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Resumo

O aprendizado de representações é um dos fundamentos de Deep Learning e permitiu

avanços importantes em várias tarefas de Aprendizado de Máquina, como Tradução

utilizando Redes Neurais, Respostas Automáticas para Perguntas e Reconhecimento de

Fala. Trabalhos recentes propuseram novos métodos para aprender representações de

nós e arestas em grafos. Vários desses métodos são baseados no algoritmo SkipGram.

Eles processam um grande número de nós para produzir o contexto em que essas

representações são aprendidas, com esses nós processados estando localizados numa

vizinhança com distancia k de um nó raiz. Neste trabalho, é proposto um novo método,

efetivo e e�ciente, para gerar embeddings para nós em grafos, o qual utiliza um número

restrito de permutações da vizinhança direta (k = 1′) de um nó como contexto para

gerar seus embeddings, resultando em representações egocêntricas.

Este trabalho apresenta uma avaliação detalhada mostrando que o método pro-

posto supera métodos do estado da arte em seis datasets diferentes relacionados com os

problemas predição de arestas e classi�cação de nós, sendo uma a três ordens de mag-

nitude mais rápido que os baselines. O novo algoritmo apresentado também é avaliado

numa tarefa de desambiguação de nomes de autores, mostrando que embeddings de nós

podem ser utilizados com sucesso nessa tarefa. Finalmente, uma avaliação em detalhes

das representações aprendidas é feita sob a ótica da assortatividade apresentada por

elas, sendo assortatividade a tendência de nós similares estarem conectados.

Palavras-chave: Embeddings para Nós, Grafos, Apredizado de Representações,

Aprendizado de Máquina.
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Abstract

Representation learning is one of the foundations of Deep Learning and allowed im-

portant improvements on several Machine Learning tasks, such as Neural Machine

Translation, Question Answering and Speech Recognition. Recent works have pro-

posed new methods for learning representations for nodes and edges in graphs. Several

of these methods are based on the SkipGram algorithm, and they usually process a

large number of multi-hop neighbors in order to produce the context from which node

representations are learned. In this paper, we propose an e�ective and also e�cient

method for generating node embeddings in graphs that employs a restricted number

of permutations over the immediate neighborhood of a node as context to generate its

representation, thus ego-centric representations.

We present a thorough evaluation showing that our method outperforms state-of-

the-art methods in six di�erent datasets related to the problems of link prediction and

node classi�cation, being one to three orders of magnitude faster than baselines when

generating node embeddings for very large graphs. We also evaluate our algorithm in

an author name disambiguation task, showing that node embedding algorithms can be

applied successfully to this problem. Finally, we further present an in-depth analysis

of our algorithm in terms of the assortativity of the learned representations.

Palavras-chave: Node Embeddings, Graphs, Learning Representations, Machine

Learning.
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Chapter 1

Introduction

Many important problems involving graphs require the use of learning algorithms to

make predictions about nodes and edges, such as link prediction [Lü and Zhou, 2011;

Al Hasan et al., 2006] and node/edge classi�cation [Yang et al., 2011; Radivojac et al.,

2013]. These predictions and inferences on nodes and edges from a graph are typically

done using classi�ers with carefully engineered features [Grover and Leskovec, 2016].

These features, besides taking time and manual labor to be developed and acquired,

usually do not generalize well to other problems or contexts.

The �eld of Natural Language Processing (NLP) has seen many advances due to

the use of algorithms that learn word representations, instead of manually extracted fea-

tures. Originally proposed by Bengio et al. [2003] and commonly used with Word2Vec

algorithms like CBOW and SkipGram [Mikolov et al., 2013a], word embeddings are

used in many state-of-the-art solutions for neural machine translation [Luong and Man-

ning, 2016; Firat et al., 2016], question answering [Andreas et al., 2016] and natural

language generation [Wen et al., 2015].

These advances can't be directly transfered to graphs. While text can be seen

as one dimensional, each node in a graph has a di�erent number of connections and

there is no straight forward way to read a graph. At the same time, while the same

word appears several times in a text corpus, each node only appears in one place in

the graph. Recent works have proposed new methods for learning representations for

nodes and edges in graphs, based on random walks [Perozzi et al., 2014; Grover and

Leskovec, 2016] or auto-encoding adjacency vectors [Wang et al., 2016].

In this work, we propose a new general purpose method for generating node em-

beddings in very large graphs, which we call Neighborhood Based Node Embeddings

(or simply NBNE). NBNE is based on the SkipGram algorithm and uses nodes neigh-

borhoods as contexts. NBNE outperforms state-of-the-art DeepWalk [Perozzi et al.,

1



2 Chapter 1. Introduction

2014] and Node2Vec [Grover and Leskovec, 2016] for the tasks of link prediction and

node classi�cation on six collections, being one to three orders of magnitude faster.

The main reason for this improvement on e�ectiveness and e�ciency is that we

concentrate learning on the �predictable� parts of the graph. A study by Facebook

research [Edunov et al., 2016] found that each person in the world (at least among the

people active on Facebook) is connected to every other person by an average 3.57 other

people. In a graph of this magnitude and connectedness, learning node embeddings by

maximizing the log-probability of predicting nearby nodes in a random walk (with a

window size of 5) can be highly ine�cient and make it �harder� for the embeddings to

be constructed, even if these random walks are biased as in Node2Vec. We conjecture

this can also make learning them numerically more unstable, which would explain why

they need more iterations before embedding convergence.

When compared to SDNE [Wang et al., 2016], NBNE produces better results

in most experiments, while being 68 ∼ 2,009 times faster when SDNE is trained on

a GPU and 1,261 ∼ 44,896 times faster than SDNE on CPU, despite NBNE being

only run on CPU for all experiments. We also evaluated NBNE on an author name

disambiguation task, comparing it to a simpler baseline, since Node2Vec, DeepWalk

and SDNE had prohibitive computational times for this problem. On this task, NBNE

beat our baseline in all 14 conducted experiments.

The main contributions of this work are:

• We present a new general purpose method for generating node embeddings in

graphs which is more e�ective and more e�cient than state-of-the-art methods.

• Experimental results in solving the link prediction and node classi�cation prob-

lems for six graph sets show that our method outperforms DeepWalk and

Node2Vec, in terms of e�ectiveness and e�ciency.

• In spite of the fact that our method has the same time complexity of the two

baselines DeepWalk and Node2Vec, we were able to improve the training time

by one to three orders of magnitude, which is important when dealing with

very large graphs. For instance, to learn node embeddings for a graph containing

317,080 nodes and 1,049,866 edges, collected from the DBLP1 repository [Yang

and Leskovec, 2012], NBNE took approximately 14m30s minutes, DeepWalk ap-

proximately 164m34s and Node2Vec approximately 3,285m59s (more than 54

hours).

1http://dblp.uni-trier.de
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• We provide a thorough evaluation of our method in real and synthetic graphs,

motivating our choice for a semi-supervised algorithm. Our method has

a single tunable parameter (number of permutations, which will be explained

later) that can be tuned at once on the training set to avoid over�tting the

representations.

• We show that node embedding algorithms can be successfully used in author

name disambiguation, and provide a new large dataset for this purpose,

which consists of 14 separate graphs.

In Chapter 2, we present a bibliographical revision of node embedding algorithms,

while Chapter 3 presents our new proposed method, NBNE. Chapter 4 presents exper-

iments on seven real graph datasets and a full comparison with DeepWalk, Node2Vec

and SDNE. Chapter 5 presents a further analysis of the algorithm's properties, such

as time complexity, choice of hyper-parameters and an assortativity analysis. Finally,

Chapter 6 presents conclusions and future works.





Chapter 2

Related Work

The de�nition of node similarity and �nding general purpose node and/or edge repre-

sentations are non-trivial challenges [Lü and Zhou, 2011]. Many de�nitions of similarity

in graphs use the notion of �rst and second order proximity. First-order proximity is

the concept that connected nodes in a graph should have similar properties, while the

second-order proximity indicates that nodes with similar neighborhoods should have

common characteristics.

Some earlier works on �nding these embeddings use various matrix representa-

tions of the graph, together with dimensionality reduction techniques, to obtain the

nodes' representations [Roweis and Saul, 2000; Tenenbaum et al., 2000]. A problem

with these approaches is that they usually depend on obtaining the matrix' eigenvec-

tors, which is infeasible for large graphs (O(n2.376)) with the Coppersmith-Winograd

algorithm [Coppersmith and Winograd, 1987]). Recent techniques attempt to solve

this problem by dynamically learning representations for nodes in a graph using non-

linear techniques based either on �rst and second order proximities [Tang et al., 2015;

Wang et al., 2016] or random walks [Perozzi et al., 2014; Grover and Leskovec, 2016].

Other recent works focus on �nding representations for speci�c types of graphs.

TriDNR [Pan et al., 2016] uses a graph structure together with node content and

labels to learn node representations in two citation networks. Their work can be

directly applied to any graph where nodes have labels and/or text contents. TEKE

[Wang and Li, 2016] and KR-EAR [Lin et al., 2016] �nd representations for entities

in knowledge graphs and metapath2vec [Dong et al., 2017] �nds node representations

in heterogeneous networks, in which di�erent edges can have di�erent meanings. The

method LINE [Tang et al., 2015] �nds a d dimensional representation for each node

based on �rst and second-order graph proximities, not being feasible for large graphs,

because its cost function depends on the whole adjacency matrix (O(|V |2)).

5



6 Chapter 2. Related Work

Another method, Structural Deep Network Embedding (SDNE) [Wang et al.,

2016], is also based on �rst and second order proximities. It uses autoencoders to learn

a compact representation for nodes based on their adjacency matrix (second-order

proximity), while forcing representations of connected nodes to be similar (�rst-order

proximity) by using an hybrid cost function. SDNE is also not feasible for large graphs,

since the autoenconders are trained on the complete adjacency vectors. Each vector

has size O(|V |) and is created at least once, creating a lower bound on time complexity

O(|V |2).
The method DeepWalk [Perozzi et al., 2014] generates k random walks starting

on each vertex in the graph to create sentences where each �word� is a node. These

sentences are then trained using the SkipGram algorithm to generate node embeddings.

This method has a time complexity bounded by O(|V | log |V |).
Node2Vec [Grover and Leskovec, 2016] also uses random walks with SkipGram

and can be seen as a generalization of DeepWalk. The di�erence between the two

methods is that Node2Vec's random walks are biased by two pre-assigned parameters

p and q. During the creation of the walks, these parameters are used to increase the

chance of the walk returning to a parent node or going farther from it. This method

uses a semi-supervised approach which requires several models to be generated and

a small sample of labeled nodes to be used so that the best parameters p and q can

be chosen. Node2Vec is not e�cient for densely connected graphs, since its time and

memory dependencies on the graph's branching factor b are O(b2).

In this work, we considered DeepWalk [Perozzi et al., 2014] and Node2Vec [Grover

and Leskovec, 2016] as our main baselines, since they are scalable, having a time com-

plexity (O(|V | log |V |)). The main di�erences between NBNE and the two baselines

are: (i) we use a di�erent sentence sampling strategy which is based in a node's neigh-

borhood instead of random walks, (ii) NBNE is more e�ective than both Node2Vec and

DeepWalk, as supported by our experiments in six di�erent datasets, and (iii) NBNE

is e�cient for both dense and sparse graphs and scalable for very large applications,

having a faster training time than both Node2Vec and DeepWalk.

We also compare our algorithm to SDNE [Wang et al., 2016], which is not scal-

able to large graphs, having a time complexity O(|V |2). This algorithm's operations,

although having a large time complexity, can be highly parallelized in modern GPUs,

so we run SDNE on both CPU and GPU to compare its performance to NBNE.1

Next, we describe the main algorithms and baselines used in this work. In Section

1Other more recent general purpose methods for generating node embeddings, such as GraphSAGE
[Hamilton et al., 2017] and Graph Attention Networks [Veli£kovi¢ et al., 2018], were developed at the
same time as this work and weren't used as baselines for this reason.
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2.1, we describe SDNE. Section 2.2 presents the SkipGram method in further details.

DeepWalk is further described in Section 2.3 and Node2Vec in Section 2.4.

2.1 Structural Deep Network Embedding (SDNE)

As mentioned before, SDNE uses an hybrid cost function to create representations

based on both �rst and second order proximities. It jointly learns a function (f(·)) to
create an embedding representation (yi) of a node by using its adjacency vector (xi),

and another function (f̂(·)) to recreate its adjacency vector (x̂i) from the embedding,

as shown in Equation 2.1, with both f(·) and f̂(·) being multi-layer perceptrons.

yi = f (xi)

x̂i = f̂ (yi)
(2.1)

SDNE uses an autoencoder loss function to learn compact representations for

nodes based on their adjacency vectors, shown in Equation 2.2, thus, learning embed-

dings which present second-order proximity.

L2nd =
n∑

i=1

(
||(x̂i − xi)� bi||22

)
(2.2)

In this function, � is the Hadamard product and bi = {bi,j}nj=1 is used to make

existing links more relevant in the reconstruction process than non-links. Having ei,j
represent the existence of an edge between nodes i and j and β an hyper-parameter

tuned using a validation set:{
bi,j = 1 if ei,j = 0

bi,j = β > 1 else

At the same time, to force �rst-order proximities in its representations, SDNE

uses another loss function to make the embeddings of connected nodes to be similar.

This loss function is shown in Equation 2.3.

L1st =
n∑

i,j=1

(
ei,j ||yi − yj||22

)
(2.3)

SDNE also uses an L2-norm regularizer to prevent over�tting in the representa-

tions, which can be seen in Equation 2.4. In this function, W (k) and Ŵ (k) are the k-th



8 Chapter 2. Related Work

layer weights of the functions f and f̂ .

Lreg =
1

2
·

K∑
k=1

(∣∣∣∣W (k)
∣∣∣∣2
F
+
∣∣∣∣∣∣Ŵ (k)

∣∣∣∣∣∣2
F

)
(2.4)

In order to preserve both �rst and second order proximities, SDNE then adds

all losses to create one hybrid loss function, shown in Equation 2.5. This function

preserves both �rst and second order proximities, while also regularizing results with

an L2-norm. The strength of each loss term can be changed using hyper-parameters α

and ν, which are also tuned using a validation set.

Lmix = L2nd + α · L1st + ν · Lreg (2.5)

2.2 SkipGram

SkipGram [Mikolov et al., 2013b] is a word embedding algorithm, which aims to create

n-dimensional representations for words in a given text corpus. Firth [1957] stated that

�You shall know a word by the company it keeps�. SkipGram follows this statement

and learns a word's representation by using its embedding to predict the other words

close to it, which form the context in which it appears.

Mathematically speaking, SkipGram maximizes the log likelihood of, given a

word (wi) in a sentence (s), predicting other words in its context (wj), as stated in

Equation 2.6.

log (p (s|r)) = 1

|s|

|s|∑
i=0

(
i+5∑

j=i−5,j 6=i

(log (p (wj|wi, r)))

)
(2.6)

The probabilities in this model are learned using the feature vectors rwi
, which are

then used as the words' representations. The probability p (wj|wi, r) is given by:

p (wo|wi, r) =
exp

(
r′Two
× rwi

)∑
w∈W (exp (r′Tw × rwi

))
(2.7)

where r′Twi
is the transpose of an auxiliary output representation used to learn the

model. Doing this for all sentences in a corpus, we get Equation 2.8, which �nds the

set of representations r that maximize these log probabilities in SkipGram.

max
r

1

|S|
∑
s∈S

(log (p (s|r))) (2.8)
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These generated n-dimensional representations are arranged in this space such

that similar words have similar representations (eg. cat ≈ dog; a ≈ an), and that

arithmetic operations on them preserve semantic meaning (eg. women - men + king

= queen).

2.3 Deep Walk

DeepWalk [Perozzi et al., 2014] uses random walks in the graph to create sentences

where each �word� is a node, which are then used to learn the embeddings with the

SkipGram algorithm. More speci�cally, it �rst generates r sentences of length l by

doing random walks starting from each node in the graph, as described in Algorithm

1. With these sentences, it runs SkipGram on them with a window size k to generate

its embeddings.

Algorithm 1 DeepWalk Sentence Sampling

1: procedure getSentences(graph, r, l)
2: sentences ← [∅]
3: for node in graph.nodes() do
4: for j in 0 : r do
5: sentence ← random_walk(graph, node, l)
6: sentences .append(sentence)

2.4 Node2Vec

Node2Vec, similarly to DeepWalk, uses random walks in a graph to generate sentences,

following Algorithm 1, which are later used with SkipGram to generate node embed-

dings. The di�erence between both algorithms is that Node2Vec is semi-supervised,

having two parameters, p and q, which bias the way random walkers move to generate

sentences and which are tuned using a validation set.

In Node2Vec, after arriving at node j from node i, the probability that the walker

goes to node z depends on the distance (di,z) between nodes i and z:

α(i, z) =


1
p

di,z = 0

1 di,z = 1
1
q

di,z = 2

p(j → z | i→ j) =
α(i, z)∑

m∈j.neighbors() α(i,m)
(2.9)



10 Chapter 2. Related Work

In these equations, p can be seen as a return parameter, which controls the

probability of a random walk immediately revisiting a node. Parameter q is called the

in-out parameter, controlling the probability of staying in a certain region of the

graph, or getting farther away from it.



Chapter 3

Neighborhood Based Node

Embeddings

The context of a word is not a straightforward concept, but it is usually approximated

by the words surrounding it. In graphs, a node's context is an even more complex

concept. As explained in Chapter 2, DeepWalk and Node2Vec use random walks as

sentences and consequently as contexts in which nodes appear.

In this work, the contexts are based solely on the neighborhoods of nodes, de�ned

here as the nodes directly connected to it, focusing mainly on the second-order prox-

imities. Consequently, nodes' representations will be mainly de�ned by their neighbor-

hoods and nodes with similar neighborhoods (contexts) will be associated with similar

representations.

NBNE separates a nodes' neighborhood in small groups and then maximizes the

log likelihood of predicting a node given another in such a group. Group sampling is

de�ned in Section 3.1 and the method to learn the representations from the groups is

further explained in Section 3.2. Section 3.3 describes how to reduce over�tting in the

representations.

3.1 Groups Generation

In our Neighborhood Based Node Embedding's (NBNE) method, as the name implies,

groups are created based on the neighborhoods of nodes. There are two main challenges

in forming groups from neighborhoods, as follows:

• Nodes have di�erent connectivities/degrees, so groups containing all the neigh-

bors from a node are di�cult to treat.

11
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• There is no explicit order in the nodes in a neighborhood. So there is no clear

way to choose the order in which they would appear in a group.

In this work, the solution is to form small groups, with only k neighbors in each,

using random permutations of these neighborhoods. Algorithm 2 presents the code for

generating groups. As a trade-o� between training time and increasing the training

dataset the user can select the number of permutations n. Selecting a higher value

for n creates a more uniform distribution on possible neighborhood groups, but also

increases training time.

Algorithm 2 Groups Sampling

1: procedure getGroups(graph, n, k)
2: groups ← [∅]
3: for j in 0 : n do
4: for node in graph.nodes() do
5: neighbors ← random_permutation(node.neighbors())
6: for i in 0 : len(neighbors)/k do
7: group ← [node] + neighbors [i · k : (i+ 1) · k]
8: groups .append(group)

It is important to note that nodes which have a higher degree will be present in

more groups, being further trained, while sparser nodes will be trained less, appearing

�less frequently� during training. This is good, since nodes from which we have more

information (more connections) will be trained more than sparser nodes, which could

over�t to have representations too close to its neighbors.

3.2 Learning Representations

As described in Section 3.1, Algorithm 2 forms a set of groups S, where each member

is a node from the graph. We train the vector representations of nodes by maximizing

the log likelihood of predicting a node given another node in a group and given a set

of representations r, making each node in a group predict all the others. The log

likelihood maximized by NBNE is given by:

max
r

1

|S|
∑
s∈S

(log (p (s|r))) (3.1)
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where p (s|r) is the probability of each group, which is given by:

log (p (s|r)) = 1

|s|
∑
i∈s

( ∑
j∈s,j 6=i

(log (p (vj|vi, r)))

)
(3.2)

where vi is a vertex in the graph and vj are the other vertices in the same group. The

probabilities in this model are learned using the feature vectors rvi , which are then

used as the vertex representations. The probability p (vj|vi, r) is given by:

p (vj|vi, r) =
exp

(
r′Tvj × rvi

)
∑

v∈V (exp (r′Tv × rvi))
(3.3)

where r′Tvj is the transposed output feature vector of vertex j, used to make predictions.

The representations r′v and rv are learned simultaneously by optimizing Equation 3.1.1

This is done using stochastic gradient ascent with negative sampling [Mikolov et al.,

2013b].

By optimizing this log probability, the algorithm maximizes the likelihood of pre-

dicting a neighbor given a node, creating node embeddings where nodes with similar

neighborhoods have similar representations. Since there is more than one neighbor

in each group, this model also makes connected nodes have similar representations,

because they will both predict each others neighbors, resulting in representations also

having some �rst order similarities. A trade-o� between �rst and second order prox-

imity can be achieved by changing the parameter k, which controls the size of the

generated groups. A further discussion on this e�ect can be seen in Section 5.3.3.

3.3 Avoiding Over�tting Representations

When using large values of n (i.e., number of permutations) on graphs with few edges

per node, some over�tting can be seen on the representations, as shown in details

in Section 5.1 and in Section 5.3.2. This over�tting can be avoided by sequentially

training on increasing values of n and testing the embeddings on a validation set every

few iterations, stopping when performance stops improving, as shown in Algorithm 3.

1This is the same mathematical formulation as in SkipGram.
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Algorithm 3 NBNE without Over�tting

1: procedure trainNBNE(graph, max_n)
2: groups← get_groups(graph,max_n)
3: model← [initialize_model()]
4: for j in 0 : log2(max_n) do
5: model← train(model, groups[2j : 2j+1])
6: error ← test(new_model, validation_set)
7: if error > old_error then
8: break
9: old_error ← error



Chapter 4

Experiments

NBNE was evaluated on three di�erent tasks: link prediction, node classi�cation, and

author name disambiguation.1 We used a total of seven datasets to evaluate NBNE and

a brief description of each dataset can be found in Section 4.1. We present results for the

link prediction problem in Section 4.2, for the node classi�cation problem in Section 4.3

and for an author name disambiguation task in Section 4.4. For all experiments we used

groups of size k = 5 and embeddings of size d = 128, while the number of permutations

was run for n ∈ {1, 5, 10}. The best value of n was chosen according to the precision

on the validation set and we used early stopping, as described in Section 3.3.

On the link prediction and node classi�cation tasks, DeepWalk and Node2Vec

were used as baselines, having been trained and tested under the same conditions as

NBNE and using the parameters as proposed in [Grover and Leskovec, 2016]. More

speci�cally, we trained them with the same training, validation and test sets as NBNE

and used a window size of 10 (k), walk length (l) of 80 and 10 runs per node (r).

For Node2Vec, which is a semi-supervised algorithm, we tuned p and q on the val-

idation set, doing a grid search on values p, q ∈ {0.25; 0.5; 1; 2; 4}. For the author

name disambiguation task, we did not use these methods as baselines due to their

prohibitive computational costs. A further comparison between NBNE and SDNE on

link prediction and node classi�cation can be seen on Section 4.5.

4.1 Datasets

We used a total of seven graph datasets to evaluate NBNE. Next we brie�y describe

these datasets:

1https://github.com/tiagopms/nbne

15
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1. Facebook [McAuley and Leskovec, 2012]: A snapshot of a subgraph of Facebook,

where nodes represent users and edges represent friendships.

2. Astro [Leskovec et al., 2007]: A network that covers scienti�c collaborations

between authors whose papers were submitted to the Astrophysics category in

Arxiv.

3. Protein-Protein Interactions (PPI) [Breitkreutz et al., 2008]: We use the same

subgraph of the PPI network for Homo Sapiens as in [Grover and Leskovec, 2016].

This subgraph contains nodes with labels from the hallmark gene sets [Liberzon

et al., 2011] and represent biological states. Nodes represent proteins, and edges

indicate biological interactions between pairs of proteins.

4. Wikipedia [Mahoney, 2011]: A co-occurrence network of words appearing in the

�rst million bytes of the Wikipedia dump. Labels represent Part-of-Speech (POS)

tags.

5. Blog [Zafarani and Liu, 2009]: A friendship network, where nodes are bloggers

and edges indicate friendships. Each node in this dataset has one class which is

referent to the blogger's group.

6. DBLP [Yang and Leskovec, 2012]: A co-authorship network where two authors

are connected if they published at least one paper together.

7. DBLP-ambiguous (DBLP-amb): This is a new dataset that we created and

used in the author name disambiguation problem. It contains 14 separate co-

authorship networks (14 separate graphs). Each graph contains one of the most

proli�c authors' in DBLP and their co-authors' connections. To assemble it, the

DBLP repository was crawled and 14 of the most proli�c ambiguous authors

were collected, together with their direct co-authors' complete pro�les. More

information on this dataset can be seen in Section 4.4.

Table 4.1 presents details about the �rst six of these datasets, used in the link

prediction and node classi�cation tasks. It presents the number of nodes, edges and

classes in each of these datasets, also showing the number of edges per node in them.

We can see that Blog is the graph with the largest branching factor, 32.38, and DBLP

is the one with the smallest, 3.31. At the same time, PPI is the smallest graph, with

only 3,890 nodes, while DBLP, the largest, contains 317,080 nodes and 1,049,866 edges.

Further analysis on these graphs' assortativity properties is presented in Section 5.3.1.
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Table 4.1: Statistics on the �rst six graph datasets

Nodes Edges Edges/Node # Classes
Facebook1 4,039 88,234 21.84 -
Astro1 18,772 198,110 10.55 -
PPI1,2 3,890 38,739 9.95 49
Wikipedia1,2 4,777 92,517 19.36 39
Blog1,2 10,312 333,983 32.38 39
DBLP1 317,080 1,049,866 3.31 -

1 used in Link Prediction
2 used in Node Classi�cation

Figure 4.1 shows the distribution of classes in the three datasets used for node

classi�cation. While Wikipedia has a long tailed distribution, with one class being

present in almost 50% of its nodes, PPI's probabilities are well distributed along the

49 di�erent possible classes.
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Figure 4.1: (Color online) Distribution of percentage of nodes per class in label classi-
�cation datasets with classes sorted by their frequency.
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4.2 Link Prediction

Link prediction attempts to estimate the likelihood of the existence of a link between

two nodes, based on observed links and the nodes' attributes [Lü and Zhou, 2011]. Typ-

ical approaches to this task are based on similarity metrics, such as Common Neighbors

or Adamic-Adar [Adamic and Adar, 2003]. Sarkar et al. [2011] presents theoretical jus-

ti�cations for the performance of these similarity metrics, while formalizing the link

prediction problem as one of estimating distances between nodes in latent spaces. In-

stead of these heuristic-based similarity metrics, we propose to train a logistic classi�er

based on the concatenation of the embeddings from both nodes that possibly form an

edge and predict the existence or not of the edge.

4.2.1 Setup

To train NBNE on this task, we �rst obtained a sub-graph with 90% of the edges

from each dataset uniformly select at random, and obtained the node embeddings by

training NBNE on this sub-graph. Then, we separated a small part of these sub-graph

edges as a validation set, using the rest to train a logistic regression with the learned

embeddings as features.

After the training was completed, the unused 10% of the edges were used as a

test set to predict new links. 10-fold cross-validation was used on the entire training

process to access the statistical signi�cance of the results, analyzing statistical di�erence

between the baselines and NBNE.2 To evaluate the results on this task, we used as

metrics: AUC (area under the ROC curve) [Baeza-Yates and Ribeiro-Neto, 2011], and

training time.3 The logistic regressions were all trained and tested using all available

edges (respectively in the training or test set), and an equal sized sample of negative

samples, which, during training, included part of the 10% removed edges.

4.2.2 Results

Table 4.2 presents results for this task. Considering AUC scores on the Link Prediction

task, NBNE was statistically better than both DeepWalk and Node2Vec on all datasets

except Facebook, in which there was no statistically signi�cant di�erence. NBNE

was better than the baselines on the Astro and PPI datasets, with more than 7%

improvement, also showing a 4.67% performance gain in Wikipedia and a small, but
2In all experiments we performed Welch's t-tests with p = 0.01. The symbol ∗ marks results which

are statistically di�erent from NBNE.
3Training times were all obtained using 16 core processors, running NBNE, Node2Vec or DeepWalk

on 12 threads, with all algorithms having been implemented using gensim [�eh·°ek and Sojka, 2010].
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statistically signi�cant, gain on Blog. Only losing by a small percentage on Facebook,

with a di�erence that was not statistically signi�cant.

In DBLP, NBNE again presents the best AUC score, although this di�erence

was small and its statistical signi�cance could not be veri�ed due to the large training

times of the baselines. This dataset contains the largest graph analyzed in this work

(317,080 nodes and 1,049,866 edges) and in it, to train a single fold, Node2Vec took

3,285m59s (more than 54 hours) and DeepWalk took 164m34s (approximately 2 hours

and 44 minutes), while NBNE took only 14m30s, which represents a 226/11 times

improvement over Node2Vec and DeepWalk, respectively.

Considering training time for this task, NBNE presents the biggest improvements

on sparser networks of medium size, like Astro, PPI and Wikipedia datasets. On these

graphs, the best results are for n = 1, resulting in more than 50x faster training than

DeepWalk and more than 1,500 times faster than Node2Vec, achieving a 6,049 times

faster training than Node2Vec on Wikipedia. For the Blog and Facebook datasets

the best results are for n = 5, resulting in larger training times, but still more than

one order of magnitude faster than DeepWalk and more than 350 times faster than

Node2Vec. For the DBLP dataset, the best results were achieved with n = 10, still

much faster than the baselines.

Table 4.2: Link prediction results

Facebook Astro PPI

AUC
Training

AUC
Training

AUC
Training

Time Time Time
NBNE 0.9688 0m11s 0.8328 0m07s 0.8462 0m02s
DeepWalk 0.9730 2m26s 0.7548∗ 6m55s 0.7741∗ 2m30s
Node2vec 0.9762 69m33s 0.7738∗ 182m16s 0.7841∗ 66m37s

Gain -0.76%
12.96x

7.62%
59.06x

7.91%
77.43x

369.85x 1555.80x 2061.67x

Wikipedia Blog DBLP

AUC
Training

AUC
Training

AUC
Training

Time Time Time
NBNE 0.6853 0m02s 0.9375 1m11s 0.9335† 14m30s
DeepWalk 0.6534∗ 7m38s 0.9098∗ 28m13s 0.9242‡ 164m34s
Node2Vec 0.6547∗ 236m60s 0.9202∗ 838m41s 0.9322‡ 3,285m59s

Gain 4.67%
194.86x

1.88%
23.86x

0.13%
11.34x

6049.77x 709.24x 226.52x
† average of 10 fold results
‡ no statistical tests were run, due to the time necessary to run a
single fold
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4.3 Node Classi�cation

Given a partially labeled graph, node classi�cation is the task of inferring the classi�-

cation of the unknown nodes, using the structure of the graph and/or the properties of

the nodes. In this section, we again compare our algorithm's performance to DeepWalk

and Node2Vec, now analyzing node classi�cation tasks on the Blog, PPI and Wikipedia

datasets.

4.3.1 Setup

In this task, the node embeddings were trained using NBNE on the complete graph.

After obtaining the node embeddings, 80% of the labeled nodes in the graph were used

to train a logistic classi�er that predicted the class of each node, while 5% of the nodes

were used for validation and the remaining 15% nodes were used as a test set. This

entire process was repeated for 10 di�erent random seed initializations to access the

statistical relevance of the results.

4.3.2 Results

Results on the Blog, PPI and Wikipedia datasets are shown in Table 4.3 and are

presented in terms of Macro F1 scores and training times. NBNE produces statistically

similar results to its baselines, in terms of Macro F1, on both PPI and Wikipedia,

while showing a statistically signi�cant 22.45% gain in the Blog dataset, indicating

that NBNE's embeddings did not only get a better accuracy on Blog, but also that

correct answers were better distributed across the 39 possible classes.

Considering training times, NBNE is more than 10 times faster than DeepWalk

on these three datasets and is [300 to 600] times faster than Node2Vec. NBNE did not

show statistically worse results in any dataset analyzed here, while having an order of

magnitude faster training time than DeepWalk and more than two orders of magnitude

faster training time than Node2Vec.

4.4 Author Name Disambiguation

One of the hardest problems faced by current scholarly digital libraries is author name

ambiguity [Ferreira et al., 2012]. This problem occurs when an author publishes works

under distinct names or distinct authors publish works under similar names [Ferreira

et al., 2015]. Automatic solutions, which are e�ective, e�cient and practical in most
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Table 4.3: Node classi�cation results

Blog PPI Wikipedia

Macro F1
Training

Macro F1
Training

Macro F1
Training

Time Time Time
NBNE 0.2004 1m57s 0.0978 0m16s 0.0727 0m41s
DeepWalk 0.1451∗ 31m31s 0.0991 3m04s 0.0679 13m04s
Node2vec 0.1637∗ 959m12s 0.0971 83m02s 0.0689 408m00s

Gain 22.45%
16.18x

-1.35%
11.82x

5.56%
19.04x

492.57x 319.78x 594.62x

situations, are still in need [Santana et al., 2014]. In this section, we test our algorithm

against the case where distinct authors publish works under similar names.

4.4.1 Setup

For this problem, the DBLP repository was crawled and the pro�les of fourteen of the

most proli�c ambiguous authors were obtained, together with their direct co-authors'

complete pro�les.4 With this, we created a new dataset, called here DBLP-ambiguous,

consisting of fourteen separate co-authorship networks (14 separate graphs), each with

all the connections of one of these homonymous authors and their co-authors' connec-

tions. Details on these graphs can be seen in Table 4.4.

Table 4.4: DBLP-ambiguous (DBLP-amb) Dataset Details

Name # Authors Nodes Edges
JingLi 4 105,746 589,367
JingWang 16 108,913 581,457
JunLiu 2 106,533 590,032
JunWang 21 121,511 691,705
JunZhang 16 116,497 631,738
LeiZhang 38 118,798 664,898
LiZhang 14 122,403 693,916
WeiLi 57 157,427 887,727
WeiWang 85 183,962 1,103,702
WeiZhang 52 131,200 722,272
XiaodongWang 3 50,854 284,733
XinWang 14 107,920 578,084
YangLiu 33 130,319 740,501
YuZhang 9 131,683 734,214

4The code used to crawl the DBLP is available at https://github.com/tiagopms/dblp-crawler.
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Using these co-authorship networks, embeddings were obtained by training on

the graphs with 20% of the papers from each ambiguous author removed. After the

embeddings had already been learned for each author, the probability of each possible

author-coauthors �group� was calculated as:

spossible_author =
[
vpossible_author , vcoauthor_1, ..., vcoauthor_j

]
This probability is given by:

p(author) =
1

T

T∑
t=1

( ∑
−k≤j≤k,j 6=0

(log (p (vt+j|vt)))

)
(4.1)

where v1 = author , which comes from the NBNE model itself.

As a baseline, we used the typical solution that classi�es the closest of the possible

ambiguous authors as co-author for each of the test papers. If no path on the graph

existed to any of the possible ambiguous authors, or if there was a tie between the

distances to two or more of them, a random one was chosen between the possible ones.

DeepWalk and Node2Vec were not used as baselines for this task due to the size of the

14 graphs analyzed here, most with more than 100,000 nodes and 500,000 edges, which

would result in a prohibitive training time.

4.4.2 Results

Table 4.5 presents the results for the author name disambiguation task for each chosen

author. This experiment was run using NBNE as an unsupervised algorithm with a

�xed number of permutations n = 10, having no validation set. We also used groups

of size k = 5 and node embeddings of size d = 128.

After the embeddings had already been learned for each author, which can be

done o�-line, the NBNE algorithm was faster in assigning the authors than its baseline.

This occurred because it only required computing the probability of each possible

author-coauthors �group� (p(s)), while the baseline had to dynamically get the distance

between the papers' co-authors and the possible authors.

It can be seen in Table 4.5 that for all but two authors the precision was higher

when using the NBNE embeddings instead of the graph baseline, while for the other

two precision score remained the same.
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Table 4.5: Author name disambiguation results

Name # Authors Algorithm Precision

Jing Li 4
NBNE 0.9415
Baseline 0.9415

JingWang 16
NBNE 0.8791
Baseline 0.8512

JunLiu 2
NBNE 0.9709
Baseline 0.9651

JunWang 21
NBNE 0.8357
Baseline 0.7821

JunZhang 16
NBNE 0.8206
Baseline 0.8130

LeiZhang 38
NBNE 0.8843
Baseline 0.8309

LiZhang 14
NBNE 0.8661
Baseline 0.8201

WeiLi 57
NBNE 0.8221
Baseline 0.7822

WeiWang 85
NBNE 0.8143
Baseline 0.8070

WeiZhang 52
NBNE 0.8408
Baseline 0.8184

XiaodongWang 3
NBNE 0.9697
Baseline 0.9576

XinWang 14
NBNE 0.8639
Baseline 0.8639

YangLiu 33
NBNE 0.7955
Baseline 0.7540

YuZhang 9
NBNE 0.9268
Baseline 0.9024

Average
NBNE 0.8737
Baseline 0.8492

4.5 Comparison with SDNE

Structural Deep Network Embedding [Wang et al., 2016] is another algorithm used for

learning node embeddings in graphs. As described in Chapter 2, SDNE is based on �rst

and second order proximities, using autoencoders to learn compact representations for

nodes based on their adjacency vector (second-order proximity), while forcing repre-

sentations of connected nodes to be similar (�rst-order proximity) by using an hybrid

cost function.

This algorithm has a time complexity of O(|V |2), but its main computation,
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which is calculating the gradients of its cost function and updating model parameters,

can be highly parallelized by using modern GPUs and Deep Learning frameworks. In

this section, we compare NBNE and SDNE in terms of both e�cacy and e�ciency,

analysing both AUC/Macro F1 scores and training time. For this purpose, we trained

SDNE embeddings using both a dedicated K40 GPU with CUDA 8.0 and a dedicated

16 core linux server.5

In the work where it was originally proposed, SDNE was run in a semi-supervised

setting, �nding the best value of α, β and ν by tuning them on a small validation set.

In this work we �x α = 0.2 and β = 10, since in their work they state that these values

commonly give the best results, while only choosing ν in a semi-supervised manner.

We use SDNE's architecture with [10,300; 1,000; 128] nodes on each layer and test it

on both Link Prediction and Node Classi�cation tasks, using the same steps described

in Sections 4.2 and 4.3. We train these embeddings using ν ∈ {0.1, 0.01, 0.001} and
choose the best value on the same validation sets used to tune n for NBNE and p and

q for Node2vec.

Table 4.6 shows results obtained when using either NBNE or SDNE embeddings

on Link Prediction tasks. In this table we can see that both algorithms produce similar

results in terms of AUC scores, with each having a statistically signi�cant better result

on two datasets, and NBNE having a non statistically signi�cant, but slightly better

result on the �fth. It is clear that even when training SDNE using a K40 GPU,

NBNE still has more than an order of magnitude faster training time on all datasets,

being more than two orders of magnitude faster on most. When comparing to SDNE

trained on a CPU, NBNE has more than three orders of magnitude faster training

time. On Astro, the dataset with the largest number of nodes analyzed here, NBNE

had a 2,009 times faster training time compared to SDNE on a GPU and 44,896 times

faster compared to SDNE on CPU.6

Table 4.7 shows the results of running NBNE and SDNE on the Node Classi�ca-

tion task. On this task NBNE gave statistically better results on two datasets, with

an impressive gain of 29.27% on PPI and 46.94% on Blog, only losing on Wikipedia

also by a large margin of −20.20%. We can again see that NBNE has more than an

order of magnitude faster training time than SDNE on a GPU in this dataset, being

more than two orders of magnitude faster when SDNE is trained on a CPU.

Analyzing both these tables we can also see that the largest gains in training time

occur when using NBNE on a large but sparse network, such as Astro. This agrees

5SDNE code was implemented using Tensor�ow [Abadi et al., 2015]
6We tried running SDNE with the DBLP dataset, but after �ve days it hadn't reached half of the

training, so we stopped it.
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Table 4.6: Link prediction results with SDNE

Facebook Astro PPI

AUC
Training

AUC
Training

AUC
Training

Time Time Time
NBNE 0.9688 0m11s‡ 0.8328 0m07s‡ 0.8462 0m02s‡

SDNE 0.9510∗
20m34s†

0.8157∗
234m24s†

0.8751∗
16m10s†

242m10s‡ 5,237m59s‡ 232m01s‡

Gain 1.87%
112.21x

2.10%
2,009.17x

-3.30%
485.10x

1,320.91x 44,896.96x 6,960.34x

Wikipedia Blog DBLP

AUC
Training

AUC
Training

AUC
Training

Time Time Time
NBNE 0.6853 0m02s‡ 0.9375 1m11s‡ 0.9335 14m30s‡

SDNE 0.6781
22m23s†

0.9462∗
81m33s†

-
-

337m47s‡ 1,492m47s‡ -

Gain 1.06%
671.59x

-0.92%
68.92x

-
-

10,133.46x 1,261.51x -
‡ Training time on CPU
† Training time on GPU

Table 4.7: Node classi�cations results with SDNE

Blog PPI Wikipedia

Macro F1
Training

Macro F1
Training

Macro F1
Training

Time Time Time
NBNE 0.2005 1m57s‡ 0.0978 0m16s‡ 0.0727 0m41s‡

SDNE 0.1364∗
96m48s†

0.0757∗
16m52s†

0.0911∗
19m60s†

1,476m33s‡ 231m04s‡ 338m40s‡

Gain 46.94%
49.64x

29.27%
63.24x

-20.20%
29.26x

757.20x 866.48x 495.60x
‡ Training time on CPU
† Training time on GPU

with our theoretical analysis, since SDNE's time complexity grows quadratically with

the number of nodes O(|V 2|) and NBNE's grows with O(|V | · log(|V |) · b), which is

close to linear on the number of nodes for large graphs.





Chapter 5

Further Analysis

5.1 Number of Permutations (n)

The quality of NBNE's embeddings depends on both the size of the embeddings (d)

and the number of permutations (n). For highly connected graphs, larger numbers of

permutations should be chosen (n ∈ [10, 1000]) to better represent distributions, while

for sparser graphs, smaller values can be used (n ∈ [1, 10]).

Figure 5.1 shows AUC scores versus embedding sizes for several values of n on

the Facebook link prediction task. Quadratic functions approximating log(auc_score)

were plotted to allow for a better understanding of the results. It can be seen that for

larger numbers of permutations (n > 100) results improve with embedding size, while

for small ones (n = 1) they decrease. The plot also shows that n = 10 gives fairly

robust values for all tested embedding sizes.

A further analysis can be seen in Table 5.1, which indicates that graphs with more

edges per node tend to get better results with larger values of n, while graphs with a

smaller branching factor have better results with only one permutation (n = 1). Other

factors also enter into account when choosing n, like graph size. For example, link

prediction on the DBLP graph had its best results for n = 10, although its branching

size was only 3.31. Further experiments on this parameter can be seen in Sections 5.3.2

and 5.4.1.

5.2 Time Complexity

SkipGram's time complexity is linear on the number of sentences (S) and embed-

ding size (d) and logarithmic on the size of the vocabulary (|V |) (O (|S| · d · log(|V |)))

27
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Figure 5.1: (Color online) NBNE AUC scores vs embedding sizes on Facebook dataset
with 50% edges removes

Table 5.1: Link Prediction results for varying n with NBNE

PPI (9.95†) Facebook (21.84†) Blog (32.38†)

n
Precision

AUC
Precision

AUC
Precision

AUC
Test Test Test

10 0.7108 0.7795 0.9061 0.9642 0.8627 0.9348‡

5 0.7305 0.8071 0.9070 0.9688 0.8681 0.9375‡

1 0.7751 0.8462 0.8410 0.9150 0.8374 0.9146
† Edges per node ‡ No statistical di�erence

[Mikolov et al., 2013a]. Since the number of sentences is the number of groups, which

is linear on the number of permutations (n), branching factor of the graph (b) and on

the number of nodes, which is the size of the vocabulary (|V |):

|S| ∝ n · b · |V |

NBNE's algorithm will take a time bounded by:

O (d · n · b · |V | · log(|V |))

Figure 5.2 shows training time is indeed linear on both embedding size and num-



5.3. Assortativity 29

ber of permutations. This graph is plotted in a log-log scale, so the initial ��atness�

implies the algorithm has a large constant in its computational time, and linearity is

implied by the line inclination. This �gure also shows that Node2Vec is considerably

slower than DeepWalk, and only has a similar training time to running NBNE with at

least n = 1000. NBNE with n < 10 was by far the fastest algorithm.
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Figure 5.2: (Color online) Facebook dataset with 30% edges removed: Training times
vs (Left) embedding size (Right) number of permutations.

NBNE, Node2Vec and DeepWalk run in a time close to linear in |V |
(O(|V | log |V |)), as can be seen in Figure 5.3 (Left). Figure 5.3 (Right) shows that

NBNE's time complexity is linear in the branching factor b, while Node2Vec's is

quadratic. DeepWalk's running time is roughly constant for this parameter, but for a

graph with a larger branching factor, a larger number of walks per node should be used

to train this algorithm, which would make its training time increase indirectly with b.

5.3 Assortativity

Assortativity, also referred to as homophily in social network analysis, is a preference

of nodes to attach themselves to others which are similar in some sense. In this sec-

tion, we investigate assortativity properties of the representations generated by our

algorithm and of the graphs themselves. In Section 5.3.1, we do a quantitative analysis

on the homophily inherent to the datasets considered in this work. In Section 5.3.2,

we make a qualitative analysis of how assortativity varies depending on the number

of permutations n. In Section 5.3.3, we make a qualitative analysis on the trade-o�

between �rst and second order proximities based on the choice of k.
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Figure 5.3: (Color online) Training times vs (Left) number of vertices on randomly
generated graphs with b = 10 (Right) branching factor on randomly generated graphs
with |V | = 500.

5.3.1 Datasets' Homophily

There are several ways to quantitatively capture the homophily present in a graph.

Jensen and Neville describe relational auto-correlation, which is Pearson's contingency

coe�cient on the characteristics of nodes which share edges [Jensen and Neville, 2002;

Neville and Jensen, 2007]. Park and Barabási [2007] de�ne dyadicity and heterophilic-

ity, which respectively measure how a graph's nodes share common/di�erent charac-

teristics in edges, compared to a random model.

Table 5.2 presents both degree and label assortativity properties of the six graphs

analyzed here, calculated using the assortativity coe�cient, as de�ned in Newman

[2003]. We can see in this table that the datasets analyzed in this work cover a broad

spectrum of assortativity properties. PPI, Wikipedia and Blog graphs present negative

degree assortativity, which means nodes in these graphs are more likely to connect with

nodes of di�erent connectivity degrees. At the same time, Facebook, Astro and DBLP

present positive degree assortativity, which indicates that their nodes tend to connect

to others with similar degrees.

We also analyze graphs with both positive and negative label assortativity in our

label classi�cation task. While PPI and Blog datasets present positive label assorta-

tivity, with connected nodes more frequently sharing classes, Wikipedia has a negative

assortativity, with its connected nodes being more likely to have di�erent classes.
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Table 5.2: Datasets homophily information

Assortativity
Degree1 Label1

Facebook 0.0635 -
Astro 0.2051 -
PPI -0.0930 0.0533

Wikipedia -0.2372 -0.0252
Blog -0.2541 0.0515

DBLP 0.2665 -
1 Calculated as in [Newman, 2003]

5.3.2 More on the Number of Permutations (n)

In this section, we analyze how the number of permutations (n) in�uences both ho-

mophily and over�tting in our learned representations. We qualitatively measure ho-

mophily by comparing either cosine or euclidean distances between adjacent nodes to

the distances of non-adjacent nodes.

The cosine distances for the PPI dataset, shown by the box plots in Figure 5.4

(top-left), clearly show for larger values of n how the embeddings over�t to the speci�c

graph structure, with the learned similarity on edges not generalizing to the links

which were previously removed. In this graph, for larger numbers of permutations the

removed edges have a distribution more similar to the non-edges than to the edges

used during training, which is a tendency that can be observed in the other graphs,

although in a smaller scale.

The box plots in Figure 5.4 (top-right) show the cosine distance for Facebook

nodes. We can see that for n = 5 there is a larger separation between removed edges

and non edges, which justi�es the algorithm's choice of this value. For larger values

of n we can again see an overlap between the distributions, caused by the embed-

dings over�tting. On the other hand, the cosine distances for the DBLP in Figure 5.4

(bottom-left) show the largest separation for n = 10.

Finally, the box plots in Figure 5.4 (bottom-right) show cosine distances for the

Blog dataset. We can see that for n = 1 and n = 5 there is actually a larger cosine

distance between nodes in removed edges than in non-edges, with this situation only

inverting for n ≥ 10. This happens due to this graph's negative degree homophily.

This is also observed for similar graphs in the PPI and Wikipedia datasets, though

with a smaller intensity in the PPI graph, which has a smaller absolute value of degree

assortativity and where only embeddings for n = 1 present this property.

The box plots from Figure 5.4 further support our intuition that graphs with

larger branching factors should have larger values of n. At the same time, this choice
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also depends on the graph size and structure, as shown by the algorithms choice of

n = 10 for the DBLP dataset, which contains the largest degree assortativity. The

best choice of n depends on the task in hand, but we believe that, at least for link

prediction, this choice is both directly proportional to a graph's branching size and

degree assortativity. Nonetheless, the di�culty in analyzing these graphs supports our

choice for a semi-supervised approach, i.e. automatically choosing n on a per graph

instance.

1 5 10 50 100
Number of Permutations (n)

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Di

st
an

ce

Cosine Distance vs Permutations (PPI)
Kept Edge
Removed Edge
Non Edge

1 5 10 50 100
Number of Permutations (n)

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Di

st
an

ce

Cosine Distance vs Permutations (Facebook)
Kept Edge
Removed Edge
Non Edge

1 5 10 50 100
Number of Permutations (n)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Co
sin

e 
Di

st
an

ce

Cosine Distance vs Permutations (DBLP)
Kept Edge
Removed Edge
Non Edge

1 5 10 50 100
Number of Permutations (n)

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Di

st
an

ce

Cosine Distance vs Permutations (Blog)
Kept Edge
Removed Edge
Non Edge

Figure 5.4: (Color online) Cosine distances on the: PPI dataset (top-left); Facebook
dataset (top-right); DBLP dataset (bottom-left); Blog dataset (bottom-right). All
graphs had 10% of edges removes.

To better understand te results of the experiment on the PPI dataset with n =

1, shown in Figure 5.4 (top-left), we present in Figure 5.5 a detail of the euclidean

distances between nodes that share or not an edge for this number of permutations.

We can see that the distribution of removed edges is a lot closer to the edges used for

training than to the non edges.
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Figure 5.5: (Color online) Euclidean distances on PPI dataset for n = 1.

5.3.3 Trade-o� between �rst and second order proximity

The group size, k, controls a trade-o� between �rst and second order proximities in

the node embeddings. This can be explained intuitively by analyzing both the group

sampling method in Algorithm 2 and Equations 3.1, 3.2 and 3.3, in Section 3.2.

When a smaller k is chosen, k = 1 for example, each node's embedding rvi will

only predict its own direct neighbors. This causes nodes with shared neighbors to have

closer representations (second order proximity). When larger values of k are chosen,

multiple nodes will appear in a group, and will predict its two hop neighbors. This

will result in connected nodes having more similar embeddings, increasing �rst order

similarity.

We further analyze this by examining the distribution of cosine distances between

nodes at di�erent graph distances. For this analysis, we use synthetic graphs generated

from three di�erent network models: Barabási-Albert [Barabási and Albert, 1999];

Erd®s-Rényi [Erdos and Rényi, 1960]; Watts-Strogatz [Watts and Strogatz, 1998]. We

choose these models because of their structural di�erences, believing they cover an

ample spectrum of di�erent graphs' properties. These graphs were created with |V | =
2000 and b = 20, and Watts-Strogatz graphs had a probability β = 0.2 of generating

non-lattice edges. To train our representations we used n = 10 and d = 128.
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Figure 5.6 shows box plots of the cosine distances of nodes' representations

grouped according to their graph distance on these di�erent synthetic random graphs.

In this �gure, we can see that, for both Barabàsi-Albert and Erd®s-Rényi graphs, when

using a group size (k) equal to 1, the cosine similarity is larger for nodes which are

two steps away than for nodes which share an edge (it favors second order proximity),

while for larger values of k, nodes which share an edge have larger similarity (it favors

�rst order proximity).
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Figure 5.6: (Color online) NBNE features cosine similarities between nodes versus
Graph Distance for di�erent values of k for the graphs Barabási-Albert (left), Erd®s-
Rényi (middle) and Watts-Strogatz (right).

The box plots in Figure 5.6 also show that the di�erence in similarity increases

with the value of k. The larger the value of k, the larger the di�erence between

similarities of nodes which share an edge and nodes with larger distances, as can be

seen in detail in Figure 5.7 for the Barabási-Albert model.

5.4 Graph Size and Sparseness Analysis

In this section, we analyze how a graph's sparseness (represented here by its branching

factor) and size (represented here by its number of vertices) a�ect the choice of the

number of permutations (n) and of the group size (k). With this purpose we ran

several link prediction experiments on synthetic graphs generated from two di�erent

network models: Watts-Stogratz and Barabási-Albert.1 These graphs were generated

for di�erent sizes (|V |) and sparseness (b), and we ran experiments with the same setup

as in Section 4.2, once again setting β = 0.2 for Watts-Stogratz model.2 Section 5.4.1

1 Erd®s-Rényi graphs weren't analyzed in this section because, since they have a completely
random structure, its removed edges would be unpredictable.

2Results presented in this section are all averages of ten cross-validation executions in a single
instance of each graph size.
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Figure 5.7: (Color online) NBNE cosine vs graph distances in the Barabási-Albert
graph.

presents this analysis for the number of permutations (n) and Section 5.4.2 contains

the analysis for di�erent group sizes (k).

5.4.1 Number of Permutations (n)

In this section, we analyze how the graph's size and sparseness a�ect the choice of

the number of permutations (n), for both Watts-Stogratz and Barabási-Albert graphs.

Analyzing the graphs in Figure 5.8, we see a correlation between the best choice of n

and a graph's number of vertices (|V |) and branching factor (b). In Figure 5.8a, which

depicts the experiments in the sparsest graphs (b = 2), results for n = 1 are better

for all graph sizes. A random algorithm would return an AUC score of 0.5, so results

below this value clearly �ag a problem in the learning algorithm. This is the case for

both n = 10 and n = 5 in these graphs, which over�t its representations.

In Figure 5.8b we can see that, when considering a graph with a branching size

of b = 4, for smaller graphs a smaller value of n is preferable, while for larger graphs a

larger number of permutations gives better results (n = 10). In Figure5.8c we can see

that, for a branching size of b = 8, results for larger values of n are always better than

for n = 1. Notice also that, while results for b = 2 and b = 4 were around 0.55 ∼ 0.7,
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Figure 5.8: (Color online) AUC Score vs Number of Vertices on a link prediction task
on synthetic Watts-Strogatz graphs for di�erent values of n.

results for b = 8 are closer to 0.9, showing that this algorithm is better at learning with

more information.
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Figure 5.9: (Color online) AUC Score vs Number of Vertices on a link prediction task
for synthetic Barabási-Albert graphs for di�erent values of n.

Our experiments in link prediction using the Barabási-Albert models present

slightly more complex results. Figure 5.9 shows that for smaller branching factors

(b ≤ 8), n = 1 indeed generate better results for small graphs, but for larger graphs,

a larger number of permutations is necessary. For intermediary branch sizes the best

value of n is harder to determine, and only for b = 64 we start to see a tendency of

larger number of permutations consistently yielding better results.
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We can also see from Figure 5.9 that edges in Barabási-Albert graphs are con-

siderably more di�cult to predict, specially for smaller branching sizes. Most of our

results are around 60% and our best AUC scores in these graphs are around 70%.

Again, n's dependency on these graph properties (|V | and b) depends highly on

the graph's structure, further supporting our choice of a semi-supervised approach,

choosing n on a per graph basis by validating results on a small validation set. This

can be considered as a form of early stopping when training these node embeddings.

5.4.2 Groups Sizes (k)

In this section, we use the Watts-Stogratz and Barabási-Albert models once again, this

time to analyze how the graph's size and sparseness a�ect results for di�erent groups'

sizes (k) in our model. For these experiments we keep n = 5 �xed.

Figure 5.10a shows that, for a small branching factor (b = 2), all choices of k

clearly over�t for Watts-Strogatz graphs, but k = 5 over�ts less than larger choices of

k. For b = 8, k = 5 produces slightly better results in these graphs, while larger values

of k produce better results for a larger branching size (b = 32).
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Figure 5.10: (Color online) AUC Score vs Number of Vertices on a link prediction task
for synthetic Watts-Strogatz graphs for di�erent values of k.

Barabási-Albert graphs' edges are considerably harder for our algorithm to pre-

dict, as shown in the previous section, so we only report results for larger values of b

(the algorithm, with our choice of hyper-parameters, over�ts for smaller values). We

can see from Figure 5.11 that larger values of k usually produce better results for this

graph, but are more prone to over�t, especially when being applied to larger sparse

graphs (|V | ≥ 800 and b = 16).

Further analysis on the representations' properties for di�erent values of k could

provide better motivation on its choice, but we leave this to future studies, keeping

our choice of k = 5 constant in this work. Studying if algebraic operations between
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Figure 5.11: (Color online) AUC Score vs Number of Vertices on a link prediction task
for synthetic Barabási-Albert graphs for di�erent values of k.

representations have comprehensible meanings would also be interesting, such as was

done for Word2Vec algorithms, but this is also left as future work.



Chapter 6

Conclusions

The proposed node embedding method NBNE shows results similar or better than the

state-of-the-art algorithms Node2Vec and DeepWalk on several di�erent datasets. It

shows promising results in two application scenarios: link prediction and node classi-

�cation, while being e�cient and easy to compute for large graphs, di�erently from

other node embedding algorithms, such as LINE [Tang et al., 2015] or SDNE [Wang

et al., 2016].

NBNE focuses learning on node's immediate neighbors, creating more ego-centric

representations, which we suspect makes them more stable and faster to learn. Empir-

ical results show that, although it has a similar time complexity, NBNE can be trained

in a fraction of the time taken by DeepWalk (10 to 190 times faster) or Node2Vec

(200 to 6,000 times faster), giving fairly robust results. Since embeddings are learned

using only a node's immediate neighbors, we suspect it is also easier to implement more

stable asynchronous distributed algorithms to train them, and we leave this as future

work.
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