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Resumo

Aprendizado Multivisão é uma tendência em alta em aprendizado de máquina e já
produziu resultados bastante significativos em diversas áreas de aplicação. Uma delas
é a de verificação automática de qualidade de conteúdo criado colaborativamente na
Web, melhor exemplificado pelas ‘Wikis’. Wikis são uma das formas mais comuns
de repositórios de informação, os quais usuários utilizam quando se encontram sobre
alguma necessidade de informação. Dada sua natureza livre e colaborativa, tais reposi-
tórios precisam de uma forma de controlar a qualidade de seu conteúdo, com objetivo
de evitar incluir informações erradas e/ou incompletas. A solução estado-da-arte para
esse problema se apoia no aprendizado multivisão, em que qualidade é considerada
um conceito multifacetado que pode ser aprendido partindo de critérios de qualidade
definidos por humanos. Para esse efeito, atributos que descrevem qualidade devem ser
criados e agrupados em visões baseadas em critérios como a estrutura do texto, legibi-
lidade, estilo, histórico de edição do usuário, entre outros. A tarefa de determinar as
visões requer a assistência de um especialista, o que é dificil de executar em cenários
onde visões se sobrepõem ou são difíceis de serem interpretadas por humanos. Além
disso, visões definidas manualmente podem não ser as mais adequadas para resolver
automaticamente o problema de verificação de qualidade. Nesse trabalho é proposto
um gerador de visões automático, para endereçar o problema da geração de visões para
aprendizado multivisão, especialmente para o problema de verificação automática de
qualidade. Foram avaliados três conjuntos de dados Wiki bastante populares utilizando
a abordagem proposta. Os experimentos realizados mostraram que a solução proposta
teve performace mais alta que uma versão que utiliza apenas os atributos originais, com
ganhos chegando a até 20% em termos de acurácia da qualidade prevista. O método
desenvolvido nesse trabalho foi também capaz de automaticamente produzir visões que
são competitivas ou até melhores do que as criadas manualmente, para a mesma tarefa
de verificação de qualidade, e sem nenhuma interferência humana.

Palavras-chave: Aprendizado de Máquina, MultiVisão, Verificação de Qualidade,
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Abstract

Multi-view learning is a “hot” tendency in machine learning that has produced top-
notch results in several application areas. One of them is automated quality assessment
of content created collaboratively on the Web, better exemplified by ‘Wikis’. Wikis
are one of the most common information repositories, to which users resort when
they have some information need. Given their free and collaborative nature, such
repositories need to control content quality, in order to avoid containing wrong or
incomplete information. The state-of-the-art solution for this problem relies on multi-
view learning, where quality is considered a multifaceted concept that can be learned
from human quality assessments. To this effect, features describing quality have to be
devised and grouped into views based on criteria such as text structure, readability,
style, user edit history, etc. The task of determining the views requires the assistance
of an expert, which is hard to do in scenarios where views are overlapping or hard
to interpret by humans. In addition, human engineered views may not be the most
adequate for automatically solving the quality measurement problem. In this work,
we propose an automatic view generator, to address the problem of generating views
for MultiView learning, specially for the problem of automated quality assessment.
We evaluate this approach on three popular Wiki datasets. In our experiments, our
solution outperformed a version that exploits only the original features, with gains of
up to 20% in terms of accuracy of the quality assessment. Our method was also able to
automatically produce views that are competitive or even better than those manually
created, for the task of quality assessment, without any human intervention.

Keywords: Machine Learning, Multiview, Quality Assessment, Information Retrie-
val.
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Capítulo 1

Introduction

1.1 Motivation

Many tasks in digital libraries, such as topic classification, document quality assess-
ment, or link prediction, have been addressed using machine learning approaches [Dalip
et al., 2014, 2017; Ferreira et al., 2015]. In such approaches, diverse sets of evidence
can be explored during the learning process. For instance, to classify the polarity of
an opinion expressed in a video, patterns can be extracted from different sets of evi-
dence, such as the contents of the audio and image streams. Even for a particular
source, different sets of features can be observed. For example, the audio source can
be described by the spoken content or the emotional voice stress; each of these sets of
features can be also classified according to their representation domains, such as time-
and frequency-based.

Such scenarios, where data can be described by different sets of features, known
as views, are increasingly common [Sun, 2013].

Each view corresponds to a partition of the set of features where the features of a
particular view are naturally seen as a group. Further, defined as partitions, the views
cannot share features which implies that views are designed to be as much independent
as possible to each other.

Many works in the literature have addressed the problem of learning from data
represented by multiple distinct feature sets. Most of them exploit the consistency and
complementary properties of different views to integrate them and provide effective
methods, capable of better generalization than single-view learning.

Most multi-view approaches in the literature take advantage of views that re-
present natural splits of the set of features [Dalip et al., 2012, 2013, 2017; Kleminski
et al., 2017; Zhao et al., 2017]. Although in some cases these splits are obvious (for
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1. Introduction 2

instance, web content can be described by linkage and textual features), in many sce-
narios, a human expert would be required to determine how the set of features should
be partitioned to compose the views. As a result, (a) these methods are not fully auto-
mated since they depend on human expertise; (b) they cannot be applied in scenarios
where the features are not easily understandable by humans; and (c) solutions proposed
by humans, even if experts, may be sub-optimal when compared to pure data-driven
techniques.

To address these problems, some approaches estimate the feature splits by means
of data analysis. We refer to these methods as data-driven split methods. Their
general idea is to partition the feature set into views according to how the features are
correlated to each other. Correlations are estimated with respect to a target variable,
such as labels provided in classification tasks. As with natural views, improvements
in performance have been observed for data-driven split methods [Sun, 2013; Dang &
Croft, 2010; Sun et al., 2011; Di & Crawford, 2012; Kleminski et al., 2017]. Nevertheless,
data-driven split methods still have some shortcomings, such as the assumption of a
hard view consistency restriction and the loss of information associated with individual
features, given that they are replaced by the generated views.

The view consistency restriction establishes that a feature belongs to a single
view [Gao & Yang, 2014]. This can be a problem because some features can be associ-
ated with multiple views. For instance, in a data quality classification problem [Dalip
et al., 2017], a feature based on a part-of-speech tag can be associated with a writing
style view and with a readability view. Also, many views can be dependent on each
other.

The loss of information associated with individual features is sometimes observed
after they are integrated into a view. In previous works [Dalip et al., 2012, 2013, 2017],
we have observed that the substitution of individual features by their corresponding
views sometimes breaks important interactions among features from different views.
For instance, in a sentiment analysis problem, by combining the audio view with the
subtitles view for a negative sentence s in a video, the classifier can label s as positive.
However, by combining a particular spoken word (a feature from the subtitle view)
with the corresponding voice intonation (a feature from the audio view) the classifier
can capture an irony, correctly labelling s as negative.
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1.2 Objetives

In this work, we propose an automatic data-driven split method to multiview learning to
tackle the aforementioned issues. Our approach extends the method proposed by [Dalip
et al., 2012, 2013, 2017], by automatically creating views independently on the dataset
to be learned. Although our method is domain and dataset independent, in here we
focus on the problem of automated quality assessment of collaborative content created
on the Web as in [Dalip et al., 2012, 2017], better exemplified by ‘Wiki-like’ sites. We
chose such domain since it naturally induces a considerable number of views based
on different quality criteria such as text structure and style, readability, user review
history, etc.

As in previous approaches [Dalip et al., 2012; Di & Crawford, 2012; Gao & Yang,
2014], we split the feature set based on feature correlations, such that similar features
are combined into views to capture local consistency. However our proposal differs
from previous works in the following important aspects:

1. The adoption of Soft views. Instead of taking views as hard partitions of the
feature set, we group features such that they can be shared among the views.
This way, we relax the consistency rule restriction in an attempt to better capture
natural view dependencies.

2. The search for views composed by dissimilar features to create views that also
capture interactions among non-correlated features.

3. Preservation of the individual features in the final combination. We combine the
views with all the individual features to avoid the loss of information associated
with the substitution of individual features. Differently from Dalip et al. [2012,
2013, 2017], we provide a comprehensive study on the preservation of individual
features.

4. The iterative evaluation of view candidates. Our method uses label information to
estimate feature correlations and, by extent, view candidates. This is an iterative
process, in which new view candidates are created at each iteration. However,
only sets of views which improve evaluation are preserved.

5. Selection of only the most discriminative views. We propose ways of filtering out
and removing potential noise or redudancy regarding the automatically created
views, improving the overall process.
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In this thesis we focus on comparing the performance of our new automated
approach to the manual views proposed in Automatic Quality Assessment domain, by
using the collaborative content created on the Web as in [Dalip et al., 2012, 2017].

We, then, guide our analysis by exploring on the following research questions:

1. Q1 - How effective can be an automatic view generation method compared to a
natural view split created by an expert? We propose an automatic view generator
method called Iterative K-Medoids View Generator (IKMVG), and then compare
its effectiveness against the manual views in WIKI datasets. In most situations
we have similar or even better results compared with the natural (i.e manual/view
split) approach.

2. Q2 - What is the impact of relaxing the view consistency rule, and allowing dif-
ferent views to have some equal features? We propose an automatic view ge-
nerator method that explores this aspect with an approach called ‘soft views’.
Our method iteratively generates views from the data by clustering a selected
number of features into groups and use them according to their performance (by
evaluating the effectiveness of the generated views). While a feature can not exist
in two different views during the same iteration of the clustering, views created
on next iterations certainly can. Our results showed that this soft approach can
have some benefits, even improving upon the manual view split.

3. Q3 - How impactful is the usage of similar metrics to generate artificial views? In
this work we used the Spearman Correlation Coefficient to address how similar a
feature is to the others, and then group them by this metric. We explore similarity
and dissimilarity, by creating views with both metrics. The idea behind this is to
allow our method to create views with specific information and views with more
general information. This showed interesting results, with strong results against
the manual approach and even after comparing to the Random Subspace Method
(RSM), which generates views with random features on each of them.

4. Q4 - How similar can be the views automatically generated to the manual ones?
In this work we realize an indepth analysis on how similar the artificial views can
be to the manual ones. Given that, initially, the manual approach is supposed
to generate the best possible ones. In our experiments we were able to generate
some similar views, specially when a manual view is easily differentiable from the
others. In this scenario, our method was able to even replicate the ‘Readability’
view.
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1.3 Contributions

Given our research questions, the main contributions of this work are:

• We developed a method called Iterative K-Medoids View Generator (IKMVG) to
automatically generate views given the data for the application of a multi-view
learning approach. It removes the necessity of a manual separation of features
into views by a human, and can have similar or even better performance than
this separation.

• From what we know, it is the first time an automatic view separation method rela-
xes the view consistency rule, allowing features to appear in more than one view.
Our so called Soft views permit more kinds of relationships between features
to exist compared to the hard partitioned views approach, which can positively
affect the results, given our research.

• We provide an extensive analysis on our automatically generated views compared
to the manual ones, to try understand the strong and weak aspects of our method
and what we are contributing to each domain evaluated

The following section contains a roadmap with a brief description of the organi-
zation of each chapter of this dissertation.

1.4 Roadmap

The remaining of this work is organized as follows. In Chapter 2, we provide necessary
background information. In Chapter 3, we discuss related work. In Chapter 4, we
present a set of manual views used as a baseline in our experiments. In Chapter 5, we
provide information about the Multiview Framework and our approach to Multiview
generation. In Chapter 6 we present our experimental results and analysis. Finally, in
Chapter 7, we present concluding remarks and plans for future work.



Capítulo 2

Background

2.1 Supervised Learning

Supervised Machine Learning techniques aim at learning, through data patterns, a
way to reach some target result with the least amount of error possible [Mitchell,
1997]. To accomplish this we assume we have access to some training data of the form
A = (a1, r1), (a2, r2), ..., (an, rn) where ai represents one instance of the data described
by one or more features and with a target value ri. In this work, the term feature is
used to represent a specific measure of the instance it describes, in order to help to
predict ri. If ai is a Wikipedia article, for example, one feature could represent its
length. Machine learning methods try to combine all the features to predict a result
that is the closest possible to ri. The values of ri are dependent of the problem we
are trying to solve. In some cases ri can represent finite values, for example a problem
of defining if a email is or is not a spam has only two possible values,‘true’ or ‘false’.
This is a classic case of a classification problem. In other problems, ri can represent
infinite real numbers and the goal is to predict this number. For example, predict a
company’s month profit, which is now a problem called regression. In this work we are
going to deal exclusively with regression problems, thus the next section explains in
more details the method used in this work, called SVR (Support Vector Regression)
[Drucker et al., 1997].

2.2 Support Vector Regression

Given the training data defined on the previous section A = (a1, r1), (a2, r2), ..., (an, rn),
our problem is to find a function f which approximates the mapping between input

6



2. Background 7

Figura 2.1. Regression problem with one numeric target (article quality) and
ten articles (points), represented by a single feature (article length). Note that
two articles, in both graphics, are considered examples of error because they lie
outside the area delimited by the margins. Their distance to the margins are given
by ξ∗i andξi respectively. Figures (a) and (b) represent regressions performed using
two different ε values.

and output variables. In our case, the input variables are given by the features used to
describe ai, and the output value is our target ri. In this scenario, error for each instance
is defined by the difference between the predicted and the true value (f(a) − r), r ∈
R, a ∈ Av. The magnitude of the error is measured by a loss function. The main idea
of the SVR is to use a loss function, called ε− insensitive, that does not consider error
values situated within a certain distance of the true value. One way of visualizing this
method is to consider a region of size ±ε around the hypothesis function f2, where ε
denotes a margin. Any training point lying outside this region is considered an example
of an error, as illustrated by 2.1(a), where f1 and f3 represent the margins around
hypothesis function f2. In this work our goal is to approximate a function f : A→ R
that has at most ε deviation from the output variable r ∈ R, for all the training data.
In SVR, the input a is first mapped onto a m− dimensional feature space using some
non-linear mapping φ. A linear model is then constructed in this feature space. More
formally, the linear model f(a, w) is given by f(a, w) = (w, φ(a)) + b, where w is
the weight vector of m feature values, b is the bias term and (w, φ(a)) denotes the
inner product between w and φ(a). The quality of the estimation is measured by the
ε− insensitive loss function Lε(r, f(a, w)) defined below:

Lε(r, f(a, w)) =

|r − f(a, w)| − ε if ε < |r − f(a, w)|.

0 otherwise.
(2.1)
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SVR basically performs a linear regression in the high-dimension feature space
using the ε − insensitive loss function while it tries, at the same time, to reduce the
model complexity by minimizing the norm of w. The linear regression of the loss
function is performed by minimizing error estimates (r − f(a, w)) and (f(a, w) − r),
measured, respectively, by non-negative slack variables ξ∗i and ξi. If we consider f1
the margin above f and f3 the margin below f , then ξ∗i measures deviations above f1
whereas ξi measures deviations below f3, as shown in 2.1. Thus, SVR can be formulated
as the convex optimization problem of minimizing:

1

2
||w||2 + C

n∑
i=1

(ξ∗i + ξi) (2.2)

subject to:
|ri − f(ai, w)| ≤ ε+ ξ∗i (2.3)

|f(ai, w)− ri| ≤ ε+ ξi (2.4)

ξ∗i , ξi > 0, 0 < i ≤ n (2.5)

where C > 0 is a constant parameter. This optimization problem can be transformed
into its dual problem, whose solution is given by the equation below:

f(a) =
nSV∑
i=1

(αi + α∗i )κ(ai, a), subject to 0 < αi, α
∗
i ≤ C. (2.6)

where nSV is the number of support vectors (vectors lying on the margins, depicted
as white circles in 2.1) and κ is an inner product function (kernel function) defined as

κ(ai, a) =
m∑
j=1

(φj(ai)φj(a)). The SVR estimator accuracy relies on a good setting for C,

ε and the kernel parameters. C determines the trade-off between model complexity and
the degree to which deviations larger than ε are tolerated. If C is large, the objective

becomes to minimize the equation 1
n

n∑
i=1

Lε(ri, f(ai, w)). The parameter controls the

width of the ε-insensitive zone, used to fit the training data. Bigger ε-values use fewer
support vectors, at the expense of providing more ‘flat’ estimates, as we can see in
2.1(a) and 2.1(b).

In this work we manly selected the SVR algorithm to have a fair comparison
with the results presented in previous works [Dalip et al., 2012, 2017], given that we
are using the same datasets but proposing a different approach. Another important
point is that some of the ascending popularity methods for regression, like the Random
Forest approach [Breiman, 2001], do some steps during its tree creation method that
can be seen as a partially ‘multiview’ approach, by selecting only a group of features
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to belong to each tree. This point would make the analysis of the performance and
benefits of our approach a lot more complex. We intend to explore these methods
in a future work. In here we used the SVR implementation presented in the SciKit
library in Python [Pedregosa et al., 2011]. The parameters ε and C were chosen by a
cross-validation within the training set [Mitchell, 1997], while the κ parameter selected
was RBF , the same one used by [Dalip et al., 2012].

2.3 Feature Selection

While many factors can impact the sucess of machine learning on a given task, the
representation and quality of the data is first and foremost [Mitchell, 1997]. In the-
ory, the increase of the feature space means more information available thus allowing
the method to be more discriminative but, in practice, this approach can bring some
potential problems. First, the bigger our feature space, the more time consuming our
whole learning process will be and it can cause our method to overfit the training data
and compromise the generalization of the model. Second, it is possible to find many
redundant or noisy features on such big feature space. This information can misguide
the learner and increase the amount of non useful information it has to filter. Given
these problems, one of the most adopted approaches to solve the issue of a high number
of features is the idea of feature selection. A feature selection method has the benefits
of facilitating data visualization and data understanding, reducing the measurement
and storage requirements, reducing training and utilization times and defying the curse
of dimensionality to improve prediction performance [Guyon & Elisseeff, 2003].

In this work, as will be explained in subsequent sections, each view generated by
our method will become a new feature for the end learner. If a high number of views
were to be generated, it is possible that some of them are redundant and would not
help in generating a good model. The use of feature selection allow us not to worry so
much about generating similar views during our method, given that they will probably
be filtered if they do not add any new information.

2.3.1 Information Gain

For our experiments we used a feature selection algorithm based on the algorithm called
Information Gain [Witten et al., 2016]. The method is used to evaluate the information
gained by using each feature while trying to solve a classification problem. To measure
the Information Gain, first we need to compute the value of the information, by using
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the entropy metric. It can be calculated by the following expression:

information(p1, p2, ..., pn) = entropy(
p1
m
,
p2
m
, ...,

pn
m

) (2.7)

entropy(q1, q2, ..., qn) = −q1 ∗ log2(q1)− q2 ∗ log2(q2)− ...− qn ∗ log2(qn) (2.8)

where pi represents the number of items from class i andm is the total number of items.
The bigger the entropy, the higher is the disorder level, which means less information.

As an example, based on the values presented in table 2.1 we can calculate the
Information Gain of feature A. The first step is to calculate the total information of
the system before using A:

information(4, 3) = entropy(
4

7
,
3

7
) (2.9)

entropy(
4

7
,
3

7
) = −4

7
∗ log2(

4

7
)− 3

7
∗ log2(

3

7
) = 0, 985 (2.10)

To measure the information gained by using the feature A, we must compute
the information when A = 0, A = 1 and A = 2, giving us information(1,1) = 1,
information(2,0) = 0 and information(2,1) = 0,918. Finally we can compute the total
information from feature A, and then the information gain obtained from feature A by
subtracting the information after using A from the information before using A.

informationA =
2

7
∗ 1 +

2

7
∗ 0 +

3

7
∗ 0, 918 = 0, 679 (2.11)

infoGainA = information(4, 3)− informationA (2.12)

infoGainA = 0, 985− 0, 679 = 0, 306 (2.13)

2.4 Spearman Correlation Coefficient

The Spearman Correlation Coefficient measures the strength and the direction between
two ranked variables. It is a similar metric to the Pearson Coefficient [Myers et al.,
2010], but while Pearson only assesses linear relationships, Spearman’s correlation as-
sesses monotonic relationships. In this work the ranked variables are the features, and
we use this coefficient to understand how correlated a pair is. Given the features x
and y, the first step is to produce a ranking for each of them, from the smallest value
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Tabela 2.1. Generic values of Features A and B, both with 3 possible values,
for 7 different items with 2 possible classes

Item Id Feature A Feature B Class
1 0 0 1
2 0 0 0
3 1 1 1
4 1 2 1
5 2 1 0
6 2 0 0
7 2 1 1

(ranked as 1) to the biggest one (ranked as n). Using the ranking scores, the coefficient
can be calculated using the formula

ρ =

∑
i(Xi − X̄)(Yi − Ȳ )√∑

i(Xi − X̄)2
∑

i(Yi − Ȳ )2
. (2.14)

Where the index i represents the ranking value of a given feature in instance i of
the training data. The correlation between the features x and y has a result between
−1 and 1, where values next to 1 mean that they have a similar rank and values next
to −1 represent a dissimilar rank between these two variables.

2.5 Unsupervised Learning

Unsupervised learning is the machine learning task that aims to infer a function to
describe unlabeled data. It means that, differently from Supervised Learning, there is
no access to the target values in the data (used for training in supervised scenarios).
Given this situation, unsupervised methods focus more on the idea of creating clusters,
or ‘natural groupings’ of the input patters [Duda et al., 2000]. The idea of views, one
of the main aspects adressed in this work, can be seen as clusters, in which features
that have some type of similarity are grouped together. This means that clustering
techniques have a high potential to help in our scenario of view generation.

There are many approaches to clustering present in the literature, including Hi-
erarchical Clustering and the K-Means clustering [Duda et al., 2000]. In this work we
used a variation of the K-Means algorithm during a step of our method for view gene-
ration, called K-Medoids [Kaufman & Rousseeuw, 1987] implemented on a R library
package.
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2.5.1 K-means Clustering

The K-means algorithm was first proposed by [MacQueen et al., 1967], and it is one
of the most known and used clustering algorithms to date. It has a lot of variations
present in the literature. The traditional k-means starts by selecting k points in our
vector space to be the initial means. This process may be done in different ways, by
selecting them randomly or by directly choosing points that favor the method. (It is
generally better to choose points with very different values).

After the means (most commonly called centroids) have been chosen, the distance
between all elements and each mean is calculated, and the element with the smaller
distance (and more similar to the mean) is grouped to that centroid. After this, the
new centroid is updated taking into account the element added. This process is, then,
repeated until all elements are associated to one of the means. It is possible, and
common, to change an already associated element in future iterations, as K-means is
not a greedy algorithm.

The K-means procedure can be viewed as optimizing a loss function:

L =
∑
i

||Xi − µzi ||2 (2.15)

where X represents the set of points and µzi the centroid (or cluster) were the point i
was placed.

For this work we did not use this traditional K-means approach, but one of its
variations, called K-Medoid.

2.5.2 K-Medoid

The K-medoid algorithm is similar to the K-means already described. The main diffe-
rence is that, rather than using the centroid as the mean for each cluster, the method
uses the element with smallest distance to the centroid as the mean. This new approach
decreases the method sensibility to outliers [Han et al., 2011].

The algorithm starts by selecting k medoids from the set of all elements present on
the data, one for each cluster. This step, similarly to K-means, can be done randomly
or using more sophisticated approaches. Each element is then associated to the cluster
which it has the smallest distance to the medoid. The quality of each configuration is
measured by a cost function, similar to the Loss function of K-means.

C =
∑
i

||Xi − µzi ||2 (2.16)
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where X represents the set of points and µzi the medoid of the cluster where point i
was placed.

Whenever a new element is added to the cluster, the medoid is changed to the
new element, and the new cost of the cluster is measured. The swap of the medoid is
undone if the total cost of the configuration increases.

A simple algorithm for the K-medoids can be seen below:

Algorithm 1 K-Medoids Algorithm

Require: D . Data Points
Require: k . number of medoids (clusters)
1: Select k points in D as the medoids M.
2: for Each Data point di D do
3: Associate each di to the closest in M.
4: end for
5: while The configuration cost C =

∑
i

||Di − µzi ||2 decreases do

6: for Each medoid m in M and each non-medoid di in the same cluster as M do
7: Swap m and di
8: Computate the new configuration cost C.
9: If the total cost increases, undo the swap

10: end for
11: end while

In this work we decided to use the K-Medoids because it supported, in addition
to the traditional way of passing the data points as the input data, the use of only
a matrix of distances of these points. Instead of giving the position in space for each
element, we only have the distances between one and the others in our method.

For our problem, a element is a feature of the data, and each row of the matrix
is a vector representing the distances, between this feature and all the others. We will
enter in more details on how this was done in Chapter 5 of this work.
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Related Works

In this chapter we present an exploratory review of past work focusing directly on view
generation and multiview learning. We cover manual view generation approaches [Dalip
et al., 2015], some automatic view generation methods [Kumar & Minz, 2016; Sun
et al., 2011] and other topics whose ideas were helpful to our work, like Feature Subset
Ensembles (FSE) [Ho, 1998] and feature selection [Oliveira et al., 2003].

Learning with multiple distinct feature sets was first proposed by [Blum & Mit-
chell, 1998], introducing the concept of co-training. The motivation was to take advan-
tage of the consensus of different and independent views of a same problem, and also
to improve performance by co-training two classifiers. The focus of their work was to
allow inexpensive unlabeled data to augment a much smaller set of labeled examples.
Basically, each classifier was trained on a different view and the most confident predic-
tions on unlabelled data were used by them to train each other. An experimentation
was conducted on classifying Computer Science webpages, comparing the co-training
method against a supervised approach that uses only the labeled data. The results
showed the potential of multiview and cotraining, with co-training having better re-
sults on all three different classifiers used. After that, many other works have addressed
this problem with an array of theoretical developments and successful applications.

It is important to mention a different approach that can be related to the multi-
view method, that is the use of multiple ensembles of features to help on the learning
task, which was called FSE (Feature Subspace Ensemble). One of the first proposes
was the Random Subspace Method (RSM) proposed by [Ho, 1998], which creates each
feature subset using random features. The method was created to construct ‘Decision
Forests’, which are basically a set of different trees used together in a classification
task. The authors showed with experiments the efficiency of their approach compared
to single decision trees and other forest constructions methods, and also showed an

14
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interesting aspect of this way of generating trees, they had a smaller agreement ratio
compared to other methods. This aspect is interesting because it allow less redundant
information and, in a certain way, is similar to a multiview approach (different views
tend to have different kinds of information).

The idea of creating random subspaces was explored in other scenarios, not only
in ‘decision forest’ generation, and evolved into creating subsets with highly discrimi-
native and distinct features using, for example, feature selection techniques as used
in [Oliveira et al., 2003]. The FSEs approaches can be related to the soft aspect of
our proposed soft Views, given that a set of features allow features that were already
present in another set to be used. Even then, it has a significant difference. In this
work we are trying to explore, first and foremost, the concept of a view. It is the
exact opposite of the subsets from the FSE methods. We try to explore the benefits of
grouping similar features to find specific and significant information from each group,
while the other approaches only explicit explore groups with dissimilar and low corre-
lated features. Basically, FSEs methods, in general, disregard the potential benefits of
searching for views.

With a different focus than the issue of automatic view generation, the authors
in [Dang & Croft, 2010] proposed a feature selection method where, at each step,
the algorithm randomly selects a group of features and then tries to improve it by
removing or adding a new feature. At the end of each iteration, the method creates
a set of features that can not overlap with other sets. While it was not the intention
of the authors, this step can easily be seen as a multiview generation process where,
at each iteration, a view of features is created. The rest of the process goes more in
the direction of feature selection, by using only some features of each group in a final
classification. Even then, the process of indirectly creating views is worth mentioning.
It is also relevant to show that the approach presented comparable or even better
performances, on a ranking task, than learning from the original features. In the
remaining of this chapter we will focus on the multiview learning methods most similar
to our proposed approach.

A set of works that clearly showed the potential of multiview learning, and ins-
pired this work, were [Dalip et al., 2012, 2013, 2017], in which a multiview appli-
cation to the problem of document quality assessment was proposed, using datasets
based on information gathered from social websites like Wikis (e.g Wikipedia) and
Question&Answer boards (e.g StackOverFlow). The method presented by the authors
achieved state-of-the-art performance by adopting a multiview approach based on com-
plex engineered features, organized into natural views and combined with the original
individual features. Each natural view was based on an aspect of the data, be it the
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length of the text, the style and the structure used by the author when writing, or even
the edit history of the community article. After each selected feature was associated
to one view, all the views were used to evaluate the documents presented, and they
separated scores were then combined to get a final and more precise result. This work
is a clear example of the use of the multiview learning to solve a real problem. This
work presented exciting results, that showed better performance compared to state-
of-art single view classifiers in the datasets evaluated. The authors did not, however,
address the possibility of using an automatic view generation approach to automati-
cally generate the views given their set of features, which was one of the motivations
of this dissertation.

Other applications of multiview learning were presented in recent works, such
as [Chikhi, 2016], which focuses on multiview clustering, [Zhao et al., 2018] that
successfully applies a manifold learning approach on a multiview scenario, and [Cano,
2017] that deals with a multi-instance learning problem using a multiview approach.
These studies have successfully applied the multiview method presenting results with
significant gains over the state-of-art approaches. However, they too have not addressed
the possibility of automatically generating the views used in their multiview methods.

[Sun et al., 2011] proposed an approach to the problem of creating artificial views
by applying genetic algorithms (GA) to multiview semi-supervised learning. They
used GA to find two promising feature subsets that would be retained as views, if
they reached maximum classification agreement. In experiments with single-task and
multi-task support vector machines, they were able to confirm the effectiveness of the
proposed view construction method.

The authors in [M. Chen & Chen, 2011] extended co-training to cases where no
explicit views are available. In particular, they proposed an algorithm that splits the
feature space during learning into two mutually exclusive subsets, explicitly encoura-
ging the co-training to be successful. Their method outperformed previous results in
an object recognition task. In a following work [Gao & Yang, 2014], they adapted their
approach to the learning to rank task. During the ranking process, their method au-
tomatically splits the feature set into distinct views. Then, it minimizes the combined
likelihood rank loss of the views on the labelled instances (a common list-wise ranking
technique) while maximizing the rank agreement between them on the unlabelled ins-
tances. This approach was presented on semi-supervised and cross domain learning,
and it outperformed a baseline using natural splits. However, the method proposed
by the authors is dependent on the ranking process, which restricts it only to to the
learning to rank domain, so we can not opt to only generate the artificial views. Our
approach, while being tested only on the quality assessment scenario, can be used in
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any other problems with no limitations.
The authors in [Di & Crawford, 2012] studied the automatic generation of views

not on text data, but for the task of hyperspectral image classification. They investi-
gated three important aspects of multiview learning: (1) The aggregation of features
according to similarities to promote view diversity using clustering; (2) The use of
feature space bagging and random selection to explore the feature space and avoid
uninformative or corrupted views; and (3) the uniform split of data across the space
to ensure view sufficiency. They observed that increasing the number of views and
its randomness leads to more diversity and less noise, with an improved performance.
This aspect is somehow explored in our IKMVG approach, as the use of our soft views
allow an almost unlimited number of views. (But always trying to filter and avoid
non informative views). [Di & Crawford, 2012] work was not used as a baseline for
our method given that it was built for an active learning scenario, which is different
from our goal. Their algorithm is based on the changes provided by the new learned
examples to select the best approach to partition the feature set, so if we can not have
this changes on our approach (which is the case, as we have a fixed training and test
set during all the process), it can not be applied in our scenario. Even so, we still
acknowledge the value of the ideas presented and use some similar strategies in our
method.

Finally, on a recent work, the authors of [Kumar & Minz, 2016] did an overview
of the state-of-art in automatic view generation and proposed a method called Optimal
Feature Set Partition (OFSP), which is the closer to our approach yet. Their method
has no limits on the number of views (many other approaches, such as [M. Chen &
Chen, 2011] or [Sun et al., 2011] only use 2 views) and they iteratively try to construct
and improve already existing views. OFSP, at each step, selects a candidate feature
on a pool of unused features and tries adding it to all already built views. The views
are compared to each other, and the new best view is evaluated.

The method proposed by [Kumar & Minz, 2016] presented improved results when
compared to the others methods proposed in the literature [Bryll et al., 2003; Ho, 1998;
Sun et al., 2011; Di & Crawford, 2012]. Because of that, we are going to consider
[Kumar & Minz, 2016] our baseline. Their method is presented on Algorithm 2

Unlike the previous methods mentioned, in our approach, we adopt soft views
instead of mutually exclusive subsets. In our experiments, the view consistency rule
was proving to be a detriment to the learner and the final result, and by using our
so called soft approach we managed to achieve considerably better results compared
to the strict approach. In addition, our method proposes that we retain the original
features in the final set of features and views, while filtering potentially irrelevant
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Algorithm 2 OFSP Algorithm

Require: Dtrain . training set with n features and y labels.
Require: Dval . training set with n features and y labels.
Require: k . number of views
1:
2: for i = 1 to k do
3: Vi ← ∅ . Creating k-number of NULL views
4: εi ← 0 . Initializing classification accuracy of the classifier
5: end for
6:
7: for feat = 1 to n do
8: for i = 1 to k do
9: Vtemp ← Vi ∪ vfeat . Adding feature vfeat to the Vi view

10: εitemp ← Evaluate(Xtemp,Dtrain,Dval)
11: εidiff ← εtemp − εi
12: end for
13: if max(εidiff ) > 0 then
14: t = argmax(εidiff ) . tth view which has εidiff > 0
15: Vt ← Vt ∪ vfeat
16: εt ← εttemp
17: end if
18: end for
19: return Vopt =V1, X2, ..., Vk
20:
21: function Evaluate(F , Dtrain, Dpred)
22: Train the learner on Dtrain using features F
23: return Accuracy evaluation on Dpred
24: end function

views using a feature selection approach. This way of combining features was proved
interesting in some experiments of [Dalip et al., 2015] and during our internal tests
as well. Finally, our method IKMVG has another differential in how we explore the
feature space to automatically generate the views. We try to explore both similar and
dissimilar relationships between features, to create stronger and diverse views. In the
next chapter we will go a bit in depth on the manual views used by [Dalip et al., 2015]
and on this work and then explain our method and experimental results that justify
the benefits of our approach.
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Manual Views

In this work we compare our approach to that of [Dalip et al., 2012, 2017], where views
were generated manually. This was done because one of our main objectives was to
see if an automatic method could generate equally good or similar views compared to
manually created views. In [Dalip et al., 2015] the author described in details how was
the process of selecting and grouping the features into views, with strong experimental
results to back it up. This work gave us an interesting starting point for our work now.

The authors [Dalip et al., 2012, 2017] collected a high number of quality metrics
from Wikis websites and used them to create features to describe the instances of each
Wiki document. In order to generate views manually, the quality features were grouped
according to their sources. For example, features that used text readability as their
main source of information were all grouped in the same view. Using this intuitive
scheme, the authors of [Dalip et al., 2012, 2017] grouped 68 features into 6 different
types of views — (1) Structure, (2) Readability, (3) Length, (4) Style, (5) Edit History,
and (6) Article Graph. The results of their work highly surpassed the performance of
other approaches and are, from what we know, the state-of-art in the area of Automatic
Quality Assessment. In the following, we present these views proposed by them in more
detail.

Structure

Structure features indicate how well the article is organized. According to Wiki quality
standards, a good article must be organized such that it is clear, visually adequate,
and provides the necessary references and pointers to additional material. Thus, fea-
tures derived from the article structure are used, in an attempt to describe its section
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organization, and its use and distribution of images, links, and citations. Details of
these features can be seen in Table 4.1.

Structure
ts-abslen Length of abstract
ts-avsecl Average section length
ts-avparl Average paragraph length
ts-avsubps Average subsections per sections
ts-cite n. of citations (references)
ts-citplen n. of citations divided by text length
ts-citpsec ratio between n. of citations and sections
ts-imgps n. of images per section
ts-lnkpl n. of links per text length
ts-minsecl Length of shortest section
ts-maxsecl Length of largest section
ts-secs Section Count
ts-subsec Sub-section Count
ts-stdsecl Section length standard deviation
ts-xlnks n. of links to external sources
ts-xlnkps n. of external links per section

Tabela 4.1. Structure Features

Readability

Readability features are intended to estimate the age or US grade level necessary to
comprehend a text. The intuition behind these features is that good articles should
be well written, understandable, and free of unnecessary complexity. To accomplish
this, these features use several well-known readability indexes. Details can be seen in
Table 4.2.

Readability
tr-ari Automated Readability Index [Senter & Smith, 1967]
tr-flesh Flesch reading ease [Flesch, 1948]
tr-fog Gunning Fog Index [Gunning, 1952]
tr-kincaid Flesch-Kincaid [Ressler, 1993]
tr-liau Coleman-Liau [Coleman & Liau, 1975]
tr-lix Läsbarhets index [Björnsson, 1968]
tr-smog Smog-Grading [Mc Laughlin, 1969]

Tabela 4.2. Readability Features
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Length

Length features are indicators of the article size. The general intuition behind them is
that a mature and good quality text is probably neither too short, which could indi-
cate an incomplete topic coverage, nor excessively long, which could indicate verbose
content. Further, in Wikis, stub articles (draft quality) are expected to be short, which
reinforces the correlation between length and quality. Details of these features can be
seen in Table 4.3.

Length
tl-charcnt Character count
tl-phrcnt Phrase Count
tl-wordcnt Word count

Tabela 4.3. Length Features

Style

Style features are intended to capture the way the authors write the articles through
their word usage. The intuition behind them is that good articles should present some
distinguishable characteristics related to word usage, such as short sentences. Details
of these features can be seen in Table 4.4.

Style
ty-auxverb n. of auxiliary verbs
ty-conj n. of words that are conjunctions
ty-lgphra Size of the largest phrase
ty-nomina n. of nominalizations
ty-passive n. of passive voice sentences
ty-plgphr %p where (length - avg. length) >= 10 words
ty-prepo n. of prepositions
ty-prono n. of pronouns
ty-psmphr %p where (avg. length - length) >= 5 words
ty-questn n. of questions
ty-sartic #p starting with an article
ty-sconj #p starting with a conjunction
ty-sintp #p starting with an interrogative pronoun
ty-sprepo #p starting with a preposition
ty-sprono #p starting with a pronoun
ty-ssubcnj #p starting w/ a subordinating conjunction
ty-tobe n. of uses of verb “to be”

Tabela 4.4. Style Features
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Edit History

Edit History indicators have been mainly used to estimate the maturity level of the
content. In general, a content that received many edits has likely improved over time.
Details features can be seen in Table 4.5.

Edit History
r-3month proportion of r-rcount in last 3 months
r-activeu reviews by top-5% most active reviewers
r-age Article age
r-ageprev ratio between article age and n. of reviews
r-anonym n. of reviews made by anonymous users
r-discuss n. of posts on the article’s discussion page
r-modline % of lines of curr. version 6= from reference
r-occasion reviews by reviewers with less than 4 edits
r-probrev ProbReview
r-rcount Review count
r-reguser n. of reviews made by registered users
r-revpday percentage of reviews per day
r-rperusr ratio between r-rcount and n. of reviewers
r-stdrevu std. dev of r-rperusr

Tabela 4.5. Edit History Features

Article Graph

Finally, the Graph indicators are those extracted from the links between articles (ci-
tations). The main motivation for using them is that citations between articles can
provide evidence about their importance. Details can be seen in Table 4.6.

Article Graph
n-assortii Assortativity In-In
n-assortio Assortativity In-Out
n-assortoi Assortativity Out-In
n-assortoo Assortativity Out-Out
n-cluster Clustering coefficient
n-idegree n. of citations of an article from other ones
n-linkcnt n. of links to articles (even if not written)
n-odegree n. of links to other articles
n-pgrank Pagerank value of an article
n-reciproc Reciprocity
n-translat n. of article versions in other languages

Tabela 4.6. Article Graph Features
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Method

In this chapter, we present in details our complete multiview approach. We first des-
cribe our multiview framework used to evaluate the performance of any set of views
in a given dataset, and, afterwards, our proposed method to automatically generate
views, which is called Iterative K-Medoids View Generator (IKMVG).

5.1 Multiview Evaluation Framework

Is this work, we adopt the same multiview framework proposed in [Dalip et al., 2012,
2013, 2017] and illustrated in Figure 5.1. We made this decision given that that work
serves as a start point for our approach and so we would be able to do fair comparisons
between the results given by both methods. That framework assumes that a natural
split is already available for the feature set, such that it is possible to map a feature to
a view.

As shown in Figure 5.1, the multiview evaluation framework can be divided into
two levels. At level 0, each view v is evaluated, using all instances i in the dataset, but
using only those features that belong in view v. Thus, for each view v, a classifier Vv
will provide a score evi for each instance i. In order to create the learner for the view v

we have access to a training set in which each instance i is represented by the features
of the view v.

At level 1, the scores evi are used as a new feature for the level 1 classifier, to
predict the final score. As seen in Figure 5.1, these scores can be used in isolation
(MVIEW) or combined with the original features (MVIEW+F0). To accomplish this,
we create a level-1 learner by performing cross validation in the training set obtaining
the estimates evi of each instance in the training set. As in Dalip et al. [2012, 2013,
2017], we use the same machine learning model in both levels — Support Vector Re-
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Figura 5.1. Illustration of two alternative multiview quality assessment methods
(MVIEW and MVIEW+F0). Each Vv learner corresponds to a view v, and fvij
is the feature j of instance i, according to view v. Finally, evi represents the
prediction on level-0 learning of each view v for the instance i. The value evi is
later used as a feature on the level-1 learning.

gression. This way we can have a fair comparison of our new results by generating
artificial views against the natural views select by an expert in the area.

5.2 View Generator

In this section we present our proposed method, called Iterative K-Medoids View Ge-
nerator (IKMVG), and describe the intuition and history behind its development. A
terminology that will be used in this thesis are the concepts of ‘good’ and ‘bad’ views.
in our work, a ‘good’ view is the one that brings relevant information to our model,
improving its overall result. On the other hand, a ‘bad’ view only brings noisy and
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redundant information to the model. This means it will both increase its complexity
and decrease its effectiveness.

5.2.1 Intuition and Evolution

The main intuition behind our method is that, if two features are highly correlated
to each other, then they are probably similar or refer to the same subject and should
be grouped in the same view. Our first step into this direction was to calculate the
Spearman Correlation Coefficient of all pair of features, and with this information we
applied a clustering algorithm to group them into views. While the result using only
this approach was not satisfactory for us. Some views were interesting and close to
those in the manual set, but others were bad and the overall result of the combination
of the views was inferior to the manual.

One idea to improve the views and consequently the final result was to change
the number of clusters (and thus views) created by our clustering algorithm. We first
started using the same number as the manual approach (6), and then tried smaller and
bigger values. Unfortunately, neither variation had a significant and positive impact.
Using a small number of clusters resulted in losing to much of the overall information
of the data and a higher number of artificial views meant that the features were too
spread and it was hard to get information about the relationships of the features.

To face the problem of the features becoming too spread with a high number
of views, we proposed a strategy called ‘soft views’. It is a loosening on the view
consistency rule that claimed that each feature could be part of one exclusive view. This
rule did not allow us to create a high number of views without losing the relationships
between features. Our ‘soft views’ essentially meant that one feature could be part
of an indefinite number of views, with no limitation. This may look like a conflict to
the definition of views and multi-view itself, as it originally tries to create the most
independent views as possible. Our reasoning is that the features on different views,
even if separated by an expert, may still not be completely independent and have some
valuable relationships to each other. Consequently, the created views were not fully
independent from the start, and creating ‘hard’ partitions would result in a loss of
valuable information.

Another possible discussion is that if our method, given the new ‘soft views’, can
still be classified as a multi-view approach. It is a hard and interesting question, and
figure 5.2 illustrates our point of view about it. While our method is not exactly a
multi-view approach, given that we relax the view consistency rule, it is not a bagging
approach either, as it is not a random process, but a more guided one (based on
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similarity functions). Our approach seems to be in a middle ground between a multi-
view and a bagging scenario. The closer we are from hard partitioning and a semantic
division, the closer we get from a multi-view method. On the other hand, the closer
we get to a random process, the closer we are to a bagging method.

Figura 5.2. Illustration classifying our new soft-views, comparing it with a
bagging and a multi-view approach in terms of how the feature set partitioning
is done.

Given our new ‘soft-views’, our new problem was on how to use it and to use it
wisely. We propose to explore the soft views in an iterative approach. We select, at
each iteration, a random subset of features, based on the original set of features. Then,
we use a clustering algorithm to new create views based on similarity metrics between
the features selected. In the end we combine all the views created during the whole
process.

By selecting a random subset of features at each time we avoid the problem of
the clustering algorithm only generating the same clusters. To use this idea wisely and
avoid generating bad views or even a really high number of views, we evaluate our set
of views created during each time, and only kept the ones that improved our result.
By combining all of this ideas we ended on a algorithm called IKMVG, that we present
next.
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5.2.2 IKMVG

To generate views we propose the Iterative K-Medoids View Generator method
(IKMVG), described in Algorithm 3. IKMVG is an iterative method where, in each
iteration, a random set of features is used to produce a new view through a clustering
procedure. The views produced are then added to the final set of views only if they
contribute to improve the overall system performance.

The IKMVG algorithm starts by setting a threshold εbest for the quality of the
results by evaluating the system using only the set of individual features (line 2).
Afterwards, at each iteration, IKMVG creates k view candidates, using a random
sample of the original features (lines 4–5). All candidates (Vcandidates) are then combined
with the already accepted views (V) and the original features (F0), to be evaluated as
input for the multiview learner, through the function Evaluate (line 6).

The candidates are retained in the final pool of views if they are able to reduce the
learning error. Otherwise, they are discarded so that the method avoids retaining bad
views (lines 7–10). Note that, in a same iteration, the candidate views are mutually
exclusive. However, since any feature can be considered in a future iteration, the views
in the final set can overlap.

An example of the execution of one iteration of the algorithm on a dataset with
5 original features can be seen in Fig 5.3

In function GetViews, new views are generated by clustering similar groups of
features, through the k-medoids clustering algorithm[MacQueen et al., 1967]. To es-
timate the similarity between features, we used the absolute value of the Spearman
Correlation Coefficient (SCC). As shown in Geng et al. [2007], it is more effective to
calculate the correlation between features using the classification errors they produce,
instead of the actual feature values. The idea here is to classify the data using only a
single feature, and then use its classification result as the feature value instead. Thus,
to obtain the SCC, we perform a cross-validation test on the training dataset, using
each feature as an independent regressor. Each feature is then represented by the set
of errors yielded in each fold and the SCC is computed.

The computed SCCs are stored in a correlation matrix M , where Mij is the
unsigned correlation between features i and j1. Matrix M is then used by k-medoids
to split the features into clusters. Each cluster will correspond to a view. In addition,
we also use matrix M ′ = 1−M , a dissimilarity matrix, to capture interactions among
dissimilar features. As described in Algorithm 3 (lines 20–26), each time we call the

1We ignore positive or negative correlations, considering only the degree of correlation between
features.
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Algorithm 3 IKMVG Algorithm

Require: Dtrain . training set
Require: Dval, Dtest . validation and test sets
Require: F0 . original feature set
Require: N . number of Iterations
Require: k . number of views per Iteration
Require: ρ . percentage of sampled features per iteration
Require: fs . percentage of features to keep on feature selection

1: V ← ∅ . Set of views
2: εbest ← Evaluate(F0, Dtrain, Dval)
3: for N iterations do
4: Fsample ← GetSample(F0, ρ)
5: Vcandidates ← GetViews(Fsample, k)
6: εnew ← Evaluate(F0 ∪ V ∪ Vcandidates, Dtrain, Dval)
7: if εnew < εbest then
8: V ← V ∪ Vcandidates
9: εbest ← εnew

10: end if
11: end for
12: Fselected ← FeatureSelection(F0 ∪ V , fs)
13: εfinal ← Evaluate(Fselected, Dtrain, Dtest)

14: function Evaluate(F , Dtrain, Dpred)
15: Train the learner on Dtrain using features F
16: return Error evaluation on Dpred
17: end function

18: function GetViews(F , k)
19: M ← SpearmanCorrelationMatrix(F)
20: if ComputeSimilarity=1 then
21: ComputeSimilarity ← 0
22: return KMedoidsClustering(M,k)
23: else
24: ComputeSimilarity ← 1
25: return KMedoidsClustering(1-M,k)
26: end if
27: end function
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Figura 5.3. Illustration of one iteration of our IKMVG algorithm, using a data
with 5 original features and with already some views included.

function GetV iews, we generate views using the similarity matrix (if the previous call
used the dissimilarity matrix) or the dissimilarity matrix (if the previous iteration used
the similarity matrix). This alternating strategy aims at not favoring M or M ′ during
the automatic generation of views.

Finally, function FeatureSelection (lines 28–30) is used to filter and remove po-
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tentially noisy and irrelevant views or features that may be harmful to the learner.
This is done by applying the InfoGain Feature Selection [Shannon, 2001] method on
our final set of views (F0 ∪V) so that only fs% of the total set of features will remain
for the final evaluation. The way we apply the feature selection algorithm on our final
set is by considering each view as a new feature of our data (as seen in the Level 1
learner on Figure 5.1). This process will generate a rank based on relevance for each
view/feature and then maintain only the most relevant ones. This is an important step
given that our method, depending on the number of iterations, can generate a large
number of views.

It is important to mention that the original features (F0) are used in all iterations
of the IKMVG, but, during the evaluation, they can be removed to analyze the power
of only the automatically generated views. We use the original features in IKMVG to
guarantee a good starting point for our method. Assuming we had a fresh start, with no
features whatsoever at the beginning, we would not be able to evaluate the generated
views and judge if we should add them or not. This would allow the algorithm to add
noisy views right from the start. Another favourable point of using original views is to
allow our method to reach a higher score faster, using less iterations.

Another important discussion is the reasoning behind using matrices M and M ′,
and not only M , as expected on a multiview approach. The results of only grouping
similar features (according to SCC) were not satisfactory, as they were worse compared
to the manual approach. The overall result was improving slowly during the iterations,
given that many of the views created started to being very similar to each other.
The same phenomenon happened while using M ′, and thus we decided to apply both
matrices in the algorithm to increase variability and improve the growth speed of the
method’s result.



Capítulo 6

Experiments

In this chapter, we present our test datasets, empirical methodology and results of our
experiments.

6.1 Experimental Setup

6.1.1 Datasets

In this work we considered three datasets — Wikipedia, StarWars and Muppet — also
used in [Dalip et al., 2012, 2017], for the task of quality assessment. The Wikipedia
dataset corresponds to a sample of pages (including links and review history pages)
extracted from the Wikipedia online encyclopedia1, English edition, in 2010. It is the
world largest online encyclopedia. The StarWars dataset is a sample of the Wookieepe-
dia encyclopedia2, the largest hosted in the Wikia service. It is a thematic encyclopedia
focused on the Star Wars universe. The Muppet dataset is also an encyclopedia provi-
ded by the Wikia service3, focused on the American TV show “The Muppet Show”. In
Table 6.1 it is possible to find additional information about the datasets used, as such
as the number of features, number of documents in total, number of total classes and
the machine learning task approached by each of them.

6.1.2 Evaluation, Algorithms and Procedures

As in [Dalip et al., 2012], for all quality assessment datasets (Wikipedia, Wookieepedia,
and Muppet), we evaluate their effectiveness using the Mean Squared Error measure

1https://en.wikipedia.org/
2http://starwars.wikia.com/
3http://muppet.wikia.com/
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Dataset Number of Learning Number of Number of Number
Documents Task class labels features of views

Wikipedia 2,964 Quality regression 6 Classes (int) 68 6
StarWars 1,302 Quality regression 3 Classes (int) 68 6
Muppet 1,395 Quality regression 1 to 5 Stars (float) 68 6

Tabela 6.1. Test datasets used in our experiments.

(MSE). MSE is defined as:
1

n

n∑
i=1

(q̂i − qi)2 (6.1)

where q̂i − qi corresponds to the estimate error calculated as the absolute difference
between the quality value predicted (q̂i) and the true quality value qi. The number of
predictions is represented by n. Given the nature of the method, we are then looking
for the lowest MSE as possible, which would mean that the predicted values are the
closest possible (in average) to the correct values.

To ensure the generalization of our results, we use 5-fold cross-validation, with
validation sets [Kuhn & Johnson, 2013]. In this procedure, the dataset is split into five
partitions such that, at each run, one partition is used as test set, one as validation
set, and the remaining as training set. The final performance measurement is taken
as the average of the results observed for all the runs. We also assess the statistical
significance of our results by means of a paired t-test with 95% confidence and Holm
correction [Holm, 1979] to account for multiple tests. This test assures that the best
results, marked in bold, are statistically significant. The obtained results (and their
95% confidence intervals) are described in Section 6.2.

The multiview framework described in Section 5.1 uses two learners: level 0 and
level 1. Our experiments use the LIBSVM implementation [Chang & Lin, 2011] of the
Support Vector Regression (SVR), with a radial-basis function kernel, in both cases.
The SVRs were parametrized using the training set, with the values of C, ε and γ

under the intervals C = [2−5, 2−3, ...., 213, 215], ε = [0.1], γ = [23, 21, ...., 2−5, 2−7].
Regarding our algorithm, IKMVG, we used 20 iterations on all datasets. Other

parameters, such as the percentage of features to be sampled per iteration (ρ%), the
percentage of features to keep on feature selection (fs), and the number of clusters for
k-medoids (k), were obtained by using grid search cross-validation on the training set.

As a byproduct of our algorithm we ran an experiment using the six most similar
views generated by the IKMVG compared to each one of the manual views, as an at-
tempt to use exactly the same number of manual views. Our tests presented interesting
results, where the manual views had no statistically significant results, based on our
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evaluated metrics, to the six most similar automatic generated views.
All experiments were run on a Quad-Core Intel R© Xeon R© E5620, running at

2.4GHz, with 32Gb RAM. In order to consider the cost of all processing power of
each approach, we report the sum of “user time” and “system time” consumed by the
process execution in all experiments regarding execution time.

6.1.3 Influence of number of clusters and percentage of

features

It is important to mention the impact of the variations of ρ% and k and which values
where used as inputs to the cross-validation.

The higher the value of ρ% is, the higher are the numbers of features used and,
if the value is 100%, we would get the original separation obtained by using k-medoids
in all the data (because then we are not removing any features from our input). This
way, really high values are not interesting because they impact the diversity of the
views, as that the closer we get from 100% the closer we get to the same division on
each iteration. On the other hand, small values are usually not interesting either, the
reason being that the clusters would have a really small amount of information, with
a small quantity of features on each cluster, which makes it difficult to obtain a strong
views.

Analyzing the number of clusters k, the higher its value is, the higher is the
probability of having clusters with a smaller size, as the number of features is fixed (on
each execution), and only highly similar features would be put together.

High values of k did not perform well in our experiments too. It resulted, in
the end of all iterations, in a really high number of views, in which many of them
were not good (The views were redundant and did not bring any new information).
Another problem was that the higher the number of clusters, the higher is the cost of
the algorithm, given that the learner must be executed for each cluster separately on
the fist step of the Multiview FrameWork.

Given this experimentation and analysis, we decided for 3 different values for ρ%
and for k. The end values are ρ% = [30, 50, 70] and k = 3, 4, 5. This avoids really small
or really high values for ρ% and high values of k, because of the problems already
mentioned. The final combination used on each final fold of the 5-fold cross-validation
was, as mentioned, decided by using another cross-validation on the training set varying
the combinations of ρ% and k.
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6.2 Experimental Results

In this section, we present our results, in particular, the effectiveness of automatically
generated views, their discriminative power and similarity when compared to manual
views.

6.2.1 Effectiveness of Automatically Generated Views

On this first experiment we evaluate the effectiveness of our Automatic Generated
Views and compare them to the original set of features and the manual views for
our three datasets. We start by noticing that our experimental results in Table 6.2
provide evidence towards the benefits of using the multiview framework (considering
either manually created views or the views produced by IKMVG) to reduce the error
produced by the predictions using only the original set of features F0 in most cases. In
this scenario, F0 is a non-multiview method which uses all the level 0 original features
as a feature set and then apply the SVR method, as proposed in [Dalip et al., 2011].
For this experiment we removed the original features from the final IKMVG set, and
only evaluated the test set with our automatically generated views.

The use of manual views reduces the error on WIKIPEDIA and STARWARS, but
manual views obtain not statistically significant results with the original features on
the MUPPET dataset. Given these results, it is expected that the automatic method
could yield better results compared to the single-view approach too. In fact, the use
of automatically generated views is always superior to the set F0, reducing the error
in 7%, 20% and 2% on WIKIPEDIA, STARWARS and MUPPET, respectively. It is
interesting to note that our method, IKMVG, surpasses even the manual views in some
datasets, which shows that even manually created views may not be 100% accurate
and have room for improvement.

METHOD WIKIPEDIA STARWARS MUPPET
F0 0.898± 0.019 0.082± 0.004 1.751± 0.045
IKMVG 0.838± 0.019∗ 0.060± 0.003∗ 1.686± 0.053∗
MANUAL 0.864± 0.016 0.058± 0.003∗ 1.753± 0.050

Tabela 6.2. Average MSE results of manual views and automatically generated
views using the IKMVG method. Asterisks mean statistically significant differen-
ces (p-value < 0.05) over the values without asterisk on the same dataset.

These results show that despite carefully grouped by an expert, the manual views
may prevent the learning method from capturing important relationships between fe-
atures from different views, which reduces the capability of discovering discriminative
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patterns. Basically, by restricting a feature to only one view, this strict view partitio-
ning approach is limiting the search space of the learner algorithm and losing efficiency
because of it. Conversely, IKMVG is a data-driven method, which does not rely on
experts, but tries to automatically generate views that can reduce the regression error.
Our method does not rely on a stricted partitioning of the data, so our search space
is bigger, allowing the learner to find more useful patterns and relationships between
features thus improving our results. The higher number of possibilities that IKMVG
gives is probably one of the main reasons that we were able to reach better results when
compared to the manual approach. In all evaluated experiments, as mentioned before,
the results obtained with automatically generated IKMVG views are never statistically
worse than the results of manual views, which motivates the adoption of automatically
generated views that rely on finding close groups of features automatically discovered
from the data.

METHOD WIKIPEDIA STARWARS MUPPET
F0 0.898± 0.019 0.082± 0.004 1.751± 0.045
IKMVG+F0 0.821± 0.018∗ 0.064± 0.004∗ 1.706± 0.047∗
MAN+F0 0.831± 0.018∗ 0.065± 0.004∗ 1.743± 0.044

Tabela 6.3. Average MSE results of the original features F0 and the combination
of F0 with manual views and automatically generated views using the IKMVG
method. Asterisks denotes statistically significant differences.

We also evaluate the combination of original features with multiviews, since they
present the best results in previous works in some datasets [Dalip et al., 2012, 2017].
Table 6.3 shows that the combinations of views with original features (represented in
the table as IKMVG+F0 and MAN+F0) are capable of slightly improving some of the
previously described multiview results. The reason for this improvement may lie on a
loss of information when using only views. When using a multiview approach, in the
end, each view becomes a new feature and the learner is trained with these features.
Given that the manual approach and ours both generate less ‘end features’ than the
original method, some information is probably missed. This way, combining the views
with the original features may solve this problem and allows the learner to obtain the
information. Table 6.3 also shows that the combination IKMVG+F0 presents better
results than F0, as well as statistically superior results compared with the combination
MAN+F0 on MUPPET. These results provide further evidence towards the benefits
of using the proposed automatic views, since besides not relying on specialized effort
to define views, they consistently improve the results of F0.

To justify the better performance of IKMVG, as mentioned before, our method
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Figura 6.1. Feature overlapping in automatically generated views in WIKI-
PEDIA, STARWARS and MUPPET datasets. Each cell (i, j) in the colormap
corresponds to the proportion of features shared by views vi and vj . A white color
indicates no overlapping whereas a black color indicates maximum overlapping.

allows the learner to explore a larger space of information, so we have potentially more
useful information to help the learner take better decisions. Moreover our views are
already being tested during their generation, so we can probably assure a good result
if the generation step was successful.

An important point to mention is the reason why the performance of MAN+F0

and IKMVG+F0 is worse than their counterparts that did not used F0 in STARWARS.
In [Dalip et al., 2012, 2017] it is reported that the ‘length’ manual view basically solves
this dataset quality assurance problem on its own. A high number of documents on
this wikia are called stubs, with represent unfinished texts about a certain topic. Given
their nature, they determined quality is low, and this aspect can easily be detected by
the size of the text. It means that the majority of the features are only generating
noise for the learner, and so adding the original set is harming our final result.

6.2.2 Feature Sharing on Automatically Generated Views

In this next experiment, presented in Figure 6.1, we had the objective to study the
behavior of our automatically generated soft views, and if it is worth increasing the
cost of the learning process by adding more views. We want to see if there is redundant
and shared information between the views. In our experiments, during one execution
of the IKMVG algorithm, we generated 20, 21 and 40 soft views for WIKIPEDIA,
STARWARS and MUPPET, respectively. As observed in Figure 6.1, all the generated
views shared features with, at least, one other view. In average, they shared 6% of
the features in WIKIPEDIA, 7% in STARWARS, and 4% in MUPPET. Given these
percentages, our approach is not creating too much redundant views, as the average
of shared features between views is small. Given this fact, we can confirm that we
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are widing the range of our learner, and giving it the opportunity to discover unseen
relationships between features. As shown in Table 6.2, these views reduced the MSE
error when compared with the manual views in 3%, and 2% for WIKIPEDIA and
MUPPETS datasets, respectively. This makes us believe that, in fact, adding more
views, even if they are allowed to share some features, can help the learner to obtain
more useful information and reach a better result.

6.2.3 Discriminative Power of Automatically Generated Views

To evaluate the discriminative power of the views generated by IKMVG, we evaluate
the Information Gain (IG), based on Shannon Entropy [Shannon, 2001], yielded by the
automatically generated views, the manually described views, and the original features
of our datasets. In our context, the information gain is a measure of the reduction in
entropy of the relevance response variable, after the value for the feature (or view) is
observed, which provides evidence for the discriminative power of the evaluated feature.
In this experiment, for each dataset, we added together the original set of features and
both manual and automatic generated views. We rank the views and original features
according to their Information Gain and analyse the proportion of views generated
automatically by our IKMVG method that are in the top most informative. Table 6.4
presents the results considering the top 1 to 10 more informative features or views.

Top Rank WIKIPEDIA STARWARS MUPPET
1 1.0 1.0 1.0
2 1.0 1.0 0.5
3 1.0 1.0 0.3
4 0.8 1.0 0.3
5 0.8 1.0 0.4
6 0.8 1.0 0.3
7 0.9 0.9 0.4
8 0.8 0.8 0.4
9 0.8 0.8 0.3
10 0.7 0.7 0.4

Tabela 6.4. Proportion of automatically generated views in the top most infor-
mative.

In all datasets, the most discriminative information is provided by an automa-
tically generated view. Moreover, the top 5 most informative features or views in
WIKIPEDIA and STARWARS are all in the proposed automatically generated views.
Even considering all the top 10 most informative views and features, the views genera-
ted by IKMVG are also among the most frequent on the top-ranked information. Note
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that in MUPPETS the performance of our proposed views is not so good. One of the
hypothesis for it is the fact that, as mentioned in [Dalip et al., 2015], MUPPETS ratio
system is not trustworthy, given that it is only star-based and the number of users
votes on some pages is really small. even then, our method was still able to improve
the results of the original set of features and the manual views. These results demons-
trate the discriminative power of our artificial views, which surpasses the discriminative
power of the manually generated views and of the original features.

The main reasons behind these results are probably the freedom during the view
creation and that our views were already evaluated during the IKMVG algorithm. In
more details, first the freedom is meant to be that our approach allow more feature
combinations in a view, compared to the manual ones. By using two different metrics
(simillarity or dissimilarity matrix), we are exploring a bigger space and thus opening
new possibilities to find strong views. Secondly, after being generated, our automatic
views are already tested, and only used if they improved the training set. This step
ensures that the final view set will have, for the most part, good and high informational
views.

A deeper study on the percentage of automatic informational views X automatic
non informational views, based on their position on the rank would be an important
future analysis, that may allow us to reduce a bit the number of generated views
without impacting the efficiency of the method, thus gaining time performance.

6.2.4 Similarity between Manual Views and Automatically

Generated Views

Table 6.5 presents the similarity between a manually generated view and its most
similar artificial view. The main point here is that, given the fact that the manual views
yield good results and that our method still explores the similarity between features,
we have a good chance to generate some views similar to the manual generated ones.

In order to perform this experiment, we see each view as a set of features and then
compare views using the Jaccard similarity coefficient. In most cases, the similarity is
below 0.7, which indicates that the automatically generated views are not quite similar
to the manual ones. This can be explained by the fact that our method drives a sample
of all the features (30%, 50% or 70%) before splitting this sample into views. Therefore,
instead of generating one single view related to a specific manually defined view, in
most cases IKMVG generates multiple views that correspond to a set of correlated
features. This would be a bad approach if feature sharing between views were not
allowed, because some complementary relationships of similar features would not be
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found if they were in different views. IKMVG, however, allows it to happen and to
even improve the overall result, by using its soft views approach.

Among all the datasets, the automatically generated views for WIKIPEDIA were
among the closest to the manual ones. In fact, the WIKIPEDIA is the one with higher
number of documents, and so this dataset provides more training examples, which im-
proves the quality of our automatically generated views. Particularly, the Readability
view was actually reconstructed by our automatic method, since the metrics for Rea-
dability are very similar, due to their exploitation of similar evidences (such as number
of words or characters), and cluster naturally. Some of the views generated by the
proposed IKMVG are also close to the manual views Edit History and Article Graph.

Following the WIKIPEDIA trend, on STARWARS our method was capable of
finding views close to Edit History, Article Graph and Readability. We lack a similar
view to the Length one, and this is expected given that this is the smallest view (only
3 features) and usually our artificial views are bigger.

In MUPPET we did not generate any highly similar views (The closest was on
Edit History). This result is again expected, since the natural views do not perform well
on this dataset and, thus, we expected the automatically generated views to contain
significant differences.

Manual View WIKIPEDIA STARWARS MUPPET
Structure 0.41 0.27 0.39
Readability 1.00 0.71 0.29
Length 0.33 0.33 0.33
Style 0.44 0.29 0.29
Edit History 0.63 0.42 0.44
Article Graph 0.69 0.50 0.36

Tabela 6.5. Jaccard similarity between each manual view and its most similar
automatically generated view.

To further illustrate the view similarities, Tables 6.6 and 6.7 shows, for each
of the six manual views on the WIKIPEDIA dataset, the most similar artificial one.
Each column corresponds to one artificial view, and the marks indicate that a feature
is included in that view. This results provide evidence that automatically generated
views can be highly similar, or even equal (view 2), to the manual views. Particularly,
view 1 is clearly related to the Edit History view, but also contains features from
the Article Graph view, which demonstrates a proximity between these two manually
defined views. Artificial view 2 corresponds exactly to the Readability view. View
3 presents various features from Structure, Length, and Style features, showing that
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Feature/View 1 2 3 4 5 6

E
di
t
H
is
to
ry

r-3month X X
r-activeu X
r-age
r-ageprev X
r-anonym X
r-discuss X
r-modline X
r-occasion X
r-probrev X
r-rcount X
r-reguser
r-revpday
r-rperusr X
r-stdrevu

A
rt
ic
le

G
ra
ph

n-assortii X
n-assortio X
n-assortoi X
n-assortoo X
n-cluster
n-idegree X X
n-linkcnt X
n-odegree X
n-pgrank
n-reciproc X
n-translat X X

Tabela 6.6. Representation of the six automatically generated views that are
the most similar to manual views on WIKIPEDIA. Each column correspond to
an automatic view and a X indicates the presence of the feature on that view.
Edit History and Article Graph views are presented

these three manually defined views are very close to each other. Finally, views 4, 5 and
6 are clearly associated with Length, article Graph and Structure, respectively.

Despite the small differences between each manual view and its most similar ar-
tificial view, this small subset of artificial views can provide the same discriminative
information as the manual views. Table 6.8 presents the MSE results obtained with
manual views and its six corresponding artificial views. The MSE results are statisti-
cally tied on all datasets, providing evidence that our method is capable of obtaining
a subset of views that are very close and as effective as the manually defined ones.
This result is interesting because one can argue that there is a problem comparing the
IKMVG with the manual views, given that they are always at an small number and
thus can give less information. In the presented experiment the same number of views
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Feature/View 1 2 3 4 5 6

R
ea
da

bi
lit
y tr-ari X

tr-flesh X
tr-fog X
tr-kincaid X
tr-liau X
tr-lix X
tr-smog X

St
yl
e

ty-auxverb X
ty-conj
ty-lgphra X
ty-nomina X
ty-passive X
ty-plgphr X
ty-prepo X
ty-prono
ty-psmphr X
ty-questn
ty-sartic X
ty-sconj X
ty-sintp X
ty-sprepo
ty-sprono
ty-ssubcnj X

Le
n

tl-charcnt X
tl-phrcnt X
tl-wordcnt X

St
ru
ct
ur
e

ts-abslen X
ts-avsecl X X
ts-avparl X
ts-avsubps
ts-cite X X
ts-citplen
ts-citpsec X
ts-imgps X
ts-lnkpl
ts-minsecl
ts-maxsecl X
ts-secs
ts-subsec
ts-stdsecl X
ts-xlnks X X X
ts-xlnkps X

Tabela 6.7. Representation of the six automatically generated views that are
the most similar to manual views on WIKIPEDIA. Each column correspond to
an automatic view and a X indicates the presence of the feature on that view.
Readability, Style, Length and Structure views are presented
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were used, which avoids this possible criticism.

METHOD WIKIPEDIA STARWARS MUPPET
Six Views 0.857±0.015 0.061±0.005 1.770±0.081
MANUAL 0.864±0.016 0.058±0.003 1.753±0.050

Tabela 6.8. Average MSE results of the manual views and six artificial views of
IKMVG which are the most similar to the manual views.

In addition to evaluating the nearest artificial view to each manually defined view,
we have also examined the distribution of all artificially generated views to evaluate
if our views present a global tendency to fit into the manually defined ones. In order
to represent the various automatically generated views, we have clustered them (using
k-Means) into 6 groups. We then evaluate how close the views on each cluster are from
the 6 manually defined views.

Clusters of IKMVG Views
Edit History 83% 29% 4% 13% 7% 9%
Structure 5% 42% 10% 4% 21% 18%
Readability 2% 0% 49% 0% 8% 22%
Style 0% 11% 6% 36% 25% 19%
Length 1% 7% 12% 26% 25% 14%
Article Graph 8% 12% 19% 21% 14% 18%

Tabela 6.9. Proportion of features from manually labelled views on six clusters
of IKMVG views. Each column corresponds to a cluster of similar automatically
generated views on the WIKIPEDIA dataset.

Table 6.9 presents the proportion of features4 on each cluster of automatically
generated views, on the WIKIPEDIA dataset. The most common kind of view in each
cluster is shown in bold face. The first column of the table corresponds to the only
cluster which is closely related to the specific manually defined view Edit History. This
fact provides evidence for the idea that Edit History is an important view, with highly
correlated features and, at the same time, very different from features in other views.

Other automatically generated views tend to contain features from two or more
of the manually labelled views. Some of the clusters of automatically generated views
are closer to manual views, like Readability with 49% and Structure with 42%, which
provides evidence for their importance. However, most features from the manual views
are more spread over the clusters of artificial views, since features from different views
are closely related by the Spearman correlation, or provide informative relationships

4The proportion is weighted according to the number of features from each manually labelled
view.
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based on their supplementary discriminative information. Another important aspect
to mention is the use of the dissimilar matrix for the k-medoids, which helps to create
more diverse views with not so similar features together.

It is also interesting to analyse the correlation between the most discriminative
views, according to IG, on each dataset. To this effect, we evaluate the proportion of
features from each manually defined view present on the most discriminative artificial
views. Table 6.10 shows that, for all datasets, the most discriminative views are not
biased to any specific manual view. In fact, the most discriminative views are the
combination of features from different manual views, indicating that there is important
discriminative information to be obtained from the relationship of dissimilar features
associated with different manual views. This further amplifies the importance of using
both similar and dissimilar matrix during our algorithm, to create a more diverse set
of views.

WIKIPEDIA STARWARS MUPPET
Structure 29% 24% 20%
Readability 13% 19% 20%
Length 8% 3% 1%
Style 21% 19% 20%

Edit History 24% 17% 7%
Article Graph 5% 17% 32%

Tabela 6.10. Proportion of features from manually labelled views on the most
discriminative artificial views generated for each dataset.

6.3 Efficiency of IKMVG compared to FSE

methods

In this section we present a comparison between our proposed IKMVG method against
one of the FSE methods, in particular the Random Subspace Method [Ho, 1998]. The
idea behind this experiment is to evaluate our approach against another automatic
approach that explores a concept similar to our soft views. In RSM it is, like our
approach, possible to have one feature in more than one view. The RSM method uses
2 parameters, n and f , where n is the number of feature subsets (views) that will be
generated and f is the number of features on each subset.

The RSM method, for this experiment, was set with n = 20 to generate 20 feature
subsets and f = 20 to generate 20 random features on each of them. This parameters
were choosen to approximate to the number of views generated by IKMVG and the
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Tabela 6.11. RSM results compared to IKMVG and the MANUAL views. As-
terisks denotes statistically significant differences.

Metodo WIKI SW MUP
IKMVG 0.836± 0.019∗ 0.060± 0.003 1.686± 0.053∗
RSM 0.869± 0.021 0.060± 0.004 1.697± 0.064

average number of features on each view. This way we can have a fair judgment in
comparing both methods without one method having access to alot more or alot less
information. The results are presented in Table6.11.

The results in the STARWARS dataset were similar in both methods, but our
approach beats the RSM in both MUPPETS and WIKI with statistically significant
results. Specially in WIKI, this is a really positive result for us, given that this dataset
is the most complete one and with the more number of data. Another conclusion
that can be extracted from here is the importance of using strong and meaningful
views. RSM generate views with random features, while IKMVG uses the concept of
similarity to group features. This, together with that fact that our views are already
being evaluated during the algorithm execution, are probably the main reasons of our
better results. The results presented showed that our method can compete with manual
views or even artificially created ones, and to have a good performance against both
methods. As a future work we intend to test our method against a more complex
automatic view generator.

6.4 Effectiveness of Automatically Generated

Views compared to other automatic method

In this section we compare our IKMVG approach to one of the literature state-of-
art approaches to automatic multi-view generation. The idea here is to show that our
method have an equal or even better effectiveness compared to other methods presented
before. We will compare the IKMVG against the OFSP presented in [Kumar & Minz,
2016], focusing on effectiveness and time performance.

6.4.1 Comparison on Effectiveness

Table 6.12 presents the results comparing both approaches on our three datasets.
The results presented in Table 6.12 show that our approach is better or equal

to OFSP in all datasets evaluated. In particular, IKMVG results in WIKIPEDIA
were better than the baseline. This is particularly intersting since WIKIPEDIA has
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METHOD WIKIPEDIA STARWARS MUPPET
IKMVG 0.838± 0.019∗ 0.060± 0.003 1.686± 0.053
OFSP 0.861± 0.016 0.060± 0.003 1.713± 0.050

Tabela 6.12. Average MSE results of the automatically generated views using
the IKMVG method and using the OFSP method. Asterisks denotes statistically
significant differences.

a more complete manual rating system which, because of that, is more difficult to
predict classes than our STARWARS dataset, as we can see in the MSE result. On
STARWARS and MUPPET our method is equally effective comparing to the baseline.

METHOD WIKIPEDIA STARWARS MUPPET
IKMVG+F0 0.821± 0.018∗ 0.064± 0.004∗ 1.706± 0.047∗
OFSP+F0 0.849± 0.018 0.073± 0.004 1.737± 0.044

Tabela 6.13. Average MSE results of the combination of F0 features with
IKMVG generated views and with OFSP generated views. Asterisks denotes
statistically significant differences.

By combining the features from IKMVG and FSOP with the original dataset
we arrived at the results presented in table 6.13. Our method is significantly better
than OFSP in all three datasets in this tests. While this combination improved the
results of both methods on WIKIPEDIA, it led to worse results on STARWARS and
MUPPETS. This can be explained by the fact that the original features add noise to
the data on these two datasets, which had an even bigger negative impact on OFSP.

6.4.2 Comparison on Time consumption

Regarding the execution time, OFSP tries, at each step, to insert a random feature in
all the views that already exist, keeping only the one that most improves the results.
This approach makes the algorithm have a high computational cost, given that each
feature will be evaluated once on each existing view. More specifically, each evaluation
corresponds to the execution of a regression method (in our case, the SVR) which is the
most computationally expensive procedure in the method. Given v views generated
by OFSP and n features on the dataset, the OFSP method performs n ∗ v evaluations.
Differently, the number of evaluations performed by IKMVG does not depend on the
number of features, which makes the cost much smaller since our method requires less
evaluations than the OFSP. In fact, our approach performs N ∗ v evaluations using
the SVR, where v is the number of views and N is the number of iterations. We also
execute the k-medoids method on each iteration (N times). However the execution
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time of k-medoids is not significant when compared to the time spent to perform the
SVR evaluations.

Table 6.14 presents a comparision of the time spent to run one fold on each
dataset. The use of N = 20 iterations to execute IKMVG can make this method
achieves more effective results than OFSP, which relies on the n = 68 features to
perform extra evaluations that not only do not contribute to the OFSP effectiveness,
but also make the OFSP method less efficient than our proposal. Moreover, the higher
the number of features added on each view generated by OFSP, the more expensive are
the newer evaluations, given that the SVR learner will need to process more information
from the additional features inside each view. Unlike IKMVG, the OFSP efficiency and
scalability can be substantially affected by a high number of features.

METHOD WIKIPEDIA STARWARS MUPPET
IKMVG 26m02s 7m30s 9m22s
OFSP 713m40s 289m21s 312m40s

Tabela 6.14. Comparison on the computational time consumption between
IKMVG and OFSP methods

The results in table 6.14 were expected, given our previous analysis, but it is
important to mention that the difference between the two approaches was even bigger
given that IKMVG was optimized, avoiding to redo already calculated views in many
cases, while OFSP was implemented exactly as it was explained in [Kumar & Minz,
2016], with no optimizations whatsoever.



Capítulo 7

Conclusions

In this work we have proposed an automatic view generator for the task of quality
assessment in user generated content. In particular, we adopted an iterative approach
that automatically generates and evaluates soft views for the data, i.e. views containing
overlapping sets of features. Apart from not relying on experts to group features into
views, our method can be used in any scenario, without domain restrictions and without
knowing the semantic meaning of each feature.

Based on the work by [Dalip et al., 2015], we evaluate our method in three
different Wiki datasets, generating artificial soft views for each of them and comparing
the results obtained by these views to the state-of-art. Our experimental results provide
good evidence towards the benefits of using our automatically generated views. In fact,
these are capable of reducing the prediction error of the original features by around
20% on one of the datasets, giving better and statistically significant results in the
three of them.

Our method also configures a competitive alternative to the manual views, since
it can automatically generate views very close to those manually defined, and even
reduce the prediction error of the manual views, in some scenarios. Compared to the
6 manual ones, we could replicate exactly one of them for the Wiki dataset and many
others were really close by the jaccard distance. Moreover, using the six most similar
views created during our experiments we were able to get a result comparable to the
manual one.

7.1 Contributions Callback

The main contribution of this work is the proposal of an innovative method for genera-
ting views for multiview learning, that is automatic, efficient, and potentially domain
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independent. Being automatic means that it does not need an expert to make the
decision of which features will belong to each views, which can be a hard and time con-
suming task. Our experiments proved the good performance of our method by showing
that it can compete really well against the manually created views, that, in the scenario
evaluated, could be considered the optimal views, as they were carefully created by and
expert. Finally, given that our method does not depend on any semantic meaning of
the features, it can potentially be applied in any scenario where a multiview approach
seems interesting. In addition to our main contribution, we helped the development of
the multiview research area in many aspects. The first one was the idea of using ‘soft
views’. While the idea of creating distinct groups of subsets of features with feature
repetition is nothing new, the idea was never explored in a multiview scenario, where
we seek to group similar and correlated features together.

Second, by realizing a big analysis and experimentation on our automatically
generated views and comparing them to the manual ones we presented the weak and
strong points of our method in the domain of quality assessment on the datasets eva-
luated.

Finally, even though we initially thought to group only similar features, after
observing how FSE methods work, and how distinct and dissimilar features been put
together can improve the overall result, we decide to join these two ideas. Our method
tries to combine the multiview hypothesis with the assumption that its good to group
similar features [Dalip et al., 2015] with ideas proposed in [Oliveira et al., 2003], where
the focus is in grouping dissimilar features. Our approach was able to achieve strong
results that were able to beat both the manual approach by [Dalip et al., 2015] and the
automatic approach of [Kumar & Minz, 2016] in at least one of the datasets evaluated.
We also had significantly better results compared to the basic FSE approach called
RSM presented in [Ho, 1998]

7.2 Future Work

As future work, we intend to evaluate our proposal in other domains. Our approach
has the potential to show good results independent of the domain, because it only
needs information from the values of the features , which are available in any machine
learning domain. We do not need to know the meaning of the feature or if it is a
dataset that has a clear feature separation into views. Given this, we will also apply
the method to datasets where features are harder to group into meaningful views, such
as image collections where the images are represented using pixels.
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In parallel to explore multiple domains, we also intend to improve the efficiency
of our method and study other approaches to group the views, besides the one we
proposed based on the Spearman correlation. There are a high number of metrics
that can be used in the literature and maybe they can have better results compared
to the Spearman in specific scenarios. We also would like to measure the impact of
these metrics in the result. In recent experiments we empirically found that, by using
random values on the matrices M and M ′, we achieved a close final result compared
to what we reported. Given that, understanding how much a metric is helping would
help a lot to improve the performance in that specific scenario.

Another experiment we plan to do in the future is to use our method with learning
algorithms that have a higher performance than SVR. The baseline result from a Ran-
dom Forest, for example, surpasses the results of the SVR in all the datasets presented
on this study. In this work we did not use RFs because of how complex it would be
to understand the real value of our method, given that a RF already has an "internal
multiview", where each tree only receives part of the features. Now, that we assure
the value of our approach, it would be interesting to see how much it could enhance
the already strong result of the Random Forest algorithm. Another interesting idea is
to add a bias on the tree generation step of the Random Forest algorithm. This way,
the we could generate trees based on our similarity and dissimilarity metrics, exploring
the ideas proposed for our view generation IKMVG.
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