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Resumo

A combinação de modelos em aprendizado de máquina é uma técnica útil para melhorar
a eficácia de sistemas em tarefas como classificação, busca e recomendação. O empil-
hamento de modelos, por exemplo, aprende a pesar e combinar previsões de diversos
modelos base para alcançar eficácias melhores. Uma limitação do empilhamento é que
em sua formulação básica não há informações sobre o contexto em que instâncias levam
um modelo a ter um melhor do que outros, ponderando-as com base apenas no eficácia
geral de cada modelo base. Nesta dissertação, inspirado por trabalhos em Predição de
Performance, propomos usar modelos auxiliares capazes de prever a eficácia de cada
modelo no empilhamento para uma nova instância. As abordagens atuais baseiam-
se no desenvolvimento de atributos para prever a eficácia de sistemas e usá-los como
atributos adicionais para a camada de empilhamento, que tem o ônus de compreender
quando cada modelo tem eficácia melhor que os outros. De maneira diferente, nossas
abordagens nas tarefas de busca e recomendação facilitam o trabalho da camada de
empilhamento com um conjunto mais discriminativo de atributos. Para a tarefa de
busca, demonstramos por meio de simulações que existe uma barreira de acurácia que
deve ser superada para que a predição de eficácia se torne útil. Além disso, mostramos
que os preditores de eficácia de consultas aprendidos por máquina para cada modelo
base são capazes de ultrapassar essa barreira quando usados como meta-atributos para
empilhar modelos individuais de ranqueamento via learning to rank. Para a tarefa de
recomendação, nós propomos estimar diretamente a eficácia de cada um dos modelos
base para um usuário, considerando seu conjunto histórico de avaliações, em vez de
criar atributos discriminativos para prever essa eficácia. Experimentos em conjuntos
de dados do mundo real de vários domínios demonstram que o uso de estimativas de
eficácia como atributos adicionais melhoram significativamente a eficácia dos ensembles
com base no aprendizado pointwise. Além disso, com ensembles pairwise e listwise, a
utilização das estimativas de eficácia atinge performance do estado-da-arte.
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Abstract

Ensembles of models in machine learning has proved to be a useful technique for im-
proving the effectiveness of systems in tasks such as classification, ad-hoc retrieval and
recommendation. Stacking, for instance, learns to weight and combine base models
predictions in order to achieve higher performances. One limitation of stacking is that
in its basic formulation it has no information on the context of instances that make
a model perform better than others, weighting them based only on the overall model
performance. In this dissertation, inspired by work on Performance Prediction, we
propose to use auxiliary models capable of predicting the performance of each model
in the ensemble for new instances. Current approaches are based on handcrafting
meta-features for predicting the performance of systems and using them as additional
features for the stacking layer, which has the burden of understanding when each model
outperforms others. Unlike them, our novel approaches in both search and recommen-
dation facilitates the stacking layer job with a discriminative set of features. For ad-hoc
retrieval, we demonstrate through simulations that there is a prediction accuracy bar
that must be overcome for query performance prediction to become useful. Moreover,
we show that machine-learned query performance predictors for each base model are
able to pass this bar when leveraged as meta-features for stacking individual ranking
models via learning to rank. For recommendation, we propose to directly estimate the
performance of base models for a user given his historical set of ratings, instead of hand-
crafting discriminative features for predicting it. Experiments on real-world datasets
from multiple domains demonstrate that using performance estimates as additional
features can significantly improve the accuracy of current ensemblers based on point-
wise learning. Moreover, when used with pairwise and listwise ensemblers, exploiting
performance estimates achieves state-of-the-art recommendation effectiveness.

Keywords: Ensembling, Performance Prediction, Recommender Systems, Informa-
tion Retrieval.
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Chapter 1

Introduction

The huge scale of content, services and products available on the World Wide Web
has motivated the development of systems capable of retrieving relevant items to users
given his information needs. This area of research is known as Information Retrieval
(IR) and two related tasks are search – ranking relevant documents given a query – and
recommendation – ranking items, e.g movies, given a user profile –. Providing rapid
and accurate response to enormous user requests is a challenge faced by the methods
proposed to tackle these tasks. Several ranking models have been proposed to generate
rankings where the most relevant items are in the first positions, which users see first.
Among them, a promising category of methods that yields state-of-the art effectiveness
are the ones based on the learning to rank framework [Liu et al., 2009]. In addition to
using a machine-learned strategy to generate the final ranking, this class of methods
is also suited to combine different base ranking strategies, which bears resemblance to
stacking [Breiman, 1996b] from machine learning.

An equally challenging task, relevant to this dissertation, is knowing when systems
will fail to perform well given an information request, which is an area of research
known as Performance Prediction (PP) [Cronen-Townsend et al., 2002]. Being able to
accurately predict the performance of a method has several applications: avoid user
dissatisfaction by omitting the response of the system, invoke alternative methods or
actively using such information in order to combine multiple models for improving the
effectiveness of the system.

Several approaches have been proposed to tackle the problem of predicting the
performance of systems in IR for both search [Hauff, 2010; Katz et al., 2014; Shtok et al.,
2016] and recommendation [Bellogín et al., 2011; Ekstrand and Riedl, 2012; Matuszyk
and Spiliopoulou, 2014], and they are in essence query and user features respectively
that might correlate well with the performance of a given system. For instance, a query
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2 Chapter 1. Introduction

Figure 1.1: Baseline framework for exploiting performance predictions. This architec-
ture is known as STREAM in the recommender systems literature [Bao et al., 2009]
and was also explored in ad-hoc retrieval by Santos et al. [2010].

performance predictor for a vectorial model based on the TF-IDF representation might
be the query length: the higher the query length in terms of words, the more complex
the query might be and TF-IDF might not be able to retrieve relevant documents.
Another example, in the field of recommender systems, is the number of ratings a user
has: the more ratings, a collaborative filtering based model might perform better and
with less ratings a content-based model might perform better.

One direction that has shown to be promising is leveraging performance predic-
tors for the combination of models, using them as additional features to a final model
that is a function of predictions of base models to the final prediction. This archi-
tecture, known as STREAM in the recommender systems literature[Bao et al., 2009],
is described in the diagram of Figure 1.1. In ad-hoc search, Macdonald et al. [2012]
demonstrated that query performance prediction can be used as additional features to
a learning to rank model in order to improve the final results. In recommendation, both
first and second place entries [Koren, 2009; Sill et al., 2009] to the Netflix challenge
[Bennett et al., 2007] were stacking strategies that used at least one additional user
performance predictor.

However, the expectation that improved performance prediction would lead to
significant improved results for their respective tasks (ad-hoc retrieval and recommen-
dation) has not yet been fully realized by previous work. [Raiber and Kurland, 2014]
argued that the reason improvements in the performance prediction task have not
fully translated to improvements in the search task is due to the intrinsic difficulty of
predicting performance, which boils down to the relevance estimation task.

In this dissertation we demonstrate that indeed an accuracy bar must be passed
in order to make performance predictors useful for search and recommendation. More-
over, in this dissertation we describe two strategies – ML-QPP in search and a novel
approach for performance prediction in recommendation called performance estimates
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(a) Unweighted (b) Weighted

Figure 1.2: Proposed framework for exploiting accurate performance predictions for the
combination of different models. The core idea is that we have one effective prediction
accuracy for each model in the ensemble, which facilitates the ensemble model job of
weighting the models predictions, in an instance-wise manner. The weighted variation,
as we explore in this dissertation, further increases the sensitivity of models predictions,
by multiplying them by their predicted effectiveness.

– for making accurate performance predictions and a unified framework on how to
explore accurate performance predictions to effectively improve the results of state-of-
the-art ensembles of models in both search and recommendation.

1.1 Dissertation Statement

The statement of this dissertation is that effective performance prediction of different
base models can be exploited to improve the results of their combination. In particular,
having one performance prediction per base model as additional feature to the stacking
layer provides a fine-grained comprehension of conditions – query or user for search
and recommendation respectively – when each model performs better or worse than
others, facilitating the combiner model job. Furthermore, multiplying each base model
prediction by its respective performance prediction further increases the sensibility of
this set of features, attaining higher effectiveness.

1.2 Dissertation Contributions

The key contributions of this dissertation are three-fold:

We propose a framework for utilizing concepts of performance prediction for the
combination of models.

Unlike previous work, that exploit the information of features that correlate with
the performance of systems by simply adding them – M performance predictors for
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N models– to the ensemble input layer, we propose to have one accurate performance
prediction for each model in the ensemble – N performance predictions for N models
respectively. The intuition is that we take the burden of learning which performance
prediction correlates with each prediction and how it should be used from the ensemble
and pass it to the performance prediction techniques.

2. We demonstrate that performance prediction can be used to improve the results
for ad-hoc retrieval as additional features to a combiner model, when they achieve
certain accuracy bar.

Traditional approaches for query performance prediction are single features that
measure the difficulty of the query for a given system. We demonstrate that this
approach falls short in improving ad-hoc retrieval, performing similarly to a very noisy
performance prediction. Inspired by previous work on combining query performance
predictors for improved accuracy [Hauff et al., 2009], we show in this dissertation
that having one machine-learned query performance predictor for each model in the
ensemble is sufficient to pass the accuracy bar needed for improving ad-hoc retrieval.

3. We introduce a novel approach to performance prediction in the context of rec-
ommender systems, called performance estimation which exploits users historical
ratings to estimate the effectiveness of different recommenders instead of trying
to predict it based on user features.

Recent approaches to performance prediction for recommender systems that pro-
vide a measure of difficulty have shown moderate success when leveraged as additional
features to the ensemble, for example the number of user ratings [Bao et al., 2009].
In this dissertation we advocate for the use of performance estimation instead of the
standard approach of hand-crafting accurate user performance predictors. The key
idea is to use each user past ratings in order to both train and evaluate the perfor-
mance – hence directly estimating – of each recommender method in the ensemble.
The assumption that past performance of models for users is indicative of their fu-
ture performance has been evaluated in this dissertation, demonstrating that indeed
performance estimation provides are more accurate and can replace user performance
prediction features in the recommender systems area.

1.3 Dissertation Outline

The remainder of this dissertation is organized as follows:
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• Chapter 2 describes background on Information Retrieval, including both ranking
and recommendation methods, including a formal definition of the tasks and their
organization into categories. This is followed by an introduction to Performance
Prediction and current approaches for it in both ad-hoc search and recommen-
dation. In addition, the combination of methods via ensembling is described and
how it has been applied in Information Retrieval, including efforts to leverage
Performance Prediction to enhance the accuracy of the ensemble. The chapter
ends describing how the approaches proposed in the dissertation differ from the
current literature.

• Chapter 3 begins with an overview of query performance predictions and how
approaches are currently limited and have not shown improved ad-hoc retrieval
performance. Three strategies are then defined for such task, including machine-
learned query performance predictors. In addition, this chapter evaluates the us-
age of this approach to improve the combination of ranking functions via learning
to rank.

• Chapter 4 defines a novel approach for predicting the performance of recom-
mendation methods, and also how to effectively use them in the combination
of recommender systems. This chapter also evaluates the approach in several
domains, shedding light upon different facets of the proposed approaches: their
effectiveness, robustness to different ensembling strategies, complementarity to
other performance predictors, generalization and discriminative power. Further-
more, the chapter finishes by doing breakdown analysis across users, how different
ensembles compare to each other and also the importance of specific meta-features
for the ensemble.

• Chapter 5 provides a summary of the contributions and conclusions made
throughout the chapters of this dissertation. Other future directions are also
presented, regarding alternative applications of the statements and framework
provided here.





Chapter 2

Related Work

2.1 Information Retrieval

Information retrieval (IR) is the broad area of computer science concerned with storing
in a collection and retrieving items relevant to an information need. The most known
and visible applications are search web engines, however several other systems and
tasks can be categorized as applications of this area, such as recommenders and text
classifiers. In this chapter we describe the ranking and the recommendation tasks from
IR, including methods designed to tackle such problems.

2.1.1 Ranking Methods

The objective of ranking models is to create a function that predicts the relevance of a
query and document combination. They are one of the core modules of search engines
such as Google and Bing, responsible to sort retrieved documents in order of relevance
to the user. The relevance of a document for a user query might be influenced by other
contextual variables, such as location and time.

More formally, the ranking task - also called in this dissertation as ad-hoc retrieval
or search - is to calculate a relevance function f that given a query q and a document d
will estimate the score s = f(q, d) of such combination. Ranking documents according
to this function in decreasing order will generate a ranking of documents for a given
query.

2.1.1.1 Categorization of methods

Ranking methods are usually grouped in the following categories regarding the evidence
it leverages from the query q and document d:

7
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• Query-dependent: models that score documents according to its estimated
relevance to a query, examples are vector space models such as tf − idf which
scores a document using the similarity of the query vector representation and
the document vector representation [Salton et al., 1975]. Inside this category of
models, we also have probabilistic relevance ones, which instead of representing
query and documents algebraically, they do so in a probabilistic manner. Exam-
ples are the Binary Independence Model [Robertson and Jones, 1976], 2-Poisson
[Poisson, 1837] and BM25 [Robertson et al., 1995]. Moreover, language mod-
elling and divergence from randomness are two other classes of models that are
also query-dependent [Santos, 2013].

• Query-independent: in addition to estimating the relevance of a document to
a query, a ranking model might only answer specific quality criteria of documents.
One example of this class is PageRank [Page et al., 1999], which uses the link
structure formed in the web to score documents regarding their importance on
this graph.

• Machine-learned: models that use machine learning principles have also been
applied to the ranking problem. Liu et al. [2009] argues that the machine learn-
ing framework tackles problems faced by researchers in IR such as automatically
tuning parameters, combining multiple models, and avoiding over-fitting. Ap-
proaches that uses the learning to rank framework can be categorized according
to their choice of input and output representation and their underlying model
structure: pointwise, pairwise and listwise. A tree based example of this cate-
gory is LambdaMart [Wu et al., 2008].

2.1.2 Recommendation Methods

The objective of Recommender Systems (RS) is to create a utility function that
predicts how much a user will like an item. User behavior is modeled by such systems
based on their explicit feedback, as in ratings for movies, or implicit feedback, as
in product views.

Other variables might influence the utility of an item, such as the time of the day,
location and even what the user is currently doing. This kind of information is defined
as context. Another important aspect of RS is the domain in which it works. The
item domain might vary from scientific articles to locations to travel. This scope can
influence decisions on the modeling of items.
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More formally, the RS task is usually defined in two different ways [Aggarwal,
2016b] :

1. Prediction task : This approach is to predict the rating value for a user-item
combination. For m users and n items, the training data is an incomplete m× n
matrix, where the observed values are used for training and the missing values
are predicted by the model. This is also referred as matrix completion problem.

2. Ranking task : In practice, we only need to rank items for specific users, deter-
mining the top-k items the user will most likely find useful. This is also referred
as top-k recommendation problem.

2.1.2.1 Relationship to Supervised Learning

We could view the prediction task of RS as a generalization of classification and regres-
sion models. In common supervised learning tasks, the class variable can be viewed as
an attribute with missing values, whereas in the prediction task from RS any column
is allowed to have missing values (any entry could be the class variable). Such rela-
tionship is crucial, as many principles from the area of classification and regression can
be applied to Recommender System research. This relationship is illustrated in Figure
2.1, extracted from [Aggarwal, 2016b].

2.1.2.2 Categorization of methods

Recommender System models are usually grouped in the following categories:

• Collaborative Filtering Models: The main intuition behind Collaborative Filter-
ing (CF) methods is that we can use the collaborative power of the community
of users to infer which ones have similar tastes and then complete the missing
values of the ratings matrix based on this correlation. This group of methods
can be further divided into memory-based methods (predictions based on the
neighborhoods) and model-based methods (a model is learned by an optimiza-
tion procedure based on the training set).

• Content-Based Recommender Systems: In Content-Based (CB) RS attributes of
items and users are used, in combination with the rating information, in order to
deliver predictions.

• Knowledge-Based Recommender Systems: The recommendation is not based on
ratings, but rather on the match of the user requirements for the items and the
item descriptions.
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Figure 2.1: Relationship of Recommender Systems to supervised learning, extracted
from [Aggarwal, 2016b].

• Demographic Recommender Systems: Such methods learn mappings from specific
demographic groups to buying or rating propensities.

• Hybrid and Emsemble-Based Recommender Systems: Various aspects of RS
methods are combined in order to achieve better performance. We will further
discuss such methods in the next section.

2.1.2.3 Hybridization

One of the first surveys on different types of Hybrid RS was made by Burke [2002],
which categorizes them into seven different categories:

• Weighted: The predictions of multiple RS are combined together to produce a
single recommendation.

• Switching: The system decides between RS techniques depending on the situa-
tion.

• Mixed: Multiple recommendations from different methods are displayed at the
same time.
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Figure 2.2: Taxonomy of hybrid systems extracted from [Aggarwal, 2016a]

• Cascade: Recommenders refine recommendations given by another technique.

• Feature augmentation: The outputs of RS are used as features for another
method.

• Meta-level: A model that was learned is used as input by another recommender.

• Feature Combination: Multiple data sources are used by a single RS.

Aggarwal [2016a] made a recent effort into categorization of types of RS ensem-
bles, by revisiting Burke [2002] and adding depth to it. His comparison involves a
parallel between ensembling in classification, which is an area of machine learning that
has successfully applied ensembling, and ensembling in RS. The taxonomy proposed is
illustrated in Figure 2.2.

Recently, works on RS that combine multiple methods have been proposed, and
the two winning entries for the Netflix Competition were ensembles [Sill et al., 2009;
Koren, 2009]. Jahrer et al. [2010] combine predictions from 18 RS in the Netflix dataset
using several blending algorithms. The best single algorithm was a Feedforward Neu-
ral Network (also called Multilayer Perceptron) [Goodfellow et al., 2016], and the best
ensemble was obtained by combining Linear Regression [Montgomery et al., 2015] with
polynomial feature engineering, Feedforward Neural Network and Bagged Gradient
Boosted Decision Trees (combines Bagging [Breiman, 1996a], Gradient Boosting [Fried-
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man, 2002] and Random Subspace selection [Breiman, 2001]). An improvement over
Feature-Weighted Linear Stacking [Sill et al., 2009] was reported.

Dooms et al. [2015] approaches to hybridization include a switching algorithm
and a weighted one. Combining predictions from 10 RS using the error from training
time to estimate the RS’s weights, they obtained improvements over using a single
algorithm.

The category of hybrids most relevant to this dissertation is weighted ensembles,
which has empirically shown the best effectiveness improvements for the recommenda-
tion task.

2.2 Performance Prediction

Performance prediction has been an established research topic in Information Retrieval
(IR) [Cronen-Townsend et al., 2002], and the task is to predict the performance1 of a
query in a specific configuration of an Information Retrieval system. The approaches to
the task have been classified into pre-retrieval features (predictions are made before the
retrieval stage) and post-retrieval features (uses the rankings produced by the retrieval
engine).

The difficulty of a query with respect to a certain system can be measured in
different dimensions such as specificity, ranking sensitivity, ambiguity, term relatedness
and using query/document/retrieval perturbations or language models [Hauff, 2010].
Several approaches have been proposed to improve the effectiveness for the performance
prediction task, however, the expectation that improved performance prediction would
lead to improved adhoc retrieval has not yet been fulfilled Raiber and Kurland [2014].

Even though, this topic still receives attention of researchers in IR: for measuring
users satisfaction [Dan and Davison, 2016], improving the quality of predictors [Arguello
et al., 2017; Shtok et al., 2016; Katz et al., 2014].

This problem was first explored in the field of Recommender Systems by Bellogín
et al. [2011], who adapted query clarity features from [Cronen-Townsend et al., 2002]
and used them to predict performance of RS. The evaluation procedure involves cal-
culating correlation of such predictors to the errors of RS, reaching a maximum of 0.5
Pearson correlation.

1A more adequate term would be effectiveness prediction, since what is being predicted is the
system capacity to make correct predictions and not other aspects such as efficiency. However, due to
adoption of the term by the literature, throughout this dissertation we maintain the nomenclature of
Performance Prediction (PP).
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Since then, this topic has been further explored by researchers in the area. Ek-
strand and Riedl [2012] proposed a switching hybridization algorithm using a Logistic
Regression based on three user features, resulting in minor improvements over a single
state-of-the-art model. Ghazanfar and Prügel-Bennett [2014] compared clustering-
based Collaborative Filtering methods and proposed a hybridization of CCF and
Content-based methods using the weights learned in the clustering step of CCF. How-
ever, it did not outperform single Clustering-based Collaborative Filtering methods.

Gras et al. [2015] explored user features that correlate with low accuracy in RS,
in order to identify users who are outliers and consequently get poor recommenda-
tions. The features used are Abnormality (User average ratings distance to items he
rated), average Pearson correlation with top-K similar neighbours, AbnormalityCR
(Abnormality using standard deviation of items) and AbnormalityCRU (Abnormali-
tyCR centered by user average rating). Results show Pearson correlations up to 0.55
between features and error metrics. Griffith et al. [2012] proposed a Decision Tree
based regression model (M5) to predict the performance of a RS. The features are
first selected (from a total of 11 features) for each dataset and used as input to the
regressor. Results show good correlation between prediction from the regression model
and ground-truth (0.8 Pearson correlation).

The first part of this dissertation statement is "Effective performance pre-
diction of different base models can be exploited to improve the results of their
combination", which depends upon the literature on performance prediction to obtain
accurate results. In order to improve the effectiveness on the task, in the recom-
mendation scenario, we propose a novel approach for performance prediction. Unlike
previous work that is based upon manually creating user features that might correlate
with the performance of methods, our proposal is to directly estimate it using the
user historical set of ratings. On the other hand, for the ad-hoc retrieval scenario, we
resort to a technique that combines multiple query performance predictions by using
a machine-learned approach [Hauff et al., 2009]. In both cases, we obtain one perfor-
mance prediction for each model in the system, which is a key aspect of our proposed
framework, as discussed in Section 2.4.

2.3 Ensemble Methods

Ensemble is the area of machine learning concerned with the combination of the output
of several base learners in order to improve the generalization and robustness com-
pared to using only one learner. Bootstrap aggregating (bagging) [Breiman, 1996a]
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and boosting [Kearns, 1988] are ensembles that combine base models from the same
hypothesis space. Bagging modifies the input data for each learner, using bootstrap
samples, and then takes the average of the various models for each new sample. Boost-
ing, on the other hand, incrementally constructs models by focusing more on training
examples where previously learned models have failed, combining them using a closed
formula which takes into account the error of each weak learner.

Even though such methods have been explored in the recommender systems lit-
erature with some success [Bar et al., 2012], in this dissertation we focus on the class
of ensembles that are able to combine models created from different hypothesis spaces,
namely, stacking [Breiman, 1996b], which can be applied to both the search and recom-
mendation problem. This technique has been extensively used in the machine learning
community. The method is based on the combination of different base models by
training a final model, also known as meta-learner or second-level model, which makes
new predictions based on the predictions of the base models, as we see in the diagram
in Figure 2.3. This idea has also been successfully used in the field of recommender
systems for producing hybrid recommendations [Aggarwal, 2016a; Burke, 2002]. For
instance, both the winner and second place of the Netflix competition [Koren, 2009; Sill
et al., 2009] employed a blending of multiple recommender systems in their solutions.

Figure 2.3: The framework for combing multiple models using machine learning. Dif-
ferent ensemble models can be used for this task, including models that optimize point-
wise, pairwise and listwise objectives.

Strategies to combine different rankings have also been proposed, and they can
be divided into those that require training data and those that do not. The area
concerned with methods that do not require training a model is generally known as
rank aggregation [Aslam and Montague, 2001]. Rank aggregation techniques have
also been applied to combine the output of multiple recommenders [Valcarce et al.,
2017]. The other research strand for the combination of multiple rankings, which
requires training data, is known as learning to rank [Liu et al., 2009]. The adoption of
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supervised machine learning for combining different ranking models has led to state-
of-the-art results [Wu et al., 2008].

2.4 Leveraging Performance Prediction in

Ensembles

Using performance predictors for the task of ad-hoc retrieval has been done in the litera-
ture in the following manners: used as additional features for the ensemble [Macdonald
et al., 2012], i.e. increasing the learning to rank input size with n query performance
predictions, used as the weight assigned to the list in a linear fusion combination of
lists [Raiber and Kurland, 2014] and selecting the best predicted model [Berger and
Savoy, 2007]. When using them to directly weight or select between base models, the
performance prediction strategy is outperformed by using the cross-validation error
of each model. When used as additional features to the ensemble, the effectiveness
improvements are inexpressive, as we also show in this dissertation.

In the field of recommender systems, using performance predictors as additional
features for ensembling has been extensively explored. Bao et al. [2009] formalized
a framework called STREAM for exploiting such features for stacking recommenders.
The ensemble leverages additional features by making the input space the concatena-
tion of performance predictors and the scores of the base recommenders. Intuitively,
the ensemble should learn which performance predictors are adequate for each rec-
ommender score. This framework was further studied by Jahrer et al. [2010], who
leveraged different pointwise ensemblers such as neural networks and bagged gradient
boosted decision trees, resulting in improved performance. The second place solution in
the Netflix competition, FWLS [Sill et al., 2009], leveraged additional features in a dif-
ferent manner, by making the Cartesian product of the score of base recommenders and
of performance predictors as the input space for a linear regression ensembler. Fortes
et al. [2017] compared different ensembling strategies (stacking, FWLS and STREAM)
through several evaluation metrics to answer whether performance predictors are really
useful for such hybridization approaches. They concluded that even though the ensem-
ble is not optimized for metrics such as nDCG, the usage of performance predictors
still proves to be beneficial.

The second part of this dissertation statement is "Effective performance predic-
tion of different base models can be exploited to improve the results of their
combination". In both ad-hoc retrieval and recommendation, the state-of-the-art
approach for doing such exploitation is to use the framework of simply adding M
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performance prediction features to the ensemble input space, which is the framework
described in Figure 1.1. As we discussed in the Chapter 1, this framework has the
following limitations:

• The burden of learning the relationship between each performance predictor and
model predictions is given to the ensemble which has the difficult task of compre-
hending how and which model prediction relates to each performance prediction
feature.

• There are M performance predictions that are not directly related to the N
models in the ensemble.

In order to overcome both limitations we propose to have one accurate performance
prediction for each model in the ensemble, which results in the framework described in
Figure 1.2.

2.5 Summary

Unlike approaches for performance prediction in recommender systems that create
features to predict user performance for a system, we propose to use a new set of
features called performance estimates, which we empirically show in our experiments
that dismiss the need of handcrafting additional discriminative performance predictors.
Moreover, we show that having one performance estimate for each model in the ensem-
ble achieves state-of-the art performance in the recommendation task. Additionally,
in the search scenario, we differ from other approaches to improve ad-hoc retrieval by
having one machine-learned query performance predictor for each base model in the
ensemble, which we show that achieves an accuracy bar for performance prediction that
translates to statistical improvement on the ad-hoc retrieval task if used as additional
features for learning to rank.

By using our proposed framework for exploiting accurate performance predictors
we demonstrate, in the experiments conducted in this dissertation, significant improve-
ments compared to the state-of-the-art baseline framework from the literature in two
different tasks from information retrieval.
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Leveraging Performance Prediction
for Ad-hoc Retrieval

Query performance prediction concerns the design of features that are indicative of
the effectiveness of a given ranking model for a particular query in the absence of
actual relevance information [Hauff, 2010]. Query performance predictors (QPP) have
been categorized into two approaches, according to the available data for prediction:
pre-retrieval and post-retrieval. For example, Averaged Inverse Document Frequency
(AvIDF) is a pre-retrieval QPP that measures query specificity as the average IDF of
all query terms. Intuitively, a ranking model might achieve higher effectiveness when
query specificity is higher. Multiple pre-retrieval QPP have also been combined and
shown to yield improved prediction accuracy [Hauff et al., 2009].

One key application of QPP is to weight the results from different ranking models
according to the predicted effectiveness of each model on a per-query basis. For in-
stance, QPP have been tested as triggering mechanisms of specialized ad-hoc retrieval
models, such as query expansion [Cronen-Townsend et al., 2004], as well as to combine
ad-hoc and diversification models [Santos et al., 2010]. More recently, Macdonald et al.
[2012] investigated the usefulness of QPP as additional features for learning to rank
via gradient boosted regression trees. Despite considerable effort on the subject, the
promise of leveraging QPP for improving ad-hoc retrieval has not been entirely fulfilled.
Raiber and Kurland [2014] argued that this is due to the inherent difficulty of the per-
formance prediction task, which boils down to the standard relevance estimation task
in information retrieval.

In this chapter, we investigate the limits of QPP for improving ad-hoc retrieval.
Section 3.1 discusses the baseline strategy of learning to rank, as well as using addi-
tional QPP and ML-QPP. Section 3.2 introduces the experimental methodology used
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for our experiments and Section 3.3 evaluates the research questions. The results of
this evaluation attest the effectiveness of machine-learned performance predictions for
enhancing learning to rank for adhoc-retrieval, which has been a struggle in the area.

3.1 Learning to Rank with QPP

Raiber and Kurland [2014] provided a theoretical argument for the limited usefulness
of QPP for ad-hoc retrieval, demonstrating the equivalence between predicting the
performance of a query and estimating the relevance of documents for this query—
arguably, the holy grail of information retrieval. To further illustrate their point, they
empirically demonstrated the limited effectiveness of linearly fusing a set of ranking
models weighted by various QPP, which could not consistently improve compared to the
single best ranking model in the set alone. In this chapter, we revisit their investigation
by simulating QPP with various levels of accuracy as input to a non-linear learning to
rank approach.

3.1.1 Baseline Strategy

Without loss of generality, we assume a standard learning to rank setup and aim to learn
a ranking function f : X → Y , mapping the input space X onto the output space Y .
Our input space comprises query–document pairs encoded as feature vectors ~x ∈ X. In
our experiments in Section 3.3, we consider a 46-dimensional space comprising standard
query-dependent and query-independent ranking models from LETOR 4.0 [Qin and
Liu, 2013] (e.g., TF-IDF, BM25, PageRank) as features in our baseline representation.
For a full description of the models in LETOR 4.0 see Table A.1. Our output space
comprises graded relevance labels y ∈ Y assigned to each query–document pair. As
a learning approach, following Macdonald et al. [2012], we use LambdaMART as a
representative of the state-of-the-art. This baseline is displayed at the diagram from
Figure 3.1.

Figure 3.1: Baseline strategy for combining LETOR 4.0 ranking functions.
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3.1.2 Leveraging QPP

To test the usefulness of QPP for ad-hoc retrieval, we leverage a total of 267 QPP
from the literature, including pre-retrieval and post-retrieval ones, as summarized in
Table 3.1. For a complete description, please refer to Appendix B or Hauff [2010]. QPP
that generated 5 variants, such as AvIDF, are extracted from the 5 streams in each
document (body, anchor, title, url and whole document). AvQC used [0.95, 0.90 0.85,
0.80] as similarity cutoffs (hence 4 features). AvLCH and AvWUP are similar to Av-
Path, varying only the similarity metric between terms, which are Leacock-Chodorow
Similarity and Wu-Palmer Similarity (provided by the WordNet-Similarity v1.04 pack-
age). Finally, post-retrieval QPP provide different summaries (sum, max, std, avg)
for each of the 46 LETOR features based on their top 10 retrieved documents. This
stronger baseline is displayed at the diagram from Figure 3.2.

Figure 3.2: Baseline strategy that leverages query performance predictors for combining
LETOR 4.0 ranking functions.

To leverage QPP, we extend the 46-dimensional input space X of the baseline
learning to rank strategy described in Section 3.1.1 to encompass three groups of QPP
from Table 3.1: pre-retrieval (+83 features), post-retrieval (+184 features), and all
QPP (+267 features).

3.1.3 Leveraging ML-QPP

Hauff et al. [2009] proposed a machine-learned approach to combine multiple pre-
retrieval QPP into a single, stronger QPP. Raiber and Kurland [2014] extended this
approach to also combine post-retrieval QPP using Ranking SVMs. The intuition
behind machine-learned query performance prediction is straightforward: predicting
the performance of a ranking model for a query is better when multiple QPP are
combined, as opposed to using a single QPP.
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Category Stage QPP Total

Specificity pre-retrieval MatchingDocs 1
Specificity pre-retrieval TokenCount 1
Specificity pre-retrieval TermCount 1
Specificity pre-retrieval AvQL 1
Specificity pre-retrieval AvIDF 5
Specificity pre-retrieval MaxIDF 5
Specificity pre-retrieval DevIDF 5
Specificity pre-retrieval AvICTF 5
Specificity pre-retrieval SCS 5
Specificity pre-retrieval AvSCQ 5
Specificity pre-retrieval SumSCQ 5
Specificity pre-retrieval MaxSCQ 5
Specificity pre-retrieval QS 5
Sensitivity pre-retrieval SumVAR 5
Sensitivity pre-retrieval AvVAR 5
Sensitivity pre-retrieval MaxVAR 5

Ambiguity pre-retrieval AvQC 4
Ambiguity pre-retrieval AvP 1
Ambiguity pre-retrieval AvNP 1

Term Relatedness pre-retrieval AvPMI 5
Term Relatedness pre-retrieval MaxPMI 5
Term Relatedness pre-retrieval AvPath 1
Term Relatedness pre-retrieval AvLCH 1
Term Relatedness pre-retrieval AvWUP 1

Retrieval Summary post-retrieval SumLETOR 46
Retrieval Summary post-retrieval MaxLETOR 46
Retrieval Summary post-retrieval StdLETOR 46
Retrieval Summary post-retrieval AvLETOR 46
TOTAL 267

Table 3.1: Standard QPP used in our experiments [Hauff, 2010].
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Each ML-QPP combines multiple QPP to predict the effectiveness of a single
ranking model, as measured by some standard ranking evaluation metric, such as
average precision (AP), reciprocal rank (RR), or normalized discounted cumulative
gain (nDCG). Formally, given a ranking model m and a target evaluation metric e,
we aim to learn a regression function ML−QPP e

m : V → W . Each learning in-
stance ~v ∈ V represents a single query q, encoded as a k-dimensional feature vector
~v = [QPP 1, . . . , QPP k]. Each feature QPP i is computed by a standard QPP given
the query q itself (for pre-retrieval QPP) or the ranking R produced for this query
by model m (for post-retrieval QPP). In our investigation, we set k = 267 and use
all QPP in Table 3.1 as features for learning one ML−QPP e

m per ranking model m
and evaluation metric e. To this end, each learning label w ∈ W denotes the actual
effectiveness of the ranking R produced by model m, as measured by metric e given
the ground-truth associated with query q. In Section 3.3, we experiment with several
regressors for learning effective ML-QPP. This procedure is summarized in the diagram
from Figure 3.3.

Figure 3.3: Overview of our proposed machine-learned query performance predictor
(ML-QPP). The input space for a regression model are the 267 features described in
Table 3.1, the target is the performance (as measured by nDCG@20 for example) for
a specific model (TF-IDF for instance). The prediction of this regression model is a
single ML-QPP which is used as part of the input space for the ensembling model.

To leverage ML-QPP, our input space X in Section 3.1.1 is extended with 46
ML−QPP e

m, one per each of the 46 ranking models m in the baseline representa-
tion. While exploiting QPP in the ensemble adds the time cost of calculating all the
query performance prediction features, ML-QPP increases this time cost only by the
corresponding model prediction time given a new instance – the regression model for
generating ML-QPP can be trained offline.

Because ML-QPP are defined at the query level, all learning instances for the
learning to rank model associated with a given query q will have the same values for all
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documents. Motivated by this, we provide an alternative, document-dependent ML-
QPP, by multiplying each ML−QPP e

m by the score produced by ranking model m
for each query–document pair. This weighted variant further increases the sensitivity
of our approach by boosting relevance estimates produced by ranking models with a
high predicted performance. The unweighted and weighted variations of our approach
are displayed at the diagram from Figure 3.4.

(a) Unweighted (b) Weighted

Figure 3.4: The proposed framework for exploiting performance predictors instanti-
ated in the ad-hoc retrieval scenario, using ML-QPP as the approach for performance
prediction.

3.2 Experimental Setup

To assess the usefulness of query performance prediction for ad-hoc retrieval, we address
the following research questions:

Q1. What are the limits of QPP for improving ad-hoc retrieval?

Q2. Can we improve ad-hoc retrieval with ML-QPP?

As previously described, our evaluation uses the publicly available LETOR 4.0
dataset [Qin and Liu, 2013]. It uses the GOV2 document corpus and the query set
from the TREC 2008 Million Query track. As a further preprocessing step, we removed
queries with no relevant documents in the ground-truth, reducing the total number of
queries from 784 to 564. For learning ML-QPP, we use several regressors: Random
Forest (RF), Extreme Gradient Boosting (XGB), Gradient Boosting (GB), AdaBoost
(ADA), Neural Network (MLP), Support Vector Machines (SVR) and Linear Regres-
sion (LR). The regressor used to learn each ML-QPP in our experiments is shown
in parentheses (e.g., ML-QPP (RF) was generated using Random Forest). We used
scikit-learn v0.19.1 implementation, except for XGB, which comes from the Python
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package xgboost v0.6a2. For learning to rank, we used LambdaMART as implemented
in RankLib v2.8. After an initial exploration of their hyperparameter spaces we chose
default settings for LambdaMART and small variations for the regressors which are
available online.1

LambdaMART is trained to optimize nDCG@20 through a five-fold cross valida-
tion using the partitions provided by LETOR. To make sure ML-QPP are not overfitted
to the training data, we perform a three-fold cross validation inside each of the five
LETOR partitions. In each round of this inner cross-validation, two-thirds of the data
are used to train the regressors and the remaining third is used to calculate the pre-
dictions that will be leveraged as additional features by LambdaMART. In addition
to reporting retrieval effectiveness via nDCG@20, we report prediction accuracy using
mean absolute error (MAE).2 For a fair comparison, we normalize all predictions in the
range 0–1 using min-max normalization to lie in the same range as the target evaluation
metric e. In all experiments, we use three different metrics as targets to be predicted:
normalized discounted cumulative gain (nDCG), average precision (AP) and reciprocal
rank (RR). Both retrieval as well as prediction accuracy improvements are statistically
validated through paired two-sided Student’s t-tests using a 95% confidence level.

3.3 Experimental Evaluation

In the following, we address both questions posed in Section 3.2 to assess the usefulness
of QPP and ML-QPP for ad-hoc retrieval.

3.3.1 Usefulness of QPP

To address Q1, we assess how much query performance predictors can improve ad-
hoc retrieval when used as additional features for learning to rank. To this end, we
perform a simulation using QPP of various levels of prediction accuracy, from perfect to
random. In particular, each simulated α-QPPem incorporates randomness proportional
to parameter α. Precisely, we have:

α−QPP e
m = (1− α)w + α w̃, (3.1)

1https://github.com/Guzpenha/performance-prediction-for-enhancing-ensemble-learning
2Hauff et al. [2009] have shown that error metrics such as MAE are better indicators of prediction

accuracy in cross-validation settings compared to the more typical use of correlations between predicted
and actual performance.
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where w denotes the actual effectiveness of ranking R produced by model m, as mea-
sured by metric e given the ground-truth for query q, and w̃ ∼ U(0, 1) denotes uniformly
sampled random noise.

Figure 3.5 shows the nDCG@20 attained by LambdaMART when using the 46-
dimensional baseline representation in Section 3.1.1 augmented with 46 α-QPPem, one
per feature m, for α ∈ [0, 1]. The figure comprises three plots corresponding to e ∈
{AP, nDCG,RR}. Each plot also includes three horizontal lines from bottom to top
contrasting the effectiveness of the baseline representation (1) without augmentation,
(2) augmented with all 267 QPP from Table 3.1, and (3) augmented with the 10 best
performing QPP from Table 3.1.

Figure 3.5: nDCG@20 attained by machined-learned ranking models augmented with
performance predictors (α−QPP e

m) targeting AP, nDCG, or RR with various amounts
of noise α. Note that α −QPP e

m with α = 0 denotes a perfect performance predictor
whereas α = 1 a completly random predictor. Horizontal lines from bottom to top
denote machine-learned ranking models with no prediction augmentation (No-QPP,
our baseline strategy), augmentation with all 267 predictors from Table 3.1 (QPP,
stronger baseline strategy, which leverages QPP), or with the top 10 predictors from
Table 3.1 (QPP-10).

From Figure 3.5, we first observe that query performance prediction has the
potential to substantially improve upon our baseline, non-augmented representation
(No-QPP), as demonstrated by the results attained by α-QPPem with α = 0 (i.e., perfect
predictions). Nonetheless, existing QPP fall short in realizing this potential, with only
marginal gains compared to the baseline representation. Indeed, QPP delivers an ad-
hoc retrieval performance comparable to the almost random α-QPPem with α ≈ 0.98.
One way of improving this result could be to select from the complete set of 267 QPP
from Table 3.1 only the most accurate ones. However, even when the top 10 QPP
are selected—the QPP-10 variant—no noticeable improvement is observed. Recalling
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Q1, this empirical result confirms the theoretical findings of Raiber and Kurland [2014]
about the inherent difficulty of query performance prediction and reveals an accuracy
bar that must be overcome for QPP to be useful for ad-hoc retrieval.

3.3.2 Usefulness of ML-QPP

The results in Section 3.3.1 showed that current QPP cannot significantly improve a
machine-learned stack of ranking models, even when only the most accurate QPP are
selected. Instead of selecting the most accurate QPP, our proposed ML-QPP aim to
ensemble multiple QPP into a single, more accurate query performance predictor. To
address question Q2, we assess both the prediction accuracy of ML-QPP as well as
their usefulness for ad-hoc retrieval.

3.3.2.1 Performance Prediction Accuracy

To assess query performance prediction accuracy, we contrast the predicted vs. actual
performance of each ranking model m measured by evaluation metric e over our fixed
set of 564 queries. Following standard practice [Hauff et al., 2009], we consider mean
absolute error (MAE) as a measure of accuracy. Since we have a total of 46 ranking
models whose performance must be predicted, we report the average MAE across all
models for each of three target metrics, namely, AP, nDCG, and RR.

Figure 3.6 summarizes the results of this investigation, contrasting the 10 most
accurate QPP from Table 3.1 against ML-QPP instantiations learned by different re-
gressors, as discussed in Section 3.2. As shown in the figure, most of the considered
regressors are able to improve prediction accuracy when compared with the best per-
forming solo QPP, with ensembling regressors RF, XGB, and GB delivering particularly
accurate predictions. The best average improvements were obtained by using RF to
predict all three ranking evaluation metrics: AP (11.27%), nDCG (1.6%), and RR
(2.55%). Moreover, ML-QPP produce significantly improved performance predictions
compared to the single best QPP in 75% of all 46× 3 tested combinations of ranking
model m and evaluation metric e.

3.3.2.2 Ad-hoc Retrieval Effectiveness

Results in the previous section demonstrated the accuracy of ML-QPP for query per-
formance prediction. However, as pointed out by Raiber and Kurland [2014], the ex-
pectation that improved performance prediction would translate to improved retrieval
has not yet been realized. To address Q2, we assess the usefulness of ML-QPP when
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Figure 3.6: Prediction accuracy (measured by MAE and Pearson Correlation averaged
across 46 ranking models) of ML-QPP using various regressors in contrast to the 10
most accurate QPP from Table 3.1.
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leveraged as additional features for learning to rank. Table 3.2 shows the results of
this investigation in terms of nDCG@20. Similarly to Figure 3.5, we compare Lamb-
daMART models built using different input spaces: a baseline space comprising 46
LETOR features as well as augmented spaces adding either QPP or ML-QPP variants
as extra features. For QPP, we consider three variants: (1) pre-retrieval QPP (+83
features), (2) post-retrieval (+184 features), and (3) all QPP (+267 features). For
ML-QPP, as discussed in Section 3.1.3, we include results using multiple regressors
under two variants: (1) unweighted, computed at the query-level, and (2) weighted,
computed at the document-level.

Table 3.2 shows that using QPP as additional features is not enough to signif-
icantly improve over the baseline representation using LETOR features. This obser-
vation is consistent regardless of which variant of QPP (pre-retrieval, post-retrieval,
all) is used. On the other hand, when using the proposed ML-QPP as additional
features, we observe significant improvements in many settings, notably for ensemble-
based regressors: XGB, RF, and GB. Recalling Q2, these results attest the usefulness
of ML-QPP compared to existing QPP for ad-hoc retrieval, with significant improve-
ments in many cases. Contrasting the two ML-QPP variants, while there is no clear
winner, the weighted variant seems particularly effective for XGB and RF, with the
weighted variant of ML−QPPRR(RF ) delivering the overall best nDCG@20 in our
investigation: 0.7237. Nevertheless, this result is still far behind the theoretical best
result attainable should we have perfect predictors (0.8840, as given by α-QPPRR(RF )

in Figure 3.5 with α = 0), which points out interesting directions for further research,
as discussed in the next section.

3.4 Summary

In this chapter, we addressed the claim of our dissertation statement, by showing that
effective performance prediction of different base models (ranking functions in this case)
can be exploited to improve the results of their combination (learning to rank) in the
context of query performance predictors and ad-hoc retrieval. While past theoretical
results had suggested an inherent limitation of QPP for ad-hoc retrieval, we empirically
demonstrated that such a limitation is rather due to insufficient accuracy of existing
pre- and post-retrieval QPP. By simulating predictors with various levels of noise,
we showed that there is a prediction accuracy bar that must be overcome for QPP
to become useful features. As a proof-of-concept, we demonstrated the usefulness of
ML-QPP, which ensemble multiple QPP into stronger predictors. Despite the positive
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Features nDCG@20

LETOR features 0.7045

Unweighted Weighted

+QPP (pre) 0.7067
+QPP (post) 0.7053
+QPP (all) 0.7067

+ML−QPPAP (LR) 0.7158 0.7109
+ML−QPPAP (MLP ) 0.7083 0.7116
+ML−QPPAP (SV R) 0.7062 0.7064
+ML−QPPAP (XGB) 0.7131 0.7142
+ML−QPPAP (RF ) 0.7105 0.7173
+ML−QPPAP (GB) 0.7137 0.7133
+ML−QPPAP (ADA) 0.7118 0.7104

+ML−QPPnDCG(LR) 0.7134 0.7133
+ML−QPPnDCG(MLP ) 0.7109 0.7063
+ML−QPPnDCG(SV R) 0.7062 0.7077
+ML−QPPnDCG(XGB) 0.7096 0.7167
+ML−QPPnDCG(RF ) 0.7084 0.7151
+ML−QPPnDCG(GB) 0.7178 0.7162
+ML−QPPnDCG(ADA) 0.7102 0.7097

+ML−QPPRR(LR) 0.7114 0.7077
+ML−QPPRR(MLP ) 0.7130 0.7108
+ML−QPPRR(SV R) 0.7070 0.6996
+ML−QPPRR(XGB) 0.7064 0.7184
+ML−QPPRR(RF ) 0.7079 0.7237
+ML−QPPRR(GB) 0.7104 0.7067
+ML−QPPRR(ADA) 0.7125 0.7058

Table 3.2: nDCG@20 attained by machine-learned ranking models augmented with
existing QPP as well as our proposed ML-QPP. Significant improvements compared to
the baseline representation using LETOR features are in bold.



3.4. Summary 29

results, our simulation also showed that there is much room for improvement, provided
that even more accurate predictors can be built.





Chapter 4

Leveraging Performance Prediction
for Recommender Systems

Recommender systems aim to suggest items, e.g. movies, books and places, to users to
assist in their decision-making process. When faced with the huge amount of available
options, combined with a possible lack of experience or knowledge from the user, recom-
mender systems become extremely useful. With the steady interest in the subject from
both academia and industry throughout the years, several recommendation approaches
have been proposed, each with different strengths and weaknesses. For instance, col-
laborative recommenders typically excel in data-rich scenarios, while content-based
and knowledge-based recommenders are often preferred in item and user cold-start
scenarios, respectively [Aggarwal, 2016b].

Hybrid recommenders are designed to leverage the power of different base rec-
ommenders in order to make more robust recommendations [Aggarwal, 2016a]. En-
sembling, a particular hybridization technique, is commonly used in machine learning
tasks such as classification to enhance generalization by combining various hypotheses
learned by different base models. It has led to the creation of state-of-the-art machine
learning models such as extreme gradient boosting [Chen and Guestrin, 2016].

In addition to the scores produced by different recommenders, recommendation
ensembling has been shown to benefit from leveraging performance predictors, i.e., fea-
tures that are indicative of the performance of each base recommender for the target
user [Bao et al., 2009; Bellogín et al., 2011]. As illustrated in Figure 4.1, performance
predictors have been traditionally categorized as pre-retrieval or post-retrieval, depend-
ing on whether they are calculated based on some property of the target user or of the
set of items recommended for the user, respectively. For instance, Bellogín et al. [2011]
adapted the well-known clarity score [Cronen-Townsend et al., 2002], originally formu-
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Figure 4.1: At recommendation time, an ensemble may combine scores from multiple
base recommenders (gray circles) to learn the actual ratings (black circles on the right)
that would be assigned by the target user to a set of recommended items (white circles).
Current approaches augment the ensemble to leverage performance predictions based
on the user (green outlined circles) or the set of recommended items (blue outlined
circles). We propose to leverage past historical ratings by the user (black circles on the
left) to augment the ensemble with performance estimates (red outlined circles).

lated as a measure of query ambiguity in adhoc search, to measure the coherence of the
user’s historical ratings in a recommendation setting. They showed that the adapted
predictors have a moderate correlation with the performance of some collaborative
recommenders. However, handcrafting performance predictors to improve ensembling
requires a deep understanding of the (often many) recommenders to be combined, as
well as intuition about how each user feature relates to the performance of each recom-
mender in the ensemble. Moreover, performance predictors are often better indicators
of the inherent difficulty of a user (regardless of any particular recommender) rather
than of the relative effectiveness of different recommenders [Raiber and Kurland, 2014].

Unlike adhoc search, where performance must be predicted given the lack of
user supervision, collaborative recommendation offers an inexpensive alternative for
directly estimating the performance of different recommenders. As also illustrated
in Figure 4.1, we introduce performance estimates for a given recommender as the
outcome of a standard evaluation metric given the user’s historical ratings and the cor-
responding predictions from the recommender. In contrast to performance predictors,
performance estimates can be readily computed for any number of base recommenders
in the ensemble while requiring no deep understanding of each individual recommender
nor of when they are expected to outperform one another.

The remainder of this chapter describes the approach for predicting the perfor-
mance of users in recommender systems as well as how to effectively use this information
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to enhance recommendation effectiveness. In particular, Section 4.1 formalizes the ap-
proach of performance estimation, how to use it in ensembles of recommender systems
and the variants of this set of features, Section 4.2 describes the experimental method-
ology of our experiments and in Section 4.3 we evaluate our approach in light of the
research questions posed. Comprehensive experiments using real-world datasets of four
different domains demonstrate the effectiveness of performance estimates when com-
bined with plain recommender scores for improving current pointwise ensemblers from
the literature. Moreover, we show that performance estimates are robust to the choice
of ensembler, achieving state-of-the-art recommendation accuracy also when leveraged
by pairwise and listwise ensemblers.

4.1 Performance Estimates

The idea of using performance predictors for improving ensembles is fairly intuitive. For
instance, consider a certain collaborative recommender RS1 which performs best when
users have rated a lot of items, and a content-based recommender RS2 which can handle
better users with a small amount of ratings. A performance predictor quantifying the
number of historical ratings of the target user can give a higher weight to RS1 and
demote the contribution of RS2 if the user has a prolific history. While intuitive, this
approach has two key shortcomings. First, performance predictors are better suited
for predicting the inherent difficulty of different users for a fixed recommender rather
than to predict the performance of different recommenders for a fixed user. Indeed,
Raiber and Kurland [2014] demonstrated that accurate performance prediction boils
down to accurate relevance estimation. Second, even if performance predictors were
accurate enough, new predictors must be engineered every time a new recommender is
added to the ensemble, which is in itself a difficult task. In the following, we formalize
our proposed solution to address both of these shortcomings by directly estimating (as
opposed to predicting) the performance of different recommenders in the ensemble.

4.1.1 Estimating Performance

Let U , I, R, and T denote a set of users, items, possible rating values, and discrete
rating timestamps, respectively. Moreover, let Dκ2

κ1
= {(u, i, r, t) | u ∈ U, i ∈ I, r ∈

R, t ∈ T, κ1 < t ≤ κ2} be the set of ratings recorded in the left-open time interval
bounded by timestamps κ1 and κ2. A recommender system can be defined as a function
s(u, i) : U × I → R. For a user u, this function produces a recommendation list
Lsu = sorts(u,i){i ∈ I} as a permutation of all available items I. The performance of
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the system can be assessed in different ways. For a recommendation produced at time
τ , the true performance TP of the system is given by:

TP ≡ ∆(u, Lsu, D
τ+1
τ ), (4.1)

where ∆ could be any evaluation metric, including business metrics such as number of
clicks or purchases, error metrics such as root mean squared error (RMSE) or ranking-
based metrics such as normalized discounted cumulative gain (nDCG).

In reality, for a recommendation list Lsu displayed at time τ , no user feedback will
be available until time τ + 1. As a result, at time τ , system performance can only be
approximated. A performance predictor PP computes such an approximation based
on characteristics of the target user u (in the case of pre-retrieval predictors), or of the
produced recommendation list Lsu (in the case of post-retrieval predictors). Formally,
we have:

PP ≡ Π(u, Lsu), (4.2)

where Π could compute, for instance, the amount of ratings in the historical profile of
user u [Sill et al., 2009] or the deviation of the recommended list Lsu from a random or
most-popular list of items [Bellogín et al., 2011].

Given the considerable engineering effort spent in producing discriminative per-
formance predictors for different recommenders and these predictors’ inherently limited
accuracy, we instead propose a simple yet effective alternative. In particular, we com-
pute a performance estimate PE according to:

PE ≡ ∆(u, Lsu, D
κ2
κ1

), (4.3)

where 0 ≤ κ1 < κ2 ≤ τ and, similarly to Equation 4.1, ∆ could be any evaluation
metric. The key insight here is that the true performance of recommender s can
be directly approximated by its past performance, by leveraging user u’s historical
feedback. The approach is also described in the diagram from Figure 4.2.

4.1.2 Leveraging Performance Estimates

To leverage our introduced performance estimates, we propose to tackle recommenda-
tion ensembling as a learning to rank task. As illustrated in Figure 4.1, in the first
layer of our proposed architecture, for each user–item pair 〈u, i〉, we are given the
scores of k base recommenders (RS) previously trained on historical ratings Dκ2

κ1
, with

0 ≤ κ1 < κ2 ≤ τ , where τ once again denotes the recommendation time. In addition,
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Figure 4.2: Fluxogram for estimating the performance of recommender systems for
users using their historical set of ratings.

we are also given l pre-retrieval and mk post-retrieval performance predictors (here
collectively referred to as PP ) and nk performance estimates (PE) as meta-features
for the ensemble. In our analysis in Section 4.3, we experiment with one performance
estimate per base recommender, which effectively makes n = 1. Notice however that
the total number of performance predictors l +mk does not necessarily correspond to
that of base recommenders, as they are engineered independently.

In the second layer of our architecture, our goal is to learn a hypothesis func-
tion h : X → Y mapping the input space X onto the output space Y . Our input
space X comprises learning instances of the form ~x = Φ(u, i), where Φ is a meta-
feature extractor defined over the user-item pair 〈u, i〉. In practice, we could repre-
sent each learning instance ~x as a (k + (l + mk) + nk)-dimensional vector, such that
~x = ({RSj}kj=1, {PPj}l+mkj=1 , {PEj}nkj=1), where RSj, PPj, and PEj denote the j-th
recommender score, performance predictor, and performance estimate, respectively.

However, in order to evaluate the effectiveness of each set of features separately,
we use two baselines (recommender systems only, recommender systems and perfor-
mance predictors) and our proposed approach (recommender systems and performance
estimates). The first baseline is equivalent to stacking, where the input space is com-
posed by the predicted ratings from the k recommender systems in the ensemble,
~x = ({RSj}kj=1), described visually in Figure 4.3.

Second, a stronger baseline, equivalent to the state-of-the-art STREAM [Bao
et al., 2009] for exploiting performance predictions in ensembles is equivalent to setting
the input space as ~x = ({RSj}kj=1, {PPj}l+mkj=1 ), where the l+mk performance predictors
are appended to the input space, displayed in Figure 4.4.

Finally, the input space for our proposed set of features, which has the same
dimensionality of the recommender systems being combined (k), is defined as ~x =

({RSj}kj=1, {PEj}nkj=1), described in the diagram from Figure 4.5.
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Figure 4.3: The first baseline for combing multiple recommender systems using machine
learning, called stacking in its basic formulation and referred as learning to rank when
applied to generating lists of ranked items instead of pointwise regression. We call this
baseline as RS, as we only use the recommender systems outputs.

Figure 4.4: The state-of-the-art baseline for combing multiple recommender systems
using machine learning, called STREAM by Bao et al. [2009]’s formalization of the
framework. Performance predictors are used as additional features in the input space
for the ensemble. We call this baseline as PP, referring to the fact that we use both
recommender systems predictions, RS, and PP.

Figure 4.5: The proposed framework for exploiting Performance Predictions in the
combination of recommender systems. Unlike previous approaches, we have one es-
timation of performance for each recommender in the ensemble. We refer to our
approach as PE.
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In turn, our output space Y , in its most basic form, equates to the set of possible
rating values R. In Section 4.3, we experiment with representative learning to rank
approaches from the pointwise, pairwise, and listwise families,1 encompassing both
linear and non-linear hypotheses.

4.1.3 Performance Estimation Variants

Because each base recommender in the ensemble is also trained using the target user’s
historical feedback, its performance estimate computed on the same data may be overly
optimistic. For this reason, we compute two variants of our performance estimates. Our
first variant is estimated using the same ratings available as training to the base recom-
mender, i.e., both base recommender training and performance estimates use Dκ2

κ1
, with

0 ≤ κ1 < κ2 ≤ τ . In turn, our second variant is estimated using validation data set
aside from the base recommender training, in the hope of improving its generalization
capabilities to unseen test data. In this case, base recommender training uses Dκ2

κ1
,

whereas performance estimates use Dκ4
κ3
, with 0 ≤ κ1 < κ2 < κ3 < κ4 ≤ τ .

In addition to variants for computing performance estimates, we also propose two
variants for leveraging them. In particular, because performance estimates are defined
at the user level, all learning instances ~x = Φ(u, i) associated with a given user u have
the same PE values for all items i ∈ I. Such user-dependent, item-agnostic meta-
features bear resemblance to query-dependent, document-agnostic features, which have
been shown to be useful for learning non-linear hypotheses, such as boosted regression
trees [Macdonald et al., 2012]. Nevertheless, to provide alternative, item-dependent
performance estimates, we consider a weighted variant of the raw PE meta-features
defined in Equation 4.3, by multiplying them by the corresponding recommender score
s(u, i). Formally, we have:

PEw ≡ PE × s(u, i), (4.4)

where PE (a function of user u and recommender s) is given by Equation 4.3 and s(u, i)
denotes the score produced by recommender s for the 〈u, i〉 pair. If the unweighted
variant from Equation 4.3 is used, the ensemble has to learn the relation between
each performance estimate and the score of each base recommender. In contrast, the
weighted variant in Equation 4.4 further increases the sensitivity of our approach by
automatically boosting scores produced by recommenders with a high performance
estimate. The weighted variation is displayed at the diagram from Figure 4.6. In the

1For pairwise and listwise learners, the input and output spaces are suitably redefined to consider
instance pairs or instance lists, respectively.
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following sections, we assess the effectiveness of all variants of our proposed performance
estimates for ensembling recommendations.

Figure 4.6: The weighted variation of our proposed approach for using performance
estimates in ensembles of recommender systems.

4.2 Experimental Setup

In this section, we detail the setup that supports our investigations in Section 4.3. We
aim to answer the following research questions:

Q0. How effective are PE for performance prediction?

Q1. How effective are PE for ensembling recommenders?

Q2. How robust are PE to the choice of ensembler?

Q3. How complementary are PE to PP?

Q4. How generalizable are PE to unseen data?

Q5. How do error and ranking-based metrics compare for PE?

4.2.1 Datasets

Our experiments use two publicly available datasets from four different domains: Yelp,2

for point-of-interest recommendation, and Amazon,3 for book, movie, and electronics
recommendation. In common, these datasets provide large-scale timestamped rating

2https://www.yelp.com/dataset/challenge
3http://jmcauley.ucsd.edu/data/amazon/

https://www.yelp.com/dataset/challenge
http://jmcauley.ucsd.edu/data/amazon/
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data, which allows for a more realistic evaluation procedure by respecting the chronol-
ogy of the recorded user interactions.4 In particular, we divide each dataset into base
recommenders training (30% earliest ratings) and validation (next 30%), ensembling
training (next 30%) and test (last 10%), as described in Figure 4.7.

Figure 4.7: The data division used in our evaluation procedure. Ratings cutting points
are based on the ordered ratings timestamp. The validation set is used to evaluate the
generalization power of performance estimates, in order to address Q4, and could be
dismissed in a production scenario.

Note that we separate training of base recommenders and ensemblers to make
sure ensemblers will not build upon overfitted recommenders. Likewise, we set aside
validation data to address Q4, which concerns the generalization power of PE to unseen
data. After this process, to enable a consistent evaluation of performance estimates, we
retain only users who have ratings in all four partitions.5 The statistics of the resulting
datasets after preprocessing are described in Table 4.1.

Dataset # users # items # ratings density

Yelp 4,014 6,989 229,809 0.8 %
Amazon Books 44,136 673,601 2,156,842 0.00007 %
Amazon Movies 3,266 61,837 245,707 0.001 %
Amazon Electronics 16,814 86,822 337,158 0.0002 %

Table 4.1: Statistics of the four datasets used in our evaluation after filtering users
without ratings in all four partitions.

4.2.2 Performance Predictors and Estimates

We implemented a total of 14 performance predictors previously proposed in the lit-
erature, as summarized in Table 4.2. For computing performance estimates, we chose

4This design prevents future ratings by a user from leaking into her training data.
5Cold-start users are out of the scope of this investigation as we focus on improving ensembles for

personalized recommendation scenarios.
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RMSE and nDCG as representative of error and ranking-based evaluation metrics,
respectively.6 Unless othwerwise stated, we compute PE using RMSE on the base
recommender’s validation data. Investigations of the impact of the source of estima-
tion data and the evaluation metric used for estimation are discussed in Sections 4.3.5
and 4.3.6, respectively.

PP Description Ref.

PP1 The log of the number of distinct ratings dates [Sill et al., 2009]
PP2 The log of the number of user ratings [Sill et al., 2009]
PP3 The standard deviation of the user ratings [Sill et al., 2009]
PP4 Regularized mean support for the user items [Sill et al., 2009]
PP5 User support: number of ratings [Jahrer et al., 2010]
PP6 Abnormality [Gras et al., 2015]
PP7 AbnormalityCR [Gras et al., 2015]
PP8 User average rating value [Griffith et al., 2012]
PP9 User standard deviation of rating values [Griffith et al., 2012]
PP10 Average number of ratings for the user items [Griffith et al., 2012]
PP11 Average of ratings from items rated by the user [Griffith et al., 2012]
PP12 Item support: number of ratings [Griffith et al., 2012]
PP13 Average rating value of item [Jahrer et al., 2010]
PP14 Item standard deviation of rating values [Jahrer et al., 2010]

Table 4.2: Performance predictors used for experiments.

4.2.3 Base Recommenders and Ensemblers

To test our approach, we produce ensembles of the following nine classical collaborative
recommenders from the literature:

Basic models. NormalPredictor assumes the prediction is generated by a normal dis-
tribution, and it estimates its parameters using maximum likelihood estimation.
DebiasedAverage predictions are given solely by the overall ratings mean and the
user and item deviations from this overall average.

Neighborhood models. KNNBaseline is a simple item-based nearest-neighbor rec-
ommender [Koren, 2010, Equation (3)]. A variation that takes into account the
mean rating of each user called KNNWithMeans, and a final variation that has no

6Results with other error (e.g., MAE, MSE) and ranking-based metrics (e.g., MRR, MAP) showed
a high correlation (above 86%) with those reported here and are hence omitted.
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bias or user mean in the prediction formula called KNNBasic are also used. Co-
Clustering [George and Merugu, 2005] also uses similarity measurements between
users and between items.

Latent factor models. SVD denotes the matrix factorization algorithm described by
Koren et al. [2009], which is closely related to singular value decomposition, hence
the name. NMF stands for non-negative matrix factorization [Luo et al., 2014],
which is similar to SVD with non-negative user and item factors.

For base recommenders, we used the implementations in Surprise v1.0.5.7 To
speed up hyperparameter tuning, we performed a randomized search by sampling five
times within the domain defined for each hyperparameter [Bergstra and Bengio, 2012].
This process resulted in the configurations described in Table 4.3. Along with the
hyperparameter-free recommenders NormalPredictor and DebiasedAverage, we pro-
duced a total of 6× 5 + 2 = 32 recommenders for ensembling.

As for the learning to rank methods for ensembling, we used the following point-
wise regressors implemented in Scikit-learn v0.19.1:8 gradient boosting, random forest,
support vector machines (SVM) and neural network. For pairwise and listwise models,
we used the following implementations from RankLib v2.1-patched:9 LambdaMART,
ListNet, AdaRank and RankBoost. For each ensemble, we selected the best configura-
tion of hyperparameters by performing a grid search through a 5-fold cross-validation
on the partition for ensemble training in each dataset. This process was performed
for each dataset, ensemble and set of features used. The full hyperparameters config-
uration used for all ensembles in this dissertation as well as their implementations are
publicly available.10

4.2.4 Evaluation Procedure

We evaluate all ensembles in a top-20 recommendation task. To this end, we report
nDCG@20 on the test partition of each dataset. Following Lopes et al. [2016], instead
of predefining a relevance scale based on absolute rating values, for each user u in
a dataset, we discretize her test ratings into a 3-level relevance scale after correcting
for the user bias r̄u. Precisely, we define relevance level 2 if rui ≥ r̄u, 1 if rui < r̄u,
and 0 for 50 randomly selected unseen items, which we assume are not relevant for
the user following Cremonesi et al. [2010]. According to this personalized notion of

7http://surpriselib.com/
8http://scikit-learn.org/
9https://sourceforge.net/p/lemur/wiki/RankLib/

10https://github.com/Guzpenha/performance-prediction-for-enhancing-ensemble-learning

http://surpriselib.com/
http://scikit-learn.org/
https://sourceforge.net/p/lemur/wiki/RankLib/
https://github.com/Guzpenha/performance-prediction-for-enhancing-ensemble-learning
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Base recommender Configurations

KNNA1,KNNB1,KNNC1 k = 33
KNNA2,KNNB2,KNNC2 k = 28
KNNA3,KNNB3,KNNC3 k = 29
KNNA4,KNNB4,KNNC4 k = 20
KNNA5,KNNB5,KNNC5 k = 14

SV D1 lr = 0.0048, reg = 0.0443
SV D2 lr = 0.0059, reg = 0.0547
SV D3 lr = 0.0057, reg = 0.0625
SV D4 lr = 0.0076, reg = 0.0648
SV D5 lr = 0.0090, reg = 0.0662

NMF1 factors = 66, epochs = 54
NMF2 factors = 56, epochs = 65
NMF3 factors = 58, epochs = 73
NMF4 factors = 40, epochs = 75
NMF5 factors = 28, epochs = 76

CoClustering1 uc = 3, ic = 3, epochs = 37
CoClustering2 uc = 3, ic = 3, epochs = 48
CoClustering3 uc = 3, ic = 4, epochs = 40
CoClustering4 uc = 2, ic = 4, epochs = 41
CoClustering5 uc = 1, ic = 4, epochs = 40

NormalPredictor -

DebiasedAverage -

Table 4.3: Configurations of base recommenders obtained via random search within
the range of each of their hyperparameters. KNNA, KNNB, and KNNC denote
KNNBaseline, KNNBasic, and KNNWithMeans, respectively.

relevance, an item is considered highly relevant if rated above average by the target
user, somewhat relevant if rated below average, and not relevant if it did not attract the
user’s attention. To compare our approach to baselines we conducted paired two-sided
Student’s t-tests with Bonferroni correction (when comparing more than two models)
using a 95% confidence level.

4.3 Experimental Evaluation

In this section, we empirically evaluate our approach in light of the research questions
posed in Section 4.2.
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4.3.1 Performance Prediction Effectiveness

To address Q0, we evaluate our proposed approach in the performance prediction task.
Formally, we define the task as predicting users nDCG@20 given a recommender sys-
tem. Therefore, the evaluation metric ∆ for performance prediction is nDCG@20, for
all 32 recommender systems, given access only to the training set of ratings. To this
end, we compare the RMSE of PE (our proposed approach) against the performance
predictors (PP) described in Table 4.2. In order to make the comparison fair, we
normalize PP in the range of nDCG using min/max transformation.

Figure 4.8 summarizes the results of this investigation. We observe that for
all datasets and recommender systems PE outperforms the best PP, with statistical
significance using Student’s paired t-test (confidence level of 0.95), with gains up to
6.4%. The results attest the effectiveness of performance estimation at the performance
prediction task, showing promising potential to enhance the ensemble of recommender
systems, which we evaluate in the next section.

Figure 4.8: Error of our proposed performance estimates (PE) for the performance
prediction task for multiple recommender systems, using nDCG@20 as ∆ for the effec-
tiveness measurement. It consistently outperforms performance predictors (PP) from
the literature.
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4.3.2 Ensembling Effectiveness

To address Q1, we assess the extent to which performance estimates can improve the
effectiveness of recommendation ensembles. To this end, we contrast the effectiveness
of ensembles using only the scores of base recommenders (RS) to those that integrate
RS with either performance predictors (+PP ) or our proposed performance estimates
(+PE). For performance estimates, we consider both their unweighted version from
Equation 4.3 (denoted +PEu for clarity) as well as their weighted version from Equa-
tion 4.4 (denoted +PEw).

Table 4.4 shows the results of this investigation. Bold values denote the best re-
sult in each row, while superscript letters denote statistically significant improvements
over the corresponding method. Compared to RS, either +PEu or +PEw significantly
improve for 6 out 8 tested ensembles (exceptions are LambdaMART and SVM) for the
Yelp dataset. Similarly, for Amazon Books, significant improvements are observed for
5 out of 8 ensembles (exceptions are LambdaMART, SVM and Gradient Boosting),
whereas for Amazon Movies and Electronics, 7 out of 8 ensembles are significantly
improved (exceptions are LambdaMART and Gradient Boosting, respectively). Com-
pared to using +PP , either +PEu or +PEw improve in most cases: 25 out of 32
ensembles (78%), with nDCG@20 gains up to 79% (with a mean gain of 26%) when
compared to using only RS and with gains up to 63% (with a mean gain of 16%) when
compared to using RS and PP . Recalling question Q1, the results attest the effective-
ness of performance estimates at improving recommendation ensembles, encouraging
their usage as a replacement for handcrafted performance predictors.

4.3.3 Robustness to Ensembling Strategy

Results in the previous section demonstrated the effectiveness of performance esti-
mates (PE) as an addition to base recommender scores (RS) and as an alternative
to performance predictors (PP ). To address Q2, we further assess the robustness of
PE to different ensembling strategies. In particular, we note from Table 4.4 that the
unweighted variant PEu, which provides user-dependent, item-agnostic performance
estimates, tends to perform best (7 out of 7 cases) with pointwise ensemblers (gradi-
ent boosting, random forest, SVM, neural networks). This result suggests that these
non-linear models are somehow capable of leveraging such estimates as a mechanism
to adapt the learned ensemble to the specificities of different users, regardless of any
particular item. In contrast, the weighted variant PEw, which discriminates perfor-
mance estimates for different items, is often more effective (13 out of 18 cases) for
pairwise (RankBoost) and listwise ensemblers (AdaRank, ListNet). A key distinction
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baselines proposed approaches

Ensemble RS (a) +PP (b) +PEw (c) +PEu (d)

Yelp

AdaRank 0.427 0.468ad 0.668abd 0.427
LambdaMART 0.592c 0.597c 0.465 0.591c

ListNet 0.456bd 0.415 0.679abd 0.451b

RankBoost 0.500 0.510ad 0.556abd 0.499
GradBoosting 0.437 0.435 0.438 0.450abc

SVM 0.434 0.479acd 0.431 0.443ac

NeuralNetwork 0.435c 0.432 0.426 0.442c

RandomForest 0.429 0.429 0.451ab 0.450ab

Amazon Books

AdaRank 0.451 0.532ad 0.765abd 0.457
LambdaMART 0.477cd 0.475cd 0.393 0.461c

ListNet 0.444 0.572ad 0.725abd 0.467a

RankBoost 0.470 0.565ad 0.688abd 0.479a

GradBoosting 0.508 0.513d 0.519d 0.500
SVM 0.502c 0.520acd 0.452 0.501c

NeuralNetwork 0.485 0.477 0.510ab 0.513ab

RandomForest 0.458 0.471a 0.520abd 0.486ab

Amazon Movies

AdaRank 0.487 0.485 0.689abd 0.489
LambdaMART 0.591 0.615acd 0.578 0.587
ListNet 0.549 0.625ad 0.714abd 0.548
RankBoost 0.567 0.605ad 0.637abd 0.565
GradBoosting 0.497 0.520a 0.567abd 0.525a

SVM 0.498 0.516ac 0.489 0.521ac

NeuralNetwork 0.498 0.521a 0.510 0.531ac

RandomForest 0.482 0.500a 0.536ab 0.517ab

Amazon Electronics

AdaRank 0.457 0.586ad 0.819abd 0.460
LambdaMART 0.496 0.588ad 0.687abd 0.489
ListNet 0.496d 0.598ad 0.816abd 0.462
RankBoost 0.454 0.580ad 0.635abd 0.455
GradBoosting 0.512bc 0.488 0.486 0.510bc

SVM 0.444 0.459a 0.471a 0.468a

NeuralNetwork 0.480 0.492c 0.472 0.493ac

RandomForest 0.445 0.451 0.463a 0.478abc

Table 4.4: @20 results for different ensemblers leveraging different combinations of
meta-features: base recommenders scores only (RS, first baseline), added performance
predictors (+PP , state-of-the-art baseline for using performance predictions), and
added performance estimates (+PEw and +PEu, our proposed approaches). Bold
values denote the best result in each row, while superscript letters denote statistically
significant improvements over the corresponding method.
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of these ensemblers, which might explain their preference for the weighted variant, is
their pursuit of an accurate relative ordering of items (as opposed to an accurate ab-
solute item relevance estimation). Recalling question Q2, with the notable exception
of LambdaMART, which is significantly improved only for Amazon Electronics, these
results further attest the robustness of performance estimates for different ensemblers.

4.3.4 Complementarity to PP

Our previous results demonstrated the effectiveness of using PE, yielding better
nDCG@20 results than using PP . However, another possible use of PE, instead of
replacing PP entirely, is to complement them, enabling further performance improve-
ments. In this section, we address Q3, by investigating the complementarity of PP
and PE.

Our experiments show that, for most ensembles and dataset combinations, ex-
panding the ensembling input space to also include PP is not better than using solely
PEw for 22 out of 32 ensemblers. However, for the PEu variant, 18 out of 32 ensemblers
leveraged PP information in a beneficial way. Given that unweighted performance es-
timates carry less information, it is not surprising that adding more user dimensions
will help improve ensembling. Recalling Q3, these results attest the complementarity
of PEu with respect to PP . Nevertheless, this effect is not as strong for PEw.

4.3.5 Generalization Power

Supervised learning models are usually optimized via empirical risk minimization with
the hope that the learned hypothesis will generalize to unseen test data. However,
as models might overfit to the training examples, performance estimates computed
on these examples might be optimistic. In this section, we address Q4, by assessing
the generalization power of PE computed using the base recommender’s training set
in contrast to using a separate validation set. Table 4.5 describes the results of this
experiment, once again including both PEu and PEw variants of our approach.

Surprisingly, there are several cases where PE calculated on training examples
are not worse than the ones calculated on the validation set, and sometimes even better.
There are a total of 40 out of 64 cases of ensembles where this happens, suggesting
that estimates taken on the training set are good enough for most of the datasets and
models. This fact makes PE even more convenient, as having a separate validation
set (which makes the base recommenders’ training set smaller) is not always necessary
to achieve performance improvements. Recalling Q4, we did not find strong evidence
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Ensemble PEv
w (a) PEt

w (b) PEv
u (a) PEt

u (b)

Yelp

AdaRank 0.668 0.686a 0.427 0.427
LambdaMART 0.465 0.456 0.591 0.587
ListNet 0.679b 0.640 0.451 0.454
RankBoost 0.556b 0.542 0.499 0.499
GradBoosting 0.438b 0.424 0.450b 0.441
SVM 0.431 0.429 0.443b 0.431
NeuralNetwork 0.426 0.443a 0.442b 0.435
RandomForest 0.451 0.444 0.450b 0.438

Amazon Books

AdaRank 0.765 0.765 0.457 0.457
LambdaMART 0.393 0.395a 0.461 0.478a

ListNet 0.725 0.723 0.467 0.474a

RankBoost 0.688b 0.595 0.479 0.479
GradBoosting 0.519b 0.470 0.500 0.517a

SVM 0.452 0.527a 0.501 0.514a

NeuralNetwork 0.510 0.526a 0.513 0.512
RandomForest 0.520b 0.479 0.486 0.494

Amazon Movies

AdaRank 0.689 0.698 0.489 0.489
LambdaMART 0.578b 0.509 0.587 0.592
ListNet 0.714b 0.682 0.548 0.553a

RankBoost 0.637b 0.627 0.565 0.565
GradBoosting 0.567 0.561 0.525b 0.514
SVM 0.489 0.484 0.521b 0.501
NeuralNetwork 0.510b 0.486 0.531b 0.512
RandomForest 0.536 0.537 0.517b 0.511

Amazon Electronics

AdaRank 0.819b 0.653 0.460 0.460
LambdaMART 0.687b 0.374 0.489b 0.478
ListNet 0.816b 0.542 0.462 0.490a

RankBoost 0.635b 0.625 0.455 0.455
GradBoosting 0.486 0.478 0.510 0.514
SVM 0.471 0.485a 0.468 0.484a

NeuralNetwork 0.472 0.482a 0.493 0.492
RandomForest 0.463 0.463 0.478b 0.462

Table 4.5: nDCG@20 results of ensembles leveraging PE calculated using training (su-
perscript t) or separate validation (superscript v) examples. All combinations implicitly
include the score of base recommenders (RS). Bold values denote the best result in
each row, while superscript letters denote statistically significant improvements over
the corresponding method. We observe that using a separated validation set from the
training set of ratings for calculating performance estimates was not mandatory, as
they reach similar results.
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in support of using a separate validation set for computing PE, which suggests that
measuring PE on the recommender systems training set generalizes well to unseen
data.

4.3.6 Discriminative Power

Thus far, we have used RMSE as the evaluation metric for calculating performance
estimates. As an absolute error metric, RMSE does not directly detect mistaken item
swaps, nor swaps in higher (and hence more important) ranking positions. Given
our focus on the top-k recommendation task, a natural question is whether producing
performance estimates using a ranking-based metric, such as nDCG, could be more
discriminative and, as a result, improve ensembling. In this section, we address Q5, by
contrasting the discriminative power of performance estimates computed using either
RMSE or nDCG as representative of error and ranking-based metrics, respectively.
Table 4.6 shows the results of this investigation, once again for both the PEu and PEw
variants.

Contrary to our prior belief, Table 4.6 shows that PE based on RMSE is at least
as effective (and sometimes outperforms) estimates based on nDCG on 41 out of 64
cases. This counter-intuitive result can be observed for both unweighted and weighted
variants and could be explained by the fact that nDCG does not distinguish between
items with the same relevance level (rating). Let us assume, for instance, that a user
rated three items with [5, 3, 2] stars respectively. If one of the recommender systems
in the ensemble predicted [3, 2, 0] for this user’s items, the PENDCG would be 1.0,
which is the best possible value, while the PERMSE for this example would be 3 (0
being the best possible value), capturing the numeric errors made by the model for this
user. Recalling question Q5, in contrast to nDCG, RMSE provides a more fine-grained
assessment of such tied items, which could help explain its improved discriminative
power for ensembling multiple recommenders.

4.3.7 Breakdown Analyses

In this section, we perform three additional breakdown analyses to provide further
insight into the investigations conducted thus far. Firstly, to assess the extent to which
our observations made in light of each of the previously stated research questions hold,11

we perform a breakdown of improvements across users. To this end, we selected ListNet
as a representative of the several ensemblers used in our experiments. Figure 4.9 plots

11Q2 is not analyzed, as we fix the ensembler for this investigation.
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Figure 4.9: nDCG@20 improvement for ListNet across users on Yelp. Each plot an-
alyzes the indicated research question, with symbols in parentheses on the y-axis ref-
erencing the columns in the source table used to compute the improvement (e.g., the
first plot compares columns (c) and (a) of Table 4.4).

Figure 4.10: nDCG@20 improvement for ListNet across users on Amazon Books.

Figure 4.11: nDCG@20 improvement for ListNet across users on Amazon Movies.

Figure 4.12: nDCG@20 improvement for ListNet across users on Amazon Electronics.
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nDCG@20 improvements across all users on the Yelp dataset (distributions on the
other datasets are strikingly similar as we see in Figures 4.10, 4.11 4.12). Each plot
conveys improvements for a different research question, with letters in parentheses on
the y-axis indicating the settings compared in each case (e.g., the first plot compares
columns (c) and (a) of Table 4.4).

From Figure 4.9, we observe that Q1 is answered positively, or results in a tie,
for the majority of users (90%), corroborating the reported effectiveness of our pro-
posed performance estimates compared to using only recommender scores (first plot)
as well as to using performance predictors (second plot). Regarding Q3, the third plot
confirms that PEw is more effective on its own than when combined with PP , with
the combination hurting the ensembling performance for most users. As for Q4 and
Q5, the fourth and fifth plots show neutral nDCG@20 improvements for the majority
of users, confirming that neither a separate validation set (Q4 ) nor using a ranking
evaluation metric for performance estimation (Q5 ) have a positive effect. We conclude
that our proposed approach increases recommendation accuracy for most users while
incurring minimum risk of decreasing recommendation quality.

Another question that arises is how each ensemble, given a set of features, per-
forms compared to all others. To shed light on this matter, we reduced the dimension-
ality of ensemble results (concerning all users) using t-SNE [Maaten and Hinton, 2008]
into two dimensions. Each point in this new embedded space denotes how the ensemble
performs in terms of nDCG@20, and proximity to other ensembles indicates that they
have similar results for the same users. Figure 4.13 shows the output of this process
for the Amazon Books dataset, revealing that pointwise methods and listwise/pairwise
methods generated two well-separated clusters, indicating that they behave very differ-
ently for each user and have close intra-similarity (e.g. RankBoost and AdaRank are
close in the visualization). We further observe that the choice of performance estimates
(unweighted or weighted, visualized as different shapes) also induces sub-clusters in the
embedded space, sometimes independent of the choice of ensembler (visualized as dif-
ferent colors). An example can be seen in the smaller plot for Amazon Electronics, with
sub-clusters induced for PP (cross symbols) on the top left and another sub-cluster
to its right for PEe

w (triangles labeled PE_weighted_rmse) and PEg
w (plus symbols

labeled PE_weighted_ndcg).
Finally, we analyze the importance of specific meta-features for the ensembles.

To get a rough idea as to the importance ranking for each set of meta-features, we
used random forest combined with Gini importance [Louppe et al., 2013] as the sort-
ing criteria, training three distinct models for each input space, RS + PP , RS, and
RS + PE. For this experiment, we chose the weighted variation of PE, calculated on
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(a) Amazon Books (b) Amazon Electronics

(c) Amazon Movies (d) Yelp

Figure 4.13: Dimensionality reduction of ensemble configurations using t-SNE, with
input dimensions denoting the nDCG@20 performance for unique users. We observe
clusters being formed by the type of ensemble (pointwise and pairwise/listwise) as well
as by the set of features used (shapes).
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the validation set and using RMSE for the estimations due to the previous research
questions findings. Due to space limitations, in Table 4.7, we report the results only
for Amazon Books. As expected, results of the feature importance analysis indicate
that the performance estimates (PE) in the top-10 meta-features correspond to rec-
ommenders that are also highly ranked themselves as meta-features for the ensemble
(RS). As for performance predictors (PP ), the two most important meta-features are
user abnormality formulations [Gras et al., 2015], which capture how atypical the user
preferences are.

RS + PP RS RS + PE

feat. imp. feat. imp. feat. imp.

PP7 0.031 RS_SV D5 0.086 PE_NP 0.035
PP6 0.029 RS_BO 0.085 PE_SV D5 0.026
PP12 0.029 RS_SV D3 0.074 PE_SV D1 0.023
PP10 0.025 RS_SV D1 0.069 PE_BO 0.022
PP8 0.024 RS_SV D4 0.069 PE_SV D4 0.022
PP9 0.017 RS_NMF4 0.066 PE_NMF3 0.022
PP14 0.017 RS_NMF3 0.050 PE_NMF5 0.021
PP3 0.017 RS_NP 0.050 PE_SV D2 0.021
PP1 0.016 RS_NMF5 0.048 PE_NMF1 0.020

Table 4.7: Meta-feature importance on Amazon Books. We abbreviate DebiasedAver-
age as BO and NormalPredictor as NP. Each set of features was used in three different
models for this analysis (RS + PP , RS, and RS + PE, respectively).

Using the aforementioned criteria for defining meta-feature importance, we per-
formed a final experiment that adds meta-features incrementally to the input space
from the most important ones to the least, training an ensemble for each resulting con-
figuration. We do that for both our proposed set of features (PE), and for the baseline
that leverages performance predictions (PP) from the literature. Results in Figure 4.14
indicate that, for PP , ensemble accuracy was not increased when using the top ranked
meta-features according to the Gini coefficient. However, PP1, the 10th best ranked
meta-feature in this group, provided a boost in performance. For PE, after a certain
amount of meta-features is added, performance reaches a plateau, indicating that not
all performance estimates (and correspondingly, recommender scores) are needed to
achieve the best accuracy. This experiment shows that in a real-world scenario, not all
recommenders and their performance estimates are necessary in production, only the
5 or 10 most important ones.
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Figure 4.14: nDCG@20 results after the incremental addition of the most important
meta-features by the Gini importance using ListNet ensemble on Amazon Books. Error
bars indicate 95% confidence intervals for the means.

4.4 Summary

In this chapter, we addressed the claim from our dissertation statement again, in the
recommendation scenario this time, by showing that effective performance prediction
(obtained here using our novel approach called performance estimation) of different
base models (recommender systems) can be exploited to improve the results of their
combination. Performance estimates are directly computed on the historical feedback
provided by the target user by standard evaluation metrics, such as RMSE or nDCG.
As a result, such meta-features are highly discriminative of the performance of dif-
ferent recommenders for the target user and incur virtually no engineering cost when
new recommenders are added to the ensemble. Through a thorough evaluation using
datasets in four different domains, we demonstrated the effectiveness of performance
estimates at improving ensembles produced by representative pointwise, pairwise, and
listwise learning to rank approaches.
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Ensemble PEg
w (a) PEe

w (b) PEg
u (a) PEe

u (b)

Yelp

AdaRank 0.479 0.668a 0.427 0.427
LambdaMART 0.599b 0.465 0.590 0.591
ListNet 0.649 0.679a 0.450 0.451
RankBoost 0.538 0.556a 0.499 0.499
GradBoosting 0.430 0.438a 0.444 0.450
SVM 0.430 0.431 0.433 0.443a

NeuralNetwork 0.428 0.426 0.432 0.442a

RandomForest 0.417 0.451a 0.440 0.450a

Amazon Books

AdaRank 0.667 0.765a 0.457 0.457
LambdaMART 0.450b 0.393 0.465 0.461
ListNet 0.657 0.725a 0.434 0.467a

RankBoost 0.645 0.688a 0.479 0.479
GradBoosting 0.461 0.519a 0.504 0.500
SVM 0.519b 0.452 0.487 0.501a

NeuralNetwork 0.513 0.510 0.505 0.513
RandomForest 0.498 0.520a 0.488 0.486

Amazon Movies

AdaRank 0.564 0.689a 0.489 0.489
LambdaMART 0.579b 0.578 0.592 0.587
ListNet 0.678 0.714a 0.556b 0.548
RankBoost 0.616 0.637a 0.565 0.565
GradBoosting 0.499 0.567a 0.508 0.525a

SVM 0.482 0.489 0.495 0.521a

NeuralNetwork 0.503 0.510 0.501 0.531a

RandomForest 0.482 0.536a 0.507 0.517a

Amazon Electronics

AdaRank 0.784 0.819a 0.460 0.460
LambdaMART 0.462 0.687a 0.472 0.489a

ListNet 0.746 0.816a 0.491b 0.462
RankBoost 0.688b 0.635 0.455 0.455
GradBoosting 0.491 0.486 0.518 0.510
SVM 0.436 0.471a 0.458 0.468a

NeuralNetwork 0.473 0.472 0.511b 0.493
RandomForest 0.457 0.463 0.473 0.478

Table 4.6: nDCG@20 results for ensemblers leveraging performance estimates com-
puted using either RMSE (superscript e) or nDCG (superscript g). All combinations
implicitly include the score of base recommenders (RS). Bold values denote the best
result in each row, while superscript letters denote statistically significant improve-
ments over the corresponding method. Surprisingly, RMSE outperforms nDCG as the
evaluation metric ∆ for performance estimation.
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Conclusion

The combination of models in machine learning has shown great results for several dif-
ferent tasks and domains. A common approach for weighting the predictions of several
models, called stacking, adds another layer on top of the predictions containing a final
model that makes the final prediction based on the other models outputs. This strategy
has been applied to the Information Retrieval area through learning to rank models,
which typically combines several ranking functions to generate a final ranking. This
approach has been the state-of-the art for ad-hoc retrieval and also recommendation
ensembling, and in combination with Performance Prediction, has been an extremely
active area of research.

In this dissertation, we proposed to tackle the problem of effectively using perfor-
mance predictors for the combination of models. In particular, we argued that having
one effective performance predictor for each different base model, can be exploited to
improve the results of their combination. By having an accurate performance predic-
tion for each base model, the ensemble has an easier task of combining their outputs,
being able to discriminate the context that make a base model outperform others.

Throughout this dissertation, we described and validated this claim in the do-
mains of ad-hoc retrieval and recommendation. In the remainder of this chapter, we
summarize our contributions in Section 5.1, conclusions in Section 5.2 and finally we
point to directions for future work in Section 5.3.

5.1 Summary of contributions

In this section we summarize the contributions made throughout this dissertation.

55
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A novel approach for performance prediction in RS In Chapter 4 we proposed
a novel set of features for predicting the performance of recommender systems for
users. It is based on the premise that past performance of a model for a user indicates
its future performance. Using historical ratings of each user, we directly estimate the
performance of each base model in the ensemble instead of engineering features to
predict such performance. In Section 4.1.1 we formally define this set of features, that
are then thoroughly evaluated in Section 4.3.

A framework for using performance prediction in ensembling In Chapters 3
and 4 we use the same structure for leveraging performance predictors. As defined in
Sections 3.1 and 4.1.2, we have one performance prediction for each base model, that
is used as additional input features for the ensemble. Moreover, we also proposed a
variant that further increases the sensibility of the features, by multiplying each base
model output by its respective performance prediction. We validate the effectiveness
of this framework doing experiments in both ad-hoc retrieval and recommendation, in
Sections 3.3.2.2 and 4.3.2 respectively.

5.2 Summary of conclusions

In this section we summarize the conclusions drawn from the comprehensive evaluation
done in this dissertation. In particular we validate the statement of this dissertation,
presented in Section 1.1.

On the effectiveness of PP for combining ranking functions In Chapter
3 we investigate ensembles of ranking functions enhanced with query performance
prediction features. Our goal was to understand the limitations of using query
performance predictions to actually improve ad-hoc retrieval. To this end, we first
evaluated through a noise analysis in Section 3.3.1 the potential of using query
performance predictions, showing that current approaches fall short in improving the
baseline strategy and that improved effectiveness on the performance prediction task
improved ad-hoc retrieval in this simulation. Moreover, to attest that performance
prediction are able to improve the combination of ranking functions, we used improved
performance predictors by having one machine-learned query performance predictor
for each ranking function in the ensemble. In Section 3.3.2 we first show that ML-QPP
are better at the performance prediction task than raw QPP, moreover we show
that this improvement translates to improved ad-hoc retrieval effectiveness, showing
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evidence in favor of our dissertation statement.

On the effectiveness of PP for combining recommender systems In Chapter
4 we investigated ensembles of recommender systems enhanced with user performance
prediction features. We argued that having one accurate user performance prediction
for each base recommender improves the performance of the ensemble. To this 7end,
we proposed a new set of features for the performance prediction task, which we called
performance estimates. First, in Section 4.3.2, we evaluated how our PE compared to
common performance predictors from the literature, when used as additional features to
the ensemble. The results were favourable to our dissertation statement, showing that
accurate performance predictions can be used to improve the combination of models,
reaching nDCG@20 gains up to 79%. In addition, we evaluated several aspects of the
proposed set of features such as its generalization power in Section 4.3.5, suggesting
that we do not need a separated validation set to calculate performance estimates.
Moreover, in Section 4.3.6 we concluded that RMSE was a better evaluation metric
than NDCG for calculating the performance prediction, reaching higher improvements
for the ensembling task. Finally in Section 4.3.7, we provided breakdown analyses
across users, different ensembling techniques and feature importances, providing further
insight into the investigations conducted on performance estimates.

5.3 Future work

There are few directions for future research inspired directly by the results of this
dissertation. First, we plan to explore the effectiveness of Performance Prediction for
combining multiple classifiers in the context of text classification, using the successful
framework proposed here. Using the same setup, we could investigate whether one
effective performance predictor for each classifier in the stacking improves the effec-
tiveness of the ensemble. However, the area of predicting the performance for text
classification models has not yet been explored in the information retrieval literature.
This way, an open problem is to first understand if current approaches for predicting
the performance of retrieval methods for queries are able to accurately predict the per-
formance of classification methods for documents, and then assess their usefulness for
improving stacking of multiple classifiers.

Another direction for future research is on extending the framework for exploit-
ing performance predictions in the level of a single base model instead of the stacking
layer. In this dissertation we explored how to use such predictions to enhance the com-
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bination of models learned from different hypothesis spaces, which is called stacking.
Another possibility is to design a new machine learning model that uses performance
prediction in its core. Boosting, for instance, leverages the information of train error
estimates for the models being combined in order to focus on harder training instances
and also to weight base estimators accordingly for the final prediction. On the other
hand, bootstrap aggregating (bagging) applies several weak learners to samples of the
input space and combines them by taking the average prediction. We plan to devise
and evaluate a tree-based machine learning model that uses auxiliary performance pre-
diction models - as we proposed in this dissertation in stacking strategies - for each
tree in the ensemble.
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Appendix A

Letor 4.0 models

Here we describe the features that compose LETOR 4.0, as they are described in [Qin
and Liu, 2013].
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Column in Output Description

1 TF(Term frequency) of body
2 TF of anchor
3 TF of title
4 TF of URL
5 TF of whole document
6 IDF(Inverse document frequency) of body
7 IDF of anchor
8 IDF of title
9 IDF of URL
10 IDF of whole document
11 TF*IDF of body
12 TF*IDF of anchor
13 TF*IDF of title
14 TF*IDF of URL
15 TF*IDF of whole document
16 DL(Document length) of body
17 DL of anchor
18 DL of title
19 DL of URL
20 DL of whole document
21 BM25 of body
22 BM25 of anchor
23 BM25 of title
24 BM25 of URL
25 BM25 of whole document
26 LMIR.ABS of body
27 LMIR.ABS of anchor
28 LMIR.ABS of title
29 LMIR.ABS of URL
30 LMIR.ABS of whole document
31 LMIR.DIR of body
32 LMIR.DIR of anchor
33 LMIR.DIR of title
34 LMIR.DIR of URL
35 LMIR.DIR of whole document
36 LMIR.JM of body
37 LMIR.JM of anchor
38 LMIR.JM of title
39 LMIR.JM of URL
40 LMIR.JM of whole document
41 PageRank
42 Inlink number
43 Outlink number
44 Number of slash in URL
45 Length of URL
46 Number of child page

Table A.1: Ranking models contained in LETOR 4.0.
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Implemented QPP

For the experiments in Chapter 3 we used several query performance predic-
tors, that we explain in detail here how they were calculated. All implementa-
tions can be further analyzed using the code from https://github.com/Guzpenha/

performance-prediction-for-enhancing-ensemble-learning.

MatchingDocs Number of matching documents for the query, extracted directly from MetaFea-
ture file of LETOR 4.0.

TokenCount Number of terms in the query, using space as the separator between terms.

TermCount Number of unique terms in the query, using space as the separator between terms.

AvQL Average character size of terms in the query.

AvIDF Average inverse document frequencies of the query terms for each stream in
LETOR 4.0 (streams are: body, anchor, title, URL and whole document), re-
sulting in 5 features.

MaxIDF Maximum inverse document frequencies of the query terms for each stream in
LETOR 4.0 (streams are: body, anchor, title, URL and whole document), result-
ing in 5 features.

DevIDF Standard deviation of inverse document frequencies of the query terms for each
stream in LETOR 4.0 (streams are: body, anchor, title, URL and whole docu-
ment), resulting in 5 features.

AvICTF Average inverse collection term frequency of query terms for each stream in
LETOR 4.0 (streams are: body, anchor, title, URL and whole document), re-
sulting in 5 features. AvICTF = 1

m

∑m
i=1[log2(termcount)− log2(tf(qi)]
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SCS Simplified Clarity Score of query terms for each stream in LETOR 4.0 (streams
are: body, anchor, title, URL and whole document), resulting in 5 features.
SCS ≈ log2

1
m

+ 1
m

∑m
i=1[log2(termcount)− log2(tf(qi)]

SumSCQ Sum of collection query similarity for each stream in LETOR 4.0 (streams
are: body, anchor, title, URL and whole document), resulting in 5 features.
SumSCQ =

∑m
i=1(1 + ln(cf(qi)))× ln(1 + doccount

df(qi)
)

AvSCQ Average of collection query similarity for each stream in LETOR 4.0 (streams
are: body, anchor, title, URL and whole document), resulting in 5 features.
AvSCQ = 1

m
×∑m

i=1(1 + ln(cf(qi)))× ln(1 + doccount
df(qi)

)

MaxSCQ Maximum of collection query similarity for each stream in LETOR 4.0 (streams
are: body, anchor, title, URL and whole document), resulting in 5 features.
MaxSCQ = max((1 + ln(cf(qi)))× ln(1 + doccount

df(qi)
))

QS Query scope uses the number of documents - stream in LETOR 4.0 (streams are:
body, anchor, title, URL and whole document) - that matches the query terms,
resulting in 5 features. QS = −log Nq

doccount

SumVAR SumVAR is the sum of the query term weight deviations (TF-IDF) for each stream
in LETOR 4.0 (streams are: body, anchor, title, URL and whole document),
resulting in 5 features. SumV AR =

∑m
i=1

√
1

df(qi)

∑
d∈Nqi

(w(qi, d)− AV Gwqi)2

AvVAR AvVAR is the average of the query term weight deviations (TF-IDF)
for each stream in LETOR 4.0 (streams are: body, anchor, title, URL
and whole document), resulting in 5 features. AvV AR = 1

m
×∑m

i=1

√
1

df(qi)

∑
d∈Nqi

(w(qi, d)− AV Gwqi)2

MaxVAR MaxVAR is the maximum value of the query term weight deviations (TF-
IDF) for each stream in LETOR 4.0 (streams are: body, anchor, ti-
tle, URL and whole document), resulting in 5 features. AvV AR =

max(
∑m
i=1

√
1

df(qi)

∑
d∈Nqi

(w(qi, d)− AV Gwqi)2)

AvQC The average set coherence over all query terms, we used the similarity files avail-
able in LETOR 4.0, "Large_simi.txt" and the following similarity thresholds:
0.8, 0.85, 0.9 and 0.95. SetCoherence(Nqi) =

∑
i 6=j∈1,...,n

σ(di,dj)

n(n−1) , where σ(di, dj)

is 1 when the similarity between documents are over the similarity threshold,
otherwise is 0.
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AvP Average number of senses for terms in the query, using WordNet function word-
net.synsets.

AvNP Average number of noun senses for terms in the query, using WordNet function
wordnet.synsets.

AvPMI Averaged pointwise mutual information for query terms for each stream in
LETOR 4.0. The pointwise mutual information is the division of the proba-
bility that the two terms occur togheter in a document by the probability of the
terms occuring togheter by chance.

MaxPMI Maximum pointwise mutual information for query terms for each stream in
LETOR 4.0. The pointwise mutual information is the division of the proba-
bility that the two terms occur togheter in a document by the probability of the
terms occuring togheter by chance.

AvPath Relatedness between two terms of the query by the reciprocal of the num-
ber of nodes on the shortest path of the IS-A hierarchy between the two cor-
responding synset nodes. The implementation uses WordNet function word-
net.path_similarity.

AvLCH Relatedness between two terms of the query by the Leacock-Chodorow similarity.
The implementation uses WordNet function wordnet.lch_similarity.

AvWUP Relatedness between two terms of the query by the Wu-Palmer similarity. The
implementation uses WordNet function wordnet.wup_similarity.

SumLETOR Sum for each one of 46 LETOR features for the top 10 retrieved documents.

MaxLETOR Max for each one of 46 LETOR features for the top 10 retrieved documents.

StdLETOR Standard deviation for each one of 46 LETOR features for the top 10 retrieved
documents.

AvLETOR Average for each one of 46 LETOR features for the top 10 retrieved documents.
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