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Abstract

Software metrics provide means to quantify several attributes of software systems.
The effective measurement is dependent on appropriate metric thresholds as they al-
low characterizing the quality of software systems. Indeed, thresholds have been used
for detecting a variety software anomalies. Previous methods to derive metric thresh-
olds do not take characteristics of software domains into account, such as the difference
between size and complexity of systems from different domains. Instead, they rely on
generic thresholds that are derived from heterogeneous systems. Although derivation
of reliable thresholds has long been a concern, we also lack empirical evidence about
threshold variation across distinct software domains. This work proposes a method
to derive domain-sensitive thresholds that respects metric statistics and is based on
benchmarks of systems from the same domain. The proposed method is supported by
a software tool. This tool helps the developer to write better code since the beginning,
by providing a view with class metrics and warnings considering the system domain.
To evaluate our method, we performed an evaluation with desktop and mobile sys-
tems. The first evaluation, we manually mined one hundred mobile applications from
GitHub. We measured all these systems using a set of metrics, derived thresholds, and
validated them through qualitative and quantitative analyses. For the second evalua-
tion, we investigated whether and how thresholds vary across domains by presenting
a large-scale study on 3,107 software systems from 15 desktop domains. As a result,
we observed that our method gathered more reliable thresholds considering software
domain as a factor when building benchmarks for threshold derivation. Moreover, for
the desktop evaluation, we also observed that domain-specific metric thresholds are
more appropriated than generic ones for code smell detection.

Keywords: Metric Thresholds, Software Domains, Software Engineering.
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Chapter 1

Introduction

Measurements support project managers to improve their products and processes [De-
Marco, 1986]. In software engineering, researchers and practitioners are always looking
for better ways to predict the number of faults, errors, and the effort to complete a
task [Kitchenham, 2010]. In this sense, many metrics have been proposed and prag-
matically used to measure, control, and assess the quality of software systems [Alves
et al., 2010; DeMarco, 1986; Fernandes et al., 2016, 2017]. For example, certain met-
rics can help to indicate specific software components (or modules) that suffer from
bad design or poor-quality code [Buschmann et al., 1996; Lanza and Marinescu, 2007;
Marinescu, 2004; Oizumi et al., 2016; Vidal et al., 2015]. As a result, developers may
check if there is something wrong with these components to avoid future maintenance
issues. Nevertheless, the effective use of metrics is directly dependent on the definition
of reliable and higher quality metric thresholds [Alves et al., 2010; Padilha et al., 2014;
Vale et al., 2015]. Thresholds allow practitioners to objectively characterize or classify
software components according to one or more software metrics. Several methods to
derive metric thresholds have been proposed over the years [Alves et al., 2010; Chi-
damber and Kemerer, 1994; Concas et al., 2007; Erni and Lewerentz, 1996; Ferreira
et al., 2012; Filó et al., 2015; French, 1999; Spinellis, 2008; Vale et al., 2018; Vasa et al.,
2009]. The common practice for deriving thresholds in these methods is to use a set of
similar systems (so-called benchmarks) [Alves et al., 2010; Vale et al., 2018]. The idea
behind the use of benchmarks is to get information from similar systems (e.g., same
programming language) and derive thresholds for a specific context.

Despite the use of benchmarks, methods for deriving thresholds in recent litera-
ture do not consider specific characteristics of the systems when building the bench-
marks [Alves et al., 2010; Vale et al., 2018]. For instance, the use of localization on
navigation systems, transaction management on e-commerce systems, mechanics and
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4 Chapter 1. Introduction

level design of games. The reason for using systems of the same domain to build bench-
marks is to group systems that share intrinsic characteristics and derive thresholds for
a specific context. Recent studies has shown that grouping systems in a domain sup-
port to better understand some analysis. For instance, the relation of language defect
proneness with software domain and the presence of smells and quality-related metrics
[Ray et al., 2014; Linares-Vásquez et al., 2014]. Such evidences calls for a method
that takes the intrinsic characteristics of software systems into account when deriving
metric thresholds.

1.1 Proposed Method and Evaluation

This work proposes a tool supported method to derive metric thresholds that con-
siders the intrinsic characteristics of software systems into the same domain and the
evaluation of mobile and enterprise systems. The domain threshold derivation method
proposes the classification of systems into domains before further threshold derivation
steps. Then, it derives thresholds in a step-wise format where each metric has its own
thresholds for each software domain. The proposed method shares common activities
presented in other methods. However, its design enhances three of major issues in ex-
isting threshold derivation methods: (i) the input is a benchmark composed of systems
that belong to the same domain; (ii) the core process computes metrics and performs
statistical analyses for each separated domain; and (iii) the output is domain-specific
thresholds to each analyzed metric.

The key points of this method is: It has systematic steps, it considers the system
domain in order to compose the benchmark, it has strong dependence with the number
of entities (i.e, classes) and a weak dependency with the number of systems, it calculates
upper and lower thresholds and it respects metric statistics of the metrics. A software
tool, named TWarning, supports the proposed method. This tool helps the developer
to write better code since the beginning, by providing a view with class metrics and
warnings considering the system domain.

To evaluate our method, we performed an evaluation with mobile and enterprise
systems (i.e., desktop and Web systems). The first evaluation, we manually mined one
hundred mobile applications from GitHub. We measured all these systems using a set
of metrics, derived thresholds, and validated them through quantitative analyses. For
the second evaluation, we investigate whether and how thresholds vary across domains
by presenting a large-scale study on 3,107 software systems from 15 desktop domains.
As a result, we observed that our method gathered more reliable thresholds consider-
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ing software domain as a factor when building benchmarks for threshold derivation.
Moreover, for the desktop and Web evaluation, we also observed that domain-specific
metric thresholds are more appropriated than generic ones for code smell detection.

1.2 Publications

This dissertation generated the following publications and, therefore, it contains re-
sources from them.

• Allan Mori, Gustavo Vale, Markos Viggiato, Johnatan Oliveira, Eduardo
Figueiredo, Elder Cirilo, Pooyan Jamshidi, and Christian Kastner. Evaluating
Domain-Specific Metric Thresholds: An Empirical Study. In Proceedings of the
1st International Conference on Technical Debt (TechDebt), Gothenburg, Swe-
den, 2018.

• Allan Mori, Elder Cirilo, Eduardo Figueiredo. TWarning: A Warning Tool for
Domain-Sensitive Thresholds. In Proceedings of the 9th CBSoft - Tool Session,
São Carlos, Brasil, 2018.

• Allan Mori, Eduardo Figueiredo, and Elder Cirilo. Towards the Definition of
Domain-Specific Thresholds. In Proceedings of the XIII Brazilian Symposium on
Information Systems (SBSI). Lavras, MG, 2017.

• Allan Mori, Elder Cirilo, and Eduardo Figueiredo. Measuring and Comparing
Quality Attributes of Software Development Communities. In Proceedings of the
Master and PhD Workshop on Software Engineering (WTDSoft), co-allocated
with CBSoft. Fortaleza, CE, 2017.

1.3 Dissertation Outline

This chapter present our motivation and introduce this dissertation. The remainder of
this document is organized as follow.

Capter 2: This chapter presents concepts to understand this study and related
works that explore software domains, software metrics and methods to derive metric
thresholds. We explore how previous studies addressed software domains. We list
metrics used in this work and summarize methods to derive thresholds presenting our
perspective on all these concepts.
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Capter 3: This chapter proposes our method to derive domain-sensitive metric
thresholds. This chapter also presents the method process and its composing steps.
It shows a tool, called TWarning, which automates the proposed domain-sensitive
threshold derivation method and presents the qualitative evaluation for the method
proposed.

Capter 4: This chapter illustrates an example of use of the proposed method in
a benchmark composed of mobile applications. We present our experimental steps and
research questions to evaluate this method. We also present the thresholds derived by
our method using the mobile benchmarks. Furthermore, we present the variation of
thresholds for different mobile domains, compare our method results using the coeffi-
cient of variation and discuss the similarities and differences between domains.

Capter 5: This chapter evaluates the method using desktop and Web software
systems from many domains. First, we describe our research questions and experimen-
tal steps and, then, we explain how we built our benchmarks. Moreover, we describe
how we perform the measurement and domain metric threshold derivation and present
the metric thresholds. Finally, we discuss the derived domain thresholds and evaluates
whether domain thresholds are better to find code smells.

Capter 6: This chapter presents some potential threats to validity that we
discuss and presents the main actions we have taken to mitigate their impact on the
research results.

Capter 7: This chapter presents our final considerations and main conclusions
about the proposed method and its results. In addition, we present our contributions,
and directions for future works.



Chapter 2

Background and Related Work

This chapter presents concepts to understand this study and related works that explore
software domains, software metrics and method to derive metric thresholds. Section 2.1
discusses how previous studies address software domains. Section 2.2 lists the metrics
used in this work. Section 2.3 summarizes methods to derive thresholds. Section 2.4
brings our perspective on all these concepts.

2.1 Software Domains

Previous studies [Linares-Vásquez et al., 2014; Murphy-Hill et al., 2014; Ray et al.,
2014; Silva et al., 2013] have grouped systems based on similar characteristics in do-
mains. The results indicated domains as a factor to better understand some analysis.
For instance, Linares-Vásquez et al. [2014] grouped systems into 13 domains to in-
vestigate the relationships between the presence of smells and quality-related metrics.
Murphy-Hill et al. [2014] compare game development with development of systems
from other domains. Ray et al. [2014] grouped systems in 7 different domains to check
whether language defect proneness is related with the software domain. These studies
investigated software quality in specific domains.

Another study conducted an industry multi-project study [Silva et al., 2013] to
evaluate the reusability of detection strategies in systems of a specific domain. They
evaluated the degree of reuse for anomaly detection strategies based on the judgment
of domain specialists. This study revealed that even though the reuse of strategies in a
specific domain should be encouraged, their accuracy is still limited when holistically
applied to all the modules of a program. However, the accuracy and reuse were both
significantly improved when the metrics, thresholds, and logical operators were tailored
to each recurring concern of the domain. Like these studies, we share the idea that

7



8 Chapter 2. Background and Related Work

systems from the same software domain have distinct characteristics leading to specific
measures and different thresholds to characterizing their entities.

2.2 Software Metrics

Object-oriented software metrics are used to capture different attributes of systems,
such as size, complexity, cohesion, and inheritance relationships. In this study, we in-
vestigate domain-specific thresholds using eight well-known metrics. To measure size:
Lines of Code (LOC), Number of Attributes (NOA), and Number of Methods (NOM).
Complexity was measured with: Weighted Method per Class (WMC), Coupling be-
tween Objects (CBO) and Lack of Cohesion over Methods (LCOM). For inheritance:
Depth of Inheritance Tree (DIT) and Number of Children (NOC). By applying these
metrics, it was possible to access different quality attributes of software systems, such
as maintainability and changeability [Chidamber and Kemerer, 1994; Lanza and Mari-
nescu, 2007; Lorenz and Kidd, 1994]. To automate the measurements we used CK
Metrics tool [CK Metrics, 2018] to extract software metrics, this tool is open-source
and was written in Java to measure one system at time. We executed a script to
measure all systems.

Table 2.1 presents the metrics, showing their names and a brief description. We
choose these metrics because: (i) they capture different attributes of software systems,
such as size and complexity; (ii) they are well-known object-oriented software metrics
[Kitchenham, 2010]; and (iii) they have been often used by researchers and practitioners
to measure several anomalies in components and quality attributes [Chidamber and
Kemerer, 1994; Kitchenham, 2010].

Size metrics helps to access software dimensions, which can be size of a file or
amount of elements, among others. Lines of Code (LOC) indicates the size of a class,
measuring the number of lines of code per class without comments or blank lines
[Lorenz and Kidd, 1994]. Weighted Method per Class (WMC) counts the number of
methods in a class weighting each method by its cyclomatic complexity [Chidamber
and Kemerer, 1994]. Number of Methods (NOM) quantifies the number of methods
or constructors and Number of Attributes (NOA) counts the number of fields or class
variables. These metrics are mainly used to estimate the size of a class.
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Table 2.1. Software Metrics
Metric Description

Size

Lines of Code (LOC) Measures the number of lines of code per class, it counts neither
comment lines nor blank lines.

Number of Attributes (NOA) Quantifies the number of fields and constants in a class.
Number of Methods (NOM) Quantifies the number of methods and constructors in a class.

Complexity

Weighted Method per Class (WMC) Counts the number of methods in a class weighting each method
by its cyclomatic complexity.

Lack of Cohesion in Methods (LCOM) Divides (i) the pairs of methods in a class that do not access any attribute by
(ii) the pairs of methods in a class that do access attributes in common.

Coupling Between Objects (CBO) Counts the number of classes that are coupled to a class, by
calling methods or accessing attributes of the other classes.

Inheritance

Depth of Inheritance Tree (DIT) Counts the number of levels that a subclass inherits methods and attributes
from a superclass in the inheritance tree.

Number of Children (NOC) Counts the number of direct subclasses of a given class. This metric
indicates software reuse by means of inheritance.

Coupling, cohesion and complexity metrics are related to complexity and number
of possible changes of flow in classes. Coupling between Objects (CBO) counts the
number of classes called by a given class, measuring the degree of coupling among
classes based on method calls and attribute accesses [Chidamber and Kemerer, 1994].
Lack of Cohesion over Methods (LCOM) measures the cohesion of methods of a class
in terms of the frequency that they share attributes. To calculate this metric, we first
get the pairs of methods in a class that do not access any attribute in common and
then we subtract by the pairs of methods in a class that do access attributes in common
[Chidamber and Kemerer, 1994].

With respect to inheritance metrics, Depth of Inheritance Tree (DIT) counts the
number of levels that a subclass inherits methods and attributes from superclasses in
the inheritance tree of the system. This metric estimates the class complexity with
respect to its inheritance relationships. Number of Children (NOC) counts the number
of direct subclasses of a given class. This metric indicates software reuse by means of
inheritance [Chidamber and Kemerer, 1994].

2.3 Methods to Derive Thresholds

Thresholds allow us to objectively characterize or classify each component according
to one of the quality metrics. The effective use of software metrics depends on the
definition of the corresponding thresholds. Thresholds have been calculated on the basis
of experience of software engineers or with a single system as a reference [Chidamber
and Kemerer, 1994]. In recent years, methods have been proposed using a set of systems
to derivate thresholds.
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Programming Experience. Programming experience were used to obtain
thresholds by Coleman et al. [1995]; McCabe [1976]; Nejmeh [1988]. For instance,
Coleman et al. defined the values 65 and 85 as thresholds for Maintainability Index
(MI). When MI values are smaller than 65, they are considered as highly maintainable,
between 65 and 85 as moderately maintainable, higher than 85 as difficult to maintain.
McCabe defined the values 10 for McCabe Complexity and Nejmeh defined 200 for
NPATH metric as thresholds. These values can be used to indicate whether there are
code smells. Thresholds based on programming experience are appropriately applied
in specific cases. These threshold values are arbitrary and the lack of scientific support
often leads to divergences. However, unlike these papers [Coleman et al., 1995; Mc-
Cabe, 1976; Nejmeh, 1988], our research does not aim to propose a method to derive
thresholds based on programming experience.

Metric Analysis. Erni and Lewerentz [1996] proposed thresholds (T ) that use
mean (µ) and standard deviation (σ) from software data. A threshold is calculated
using equations, T = µ+ σ and T = µ− σ when high and low values of a metric indi-
cate potential design problems, respectively. Lanza and Marinescu [2007] use a similar
method in their research for 45 Java projects and 37 C++ projects. However, they
use four labels: low, mean, high, and very high. Labels low, mean, and high are calcu-
lated in the same way as Erni and Lewerentz [1996]. Label very high is calculated as
T = (µ+σ)× 1.5. Abílio et al. [2015] use the same method than Lanza and Marinescu
[2007], but they derive thresholds for eight Software Product Lines. These methods
rely on a common statistical technique. However, Erni and Lewerentz [1996]; Abílio
et al. [2015]; Lanza and Marinescu [2007] do not analyze the underlying distribution
of metrics. These methods assume that metrics are normally distributed, limiting the
use of these methods. In contrast, our research focuses on a method that does not
make assumptions about data normality [Vale and Figueiredo, 2015; Vale et al., 2018].
In addition, we take into consideration the functional domain of the target software
systems. French [1999] also proposes a method based on the mean and standard de-
viation. However, French used the Chebyshevś inequality theorem (whose validity is
not restricted to normal distributions). A metric threshold T can be calculated by
T = µ + kxσ, where k is the number of standard deviations. For metrics with high
range or high variation, this method identifies a smaller percentage of observations
than its theoretical maximum. Herbold et al. [2011] propose a method for threshold
derivation that does not depend on the context of the collected metrics, e.g., the target
programming language or abstraction level. For this purpose, the authors rely on ma-
chine learning and data mining techniques. Finally, Perkusich et al. [2015] propose a
method to support the interpretation of values for software metrics. Instead of deriving
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thresholds that indicate acceptable values for a metric, their proposed method relies
on Bayesian networks that consider subjective factors of software development. Thus,
their method aims to support managers in minimizing wrong decisions based on soft-
ware measurement and assessment. In contrast to French [1999]; Herbold et al. [2011];
Perkusich et al. [2015], our method was designed to derive thresholds from benchmark
data and, as such, it is resilient to high variation of outliers. In addition, we did not
use Chebyshevś inequality theorem, machine learning, or Bayesian networks. We focus
on the domain of the software systems that compose the benchmark.

Metric Distributions. The method proposed by Chidamber and Kemerer
[1994] uses histograms to characterize data. They plotted histograms for each of their
6 software metrics per programming language. Analyzing the metrics distribution they
spotted outliers in C++ and Smalltalk systems. Spinellis [2008] compares metrics of
four operating system kernels (i.e., Windows, Linux, FreeBSD, and OpenSolaris). For
each metric, boxplots of the four kernels are put side-by-side showing the smallest ob-
servation, lower quartile, median, mean, higher quartile, the highest observation, and
identified outliers. The boxplots are then analyzed by the author and used to give
ranks, + or - to each kernel. However, as the author states, the ranks are given sub-
jectively. Vasa et al. [2009] propose the use of Gini coefficients to summarize a metric
distribution across a system. The analysis of the Gini coefficient for 10 metrics using
50 Java and C# systems revealed that most of the systems have common values. More-
over, higher Gini coefficient values indicate problems and, when analyzing subsequent
releases of source code, a difference higher than 0.04 indicates significant changes in the
code. In contrast to Chidamber and Kemerer [1994]; Spinellis [2008]; Vasa et al. [2009],
we did not use histograms, mean, median, or Gini coefficient to calculate thresholds
and we derive thresholds based on data from a benchmark of systems from the same
domain.

Benchmark-based. This section describes methods closer to ours because they
are transparent, the thresholds are extracted from benchmark data, and the methods
consider the skewed distribution of metrics. However, as far as we are concerned, none
of these methods considers the domain of the analyzed software systems. For instance,
Alves et al. [2010] proposed a method that weights software metrics by lines of code
and aim at labelling each entity of a system based on thresholds. Each label is defined
based on a pre-determined percentage of entities. This method proposes 70, 80, and
90% to represent the following labels: low (between 0 and 70%), moderate (70 - 80%),
high (80 - 90%), and very high (>90%). Similarly, Ferreira et al. [2012] presented a
method for calculating thresholds. This method consists in grouping the extracted
metrics in a file and gets three groups, with high, medium, and low frequency. The
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groups are called good, regular, and bad measurements, respectively. The authors do
not make clear how to extract the three groups since they argue that the groups rely
on visual analysis. Vale and Figueiredo [2015] proposed a method based on lessons
learned from a comparison of other methods. Their method provides upper and lower
thresholds in four different labels: very low (0 - 3%, low (3 - 15%), high (90 - 95%), and
very high (>95%). Values between 15 and 90% are considered moderate or common.
In contrast to Alves et al. [2010]; Ferreira et al. [2012]; Vale and Figueiredo [2015]
methods, our method considers the intrinsic characteristics of software domains to
derive metric thresholds.

2.4 Concluding Remarks

This chapter provides an overview about domains, metrics and methods to derivate
thresholds. Methods derive thresholds from metric analysis, programmer experience
and using benchmarks that consider the skewed distribution of software metrics. Re-
cently, thresholds were derived from benchmarks and calculated using clearly defined
derivation methods. For example, Alves et al. [2010] suggested a method that weighted
software metrics through code lines. Similarly, Ferreira et al. [2012] group the extracted
metrics into one file and get three groups of high, medium, and low frequency (good,
regular and bad measurements).

Vale and Figueiredo [2015] method is benchmark-based, with a weak dependency
on the number of systems. The method computes the upper and lower thresholds in
a step-wise format and maintains the statistical properties of metrics. Unfortunately,
existing methods and tools to derive thresholds do not either consider the intrinsic
characteristics of software systems in each domain or provide a superficial analysis
on thresholds for software domains. That is, they ignore the fact that systems from
different domains may have different degrees of complexity and size, for instance. As
a result, even when a robust and pragmatic method is used, the derived thresholds
can be inappropriate. The next chapter proposes a method to derive thresholds that
considers benchmarks of systems from the same domain.



Chapter 3

Domain Threshold Derivation
Method

This chapter proposes a method to derive domain-sensitive metric thresholds; i.e.,
thresholds for systems of the same domain. The proposed method was designed to
follow guidelines from previous works (Chapter 2) [Alves et al., 2010; Ferreira et al.,
2012; Vale et al., 2015; Vale and Figueiredo, 2015]. These guidelines make the threshold
derivation based on data from a representative set of systems (namely benchmark). As
suggested by previous work [Vale et al., 2015; Vale and Figueiredo, 2015], the proposed
method has a strong dependence with the number of entities and a weak dependency
with the number of systems. Other relevant aspects of the proposed method are: It
calculates upper and lower thresholds, it is systematic and it guarantees the statistical
properties of the metrics. In addition to these points, the proposed method includes
a novel classification step to consider the system domain in order to compose the
benchmark. We argue that this step is important to achieve more reliable and higher
quality thresholds. Section 3.1 presents the method process and its composing steps.
Section 3.2 shows a tool, called TWarning, which automate the proposed domain-
sensitive threshold derivation method. Section 3.3 presents the qualitative evaluation
for the proposed method. Section 3.4 summarizes this chapter.

3.1 Method Steps

Figure 3.1 presents the main steps to the proposed method. The overall derivation
process starts with a set of systems and they are classified into benchmarks by separate
domains (Step 1). Steps 2 to 5 are executed for each domain-benchmark, composed of
the classified systems. As a result, each domain has a derived set of thresholds. We
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further describe each step below.
1. Classification: The systems are separated in domain and grouped to compose

a benchmark labeled by the domain name. This process can be performed manually or
automatically, for instance, using system artifact (e.g., entity names, description files,
and others).

2. Compute Metrics: Software metrics are computed for each entity from the
benchmark of systems from the same domain. By entity, we mean this method can
be applied to architectural components, classes, or methods. The results are compiled
into a file in which the first column represents the domain, the second has the entity
name followed by other columns with the metric names. The rows are instances of the
computed metrics.

3. Entity Weight Ratio: Each benchmark has different number of entities,
making necessary to compute the entity weigh ratio to find how much an entity can
represent in a specific domain. We compute entity weight percentage in the domain
dividing the entity weight by the sum of all entities weights of the same domain and
multiply by one hundred. All entities have the same weight and the sum of all entities
must be 100% for a given domain. For instance, if one benchmark has 1,000 entities,
each entity represents 0.1% of the overall domain (0.1%× 1, 000 = 100%).

4. Entity Sorting: The method ascending sorts entities by their weight. That
is, we take the maximal metric value to represent a specific percentage. For instance,
all entities with LOC < 100 must come first than LOC > 100. This is equivalent
to computing a density function, in which the x-axis represents the weight ratio (0 -
100%), and the y-axis the metric scale.

5. Entity Grouping: After sorting, we want to represent the percentage of the
overall metric values by grouping thresholds with labels defined as very low (0 - 3%),
low (3 - 15%), moderate (15 - 90%), high (90 - 95%), and very high (>95%). These
labels were defined similar and based on the same argumentation of a previous work
[Vale et al., 2018], i.e., as software quality metrics normally have a skewed or (small)
common distribution, a large amount of entities will have small values and a small
number of entities will have large values. Therefore, to compensate it, the variation in
the percentages between the very low and low labels is larger than the variation between
the high and very high labels. In the next section where we present our method in
practice, it will be clearer how to use these labels. To advance, grouping using the
label high, 95% of the overall code for the LOC metric, the derived threshold for the
Connectivity domain is 309 (see details in Section 4.3). This threshold is meaningful
for systems of this domain, since it means that 95% of the Connectivity classes have
less than 309 lines of code. Note that this threshold might be different for systems of
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a different domain.

Figure 3.1. Domain Metric Threshold Method

3.2 TWarning Tool

TWarning is a tool that provides warnings based on domain-sensitive thresholds. It
Considers that classes belonging to a domain and exceeding the metric thresholds can
indicate a future anomaly. That is, this tool alerts the developer about domain-specific
classes that can become a future issue. The following sections presents the architecture
and design of this tool.

Architecture. TWarning is an Eclipse plug-in and its architecture is illustrated
in Figure 3.2. The Project module detects which project was selected in the default
Eclipse Project View, and provides to TWarning a reference to the selected project. The
Warning module receives the project reference and requests the metrics measurement
to the Metric module. CK Metrics tool calculates code metrics in Java projects by
means of static analysis and provide the metrics measurement [CK Metrics, 2018].
After receiving the measured metrics, the Warning module requests to the Thresholds
module to the domain-specific thresholds. The TWarning tool uses the domain-specific
thresholds derived in our work (see Chapter 5). Based on a set of properties chosen
by the developer (e.g., selecting E-Commerce domain and High label), an output is
generated and exhibited in the View module (see Figure 3.3). This View also offers
additional features to re-execute the metrics measurement and to configure domain
preferences.
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Figure 3.2. Architecture of TWarning.

Design and Implementation Decision. To issue warnings, developer must
run TWarning and search for the colored classes in the View, and continue to check
how to improve the class code. It is possible to see metrics, but the developer should
pay attention to which domain is selected to analyze your project, this will influence
the warnings. Figure 3.3 presents project domain selection and check-boxes to mark
the labels to be colored in the view. The default properties are Generic Thresholds
and Very High Label.

Figure 3.3. TWarning View and Project Properties.

The Threshold Warning View presents all project classes and the respective mea-
surements. Each measurement receives a color when the associated measured value
does not match with the configured thresholds. We adopted the following color scheme
to correlate the measured values with each category of thresholds (Very High, High,
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Low or Very Low). The dark blue color denotes the values that do not exceed Very
Low threshold. The light blue color, in turn, represents the values that exceed the
Very Low threshold. For instance, the class constant.HandType has a value for LOC
(4 LOC) that is lower than the Low threshold (considering the Game domain) but
do not exceed the Very Low threshold. Observe in Figure 3.3 that, in this case, the
respective value 4 LOC was colored in dark blue. On the other hand, the light red
color characterizes the measured values, which exceed the Very High thresholds, while
the dark red color represents the values that exceed High threshold but do not exceed
the Very High threshold. As an example, the class simulation.FailureSimulator2 has
a value for LOC metric (326 LOC) higher than the Very High threshold considering
the Game domain. Therefore, in the Threshold Warning View, this value was colored
as light red. The tool can be find in the supplementary website1.

3.3 Qualitative Evaluation

A previous study described eight desirable points for methods to derive metric thresh-
olds [Vale and Figueiredo, 2015]. These points motivated our method proposal (see
Section 2.3). Another previous study compared five related methods present in the lit-
erature [Vale et al., 2018]. This section complements these previous studies by compar-
ing our method to the two most similar threshold derivation methods, namely Alves’
and Vale’s methods. We extended the previous comparison including the proposed
method and the points highlighted in Section 2.3 related to the intrinsic characteristics
of software domains.

Table 3.1 highlights the main differences of Alves’ and Vale’s methods and the
proposed method. All three derivation methods - Alves’, Vale’s, and the proposed
method - recommend percentages to derive thresholds. However, the users must de-
cide if they use the recommended percentages or not and, because of that, they are
considered partially deterministic.

The methods in Table 3.1 also consider the metric distribution and they identify
step-wise outliers. Another similarity is that they all agree on the impact of entities
and systems, and they have tool support. On the other hand, only Alves’ method
correlates metrics for the threshold derivation. That is, it weights every metric by lines
of code (LOC), using the labels: low (between 0 and 70%), moderate (70 - 80%), high
(80 - 90%), and very high (>90%).

1Available at: https://github.com/Allan045/TWarning
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Table 3.1. Qualitative Evaluation of the Proposed Methods to Derive Thresholds

MethodsQuestion Alves Vale Proposed
Is it deterministic? Partially Partially Partially
Are step-wise outliers identified? Yes Yes Yes
Is the metric distribution considered? Yes Yes Yes
Does the number of entities impact? Strong Strong Strong
Does the number of systems impact? Weak Weak Weak
Does it correlate with other metrics? Yes No No
Lower bound thresholds? No Yes Yes
Does it provide tool support? Yes Yes Yes
Does it explicitly consider software domain? No No Yes
Is it iterative over benchmarks? No No Yes

Related to the impact of the number of systems and entities, unlike Alves’ method,
Vale’s and the proposed methods consider the number of entities more important than
the number of systems. The proposed method calculates lower bound thresholds, as
Vale’s method does. Furthermore, all methods have tool support since a recently
developed tool, named TDTool [Veado et al., 2016], supports both Alves’ and Vale’s
methods. Our method is also supported by an open source tool (Section 3.2), named
TWarning, which extends the Eclipse IDE to show thresholds warnings.

One of the main difference between the proposed method and others is the clas-
sification of systems into domains. It leads to thresholds that consider specific char-
acteristics of the systems, such as the intrinsic complexity of geo-localization systems
[Mori et al., 2018]. On the other hand, the other evaluated methods let it to the user
when they are building their benchmark. In addition, neither Alves’ nor Vale’s meth-
ods mentioned software domains when describing their method. Hence, we consider
that Alves’ and Vale’s methods do not explicitly consider them. Another difference
of the proposed method and the two evaluated methods is that the proposed method
is iterative in the benchmarks. That is, since more than one benchmark is expected
to be available (e.g., one for each domain), the proposed method iterates over the
benchmarks in order to calculate domain-specific thresholds for each metric.

3.4 Concluding Remarks

This chapter proposed a method to derive domain-sensitive metric thresholds. The
method derives thresholds with a classification step to consider the system domain
in order to compose the benchmark. We argue that this step is important to more
appropriate to derive thresholds in a domain-specific context. Inspired by a previous
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method [Vale et al., 2018], the proposed method calculates upper and lower thresholds,
it is systematic and it guarantees the statistical properties of the metrics.

We also perform an qualitative evaluation comparing characteristics of the pro-
posed method with 2 other methods. In this analysis we highlight the differences of
our method to two recently proposed methods, including explicitly differentiation of
domains from different domains when building benchmarks. In addition, a tool to
support the proposed method. TWarning, an Eclipse plug-in to detect warnings based
on domain-sensitive metric thresholds. We described the architecture of the tool and
its main features. Our tool provides a straightforward approach to help the devel-
oper write better code from start by providing a view with class metrics and warnings
considering the software domain. In the next chapter we quantitatively evaluate this
method for mobile domain benchmarks.





Chapter 4

Evaluation of Mobile Domain
Thresholds

The method proposed can be applied in different ways, such as using SIG quality model
[Heitlager et al., 2007], using metrics individually, or using a metric-based detection
strategy [Marinescu, 2004]. This chapter illustrates an example of use of the proposed
method in a benchmark composed of mobile systems. Next chapter presents a similar
evaluation with enterprise systems. Before the method being applied, it is necessary to
measure the systems. CKMetrics tool [CKMetrics, 2018] is used to extract the software
metrics and then we applied the method to obtain domain-sensitive thresholds used
in this evaluation. Section 4.1 presents our research questions and experimental steps.
Section 4.2 explains how we built the benchmarks. Section 4.3 presents the thresholds
derived by our method for the subject metrics (Section 2.2) using the benchmarks
(Section 4.2). Section 4.4 presents the variation of thresholds for different mobile
domains. Section 4.5 compares our method results using the coefficient of variation.
Section 4.6 discusses the domain similarity and differences by clustering the thresholds
in levels. Finally, Section 4.7 concludes this chapter and revisits some of the results.

4.1 Research Questions and Experimental Steps

This evaluation aims to investigate whether metric thresholds vary across mobile
systems of different software domains and how they vary across domains. We assume
that mobile systems from distinct domains have some diverse characteristics, affecting
the systems and measures, so it may impair the derived thresholds. We defined four
research questions (RQs) as follows.

21
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RQ1. Do thresholds for the same metric vary among different mobile domains?
RQ2. How much thresholds vary between domains?
RQ3. Are there similarity between thresholds levels regardless of the mobile domain?

Regarding the empirical steps, Fig. 4.1 presents an overview of this study de-
scribed below. First, we built our dataset by mining open-source systems from Fos-
sdroid [Fossdroid, 2018] (Step 1). We then measured the source code of each system
using CK Tool [CK Metrics, 2018] (Step 2). Once measured all systems, we derived
metrics thresholds with domain threshold method(Step 3). Finally, we analyzed the
results and evaluated domain-specific thresholds (Step 4).

Figure 4.1. Experimental steps for the analysis of mobile domain thresholds.

4.2 Benchmark of Mobile Systems

We mined ten mobile systems for each of the ten different software domains to build the
domain benchmarks. We choose mobile systems to compose our benchmarks because:
(i) mobile systems have been increasingly used; and (ii) these type of system (i.e.,
mobile applications) are often not explored by other studies to derive metric thresholds
[Alves et al., 2010]. To build the domain-benchmarks, we relied on a repository of open-
source Android mobile systems, namely Fossdroid [Fossdroid, 2018]. We performed
three steps to select the mobile systems. First, we decided which categories consider
as domains, based on close names of domains presented in other studies [Hubbard,
2014; Mori et al., 2018; Murphy-Hill et al., 2014]. We chose the following categories:
Connectivity, Development, Games, Internet, Money, Navigation, Phone & SMS and
Reading. Table 4.1 presents and describes the 10 mobile software domains explored in
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this study. Then, for each category, we selected the ten most popular mobile systems.
Popularity on Fossdroid is measure with amount of access and downloads. Third, we
manually verified whether each system source code is available on GitHub [Ray et al.,
2014]. We also investigated the existence of the selected system on Google Play Store.
We argue that systems on Play Stores in general have their domain verified. It is
important to note that the category of a mobile systems was defined by its developers.
The list of one hundred systems that compose our benchmarks can be find in the
supplementary website2.

Table 4.1. Description of Mobile Software Domains

Domain Description
Connectivity Mobile systems that synchronize information between server and client.
Development Systems that implement simple development tools (i.g. code editor).
Games Mobile systems that provide entertainment.
Internet Browsers and Web related systems.
Money Systems that provide vision and account management
Navigation Mobile systems that access geolocation sensors and show map information.
Phone & SMS Systems that manage phone calls and exchange SMS messages.
Reading Reader applications, dictionaries and text related systems.
Science & Education Mobile systems to share science knowledge.
Sports & Health Systems to track the user health data and timers.

4.3 Derived Thresholds

This section presents the derived thresholds we obtained using the proposed domain-
sensitive method (Chapter 3). Table 4.2 illustrate the method in practice based on
the seven metrics presented in Section 2.2 and on the benchmarks presented in Section
4.2. Only the key percentage values of the proposed method are presented. For exam-
ple, the proposed method presents five labels, but these labels are established in four
percentages, like related work did [Alves et al., 2010; Vale et al., 2018]. Hence, Table
4.2 shows just the values that represent the percentages. This table should be read as
follows: the first row of each partition represents the domain, the first column shows
the different domain labels and the other columns indicates the thresholds of LOC,
NOA, NOM, WMC, LCOM, CBO, and DIT, respectively. For example, the labels for
CBO to the Connectivity domain are defined for very low (0 - 3%), low (3 - 15%),
moderate (15 - 90%), high (90 - 95%), and very high (>95%) as the intervals 0 - 1; 1
- 3; 3 - 23; 23 - 31, and >31, respectively.

2Available at: https://github.com/Allan045/MSc-Data
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Table 4.2. Mobile Threshold from the Proposed Method

LOC NOA NOM WMC LCOM CBO DIT
Connectivity (Conn.)

0-3% 11 0 1 1 0 1 1
3-15% 31 0 2 2 0 3 1
90-95% 227 9 17 43 103 23 3
>95% 309 14 25 67 204 31 4

Development (Dev.)
0-3% 17 0 0 0 0 0 1
3-15% 34 0 2 3 0 3 1
90-95% 259 14 16 52 86 27 4
>95% 376 20 22 75 197 35 6

Games (Gam.)
0-3% 6 0 1 1 0 0 1
3-15% 21 0 2 3 0 2 1
90-95% 369 19 27 82 231 27 4
>95% 591 29 41 144 496 35 5

Internet (Int.)
0-3% 7 0 1 1 0 1 1
3-15% 23 0 2 3 0 3 1
90-95% 399 16 26 87 231 32 3
>95% 606 27 41 140 636 45 4

Money (Mon.)
0-3% 7 0 0 0 0 0 1
3-15% 16 0 1 2 0 3 1
90-95% 252 11 17 46 88 27 3
>95% 391 17 24 74 190 36 4

Navigation (Nav.)
0-3% 12 0 1 1 0 0 1
3-15% 36 0 3 4 0 3 1
90-95% 498 21 32 125 406 38 4
>95% 782 33 48 195 1017 52 5

Phone & SMS (Phone.)
0-3% 12 0 1 1 0 0 1
3-15% 27 0 1 2 0 2 1
90-95% 287 13 21 63 152 24 3
>95% 439 22 29 104 282 31 4

Reading (Read.)
0-3% 7 0 1 1 0 0 1
3-15% 18 0 1 2 0 2 1
90-95% 380 15 24 91 246 31 4
>95% 585 22 32 142 605 45 5

Science & Education (Edu.)
0-3% 12 0 0 0 0 0 1
3-15% 28 0 1 2 0 1 1
90-95% 467 17 26 85 219 29 3
>95% 733 26 36 155 516 40 4

Sports & Health (Sport.)
0-3% 11 0 1 1 0 0 1
3-15% 32 0 2 3 0 3 1
90-95% 255 13 18 46 90 25 3
>95% 376 18 24 74 217 33 4
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4.4 RQ1: Variation of Thresholds for Different

Domains

This section quantitatively evaluates the proposed method aiming to investigate if
thresholds for the same metrics vary on different software domains (RQ1). For this
evaluation, we compare the difference between the higher and the lower thresholds.
Table 4.3 presents differences between thresholds for each metric, the lowest to the
highest thresholds among the 10 domains of Table 4.2. It also shows, between paren-
theses, how many times the highest threshold is greater than the lowest threshold.
For instance, the lowest 95% threshold for the LOC metric is 227 (see Connectivity in
Table 4.2), while the highest 95% threshold for the LOC metric is 498 (see Navigation
in Table 4.2). The difference is that the Connectivity threshold for LOC is 2.2 times
higher than the Navigation threshold in this case. Results in Table 4.3 show that the
investigated thresholds largely vary for all metrics; except Depth of Inheritance Tree
(DIT), which have smaller range. Apart from DIT, all metrics have a significant vari-
ation in the 90% and 95% thresholds; i.e., higher than 1.5 times. The metrics with
higher threshold variations are LCOM and WMC. The rate between the highest and
the lowest thresholds in a domain is about 3 to 5 times higher for these two metrics.
This large difference between the highest and lowest thresholds suggests that LCOM
and WMC are highly sensitive to the software domain. Therefore, developers should
be aware of this variation when using thresholds for these metrics in software quality
evaluation. The rate between the highest and the lowest thresholds for LOC, NOA
and NOM is more than 2 times. This difference suggests that these metrics are not as
sensitive to the software domain as LCOM and WMC. Yet, a difference of twice can be
considered large, depending on the evaluation goal. The CBO metric is an interesting
case. The threshold of CBO presented a 1.7 times variation among domains for 90%
and 95%. For instance, the 95% thresholds of CBO varied between 31 and 52 (1.7
times) and most of times, 6 out of 10 domains, varied between 31 to 36. However,
CBO thresholds vary sharply (3 times) in the low values (15%).

4.5 RQ2: Coefficient of Variation for Thresholds

In this section, we answer the second research question. We compare our method
results using the Coefficient of Variation (CV) to determine the volatility of a threshold
value as a percentage. Coefficient of variation is the ratio of the standard deviation to
the mean. The higher the coefficient of variation, the greater the level of dispersion
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Table 4.3. Difference between Highest and Lowest Thresholds

% LOC NOA NOM WMC LCOM CBO DIT
17 - 6 0 - 0 1 - 0 1 - 0 0 - 0 1 - 0 1 - 13 (2.8) (n/a) (n/a) (n/a) (n/a) (n/a) (1.0)
36 - 16 0 - 0 3 - 1 4 - 2 0 - 0 3 - 1 1 - 115 (2.3) (n/a) (3.0) (2.0) (n/a) (3.0) (1.0)
498 - 227 21 - 9 32 - 16 125 - 43 406 - 86 38 - 23 4 - 390 (2.2) (2.3) (2.0) (2.9) (4.7) (1.7) (1.3)
782 - 309 33 - 14 48 - 22 195 - 67 1017 - 190 52 - 31 6- 495 (2.5) (2.4) (2.2) (2.9) (5.4) (1.7) (1.5)

around the mean. That is, more distinct are the metric thresholds. While the data
standard deviation must always be understood in the context of the data means, the
value of CV is independent of the unit in which the measurement was made. As a
result, it is a dimensionless number and allows comparison between distributions of
values whose scales of measurement are not comparable or have very different means
(i. e., different domains). For instance, this coefficient relates the standard deviation
of thresholds from different domains to the value of this estimate. The higher the value
of the coefficient of variation for thresholds, more distributed are the data, making
necessary a domain analysis as our method proposes. Table 4.4 presents the Coefficient
of Variation for thresholds using seven metrics and ten domains.

Calculating the mean of 95% LOC threshold for all domains is 518, which is near
to the Reading threshold (591). This label (95%) has a coefficient of variation of 31.5%.
Using the relative deviation and summing it with the mean, we obtain the value 681
for LOC threshold (518 + 31.5% = 681). This value is similar to Internet threshold
(606). Decreasing the coefficient of the mean, we find the threshold value 355, which is
close to Sports & Health threshold (376). Similar cases occur with other coefficients in
Table 4.4 and, so, it leads to consider domain in threshold analyses more appropriate.

Table 4.4. Coefficient of Variation for Domains Thresholds

CV LOC NOA NOM WMC LCOM CBO DIT
3% 33,6% (n/a) 69,0% 69,0% (n/a) 210,8% (n/a)
15% 25,8% (n/a) 39,7% 26,9% (n/a) 28,3% (n/a)
90% 26,6% 20,5% 23,3% 34,6% 53,5% 14,8% 15,3%
95% 31,5% 25,9% 27,8% 37,7% 62,1% 18,3% 15,7%
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4.6 RQ3: Similarity among Domains

This section discusses the third research question, which investigates about domains
similarity thresholds across domains. To answer this question, we cluster the thresholds
in three levels (low, medium, and high) to find similarity between domain thresholds.
Table 4.5 presents the similarity analysis of thresholds across different domains with
respect to each metric. The main reason for this analysis is to identify whether and
which domains can be grouped to promote larger benchmarks. In addition, if differ-
ent domains have similar thresholds for the same metric, it means that some metric
thresholds can be reused across domains [Fowler et al., 1999].

For this analysis, we cluster thresholds for each metric into three levels according
to how far from the mean these values were. Table 4.5 uses gray scale to indicate
domains (rows) with low, medium, and high thresholds for each metric (columns). In
Table 4.5, light gray boxes mean lower thresholds, gray boxes mean medium thresholds,
and dark gray boxes mean high thresholds. Based on Table 4.3, we jointly analyzed
both the 90% and 95% thresholds to determine if the metric threshold is low, medium,
or high for a domain. For instance, Navigation domain has high thresholds for 6 metrics
(LOC, NOA, NOM, WMC, LCOM, and CBO), and a medium threshold for DIT.

It is interesting to observe that Connectivity (Conn.) and Sports & Health
(Sport.) domains have the same levels of thresholds for all seven metrics (i.e., same
colors in corresponding boxes). This result means that these two domains are very
similar in terms of measurement. Therefore, if someone derives thresholds for a set
of Connectivity systems, these thresholds are expected to be reliable to be used for
code analysis of Sports & Health mobile systems, for instance. This similarity was
unexpected, but looking closer the systems in these domains we found functionalities
they have in common. One reason for this similarity is because both domains tend to
have systems that synchronize data with server. For instance, Connectivity systems
synchronize time, notifications and localization, and Sport & Health systems track the
user information and localization to synchronize this data with server. In addition, they
are usually simple and smaller systems as indicated by low threshold for all metrics.

Other pairs of similar domains in terms of metric thresholds are: (i) Navigation
and Internet, (ii) Science & Education and Games, and (iii) Reading, Phone & SMS
and Money. The explanation for similar thresholds vary in a case by case basis. For
instance, Navigation (Nav.) and Internet (Int.) in our dataset have some of the largest
and more complex mobile systems. Therefore, these domains share high thresholds for
most metrics. On the other hand, Science & Education (Edu.) and Games (Gam.)
tend to be heterogeneous, but both encompass complex algorithms as indicated by
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high WMC. For instance, Games often use massive computation for entertainment and
leisure purposes, while Science & Education must support a variety of knowledge and
make then accessible for a large range of interests. An interesting similarity is between
Reading (Read.) and Phone & SMS (Phone) systems. Although these domains deal
with different requirements, we observed that they share some similar levels for most
of the size metrics. For instance, Reading and Phone & SMS systems have LOC, NOA,
NOM and WMC with medium level. On the other hand, LCOM, CBO and DIT are
medium level for Reading and low level for Phone & SMS. This characteristic makes
them have similar levels in terms of size metrics and thresholds. This explanation can
also be given to the similarity between Money (Mon.) and Development (Dev.), but
they have low level for almost all metrics.

Table 4.5. Metrics Levels for 90% and 95% thresholds

LOC NOA NOM WMC LCOM CBO DIT
Nav.
Int.
Edu.
Gam.
Read.
Phone
Dev.
Mon.
Conn.
Sport.

4.7 Concluding Remarks

In this chapter, we evaluated the method to derive domain metric thresholds. We
validated the proposed method through quantitative analyses with mobile systems. We
manually mined one hundred mobile systems from GitHub and from ten distinguished
domains and analyzed the results. Furthermore, our quantitative analyses indicate
that thresholds vary for each domain and that the majority of the analyzed metrics are
domain-sensitive. By analyzing the coefficient of variation for domain thresholds, the
lower variation was about 15% on 90% for DIT, which was expected due smaller range
for this metric, and the higher variation was for LCOM with 95% (62%). In addition,
clustering domains with levels using the 95% thresholds range our results indicate some
domains share similarities. In chapter 6 we present some potential threats to validity
and the main actions we have taken to mitigate their impact on the research results.
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In the next chapter, we evaluate this method with benchmarks of desktop and Web
systems.





Chapter 5

Evaluation of Domains Thresholds
with Enterprise Systems

This chapter evaluates desktop software systems from many domains. Section 5.1
describes our research questions and experimental steps to evaluate desktop software
domains. Section 5.2 explains how we built our benchmarks. Section 5.3 describes
how we perform the measurement and domain metric threshold derivation. Section
5.4 presents the metric thresholds. Sections 5.5 to 5.7 discuss the derived domain
thresholds. Section 5.8 evaluates whether domain thresholds are better to find code
smell than generic thresholds. Finally, Section 5.9 concludes this chapter with our main
results.

5.1 Research Questions and Experimental Steps

This section presents the research questions to investigate: (i) whether metric
thresholds vary across systems of different software domains, (ii) if metric thresholds
vary across systems of different sizes, and (ii) if domain-specific thresholds are better
than generic thresholds for detecting code smells. We assume that some characteristics
of each domain affect the systems and measures, so they may impair the derived
thresholds. Given this assumption, we defined four research questions (RQs) as follows.
RQ1. Do thresholds for the same metric vary among different software domains?
RQ2. Are there metrics with the same thresholds regardless of the software domain?
RQ3. Does the system size impact on the derived thresholds?
RQ4. Are domain-specific thresholds better than general thresholds for detecting the
God Class code smell?

31
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We expect our findings to provide evidence that software domains and the system
size should be considered when building benchmarks, for instance, to identify code
anomalies. For example, inaccurate thresholds may influence negatively the derived
metric thresholds by providing meaningless values about singular software domain.
Regarding the empirical steps, Figure 5.1 presents an overview of this study described
below.

Figure 5.1. Experimental steps for thresholds analysis.

First, we built our dataset by mining open-source systems from GitHub (Step 1).
We then measured the source code of each system using CK Tool [CK Metrics, 2018]
(Step 2). Once measured all systems, we derived metrics thresholds (Step 3). Finally,
we analyzed the results and evaluated the effectiveness of domain-specific thresholds to
detect code smells compared to generic thresholds (Step 4). The first three steps are
described in the following two sections and the data analysis is described in Sections
5.4 to 5.8.

5.2 Selected Systems and Domain Classification

Table 5.1 presents and describes the 15 domains explored in this study with the number
of systems per domain (last column). We choose these domains for the following rea-
sons. First, they are well-defined in terms of requirements and, most of these domains
have been used in previous studies [Ferreira et al., 2012; Linares-Vásquez et al., 2014;
Murphy-Hill et al., 2014], therewith, we believe that they are representative. Second,
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they encompass several types of systems (e.g., frameworks and tools). Third, there is
a significant number of systems in these domains publicly available in GitHub.

Table 5.1. Description of Enterprise Software Domains

Domain Description Systems

Accounting (Acc) Systems that record and process accounting transactions, such as
accounts payable and receivable, payroll, and trial balance. 216

Business (Bus) Systems that implement validation, calculation, and law regulations of
business requirements, such as pricing, and inventory management. 368

Communication (Com) Systems that manage connections between server and clients,
using protocols to share information. 266

Development (Dev) Software tools that support developers to implement projects in general. 528
Dictionaries (Dic) Software tools used to translate a variety of languages. 130

E-commerce (EC) Systems in charge of supporting the transactions of products
buying and selling, as well as providing services to consumers. 34

Education (Edu) Systems used by students to manage their study life and by
school managers to administrate their schools. 165

Free Time (FT) Entertain systems or applications which provide information
for joy, such as travel information. 28

Games (Gam) Entertainment games that can be played alone or in collaboration. 452
Health (Hea) Systems that offer health-related services to people in general. 279
Home (Hom) Systems that control basic many home devices and services. 160

Localization (Loc) Show local information normally based on GPS. Some of them
display maps and location sensitive data for users. 70

Messaging (Mes) Systems that allow the users to send messages from one client to another. 66

Restaurant (Res) Systems that provide different services for both
managers and users of food houses. 326

Science & Engineering (ScE) Systems designed to aid users in several fields of science
and engineering, such as 3D visualization and data analysis. 19

Mining and Classification. We mined systems from GitHub to compose our
dataset in October 2017. For each domain, we collected up to 1,000 systems by au-
tomatically searching the project name and description for keywords that match the
domain name. For instance, we collected 34 e-commerce systems by searching for
"e-commerce" or "ecommerce". Whenever more systems have been returned by the
GitHub search, we selected the first 1,000 systems in the descending order of stars. In
GitHub, stars are a meaningful measure for repository popularity. We developed and
iteratively tested a script that automatically searches relevant systems and applies a set
of criteria. For instance, we excluded systems with less than 1,000 lines of code because
we considered them toy examples or incipient software projects. In addition, we focus
in Web and Desktop-based Java systems and, therefore, we removed other projects
(e.g., mobile applications) because they tend to have a different architectural design.
Finally, we manually validated the collected systems by checking the projectname
and readmefile and excluded the wrongly classified systems. As a result, the dataset
used in this study includes 3,107 software systems in the 15 domains, with at least 19
systems per domain (Science & Engineering). The list of systems that compose our
benchmarks can be find in the supplementary website3.

3https://github.com/Allan045/MSc-Data
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Table 5.2 summarizes the descriptive statistics of our dataset focusing on the
source lines of code per domain (excluding code of test cases). The software systems
diverge largely in lines of code, while the smallest software system in every domain
has about 1,000 LOC (due to the criteria described above), the largest system by
domain vary from about 26,633 LOC in the E-Commerce domain to over 7 MLOC
in the Business domain. We can also observe a considerable variance (i.e., standard
deviation) and that data do not follow a normal distribution. In fact, all domains
follow a right skewed distribution for lines of code. This considerable difference among
domains corroborates with our assumption that systems in one domain might be more
complex than systems in other domains, for instance. Therefore, metric thresholds
should be tailored to each specific domain.

Table 5.2. Lines of Code per System Domain

Domain Min Max Mean Median SD
Acc 1,003 1,938,805 83,358.40 4,984.00 308,705
Bus 1,011 7,822,498 130,576.84 6,402.50 775,924
Com 1,006 1,351,323 37,604.28 5,042.00 125,571
Dev 1,153 1,498,869 69,427.47 16,931.50 161,548
Dic 1,016 472,642 14,307.52 3,556.00 47,759
EC 1,104 26,633 6,298.76 3,133.50 7,340
Edu 1,025 1,170,720 26,440.87 5,204.00 102,034
FT 1,047 28,422 45,509.96 4,511.00 84,510
Gam 1,009 546,748 17,989.02 4,877.50 49,593
Hea 1,025 1,446,807 27,161.00 4,790.00 109,779
Hom 1,022 299,898 29,538.95 9,119.50 53,988
Loc 1,054 859,393 40,062.38 12,015.50 110,307
Mes 1,000 160,297 14,648.90 3,891.00 29,912
Res 1,063 151,814 7,639.50 2,951.50 18,216
ScE 1,028 439,747 36,939.84 8,649.00 100,668
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Table 5.3. Number of Classes per System Domain

Domain Min Max Mean Median SD
Acc 3 10,125 349.07 50.00 1061.97
Bus 1 12,470 471.92 65.50 1624.18
Com 3 8,379 249.99 49.00 753.12
Dev 3 8,735 472.20 167.50 962.62
Dic 4 2,296 87.76 30.00 234.74
EC 7 301 80.52 46.00 83.86
Edu 2 5,641 225.33 66.00 586.22
FT 10 2,128 296.67 42.00 564.69
Gam 1 2,439 116.40 45.00 221.61
Hea 3 5,322 186.50 51.00 592.33
Hom 4 2,798 238.14 83.50 426.75
Loc 4 4,041 222.97 57.50 540.42
Mes 1 980 100.00 44.50 192.06
Rest 4 1,263 62.31 35.00 114.14
ScE 12 1,528 184.42 78.00 358.14

Similar to Table 5.2, Table 5.3 shows descriptive statistics for the number of
classes in systems of each domain. In general, we can observe a considerable difference
among systems inside a domain. For instance, while the median is 167.50 classes in
the Development domain, the largest system in this domain has more than 8K classes.
Considering the median per domain, Development has the largest systems in terms of
classes and Dictionary has the smallest ones. On the other hand, the largest system,
in terms of number of classes, belongs to the Business domain, containing more than
12K classes. Based on these observations, it is also expected that the variation among
domains reflects in software metrics and in their thresholds.

5.3 Measurement and Threshold Derivation

We investigate domain-specific thresholds using eight metrics, we added Number of
Children metric to compare with Depth of Inheritance Tree. We used a measurement
tool to compute the source code metrics, [CK Metrics, 2018]. CK tool measures Java
programs by means of static analysis and it supports all metrics used. To derive domain
thresholds we follow the method presented in Chapter 3. In this chapter, we focus only
on top-threshold values (i.e., 90% and 95%) because the differences are higher for these
labels making the analysis more applicable as we noted in Chapter 4.
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5.4 Desktop Domain Thresholds

This section presents the derived thresholds for each domain on the dataset presented
in Section 5.2. Table 5.4 shows the threshold values for 90% and 95% for each software
metric and domain analyzed. We classify domains with similar characteristics into
four categories to make our discussions more direct and to support us answering RQ1,
RQ2 and RQ3 in the next sections. The following topics describe the four categories.

Table 5.4. Metric Threshold per Domain Group

All High High Size High Complexity All Low
Metric % Acc Bus ScE Gam Hea Mes Rest Dev FT Dic Loc Com EC Edu Hom

90 541 527 456 310 289 296 255 287 314 337 345 303 160 238 248LOC 95 981 928 718 491 442 447 382 450 464 575 589 467 232 378 403
90 14 12 11 11 10 11 12 8 9 11 10 10 8 9 8NOA 95 21 21 19 18 16 18 19 13 14 17 17 16 11 14 13
90 34 30 23 20 19 18 18 19 19 21 21 18 17 19 17NOM 95 46 53 36 31 29 27 25 29 29 33 31 26 24 29 27
90 123 98 88 59 43 52 41 51 49 63 75 52 30 43 44WMC 95 236 232 148 100 73 81 62 86 80 111 132 92 49 73 76
90 317 253 148 120 136 126 134 117 104 136 159 85 91 120 91LCOM 95 741 742 392 330 351 344 256 302 276 405 378 219 218 311 248
90 15 16 16 13 15 12 11 15 16 15 15 14 13 14 13CBO 95 23 23 23 18 20 18 15 22 21 22 21 20 17 20 19
90 3 4 4 4 3 5 6 4 4 5 4 4 2 3 3DIT 95 5 5 5 5 5 6 6 5 5 6 5 4 2 4 4
90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0NOC 95 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0

All High thresholds. As the name suggests, this category present high thresh-
olds for all analyzed metrics when comparing to derived thresholds of all domains
studied. Columns 3 to 5 of Table 5.4 present the thresholds for the three domains
(Accounting, Business and Science & Engineering) that composes this category. These
data show that the 5% largest classes (i.e., 95% threshold), in Accounting systems have
981 or more lines of code. Interestingly, the 95% threshold for Business is very similar
to Accounting, that is, 928 lines of code. We speculate that the similarity of Accounting
and Business systems might be because these domains involve heterogeneous systems
in broader trade fields. In addition, systems in this category tend to be large and com-
plex. For instance, 10% classes in Accounting systems with the highest lack of cohesion
(i.e., 90% threshold) present LCOM equals or higher than 317. This value is the high-
est 90% threshold for LCOM among all domains. The reason for this lack of cohesion
in Account systems might be due to the several unrelated functionalities controlled by
this kind of systems. For instance, Account systems deal with several changes of tax
and rules. We believe that these types of functionalities are loosely coupled, which
might result in low cohesive systems. In the Science & Engineering domain, thresholds
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are not the highest ones for any metric, compared to the other domains of this category.
However, these values are still high for LOC, NOM and WMC compared to domains
in other categories (see Table 5.4). In fact, Science & Engineering systems usually
involves complex or extensive computations increasing lines of code and complexity.
Therefore, these systems naturally belong to this category.

High size thresholds. This topic discusses thresholds derived for domains with
large classes (i.e., many Lines of Code and Number of Methods), but low complexity
(i.e., few Weighted Method per Class and Coupling Between Objects) when compared
to the systems of our dataset. This category includes four domains: Games, Health,
Messaging, and Restaurant. Table 5.4 also shows the threshold values for these four do-
mains in columns labeled High Size Thresholds. Comparing thresholds of the previous
category with the ones in this category, we observe that thresholds do not vary much
for the size metrics (LOC, NOA, and NOM). For instance, all eight domains in these
categories have 18 attributes or more for the 95% NOA metric threshold; the exception
is Health systems with a 16-attribute cut for 95% threshold. In general, systems in
these categories also have more lines of code than systems in the other two categories
(see next topics). For instance, apart from Restaurant, the systems from this category
show more than 382 LOC for the top-5% largest classes. Classes in Restaurant systems
are not much large in terms of LOC, but they have high threshold values for the other
size metrics (i.e., NOA and NOM). Hence, we decide to classify this domain in this
category instead of the last one (low thresholds).

Systems in this category are not highly complex in terms of coupling (CBO),
cohesion (LCOM), and weighted methods by cyclomatic complexity (WMC) when
compared to the first category. For instance, while the 95% thresholds of LCOM are
above 600 for three out of four domains in the previous category, they are below 400
for four domains in this category. These results can be explained by the fact that
systems in this category usually involve simple, yet large, functionalities. In addition,
some of these domains, such as Messaging and Restaurant, usually involve a clear set of
simple requirements; i.e., message and media exchange for messaging systems or order
registration and inventory management for restaurant systems.

Health and Games systems have some particularities because they present high
coupling and high cyclomatic complexity, respectively, compared to the other domains
in this category. We speculate that Health systems present higher CBO thresholds
because they might involve several cases (e.g., many symptoms) to reach a conclusion
(e.g., a disease). Therefore, these systems seem highly coupled to other classes, such
as domain-specific API classes, using an initial code to provide the basic structure and
requirements. In the Games domain case, the result is expected since games usually are
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computationally extensive involving long if-then-else statements (or worst, long switch-
case statements) [Murphy-Hill et al., 2014]. In fact, we verified that methods in games
are commonly large and complex, although each class has few methods. Therefore,
this common practice for gaming development contributes to higher WMC values, but
lower values for LCOM and NOM.

High Complexity. The current category includes domains with small classes,
yet high complexity. Four domains fall into this category: Development, Free Time,
Dictionary, and Localization. Columns labeled High Complexity in Table 5.4 present
the thresholds derived for systems of this category. Software systems in this category
usually have classes with high thresholds for complexity metrics, although thresholds
are not very high for size metrics. For instance, the 5% largest classes in systems of
this and the previous category have about 450 or more lines of code. Hence, they have
similar size in terms of LOC. On the other hand, systems in this category are more
complex than systems of the previous category at least in CBO metrics. If we observe
the 95% thresholds for CBO, for instance, we see that these values are always higher
than 21 in this category and lower than 21 in the previous category.

It is interesting to observe, however, that Dictionary and Localization domains
have some commonalities since they present similar variation of thresholds for all met-
rics in general. For example, the 10% and 5% classes with the highest complexity in
Dictionary domain present WMC very similar to the ones in Localization domain; That
is, around 63 and 111, respectively. In contrast, despite being in the same category,
Development systems often have lower thresholds than Dictionary and Localization
systems for all metrics. We decided to classify Development in the current category,
instead of the last one, because systems in this domain seem more complex than sys-
tems in the last category for at least two out of three complexity metrics (WMC and
CBO).

All Low Thresholds. This category consists of domains with low thresholds
for most of the eight metrics compared to the other domains and categories. It is
composed by four domains (Communication, E-Commerce, Education, and Home)
presented in the last four columns of Table 5.4. In particular, size metrics have lower
thresholds with respect to the first and second categories, while complexity metrics
have lower thresholds compared to the first and third categories. Communication and
Home domains have larger systems in terms of LOC than E-Commerce and Education,
the other two domains in this category. For instance, the first two domains have more
than 403 LOC defined for the 95% threshold, while the last two have 232 LOC and 378
LOC, respectively. This observation suggests that E-Commerce and Education share
the common characteristics of holding the smallest classes in terms of LOC considering
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all 15 analyzed domains.
Although not as small and simple as E-Commerce and Education, the Communi-

cation and Home domains also have small and simple classes. Classes in these domains
have a particularly small number of methods and attributes, when compared to other
domains. For instance, focusing on the 90% thresholds in Table 5.4, we observed that
Communication and Home domains have classes with up to 18 and 17 methods (NOM),
respectively. Their 90% threshold values are 10 and 8 attributes (NOA), respectively.
These two domains also have simple classes in terms of WMC and LCOM. With re-
spect to coupling, these domains are in the middle; i.e., neither the lowest nor the
highest thresholds for CBO. This result is somehow expected for Communication be-
cause systems in this domain manage relationship about different sub-systems, such as
in a Client-Server architecture [Buschmann et al., 1996].

5.5 RQ1: Threshold Variation across Domains

First, we investigate if thresholds for the same metrics vary on different software do-
mains. If so, it supports our assumption that software domains should be considered
when building benchmarks for metrics-based quality assessment. To support our dis-
cussion, we compare the highest to the lowest thresholds of each metric. Table 5.5
presents for each metric the lowest to the highest thresholds among the 15 domains. It
also shows, between parentheses, how many times the highest threshold is greater than
the lowest threshold. For instance, the lowest 95% threshold for the LOC metric is 232
(see E-Commerce in Table 5.4), while the highest 95% threshold for the LOC metric
is 981 (see Accounting in Table 5.4). The difference is that the Accounting threshold
is 4.2 times higher than the E-Commerce threshold in this case.

Table 5.5. Difference between Highest and Lowest Thresholds

% LOC NOA NOM WMC LCOM CBO DIT NOC
160 - 541 8 - 14 17 - 34 30 - 123 85 - 317 12 - 16 2 - 6 0 - 090 (3.4) (1.7) (2.0) (4.1) (3.7) (1.3) (3.0) (n/a)
232 - 981 11 - 21 24 - 53 49 - 236 218 - 742 15 - 23 2 - 6 0 - 195 (4.2) (1.9) (2.2) (4.8) (3.4) (1.5) (3.0) (n/a)

The results in Table 5.5 show that the investigated thresholds largely vary for all
metrics; except Number of Children (NOC), which we discuss in Section 5.6. Apart
from NOC, all metrics have a significant variation in the 90% and 95% thresholds.
The metrics with higher threshold variations are LCOM, WMC, and LOC. The rate
between the highest and the lowest thresholds in a domain is about 3.4 times or higher
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for these 3 metrics. This large difference between the highest and lowest thresholds
suggests that LCOM, WMC, and LOC are highly sensitive to the software domain.
Therefore, developers should be aware of this variation when using thresholds for these
metrics in software quality evaluation.

The rate between the highest and the lowest thresholds for NOA, NOM, and
CBO is about 2 times. This difference suggests that these metrics are not as sensitive
to the software domain as LCOM, WMC, and LOC. Yet, a difference of twice can be
considered large, depending on the evaluation goal. The DIT metric is an interesting
case. The threshold of DIT did not present large variation among domains. For
instance, the 95% thresholds of DIT varied between 3 and 6 (2 times) for 14 out of 15
domains. The only exception was E-commerce with both 90% and 95% thresholds of
2 for DIT (see Table 5.4). Therefore, we consider the variation of DIT moderate.

5.6 RQ2: Similar Thresholds across Domains

We analyze similar thresholds across different domains for each metric. The main
reason for this analysis is to identify whether and which domains can be grouped
to promote more reliable benchmarks. In addition, if different domains have similar
thresholds for the same metric, it means that some metric thresholds can be reused
across domains.

For this analysis, we cluster thresholds for each metric into three levels according
to how high these values are. Table 5.6 uses grey scale to indicate domains (rows) with
low, medium, and high thresholds for each metric (columns). In Table 5.6, light grey
boxes mean lower thresholds, grey boxes mean medium thresholds, and dark grey boxes
mean high thresholds. Based on Table 5.4, we jointly analyzed both the 90% and 95%
thresholds to determine if the metric threshold is low, medium, or high for a domain.
For instance, Accounting domain has high thresholds for 6 metrics (LOC, NOA, NOM,
WMC, LCOM and CBO), medium thresholds for DIT, and low thresholds only for
NOC.

It is interesting to observe that Accounting and Business domains have the same
levels of thresholds for all eight metrics (i.e., same colors in corresponding boxes). This
result means that these two domains are very similar in terms of measurement. There-
fore, if someone derives thresholds for a set of Accounting systems, these thresholds
are expected to be reliable to be used for detecting anomalies in Business systems, for
instance. As discussed before, one reason for this similarity is because both domains
involve broader trade fields. In addition, they are usually large and complex systems
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Table 5.6. High and Very-High Thresholds Levels for each Metric
LOC NOA NOM WMC LCOM CBO DIT NOC

Acc
Bus
ScE
Gam
Hea
Mes
Rest
Dev
FT
Dic
Loc
Com
EC
Edu
Hom

as indicated by high threshold for most metrics.

Other pairs of similar domains in terms of metric thresholds are: Education and
Home, Free Time and Development, Dictionary and Science & Engineering, and Dic-
tionary and Localization. The explanation for similar thresholds vary in a case by case
basis. For instance, Education and Home in our dataset have some of the smallest and
simplest systems. Therefore, these domains share low thresholds for most metrics. On
the other hand, Free Time and Development tend to be heterogeneous, but both are
used in many situations. For instance, Free Time is often used for entertainment and
leisure purposes, while development must support a variety of scenarios for completing
development projects. An interesting similarity is between Dictionary and Localiza-
tion systems, although these domains deal with completely different requirements, we
observed that they share some similar coding styles. For instance, Dictionary and
Localization systems have large methods coupled to several API classes. This charac-
teristic makes them similar in terms of metrics and thresholds. This explanation can
also be given to the similarity between Dictionary and Science & Engineering.

Number of Children (NOC) has similar - and low - thresholds for all domains. In
fact, the 90% thresholds are always 0 for all domains while the 95% threshold is either
0 or 1. We observed in the distribution of NOC that its values only vary largely if we
select the 3% to 1% classes with more children (i.e., the 97% to 99% thresholds). This
result means that only 1% to 3% of classes in a system usually have more than one
subclass. Therefore, when defining threshold for NOC, someone needs to consider this
particularity of this specific metric.



42
Chapter 5. Evaluation of Domains Thresholds with Enterprise

Systems

5.7 RQ3: Impact of System Size on Thresholds

This section discusses if the size of the systems which compose a benchmark affects the
metric thresholds. It so, in addition to domains, the system size should be considered
when building benchmarks for quality assessment. For instance, metrics-based code
smell detection tools should consider the size of the systems in this case. Otherwise,
they might use overly high thresholds for small systems, and vice versa. To investigate
RQ3, we build four balanced benchmarks with different system sizes and compare the
derived thresholds. The first one is QualitasCorpus [Tempero et al., 2010] which is a
benchmark composed of 111 large Java systems, such as Eclipse, Netbeans, and Ant.
The second one is the AllSystems benchmark which includes all 3,107 heterogeneous
systems of this study that we mined from GitHub. The third benchmark, named
MediumSystems, is a subset of AllSystems comprising 20 systems per domain and,
making 300 systems in total. Our aim was to exclude outliers (too large or too small)
systems in this benchmark of medium-sized systems. Therefore, we only selected 10
systems immediately above and 10 systems immediately below the median of each
domain in terms of LOC. The fourth benchmark, SmallSystems, is also a subset of
AllSystems with 20 systems per domain (i.e., 300 systems in total). However, in
this case we randomly selected systems below the median LOC for each domain. For
instance, all 20 Health systems in SmallSystems have between 1,000 LOC (selection
quality criterion) and 4,786 LOC. Since three domains (E-Commerce, Free Time, and
Science & Engineering) have less than 40 systems and we have the criterion of 20
systems per domain, SmallSystems has exactly the 20 smallest systems for these
three domains.

Table 5.7 presents the results of the 95% thresholds for the four benchmarks
described in the previous paragraph. This table focuses on 7 metrics because we have
not observed difference for NOC; i.e., its 95% thresholds are either 0 (SmallSystems
and MediumSystems) or 1 (QualitasCorpus and AllSystems). The results in Table
5.7 shows that larger systems have higher thresholds for all metrics. For instance, in
the case of LOC, the 95% thresholds are 602, 599, 315, and 286 for QualitasCorpus,
AllSystems, MediumSystems, and SmallSystems, respectively.

Table 5.7. Thresholds for Different Benchmarks
LOC NOA NOM WMC LCOM CBO DIT

Qualitas 602 16 34 111 406 20 6
AllSystems 599 18 37 125 475 22 5

MediumSyst. 315 13 23 59 168 17 4
SmallSystems 286 12 20 52 129 15 4
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In fact, we already expected that larger systems have higher thresholds for size
metrics, such as LOC, NOA, and NOM. However, it is interesting to observe that
the system size has also affected the thresholds of complexity and inheritance metrics.
This result contradicts previous studies [Ferreira et al., 2012; Vale et al., 2015] that
claim metrics like CBO and DIT do not have a high correlation with LOC. In fact,
we observe that larger systems have both more complex classes and denser use of
inheritance relationships. In addition, we observed in Table 5.7 that QualitasCorpus
and AllSystems have similar thresholds, although they do not have any system in
common. This observation suggests that if the benchmark is composed of a high
enough number of heterogeneous systems (i.e., from different domains and sizes), the
metrics thresholds tend to be comparable.

5.8 Code Smell Detection Evaluation

Code smells describe a anomaly where there are hints that suggest a flaw in the source
code [Fernandes et al., 2016]. For instance, one of the most well-known code smell, God
Class, is defined as a class that knows or does too much in the software system [Fowler
et al., 1999; Fernandes et al., 2016]. God Class is a strong indicator of design flaw
because this component is aggregating functionality that should be distributed among
several components. In fact, previous work has found that this code smell is related to
maintenance problems, such as bugs [Fontana et al., 2013], design flaws [Oizumi et al.,
2016; Padilha et al., 2014], and instability [Fernandes et al., 2017].

This section evaluates the God Class detection by comparing the thresholds de-
rived from each domain with the thresholds derived from AllSystems benchmark. The
first set we call domain-specific thresholds and the second set we call generic thresholds.
The evaluation consists of comparing precision and recall of both sets in God Class
detection. To perform this evaluation, we followed four steps. First, we randomly se-
lected 43 systems from all 15 domains explored in this study and built an oracle of God
Class instances for these systems (Section 5.8.1). Second, we used the metric-based
strategy to identify God Classes and, then, to compute precision and recall (Section
5.8.2). Finally, we analyzed the effectiveness results for detecting code smells to answer
RQ4 (Section 5.8.3).

5.8.1 Dataset for Code Smell Analysis

To build the Smell Dataset, we randomly selected 43 systems using two criteria: (i)
at least two systems per domain; (ii) systems that compiles in Eclipse IDE. The first
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criterion is to have a sample that covers all domains and the second one is to address
tool support limitations. This dataset is then composed by 3 systems per domain,
except two domains (E-Commerce and Free Time) which we only found 2 systems that
match the second criterion.

Oracle Creation. For each system of our Smell Dataset, we built an oracle
of true positive instances. The oracle can be understood as the reference list of the
actual smells found in a system. This oracle is the basis for determining whether the
derived thresholds are effective in the identification of God Classes. In order to provide
a reliable oracle, we run three well-known code smell detection tools (JDeodorant
[Mazinanian et al., 2016], JSpirit [Vidal et al., 2015], and PMD [Fontana et al., 2013])
for all target systems and build a list with possible anomalies pointed by these tools.
Then, at least a pair of authors analyzed each class pointed as God Class to validate
our oracle. This manual validation consisted of the answer of four questions with a
confidence rate varying from 1 to 5:

• Does the class have more than one responsibility?

• Does the class have functionality that would fit better into other classes?

• Do you have problems summarizing the class responsibility in one sentence?

• Would splitting up the class improve the overall design?

These four questions were based on questions of a previous study [Schumacher
et al., 2010]. In the cases we had a disagreement between the two evaluators or an
average confidence score small than 3, a third evaluator checked the class and the three
evaluators discussed to reach a consensus.

5.8.2 Metric-based Detection Strategy and Measurement of

Effectiveness

Metrics are often too fine-grained to comprehensively quantify technical flaws [Lanza
and Marinescu, 2007]. To overcome this limitation, metric-based detection strategies
have been proposed [Marinescu, 2004]. This work selected and adapted a detection
strategy from the literature to identify God Class [Oizumi et al., 2016], presented
in Figure 5.2. There are two main reasons to use such strategy. First, it has been
evaluated in other studies and presented good results for the detection of God Class
[Oizumi et al., 2016]. Second, this detection strategy defines a straightforward way
for identifying instances of God Class by combining four different metrics. In fact,
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we adapted its original definition based on the metrics we investigate in this paper,
but the adapted detection strategy captures the same quality characteristics from the
original work [Lanza and Marinescu, 2007; Marinescu, 2004].

Figure 5.2. God Class Detection Strategy

We use precision and recall as a proxy for effectiveness in code smell detection.
Recall measures the fraction of relevant classes listed by the detection strategy using
a set of thresholds. Relevant classes are classes that appear in the oracle. Precision
measures the ratio of correctly detected code smells by the total classes listed. To
compute precision and recall we need to know the values of true positives (TP), false
positives (FP), and false negatives (FN). TP and FP quantify the number of correctly
and wrongly identified code smells by the detection strategy compared to the oracle.
FN, on the other hand, quantifies the number of code smells the detection strategy
missed out from the oracle. The computation of recall and precision is: Recall =

TP/(TP + FN) and Precision = TP/(TP + FP ). Recall and precision vary from 0
to 1 and higher values are related to better effectiveness.

5.8.3 RQ4: Effectiveness of Thresholds for Code Smell

Detection

In this section, we answer and discuss RQ4 (Are domain-specific thresholds better than
general thresholds for code smell detection?). To do that, we computed precision and
recall as just described. Analyzing the results presented in Table 5.8, domain-specific
thresholds did not always get the best results in such evaluation. In terms of precision,
domain-specific thresholds were better in 3 cases, and technically equal in other 5 cases.
We considered technically equal, cases that the difference is smaller than 5%. In terms
of recall, the results are more exciting since domain-specific thresholds are better in 8
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cases and technically equal in other 5 cases. We use bold to show which is better in
the pairwise comparison.

High precision means that the detection strategy indicated more relevant than
irrelevant code smells. High recall, on the other hand, means that the detection strat-
egy was able to identify most code smells in the system. Hence, a large number of false
positives (high recall) are preferred over a large number of false negatives (high preci-
sion) by software engineers, because manual inspection, which is inevitable, tends to
uncover false positives. Therefore, considering that recall is higher for domain-specific
thresholds in 8 domains, we conclude that domain-specific thresholds fared better in
detecting code smells than generic thresholds.

Still talking about Table 5.8 and considering the four categories presented in Sec-
tion 5.4, higher thresholds got higher precision and lower recall than generic thresholds.
Exactly, the opposite result for low thresholds category. For the intermediate categories
is harder to conclude something, but it tends to follow low thresholds category where
generic thresholds achieved higher precision and domain-specific higher recall. There-
fore, the classification of domains presented in Section 5.4 should be considered for
selecting the most appropriate thresholds for software quality evaluation.

Table 5.8. Precision and Recall using Domain-Specific and Generic Thresholds

Precision Recall
Category Dom. DS G DS G

Acc 1.00 0.75 0.20 0.60
Bus 0.00 0.00 0.00 0.00All

High ScEng 0.88 0.82 0.58 0.75
Gam 0.05 0.09 0.67 0.67
Hea 0.50 0.75 0.36 0.27
Mes 0.40 1.00 0.40 0.20

High
Size

Res 0.25 0.00 0.25 0.00
Dev 0.67 0.76 0.94 0.94
FT 0.43 0.75 0.50 0.50
Dic 0.00 0.00 0.00 0.00

High
Complextiy

Loc 0.64 0.67 0.69 0.46
Com 0.58 0.68 0.83 0.72
EC 0.03 0.00 0.50 0.00
Edu 0.54 0.80 0.54 0.31

All
Low

Hom 0.79 0.89 0.85 0.62
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5.9 Concluding Remarks

In this chapter, we evaluated the method using domain metric thresholds with enter-
prise systems. We validated the proposed method through quantitative analyses by
answering four questions. To perform these analyses, we mined 3,107 desktop systems
from GitHub and devised into 15 distinguished domains. As a result for RQ1 (Do
thresholds for the same metric vary among different software domains?), we verified
that thresholds for the same metric may vary from 1.3× (CBO) to 4.1× (WMC) for
the 90% cut, and from 1.5× (CBO) to 4.8× (WMC) for the 95% cut. We have not
observed high variation of thresholds only for Number of Children (NOC). Therefore,
we concluded that the metric thresholds are typically sensitive to the software do-
main. For RQ2 (Are there metrics with the same thresholds regardless of the software
domain?), some domains have similar thresholds for the same metrics. This result
implies that these domains can be grouped to promote more reliable benchmark-based
threshold derivation. Accounting and Business are examples of domains with simi-
lar thresholds for all metrics. Analyzing RQ3: (Does the system size impact on the
derived thresholds?), the size of the systems that compose the benchmark influences
the metric thresholds. Benchmarks with larger systems yield higher thresholds for all
metrics. Furthermore, benchmarks composed of many heterogeneous systems in terms
of size and domains tend to have similar thresholds. Finally RQ4 (Are domain-specific
thresholds better than general thresholds for detecting the God Class code smell?), in
terms of recall, domain-specific thresholds are usually better than generic thresholds
for most domains. In the next chapter, we present some potential threats to validity
and the main actions we have taken to mitigate their impact on the research results.





Chapter 6

Threats to Validity

Our empirical studies have some potential threats to validity that we discuss in this
chapter by presenting the main actions we have taken to mitigate their impact on
the research results. Section 6.1 presents our actions to mitigate system selection and
measurement issues. Section 6.2 explains our issues on generalization and extension of
the results of this work.

6.1 Internal Validity

Internal validity refers how systematic and well design an experiment is done. This
kind of threat can affect the independent variable with respect to causality [Wohlin
et al., 2012]. There are two main threats to internal validity: selected domains and
measurements. Regarding the first threat, one might consider that we have not selected
representative domains. However, as the selected domains are consolidated ones, we
expect to have analyzed high quality and frequently used systems. In addition, we
have also included in our study only systems with more than 1,000 lines of code.

For the measurements threat, we may get false or wrong measures for the target
systems. We quantify metrics for all systems that compose this study and we also
derive thresholds for these metrics. To have rigorous measurement processes, we used
a specific tool presented in another study [CK Metrics, 2018]. In addition, we also
made some tests to check if the results of this tool were the expected ones.
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6.2 External Validity

External Validity limits the ability to generalize the results beyond the experiment set-
ting. These treats are reduced by making the experimental environment more realistic
[Wohlin et al., 2012]. We consider four external threats to validity. First, it is not
possible to ensure that the select systems reflect the recurrent practices of software
development. To reduce this risk, for Chapter 4, we selected the most popular mobile
systems in each domain, and with a link to a real mobile system on Google Play Store.

For Chapter 5, we filter the total amount of systems by number of stars and
lines of code. Second, all systems in our dataset are developed in Java. However,
our proposed method is generic and other studies might achieve similar results in the
context of other programming languages or technologies.

Third, our results are restricted for the set of metrics we selected, but we believe
that similar results can be also found for metrics that quantify similar quality attributes
or characteristics, as we found in our results. Finally, even though we have presented a
large-size study, additional replications are necessary to determine if our findings can
be generalized to other domains and dataset of systems.

6.3 Concluding Remarks

In this chapter, we presented our actions to mitigate potential threats to validity on
our empirical studies. For internal validity we focus on system selection and mea-
surement issues. For external validity, we explains the limitation of this work results.
In the next chapter we concludes this work by presenting our contributions and final
considerations.



Chapter 7

Final Considerations

In this dissertation, we proposed a tool supported method to derivate domain-sensitive
metric thresholds and evaluated mobile and enterprise systems. This method considers
domain as a relevant factor to derive reliable metric thresholds. We also presented a
tool that brings this concept to practice. This chapter presents our conclusions about
the method and it empirical evaluation, our contributions, and directions for future
work.

7.1 Conclusion

This work proposed and evaluated a domain-sensitive method to derive reliable quality
metric thresholds. The method was designed following recommended guidelines: it
is based on a data analysis from a representative set of systems (benchmark); It has
a strong dependence with the number of entity; and a weak dependency with the
number of systems. Therefore, while it shares common activities presented in other
methods, it also introduces innovations: (i) the input is a benchmark composed of
systems that belong to distinguished domains; (ii) the core process computes metrics
and performs threshold derivation for each separated domain; and (iii) the output are
domain thresholds to each analyzed metric.

We evaluated the proposed method through qualitative and quantitative analy-
ses. For qualitative analysis, we highlight the differences of our method to two recently
proposed methods, including explicitly differentiation of domains when building bench-
marks. For the quantitative analyses, we performed two studies. First, we manually
mined one hundred mobile systems from GitHub divided into ten distinguished do-
mains. This quantitative analysis indicates that thresholds vary for each domain and
that the majority of the analyzed metrics are domain-sensitive. By clustering domains
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with levels, our results indicate that some domains share similarities. In addition,
analyzing the coefficient of variation for domain thresholds, the lower variation was
15.3% on 90% for DIT, which was expected due smaller range for this metric, and the
higher variation was for LCOM with 95%. In the second quantitative evaluation, we
presented an empirical study on domain-specific thresholds. We conducted the study
by selecting and measuring 3,107 software systems from 15 software domains. Once
we have the measurements, we derived 90% and 95% thresholds for each metric per
domain and analyzed them in different ways. For instance, we compared the thresh-
olds among domains and investigated the effectiveness of code smell detection between
domain-specific and generic thresholds. The results indicate that metric thresholds are
sensitive to software domain. For instance, some metrics may vary across domains from
1.5× to 4.8× for the 95%. Moreover, we observed that not only the domains, but also
the size of the systems that compose the benchmark is a factor that affect the metric
thresholds. That is, the results corroborate with the claim that benchmarks composed
of heterogeneous systems tend to have similar thresholds. Finally, in terms of recall,
we collect evidence indicating that domain-specific thresholds are better than generic
thresholds on average for code smell detection.

7.2 Contribution

We consider four main contributions in this dissertation, as follows.

• A method to derive domain-sensitive metric thresholds.

• A tool to show domain threshold warnings.

• A benchmark of 100 mobile systems classified into 10 domains which we used in
the method evaluation.

• A large-size empirical study with more than 3 thousand systems to explore thresh-
old derivation with the corresponding measurements for eight well-known soft-
ware metrics.

7.3 Future Work

The results presented in this work highlight domains as a factor to bring into account
for threshold derivation. Therewith, for further research there are some directions to
improve the proposed method and tool. For the method, further investigation with



7.3. Future Work 53

additional anomalies and additional replications of this studies to determine whether
our findings can be generalized to other domains and systems. In addition, commercial
software systems should be investigate to confirm whether and how thresholds vary
across domains and their impact on anomalies.

For the method application, this work leads to other directions. One suggestions
is to study detection of anomalies on mobile applications. A second suggestion, research
how to build optimal benchmarks, from which we can derive reliable metric thresholds
with the lowest number of systems. Another suggestion is to investigate whether there
are domain-specific anomalies.

For the application of the tool, TWarning can be improved by implementing new
features, such as: (i) methods to derive thresholds and, (ii) adding more usability
functions (i.e. views, domains, thresholds, and other custom data operations). Some
additional tool evaluation and survey can capture what the developer most need with
the tool use.
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