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Abstract

Modern computer architectures are becoming each day more heterogeneous. This het-
erogeneous design emerges through the combination, within the same hardware, of
several different processors. Choosing the best hardware configuration for a given pro-
gram is difficult, because programs, even of moderate size, go through many phases
during execution. These phases benefit differently from the same hardware configura-
tion. Researchers have used a plethora of techniques to deal with this problem, but two
techniques seem to standout: dynamically or statically. The former is implemented at
the runtime level, be it through an operating system or a scheduler/middleware. The
latter is implemented at compilation level. In this dissertation, we investigate the
mixing of both approaches achieving a synergy that, otherwise, could not be attained
by each technique individually. On this new scheme, we propose an instrumentation
framework that produces an adaptive program that uses both source-code and run-time
information to make decisions. We have implemented our instrumentation framework
in the LLVM compiling infrastructure. To demonstrate that our proposal is useful
and effective, this master’s dissertation compares this new code generator, called As-
tro, with state of the art approaches. The goal was reducing the energy consumption
of programs while maintaining performance constraints. We evaluate on applications
among different benchmarks and embedded boards.

Keywords: Compilers, heterogeneous architectures, energy-efficient systems, adaptive
programs, non-assisted instrumentation, machine learning, classification, LLVM.
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Resumo

Arquiteturas de computadores modernas estão se tornando a cada dia mais het-
erogêneas. Essa heterogenidade emerge da possibilidade de combinação, dentro de um
mesmo dispositivo, de diferentes tipos de processadores. Escolher a melhor configu-
ração desses processadores é uma tarefa difícil, porque programas, mesmo em tamanhos
moderados, apresentam diferentes fases durante a sua execução. Essas fases se benefi-
ciam de forma diferente do dispositivo. Pesquisadores vêm utilizando diversas técnicas
para lidar com o problema, mas duas delas se destacam: a dinâmica e a estatica. A
primeira é implementada em tempo de execua̧ão, seja por um sistema operacional ou
um escalonador. A última é implementada em tempo de compilação. Nessa disser-
tação, nós investigaremos a mescla das duas abordagens de modo a conseguir uma
sinergia a qual não seria obtida por cada uma das técnicas individualmente. Nesse
novo esquema, nós usamos uma ferramenta de instrumentaa̧ão que cria programas que
se migram sozinhos usando ambas informações retiradas do código fonte e informações
coletadas em tempo de execução para fazer as decisões. Nós implementamos a fer-
ramenta de instrumentação na infraestrutura de compilação LLVM. Para demonstrar
que nossas ideias são úteis e efetivas, essa dissertação de mestrado compara esse novo
gerador de código, chamado Astro, com abordagens no estado-da-arte, o utilizando
para reduzir o consumo de energia (mantendo restrições de performance) em conjuntos
de aplicações entre diferentes placas embarcadas.

Palavras-chave: compiladores, arquiteturas heterogêneas, economia de energia, pro-
gramas adaptativos, instrumentação de código automática, aprendizagem por reforço,
LLVM.
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Chapter 1

Introduction

Modern computer architectures are becoming each day more heterogeneous [62]. This
heterogeneous design emerges through the combination, within the same hardware,
of several different processors, such as big/little multi-core Central Processing Units
(CPUs) [13][23], Graphics Processing Units (GPUs) [42] and Digital Signal Processors
(DSPs) [49]. An advantage of this design is the possibility of allocating to each appli-
cation the hardware configuration that best suits it. A hardware configuration consists
of a number of cores, their type and their frequency level. We say that a configuration
H1 suits a program better than another configuration H2 if H1 runs the program more
efficiently than H2, according to some metric such as runtime or energy consumption.
Nevertheless, even though we have today the possibility of choosing among several
configurations, the one that better fits the needs of a certain program, we still have no
clear technique to perform this choice seamlessly.

Often a program has regions of code that benefit differently from distinct pro-
cessors. We call the task of allocating program parts to processors the code placement
problem. Typically, there are two ways to solve this problem: dynamically, or statically.
Dynamic approaches [38; 44; 46] are implemented at the runtime level, be it through
an operating system, a middleware or changes in the target program itself. Static ap-
proaches [25; 39; 45; 58] are implemented at the compiler level. The main advantage
of the dynamic approach is the fact that it can take advantage of runtime information
to improve the quality of the choices it makes. Static techniques, in turn, provide re-
duced runtime cost and better leverage of program characteristics. In this dissertation,
we claim that it is possible to join these two approaches, achieving a synergy that,
otherwise, could not be attained by each technique individually.

To fundament this claim, we show a few techniques to mix static and dynamic in-
formation and discuss a few others. Our final approach starts from a technique that has

1



2 Chapter 1. Introduction

been already proven effective to schedule computations in heterogeneous architectures:
Reinforcement learning. Nishtala et al. [44] have shown that reinforcement learning
helps in finding good hardware configurations to applications subject to varying dy-
namic conditions. The beauty of this approach is adaptability: the same principles
provide the means to explore a vast universe of states, formed by different hardware
setups and runtime data changing over time. Given enough time, well-tuned heuristics
let the learning algorithm find a set of scheduling decisions that that suits the under-
lying hardware. Yet, “enough time” can be too much time. The universe of possible
runtime states is unbounded, and program behavior is hard to predict without looking
into its source code. To speedup convergence, we bring the compiler into the fray.

The compiler gives us two benefits. First, it lets us mine program features,
which we can use to train the learning algorithm. Second, it lets us instrument the
program. This instrumentation allows the program itself to provide feedback to the
scheduler, concerning the code region currently under execution. Based on previous
knowledge, collected statically, about characteristics of that region, the scheduler can
take immediate action. An action consists in choosing a new state to represent program
behavior, and collecting the reward related to that choice. Such feedback is then used
to fine-tune and improve scheduling decisions. As we show in Section 4, convergence
is faster, and runtime smaller when deciding for static and dynamic combination of
information on the state representation.

To validate our ideas, we have materialized them into a framework to instrument
and execute applications in heterogeneous architectures: the Astro System. To collect
static program characteristics, and instrument code, we use the LLVM compilation
infra-structure [35]. We show that this new code generator is able to reduce the energy
consumption of programs running on an Odroid XU4 architecture. Our experimental
results, obtained in well known diverse benchmarks, show that we can achieve energy
savings of up to 8%, when compared to state-of-the-art techniques, such as Hipster [44].
Such numbers result from the following contributions:

Observations: in Section 1.2, we demonstrate that the different parts of a program,
i.e., syntactic regions within its code, are an important factor determining its per-
formance, in terms of speed and energy, when running on a heterogeneous hard-
ware. This observation points us to the key insight: the possibility of augmenting
an adaptive runtime apparatus with awareness of program characteristics.

Compiler: in Section 3.2.1, we explain how to collect and discretize program features,
and in Section 3.2.2, we explain how to instrument a program, so to use said fea-
tures to fine-tune an adaptive code placement algorithm. The choice of program
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features and runtime characteristics that this apparatus requires are also original
contributions of this work.

Runtime: in Section 3.2.3, we show how to integrate the static information that we
collect with a runtime environment that adapts to the environment. We offload
the learning process to a server. Hence, runtime adaptation does not burden the
application after it stabilizes. The process is gradual: if necessary to learn more,
we reconnect the device to the server.

1.1 Contributions

This dissertation will present an overview of the code placement problem and introduce
the Astro framework which:

1. Creates an adaptive program that migrates by itself, without human or scheduler
intervention.

2. Exploits both source code and run-time information to decide for the best choice,
achieving a synergy that only with one of them wasn’t possible.

3. Evaluates different learning approaches as supervised, for a simplified space prob-
lem, and reinforcement learning techniques for a larger space problem.

4. To the best of our knowledge, Astro is the first system that feeds a learning model
with both static and dynamic information to solve the placement of computations
in a heterogeneous device.

Awards: A fork proposal of the Astro project, called “Intelligent DVFS”1 [Int], has
earned a Google Research Award for Latin America 2017 [Goo]. So, since August 2017,
the lab has receiving funding from Google Inc. The project is an implementation of
the method targeting mobile devices with the Android Operating System. The project
is executed by Fernando (advisor) and Junio (a first year master student in our lab).

1.2 Empirical Observation

We motivate our work by presenting and discussing observations obtained from run-
ning a few experiments. First, we find that different hardware configurations yield

1It was one of 27 approved projects from 281 proposals were submitted from nine different countries
in Latin America.[Goo]



4 Chapter 1. Introduction

very different tradeoffs between power consumption and runtime speed for a program
(Fig. 1.1). As a second observation, we notice that this behavior happens because pro-
grams have power phases: depending on the operations that they perform, they might
consume more or less power per time unit (Fig. 1.2). Finally, we observe that the best
hardware configuration for a program might not suit the needs of a different applica-
tion (Fig. 1.4). Central to the discussion in this section is the notion of a hardware
configuration:

Heterogeneous architectures Heterogeneous Computing (HC) was defined as “the
well-orchestrated and coordinated effective use of a suite of diverse high-performance
machines (including parallel machines) to provide superspeed processing for compu-
tationally demanding tasks with diverse computing needs. An HC system includes
heterogeneous machines, high-speed networks, interface” [32]. Over the time, the het-
erogeneity was extended at different levels such as inside the same computer. So, HC,
later called Heterogeneous Architectures, could be broadly defined as “the use of dif-
ferent processing cores to maximize performance” [11]. Recent architectures have a
different type of cores integrated into the same chip. It is usually organized by clus-
ters. One example used in this dissertationâs evaluation are Heterogeneous Processors
of the ARM vendor, known as ARM Big.LITTLE processors.

Definition 1.2.1 (Hardware Configuration) A heterogeneous architecture is
formed by a set P = {p1, p2, . . . , pn} of n processors. A hardware configuration is a
function H : P 7! Boolean. If H(pi) = True, then processor pi is said to be active in
H, otherwise it is said to be inactive.

The Universe of Hardware Configurations We observe that the same application
might benefit differently from different hardware configurations. This benefit is mea-
sured in terms of processing time and energy consumption. Figure 1.1 illustrates this
fact. The figure shows how two benchmarks from the PARSEC suite – Freqmine and
Streamcluster – fare on an Odroid XU3/XU4 board2. This hardware features 4 Cortex-
A15 2.0Ghz cores and 4 Cortex-A7 1.4Ghz cores. Following a nomenclature adopted
by ARM, we shall call the A15 cores bigs, and the A7 cores LITTLEs. By switching
on and off the different cores, we have 24 different hardware configurations3

2Both XU3 and XU4 adopt the same Samsung Exynos 5422 big.LITTLE ARM processor
3We have 24 = 5⇥ 5� 1 configurations, because we do not count the setup in which all cores are

off.
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Figure 1.1. Energy vs Processing time spent by two PARSEC benchmarks using
simsmall inputs. The notation xLyB denotes x LITTLE cores, and y big cores.

Each dot in the figure represents the average of 10 executions on the same config-
uration, using the smallest4 input available in PARSEC. Variance is almost negligible,
staying under 1% in every sample, for the two benchmarks. The X-axis shows the sum
of the execution times of processors active in a particular configuration; hence, it is not
clock time. Energy is measured with the Odroid XU3 on-board power measurement
circuit and refers to work performed within the processors only; thus, peripherals are
not considered.

Figure 1.1 lets us conclude that the energy and runtime footprint of applications
vary greatly across different hardware configurations. For instance, the most time
efficient configuration for Freqmine is 0L4B, i.e., four bigs and no LITTLEs (2.90secs,

4This experiment takes approximately 12 days using the largest inputs.
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10.43J). However, the most energy efficient configuration is 4L0B (4.01secs, and 8.65J).
Results are not the same for Streamcluster. The best energy configuration is 0L1B
(0.48secs, 0.69J). This is also the most time efficient configuration. Freqmine shows
more parallelism than Streamcluster; therefore, it benefits more from a larger number
of cores. This diversity of scenarios happen because programs have different computing
scnearios (program phases) . Energy and runtime behavior are similar within the same
phase, and potentially different across different phases.

Program phases The instantaneous power consumed by a program is not always
constant. In other words, a program has power phases. To demonstrate this fact, we
shall consider the program in Figure 1.2 (a). This is an artificial example, which we
have crafted to emphasize the different phases that a program undergoes during its
execution. This program performs the following actions: (i) read two matrices from
text files; (ii) multiply them and (iv) prints all the matrices in the standard output.
In between each of these actions we have interposed commands to read data from the
standard input.

Figure 1.3 shows the power profile of this program. This chart has been pro-
duced with JetsonLeap [7], an apparatus that let us measure the energy consumed by
programs running on the Nvidia TK1 Jetson board5. JetsonLeap is formed by three
components: the target Nvidia board (Figure 1.2 (b)), a data acquisition device, which
reads the instantaneous power consumed by the board (Figure 1.2 (c)), and a synchro-
nization circuit, which lets us communicate to the power meter which program event
is running at each instant (Figure 1.2 (c)).

Distinct phases exist within the same program because it might use the hardware
resources differently, depending on which part of it is running. By reading performance
counters, we know that during matrix multiplication, CPU is at is maximum usage.
During the input/output operations, this utilization drops slightly, and other compo-
nents of the hardware, such as its serial port, are more exercised instead. This fall is
steep once the program is waiting for user inputs. The CPU is not the only hardware
component that accounts for power dissipation. The JetsonLeap apparatus measure
energy for the entire hardware. Thus, the under utilization of the CPU does not mean
that overall power consumption will decrease. Nevertheless, variations in the CPU
usage are likely to cause variations in the power profile of the program.

5In this section we use two different experimental setups: Odroid XU4 and Tegra TK1. The former
gives us the richness of configurations seen in Figure 1.1. This diversity is absent on the latter, that
has only one LITTLE core. However, the TK1 board gives us access to JetsonLeap, and, consequently,
the ability to measure energy per programming events.
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int main(int argc, char** argv) {
  int M1, N1, M2, N2;
  // Read first matrix from file 'argv[1]'
  int** m1 = readMatrix(argv[1],&M1,&N1);
  read_user_data();
  // Read second matrix from file 'argv[1]'
  read_user_data();
  int** m2 = readMatrix(argv[2],&M2,&N2);
  read_user_data();
  // Multiply both matrices, giving m3
  int** m3 = mulMatrix(m1,m2,M1,N1,N2);
  read_user_data();
  // Print all the matrices in the
  // standard output
  printMatrix(m1, M1, N1);
  printMatrix(m2, M2, N2);
  printMatrix(m3, M1, N2);
  read_user_data();
} (a)

(c)

(b) (d)

Figure 1.2. (a) Simple matrix multiplication implemented in C. (b) The Nvidia
TK1 board. (c) NI 6009 Data Acquisition Device. (d) Synchronization circuit.

Discovering such program phases by means of purely dynamic techniques is possi-
ble, yet difficult. As we shall demonstrate in Section 4, we can use profiling techniques,
à la Hipster [44], to identify variations in program behavior. However, this approach has
two shortcomings. First, distinct program parts, with very different resource demands
in terms of memory, CPU, disk and such, can display similar dynamic characteristics.
For instance, we could imagine a scenario in which function read_user_data, in Fig-
ure 1.2 is implemented via busy waiting. In this case, instead of the valleys observed
in Figure 1.3, we would encounter a power line similar to that produced by CPU-
intensive functions like mulMatrix. Second, profiling-based techniques face a tradeoff
between precision and overhead. Fast detection asks for high sampling rates; thus
burdening the application which originally we intended to optimize. On the other
hand, purely static approaches are not better either. Although likely to yield lower
adaptation overhead, they fail to account for information only available at runtime
such as varying input sizes. For instance, a static scheduler might decide always run
mulMatrix and read_user_data in different configurations. However, when operating
on matrices that are too small, the cost of changing the hardware configuration might
already overshadow the possible gains available through more parsimonious usage of
the architecture’s resources.
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Figure 1.3. (a) Power profile of program seen in Figure 1.2. The NI 6009 sample
rate was 1000 samples/sec. (b) Zoom of the power profile obtained during the
last phase of the program. We show power data obtained using one low-frequency
core (Low), and using one ARM A15 core (High).

The Search for the Ideal Architecture Configuration In face of the data presented
in this section, it comes as no surprise that the best architecture configuration, in terms
of runtime or energy consumption, differs among programs.

Figure 1.4 shows the best configurations that we have found on the Odroid XU4
setup, for six different PARSEC applications. In this case, we define the best config-
uration as the one that spends less energy, given a certain slowdown compared to the
fastest configuration. Clearly, there is not a single winner. Configurations vary among
programs, and even within the same program, given different acceptable slowdowns.

Saving Energy while maintaining Performance Constraints Save energy while
maintaining performance is a multi-dimensional optimization problem. Ideally, we
want the maximum performance at the cost of the minimum of energy.

The multi-dimensional optimization is applied inside a program phase. This phase
is usually defined by one of the two ways:

1. We fix a code section, regardless of the time it takes to execute. At the end of
the code section, we analyze the process behavior inside it.
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Figure 1.4. Best configurations for seven PARSEC applications, given an ac-
ceptable slowdown of 1% or 5% compared to fastest configuration.

2. We fix a specific time interval, regardless of where the application is going to
stop at the end. At the end of the time interval, we analyze the process behavior
inside it.

Henceforth, we call a program phase defined by any of the approaches above as
phase, section, region, application region or even a code section. Inside this region, a
power usage metric could be, for example, Average Power or Peak Power spent in a code
section or in a fixed interval. For the performance metrics, we could consider at least 3
approaches. First, the Elapsed Time (if we fix a code section). Second, estimating how
much of the application is complete6 (if we fix a time interval measurement). Third,
use a throughput metric such as average instructions per second (what can be also
application specific metrics such as a number of frames/seconds). We actually use
the energy itself as a power consumption metric, even though it is quite clear that by
considering energy as a metric we are already optimizing for performance also. Finally,

6would require previous information of instructions in a previous run
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for a given application region, we have two inputs, power related and a performance-
related metric and we want ideally maximize performance while minimizing power
consumption.

Energy-efficiency metrics There exist plenty of metrics for the multi-dimensional
problem approached in the context of hardware configuration. Before starting with
multi-dimensional metrics, it is important to notice that getting one-dimensional only
metric such as peak or average power, would be impractical metric for this kind of
problem, as noticed by [51], a metric “should not reward a system that consumes
almost no power and completes almost no work”. We extend that, by stating that in
the domain of embedded and mobile devices, a metric should not reward a system that
does meaningful work but consumes an exorbitant amount of power, due to the battery
restrictions. There are many approaches and metrics to handle this multi-dimensional
problem in the literature. Some of them are:

1. Find a metric that combines both power and performance.

2. Minimizing or maximizing one of the dimensions and apply constraints on the
other dimension.

Basic metrics that consider both dimensions are energy (product of time and
power), and the energy-delay product. Furthermore, metrics such as Energy per in-
struction (Joules/Instructions) or MIPS/watt have being used by chip vendors [26].
Furthermore, tuning these formulas in the way such as MIPS

alpha
/watt

beta, where
alpha and beta tends balance performance and energy, have been used as well. Ex-
amples would be the MIPS

2
/watt what relates to energy ⇤ delay and MIPS

3
/watt

which is related to energy ⇤ delay2[33].
We have focused on approach (2). We minimize energy given some slack of per-

formance degradation permitted. This is a more clear way to provide performance
guarantees from the user perspective. In the domain of heterogeneous architectures
especially in mobile devices and embedded architectures, we want to provide perfor-
mance guarantees in an easier way while keeping the main goal of saving energy. The
decision for the shape of a function that will balance these metrics for the system, can
be found on 3.2.4.

Heterogeneous multi-processors example Regarding the understanding of oppor-
tunities in one of the Big.LITTLE setups, we have two different clusters, the A7 cluster
and the A15 cluster combined inside the same chip. The so-called little cluster, A7, is
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designed for low load applications. The architecture is composed by processors in-order,
with a dual issue, with one integer ALU and one partial ALU, one float point unit and
pipeline stages varying from 8 to 10 stages depending on the instruction executed. The
so-called Big cluster is more robust. In the setup A7-A15, it is composed of the A15
cores. Each of the A15 is an out-of-order processor, has a triple issue, two float point
units, achieving a higher throughput on intensive loads. However, its pipeline stages
vary from 15 to 24 stages depending on the executed instruction. As the number of
pipeline stages usually leads to more energy consumption, the big cluster spends more
energy than the little cluster. Furthermore, the low cluster frequency can be adjusted
to work at a maximum of 1.4 GHz while the big cluster varies up to 2.3 GHz which
also increases the energy spent.

Core migration and DVFS When handling heterogeneous processors as commented
above, among the options of actions, we can deal with the dynamic voltage and fre-
quency scaling (DVFS) as well as core migrations. A core migration over heterogeneous
cores in a naive architecture could be unfeasible due to the cache incoherence between
the cores. So, some heterogeneous architectures facilitate full-coherency between L2
caches of each one of the clusters (big and little cluster). In the Big.LITTLE archi-
tecture, it is done by the CCI-400 bus. Another motivation to do a core migration
between two different type of cores in a big.LITTLE architecture is the small over-
head. According to [24] it takes around 20.000 cycles, in a 1 GHz processor it would
take 20 microseconds, in practice close to 30 micro-seconds what is lower comparing
for example with a DVFS change that is expected in a few hundreds of microseconds.
The big.LITTLE architectures also have some capabilities that motivate the migration
between cores such as the possibility of migrating interruptions among the cores via
the GIC-400 bus.

Next chapters In this chapter, we have highlighted key motivation behind our design:
(i) a modern heterogeneous hardware exposes a number of different configurations that
is too large to be evaluated manually; (ii) a program presents power phases, which
can be more easily detected by methods that are aware of structural properties of
the code. Thus, we claim that effective adaptation demands knowledge of program
characteristics. Such information is readily available to the compiler; however, it is
hard to be precisely acquired by techniques unaware of the program’s structure. In
the next chapters, we shall describe a few methodologies mixing static and dynamic
analyses, to find good hardware configurations for the code sections invoked during the
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execution of a program. After a few evaluations, we end up with a general methodology,
henceforth called the Astro system.



Chapter 2

Literature Review

In this chapter we explain and survey the main techniques used nowadays to execute
code in heterogeneous architectures. The goal of this section is to give the reader
enough context to understand the benefits and limitations of the Astro framework.

2.1 Handling the Code Placement Problem

2.1.1 The Static solution: decision at compiling time

A purely static solution retrieves information from the code and based on their values,
maps phases of the code to processor units. Examples of that is Etino [48]. A summary
of static characteristics are:

• Source code available, source of predictions
• If code section is executed with periodicity, it can use history to predict.
• No need of monitoring execution
• Changes on types of workloads can lead to very bad allocation mistakes, leading

to over requiring or minimizing actual need. Impacts direct on cost.
• We can instrument the placement in the binary already, so no need for a middle-

ware manage the changes of workload.
In the table bellow, there are some static features used in our solution. Features

1-4 are from [25]. They are a subset of the original set of features presented in the
dissertation. The features are retrieved for each function (as a function is our learning
unit) instead of for a full program in its original propose. Furthermore, we collect via
a static pass in the LLVM compiling framework. Some features were not selected as
they were strongly related with GPUs which are not our target architectures. Features
10-16 and 19-23 are a subset of the features present on [3] extended with a few features

13
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for functions instead of each loop.

# Static code features (by function)

1 # i/o instructions (estimative)
2 # memory accesses (estimative)
3 # int operations (estimative)
4 # float operations (estimative)
5 is this code section right before a sleep lib call? (flag)
6 is this code section right before a network lib call? (flag)
7 # locks (estimative)
8 is this code section right before a sync. barrier? (flag)
9 # total of instructions (estimative)
10 # branch instructions within function
11 max loop step within function
12 max loop nest depth within function
13 # math lib calls (estimative)
14 contains loops? (flag)
15 loops perfectly nested (flag)
16 any loop has calls (flag)
17 any loop has branches? (flag)
18 contains nested loops (flag)
19 all loops have constant lower bound? (flag)
20 all loops have constant upper bound? (flag)
21 all for loops have constant stride? (flag)
22 all for loop have unit stride? (flag)
23 all loops are simple within function
24 is this an internal OpenMP function call?

...

Someone can use these raw features, as in the table, or compose one or more of them
to create new features such as: normalized int operations per total of instructions.
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2.1.2 The Dynamic solution: decision at running time

# Dynamic envir features (per core)

1 CPU utilization
2 Number of instructions executed
3 Number of last level cache misses
4 Number of branch miss-predictions
5 Number of cache accesses
7 Number of memory reads
8 Number of memory writes

...

A purely dynamic solution retrieves information from the workload, hardware and the
process. Someone can use these raw features, as in the table, or compose one or more
of them to create new features such as: Instructions per cycle (IPC), Cache Miss Ratio
(CM ratio) or Cache Miss rate (CM rate). Based on it, maps phases of the code
to processor units. Examples of that are Hipster ([44]) and OctopusMan ([46]). We
suggest a simple table with the dynamic features used in our solution.

Dynamic characteristics:
• No code, so no prediction based on it.
• Accurate decisions based on real time analysis of the hardware and processes.
• If workload has periodicity, it can use history to predict.
• Usually have showed good results, but with the cost of monitoring execution

2.1.3 Hybrid Motivation: Static vs Dynamic decisions

We want to motivate that dynamic and static features are complementary and both
of them are necessary for our solution. Consider the following C where we need to set
two architectures, before "mult" and before "out":

1 int main() {
2 N = 100;
3 in(X,N); in(A,N); in(B,N); // initialize matrices of size NxN
4 setArchitecture (?) // (1)
5 mult(X,A,B,N); // Does X=A*B; "*" is matrix multiplication op.
6 setArchitecture (?) // (2)
7 out(X,N); // Outputs the X matrix of size NxN
8 free(X);free(A);free(B);
9 return 0;
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10 }

In the question marks at (1) and (2) we are asked to choose between "LOW
CORE", "HIGH CORE", to pass to the argument, representing respectively a code
placement for an architecture of mult and out functions. The "LOW CORE" denotes
a configuration towards low power consumption exploitation. The "HIGH CORE" de-
notes a configuration with high performance capabilities. What would be a reasonable
choice? We start by stating that the best choice in terms of total energy would be: (1)
"LOW CORE" and for (2) also "LOW CORE", making it as the following:

1 // Known best choice: Optimal Solution
2 int main() {
3 //...
4 setArchitecture ("LOW CORE") // (1)
5 mult(X,A,B,N);
6 setArchitecture ("LOW CORE") // (2)
7 out(X,N);
8 // ...
9 }

We could choose for take into account only static information first, i.e. the static ap-
proach only, the approach considering the static code features presented. We probably
would set the matrix multiplication to HIGH CORE core and the output to the LOW
CORE core. 1

1 // Static only decision
2 int main() {
3 //...
4 setArchitecture ("HIGH CORE") // (1)
5 mult(X,A,B,N);
6 setArchitecture ("LOW CORE") // (2)
7 out(X,N);
8 // ...
9 }

1For the code mentioned, an action based in a static analysis that could see more than its own
function information would probably go to the optimal solution. For example, for this example,
a simple constant propagation (a compiler optimization) plus computing the estimated number of
instructions via static inference might easily solve it. However, keep in mind the N=100 in the source
code is an oversimplification. The same input could be harder to retrieve from source code or even
run-time based. So, we argue that the static choice would still be valid for one of the two: N=100
in the source code, but a simple static analysis just looking at the function level (our example); or a
fancy static analysis but with input information that is hard to retrieve or run-time based.
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However, the input size is 100x100 and the actual best fit (by now only looking in
terms of most energy savings), both of them should run in the low-core.

Following a only dynamic approach: we could use a perf command, see the cpu
usage of multiplication, as it is low, we set (1) to "LOW POWER". Then, as out start
to execute, we see that the resource usage is even lower, so, no necessity to turn on
the big core we set as "LOW POWER". So, it would answer it right. However, first,
the signal of low usage can not be very precise when monitoring this part of the code,
there is a delay of our action and state that the profiler is showing us, more than that,
besides that, we become dependent to monitor the execution the whole time. Using
the static to predict this phase, we could make this decision ahead of time, becoming
more independent of the dynamic part, a great IO density in the next function is a
strong indicative (signal) that we shold use less processing. Even though the runtime
overhead on dynamic approaches can be sometimes (as in [44]) negligible for servers,
when we deal with embedded architectures and energy concerns, this overhead is not
negligible.

2.1.4 The Hybrid: combining Dynamic and Static information

An hybrid code placement solution is a method which combines both information
(source code and dynamic reads) in the placement decision problem. It tries to couple
these two worlds helping placement on heterogeneous architectures. A proposed hybrid
code would work as following:

1. Component 1: initial instrumentation

a) Instrument a source code A such as compute all static features of code phases
(for simplicity, assume every function) and mark at run time which phase is
running, generating a binary B.

b) During B running time you should be able to know which phase is running
and know its static features (characteristics) values.

2. Component 2: learning (during execution of B)

a) Define a sampling interval which you will collect dynamic features and the
function which is running.

b) Make a decision (according to a learning model) about which hardware
configuration changes.

c) Act in the system changing to the decided configuration.
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d) Collect performance measures such as Energy and Performance in order to
evaluate the action made.

3. Component 3: final instrumentation

a) In the final of the learning, you will have actions for every sampling interval
(decision point) and consequently to the function that were running at that
interval.

b) See which are the actions made for every phase and decide which ones re-
mains.

c) Take A and generate a new binary B on each phase with hardware adjusts
instruction commands.

2.1.5 Trade-offs
Static Dynamic Hybrid

Scheduling respon-
sibility

Compiler Operating system
or Middleware

Both

Advantages Can use structure
of the program to
take better deci-
sions; If the code is
executed with peri-
odicity, it can use
history to predict;
No run-time over-
head

Possibility to use
run-time informa-
tion to improve the
quality of choices;
If the workload is
executed with peri-
odicity, it can use
history to predict

Best of both
worlds: runtime
information for
accurate decision
and reduction
of overhead due
to predictable
program character-
istics

Disadvantages Same program can
work completely
different on, for
example, different
input sizes; Some-
times we do not
know which parts
of the code are
going to run

High overhead
from the runtime
monitoring; Some-
times, not clear
understanding
of the program
behavior, causing
sometimes pre-
dictions not very
reliable

The two sources
of overhead: run-
time monitor
overhead plus the
instrumentation.
Requires a careful
combination of
static and dynamic
decisions.
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Work Level Source Auto Runtime Learn

[48] C Yes Yes No Yes
[43] L No Yes Yes Yes
[17] C Yes Yes No Yes
[6] C Yes Yes Yes No

[52] C/L Yes No Yes No
[36] C/L Yes No Yes No
[30] A/L Yes No No No
[37] A No Yes No No
[56] A No Yes No No
[44] O No Yes Yes Yes
[46] O No Yes Yes No
[19] O No Yes Yes Yes
[5] L Yes No No No

[47] O/C Yes Yes Yes No
[55] O/C Yes Yes Yes No
[16] O/C Yes Yes Yes No

Astro O/C Yes Yes Yes Yes

Table 2.1. Comparison between different solutions to . Level: at which level
the technique is implemented: Architecture (A), Operating System (O), Com-
piler (C) or Library/Programming model (L). Code: “Yes" if there is source code
instrumentation/manipulation. Auto: “Yes" if it is performed automatically, with-
out user intervention/annotation. Runtime: “Yes" if technique considers runtime
information. Learn: “Yes" if technique adapts/learns a model from the target
architecture

2.2 Non-assisted code-placement

The problem of scheduling computations in heterogeneous architectures (Defini-
tion 3.0.1) has attracted much attention in recent years, as Mittal and Vetter have
thoroughly discussed [40]. Table 2.1 provides a taxonomy of previous solutions to
this problem. We group them according to the level (e.g., ../..) at which they are
implemented, and to the way they answer each of the following four questions:

Source: is the program’s code modified?

Auto: is user intervention required?

Runtime: is runtime information exploited?

Learn: is there any adaptation to runtime conditions? Perhaps the most important
difference among the several strategies proposed to solve concerns the moment at
which said strategy is used. In the rest of this section, we consider the following three
possible choices: at compilation time, at runtime, or both.
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Static Solutions. Purely static approaches work at compilation time. They
might be applied by the compiler, either automatically, i.e., without user interven-
tion [16; 29; 36; 52; 48; 55], or not. In the latter case, users can use annotations [39],
domain specific programming languages [36; 52] or library calls [5] to indicate where
each program part should run. The main benefit of static techniques is low runtime
overhead: because every scheduling decision is taken before the program runs, no dy-
namic checks are necessary to schedule computations. However, these techniques tend
to be inflexible: they are unable to take runtime information into consideration; hence,
the same program phase is always scheduled in the same way. In Table 2.1, techniques
implemented at either the compiler or library levels are purely static.
Dynamic Solutions. Purely dynamic approaches take into account runtime informa-
tion. They can be implemented at the architecture level [50; 37; 30; 56; 60], or at the
virtual machine (VM)/OS level [46; 44; 63; 21; 53; 6]. By leveraging runtime informa-
tion, the system can use environment information, unknown at compilation time, to
solve . Examples of such information include varying input sizes and resource demands.
However, there may be some overhead on accurately collecting and processing runtime
data. Besides, because scheduling decisions are taken on-the-fly, usually the scheduler
cannot spend much time weighting choices. Thus, even though these algorithms use
runtime information, they might still take suboptimal decisions, due to their inability
to spend much time solving hard scheduling problems.
Hybrid Solutions. Approaches that mix static and dynamic techniques are called
hybrid. Astro is a hybrid method, and built around the idea of being a customized
framework for other hybrid methods. Other hybrid approaches to this problem ex-
ist [47; 16; 55]. Piccoli et al [47] have used a compiler to instrument a program with
guards that determine, based on input sizes, where each loop should run. Cong and
Yuan [16], in turn, partition a program in phases, as in our approach, and use runtime
information to schedule computation so as to minimize the energy consumed by the
program. Finally, Tang et al. [55] use a compiler to populate a program code with
markers, so that low-priority applications can manage their own contentiousness to en-
sure the QoS of high-priority co-runners. None of these previous work use any form of
learning technique to adapt the program to runtime conditions, as Table 2.1 indicates
in the column Learn. Once guards are created, they always behave on the same way.
That is the main difference between these previous approaches and the Astro method.
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Astro framework

This chapter describes the design and implementation of the Compile assisted Adap-
tive Code Placement in Heterogeneous Systems, called Astro Framework. This is our
approach to solve the problem of finding good hardware configurations for programs.
We state this problem as follows:

Definition 3.0.1 Scheduling of Programs in Heterogeneous Architec-
tures (SPha)
Input: a program P plus its input I, a suite of hardware configurations H1, H2, . . . Hn,
an energy threshold E, and a performance threshold S.
Output: P

0, a new version of P , which switches between configurations, and process I

using E% less energy, with a slowdown of no more than S%.

We solve SPha using an assortment of different techniques, which, once combined,
give us the means to generate code that is well adapted to different architectures and
workloads. Figure 3.1 provides a general overview of these techniques, emphasizing
the different phases over which we go in the process of solving SPha. Section 3.2.1
describes the phase partitioning. Program instrumentation is necessary to the program
partitioning phase. Section 3.2.2 goes over actuation; and Section 3.2.3 discusses the
generation of the final program. Before we move into the particulars of our solution
to SPha, we provide a brief introduction to Q-Learning, the flavour of reinforcement
learning that we have adopted. In the next section, we also explain how we map the
characteristics of SPha into the Q-learning framework. Before we came up with this
approach, we have tested others. For instance, we Supervised Learning solutions in a
simplified problem, as seen in Section 4.0.2.1.

21
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3.1 Reinforcement learning via Q-Learning

Q-learning is a reinforcement learning algorithm [54]. Given some notion of state
(Definition 3.2.1) and reward (Definition 3.2.4), it finds an optimized policy to perform
the best action (Definition 3.2.5). Q-learning is attractive because there is no need to
know in advance the precise results of the actions before we perform them; that is, we
learn about the environment as we perform actions on it. A Markov Decision Process
(MDP) drives Q-learning. A MDP is given by a set of states S, a set of possible actions
A, a reward function R : S ⇥ A ! R, and a state transition mapping T : S ⇥ A ! S

that describes the effects of taking each action in each state of the environment. The
Markov property states that the results of an action performed in a state will depend
only on that particular state, regardless of any other prior states.

In Q-learning, the function Q(s, a) is specified to tell us how good an action a

is given that we are in a certain state s. Intuitively, it approximates the best possible
sum of rewards from s till the final state, assuming that we perform always optimal
choices. Predicting optimal choices from any given state is usually impossible; thus,
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we approximate Q with the Bellman Equation:

Qtarget(s, a) = R(s, a) + � argmaxa0(Q(s0, a0)).

Here, s0 is the state that follows from the application of action a onto s, and a
0 is the

best possible action taken from s
0. R(s, a) is the immediate reward computed from the

environment. Value � 2 [0, 1] represents a balance between prior and immediate re-
ward. At each step in the Q-learning algorithm, we choose the action a that maximizes
the function Q(s, a).

Traditionally, the Q-learning algorithm uses a tabular form to represent the
Q(s, a) mappings, but this approach cannot scale and generalize well to high dimen-
sional feature spaces. Similarly to recent prior work on reinforcement learning [41], we
use a neural network to approximate the Q(s, a) function used to compute the expected
reward from a given state s and action a.

To find a good approximation of Q(s, a), we use a neural network (NN), to track
its current value. Thus, “learning" means actually updating the NN. At each iteration of
our learning process, we update the NN using Stochastic Gradient Descent (SGD) [10]
over the squared error over the target values (via Bellman equation) and the values
obtained by our network:

X
(Qtarget �Q)2.

3.1.0.1 Motivation for the model used

Motivation to a reinforcement learning model When building a supervised so-
lution for an application in the PARSEC benchmark such as fluidanimate, we took
roughly a whole day of execution. We could retrieve the labels for its phases by exhaus-
tively executing the application in the 24 different possible combinations of big and little
cores in the ARM Big.LITTLE board. Increasing this action allowing five frequency
changes for every configuration in a DVFS setup, we would have 245 = 7, 962, 624

configurations to evaluate. Furthermore, we are assuming that the placement for one
phase does not affect the other, what is not true. Therefore, if we expand the problem
space or break the assumption of phases don’t affect each other or even consider a mul-
tiple application scenario, it is clear unfeasible to work with the traditional supervised
learning approach. We could try to work around this problem trying to restrict our
space as [43], keep the assumptions, and maybe use heuristics to extrapolate from a
learned space to the actual problem space, but we have recognized that reinforcement
learning solution fits to the problem more naturally.
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Influences to the model used The prediction model design (definition of state,
action and reward function) of Astro was based on three main approaches. They are
[18], [31], [61] and [57].

The [18] handles a thermal optimization, it has a multi-objective function which
tries to reduces the thermal dissipation and maximize performance. On [31], has a
similar problem which solves via reinforcement learning and considers temperature
and performance as a multi-objective reward function. However, its solution is based
in the manipulation of idle periods, not our focus. Some ideas, such as the combination
of multi-objective functions in a reward function, and the shape of the function (with
a restriction applied to the function as a subtraction to the original value) came from
these articles. Other than these three main articles, [57] uses reinforcement learning and
has a dynamic approach trying to formalize the problem of allocating (and migrating)
resources in a heterogeneous multi-core architecture. The reward function is given in
terms of the CPU and memory usage. The reward function is a single-objective, trying
to reduce only the waiting time.

Related to reinforcement learning using neural networks, it had a great impact
on [41]. In this article, neural networks extends the use of a q-table on their solution.
However, the problem and the motivation for the use of a neural network are differ-
ent. In the problem approached by the article, there is a inherent representational
complexity in the problem (they did not know, without simplifying too much, how to
model the states of the games). A state, thus, was represented as images of the game,
while in this dissertation we assume we know how to represent our environment given
the dynamic and static characteristics we have chosen. Other than that, the article
presents an agent that could play several the games well aiming an agent which can
play well a class of problems really well. In our case, we specify a single problem, the
code placement on heterogeneous architectures minimizing energy with performance
restrictions.

3.2 Components of the Astro framework

3.2.1 Part 1: Phase Partitioning

A running program might cause the hardware to go over an infinite number of different
states. Because this universe is unbounded, Definition 3.2.1 discretizes the notion
of a State. In that definition, S is a Program Phase and D is a Hardware Phase.
Program phases are discussed in Section 3.2.1.1, and hardware phases are discussed in
Section 3.2.1.2.
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Definition 3.2.1 (State) A state is a triple hH,S,Di representing a hardware con-
figuration H, a program phase S and a hardware phase D.

3.2.1.1 Program Phases

Static Program Phases depend only on the syntax of a program. Definition 3.2.2
formalizes this notion. We emphasize that a static program phase is not equivalent to
a program region, because different regions can present the same set of feature ranges.
Example 3.2.1.1 clarifies the meaning of these definitions.

Definition 3.2.2 (Program Phase) A code-level feature (also called code feature or
simply feature) is a syntactic characteristic of a program, such as number of n-nested
loops or instruction mix. A feature range is a contiguous interval of values that a
feature can assume, and that partitions the feature space into equivalence classes. A
program phase S is a group of feature ranges, covering different features.

The density of arithmetic and logical instructions is a code-level feature, which
we obtain by dividing the number of such opcodes by the total number of program in-
structions. We can define different feature ranges covering this metric, such as [0, 0.25),
[0.25, 0.50) and [0.5, 1.00]. The highest number of nested loops in a program yields an-
other feature. In this case, possible ranges are [0, 1], [2, 3] and [4,+1]. Finally, an
expectation on the number of I/O routines called in a function gives us a third feature.
A possible way to calculate it is: ⌃i10n, for every I/O call i nested into n loops. We can,
again, define intervals for this metric, e.g., [0, 1), [1, 10) and [10, 100) and [100,+1].
The 3⇥ 3⇥ 4 possible combinations of such feature ranges gives us 36 program phases.
If we collect these features for each function in the program code, then we can map
any of them to one of these program phases.

Being a syntactic characteristic of a region within a program text, we can mine
program phases using well known parsing techniques. The text that ends up executed
is the binary representation of a program, often written in a high-level language. Thus,
ideally parsing should be performed in that binary representation. Recovering high-
level structure from binary programs involves a number of undecidable problems [27].
To circumvent this shortcoming, we recommend mining features from the intermediate
program representation that the compiler manipulates before producing executable
code. In this work, we have implemented a Phase-Extractor using the LLVM compiler,
via its opt bytecode analyzer.

The result of mining program features is a map that assigns phases to program re-
gions. This map depends on the choice of program region. Many different granularities
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Figure 3.2. Mapping the functions in Figure 1.2 (a) to program phases.

of regions are possible, such as instruction, basic block, loop, Single-Entry-Single-Exit
block [20], etc. We have chosen to work mostly at the granularity of functions. The
“mostly" in this case, refers to the fact that we also change phases before and after
library calls that cause the program to block waiting for some event (see the Barrier
phase, in the discussion that follows). Pragmatically, this means that the instrumented
program adds logic to change phases at the entry point of functions, and around certain
library calls.

Figure 3.2 shows the five functions in Figure 1.2, classified according to features
seen in Example 3.2.1.1. We are assigning these functions hypothetical values. Because
we have three features, we can map them into a three-dimensional space. Each phase
corresponds to a cube in this space. Figure 3.2 shows the sub-space that corresponds
to the phase: Arith.Density 2 [0, 0.25), I/O Weight 2 [0, 1) and NestingFactor 2 [0, 1).
Function main, in our example, fits in this phase.
Discrete Choice of Program Phases. In our discrete implementation, we combine
four code features to determine program phases. These features are all “densities", i.e.,
they represent a certain quantity of instructions normalized by the total of instructions
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in the target function. The features that we have used are listed below:

IO-Dens: proportion of library calls that perform I/O operations;

Mem-Dens: proportion of instructions that access memory (loads and stores);

Int-Dens: proportion of arithmetic and logic instructions that operate on integer types.

FP-Dens: proportion of arithmetic and logic instructions that operate on floating point
types.

Locks-Dens: proportion of lock instructions.

Barrier: true if the program has invoked a multi-thread barrier library call that forces
it to wait for some blocking event.

Network: true if the program has invoked a networking library call that forces it to
wait.

Sleep: true if the program has invoked a sleep library call that forces it to wait.
When handling with our discrete variables, we have defined four program phases,

which appear as combinations of the features above. This choice is arbitrary. There
exists an infinite number of different possibilities to partition programs in phases. We
have opted for a simple partitioning, involving only a handful of features for conve-
nience, as this choice already lets us support the main thesis of this dissertation: that
static features greatly enhance the dynamic scheduling of computations in heteroge-
neous hardware. A more extensive search for good program phases is, in itself, an
interesting project, but lays outside the scope of this work. The program phases that
we shall consider in the experiments using the simulator in Section 4 are:

Sync: Barrier = true or Sleep = true or Network = true or Locks/total > 0.01

I/O Bound: IO-Dens + Mem-Dens > 0.5

and Sync = false;

CPU Bound: Int-Dens + FP-Dens > 0.5

and Sync = false and I/O Bound = false

Other: in case none of the previous relations hold.
Continuous Choice of Program Phases. When using a deep reinforcement learn-
ing, each static feature collected corresponds to a neuron in the input layer. For the
main our experiment, on Table 4.1, we use this continuous approach with no combina-
tion of variables.
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3.2.1.2 Hardware Phases

Whereas the program phases seen in Section 3.2.1.1 depend only on syntactic program
characteristics, hardware phases depend on the dynamic state of the hardware. We
define the notion of hardware phase as follows:

Definition 3.2.3 (Hardware Phase) A Performance Counter is any monitor that
collects dynamic information about the hardware state, such as CPU performance and
cache miss rate. The domain over which the performance counter ranges can be parti-
tioned into phases. Given a collection of performance counters {C1, C2, . . . , Cn}, where
each Ci is partitioned into Ri phases, then a hardware phase is any combination within
the product R1 ⇥R2 ⇥ . . .⇥Rn.

The monitoring of hardware phases do not require program instrumentation. In-
stead, an actuator reads the state of the hardware performance counters directly and
periodically. Modern computer architectures already provide an array of performance
counters that can be queried. When such is not the case, it is still possible to approx-
imate hardware phases in software. As an example, Walker et al. [59] describe how
to estimate current levels of power dissipation with high reliability using performance
counters.
Discrete Choice of Hardware Phases. We consider four kinds of dynamic infor-
mation in order to define hardware phases. We show, next to each dynamic feature its
discretization into ranges we used in our initial experiments:

IPC: instructions per cycle in the ranges [0, .5), [.5, 1.0), [1.0,+1);

CMA: cache misses per cache accesses in the ranges [0, 1%), [1%, 5%), [5%,+1);

CMI: cache misses per instruction executed, in the ranges
[0, .1%), [.1%, .5%), [.5%,+1);

CPU: utilization of the CPU, in the ranges [0, 20%), [20%, 50%), [50%,+1). Each
of these counters is partitioned in three buckets. Therefore, we consider a total of
3⇥ 3⇥ 3⇥ 3 = 81 different hardware phases.
Continuous Choice of Hardware Phases. The continuous consider as hardware
phases the hardware features plus one feature being the configuration which the hard-
ware (dynamic) features were collected. When using a deep reinforcement learning,
each hardware feature corresponds to a neuron in the input layer.
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Figure 3.3. The Actuation Algorithm.

3.2.2 Part 2: Actuation

The heart of the Astro system is the Actuation Algorithm outlined in Figure 3.3.
Actuation consists of phase monitoring, learning and adaptation. These three steps
happens at regular intervals, called check points, which, in Figure 3.3, we denote by i
and i+1. The rest of this section describes these events.

3.2.2.1 Monitoring

To collect information that will be later used to solve SPha, Astro reads four kinds of
data. Figure 3.3 highlights this data:

From the Operating System (OS): current hardware configuration H and instructions
p executed since last check point.

From the Program (Log): the current program phase S.

From the device’s performance counters (PerfMon): the current hardware phase D.

From the power monitor (Powmon, [59]): the energy e consumed since the last check-
point. The monitor collects this data at periodic intervals, whose granularity is con-
figurable. Currently, it is 500 milliseconds. The recording of the current program
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phase is aperiodic, being carried out by instrumentation inserted in the program by
the compiler. As discussed in Section 3.2.1.1, information is logged at the entry point
of functions, and immediately before and after the invocation of library calls that might
cause the program to enter a dormant state. The hardware configuration is updated
whenever it changes. The metrics e and p lets us define the notion of reward as follows:

Definition 3.2.4 (Reward) The reward is the set of observable events that determine
how well the learning algorithm is adapting to the environment. The reward is computed
from a pair (e, p), formed by the Energy Consumption Level e, measured in Joules per
second (Watt), and the CPU Performance Level p, measured in number of instructions
executed per second.

The metric used in the reward is given by a weighted form of performance per
watt, namely MIPS

�
/Watt, where � is a design parameter that gives a boosting

performance effect in the system. This is usually a trade-off between the performance
and energy consumption. To optimize a metric of performance per watt we can set
� = 1.0. We find that a value of � = 2.0 is more suitable to al low emphasis on
performance gains: the reward function optimizes (in fact, maximizes the inverse of)
the energy delay product per instruction, given by Watt/IPS

2; letting IPS = I/S

we have (Watt⇥ S ⇥ S)/I2 = (Energy ⇥Delay)/I2. This aims to minimize both the
energy and the amount of time required to execute thread instructions [12].

Optimization. Logging is a costly operation, because it involves writing information
in memory that the program shares with the Monitor. To reduce this overhead, we use
a threshold to separate “short" from “long" functions. Only the so called long-running
functions are instrumented. We say that a function is long if its size, measured in
terms of weighted instructions, surpasses a certain threshold T . The weight w of an
instruction ◆, referred to as w(◆), is given by w(◆) = 10n, where n is the number of
nested loops surrounding ◆. Currently, we let T = 1, 000. As we shall see in Section 4,
this threshold leads to a substantially reduced overhead.

Continuing with Example 3.2.1.1, Figure 3.4 (a) shows the instrumentation of
function main (Figure 1.2) to log program phases while (b) shows the final binary.

3.2.2.2 Learning

The learning phase uses the methodology discussed in Section 3.1. As illustrated in
Figure 3.3, a key component in this process is a multi-layer Neural Network (NN) that
receives an experience input collected from the Monitor. The NN outputs the actions



3.2. Components of the Astro framework 31

int main(int argc, char** argv) {
  save_feature_ranges (
    0.12, /* Arithmetic Density */
    0.8,   /* IO weight */
    0,       /* Nesting factor */ 
    False /* Sleeping state */ );
  // Read first matrix from file 'argv[1]'
  int** m1 = readMatrix(argv[1],&M1,&N1);
  toggle_sleeping_state (
    True /* Known blocking function */ );
  read_user_data();
  toggle_sleeping_state (
    False /* Back into activity */ );
  // Read second matrix from file 'argv[1]'
  ... same as original figure.
}

int main(int argc, char** argv) {
  /* Conf == 1 is 0L1B */
  determine_active_configuration (1);
  // Read first matrix from file 'argv[1]'
  int** m1 = readMatrix(argv[1],&M1,&N1);
  /* Conf == 0 is 1L0B */
  determine_active_configuration (0);
  read_user_data();
  /* Conf == 1 is 0L1B */
  determine_active_configuration (1);
  // Read second matrix from file 'argv[1]'
  ... same as original figure.
}

(a) (b)

Figure 3.4. (a) Instrumentation to mine features. (b) Final instrumentation,
inserted in production code.

and their respective rewards to the Actuator so that a new system adaptation can be
carried out. To ease our explanation, we split learning in two steps: back-propagation
and feed-forwarding, as outlined in Figure 3.3.

Back-Propagation. In this step, we perform an update to the NN using the ex-
perience data given by the Actuator (Figure 3.3). The experience data correspond
to a triple of present state, performed action and obtained reward. The state con-
sists of a hardware configuration (Hi�1), static features (Si�1) and dynamic features
(Di�1) at check points i-1. The action performed at check point i-1 makes the system
move from hardware configuration Hi�1 to Hi. The reward is given by ri, received
after the action is taken. The NN consists of a number of layers including compu-
tational nodes, i.e., neurons. The input layer uses one neuron to characterize each
triple (state, action, reward). The output layer has one neuron per action/configura-
tion available in the system. We use the method of gradient descent to minimize a loss
function given by the mean squared error between Qtarget and Qpredicted, where Qtarget

is computed using the Bellman Equation (Section 3.1) and Qpredicted is computed by
the NN.

Feed-Forward. In this step, we perform predictions using the previously trained
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NN to derive the best course of actions in the system. Within the NN, each node is
responsible to accumulate the product of its associated weights and inputs. When the
resulting value is above a given threshold, the corresponding neuron fires and induces
an activation; otherwise, it is deactivated. This step is less time consuming than back-
propagation, because information only moves from the input layer of the NN to the last
layer. Given as input a state (Hi, Di, Si) at check point i, the result of the feed-forward
step is an array of pairs A⇥R, where A is an action, and R is its corresponding reward,
as estimated by NN. Actions determine configuration changes; rewards determine the
expected performance gain, in terms of energy and time, that we are likely to obtain
with this change.

3.2.2.3 Adaptation

At this phase, Astro takes an action. Together with states and rewards, actions are
one of the three core notions in Q-learning. We define it below, in the context of the
Astro system:

Definition 3.2.5 (Action) Action is the act of choosing the next hardware configu-
ration H to be adopted at a given checkpoint.

An action potentially changes the current hardware configuration; hence, adapt-
ing the program according to the knowledge inferred by the Neural Network. Following
Figure 3.3, we start this step by choosing, among the pairs {(A1, R1), . . . , (An, Rn)},
the action Ax associated with the maximal reward Rx. Ax determines, uniquely, a hard-
ware configuration H

0. Once H
0 is chosen, we proceed to it. However, the adoption

of a configuration is contingent on said configuration being available. Cores might not
be available because they are running higher privilege jobs, for instance. Astro tries to
enable Next Configuration. If nothing changes, in the next monitoring time Astro will
notice and the system representation remains in the configuration Hi active at check
point i. Such choice is represented, in Figure 3.3, by the function Hi+1 = chg(H 0

, Hi).
Regardless of this outcome, we move on to the next check point, and to a new actuation
round.

3.2.3 Part 3: Final Code Generation

Astro can impose a heavy burden on the runtime system due to the overhead of mon-
itoring and training the NN. This last task – learning – is the most time consuming
and can be offloaded; hence, running outside the device. However, if, on the one hand,
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offloading removes the cost of executing a neural network in the device, it adds a com-
munication cost, which is also non-negligible. It is possible to reduce this overhead, if
we are willing to reduce the program’s ability to adapt to the environment. With this
goal, we present a form of code generation that can be used alongside Astro. After
we have “trained" a program to a given architecture, we imprint an approximation of
this knowledge directly in that program’s code. In Figure 3.1, this step is named Final
Code Generation.

Code generation consists in inserting instrumentation into the target program.
Instrumentation is inserted in the same regions modified in order to mark program
phases (see Section 3.2.1.1): at the entry point of functions, and around particular
library calls. Example 3.2.3 illustrates this instrumentation. We notice that the same
optimizations discussed in Section 3.2.2.1 apply to the final program. Thus, we avoid
annotating functions that are too short, since they are unlikely to cause large variations
in the program’s runtime behavior.

Figure 3.4 shows the final actuation code for the program early seen in Figure 1.2.
Function determine_active_configuration tries to move the program to a particular
configuration: the one that has produced the largest rewards for that program phase.

The code that we generate in this way performs a form of static scheduling.
It always maps the same program region to the same hardware configuration. As we
show in Section 4, static scheduling yields lower runtime overhead than Astro’s dynamic
scheduling. However, as we have observed empirically, even with the runtime overhead,
Astro’s extra flexibility usually pays off in terms of energy and performance.

Astro Static and Hybrid deployments The code generation can be in two ways. We
call them the: Static Deployment and Hybrid Deployment. In the Static Deployment,
after Astro is trained, we can determine, via instrumentation, the exact actions that
must be taken in the source code. The Static Deployment is not adaptive. In the
Hybrid Deploy, once trained, we retrieve static and dynamic information, consult our
weights and then take an action.

3.3 Relationship between Astro and the most
related work

Among the discussed related works in the previous chapter, the ones we believe are
closer related to the work proposed in this dissertation are: Etino ([48]), DeepTune



34 Chapter 3. Astro framework

([17]), Caloree ([43]), Octopus-Man ([46]) and Hipster ([44]). Therefore, we discuss
similarities and differences of them and the proposed solution.

Etino [48] introduces a tool which annotates C programs with OpenACC or OpenMP
4.0 directives. It solves the code placement problem for a CPU-GPU heterogeneous
setup. The work has interesting insights such having some context sensitiveness,
achieved via the analysis of the call graph of the program. Regarding their cost model,
they use a machine learning, specifically simulated annealing, to calibrate the cost
model for a given heterogeneous architecture. Their work is a successful example of a
static approach. However, besides their contributions, it has a few issues that we tried
to address on Astro. Firstly, their method is not adaptive after the calibration and
they suffer from not having the input size information. These are addressed on Astro
via the extraction of the dynamic information online. Another limitation is that it
cannot generate code that runs on multiple processors concurrently. We address it on
Astro by dynamically changing the multi-threaded code affinity. Finally, Astro remains
open the question from [48]: is a function a good granularity choice for a static code
placement in heterogeneous architectures? Even though Astro also takes a few code
sections that are not functions, such as the lines before a network call or a barrier,
most of the instrumented code sections are functions and they usually work fine. As
an example, "parallel for" OpenMP loop annotations are mapped to the LLVM IR as
internal OpenMP functions. So, instrumenting by function, we instrument all these
OpenMP parallel loops.

DeepTune [17] introduces a tool for automatically constructing optimization heuris-
tics without features. It builds a predictor with the raw source code as input. Their
predictor was able to efficiently allocate resources for many applications in well-known
benchmarks in a heterogeneous system. Specifically, they could predict if a compu-
tation could be mapped to a CPU or a GPU. In some way, it motivates the use of a
neural network in this field. Furthermore, it brings an interesting question of using
or not static features (which are heuristically chosen). Deciding on the set of static
features to be used in a predictor can be harmful and prone to errors. It also usually
requires much effort from experts and computation resources to trials. Their results
were better than one of the state-of-the-art methods which use static features from
experts. However, the work also has a limited scope comparing to the current disserta-
tion, the results are harder to explain due to the inherent black-box way of predicting
from the Neural Networks. Besides that, the learning model was built in a supervised
way and in a binary scenario. In our scenario, a fully supervised learning is no feasible



3.3. Relationship between Astro and the most related work 35

for our full problem which joins the space of combinations of cores in a heterogeneous
multi-processor board plus dvfs space is much greater than the binary scenario.

Caloreee [43] introduces a control system which aims to meet latency requirements
with minimal energy in complex, dynamic environments. It is composed by a junction
of a control system with a learning framework. It breaks the resource allocation into two
sub-tasks: learning how interacting resources affect speedup and controlling speedup
to meet latency requirements with minimal energy. According to [43], it was used
on heterogeneous ARM big.LITTLE architectures in both single and multi-application
scenarios improving performance and reducing energy consumption. The work brings
interesting insights. As examples, the exploration of DVFS along with core migrations,
which lead us to focus more on the DVFS optimization space. Besides that, the careful
try to explain the allocation choices based on the program behaviors lead us to follow
the same path of being carefully on explaining and debugging allocation results. How-
ever, the work has a few limitations compared with this dissertation, specifically the
restriction to the only homogeneous type of cores usage and the limit to at maximum
four of the eight available cores.

Octopus-Man [46] introduces a tool which schedules tasks in an heterogeneous hard-
ware. It works applying QoS (quality of service) restrictions while minimizing the en-
ergy consumed. However, its target applications are in the cloud such as Memcache
and Websearch, while the focus of this dissertation is broader. Moreover, Astro requires
the source code, what is not necessary for this approach.

Hipster [44] introduces a tool which is the closest to our proposed research. It
also has an approach to heterogeneous architectures, specifically, heterogeneous multi-
processors. It can be considered an evolution of the Octopus-man which joins its
heuristic approach to a reinforcement learning technique. However, the algorithm is
still in the context of cloud applications. Due to the fact they are cloud applications,
the idea of QoS restrictions has a more clear definition. In a general application, we
would need to translate a QoS restriction (that is in terms of requisitions per second
in a web search for example) to latency or percentage of the application completed.
Another difference is that Hipster does not use any static feature. Other than that,
we use more dynamic features than Hipster by using the PMUs. Finally, the Hipster
model is not only driven by the reinforcement learning, but also by a heuristic (the
Octopus-man heuristic), in order to avoid instabilities. This combination of learning
plus heuristics was called Hybrid on [44].





Chapter 4

Evaluation

This chapter presents an experimental evaluation of the Astro system over several
benchmarks running on a heterogeneous multi-core system. In the process of evaluating
Astro, we shall provide answers to the following research questions:

RQ1: How close can Astro be from an optimal oracle?

RQ2: How does Astro compare against fixed and immutable best configuration
choices?

RQ3: How does Astro perform when compared with state-of-the-art program sched-
ulers?

RQ4: Is the combination of static and dynamic information really necessary? How
does Astro perform when any of this data is missing?

RQ5: How does Astro behave on an actual device?

RQ6: What is the runtime overhead of the Astro system?

4.0.1 Experimental Setup

We shall be using two experimental setups: the first consists of experiments performed
on an actual device. The other consists on experiments performed on program traces,
which we shall call simulation. We had to use simulation in some of the experiments,
because they involve testing exhaustively every available hardware configuration. These
experiments are described in Section 4.0.2. Section 4.0.3 reports the experiments per-
formed on the actual device: the Odroid XU4 development board with a big.LITTLE
ARM processor (Samsung Exynos 5422) featuring 4 big cores (Cortex-A15 2.0 Ghz)
and 4 LITTLE cores (Cortex-A7 1.4 Ghz). This device has also been used to produce
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the traces used for simulation. We report CPU power consumption via [59]. Perfor-
mance monitoring happens at the OS level. Following common practice [9; 64], we use
IPC (Instructions per Cycle) as a metric of computational load and LLC (Last Level
Cache) miss rate to characterize memory behavior.

We have tested our technique in applications taken from Parsec [8] (2 apps) and
Rodinia [15] (6 apps) benchmarks. Regarding the Parsec collection, we could not
compile six of those missing to the XU4 board, even without Astro’s instrumentation.
Regarding the rodinia collection, mummergpu wasn’t a fit, as it targets GPUs, kmeans
has problems on compiling in C++ (needed to compile in C++ because of the current
Astro C++ library), as it is originally in C, and lud had too small inputs available.
The other applications could run successfully. We also used Meabo (micro-benchmark
from ARM) [ARM-software].

4.0.2 Results in the Simulated Environment

The experiments that we report in this section are difficult to carry out on an actual
device, because reproducing them would be very challenging and time consuming. For
instance, how to approximate an optimal oracle on a hard device? At each check-
point we would need to be able to choose the configuration that yields the best payoff;
however, that would require us either peering into future events; or rolling back to test
unchosen configurations. To circumvent such difficulties, we have approximated the ex-
haustive execution of configurations by generating traces for every hardware configura-
tion. These traces lets us simulate different behaviors, by choosing, at each checkpoint,
the reward offered by one of them. Different policies can guide this choice: optimal,
best fixed and random for instance. Producing such traces is very time consuming,
thus, we have produced them only for the Parsec benchmarks seen in Figure 1.4. In
the rest of this section, we report results only for the longest trace, produced for flu-
idanimate, whose execution time has varied from 410 (⇠ 7min) seconds to up to 7,000
(⇠ 2h), depending on the configuration, when initialized with its standard input. We
omit the other traces because they lead to similar conclusions.

The Figure 4.1 presents an approximated optimal policy, also called an Oracle.
This Oracle is composed by the best set of configurations for every execution time
slot. The objective functional for this Oracle is energy minimization. The Oracle
was produced using our simulator for the trace of one execution of the fluidanimate
application. We used the native input size for the application. This image seems
to support our claim that the problem is slight complex. The expected application
execution (oracle policy), migrates to 13 different configurations during its execution.
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Figure 4.2 compares seven different scheduling strategies built on top of this
simulator, applied on fluidanimate.

Figure 4.1. Simulated approximated optimal policy for fluidanimate. The Y-axis
represents different hardware configurations. The X-axis shows the application‘s
execution time in seconds.

4.0.2.1 Pre-Astro: Applying Supervised Learning

Our final goal was a learning algorithm which receiving online feedback adapts to a
given program with the help of static and dynamic information. In order to achieve
it, we went by steps. In a first moment, the most natural way to learn which is the
best configuration would be receiving help from an external agent. This agent knows
the best configuration for a few code sections which we can base our learning. This
is called supervised learning technique. For our problem, it is a simpler approach and
easier to converge. However, it is time consuming creating this oracle agent.

Our general method to apply Supervised Learning in the system was the following:

1. Identify code sections via static analysis.
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2. Once identified code sections, instrument each of them in the beginning and in
the end.

3. Start power and performance measurements monitoring sampling and logging
results with timestamps

4. Execute the program for every possible configuration we are considering

In the end of the process we must have the following information for a given code
section:

• Static analysis information of the code section.
• Two timestamps [s, e], being 0

s
0 the timestamp of the beginning of the section

and 0
e
0 the timestamp in the end of it.

• The performance measure units of the program during the section and CPU usage
per core.

• The amount of energy spent per cluster in the section.
A learning unit is a vector v = [S0, ..., SN , H,D0, ...DN ], being S, H and D,

static, configuration and dynamic information respectively. They represent a multi-
dimensional point in the multi-dimensional feature space of our learning problem. On
every learning unit, we aim to discover a label in a particular moment. We call a
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label, the optimal hardware configuration for the code section given a function, that
can be, for example, the most energy efficient configuration within at maximum 5% of
performance degradation. So, given the metric, you must retrieve all the labels for the
code sections.

Once defined the Oracle for the code sections. We can build a learning unit
of a code section, as a vector [Static Information, Current Configuration, Dynamic
Information] and a label corresponding to the best configuration (action). We define a
learning model and split the code units we have in training and test sets. We use the
learning sets to train our learning model and use the test set to evaluate our learning
model.

Results In order to evaluate the supervised approach, we did two experiments. The
first one explores the DVFS scenario on a couple applications in the Rodinia benchmark
[15] and Meabo [ARM-software], a multi-purpose multi-phase micro-benchmark from
ARM. The second experiment focused on a few hot functions from a couple applications
in the PARSEC benchmark. We have tested 5 classification learning models multi-class
for the tests. The dataset, composed of the vectors of information, were separated as a
training and test set. The test set corresponds to 40% of the original input, being the
other 60% used in the training of the data. For the second experiment, we evaluate
different code sections inside one application, the Fluidanimate of PARSEC benchmark
using the native input. Furthermore, we restrict the optimization space to those which
appears at least one time in the training or test set (it did not seem reasonable apply
to a learning method for a class which the algorithm has never seen).

Thus, from the five algorithms used, three of them performed well the task.
They were the Gaussian Process Classifier, the multi-layer perceptron (MPL) and the
kNN. The best among them was the GPC followed by the kNN. We believe that the
amount of data was small to the neural network leading to a smaller precision. The
kNN also has got pretty close to the GPC, loosing only in some classifications of the
configuration 2b4L. At the GPC, all the following metrics were much higher than the
expected: precision (our metric to indicate exactness), recall (our metric to indicate
completeness) and f1-score (harmonic average of precision and recall). The Hamming
loss was lower as well, means that the set test and true set are pretty similar. In order
to evaluate trade-offs of the problem, two algorithms which did not perform well the
task were the Naive Bayes with a Bernoulli distribution a priori and the SVC classifier.
We believe it warns us to cautiously choose the a priori distribution which fits with the
data.

The confusion matrix, also called error matrix, details the differences between
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Figure 4.3. Supervised Learning applied to the fluidanimate application from
PARSEC benchmark in an action space of 24 possible combinations of heteroge-
neous cores. Three learning models that achived the best results of the five tested:
Gaussian Process Classifier, the Multi-layer Perceptron (MPL), the kNN.
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predicted and expected labels. In our matrix, the rows represents the expected con-
figurations and the columns represents the predicted ones. The numbers inside the
matrix represents how many times that expected configuration (row) was labelled as
the predicted configuration (column). The principal diagonal (left top to bottom right)
shows how many times we matched it right. The matrix is a good way to see which
errors our system has done. For example, for the first matrix on Figure 4.3, at the sec-
ond row and first column, it was expected 2b4L and the system predicted 2b3L. Also,
forth row and third column, it was expected 3b3L and our system predicted 3b2L.

Figure 4.4 shows how the static features can leverage good predictions. We had
39 possible actions (combination of different cores and frequency changes). Using
only static features we could achieve a 100% of precision. Analyzing subsets of the
features, we saw that using only four static features, a subset of the 16 static features
initially used, we could achieve the same 100%. The four features were: number of IO,
number of math ops, number of MEM operations, number of INT operations. These
variables values are weighted by the number of loops. Among them, the number of INT
operations seems to have most influence in the high accuracy, achieving alone around
94% accuracy by itself.

RQ1: how close is Astro to an optimal oracle? The data collected for every
possible configurations lets us know, for each part of the program, which configuration
consumes less energy and has the best performance. We then combine these 24 traces
into a single trace, choosing, at each check point, a particular configuration. This
“optimal" trace is what we call the Oracle. Notice that our oracle does not provide
guarantees of finding a global optimal solution to . Rather, it is a greedy approximation:
given that at check-point i we are at configuration Hi, what is the configuration that
gives us the best reward at check-point i+ 1.

Figure 4.2 shows two oracles: (E) and (T). The former yields optimal energy
consumption; the latter yields optimal execution time. Astro’s reward function prior-
itizes time over energy; hence, it leads to execution times close to T. If we schedule
Fluidanimate with Astro, its final runtime is only 10% slower than T. However, it is
more energy hungry: it uses 8% more energy than T, and 15% more energy than E.

RQ2: How does Astro compare against fixed and immutable best configuration
choices? If we fix the hardware configuration, then 4b4L (4 bit, 4 LITTLE cores) gives
us the best runtime and the best energy consumption for the simulation of Fluidanimate.
This configuration is 45% slower than Astro, yet it is 4% more energy efficient. The
fact that Astro, and the energy oracle, could beat 4b4L is surprising. We believe that
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Figure 4.4. Supervised learning applied to the 10 different phases of the
Meabo micro-benchmark [ARM-software]. Fixing the best model for the three
approaches, that were the same (the GPC in the hybrid had also the same pre-
cision as the Gaussian Naive Bayes). Part (a) of the Figure shows the result
considering three dynamic features (relative CPU load to the number of used
cores, instruction per cycles and cache miss ratio), (b) shows the result using 16
static features. The (c) shows the result of the hybrid approach, combining both
features.

this outcome is due to the Linux Scheduler. It is is responsible to map the threads
in flight to the big and LITTLE cores. once threads are assigned, they will tend to
stay statically allocated to favor cache locality. By sometimes changing the hardware
configuration, Astro has the chance to force the Linux scheduler to perform a new load
balancing of threads across cores. To give the reader some perspective on this result,
we have also shown the configuration that yields the slowest and more power hungry
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execution: 1b0L. It is almost 15 times slower than Astro, and spends 3.6x more energy.

RQ3: How does Astro perform when compared with state-of-the-art program
schedulers? We have compared Astro against Hipster [44] and Octopus-Man [46].
The implementation of Hipster differs slightly from the original description of Nishtala,
although we have reused much of their code base. Hipster was originally conceived to
deal with cloud workloads; hence, we had to customize its state and reward function
for multithreaded programs. In this experiment, both, Hipster and Astro use the
same reward function, which tends to minimize energy consumption, although it also
provides incentive to reduce runtime. Octopus-Man is the profiling mechanism used in
Hipster; hence, it does not use the notion of reward. Overall, Astro produces code that
runs faster than Hipster: when scheduled with Astro, Fluidanimate runs 37% faster.
However, Astro uses 4% more energy.

RQ4: Is the combination of static and dynamic information really necessary?
Another interesting question concerns how Astro performs when compared against a
purely dynamic approach, or a purely static approach. In the context of this evaluation,
we call purely static a version of Astro that performs the scheduling using only program
phases (see Definition 3.2.2). Along a similar direction, we call purely dynamic the
version of Astro that only uses hardware phases to solve . Figure 4.5 compares all
these approaches. Overall, they tend to produce the same maximum reward after some
executions of the same application. However, the hybrid implementation of Astro tends
to learn faster. After 80 executions of the same application, we have observed that this
maximum reward varies less than 8% across different episodes. If we use only static
information, then this variance is above 12%. If we use only dynamic data, then we
get a variance above 13%.

4.0.3 Results in an Actual Device

Table 4.1 shows the runtime behavior of four different solutions to : Astro (purely
static and hybrid approaches), Global Task Scheduling (GTS), and Hipster. GTS is
a scheduling algorithm developed by ARM. This scheduler is aware of the different
compute capabilities of big and LITTLE cores in the system. It uses historical data of
the running tasks and active cores to determine where each individual thread will run.
By tracking the load information at runtime, GTS migrates tasks that are compute-
intensive to big cores and those that are less intensive to little cores. Load balanc-
ing heuristics are periodically executed to minimize concentrating compute-intensive
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Figure 4.5. Comparison between three different implementations of Astro. They
vary in the way they choose information to feed the neural-network. Dynamic: uses
only hardware phases (Definition 3.2.3); Static: uses only program phases (Defi-
nition 3.2.2); Hybrid: uses both phases. Each dot along the X-axis represents one
execution of fluidanimate. The Y-axis represents the maximum reward observed
in that execution. We keep the state of the neural-network across executions, so
that it can learn. We show results after 80 of such “episodes".

threads excessively on big cores and letting little cores underutilized. In our setting,
GTS has access to all the eight cores available. The numbers reported for Astro include
all the overhead of monitoring and adapting the target application.

In the first five benchmarks in Table 4.1 were taken from Rodinia. Astro, in
its static or hybrid flavours, outperforms GTS in four samples; however, our results
tend to vary among multiple runs. We have included error margins for this experiment
(averages of five samples). Thus, even though Astro tends to be more efficient than
GTS, in three, out of five results, we are within the error interval. This means that
if we consider the best version of GTS, and the worst version of Astro, then we get
opposite results. In general the static version of Astro tends to outperform its dynamic
version, due to the reduced overhead. However, in one of the experiments, involving
ParticleFilter, the static version was largely outperformed by the other approaches, due
to a bad scheduling decision (1b2L). In this case, the lack of runtime information seems
to prevent it from adjusting early decisions that turn out to be inefficient. The fact
that Astro can consistently outperform it on these five applications testifies in favour
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Figure 4.6. Comparison between three different implementations of Astro. They
vary in the way they choose information to feed the neural-network. NN: uses a
multi-layer perceptron in order to learn the q-function; Q-table: uses a table as
the a way to learn the q-function; The Y-axis represents the normalized average
reward observed in that execution. We show results after 80 of such “episodes".

of considering program structure when taking scheduling decisions.

On BFS and Swaptions applications, the actions learned on Static method were
equal as for all its phases (4b4L). For these scenarios, Astro suffers a bit from its
overhead, as it is analyzed on Section 4.0.4. Finally, on Fluidanimate, we had only
one phase instrumented, and the decision turned out to be bad, 1 little and 2 bigs.
The Static didn’t do good fixed on this configuration, and the Hybrid, on the process
of leaving this bad configuration ended up wasting more energy and time. Energy is
calculated in Joules by multiply the sampling interval, which was 0.1 seconds, to each
instantaneous power given in Watts by Powmon [59].

4.0.4 Overhead analysis

The cost of the Astro overhead can be decomposed in two leading sources: the instru-
mented code added to the original code and the PMUs monitor overhead. Regarding
the former, the code, in the hybrid deploy, consults performance measure units and
static features, then adapts to chosen configuration.
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Time (s) GTS Static Hybrid Hipster

hotspot3D 24.8|0.8 24.3|0.1 25.7|4.6 23.0|0.4
cfd 564.6|0.2 563.7|0.4 564.2|0.3 604.1|20.0

hotspot 124.5|1.1 125.8|1.8 123.8|1.0 131.0|0.6
sradv2 69.4|2.0 62.9|0.9 65.9|1.5 60.1|0.8

particlefilter 210.4|3.9 548.3|2.8 202.4|5.1 200.7|3.3
bfs 72.9|8.2 103.9|19.2 77.9|6.1 71.1|8.2

fluidanimate 302.0|1.2 589.1|2.0 833.9|6.9 311.0|2.6
swaptions 100.2|0.7 101.4|1.1 96.2|2.0 103.0|0.5

Energy (J) GTS Static Hybrid Hipster

hotspot3D 75.0|10.8 72.9|6.6 84.5|16.2 110.8|1.9
cfd 2162.1|1.5 2157.5|1.3 2159.4|1.0 2293.7|59.2

hotspot 605.6|2.2 622.3|13.1 622.1|7.7 665.6|4.1
sradv2 331.3|17.9 336.3|18.5 310.4|14.6 340.6|22.1

particlefilter 810.6|52.6 2025.1|26.2 801.7|47.5 926.6|16.6
bfs 244.1|10.8 311.7|25.5 256.2|16.7 259.0|19.6

fluidanimate 1491.9|28.8 2568.4|111.6 3163.6|155.3 1578.3|25.5
swaptions 536.4|9.5 526.9|9.7 567.0|9.7 512.7|5.1

Table 4.1. Time (Top, in seconds) and Energy (Bottom, in Joules) compar-
ison between Astro, GTS and Hipster. Each value represented as pair: me-
dian|standard deviation. “Static" is the purely static version of Astro, shown
in Figure 3.4 (b). “Hybrid" is the version that uses runtime information to im-
prove on the static decisions, shown in Figure 3.4 (c). Bold values highlight best
results; underscore boxes show results within error margin.

Improvements In order to reduce these overheads a few techniques were applied:

1. we forced a minimum time between any two consecutive instrumentation.

2. we only instrument (1)“hot code segments” (we also call hot segments) and
(2)“code segments with special characteristics”. We define “hot code segments”
by doing a estimate of the number of instruction statically. If it is more than a
constant (c=1000), we then instrument this function. The constant we defined
after a comparison if we were taking the same hot segments as pointed out by
the vtune profiler[Intel]. We “define code segment with special characteristics” if
it consists in a thread sync, network sync or thread sleep region.

3. any file consulted by the instrumented code were mapped to memory (tmpfs),
which is also important in the Astro deployment.
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Binary size Regarding the amount of instrumentation code introduced at binary
level, the Astro library still introduces non-negligible extra code to the applications.
Code re-factoring and usage of fine-tuned compiling optimization flags (e.g. -O3 in-
stead of the original application compiling flags), might mitigate this issue. Figure 4.1
illustrates shows the amount of extra code inserted per application.

Figure 4.7. This figure shows the binary code size on different applications.
The Y-axis represents the size in Kybtes. The X-axis represents the different
applications. Plot shows from the original size in black, learning library adds
in gray and deploy adds in light gray. Binary size computed via the “du -h”
command.

The original size of the binaries are in Kbytes. The hotspot 3D (called 3D, in
the figure) for example, has 20KB, CFD has 24KB, hotspot and particle-filter 24KB,
and so on, represented in black. In dark gray, we show how many bytes were added to
the learning phase (first binary instrumentation). We might recall that during learning
phase, we need to instrument the application to output its phases and dynamic infor-
mation. At this point, hotspot 3D stays around 20KB (20KB plus a few more bytes),
CFD has 28KB (the original 24KB plus 4KB due to the learning instrumentation),
hotspot ends up with 40KB, particle-filter ends up with 28KB. They are represented
by the gray color. Once learning is done, we generate the final binary. This final bina-
ries, for both static or hybrid approach, adds roughly 36-40KB to the original binary
code, shown in light gray. The CFD application, for example, is about 36KB larger
than its original size, ending up with 60KB). For those applications, during the learn-
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ing phase, we observed additional few bytes (0KB) up to 8KB. In the final binary, it
varied from 36KB to 44KB.



Chapter 5

Conclusion

This dissertation has presented overview of the Code Placement Problem and has intro-
duced a framework, Astro, a program scheduler tailored to heterogeneous architectures.
It creates an adaptive program that migrates by itself, without human intervention.
Astro uses machine learning to adapt a program to runtime conditions. However, it
departs from previous approaches, also based on machine learning, because it takes
program characteristics into consideration. To this end, Astro relies on the compiler
to identify program regions that contain similar syntactical features. We classify these
features in sets called program phases, and track, at runtime, which program phase
is currently valid. When combined with dynamic data, this information lets a neural
network train the program, so to maximize some metric of efficiency, such as energy or
runtime. By combining static and dynamic information, we are, effectively, building
architecture-aware code optimizations.

5.1 Open questions and clarifications

The ideas around Astro can still be explored along many different directions, for this
work still leaves many unanswered questions, such as which program features are more
effective when generating code optimizations and which dynamic data is really essential
to train a program to its environment. We hope to provide answered to these questions
in the future.

Multiple applications scenario Even though we isolate applications in order to test
the Astro system, we could clarify that, in theory, the design of Astro is not fixed
to a single-application environment. When multiple applications are already running
on a hardware, the dynamic information of the hardware will change and this should
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lead the instrumented program to adapts changing its affinity to this environment.
However, in a scenario which we have multiple applications trying to fit in the same
hardware, we should not allow more than one application to adjust it, for example, via
DVFS. One application should be able to adjust the hardware, but others should not,
limiting themselves to the core-affinity adjusts.

In the multiple adaptive applications trying to adjust the hardware for their
needs, it brings interesting questions, such as:

• Is it feasible to put in current operating systems, many instrumented programs
which can adjust the hardware for themselves?

• If not, what would we need to modify in these operating systems?
• Should a program let the operating system know that it will take care of schedul-

ing itself?
• Would it be the case of having an operating system that operates with at least

three kinds of programs: programs that are responsible for scheduling themselves
but cannot modify the hardware, programs responsible for scheduling themselves
and that can modify the hardware and last programs which the operating system
will take care of the allocation?

• How to synchronize these programs around a common optimization goal? For
example, do they need a cooperation factor affecting their rewards?

Problem on handling application’s code Astro has a few limitations inherent to its
design and related to handling application’s code. Firstly, the current version of Astro
needs the application’s source. Source codes are sometimes not available. Providing
the system as an open source project address this issue, so individuals can take Astro
and apply on its own source code, without the need of sharing with us their code.
In the future, one could also instrument the binary code instead of the source code.
There are two other limitations which have hitherto exposed to us: some applications
cannot change the structure of their programs, in order to meet, for example, a memory
layout; and some critical applications cannot have any kind of instrumentation as this
new code can be a future source of bugs or exposition to malicious attacks. For those
two last, the expected solution would be removing the instrumentation component,
which is not addressed, as it is our main component to the goal of producing adaptive
programs. Notice that this limitation is common among tools that perform dynamic
analysis via code instrumentation [34; 14; 22].

Miscellaneous A few interesting questions we have approached might be revisited
and are still open: (1) How to normalize a floating point value which you do not know
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its range, in the performance metrics scenario? We currently do a local normalization
by the total number of instructions. Other approaches as estimating minimum and
maximum and updating these values over time seems interesting. (2) What other
approaches to produce an Oracle would be interesting to have? We have decided for a
greedy oracle. Having execution traces on all the configurations, it and decides for the
best action that maximizes reward at that moment. Maybe we should have considered
more elaborated Oracles with the traces we had?
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