and y ∈ Y1 ∪ Y2 ∪ Y3 ,

((C1 p⊕ C2) q⊕ C3)(x, y)

=pqC1(x, y) + (1−p)qC2(x, y)+(1−q)C3(x, y) (by def. of p⊕, q⊕)

=p′C1(x, y)+(1−p′)q′C2(x, y)+(1−p′)(1−q′)C3(x, y) (by def. of p′, q′)

=(C1 p′⊕ (C2 q ′⊕ C3))(x, y) (by def. of p′⊕, q ′⊕)

(3.9) The bijection is given by ψ(((y1, 1), 1)) = (y1, 1), ψ(((y2, 2), 1)) = ((y2, 1), 2)

and ψ((y3, 2)) = ((y3, 2), 1). For all x ∈ A ∩ B and ((y, 1), 1) ∈ (Y1 t Y2) t Y3,

((C1 A4 C2) B4 C3)(x, ((y, 1), 1))

=(C1 A4 C2)(x, (y, 1)) (by def. of B4)

=C1(x, y) (by def. of A4)

=(C1 (A∩B)4+ (C2 B4+ C3))(x, (y, 1)) (by def. of A∩B4, B4)

For all x ∈ A ∩ B and ((y, 2), 1) ∈ (Y1 t Y2) t Y3,

((C1 A4 C2) B4 C3)(x, ((y, 2), 1))

A.1. Commutativity, associativity and idempotency 81

=(C1 A4 C2)(x, (y, 2)) (by def. of B4)

=C2(x, y) (by def. of A4)

=(C1 (A∩B)4+ (C2 B4+ C3))(x, ((y, 1), 2)) (by def. of A∩B4, B4)

For all x ∈ B and (y, 2) ∈ (Y1 t Y2) t Y3,

((C1 A4 C2) B4 C3)(x, (y, 2))

=C3(x, y) (by def. of B4)

=(C1 (A∩B)4+ (C2 B4+ C3))(x, ((y, 2), 2)) (by def. of A∩B4, B4)

For all the remaining pairs (x, y′) ∈ X × ((Y1tY2)tY3) not contemplated above,
we have

((C1 A4 C2) B4 C3)(x, y′) = (C1 (A∩B)4 (C2 B4 C3))(x, φ(y′)) = 0

(3.9) For all x ∈ A ∩ B and y1 ∈ Y1 ∪ Y2 ∪ Y3,

((C1 A4+ C2) B4+ C3)(x, y1)

=(C1 A4+ C2)(x, y1) (by def. of B4+)

=C1(x, y1) (by def. of A4+)

=(C1 (A∩B)4+ (C2 B4+ C3))(x, y1) (by def. of A∩B4+ , B4+)

For all x ∈ A ∩ B and y2 ∈ Y1 ∪ Y2 ∪ Y3,

((C1 A4+ C2) B4+ C3)(x, y2)

=(C1 A4+ C2)(x, y2) (by def. of B4+)

=C2(x, y) (by def. of A4+)

=(C1 (A∩B)4+ (C2 B4+ C3))(x, y2) (by def. of A∩B4+ , B4+)

For all x ∈ B and y3 ∈ Y1 ∪ Y2 ∪ Y3,

((C1 A4+ C2) B4+ C3)(x, y3)

=C3(x, y3) (by def. of B4+)

=(C1 (A∩B)4+ (C2 B4+ C3))(x, y3) (by def. of A∩B4+ , B4+)

82 Appendix A. Proofs of Chapter 3

Proposition 3.11 (Idempotency).

C1 ‖ C1 v◦ C1, (3.11)

C1 p ·t C1 ≈ C1, (3.12)

C1 p⊕ C1 = C1, (3.13)

C1 A4 C1 v◦ C1, (3.14)

C1 A4+ C1 = C1. (3.15)

Proof. (3.11) Let D ∈ CY1Y1×Y1 be defined as, for all y1, y2, y3 ∈ Y1,

D((y1, y2), y3) =

1, if y1 = y3,

0, otherwise.

Then, C1 = (C1 ‖ C1)D.

(3.12) For all g ∈ GX and all π ∈ DX ,

Vg[π 〉C1 p ·t C1]

=pVg[π 〉C1] + (1− p)Vg[π 〉C1] (from Theorem 4.3)

=Vg[π 〉C1]

(3.13) We have, for all x ∈ X and y ∈ Y1:

(C1 p⊕ C1)(x, y) = p · C1(x, y) + (1− p) · C1(x, y) = C1(x, y)

(3.14) Let D ∈ CYY1tY1 be defined as, for all y1, y2 ∈ Y1 and i ∈ {1, 2},

D((y1, i), y2) =

1, if y1 = y2,

0, otherwise.

Then, C1 = (C1 A4 C1)D.

(3.15) By definition of A4+ , for all x ∈ A ∪A = X and all y ∈ Y1,

(C1 A4+ C1)(x, y) = C1(x, y)

Proposition 3.12. Suppose ∃C ∈ CX such that C is deterministic and C1 ≈ C. Then

A.2. Null and transparent channels 83

C1 ‖ C1 ≈ C1.

Proof. Let C1 ∈ CY1X be a channel and let C ∈ CYA be a deterministic channel such that
∃D1 ∈ CYY1 and ∃D2 ∈ CY1Y such that C = C1D1 and C1 = CD2.

We first claim that C v◦ C ‖ C. We have that,

(C ‖ C)(x, (y1, y2)) =

1, if y1 = y2 and C(x, y1) = 1

0, otherwise

Therefore, C ‖ C = CD3 where D3 ∈ CY×YY is given by D(y1, (y2, y3)) = 1 if
y1 = y2 = y3, and 0 otherwise.

Let D‖ ∈ CY1×YY×Y such that D‖((y1, y2), (y3, y4)) = D2(y1, y3)D2(y2, y4). We obtain

C1 ‖ C1

=(CD2) ‖ (CD2) (C1 = CD2)

=(C ‖ C)D‖ (by Proposition 3.23)

=CD3D
‖ (C ‖ C = CD3)

=C1D1D3D
‖ (C = C1D1)

Therefore, C1 v◦ C1 ‖ C1. Proposition 3.11 then implies C1 ≈ C1 ‖ C1

A.2 Null and transparent channels

Proposition 3.13. A channel 0 ∈ CYX is a null channel if, and only if, for all y ∈ Y
and x, x′ ∈ X ,

0(x, y) = 0(x′, y).

Proof. First, let 0 ∈ CYX be a channel such that, for all y ∈ Y and x, x′ ∈ X , 0(x, y) =

0(x′, y). We choose any x ∈ X and define, for each y ∈ Y , 0(y) = 0(x, y). Therefore,
for all x ∈ X , y ∈ Y , 0(x, y) = 0(y)

To see that 0 is a null channel, observe that, for all π ∈ DX and all g ∈ GX ,

Vg[π 〉 0]

=
∑
y∈Y

max
w∈W

∑
x∈X

π(x)0(x, y)g(w, x) (by def. of Vg)s

84 Appendix A. Proofs of Chapter 3

=
∑
y∈Y

max
w∈W

∑
x∈X

π(x)0(y)g(w, x) (0(x, y) = 0(y))

=
∑
y∈Y

0(y) max
w∈W

∑
x∈X

π(x)g(w, x) (0(y) does not depend on x)

=
∑
y∈Y

0(y)Vg[π] (by def. of Vg)

=Vg[π] (0 is a channel)

Conversely, let C ∈ CYX such that C(x1, y
′) > C(x2, y

′) for some x1, x2 ∈ X ,
y′ ∈ Y . let gid ∈ GX be as in Definition 2.10, and let πu ∈ DX be the uniform
distribution on X . We have

Vgid [πu 〉C]

=
∑
y∈Y

max
w∈X

∑
x∈X

πu(x)C(x, y)gid(w, x) (by def. of Vgid)

= max
w∈X

∑
x∈X

πu(x)C(x, y′)gid(w, x)

+
∑

y∈Y\{y′}

max
w∈X

∑
x∈X

πu(x)C(x, y)gid(w, x) (reorganizing)

≥max
w∈X

πu(x1)C(x1, y
′)gid(w, x1)

+
∑

y∈Y\{y′}

max
w∈X

πu(x2)C(x2, y)gid(w, x2) (Subtracting nonegative terms)

=πu(x1)C(x1, y
′) +

∑
y∈Y\{y′}

πu(x2)C(x2, y) (by def. of gid)

>
∑
y∈Y

πu(x2)C(x2, y) (C(x1, y
′) > C(x2, y

′))

=πu(x2) (C is a channel)

=Vgid(πu) (by def. of Vgid , πu)

Therefore, Vgid [πu 〉C] > Vgid(πu), and C is not null.

Proposition 3.14. A channel I ∈ CYX is a transparent channel if, and only if, for all
y ∈ Y and x, x′ ∈ X such that x 6= x′,

I(x, y) > 0 =⇒ I(x′, y) = 0.

Proof. Let I ∈ CYX be a channel such that, for all y ∈ Y and for all x, x′ ∈ X such that

A.2. Null and transparent channels 85

x 6= x′, I(x, y) > 0 =⇒ I(x′, y) = 0.

Let I1 ∈ CXY be given by

I1(y, x) =


1, if I(x, y) > 0

1/|X |, if ∀x′ ∈ X , I(x′, y) = 0

0, otherwise

Since, for each y ∈ Y , there is at most one x ∈ X such that I(x, y) > 0, I1 is a
channel. Now, for all x1, x2 ∈ X , we have,

(II1)(x1, x2) =
∑
y∈Y

I(x1, y)I1(y, x2) =

1, if x1 = x2

0, otherwise

Let C ∈ CX . Then, C = (II1)C = I(I1C). Therefore, I v◦ C.

Conversely, let C ∈ CYX such that C(x1, y
′) > 0 and C(x2, y

′) > 0 for some
x1, x2 ∈ X , y′ ∈ Y . Let gid ∈ GX be as in Definition 2.10, and let π ∈ DX be given by
pi(x) = 1/2 if x ∈ {x1, x2}, or 0 otherwise. We have

Vgid [πu 〉C]

=
∑
y∈Y

max
w∈X

∑
x∈X

π(x)C(x, y)gid(w, x) (by def. of Vgid)

=
∑
y∈Y

max
w∈X

(
π(x1)C(x1, y)gid(w, x1)

+ π(x2)C(x2, y)gid(w, x2)
)

(by def. of π)

=
∑
y∈Y

max(π(x1)C(x1, y), π(x2)C(x2, y)) (by def. of gid)

<
∑
y∈Y

π(x1)C(x1, y) + π(x2)C(x2, y) (C(x1, y
′) > 0 and C(x2, y

′) > 0)

=1 (C1, C2 are channels)

Let I ∈ CXX be given by I(x, x′) = 1 if x = x′ and 0 otherwise. Then, Vgid [π 〉 I] = 1,
and therefore C 6v◦ I

86 Appendix A. Proofs of Chapter 3

Proposition 3.15 (Null Channel Properties).

C1 ≈ (C1 ‖ 0), (3.16)

C1 v◦ (C1 p ·t 0), (3.17)

C1 v◦ (C1 p⊕ 0). (3.18)

Proof. (3.16) Firstly, from Proposition 3.13, we notice that 0(x, z) = 0(x′, z) for any
x, x′ ∈ X and z ∈ Z. Thus, given z ∈ Z we can uniquely define chose 0(z) =

0(x, z) for an arbitrarily chosen x ∈ X .

We then have that, for any π ∈ DX and g ∈ GX :

Vg[π 〉C1 ‖ 0]

=
∑
z∈Z

∑
y∈Y

max
w∈W

∑
x∈X

C1(x, y) · 0(x, z) · g(w, x) · π(x) (by def. of ‖)

=
∑
z∈Z

∑
y∈Y

max
w∈W

∑
x∈X

C1(x, y) · 0(z) · g(w, x) · π(x) (by def. of 0(z))

=
∑
z∈Z

0(z)
∑
y∈Y

max
w∈W

∑
x∈X

C1(x, y) · g(w, x) · π(x) (reorganizing)

=
∑
z∈Z

0(z) · Vg[π 〉C1] (by def. of vulnerability)

=Vg[π 〉C1] (0 is a channel)

(3.17) We have, for all π ∈ DX , and all g ∈ GX ,

Vg[π 〉C1 p ·t 0]

=pVg[π 〉C1] + (1− p)Vg[π 〉 0] (from Theorem 4.3)

≤pVg[π 〉C1] + (1− p)Vg[π 〉C1] (Vg[π 〉 0] ≤ Vg[π 〉C1])

=Vg[π 〉C1]

(3.18) We have, for all π ∈ DX and all g ∈ GX ,

Vg[π 〉C1 p⊕ 0]

≤pVg[π 〉C1] + (1− p)Vg[π 〉 0] (from Theorem 4.5)

≤pVg[π 〉C1] + (1− p)Vg[π 〉C1] (Vg[π 〉 0] ≤ Vg[π 〉C1])

=Vg[π 〉C1]

A.3. Distributive properties 87

Proposition 3.16 (Transparent Channel Properties).

(C1 ‖ I) ≈ I, (3.19)

(C1 p ·t I) v◦ C1, (3.20)

(C1 A4 I) v◦ C1. (3.21)

Proof. (3.19) From Theorem 4.1, we have, for all π ∈ DX and g ∈ GX ,
Vg[π 〉C1 ‖ I] ≥ Vg[π 〉 I]. From Proposition 3.14, I v◦ C1 ‖ I. Thus, C1 ‖ I ≈ I

(3.20) We have, for all π ∈ DX and g ∈ GX ,

Vg[π 〉C1 p ·t I]

=pVg[π 〉C1] + (1− p)Vg[π 〉 I] (from Theorem 4.3)

≥pVg[π 〉C1] + (1− p)Vg[π 〉C1] (Vg[π 〉 I] ≥ Vg[π 〉C1])

=Vg[π 〉C1]

(3.21) We have, for all π ∈ DX and g ∈ GX ,

Vg[π 〉C1]

≤Vg[π 〉C1 A4 C1] (by Eq. (3.14))

=VgA [π 〉C1] + VgA [π 〉C1] (by Theorem 4.11)

≤VgA [π 〉C1] + VgA [π 〉 I] (by corollary 4.10 and I|A v◦ C1|A)

=Vg[π 〉C1 A4 I] (by Theorem 4.11)

A.3 Distributive properties

Proposition 3.17 (Distributivity for the Parallel operator).

C1 ‖ (C2 ‖ C3)◦w (C1 ‖ C2) ‖ (C1 ‖ C3), (3.22)

C1 ‖ (C2 p ·t C3)
◦
= (C1 ‖ C2) p ·t (C1 ‖ C3), (3.23)

C1 ‖ (C2 p⊕ C3) = (C1 ‖ C2) p⊕ (C1 ‖ C3), (3.24)

C1 ‖ (C2 A4 C3)
◦
= (C1 ‖ C2) A4 (C1 ‖ C3), (3.25)

88 Appendix A. Proofs of Chapter 3

C1 ‖ (C2 A4+ C3) = (C1 ‖ C2) A4+ (C1 ‖ C3). (3.26)

Proof. (3.22) Using the commutative and associative properties of the parallel operator,
it is easy to show that

(C1 ‖ C2) ‖ (C1 ‖ C3) ≈ (C1 ‖ C1) ‖ (C2 ‖ C3)

Now, from Proposition 3.11, (C1 ‖ C1) v◦ C1. Thus, Theorem 4.16 implies

(C1 ‖ C1) ‖ (C2 ‖ C3) v◦ C1 ‖ (C2 ‖ C3)

(3.23) The bijection is given by φ((y1, (y2, i))) = ((y1, y2), i), for all ((y1, (y2, i))) ∈
Y1 × (Y2 t Y3). For all x ∈ X , y1 ∈ Y1 and y2 ∈ Y2,

(C1 ‖ (C2 p ·t C3))(x, (y1, (y2, 1)))

=C1(x, y1)(C2 p ·t C3)(x, (y2, 1)) (by definition of ‖)

=pC1(x, y1)C2(x, y2) (by definition of p ·t)

=p(C1 ‖ C2)(x, (y1, y2)) (by definition of ‖)

=((C1 ‖ C2) p ·t (C1 ‖ C3))(x, ((y1, y2), 1)) (by definition of p ·t)

For all x ∈ X , y1 ∈ Y1 and y3 ∈ Y3,

(C1 ‖ (C2 p ·t C3))(x, (y1, (y3, 2)))

=C1(x, y1)(C2 p ·t C3)(x, (y3, 2)) (by definition of ‖)

=(1− p)C1(x, y1)C3(x, y3) (by definition of p ·t)

=(1− p)(C1 ‖ C2)(x, (y1, y3)) (by definition of ‖)

=((C1 ‖ C2) p ·t (C1 ‖ C3))(x, ((y1, y3), 2)) (by definition of p ·t)

(3.24) For all x ∈ X , y1 ∈ Y1 and y′ ∈ Y2 ∪ Y3,

(C1 ‖ (C2 p⊕ C3))(x, (y1, y
′))

=C1(x, y1)(C2 p⊕ C3)(x, y′) (by definition of ‖)

=C1(x, y1)(pC2(x, y′) + (1− p)C3(x, y′)) (by definition of p⊕)

=p(C1 ‖ C2)(x, (y1, y
′)) + (1− p)(C1 ‖ C2)(x, (y1, y

′)) (by definition of ‖)

=((C1 ‖ C2) p⊕ (C1 ‖ C3))(x, (y1, y
′)) (by definition of p⊕)

A.3. Distributive properties 89

(3.25) The bijection is given by φ((y1, (y2, i))) = ((y1, y2), i), for all ((y1, (y2, i))) ∈
Y1 × (Y2 t Y3). For all x ∈ A and (y1, (y2, 1)) ∈ Y1 × (Y2 t Y3),

C1 ‖ (C2 A4 C3)(x, (y1, (y2, 1)))

=C1(x, y1)(C2 A4 C3)(x, (y2, 1)) (by def of ‖)

=C1(x, y1)C2(x, y2) (by def of A4)

=(C1 ‖ C2)(x, (y1, y2)) (by def of ‖)

=((C1 ‖ C2) A4 (C1 ‖ C3))(x, ((y1, y2), 1)) (by def of A4)

Similarly, for all x ∈ A and (y1, (y2, 2)) ∈ Y1 × (Y2 t Y3),

C1 ‖ (C2 A4 C3)(x, (y1, (y2, 2)))

=C1(x, y1)(C2 A4 C3)(x, (y2, 2)) (by def of ‖)

=C1(x, y1)C3(x, y2) (by def of A4)

=(C1 ‖ C3)(x, (y1, y2)) (by def of ‖)

=((C1 ‖ C2) A4 (C1 ‖ C3))(x, ((y1, y2), 2)) (by def of A4)

For all other pairs (x, y′) ∈ X × (Y1 × (Y2 t Y3)), we have

C1 ‖ (C2 A4 C3)(x, y′) = ((C1 ‖ C2) A4 (C1 ‖ C3))(x, φ(y′)) = 0

(3.26) For all x ∈ A and (y1, y2) ∈ Y1 × (Y2 ∪ Y3),

C1 ‖ (C2 A4+ C3)(x, (y1, y2))

=C1(x, y1)(C2 A4+ C3)(x, y2) (by def of ‖)

=C1(x, y1)C2(x, y2) (by def of A4+)

=(C1 ‖ C2)(x, (y1, y2)) (by def of ‖)

=((C1 ‖ C2) A4+ (C1 ‖ C3))(x, (y1, y2)) (by def of A4+)

Similarly, for all x ∈ A and (y1, y2) ∈ Y1 × (Y2 ∪ Y3),

C1 ‖ (C2 A4+ C3)(x, (y1, y2))

=C1(x, y1)(C2 A4+ C3)(x, y2) (by def of ‖)

=C1(x, y1)C3(x, y2) (by def of A4+)

=(C1 ‖ C3)(x, (y1, y2)) (by def of ‖)

90 Appendix A. Proofs of Chapter 3

=((C1 ‖ C2) A4+ (C1 ‖ C3))(x, (y1, y2)) (by def of A4+)

Proposition 3.18 (Distributivity for Visible Choice).

C1 p ·t (C2 q ·t C3) ≈ (C1 p ·t C2) q ·t (C1 p ·t C3), (3.27)

C1 p ·t (C2 q⊕ C3) = (C1 p ·t C2) q⊕ (C1 p ·t C3), (3.28)

C1 p ·t (C2 A4 C3)◦w (C1 p ·t C2) A4 (C1 p ·t C3), (3.29)

C1 p ·t (C2 A4+ C3) = (C1 p ·t C2) A4+ (C1 p ·t C3). (3.30)

Proof. (3.27) For all π ∈ DX and g ∈ GX , we have

Vg[π 〉C1 p ·t (C2 q ·t C3)]

=pVg[π 〉C1] + (1− p)Vg[π 〉C2 q ·t C3] (from Theorem 4.3)

=pVg[π 〉C1] + (1− p)qVg[π 〉C2] + (1− p)(1− q)Vg[π 〉C3] (from Theorem 4.3)

=pqVg[π 〉C1] + (1− p)qVg[π 〉C2]

+ p(1− q)Vg[π 〉C1] + (1− p)(1− q)Vg[π 〉C3] (rearranging)

=qVg[π 〉C1 p ·t C2] + (1− q)Vg[π 〉C1 p ·t C3] (from Theorem 4.3)

=Vg[π 〉 (C1 p ·t C2) q ·t (C1 p ·t C3)] (from Theorem 4.3)

(3.28) For all x ∈ X and (y, 1) ∈ Y1 t (Y2 ∪ Y3),

(C1 p ·t (C2 q⊕ C3))(x, (y, 1))

=pC1(x, y1) (by def. of p ·t)

=q(pC1(x, y1)) + (1− q)(pC1(x, y)) (rearranging)

=q(C1 p ·t C2)(x, (y, 1)) + (1− q)(C1 p ·t C3)(x, (y, 1)) (by def. of p ·t)

=((C1 p ·t C2) q⊕ (C1 p ·t C3))(x, (y, 1)) (by def. of q⊕)

For all x ∈ X and (y, 2) ∈ Y1 t (Y2 ∪ Y3),

(C1 p ·t (C2 q⊕ C3))(x, (y, 2))

=(1− p)(C2 q⊕ C3)(x, y) (by def. of p ·t)

=(1− p)(qC2(x, y) + (1− q)C3(x, y)) (by def. of q⊕)

=q(1− p)C2(x, y) + (1− q)(1− p)C3(x, y) (rearranging)

=q(C1 p ·t C2)(x, (y, 2)) + (1− q)(C1 p ·t C3)(x, (y, 2)) (by def. of p ·t)

A.3. Distributive properties 91

=((C1 p ·t C2) q⊕ (C1 p ·t C3))(x, (y, 2)) (by def. of q⊕)

(3.29) For all π ∈ DX and g ∈ GX ,

Vg[π 〉C1 p ·t (C2 A4 C3)]

=pVg[π 〉C1] + (1− p)Vg[π 〉C2 A4 C3] (by thm 4.3)

≤pVg[π 〉C1 A4 C1] + (1− p)Vg[π 〉C2 A4 C3] (by eq. 3.14)

=pVgA [π 〉C1] + pVgA [π 〉C1]

+ (1− p)VgA [π 〉C2] + (1− p)VgA [π 〉C3] (by thm 4.11)

=VgA [π 〉C1 p ·t C2] + VgA [π 〉C1 p ·t C3] (by thm 4.3)

=VgA [π 〉 (C1 p ·t C2) A4 (C1 p ·t C3)] (by thm 4.11)

(3.30) For all x ∈ A, (y, 1) ∈ Y1 t (Y2 ∪ Y3)

(C1 p ·t (C2 A4+ C3))(x, (y, 1))

=pC1(x, y) (by def. of p ·t)

=(C1 p ·t C2)(x, (y, 1)) (by def. of p ·t)

=(C1 p ·t C2) A4+ (C1 p ·t C3)(x, (y, 1)) (by def. of A4+)

For all x ∈ A, (y, 1) ∈ Y1 t (Y2 ∪ Y3)

(C1 p ·t (C2 A4+ C3))(x, (y, 1))

=pC1(x, y) (by def. of p ·t)

=(C1 p ·t C3)(x, (y, 1)) (by def. of p ·t)

=(C1 p ·t C2) A4+ (C1 p ·t C3)(x, (y, 1)) (by def. of A4+)

For all x ∈ A, (y, 2) ∈ Y1 t (Y2 ∪ Y3)

(C1 p ·t (C2 A4+ C3))(x, (y, 2))

=(1− p)(C2 A4+ C3)(x, y) (by def. of p ·t)

=(1− p)C2(x, y) (by def. of A4+)

=(C1 p ·t C2)(x, (y, 2)) (by def. of p ·t)

=(C1 p ·t C2) A4+ (C1 p ·t C3)(x, (y, 2)) (by def. of A4+)

92 Appendix A. Proofs of Chapter 3

For all x ∈ A, (y, 2) ∈ Y1 t (Y2 ∪ Y3)

(C1 p ·t (C2 A4+ C3))(x, (y, 2))

=(1− p)(C2 A4+ C3)(x, y) (by def. of p ·t)

=(1− p)C3(x, y) (by def. of A4+)

=(C1 p ·t C3)(x, (y, 2)) (by def. of p ·t)

=(C1 p ·t C2) A4+ (C1 p ·t C3)(x, (y, 2)) (by def. of A4+)

Proposition 3.19 (Distributivity for Hidden Choice).

C1 p⊕ (C2 q⊕ C3) = (C1 p⊕ C2) q⊕ (C1 p⊕ C3), (3.31)

C1 p⊕ (C2 A4+ C3) = (C1 p⊕ C2) A4+ (C1 p⊕ C3). (3.32)

Proof. (3.31) For all x ∈ X and y ∈ Y1 ∪ Y2 ∪ Y3 ,

(C1 p⊕ (C2 q⊕ C3))(x, y)

=pC1(x, y) + (1− p)qC2(x, y) + (1− p)(1− q)C3(x, y) (by def. of p⊕, q⊕)

=pqC1(x, y) + (1− p)qC2(x, y)

+ p(1− q)C1(x, y) + (1− p)(1− q)C3(x, y) (rearranging)

=q(C1 p⊕ C2)(x, y) + (1− q)(C1 p⊕ C3)(x, y) (by def. of p⊕)

=((C1 p⊕ C2) q⊕ (C1 p⊕ C3))(x, y) (by def. of q⊕)

(3.32) For all x ∈ A, y ∈ Y1 ∪ Y2 ∪ Y3

(C1 p⊕ (C2 A4+ C3))(x, y)

=pC1(x, y) + (1− p)(C2 A4+ C3)(x, y) (by def. of p⊕)

=pC1(x, y) + (1− p)C2(x, y) (by def. of A4+)

=(C1 p⊕ C2)(x, y) (by def. of p⊕)

=((C1 p⊕ C2) A4+ (C1 p⊕ C3))(x, y) (by def. of A4+)

For all x ∈ A, y ∈ Y1 ∪ Y2 ∪ Y3

(C1 p⊕ (C2 A4+ C3))(x, y)

=pC1(x, y) + (1− p)(C2 A4+ C3)(x, y) (by def. of p⊕)

A.3. Distributive properties 93

=pC1(x, y) + (1− p)C3(x, y) (by def. of A4+)

=(C1 p⊕ C3)(x, y) (by def. of p⊕)

=((C1 p⊕ C2) A4+ (C1 p⊕ C3))(x, y) (by def. of A4+)

Proposition 3.20 (Distributivity for Visible If-then-else).

C1 A4 (C2 ‖ C3)◦w (C1 A4 C2) ‖ (C1 A4 C3), (3.33)

C1 A4 (C2 p ·t C3) ≈ (C1 A4 C2) p ·t (C1 A4 C3), (3.34)

C1 A4 (C2 p⊕ C3) = (C1 A4 C2) p⊕ (C1 A4 C3), (3.35)

C1 A4 (C2 B4 C3)◦w (C1 A4 C2) B4 (C1 A4 C3), (3.36)

C1 A4 (C2 B4+ C3) = (C1 A4 C2) B4+ (C1 A4 C3). (3.37)

Proof. (3.33) Let D : ((Y1 t Y2)× (Y1 t Y3))× (Y1 t (Y2 × Y3))→ [0, 1] be a channel
given by

D(((y1, i), (y2, j)), (y
′, k)) =



1, if i = j = k = 1 and y′ = y1

1, if i = j = k = 2 and y′ = (y1, y2)

1/|Y1t(Y2×Y3)|, if i 6= j

0, otherwise

We claim that C1 A4 (C2 ‖ C3) = ((C1 A4 C2) ‖ (C1 A4 C3))D.

For all x ∈ A, (y1, 1) ∈ (Y1 t (Y2 × Y3)),

(((C1 A4 C2) ‖ (C1 A4 C3))D)(x, (y, 1))

=
∑
y2∈Y1

((C1 A4 C2) ‖ (C1 A4 C3))(x, ((y1, 1), (y2, 1))) (by mult. and def. of D)

=
∑
y2∈Y1

(C1 A4 C2)(x, (y1, 1))(C1 A4 C3)(x, (y2, 1)) (by def. of ‖)

=
∑
y2∈Y1

C1(x, y1)C1(x, y2) (by def. of A4)

=C1(x, y1) (C1 is a channel)

=(C1 A4 (C2 ‖ C3))(x, (y1, 1)) (by def. of A4)

94 Appendix A. Proofs of Chapter 3

For all x ∈ A, ((y1, y2), 2) ∈ (Y1 t (Y2 × Y3)),

(((C1 A4 C2) ‖ (C1 A4 C3))D)(x, (y1, y2), 2))

=((C1 A4 C2) ‖ (C1 A4 C3))(x, ((y1, 2), (y2, 2))) (by mult. and def. of D)

=(C1 A4 C2)(x, (y1, 2))(C1 A4 C3)(x, (y2, 2)) (by def. of ‖)

=C2(x, y1)C3(x, y2) (by def. of A4)

=(C2 ‖ C3)(x, (y1, y2)) (by def, of ‖)

=(C1 A4 (C2 ‖ C3))(x, (y1, 1)) (by def. of A4)

For all other pairs (x, y′) ∈ X × (Y1 t (Y2 × Y3)), we have

(C1 A4 (C2 ‖ C3))(x, y′) = (((C1 A4 C2) ‖ (C1 A4 C3))D)(x, y′) = 0

(3.34) For all π ∈ DX and all g ∈ GX ,

Vg[π 〉C1 A4 (C2 p ·t C3)]

=VgA [π 〉C1] + VgA [π 〉C2 p ·t C3] (by Theorem 4.11)

=VgA [π 〉C1] + pVgA [π 〉C2] + (1− p)VgA [π 〉C3] (by Theorem 4.3)

=pVgA [π 〉C1] + (1− p)VgA [π 〉C1]

+ pVgA [π 〉C2] + (1− p)VgA [π 〉C3] (reorganizing)

=pVg[π 〉C1 A4 C2] + pVg[π 〉C1 A4 C3] (by Theorem 4.11)

=pVg[π 〉 (C1 A4 C2) p ·t (C1 A4 C3)] (by Theorem 4.3)

(3.35) For all x ∈ A, (y, 1) ∈ Y1 t (Y2 ∪ Y3),

(C1 A4 (C2 p⊕ C3))(x, (y, 1))

=C1(x, y) (by def. of A4)

=pC1(x, y) + (1− p)C1(x, y) (reorganizing)

=p(C1 A4 C2)(x, (y, 1)) + (1− p)(C1 A4 C3)(x, (y, 1)) (by def. of A4)

=((C1 A4 C2) p⊕ (C1 A4 C3))(x, (y, 1)) (by def. of p⊕)

For all x ∈ A, (y, 2) ∈ Y1 t (Y2 ∪ Y3),

(C1 A4 (C2 p⊕ C3))(x, (y, 2))

A.3. Distributive properties 95

=(C2 p⊕ C3)(x, y) (by def. of A4)

=pC2(x, y) + (1− p)C3(x, y) (by def. of p⊕)

=p(C1 A4 C2)(x, (y, 2)) + (1− p)(C1 A4 C3)(x, (y, 2)) (by def. of A4)

=((C1 A4 C2) p⊕ (C1 A4 C3))(x, (y, 2)) (by def. of p⊕)

For all other pairs (x, y′) ∈ X × (Y1 t (Y2 ∪ Y3)), we have

(C1 A4 (C2 p⊕ C3))(x, y′) = ((C1 A4 C2) p⊕ (C1 A4 C3))(x, y′) = 0

(3.36) We have that, for all π ∈ DX and g ∈ GX

Vg[π 〉C1 A4 (C2 B4 C3)]

=VgA [π 〉C1] + VgA [π 〉C2 B4 C3] (by Theorem 4.11)

=VgA [π 〉C1] + VgA∩B [π 〉C2] + VgA∩B [π 〉C2] (by Theorem 4.11)

≤VgA [π 〉C1 B4 C1] + VgA∩B [π 〉C2] + VgA∩B [π 〉C2] (by Eq. (3.14))

=VgA∩B [π 〉C1] + VgA∩B [π 〉C1]

+ VgA∩B [π 〉C2] + VgA∩B [π 〉C2] (by Theorem 4.11)

=VgB [π 〉C1 A4 C2] + VgB [π 〉C1 A4 C3] (by Theorem 4.11)

=Vg[π 〉 (C1 A4 C2) B4 (C1 A4 C3)] (by Theorem 4.11)

(3.37) For all x ∈ A ∩ B, (y, 1) ∈ Y1 t (Y2 ∪ Y3), we have

(C1 A4 (C2 B4+ C3))(x, (y, 1))

=C1(x, y) (by def of A4)

=(C1 A4 C2)(x, (y, 1)) (by def of A4)

=((C1 A4 C2) B4+ (C1 A4 C3))(x, (y, 1)) (by def of B4)

For all x ∈ A ∩ B, (y, 1) ∈ Y1 t (Y2 ∪ Y3), we have

(C1 A4 (C2 B4+ C3))(x, (y, 1))

=C1(x, y) (by def of A4)

=(C1 A4 C3)(x, (y, 1)) (by def of A4)

=((C1 A4 C2) B4+ (C1 A4 C3))(x, (y, 1)) (by def of B4)

96 Appendix A. Proofs of Chapter 3

For all x ∈ A ∩ B, (y, 2) ∈ Y1 t (Y2 ∪ Y3), we have

(C1 A4 (C2 B4+ C3))(x, (y, 2))

=(C2 B4+ C3)(x, y) (by def. of A4)

=C2(x, y) (by def of B4)

=(C1 A4 C2)(x, (y, 2)) (by def of A4)

=((C1 A4 C2) B4+ (C1 A4 C3))(x, (y, 1)) (by def of B4)

For all x ∈ A ∩ B, (y, 2) ∈ Y1 t Y2 ∪ Y3, we have

(C1 A4 (C2 B4+ C3))(x, (y, 2))

=(C2 B4+ C3)(x, y) (by def. of A4)

=C3(x, y) (by def of B4)

=(C1 A4 C3)(x, (y, 2)) (by def of A4)

=((C1 A4 C2) B4+ (C1 A4 C3))(x, (y, 1)) (by def of B4)

For all other pairs (x, y′) ∈ X × (Y1 t (Y2 ∪ Y3)), we have

(C1 A4 (C2 B4+ C3))(x, y′) = ((C1 A4 C2) B4+ (C1 A4 C3))(x, y′) = 0

Proposition 3.21 (Distributivity for Hidden If-then-else).

C1 A4+ (C2 p⊕ C3) = (C1 A4+ C2) p⊕ (C1 A4+ C3), (3.38)

C1 A4+ (C2 B4+ C3) = (C1 A4+ C2) B4+ (C1 A4+ C3). (3.39)

Proof. (3.39) For all x ∈ A, y ∈ Y1 ∪ Y2 ∪ Y3,

(C1 A4+ (C2 p⊕ C3))(x, y)

=C1(x, y) (by def. of A4+)

=pC1(x, y) + (1− p)C1(x, y) (reorganizing)

=p(C1 A4+ C2)(x, y) + (1− p)(C1 A4+ C3)(x, y) (by def. of A4+)

=((C1 A4+ C2) p⊕ (C1 A4+ C3))(x, y) (by def. of p⊕)

A.3. Distributive properties 97

For all x ∈ A, y ∈ Y1 ∪ Y2 ∪ Y3,

(C1 A4+ (C2 p⊕ C3))(x, y)

=(C2 p⊕ C3))(x, y) (by def. of A4+)

=pC2(x, y) + (1− p)C3(x, y) (by def. of p⊕)

=p(C1 A4+ C2)(x, y) + (1− p)(C1 A4+ C3)(x, y) (by def. of A4+)

=((C1 A4+ C2) p⊕ (C1 A4+ C3))(x, y) (by def. of p⊕)

(3.39) For all x ∈ A ∩ B, y ∈ Y1 ∪ Y2 ∪ Y3,

(C1 A4+ (C2 B4+ C3))(x, y)

=C1(x, y) (by def. of A4+)

=(C1 A4+ C2)(x, y) (by def. of A4+)

=((C1 A4+ C2) B4+ (C1 A4+ C3))(x, y) (by def. of B4+)

For all x ∈ A ∩ B, y ∈ Y1 ∪ Y2 ∪ Y3,

(C1 A4+ (C2 B4+ C3))(x, y)

=C1(x, y) (by def. of A4+)

=(C1 A4+ C3)(x, y) (by def. of A4+)

=((C1 A4+ C2) B4+ (C1 A4+ C3))(x, y) (by def. of B4+)

For all x ∈ A ∩ B, y ∈ Y1 ∪ Y2 ∪ Y3,

(C1 A4+ (C2 B4+ C3))(x, y)

=(C2 B4+ C3))(x, y) (by def. of A4+)

=C2(x, y) (by def. of B4+)

=(C1 A4+ C2)(x, y) (by def. of A4+)

=((C1 A4+ C2) B4+ (C1 A4+ C3))(x, y) (by def. of B4+)

For all x ∈ A ∩ B, y ∈ Y1 ∪ Y2 ∪ Y3,

(C1 A4+ (C2 B4+ C3))(x, y)

=(C2 B4+ C3))(x, y) (by def. of A4+)

=C3(x, y) (by def. of B4+)

98 Appendix A. Proofs of Chapter 3

=(C1 A4+ C3)(x, y) (by def. of A4+)

=((C1 A4+ C2) B4+ (C1 A4+ C3))(x, y) (by def. of B4+)

Proposition 3.22 (Non-distributivity). The following expressions do not, in general,
respect the refinement relation between them, in any direction

(C1 p ·t (C2 ‖ C3)) and ((C1 p ·t C2) ‖ (C1 p ·t C3)), (3.40)

(C1 p⊕ (C2 ‖ C3)) and ((C1 p⊕ C2) ‖ (C1 p⊕ C3)), (3.41)

(C1 p⊕ (C2 q ·t C3)) and ((C1 p⊕ C2) q ·t (C1 p⊕ C3)), (3.42)

(C1 p⊕ (C2 A4 C3)) and ((C1 p⊕ C2) A4 (C1 p⊕ C3)), (3.43)

(C1 A4+ (C2 ‖ C3)) and ((C1 A4+ C2) ‖ (C1 A4+ C3)), (3.44)

(C1 A4+ (C2 p ·t C3)) and ((C1 A4+ C2) p ·t (C1 A4+ C3)), (3.45)

(C1 A4+ (C2 B4 C3)) and ((C1 A4+ C2) B4 (C1 A4+ C3)). (3.46)

Proof. (3.40) Let the following be three compatible channels from the set CX

C1 y1

x1 1

x2 1

x3 1

C2 y1 y2

x1 1 0

x2 1 0

x3 0 1

C3 y1 y2

x1 1 0

x2 0 1

x3 0 1

Then, we have (the output labels were omitted for brevity)

C1 1/2 ·t (C2 ‖ C3)

x1
1/2 1/2 0 0 0

x2
1/2 0 1/2 0 0

x3
1/2 0 0 0 1/2

(C1 1/2 ·t C2) ‖ (C1 1/2 ·t C3)

x1
1/4 1/4 0 1/4 1/4 0 0 0 0

x2
1/4 0 1/4 1/4 0 1/4 0 0 0

x3
1/4 0 1/4 0 0 0 1/4 0 1/4

Let gid ∈ GX be as in Definition 2.10 and π = (1/2, 0, 1/2). Then,
Vgid [π 〉C1 1/2 ·t (C2 ‖ C3)] = 3/4, while Vgid [π 〉 (C1 1/2 ·t C2) ‖ (C1 1/2 ·t C3)] = 7/8.

A.3. Distributive properties 99

Therefore,
C1 1/2 ·t (C2 ‖ C3) 6v◦ (C1 1/2 ·t C2) ‖ (C1 1/2 ·t C3)

Conversely, we see that there is a column of the matrix representation of
C1 1/2 ·t (C2 ‖ C3) given by (0, 1/2, 0). It can be easily checked that this column can not
be described as a linear combination of the columns of (C1 1/2 ·t C2) ‖ (C1 1/2 ·t C3) with
coefficients in the range [0,1]. Therefore, there is no channel D such that

((C1 1/2 ·t C2) ‖ (C1 1/2 ·t C3))D = C1 1/2 ·t (C2 ‖ C3).

From here on, all the remaining proofs of this proposition will be based on the
following idea. If there is a choice of C1, C2 and C3 that make the first channel null
and the second transparent and another choice of C1, C2 and C3 that makes the second
channel null and the first transparent, the inexistence of a refinement relation that
holds in general is proved

(3.41) Let

C1 y1 y2

x1 1 0

x2 0 1

C2 y1 y2

x1 0 1

x2 1 0

C3 y1 y2

x1 0 1

x2 1 0

C4 (y1, y1) (y2, y2)

x1 1 0

x2 0 1

We have that (C1 1/2⊕ (C2 ‖ C3)) is a transparent channel and ((C1 1/2⊕ C2) ‖
(C1 1/2⊕ C3)) is a null channel, while (C4 1/2⊕ (C2 ‖ C3)) is a null channel and
((C4 1/2⊕ C2) ‖ (C4 1/2⊕ C3)) is a transparent channel.

(3.42) Let

C1 y1 y2

x1 1 0

x2 0 1

C2 y1 y2

x1 0 1

x2 1 0

C3 y1 y2

x1 0 1

x2 1 0

C4 (y1, 1) (y2, 1) (y1, 2) (y2, 2)

x1
1/2 0 1/2 0

x2 0 1/2 0 1/2

Then, (C1 1/2⊕ (C2 1/2 ·t C3)) is a transparent channel and
((C1 1/2⊕ C2) 1/2 ·t (C1 1/2⊕ C3)) is a null channel, while (C4 1/2⊕ (C2 1/2 ·t C3))

is a null channel and ((C4 1/2⊕ C2) 1/2 ·t (C4 1/2⊕ C3)) is a transparent channel.

(3.43) Let

C1 y1 y2

x1 1 0

x2 0 1

C2 y1 y2

x1 0 1

x2 1 0

C3 y1 y2

x1 0 1

x2 1 0

C4 (y2, 1) (y1, 2)

x1 0 1

x2 1 0

100 Appendix A. Proofs of Chapter 3

Let A = {x1}. Then, (C1 1/2⊕ (C2 A4 C3)) is a transparent channel and
((C1 1/2⊕ C2) A4 (C1 1/2⊕ C3)) is a null channel, while (C4 1/2⊕ (C2 A4 C3)) is a
null channel and ((C4 1/2⊕ C2) A4 (C4 1/2⊕ C3)) is a transparent channel.

(3.44) Let

C1 y1 y2

x1 1 0

x2 0 1

C2 y1 y2

x1 0 1

x2 1 0

C3 y1 y2

x1 0 1

x2 1 0

C4 (y1, y1) (y2, y2)

x1 1 0

x2 0 1

Let A = {x1}. Then, (C1 A4+ (C2 ‖ C3)) is a transparent channel and
((C1 A4+ C2) ‖ (C1 A4+ C3)) is a null channel, while (C4 A4+ (C2 ‖ C3)) is a null
channel and ((C4 A4+ C2) ‖ (C4 A4+ C3)) is a transparent channel

(3.45) Let

C1 y1 y2

x1 1 0

x2 0 1

C2 y1 y2

x1 0 1

x2 1 0

C3 y1 y2

x1 0 1

x2 1 0

C4 (y1, 1) (y1, 2)

x1
1/2 1/2

x2
1/2 1/2

Let A = {x1}. Then, (C1 A4+ (C2 1/2 ·t C3)) is a transparent channel and
((C1 A4+ C2) 1/2 ·t (C1 A4+ C3)) is a null channel, while (C4 A4+ (C2 1/2 ·t C3)) is a
null channel and ((C4 A4+ C2) 1/2 ·t (C4 A4+ C3)) is a transparent channel

(3.46) Let

C1 y1 y2

x1 1 0

x2 0 1

C2 y1 y2

x1 0 1

x2 1 0

C3 y1 y2

x1 0 1

x2 1 0

C4 (y2, 1) (y1, 2)

x1 0 1

x2 1 0

Let A = B = {x1}. Then, (C1 A4+ (C2 B4 C3)) is a transparent channel and
((C1 A4+ C2) B4 (C1 A4+ C3)) is a null channel, while (C4 A4+ (C2 B4 C3)) is a null
channel and ((C4 A4+ C2) B4 (C4 A4+ C3)) is a transparent channel.

A.4 Properties regarding cascading

Proposition 3.23. Let D1 ∈ CZ1
Y1 , D2 ∈ CZ2

Y2 be channels. Then,

(C1D1) ‖ (C2D2) = (C1 ‖ C2)D‖,

A.4. Properties regarding cascading 101

where D‖ : (Y1×Y2)×(Z1×Z2)→ [0, 1] is defined as

D‖((y1, y2), (z1, z2)) = D1(y1, z1)D2(y2, z2)

for all y1∈Y1, y2∈Y2, z1∈Z1, and z2∈Z2.

Proof. For all x ∈ X , z1 ∈ Z1 and z2 ∈ Z2,

((C1D1) ‖ (C2D2))(x, (z1, z2))

=(C1D1)(x, z1)(C2D2)(x, z2) (by def. of ‖)

=

(∑
y1∈Y1

C1(x, y1)D1(y1, z1)

)(∑
y2∈Y2

C2(x, y2)D2(y2, z2)

)
(by matrix mult.)

=
∑
y1∈Y1

∑
y2∈Y2

C1(x, y1)C2(x, y2)D1(y1, z1)D2(y2, z2) (rearranging)

=
∑
y1∈Y1

∑
y2∈Y2

(C1 ‖ C2)(x, (y1, y2))D‖((y1, y2), (z1, z2)) (by def. of ‖, D‖)

=((C1 ‖ C2)D‖)(x, (z1, z2)) (by matrix mult.)

Proposition 3.24. Let D1 ∈ CZ1
Y1 , D2 ∈ CZ2

Y2 be channels. Then,

(C1D1) p ·t (C2D2) = (C1 p ·t C2)D ·t,

where D ·t:(Y1tY2)×(Z1tZ2)→[0, 1] is defined as

D ·t((y, i), (z, j)) =


D1(y, z), if i = j = 1,

D2(y, z), if i = j = 2,

0, otherwise.

for all y1∈Y1, y2∈Y2, z1∈Z1, z2∈Z2.

Proof. For all x ∈ X and (z, 1) ∈ Z1 t Z2,

((C1D1) p ·t (C2D2))(x, (z, 1))

=p(C1D1)(x, z) (by def. of p ·t)

=p
∑
y∈Y1

C1(x, y)D1(y, z) (by matrix mult.)

102 Appendix A. Proofs of Chapter 3

=
∑
y∈Y1

(pC1(x, y))D1(y, z) (by matrix mult.)

=
∑
y∈Y1

(C1 p ·t C2)(x, (y, 1))D1(y, z) (by def. of p ·t)

=
∑
y∈Y1

(C1 p ·t C2)(x, (y, 1))D ·t((y, 1), (z, 1)) (by def. of D ·t)

=
∑

(y,i)∈Y1tY2

(C1 p ·t C2)(x, (y, i))D ·t((yi, i), (z, 1)) (D ·t((y, i), (z, 1)) = 0 when i 6= 1)

=((C1 p ·t C2)D ·t)(x, (z, 1)) (by matrix mult.)

Similarly, for all x ∈ X and (z, 2) ∈ Z1 t Z2,

((C1D1) p ·t (C2D2))(x, (z, 2))

=(1− p)(C2D2)(x, z) (by def. of p ·t)

=(1− p)
∑
y∈Y2

C2(x, y)D2(y, z) (by matrix mult.)

=
∑
y∈Y2

((1− p)C2(x, y))D2(y, z) (by matrix mult.)

=
∑
y∈Y2

(C1 p ·t C2)(x, (y, 2))D2(y, z) (by def. of p ·t)

=
∑
y∈Y2

(C1 p ·t C2)(x, (y, 2))D ·t((y, 2), (z, 2)) (by def. of D ·t)

=
∑

(y,i)∈Y1tY2

(C1 p ·t C2)(x, (y, i))D ·t((yi, i), (z, 2)) (D ·t((y, i), (z, 2)) = 0 when i 6= 2)

=((C1 p ·t C2)D ·t)(x, (z, 2)) (by matrix mult.)

Proposition 3.25. Let D1 ∈ CZ1
Y1 , D2 ∈ CZ2

Y2 be channels. Then,

(C1D1) A4 (C2D2) = (C1 A4 C2)D ·t,

where D ·t is as defined in Proposition 3.24.

Proof. For all x ∈ A and (z, 1) ∈ Z1 t Z2,

((C1D1) A4 (C2D2))(x, (z, 1))

=(C1D1)(x, z) (by def. of A4)

=
∑
y∈Y1

C1(x, y)D1(y, z) (by matrix mult.)

A.4. Properties regarding cascading 103

=
∑
y∈Y1

(C1 A4 C2)(x, (y, 1))D1(y, z) (by def. of A4)

=
∑
y∈Y1

(C1 A4 C2)(x, (y, 1))D ·t((y, 1), (z, 1)) (by def. of D ·t)

=
∑

(y,i)∈Y1tY2

(C1 A4 C2)(x, (y, i))D ·t((y, i), (z, 1)) (D ·t((y, i), (z, 1)) = 0 when i 6= 1)

=((C1 A4 C2)D ·t)(x, (z, 1)) (by matrix mult.)

Similarly, for all x ∈ A and (z, 2) ∈ Z1 t Z2,

((C1D1) A4 (C2D2))(x, (z, 2))

=(C2D2)(x, z) (by def. of A4)

=
∑
y∈Y2

C2(x, y)D2(y, z) (by matrix mult.)

=
∑
y∈Y2

(C1 A4 C2)(x, (y, 2))D2(y, z) (by def. of A4)

=
∑
y∈Y2

(C1 A4 C2)(x, (y, 2))D ·t((y, 2), (z, 2)) (by def. of D ·t)

=
∑

(y,i)∈Y1tY2

(C1 A4 C2)(x, (y, i))D ·t((y, i), (z, 2)) (D ·t((y, i), (z, 2)) = 0 when i 6= 2)

=((C1 A4 C2)D ·t)(x, (z, 2)) (by matrix mult.)

For all pairs x ∈ X , (z, i) ∈ Z1 t Z2 not contemplated above, we have

((C1D1) A4 (C2D2))(x, (z, i)) = (((C1 A4 C2)D ·t)(x, (z, i)) = 0

Proposition 3.26. Let C1, C2 ∈ CYX be channels of the same type, let D ∈ CZY and let
p ∈ [0, 1]. Then, (C1D) p⊕ (C2D) = (C1 p⊕ C2)D.

Proof. For all x ∈ X and z ∈ Z,

((C1D) p⊕ (C2D))(x, z)

=p(C1D)(x, z) + (1− p)(C2D)(x, z) (by def. of p⊕)

=p
∑
y∈Y

C1(x, y)D(y, z) + (1− p)
∑
y∈Y

C2(x, y)D(y, z) (by matrix mult.)

=
∑
y∈Y

(pC1(x, y) + (1− p)C2(x, y))D(y, z) (rearranging)

104 Appendix A. Proofs of Chapter 3

=
∑
y∈Y

(C1 p⊕ C2)(x, y)D(y, z) (by def. of p⊕)

=((C1 p⊕ C2)D)(x, z) (by matrix mult.)

Proposition 3.27. Let C1, C2 ∈ CYX be channels of the same type, let D ∈ CZY and let
A ⊂ X . Then, (C1D) A4+ (C2D) = (C1 A4+ C2)D.

Proof. For all x ∈ A and z ∈ Z,

((C1D) A4+ (C2D))(x, z)

=(C1D)(x, z) (by def. of A4+)

=
∑
y∈Y

C1(x, y)D(y, z) (by matrix mult.)

=
∑
y∈Y

(C1 A4+ C2)(x, y)D(y, z) (by def. of A4+)

=((C1 A4+ C2)D)(x, z) (by matrix mult.)

Similarly, for all x ∈ A and z ∈ Z,

((C1D) A4+ (C2D))(x, z)

=(C2D)(x, z) (by def. of A4+)

=
∑
y∈Y

C2(x, y)D(y, z) (by matrix mult.)

=
∑
y∈Y

(C1 A4+ C2)(x, y)D(y, z) (by def. of A4+)

=((C1 A4+ C2)D)(x, z) (by matrix mult.)

