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Abstract

Computer vision is an important area related to understanding the world through im-
ages. It can be used as biometry, by verifying if a given face is of a certain identity,
used to look for crime perpetrators in an airport blacklist, used in human-machine
interactions and other goals. Since 2012, deep learning methods have become ubiqui-
tous in computer vision achieving breakthroughs, and making possible for machines,
for instance, to perform face verification with human-level skill. This work tackles two
computer vision problems and is divided in two parts. In one we explore deep learning
methods in the task of face verification and in the other the task of dimensionality
reduction. Both tasks have large importance in the fields of machine learning and
computer vision. We focus on their application in smart surveillance. Dimensionality
reduction helps alleviate problems which usually suffer from a very high dimensional-
ity, which can make it hard to learn classifiers. This work presents a novel method
for tackling this problem, referred to as Boosted Projection. It relies on the use of
several projection models based on Principal Component Analysis or Partial Least
Squares to build a more compact and richer data representation. Our experimental
results demonstrate that the proposed approach outperforms many baselines and pro-
vides better results when compared to the original dimensionality reduction techniques
of partial least squares. In the second part of this work, regarding face verification, we
explored a simple and cheap technique to extract deep features and reuse a pre-learned
model. The technique is a transfer learning that involves no fine-tuning of the model
to the new domain. Namely, we explore the correlation of depth and scale in deep
models, and look for the layer/scale that yields the best results for the new domain,
we also explore metrics for the verification task, using locally connected convolutions
to learn distance metrics. Our face verification experiments use a model pre-trained
in face identification and adapt it to the face verification task with different data, but
still on the face domain. We achieve 96.65% mean accuracy on the Labeled Faces in
the Wild dataset and 93.12% mean accuracy on the Youtube Faces dataset which are
in the state-of-the-art.
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Chapter 1

Introduction

Images are a two dimensional representation of a scene, and a mean to register this scene
and extract information from it, by detecting objects, which could be associated with
a tool used by a perpetrator of a crime, or by recognizing a face to open an automated
door. Machine learning and computer vision are usually employed to tackle these tasks,
where neural networks with deep architectures have gained much popularity and broke
many state-of-the-art records.

This work tackles two problems related to the aforementioned applications: di-
mensionality reduction and transfer learning of deep models. The first is presented
through a novel boosted projection approach applied to pedestrian detection and ob-
ject classification. The latter is presented in a transfer learning method requiring little
to no fine-tuning, applied to the face verification task.

Machine learning and computer vision problems usually suffer from very high
dimensional data. Therefore, the employment of dimensionality reduction techniques
is common to achieve reduction in training and testing cost and, most importantly, as
a workaround to the curse of dimensionality, as can be seen in the work of Guyon and
Elisseeff [2003].

Even with dimensionality reduction, deep models require large amount of data
and learning such models would still be very costly. Transfer learning refers to reusing
a model learned on a large corpus on a task with only a small corpus available. Usually,
this process is conducted by means of fine-tuning, which involves model learning, which
is costly.

In the first part of our work, we analyze the impact of the proposed Boosted
Projection coupled with Partial Least Squares (PLS) [Wold, 1985], a method for di-
mensionality reduction that has been extensively explored in many tasks across the
literature [Rosipal and Krämer, 2006; Uzair et al., 2015; Akata et al., 2014; Lowe,
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2 Chapter 1. Introduction

2004]. To evaluate the proposed method, we test it in the pedestrian detection, using
the INRIA pedestrian detection benchmark [Dalal and Triggs, 2005], and in the im-
age classification task, using the CIFAR-10 [Krizhevsky and Hinton, 2009] benchmark.
On the former task, our method achieves an improvement over the work of Jordao
and Schwartz [2016], a PLS based random forest, which to the best of our knowledge
is the most recent PLS-based approach for pedestrian detection. On the latter task,
we achieve an average accuracy better than the single PLS approach with the same
number of dimensions.

The second part of our work proposes a simple method of performing transfer
learning by picking the most suited layer to extract features in the new task. This also
investigate a hypothesis that sequential layers are correlated to complexity and speci-
ficity to the original dataset used. In this part we conduct experiments in the labeled
faces in the wild dataset Huang et al. [2012] and in the Youtube Faces Database Wolf
et al. [2011], which are popular datasets in the literature having been used by many
works such as Taigman et al. [2014]; Parkhi et al. [2015]; Schroff et al. [2015]. Our
results were comparable to the state of the art scenario on the Labeled Faces in the
Wild dataset and on the Youtube Faces dataset.

1.1 Motivation

Some events, such as major terrorist attacks, violence in crowded places, sports events,
lead to an increased demand for security in society. This has resulted in the de-
ployment of large CCTV systems. For instance, London Underground and Heathrow
Airport have more than 5000 cameras each [Valera and Velastin, 2005]. This increas-
ing demand for security by society leads to a growing need for surveillance activities
in many environments.

Due to this large growth in data availability, the amount of raw surveillance data
from videos is humongous and human agents have a hard time to interpret relevant
data from all those hours of video content. Two important tasks that depend on
understanding of surveillance data are pedestrian detection and face verification.

Dimensionality reduction is important to circumvent the curse of dimensionality
and to handle this large volume of data. We develop a method for dimensionality
reduction that is based on the hypothesis that by combining multiple projections in
an ensemble exploring discriminative information, classification error, we could reduce
dimensionality with better discriminative results.

The second part of this work is motivated by the fact that in the sequential net-
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works, such as VGG or AlexNet, each layer is built on top of the patterns learned by the
previous. Implying that the layers follows a pattern of patterns structure. We believe
that this means a correlation between depth of the layer and its complexity/specificity
to the problem it was trained. This has an implication that to use a previously learned
model on a different data than the original, there should be a layer that is most suit-
able, since the deeper layers would then have learned patterns more specific to the
original problem.

1.2 Objectives

This work explores machine learning solutions for tackling surveillance and computer
vision problems. We can divide the objectives into two main parts. First, we intend to
demonstrate the viability of a novel framework inspired by the adaptive boosting [Fre-
und and Schapire, 1995] to handle the problem of dimensionality reduction, this prob-
lem is still relevant since some approaches [Taigman et al., 2014; Schroff et al., 2015] in
computer vision today consists of extracting features with deep learning model which
have a high dimensionality and tends to suffer from the curse of dimensionality. The
second objective is to verify our hypothesis of correlation between layer depth and
specificity/complexity in sequential convolutional neural networks applied to the face
verification task.

1.3 Contributions

Our first contribution is a novel dimensionality reduction framework, which we show
its usefulness in the surveillance context of the pedestrian detection task. Our second
contribution is a method that shows a simple transfer learning technique that achieves
results comparable to the state-of-the-art.

The publications achieved with this work are listed as follows.

1. Kloss, R. B., Jordao, A., and Schwartz, W. R. (2017). Boosted Projections: An
Ensemble of Transformation models. In 22nd Iberoamerican Congress on Pattern
Recognition.

2. Kloss, R. B., Jordao, A., and Schwartz, W. R. (2018). Face Verification: Strate-
gies for Employing Deep Models. The 13th IEEE Conference on Automatic Face
and Gesture Recognition. (accepted).
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1.4 Work Organization

We divide this work in two parts. One regarding our dimensionality reduction approach,
Part I, and the other part regarding our transfer learning approach, Part II.

The first part is organized in related works, Chapter2, where we discuss some
of the most famous dimensionality reduction methods and also some of the literature
in the two tasks we performed our experiments, image classification and pedestrian
detection. Then, we present our method in Chapter 3 and the results and discussions
of this method in Chapter 4. Finally, Chapter 5, concludes this part of our work.

The second part is organized in related works, Chapter6, where we discuss the
foundations of neural networks, and convolutional networks, and also the literature
regarding face verification and some of the recent and important works with neural
networks in general. We present our method in Chapter 7 with its results and discus-
sions in Chapter 8. Chapter 9, concludes the final part of our work.
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Dimensionality Reduction
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Chapter 2

Related Works

In this chapter we discuss works regarding ensemble of models and dimensionality
reduction. Last, we review the literature on the tasks of our validation experiments.

2.1 Image Classification

Image Classification consists of deciding to which, of a number of given types, the image
belongs. These types are denominated classes, hence, the name, classification. This
task can be used, for instance, to extract semantic information from images, which can
aid in information retrieval or used as a feature in the classification of a document with
images in it, and can also be used in robotics to help in the control of an intelligent
agent. With this said, the importance of studying and researching this task becomes
clear.

Dataset
Cats - Dogs

Preprocessing Extracting 
Features

Learning 
Separating 

Model

Figure 2.1. Illustration of a standard image classification pipeline exemplified
with classes of images of dogs and cats.

Traditionally, image classification is performed by extracting features from the

7



8 Chapter 2. Related Works

images and using these features in a pattern recognition algorithm to learn a model that
could separate images from one class to images from another class, which is illustrated
in Figure 2.1.

In early works, the features extracted from images consisted of algorithms that
exploited structure in the image to obtain information. These algorithms would extract,
for instance, shape information, HOG [Dalal and Triggs, 2005], texture information,
LBP [Ojala et al., 1996], or color information, through a simple color histogram, for
example. Extracting these features is important to be able to map images to points
in the space that can be separated, the shape information, for instance, could map
the images in such a way that balls are distant from boxes. These features acts as an
alternative to dealing with raw pixels which are noisy, non-sparse and high dimensional,
and it is often times very hard for a classifier algorithm to learn a discriminating
hyperplane that can separate image samples through their pixel input alone.

Before the breakthrough of deep learning models [Krizhevsky et al., 2012], a
popular strategy for feature extraction was to use the bag-of-visual-words model, or
alternatives [Lazebnik et al., 2006], which consist of finding parts, or visual words,
of samples with representative features, extracted before-hand. Then, a sample is
represented by a signature that consists of the similarity comparison of its parts against
the representative parts. The main idea is that same objects have, roughly, the same
parts. Interesting to note is that deep learning architectures work similarly, since the
nodes in the first layer find discriminative parts and the feature map used as input in
successive layers contains pretty much this similarity regarding the image parts.

With the advent of deep learning, the neural networks were able to extract rich
and powerful features, and low-level features, HOG and LBP, or mid-level features
were made, in general, obsolete. The deep features are capable of conveying high level
information, and capturing complex parts of objects. As mentioned before they have
contributed to a breaktrough in this task and have the best results in one of the most
competitive benchmark for the task, the ImageNet competition.

2.2 Pedestrian Detection

The work of Schwartz et al. [2009] is one of the most successful examples of di-
mensionality reduction applied to pedestrian detection [Dollár et al., 2012]. In their
work [Schwartz et al., 2009], the authors describe the human body by using the His-
togram of Oriented Gradient (HOG) [Dalal and Triggs, 2005] combined with extra
information provided by co-occurrence and color frequency features. This combination
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of features generated a high dimensional feature space, rendering many traditional ma-
chine learning techniques intractable. To address this problem, the authors employed
PLS to project the high dimensional feature space onto a low dimensional latent space
before performing classification. We made use of this projection to a low dimensional
feature space in order to improve classification in our work. Moreover, our proposed
method use around 30 times fewer features, compared to the work of Schwartz et al.
[2009], and achieves a more accurate detection.

In a similar way, Qiu and Sapiro [2013] proposed a method to project the original
feature space into a new feature space. The goal of this projection, referred to as lin-
ear discriminative transformation, is to improve the class separation at each node in a
decision tree. For this purpose, the authors employed the nuclear norm [Grothendieck,
1996], where each node composing an orthogonal decision tree, uses the arriving sam-
ples to learn this transformation. Furthermore, Nam et al. [2014] used the Linear
Discriminant Analysis to transform a local decorrelation of the features, where the
inter-class variation is minimized while the intra-class is maximized. In their work,
they showed that by applying this transformation on the data it is possible to achieve
a better data separation, which enables the use of simple classifiers, e.g., orthogonal
decision trees. The idea of performing the dimensionality reduction is to find the most
discriminative feature among the available features

Recent studies [Marín et al., 2013; Jordao and Schwartz, 2016] showed that by
using strong classifiers as members of the ensemble, it is possible to achieve better
results than the traditional approach that use weak classifiers [Criminisi and Shotton,
2013]. Marín et al. [2013] proposed an ensemble of decision trees, where each node that
composes the tree consists of a linear SVM. The intuition behind building this type of
decision tree, called oblique decision trees [Criminisi and Shotton, 2013], is that each
node at the depth d is responsible for classifying the samples misclassified by the nodes
at depth d−1. Jordao and Schwartz [2016] proposed an oblique decision tree where for
each tree node a PLS regression is learned, which differs from the SVM chosen in the
work of Marín et al. [2013]. Their work showed that PLS is more appropriate than SVM
to generate oblique decision trees, since each tree node learns a richer representation
of the features due to the projection provided by PLS. In this work, we show that our
proposed method is statistically faster and obtains a more accurate detection regarding
the work of Jordao and Schwartz [2016].
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2.3 Dimensionality Reduction

Computer vision features can have large number of variables and this can lead to a poor
performance of some classifiers. This is a well-known problem often called the curse of
dimensionality. Dimensionality reduction is a workaround to the problem of the curse
of dimensionality and can be used together with a classifier in order to improve cost
effectiveness and classification performance.

2.3.1 Principal Component Analysis

Principal Component Analysis (PCA) [Wold et al., 1987] is a method that learns a
rotation of the original data space, where, in the rotated space the covariance matrix
of the data is approximated to a diagonal matrix. In this rotated space, its axes are
pointing in the direction of maximum variance between the variables (features), as seen
in Figure 2.2.

Mathematically, PCA uses singular value decomposition (SVD) to find a trans-
formation that makes the covariance matrix of the transformed samples a diagonal
matrix, as illustrated in Equation 2.1, where Z is the centered input. The goal is to
find the rotation matrix R which rotates the space in such a way that the covariance
matrix ΣRot is diagonal. This rotation matrix, R, is equivalent to a matrix with the
eigenvectors of the covariance matrix of the input as columns.

ZTZ = Σ

(Z ∗R)T ∗ (Z ∗R) = ΣRot.
(2.1)

The SVD of the Z matrix gives a matrix that is equivalent to the rotation matrix R .

2.3.2 Partial Least Squares

The Partial Least Squares (PLS) is a dimensionality reduction technique employed
to model the relationship between dependent and independent variables [Rosipal and
Krämer, 2006]. A brief definition of the PLS is shown below.

Let X ⊂ Rm be an n by m matrix representing n data samples in a m −
dimensional space of features, and Y ⊂ R represents the label (classes matrix). The
method decomposes X and Y as

X = TP T + E, Y = UQT + F, (2.2)
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Figure 2.2. Principal components shown in green and cyan. It illustrates that
the components are roughly in the directions of maximum variance.

where T and U are n × p matrices of variables in latent space, p is a parameter of
algorithm. P and Q correspond to matrix m × p and vector l × p of loadings, in this
order, where l is the number of dimensions in Y . The residuals are represented by E
and F , matrices of size n×m and n× l, respectively. The PLS method, constructs a
matrix of weights, W , which rotates the original feature space in such a way that the
axis are in the direction of maximum covariance between the features and the label
matrix. The columns of W is computed by using the nonlinear iterative partial least
squares algorithm (NIPALS) [Wold, 1985]. A more in-depth mathematical definition
can be found in [Wold, 1985; Rosipal and Krämer, 2006].

PLS, as with PCA, is also related to an eigen problem, in the case of PLS the
problem consists of finding the eigenvectors of (XTY )T (XTY ) and (Y TX)T (Y TX) or
analogously solving the singular value decompositon (SVD) of XTY and Y TX, more
explanation of the SVD problem modelling in [Bookstein, 1994; McIntosh et al., 1996].





Chapter 3

Boosted Projections

It has been shown that performing dimensionality reduction on the raw features im-
proves its representation while also reducing computational cost [Schwartz et al., 2009;
Sánchez et al., 2013; Martis et al., 2013; Jordao and Schwartz, 2016]. The idea is
to use a projection on the raw data to find a new space that uses a smaller number
of features and improve classification performance. For instance, the Partial Least
Squares (PLS) technique [Rosipal and Krämer, 2006] was employed to project to a low
dimensionality space, achieving better results than the state-of-the-art on the task of
hyperspectral face recognition with spatiospectral information by Uzair et al. [2015].
In another case, Akata et al. [2014] employed Principal Component Analysis (PCA)
to reduce the dimensionality of their SIFT [Lowe, 2004] descriptors and circumvent
the curse of dimensionality. It is important to note that such approaches could also
be used together with deep learning in order to potentially compact and improve deep
features

Besides the use of projection methods, another way of improving the classification
is the employment of ensemble classifiers. These classifiers have been widely employed
in several machine learning tasks [Avidan, 2007; Takemura et al., 2010; Cogranne and
Fridrich, 2015; Jordao and Schwartz, 2016] due to its simplicity and good results. In
general, ensemble classifiers are composed of weak classifiers (e.g., decision stumps)
that are able to achieve a powerful classification when combined.

Inspired by the aforementioned studies, we proposes a novel method that com-
bines dimensionality reduction and ensemble techniques to find richer variables than
those estimated by a single projection model. The units of our ensemble are modeled
as nodes built iteratively. Each node is composed of a projection model and a weak
classifier learned with a distinct subset of samples hard to classify (referred to as hard
samples) by the previous node, i.e., samples that were incorrectly classified, according

13
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to a threshold. The idea behind this procedure is to create projection models yielding
rich and discriminative features for different categories of samples (from samples easier
to harder to classify). It is also possible to cascade the projection obtained by a set of
nodes to a new set of nodes, this is represented by multiple layers. The goal of using
multiple layers is to reduce possible redundancy between nodes.

Our proposed method is similar to the Adaptive Boosting [Freund and Schapire,
1995] in the sense that it reweighs samples according to their classification score. How-
ever, while the adaptive boosting focuses on grouping classifiers, we use the classifier as
a tool to find hard samples. This is also similar to the hard mining employed by Dalal
and Triggs [2005], except we do not search for these samples on a validation set but on
the training set itself. Another difference is that we iteratively search for hard samples
to construct multiple models, whereas Dalal and Triggs only employ this operation
to construct a single model. Since we use the boosting-based idea of reweighing hard
samples applied to a projection context, we refer to our method as Boosted Projection.
The proposed method takes advantage of the characteristics of the underlying projec-
tion method, for instance reducing redundancy, and it may also presents richer features
due to the employment of the ensemble scheme that explores hard samples.

The contribution of this part of the work is the proposal of a novel method for
feature projection, which demonstrates the possibility to enhance data representation
exploiting the advantages provided by dimensionality reduction techniques and en-
semble methods. In addition, the main advantage compared to other dimensionality
reduction methods is that the nodes in our method explores different subsets of the
data, where the deeper the node, the harder it is to classify its subset of samples, which
can better convey discriminative information.

3.1 Proposed Approach

Our goal is to create an ensemble of projection methods that can yield richer and
more discriminative features than a single projection method. To achieve such goal, we
propose a framework for dimensionality reduction that explores discriminative infor-
mation by employing a classifier to find samples that are hard to classify (hard samples)
and using this information to learn new projections that prioritize the fitting of such
samples. The method is shown in Figure 3.1.

The first unit of our framework is a node, represented in detail on Figure 3.2,
which receives features of samples as input and learns a projection model that gen-
erates latent variables, used as new features. This projection is performed using a
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Figure 3.1. General structure of our proposed framework for improved pro-
jections. The node of a layer learns a projection using the hard samples found
by the previous node, this continues until convergence. Then, it is possible to
create a new layer, where the input features are the concatenation of the pro-
jections of each node in the previous layer. The number of nodes and layers are
hyperparameters.

traditional projection method such as PLS [Wold, 1985]. The latent variables are used
by a classifier to learn a discriminative model. By using the confidence score of this
classifier and a threshold, we find samples that have been misclassified. That is, a
model is trained on the projected features and we find the subset of samples that have
been misclassified given a threshold, i.e., whose classifier score is bellow this threshold
(hard samples). The confidence threshold is initialized with an arbitrary value and is
decreased for each new node in order to make samples easier to classify and guarantee
that the nodes have more diversity. This is important since in ensemble methods, a
high diversity is desirable [Brown and Kuncheva, 2010; Woźniak et al., 2014], because
you want incremental coverage.

After the hard samples have been obtained for a given node, a subsequent node
is created by learning a new projection and a new classifier considering such samples.
This new classifier learns a different separating hyperplane which will score samples
differently leading to a new subset of hard samples. This procedure continues until
convergence, which can be met either by reaching a maximum number of nodes or
by having no more misclassified samples. Thus, each node learns a model based on
different subsets of data, where the deeper the node, the harder it is to classify its
subset of samples. Each node also specializes on the subset of samples it correctly
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Figure 3.2. Detail of the Node of the Boosted Projection.

classified, as shown in Figure 3.3 along with this cascading process.
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Figure 3.3. Explanation of the specialization of the nodes in the Boosted Pro-
jection.

We refer to the set of learned nodes built until the convergence as a layer, as
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illustrated in Figure 3.1. The output of a layer is the concatenation of the latent
variables of each node of that layer. After all the nodes of a layer have been built, its
output can be used by a new node of a new sequential layer to start the whole process
again. The benefit of using additional layers is that if there is redundancy in some
nodes, probably because of a lack of diversity, the nodes of the next layer could be able
to filter out this redundancy. The number of layers is a parameter of the framework.

The output of the last layer, which is the concatenation of all projections, is
used to learn a final classifier, which might be different than the one used to find hard
samples. It is important to emphasize that the output of the last layer is composed
of projections learned for different subsets of samples and based on different features,
causing each node’s output to be an expert on that subset. This is an advantage of
the proposed approach over a single projection method (such as PLS). A singleton
approach would find the projection that is best for the average of the whole data and
not suitable projections for parts of the data with different characteristics, which would
not represent well the true data distribution.





Chapter 4

Experimental Results

In this section, we present our experiments and results achieved. First, we evaluate it
on the task of image classification with the CIFAR-10 benchmark, using the average
accuracy, the dataset’s standard protocol, to measure our performance against a single
projection method. Then, we evaluate our boosted projection method on the INRIA
pedestrian detection benchmark, using log-average miss rate, which is its standard
protocol, and compare it with other baseline approaches.

4.1 Image Classification

To evaluate our method on the image classification task, we use the CIFAR-
10 [Krizhevsky and Hinton, 2009], a dataset with 32 × 32 pixels RGB colored images
of ten classes. We extract deep features without data augmentation using the Keras
Framework [Chollet, 2015] with a VGG16 [Simonyan and Zisserman, 2014b] network.
We tune the C parameter of the Support Vector Machine (SVM), with linear kernel,
by employing stratified cross validation on the training set. The parameter was found
to be optimal as C = 0.1. Finally, we use the average of the accuracy of each class
as the evaluation metric, which is the number of true positives over the sum of the
number of true positives and false negatives (higher values are better).

The first column of Table 4.1 specifies the method used, which is either a SVM,
a PLS transformation followed by a SVM, or the boosted version of PLS (Boosted
PLS). The boosted version also uses a SVM to mine for hard samples and as the
final classifier. The second and third columns show the results and the number of
dimensions for each method, respectively. Regarding the dimensionality (third column
of Table 4.1), in the case of the SVM, the dimensionality is the original dimensionality
of the features (4096). However, with the dimensionality reduction method (PLS), the
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Table 4.1. Results on the CIFAR-10 test dataset.

Method Average Accuracy Dimensionality
SVM 71.62% 4096

PLS + SVM 69.10% 10
PLS + SVM 74.52% 30
PLS + SVM 75.24% 200
PLS + SVM 75.39% 500

Boosted PLS (1 layer) 75.94% 20× 10 = 200
Boosted PLS (2 layers) 76.25% 20× 10 = 200

reported dimensionality is the number of components used. Furthermore, with the
boosted methods, we report the dimensionality as the product of the number of nodes
and the number of components of the underlying projection method.

According to the results in Table 4.1, the more components the models have,
the better its representation. We can also see a correlation between the accuracy
and the number of components. Employing the Boosted PLS transformation, with
10 components, and classifying with SVM (Boosted PLS) also achieved better results
than with just the PLS transformation of the same model (PLS + SVM). In this case,
the improvement is likely due to the fact that while PLS transformations minimize an
average error, but due to the specialization of each node, our Boosted PLS can preserve
information of small distributions in the data that deviates from the majority, which
were represented in the first nodes.

Regarding the PLS transformation (rows 2 to 5 in Table 4.1), we can see that
from 10 components to 30 components there is an improvement of 5.42 percentage
points, between 200 components and 500 there is only an improvement of a 0.15,
illustrating the saturation of the components learned. Our method, however, with 200

dimensions, was able to have an improvement over the 500 components PLS model of
0.86 percentage points.

4.2 Pedestrian Detection

The studies of Schwartz et al. [2009] and Jordao and Schwartz [2016] are, to the best of
our knowledge, the most recent and withworks concerning PLS based dimensionality
reduction applied in the context of pedestrian detection. Therefore, to show that
our method achieves better results than traditional projection-based approaches, we
employed it to the pedestrian detection problem and compare with other methods that
employ comparable features, HOG and LBP.
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Figure 4.1. Comparison of our boosted PLS projection with other approaches
found in the literature. Results using the log-average miss-rate (lower values are
better) of 10−2 to 100 (standard protocol).

To validate our results, we adopt the evaluation protocol used by state-of-the-art
works, which is called reasonable set [Dollár et al., 2012] (a detailed discussion regarding
this protocol can be found in [Dollár et al., 2012; Benenson et al., 2014]), where the
results are reported on the log-average miss rate. In addition, similarly to Jordao and
Schwartz [2016], we used the TUD pedestrian dataset as validation set, to calibrate
some parameters of our method.

Our first experiment evaluates the impact of the number of nodes and layers
to compose the boosted projection. On the validation set, the best values for these
parameters were 20 and 3, respectively. The remaining parameter to be defined in
our method is the number of components (latent variables), for each PLS that will
compose a node of a layer (see Chapter 3). Similarly to [Jordao and Schwartz, 2016]
and according to the results achieved on the validation set, we note that this parameter
is the most important parameter for PLS-based methods since varying this parameter
from 3 to 6, the log-average miss rate decreases from 53.20 to 50.07, respectively. Based
on the results obtained in the validation, our final PLS based boosted projection was
set to 3 layers, where each layer is composed of 20 nodes that project the data to a
6-dimensional feature space using the PLS.

In our next experiment, we compare the results of the proposed Boosted Pro-
jection with other baseline methods. To provide a fair comparison, we considered the
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Figure 4.2. Another comparison of our boosted PLS projection with other
approaches found in the literature. Results using the area from 10−2 to 10−1.

results reported by the authors in their works. Figure 4.1 shows the log-average miss
rate (on the standard protocol) achieved by methods on the INRIA person dataset. Our
method achieved a log-average miss rate of 33.92, outperforming the works of [Schwartz
et al., 2009] and [Jordao and Schwartz, 2016] in 6.17 and 3.34 percentage points, re-
spectively. Regarding the area under the curve from 10−2 to 10−1, showed in Figure 4.2,
(which represents a very low false positive rate), our Boosted version of PLS (Boosted
PLS) still outperforms the other methods, a evidence of being robust to hard detec-
tions. Moreover, our proposed method uses around 30 times fewer features, compared
to the work of [Schwartz et al., 2009], and achieves more accurate detections. It is also
important to reinforce that our method is able to outperform detectors that employ
more complex features, for instance, HOG-LBP [Wang et al., 2009], while using simple
HOG-features (the same setup as proposed by [Dalal and Triggs, 2005]).

Our last experiment, illustrated in Table 4.2 regarding pedestrian detection eval-
uates the computational cost compared to the work of Jordao and Schwartz [2016],
which, to the best of our knowledge, is the most recent PLS-based method. We con-
duct this experiment to measure and compare the computational time of our method,
since pedestrian detection is often a initial step in the surveillance pipeline, and there-
fore, needs to be fast. We execute, on the same hardware configuration of [Jordao
and Schwartz, 2016], the detection on a 640 × 480 image for 10 times, as is done
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by Jordao and Schwartz [2016], and we compute its confidence interval using 90% of
confidence. Our method obtained a a mean of 67.395 against a mean of 271.32 of [Jor-
dao and Schwartz, 2016], The confidence interval of the means with 90% of confidence
is depicted in Table 4.2, and since there is no overlap between them it shows that
the methods present statistical difference of their execution time. Therefore, accord-
ing to the results, our method is four times faster than [Jordao and Schwartz, 2016].
This reduction in computational cost is possible because our method uses fewer PLS
projections than [Jordao and Schwartz, 2016] (even if we consider the optimal case,
where each oblique decision tree consists of only one PLS projection, see [Jordao and
Schwartz, 2016] for details).

Method Confidence Interval of Elapsed Time
Boosted PLS [67.14s, 67.64s]

oRF-PLS [Jordao and Schwartz, 2016] [270.91s, 272.73s]

Table 4.2. Elapsed time in different methods for pedestrian detection.





Chapter 5

Conclusions

In this part of our work, a novel approach for dimensionality reduction, the Boosted
Projection. The method focuses on the idea of using several projection models (e.g.
Partial Least Squares), to build an ensemble with more compact and richer representa-
tion of the raw features. We conducted experiments on two important computer vision
tasks: pedestrian detection and image classification. In the first, we demonstrate that
the proposed method outperforms many pedestrian detectors, using simple features.
In addition, our method is more accurate and faster than [Jordao and Schwartz, 2016],
one of the most recent detector based on PLS. In the second task, we demonstrate that
the proposed method is able to compute features richer than a single dimensionality
reduction method.

For future works, we intend to test our proposed approach with different input
features, with more tasks and with different transformation models.
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Transfer Learning
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Chapter 6

Related Works

In this chapter, we present a theoric foundation for neural networks and an overview
of state-of-the-art methods based on neural networks.

6.1 Neural Networks

In this section we introduce the basics of artificial neural networks, and then explain and
explore the literature on the most used networks in computer vision, the Convolutional
Networks.

6.1.1 Multilayer Perceptron

X0 W0

X1 W1

WNXN

× 

×

×

  σ

.

.

.

Figure 6.1. The Original Perceptron with sigmoid activation. In matrix nota-
tion: ŷ = σ(X · ~w), where σ(x) = 1

e−x+1

29



30 Chapter 6. Related Works

Artificial Neural Networks are ensembles of Perceptrons [Rosenblatt, 1958] which
is a simple model for a Neuron as envisioned by Rosenblatt. What a Perceptron actually
does is a linear regression coupled with a non-linear activation. The first Perceptron
model used a sigmoid function for this non-linearity, which limited the output to the
range [0, 1], this is analogous to the all-or-none law, where the response to a stimullus
does not vary with the intensity of the latter [Cannon, 1922]. Figure 6.1 illustrates this
Perceptron model, the variables in the input denoted by Xi are multiplied by weights
and summed to generate an output, which is a multivariate linear regression.

Sigmoid Sigmoid

Outputs

Hidden

Inputs

Figure 6.2. The Multilayer Perceptron. Each circle is a Perceptron and each
Level (Inputs, Hidden, Outputs) is called a Layer.

The Multilayer Perceptron (MLP), as depicted in Figure 6.2, is a combination,
or ensemble, of different linear regressors, the Perceptrons. The MLP model, with
one hidden layer, can be represented in matrix notation as the following equation,
ŷ = σ(σ(X ·W (0)) ·W (1)), where W (i) is the weights matrix of the i-th layer. The hid-
den layer functionality is similar to that of a kernel [Hofmann et al., 2008]. Whereas
the kernel uses a handcrafted function that is equivalent to transforming the inputs to
a higher dimensional space and computing a distance metric, the hidden layer learns
this transformation from the data. The goal in both methods is to make non-linear
problems solvable. Another point of notice in MLP models, is that the aforementioned
non-linearity applied to a Perceptron is very important in the ensemble, and this benefit
is far from the biological motivation. If linear functions are used the resulting transfor-
mation can actually be represented through only one layer, because successive matrix
products can be represented by only one matrix product, e.g., X ·W a ·W b = X ·W ,
where W = W a ·W b. By using non-linearities, the output of the Perceptrons can also
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Figure 6.3. Boundary space of a Sigmoid Perceptron.

be combined to approximate any arbitrary function [Hornik, 1991].

The Perceptron is a linear classifier, which means it divides the space linearly in
the shape shown in Figure 6.3. However, by combining partitions of different Percep-
trons leads to a space partition that is non-linear, this is the idea behind the MLP, the
simplest artificial neural network kind of model. Figure 6.4 shows a MLP, trained to
solve the non-linear exclusive-or problem. In the particular case depicted in the figure,
there is only one hidden layer with five neural nodes, or neurons, their partition in
the space can be seen in the figure and its combination generates the final partition
illustrated by the far right region of the figure. This characteristic of using several
linear nodes to compose a stronger non-linear classifier is also exploited in Decision
Trees and Random Forests [Ho, 1995].

We can see that each node in the hidden layer of the model showed in Figure 6.4
detects a pattern, which is a region of the 2D space. By stacking layers together, each
layer is detecting patterns in the space of the patterns learned by the previous layers.
This is able to capture more complex patterns which helps in solving harder, more
complex, problems, such as the ones in computer vision, where the input are raw pixels
which are noisy and by themselves alone lack semantic meaning.
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Figure 6.4. Combining the space partioning of multiple linear sigmoid percep-
trons, the multilayer perceptron is able to solve the XOR non-linear problem.
Adapted from http://playground.tensorflow.org/. The input consists of a
’x’ and ’y’ coordinate, and it is fed to each of five neurons in a sequential hid-
den layer where each of these neurons have learned a linear space separation that
when combined leads to the non-linear boundary space of the output depicted in
the far right cartesian space.

6.1.2 Convolutional Networks

A convolutional layer, as depicted in Figure 6.5, consists of a dot product of a certain
region of the input against a "filter" of small spatial resolution, the span of this spatial
resolution is known as the filter’s receptive field. In Figure 6.5, a 32 pixels wide and 32
pixels tall colored image input is convolved with multiple filters generating a cuboid, in
blue, which is commonly referred as activation maps. This convolution operation, for
the 1D case, is illustrated in Figure 6.6, the convolutional filter is Figure 6.6 (c) and
Figures 6.6 (a) and (b) are convolutions with different strides, the green connections
are where the filter connects with the input and the yellow squares (top) the result of

Figure 6.5. Illustration of Convolutional Layers. Taken from Stanford’s CS231
Course

http://playground.tensorflow.org/
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Figure 6.6. Example of the computation of a convolutional operation. (a)
illustrated a convoution with a unit stride and (b) with a stride of 2, resulting in
a subsampling operation. (c) is the applied convolutional filter. The output of
the convolution operations are in the top row, depicted in yellow color.
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Figure 6.7. Fully Connected network that is equivalent to the convolutional one
depicted in Figure 6.6(b). The weights outside the receptive field are zeroed as is
seen in (b). The output of the convolution operations are in the top row, depicted
in yellow color.

a dot product between them.

In fully connected layers, such as the one in a multilayer perceptron, a neural node
has a weighted connection with all elements of the input. In the case of convolutional
neural networks, for each position the filter is applied, it is equivalent to having a fully
connected node whose weights outside the receptive field are zero. This implies that the
equivalent fully connected network to a convolutional network has a number of nodes
equal to the sum of elements of all activation maps. This parallel of fully connected
layers and convolutional ones is illustrated in Figure 6.7.

Convolutional networks are neural networks with convolutional layers, whose
weights are locally connected as opposed to fully connected. To the example of LeCun
et al. [1998], convolutional networks can exploit a strong 2D local structure of images
and consume less memory than fully connected layers. In addition, local features can be
classified into a small number of categories (e.g., edges and corners), and convolutional
networks force the extraction of these local features since they restrict the receptive
field of hidden units to be shared and locally connected. The key assumptions behind
these networks is that the patterns of interest are composed by smaller patterns which
have a spatial independence and have a hierarchical complexity, regarding scale.

To illustrate to the reader with a computer vision background, but new to con-
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Figure 6.8. Locally Connected Convolution Compared with Regular Convolu-
tion. The input are the bottommost, gray, boxes. The output of the convolution
operations are in the top row, depicted in yellow color. The filters are depicted
in the middle between the input and the output. Note that the locally connected
filters are different on each spatial position, depicted by different colors, green,
red and blue.

volutional networks, a parallel between how the convolutions work and how mid-level
features were extracted before convolutional networks is shown in Figure 6.9. Both
methods learn patterns of smaller portion of the image, while in mid-level features a
method such as K-means is employed to learn representative patches, with convolu-
tional networks, gradient descent learns patterns analogous to these patches. Then,
both methods compare the regions of the image to the learned patterns/patches to
build a map of activations (feature map) that indicates how similar to the given pat-
tern that region is. These activations can be used to learn more complex patterns,
since, they convey information of which kind of patches are in a region, and complex
patterns are composed of the patches. In the case of mid-level features, these activa-
tions were usually used to extract statistical measures, such as in a bag of words model,
while in convolutional networks they can be fed to another pattern learning layer in a
cascaded fashion, or fed to a classification layer.
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Figure 6.9. Here we show a parallel between modern convolutional networks
and what was previously done in computer vision to build mid-level features, e.g.
bag of visual words.

The first great breakthrough for these convolutional neural networks was the
work of Krizhevsky et al. [2012] and their architecture called AlexNet, which is illus-
trated in Figure 6.10. By using a network with five convolutional layers, max-pooling,
ReLu activation and dropout for regularization they were able to win the ImageNet
competition of the year 2012. Their work is very important because they introduced
ReLu, which is faster than the then used hyperbolic tangent. They also popularized
dropout which is a simple solution for avoiding overfiting and they were able to show
the power of these networks by winning the complex and challenging competition of
ImageNet, which consists of natural images that must be classified as belonging to one
of a thousand possible classes.

Later in 2014, Simonyan and Zisserman [2014b] showed the very simplistic neural
network architecture, the VGG (Visual Geometry Group). It consists of only 3×3
convolutional filters and 2×2 with a 2 stride max-pooling. They also showed that
three consecutive convolutional filters of size 3×3, have an effective receptive field of
size 7×7, but with fewer weight parameters to adjust.

Also in 2014, Taigman et al. [2014] made a breakthrough in face recognition with
convolutional networks. They achieved human results on the challenging Labelled
Faces in the Wild dataset. Their results were mainly due to a powerful alignment
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Figure 6.10. AlexNet architecture. Taken from their original work pa-
per [Krizhevsky et al., 2012].

technique, frontalization, and the features learned by a deep model with lots of data.
An interesting fact is that they used locally connected convolution, see Figure 6.8,
since they postulated that, thanks to their alignment, there is no spatial independence
of patterns and they are roughly bounded to a position in space. This convolution is
different because its filters are not shared spatially.

Figure 6.11. Original Inception Module. The 1×1 convolution in the beginning
of the module is a compression tricky in order to fit the model in the memory
constraints of GPUs. This module explores patterns of different scales by using
different sizes for the receptive fields of the convolutions The image is from the
original paper [Szegedy et al., 2015].

In 2015, Szegedy et al. [2015] used a novel inception module, which instead of
having to choose at each layer which of a 1×1, 3×3 or 5×5 filters or max-pooling
would be employed, the inception module used all of them at once, Figure 6.11. This
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inception module enabled deeper architectures, in their work they used 22 weighted
layers. Because the number of channels of the input being feed to a inception module is
usually large, they applied a 1×1 convolution prior to doing any other transformation
in the data. This convolution works as a compression trick that lessens the cost of
applying other operations. Later versions of this inception architecture also used new
techniques, such as Separable Convolution [Howard et al., 2017], and global average
pooling replacing the first fully connected layer, which spares lots of parameters.

Figure 6.12. Visualization of filters for the Two initial layers, first row, and last
two layers of the model from [Zeiler and Fergus, 2014]. It is possible to see edge
patterns (layer 1) that together compose texture patterns (layer 2), and by the
final layers objects and parts of objects. Adapted from the original work.

Understanding of a method is really important. Some methods may demonstrate
great results but be really sensitive to small perturbations, or have an overfitting behav-
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ior. The work of Zeiler and Fergus [2014] used deconvolutional networks to understand
what each filter of each layer was learning. Their results can be seen on Figure 6.12,
where a pair of features and patches that had the highest activation to the correspon-
dent node. In the first layer the actual filters are shown, in the subsequent it is shown
the pixels which had the most importance in the activation of the neural node. We
can notice that the deeper layers, second row in Figure 6.12, works as detectors of
parts of objects and that early layers detects edges, texture patterns and colors. It
is the relation of these edges, textures, and colors that are used to compose the part
detection of later layers, in turn, the relation between locally connected parts is used
to find complete objects, hence the power of convolutional networks.

In 2016, He et al. [2016] proposed a model, Resnet, that had what they called
skip connections which models the layers to compute the gradient of f(X) +X instead
of f(X) only, as seen in Figure 6.13. This helps alleviate the problem of the vanishing
gradient, the diminishing of its magnitude across the layers as it backpropagates, since
the gradient of a sum is the sum of the gradients, this reinforces the gradient of early
layers in the model. With these skip connections its models were able to have over
50 layers. By using an ensemble of these models their results on the top-5 error of
imagenet was 3.57%, which was the best result on the dataset.

Figure 6.13. Resnet module as seen in [He et al., 2016].

6.2 Face Verification

In general, face recognition follows a four stage pipeline, detection, alignment, rep-
resentation and classification, as can be seen in Taigman et al. [2014]. Many works
in face recognition focus either on the representation step, the discrimination step, or
both. In the face verification task, the discrimination might be employed by learning
a classifier or a metric that can be used to separate same/not-same pairs. The works
that tackle the discriminative problem usually focus on metric learning, which consists
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of finding a transformation to another feature-space in which the euclidean distance is
more discriminative than in the regular space, it is also known as Mahalanobis distance
metric learning (MDML), Figure 6.14 illustrates the goal of MDML.

On problems with small available data, the feature representation problem was
tackled by employing low level-feature extractor, such as Histograms of Oriented Gra-
dients (HOG) [Dalal and Triggs, 2005] and Local Binary Patterns (LBP) [Ojala et al.,
1996]. The first uses image derivatives to capture shape information while the second
describes texture of pixel regions. With the popularization of deep learning and its
breakthroughs in many tasks, it is now more common to learn features instead of en-
gineering them. Although as previously said, in cases where a small amount of data is
available learned features might prove unrepresentative due to overfitting.

In the next paragraphs we discuss methods that have been evaluated in the fol-
lowing two datasets for face verification, Labeled Faces in the Wild (LFW) [Huang
et al., 2012] and Youtube Faces Database (YTF) [Wolf et al., 2011]. LFW consists of a
10 fold cross validation protocol where each fold has 600 samples with balanced labels,
in restricted protocol, no outside data can be used, in unrestricted protocol, outside
data can be used for training. Youtube Faces Database (YTF) [Wolf et al., 2011] is a
dataset that has a similar setup to LFW, but instead of verifying pairs of images, pairs
of videos are used. It is also a 10-fold protocol, but each fold has 500 label balanced
samples.

One very successful work with respect to feature learning for face understanding
is the work of Kumar et al. [2009]. They learned one single model for each one of 65
attributes (e.g., big nose, oval face), and also learned models for face parts of famous
peoples which they called simile classifier. The idea behind the simile classifier is that
humans can use information of is alike to person ’x’ and is distinct of person ’y’ to
identify a subject. These models were learned by using amazon mechanical turk for
labeling and low level features of fiducial points for representation. They used these
two features as input to learn discriminative models for face verification. They achieved
85.29% accuracy on LFW (image restricted configuration).

Wolf et al. [2011], proposed a MDML method inspired by One Shot Similar-
ity (OSS) [Wolf et al., 2009], which uses a collection of negatives and samples from two
other classes and learn two models one for each class and predicts a confidence of one
signature belonging to the other class and not to the negative one and the same to is
applied to the other class. In their work, they also use a negative set which they call
background. Given two sets of signatures to compare, X1 and X2, they find nearest
neighbors of X1 in the background set and learn a model that separates X1 from its
nearest neighbors, it then computes the signatures of X2 on this model. They also do
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the opposite, train a model X2 vs its nearest neighbors, and compute the signature of
X1 on this model. The combination of the response of the two models is combined to
form their metric of similarity. They achieved 76.4 ± 1.8 average recognition rate on
the YTF.

Regarding deep learning methods, Sun et al. [2013] proposed a deep architecture
that relied on an ensemble of crop specialized convolutional networks. In their work, a
pair of face images is fed as input to an ensemble of networks. Their network is depicted
in Figure 6.15, M1 to M8 are pairs of images in different configuration of ordering
and horizontal mirroring. To ensure diversity, each ConvNet model in the ensemble
is presented with different cropped regions of the face which they found to contain
discriminative information, these regions can be in color or in grayscale in order to add
more diversity to the model. The L0 layer combines each group of deep ConvNet output
by average pooling. The L1 and L2 layers are in charge of combining each subgroup in
the lower levels and in the highest level there is a restricted boltzmann machine (RBM)
that learns to separate between same and not-same pairs. Their method achieved 91.75

mean accuracy on the LFW dataset using the unrestricted protocol. In conclusion,
they employed an end to end architecture for face-verification, but with a very complex
and with very high capacity model, due to the ensemble, which makes the model prone
to overfiting.

Figure 6.14. In this figure, taken from [Hu et al., 2014] it is illustrated the goal
of Mahalanobis distance metric learning. It is desirable that not-same pairs that
are close in the conventional euclidean space become distant in the transformed
space and same pairs to be close.

Hu et al. [2014] also used deep learning models on face recognition. They em-
ployed a siamese network with shared weights to learn a MDML. A siamese network
is composed of two shared blocks that extract features from pair of images, specially
useful in verification task. Their network model, then, works as a space transformation
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Figure 6.15. Figure adapted from [Sun et al., 2013], illustrates their network
architecture for face verification. The ensemble architecture is depicted in the top
row and the individual ConvNet of the ensemble depicted in the bottom row.

where the transformed features are more discriminative. Their network is composed of
only fully connected layers and their input is a combination of handcrafted features.
They achieved 90.68 ± 1.41 on the LFW image restricted protocol. Since they did
not use convolutional networks in the raw images, instead used only fully connected
layers on handcrafted features, their network does not learn a representation, only a
transformation of the space of the handcrafted features, a MDML.

Sample A

Sample B
Feature

Extraction
Layers

Feature
Extraction

Layers
Verify

Figure 6.16. Depiction of the Siamese Network. The boxes labeled Feature
Extraction Layers share weights and are responsible for extracting features from
each sample which are compared in the block labeled Verify. The features are
optimized to separate pair of samples.
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In the same year, researchers from Facebook [Taigman et al., 2014] outperformed
human results on the LFW dataset by employing a fully convolutional network that
learns feature representation and is used in an ensemble of similar networks trained
with different random seeds. They also learned a siamese network, see Figure ??.
This network achieved 96.17 ± 0.38 as compared to their essemble with a result of
97.35 ± 0.25 of mean accuracy on the unrestricted protocol. Another major con-
tribution of their work and one of the pillar which led them to such great results is
a face alignment technique based on 3D transformation, Figure 6.18. Although their
network architecture is somewhat atypical, employing large convolutional kernels, it
was a breakthrough beating human performance and was important to reinforce the
strength of deep learning models. It is also important to note that they implemented
a CPU-version of their model for doing inference and, using a single core Intel 2.2GHz
CPU, the operator took 0.33 seconds to extract features and align an image.

Schroff et al. [2015] presented a follow-up for the siamese network used by the
previous work. Their triplet network, as seen in Figure 6.17, receives as input a refer-
ence image, an image from the same class as the reference and another image from a
different class, it then tries to find a space where samples from the same label are closer
and samples from different labels are far apart. To compose triplets they select a hard
positive and hard negative for each reference sample. Hard positives are ’same’ samples
that are distant from the reference, and the hard negatives, are ’not-same’ which are
closer to the reference sample. They Achieved 99.63% on lfw unrestricted protocol.
On YouTube Faces DB it achieves 95.12%. The difference to siamese networks is that
it optimizes both same and not-same cases at each gradient update, so in each update
the network is being enforced to place same pairs close and not-same pairs far apart.

In the restricted setting of LFW with no outside data, the work with best results
is from Ouamane et al. [2015]. They used an adaptation of Discriminant Analysis
for the weakly labeled case of same/not-same pairs coupled with exponential kernel,
the input of their method is the BSIF features [Kannala and Rahtu, 2012], which is
inspired by LBP. They compare their method, Side Information Exponential Discrim-
inant Analysis (SIEDA), with the linear version Side Information Linear Discriminant
Analysis (SILD). they achieved a 94.63± 0.95 on the LFW restricted protocol.



6.2. Face Verification 43

Negative

Positive

Anchor

Feature
Extraction

Maximize:
R2 

Distance

Feature
Extraction

Feature
Extraction

Minimize:
R2 

Distance

Figure 6.17. The Triplet Loss Architecture. The boxes labeled feature extraction
are neural network layers with shared weight with one another. The goal is to
learn features where samples from the same class are close and samples from
different classes are far apart.

Figure 6.18. Taken from [Taigman et al., 2014]. Depicts their 3d alignment
method.





Chapter 7

Transfer Learning

Since the AlexNet model [Krizhevsky et al., 2012] won the 2012 ImageNet chal-
lenge [Russakovsky et al., 2015], deep learning models have been popularized and made
breakthroughs in many areas [LeCun et al., 2015] , winning matches of a hard game
such as Go against world champions [Silver et al., 2016], and achieving results compa-
rable to humans in face verification [Taigman et al., 2014].

Many models which have achieved great results on ImageNet competitions have
also been successfully used in datasets or tasks different than the ones they were origi-
nally trained on, circumventing part of the learning cost, or making possible to obtain
good results in datasets with a small number of samples. One way this could be done
is by employment of transfer learning, the act of adapting a model learned on one
data to another, see Figure 7.1. Of important notice is the fact that although data
augmentation could also alleviate the problem of having a small number of samples
it would still require the learning of the whole model, for this reason, we believe our
transfer learning approach to be less costly.

Transfer learning usually consists of replacing some of the final layers of a learned
model and reconditioning the weights to new data [Simonyan and Zisserman, 2014a;
Yosinski et al., 2014], as is shown in Figure 7.1. This is called fine-tunning, since the
old model is being fine-tuned to the new data. This is usually done in order to suit
a model to a small target domain/data avoiding overfitting of this small data by first
training the model on a larger related data. The disadvantage of this is that it needs
robust hardware to engage in the learning process and although lessened, the need
of data for performing fine tuning is still present. Motivated by the aforementioned
discussion, we explore, in this work, transfer learning approaches that would require
little to no fine-tuning.

We conjecture that features associated with each layer of a sequential deep model
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Figure 7.1. Depiction of the steps of traditional transfer learning with fine-
tuning. The Classifier in step one is initialized with random weights. Step 2 is
optional and usually employed to improve performance by learning some feature
patterns that are specific to the new domain,as a trade-off, it could also lead to
overfit.

tend to be more specific to the learned environment as its depth increases. This way,
we believe that the penultimate layer, as usually done, might not be the ideal one to
extract features if the new data is characteristically different than the data the model
was learned on. One way that this has been approached is by using the average of
features of the same image in multiple scales or crops, which adds to the computing
cost, this makes the model more robust to inputs with different scales, this is done in
the Inception architecture [Szegedy et al., 2015], for example.

We employ our approach to the task of face verification, which consists of given
a pair of face images, determining whether they belong to the same identity or not.
Verification differentiates from face identification in which given a face image it is
necessary to predict the identity to which it belongs. We extract a feature vector of
each face with a VGG16 model, learned on the VGGFaces dataset [Parkhi et al., 2015].
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7.1 Proposed Approach
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Figure 7.2. Pipeline of our Face Verification Approach.

Our method, illustrated in Figure 7.2, can be roughly described as follows. First,
we carefully choose a layer from a neural network extracting its output as feature vectors
for each face image, in the same way as a siamese network, detailed in Chapter 6. Then,
the relationship between the two feature vectors is captured according to some distance
metric, resulting in a new vector. The metrics employed are listed in Table 7.1, we
call them handcrafted because they are not learned through the data. Finally, the
resulting feature vector is presented to a classifier, which in our experiments we used
the Multilayer Perceptron (MLP) Haykin [2001].

Name Formula

χ2 (x−y)2

x+y

L1 |x− y|
Sign x× y
L2 (x− y)2

Table 7.1. Handcrafted distance metrics used. Where x and y are two vectors
and all operations applied are pointwise, that is they also return a vector.

We use a VGG16 architecture Simonyan and Zisserman [2014b] learned on the
Face Identification domain to extract features from the LFW and YTF datasets. This
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architecture consists of 16 convolutional and fully connected ones layers. In general,
the features are extracted from the penultimate fully connected layer Taigman et al.
[2014]. However, we experiment with different layers (pool5, the last convolutional
layer, fc6, the first fully connected layer and fc7, the penultimate layer), hypothesizing
that there is an inverse correlation between generalization and layer depth.

Our hypothesis comes from two clues. The first is the fact that as max-pooling
occurs it has the effect of enlarging the receptive field and then capture larger and
more complex patterns, usually associated with a higher semantic level. The second
is that a node of a neural network layer can be interpreted as a type of correlation to
detect patterns. Therefore, with stacked layers, one layer output is in a pattern domain
and the next layer will be in a pattern of patterns domain, which we believe increases
complexity of the patterns and decreases generalization.

The feature vector of an image extracted by a deep model is composed of the
response of the neurons of a layer of the model. Each of this response is the result of a
correlation of signals after applying a nonlinear activation, the signals being the input to
the layer and the pattern the neuron has learned to match. Each variable of the feature
vector, then, represents the confidence that a given pattern was located by a neural
node. In the image space, a two dimensional signal, there is spatial independence of
patterns, i.e., an object such as a ball, can be located at different positions, however, in
the feature space, the variables have more spatial dependency and it is reasonable that
if a variable has large value on a sample and low value on the other, this is correlated
with them being different from one another. This is a good motivation for using deep
feature to compare two images, or face images, in this work.

Considering that some variables might be more important than others to discrim-
inate a pair of samples, we experiment to use a weighted sum of the variables where
the weights are learned from the data. This is done by means of a (2 × 1) locally
connected convolutional (LCC) filter [Taigman et al., 2014], which we illustrate in Fi-
gure 7.3. These filters, different from standard convolutional filters, are not spatially
shared, and for each variable of the pair of samples a different relationship in the form
xi ∗ wi,a + yi ∗ wi,b is learned, where xi is the i-th variable from the first sample in the
pair and yi is the analogous for the second sample in the pair. We can note that the
weights can therefore be learned to ignore a variable from either of the face of one of
the pairs, suppose wi,a = 0 or wi,b = 0, to ignore the relationship altogether, wi,a = 0

and wi,b = 0, or to give it large importance, wi,a >> 0 and wi,b >> 0.
With the traditional convolution, the weights of a feature map are shared across

different spatial positions. This implies that the weighting for one pair of variables is
suitable to all the others. By using more convolutional filters, more weighting rela-
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Figure 7.3. Illustration of how we compute metrics with a convolutional (lo-
cally connected) operation. Each variable is weighted by the convolutional filter,
meaning it learns, in theory, which variables are more or less important.

tionships are learned. This will generate an output with size N × F , where N is the
length of the feature vectors and F is the number of convolutional filters. In general,
this process results in memory problems which can be circumvented with a trick also
used in the Inception Module [Szegedy et al., 2015]. It consists of employing another
convolution with a (1 × 1) sized filter to compress the channels dimension after per-
forming the layer convolution, resulting in an output of size N, the original length of
the input vector.

One problem of simply applying the weighted difference between any two vari-
ables, as discussed previously, is that the weighted sum of the convolutions would have
different value depending on the order they are executed, since a− b 6= b− a. Thus, to
avoid this, the difference is followed by an absolute value layer, making the relationship
indifferent to the order that a pair of variables, and consequently, faces, is presented.
However, by taking the absolute value the information of the sign of the variables is
lost. In the product of variables, sign in Table 7.1, the result of the operation will
be positive if the operands have the same sign or negative if they have different signs.
This apparent complementarity was the motivation that led us to test the sign metric
and combine it with other metrics.

Searching for complementary information, we conducted experiments with differ-
ent metrics. The χ2, defined by the square of differences over the sum, which is suited
for histogram comparison and was used in the work of Taigman et al. [2014] to compare
different feature vectors extracted from deep models. The square of differences (L2),
which is an alternative to taking the absolute value to make it indifferent to the or-
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der of the variables, which also accentuates very small and very large values, this last
characteristic could convey complementary information to that of the simple absolute
value of differences. An overview of the metrics is listed in Table 7.1.

When comparing two faces in the verification task, this comparison yields a sim-
ilarity metric, which is a numeric value. It is then necessary to choose a threshold to
classify a pair of samples as belonging to the same identity or not. In our case, the
similarity is constrained in the [0, 1] domain, due to the output of a sigmoid neural
node and we simply choose the median of the domain as the threshold, 0.5.



Chapter 8

Experimental Results

In this section, we present our experiments and results achieved. Finally, we present
results on the face verification task in the Labelled Faces in the Wild (LFW) dataset
and the Youtube Faces dataset (YTF) with our transfer learning method. The two
datasets used and their protocols are described in detail in Chapter 6.

This section presents the results of our transfer learning approach on face verifica-
tion and discusses findings and insights they led us to. We extract features of different
layers and test them with different distance metrics to be employed as features of a
metric learning model. We also experiment using locally connected convolutional lay-
ers to learn a weighted distance metric. In summary, we used the learned model to
perform a transfer learning requiring a small amount of additional training and data.

Metric Mean Confidence
Name Accuracy Interval90%
LCC 95.15 [94.51, 95.79]
L1 90.83 [90.34, 91.32]
Sign 90.75 [89.92, 91.58]

L1 + Sign 96.33 [95.83, 96.80]
χ2 96.39 [95.70, 97.08]

L1 + Sign+ LCC 96.48 [95.91, 97.05]

Table 8.1. Accuracy obtained in Labeled Faces in the Wild when using the
feature map obtained from layer pool5 with different metrics. The + sign indicates
concatenation of the metric results.

Table 8.1 shows the performance of the different metrics we used. The χ2, which
is commonly employed [Taigman et al., 2014] is able to achieve good results by itself,
as in the 5th row of the Table. However, combining it with other metrics did not
have a positive effect. In comparison, the L1 and Sign metrics, although showing
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a lower accuracy, individually, when combined showed an reasonable improvement,
indicating that the information of each metric is indeed, complementary to the another.
The Locally Connected (LCC) metric also obtained a good result alone (first row of
Table 8.1) which we take as an example that it can be used as a learned approach
for a variable measurement that does not need careful domain knowledge. Finally,
combining the L1 + Sign + LCC trough concatenation, yielded the best result of the
metrics with 96.48% mean accuracy.

Layer Mean Confidence Rank
Name Accuracy Interval90%
pool5 96.32 [95.78, 96.85] 1
fc6 94.58 [93.79, 95.37] 2
fc7 93.08 [92.11, 94.06] 3

LBP Ojala et al. [1994] 66.42 [64.98, 67.85] 4

Table 8.2. Accuracy obtained in Labeled Faces in the Wild when using the
feature map obtained from different layers. We also shoe the results of the hand-
crafted feature LBP in the last row. L1 + Sign metric used.

According to Tables 8.2 and 8.3, we believe that in sequential models such as
the VGG16 [Simonyan and Zisserman, 2014b], the complexity and specialization of the
model increases with the depth, and that is the reason we observe a worse result in the
final layer fc7 on both datasets. For the LFW, we note that the best result was with the
pool5 layer and the result was gradually deteriorating. This layer is likely to be the one
with most suitable patterns for the LFW and the successive layers are to specific to the
VGGFaces domain. The correlation between depth and generalizability/specification
is probably a characteristic of purely sequential models such as VGG16 and we believe
this corroborates with the hypothesis of Huang et al. [2017] that conecting a layer to
multiple successive layers is also a form of regularization. We hypothesizes it as being
a distribution of complexity across layers of all depths.

Our best result in LFW is presented in Table 8.4. It was obtained by using
our best metric L1 + Sign + LCC together with the concatenation of two feature
vectors, one obtained from LBP [Ojala et al., 1994] and the other from pool5 as defined
previously. Our result achieved a mean accuracy of 96.65 and although this number
does not outperform the one from the work of Taigman et al. [2014], a unpaired T-
Test [Jain, 1990] with 90% confidence shows that the confidence interval, [-1.44, 0.4], of
the difference of these two means of accuracies actually contains the zero, and therefore,
they are not statistically different within this confidence.

It is important to emphasize that our best result was achieved with a simple
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pipeline, as we do not use of their 3D alignment, called frontalization, and we also
use a model for deep features that was trained on a smaller amount of samples. Re-
garding Schroff et al. [2015], our result is statistically inferior to them, they employ a
Triplet Loss network that learns a projection in which same pairs are closer regarding
the second order minkowski distance and not-same pairs are far apart. Our deep fea-
ture models use much less samples than their and also do not require a careful selection
of the triplet to be presented to the model. Thus, with much less complexity and com-
putation, careful selection of a layer feature map and simple metric of variables yielded
statistically equivalent results.

Layer Mean Confidence Rank
Name Accuracy Interval90%
pool5 91.12 [90.25, 91.99] 3
fc6 93.08 [92.33, 93.83] 1
fc7 91.32 [90.61, 92.03] 2

Table 8.3. Accuracy obtained in Youtube Faces when using the feature map
obtained from different layers. L1 + Sign metric used.

In the Youtube Faces, our best result achieved a mean accuracy of 93.12, which
is presented in Table 8.5. Since the Confidence Interval of the mean of the accuracies
have no overlap, our result is statistically different from that of Taigman et al. [2014].
This implies that our method is statistically superior to it, since we have the better
number, even though we use less samples and a simpler face alignment technique. This
is a valid example that careful consideration of which layer to use in another dataset
can be a valid transfer learning technique. It is important to notice, in the third row of
Table 8.5 third row, that this careful selection was able to outperform the result,without
the triplet-loss embedding of the model originally trained on the VGGFaces dataset.

Method Mean Confidence
Name Accuracy Interval90%

FaceNet [Schroff et al., 2015] 99.63± 0.09 [99.58, 99.68]
DeepFace [Taigman et al., 2014] 97.35± 0.25 [96.90, 97.81]

Ours 96.65± 0.34 [96.03, 97.27]

Table 8.4. Comparison of the state-of-the-art Results in the Labeled Faces in the
Wild. A unpaired T-Test of our result and the one reported in DeepFace [Taigman
et al., 2014] shows these results to not be statistically different.
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Method Mean 100% Confidence
Name Accuracy - EER Interval90%

FaceNet [Schroff et al., 2015] 95.12± 0.39 - [94.89, 95.35]
DeepFace [Taigman et al., 2014] 91.40± 1.1 91.4 [90.76, 92.04]

VGG [Parkhi et al., 2015] 91.6 92.8 -
Wolf [Wolf et al., 2011] 76.7± 1.8 74.7 [75.36, 77.44]

Ours 93.08± 0.41 92.58 [92.33, 93.83]

Table 8.5. Comparison of the state-of-the-art results in the Youtube Faces.
Results of the third row are their reported results without triplet loss embedding,
also, they do not report standard error.



Chapter 9

Conclusions

In this part of our work, we presented state-of-the-art results on the task of face ver-
ification with a simple method of transfer learning, careful choice of a neural network
feature map. Our result outperformed Taigman et al. [2014] in one benchmark (YTF)
and was statistically equivalent in another (LFW). Their work was the first work to
have human comparable results on this task, and they relied on a 3D alignment, frontal-
ization, which our simpler model does not and we also use less samples to learn the
deep feature model. Finally, we believe that model fine-tuning although able to yield
improved results is not a hard requirement for transfer learning and have showed ex-
perimental evidence that it is possible through, simple and computationally cheap,
layer/scale selection adapt a model trained on one dataset to another.

We believe that, for future works, the transfer learning approach could be verified
on different task and different networks.
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